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ABSTRACT

Machine Learning Methods in Large Scale Neuroimaging Study

by

Qing He

The focus of this dissertation is on developing machine learning methods for analysis

of the large-scale neuroimaging data. It consists of three topics.

In the first topic, we develop a spatial-temporal Gaussian process regression

(STGPR) model for Bayesian analysis of longitudinal imaging data. Our goal is to

study progressions of the brain activities in different brain regions and how they are

associated with time-independent predictors (disease status, gender, etc.) and time-

varying predictors (age, weight, etc.). We assign Gaussian processes priors to spatial-

temporal varying coefficients in the model. To cope with the large-scale dataset, we

develop three fast posterior computation algorithms based on the Karhunen-Loeve

expansions on the Gaussian processes. Compared with a voxel-wise linear model ap-

proach, we demonstrate the advantages of the proposed method in a simulation study,

where we propose two metrics: relative L1 loss and gradients relative L1 loss for mea-

suring coefficient estimation accuracy. We apply the proposed method to the analysis

of the longitudinal positron emission tomography (PET) data in the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) study and obtain some meaningful results.

In the second topic, we use ensemble classification methods to predict disease

status using neuroimaging data as biomakers in clinical studies. According to the

existing brain atlas, the whole brain can be partitioned into many brain regions. For

each brain region, we use voxel-level brain image to generate important classification



features, using which we develop many region-level basic classifiers. Then we combine

those basic classifiers through linear programming boost (LPBoost) to find an optimal

feature combination rule for classification. We develop an efficient column generation

algorithm to solve both binary and multi-class LPBoost problem in high-dimensional

feature space. We show the proposed method can improve the performance of basic

support vector classifiers (SVC) dramatically and outperform other existing alterna-

tives. We use the proposed method to analyze a large-scale resting state fMRI data in

the Autism Brain Imaging Data Exchange (ABIDE) study data, leading to a better

prediction accuracy than the existing best result.

In the third topic, we make Bayesian inference on peaks of smooth curves in

a nonparametric regression model, where we determine the peak location based on

gradients of the curve. We assign a Gaussian process prior to the smooth curve of

interest. We show that the joint posterior distribution of the curve, its first derivative

and the second derivative follow a multivariate Gaussian process. This result leads a

straightforward posterior inference on peak locations and magnitudes. In the simula-

tion study, we demonstrate that the proposed peak identifier outperforms the existing

non-parametric kernel smoothing method in different scenarios. We apply the pro-

posed method to analysis of electroencephalogram (EEG) time series in a study of

alcoholism. In particular, the proposed method is applied to find the peaks of the

EEG time series in the temporal domain and peaks of the signal power in the fre-

quency domain. We construct a peak-based classifier on alcoholism versus normals,

which achieves a 80% classification accuracy.
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CHAPTER I

Introduction

1.1 Overview

The rising of neuroimaging technology has provided various tools to study brain

activities. It improves our understanding of both the neurophysiology of healthy

individuals and the pathophysiology of patients suffering from mental illnesses or

major psychiatric disorders, e.g. Alzheimer’s disease, Autism, Alcoholism. Common

methods of functional neuroimaging, e.g. positron emission tomography (PET), func-

tional magnetic resonance imaging (fMRI), electroencephalography (EEG), provide

quantitative measurements of brain activities, either through three dimensional (3D)

images on hundreds of thousands of cuboid elements, called ”voxels”, or through ex-

ternal sensors attached to specific locations of the head. All types of brain imaging

data are subject to common properties such as high dimensionality, complex spatial

correlation structure, and intrinsic temporal associations, which pose challenges for

statistical modeling. Therefore, our main objective is to develop new statistical meth-

ods to make inference on neuroimaging data and apply them for clinical purpose of

disease diagnosis and treatment selection.

This dissertation is organized as follows: the remainder of Chapter I provides

background information on the topics in neuroimaging researches, current statistical

methods of neuroimaging analyses, motivating examples, as well as outlines our pro-
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posed research. Chapter II presents a spatial-temporal Gaussian process regression

model for longitudinal neuroimaging data and its application to Alzheimer’s Disease

Neuroimaging Initiative Study (ADNI). Chapter III presents an ensemble classifier

using linear programming boost for feature combination of large scale neuroimaging

data and applies to a study of Autism Brain Imaging Data Exchange (ABIDE). Chap-

ter IV presents a new Bayesian nonparametric method for making inference on peaks

of curves. We demonstrate this method in the analysis of EEG data in an alcoholism

study.

1.2 Human Brains and Functional Neuroimaging Data

1.2.1 Basic Knowledge of Human Brain

The human brain, as the most complex organ, produces feeling, emotion, and

memory, and coordinates body actions while perceiving the outside world. The av-

erage weight of adult human brain is about 1.4 kg, containing about 86 non-neural

cells (glial) and 85 billion neuron cells. There are two types of brain tissue defined

anatomically including grey matter (cerebrum cortex) which consists of neuronal cell

bodies, neuropil, glial cells and capillaries, and white matter which mostly contains

myelinated axons as tracts to interconnect different regions of the cerebral cortex and

supporting structure.

Human brain has its parcellation and atlases. The human brain contains the brain-

stem, cerebellum, and cerebrum (neocortex). The cerebrum responds to higher order

reasoning, learning, and personality and is our major research interest. The cerebrum

consists of two hemispheres (right and left) connected by white matter commissural

fibers (e.g. corpus callosum). Each cerebral hemisphere is conventionally divided

into four lobes: frontal, parietal, temporal, and occipital. The two hemispheres and

four lobes provide us a general map of human brain. For population brain imag-
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ing studies, the individual brain images are usually first normalized into a common

coordinate space to accommodate the between subject variation of brain size and ori-

entation. The Talairach space and the Montreal Neurological Institute (MNI) space

are the two most widely used atlas spaces. The Talairach coordinate system is based

on a 4 stereotaxic atlas of the human cerebral cortex published by Tzourio-Mazoyer

et al. (2002). Each brain location is defined by three dimensional coordinates with

its distance from the midpoint of a brain white matter structure called the anterior

commissure. The atlas is built based on a single brain of a 60-year-old French woman

with mental disorder. Despite of its popularity, the Talairach space is quite different

from normal brains. For example, the Talairach brain is considerably smaller than

the average brain by up to 10 millimeters in each dimension. Later, the MNI co-

ordinate system defines a new standard brain by using a large series of MRI scans

of healthy normal controls (Evans et al., 1993). These atlases differ in shape and

size, and have been installed in common neuroimaging processing software. After

normalization, finer cerebral cortex parcellation can be constructed and is desired for

in-depth study. One fine cerebral cortex parcellation is defined by Brodman areas

(48 regions), which are based on cytoarchitecture, or organization of cells. The Auto-

mated Anatomical Labeling (AAL) regions (116 regions) are constructed through the

identification of major and minor sulci/gyri on a T1 MRI with subsequent labeling

based on anatomical location (Tzourio-Mazoyer et al., 2002), which is more used for

functional neuroimaging-based research.

Brain connectivity and signal transmitting represent the status and function of

a human brain. There are up to tens of thousands of neurons that passing signals

between each other via synapses. The pattern and strength of such connections keep

changing for every second of our lives according to updated experience, learning, and

reinforcement. The changes determine the brain functions such as memory, person-

ality, and habit. Therefore, the brain structure is not only shaped by genes but also

3



even more by experience. There are various ways to pass signals between neurons,

e.g. by electronic, magnetic and chemical pathways. In synapse, signals are passed

between neurons by releasing and capturing neurotransmitters such as dopamine,

acetylcholine, and serotonin. The neurotransmitters are very important for brain ac-

tivity, and abnormality of them is related to diseases. For example, a deficiency in

serotonin in limbic system is linked to depression or mood disorders. When build-

ing such electronic or chemical signal passing channels, energy is needed, which is

provided by glucose and oxygenated-haemoglobin (generating APT). Therefore, high

level brain region activity is usually synchronized with higher metabolite rate and glu-

cose and oxygenated-haemoglobin concentration. All of the above are considered as

the fundamental signals that neuroimaging research relies on to study human brains.

Neuroimaging is traditionally divided into structural and functional imaging. Struc-

tural imaging maps the brain anatomy and includes computed tomography (CT) and

MRI. Functional imaging seeks to examine the physiological properties of the brain,

either at rest or during task-induced activation. There are a variety of methods

that maps human brain functioning. For example, PET and fMRI measure local-

ized changes in cerebral blood flow, which is also referred to as activations. The two

neuroimaging maps are able to show neuronal activity with relatively high spatial

resolution (≤ 1mm), but the temporal resolution (2-20 sec) is limited by the much

slower rate of brain regional blood flow and blood oxygenation. In contrast, tech-

niques such as electroencephalography (EEG) and magnetoencephalography (MEG)

map the underlying electrical activity of the brain cortex. These methods allow high

temporal resolution of neural processes, but have poor spatial resolution (over 1 cm).

While each modality is interesting in its own right, in this dissertation we focus and

introduce new statistical methods applied to fMRI, PET data, and EEG. In the fol-

lowing three sections, we give a brief description of the main principles on which these

three neuroimaging techniques are based. In this dissertation we concentrate on how

4



they are applied to human brain neuroimaging.

1.2.2 Positron Emission Tomography (PET) Imaging

PET is a nuclear imaging technique for mapping brain function or other molecular

processes in the body. It requires injection or inhale of radioactively labeled chemicals

into a subject’s bloodstreams. The labeled compound, also called radiotracer, goes to

the areas of the brain and body that use it while the subject is engaged in some type

of mental or physical activity. Sensors in the PET scanner then measures emission

related to the positron decay and generate images of the distribution of the radio

chemicals throughout the brain and body. Different colors or degrees of brightness on

a PET image represent different levels of tissue or organ function. This method hence

provide a functional view of the brain and body. PET is not an exact measure of

brain function since it depends upon certain assumption about what happens when an

area of the brain becomes active. The assumptions include: 1) cerebral metabolism

requires glucose metabolism, which requires oxygen from blood flow, i.e. there will

be more blood flow in parts of the brain that are more active; 2) cerebral blood flow

varies locally with corresponding local variations in neural activity.

PET has very high biochemical sensitivity and selectivity which allow probing the

neurochemical processes at the molecular level. Its temporal and spatial resolution

are inferior to that of fMRI. The mean free path of the positron in brain tissue

limits the spatial resolution of PET scanning to about 4 mm. However, PET images

can be superimposed on subject’s MRI images, providing detailed information about

specific brain areas involved in a wide variety of functions. Spatial resolution of PET

data depends upon several other factors: the size and type of the crystal used in the

scanner scintillator to detect the gamma radiation emission, the energy of the positron

emitted etc. Temporal resolution depends mainly upon half-life of the isotope. Safety

regulations require to wait 5 half-lives between injection the radioactive tracers. In
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a typical PET experiment, a brain scan is taken during a control task (e.g., resting

with eyes closed). The control task is compared to brain scan taken while the subject

is exposed to the experimental treatment or performing the experimental task. To

determine the brain activity that can be attributed to the experimental condition,

the difference between the PET scans is calculated.

1.2.3 Functional Magnetic Resonance Imaging (fMRI)

fMRI, as opposed to PET, is a relatively safe and non-invasive technique for gen-

erating maps of and studying brain activity. fMRI data consist of a 3D sequence of

individual magnetic resonance images (MRI) which record a subject’s brain activity.

In general, MRI maps the water distribution in the brain which is based on an in-

teraction between radio waves and atomic nuclei called nuclear magnetic resonance

(NMR) (Higgins , 1996). To obtain an MRI, a subject is placed in a field of a large

electromagnet (generally from 1.5 to 4.0 Tesla) that aligns the magnetization of hy-

drogen atoms in the brain. A hydrogen nucleus whose spin is oriented parallel to the

applied magnetic field is said to be relaxed or in the low energy state, while a nucleus

whose spin is oriented against the magnetic field is said to be in an excited or high

energy state. When the scanner injects a pulse of radio frequency (RF), the nuclei

is excited and raised out of their low energy states. When the RF pulse is removed,

the hydrogen nuclei return to their original aligned position, and emit RF energy

that measured by the scanner. The absorbing and emitting happens only when the

frequency of the input radio waves equals the natural resonance frequency, i.e. the

Larmor frequency, of the element in the magnetic field. Because of this, it is possible

to highlight different characteristics of the imaged tissue by adding RF or gradient

pulses and carefully choosing their timing. The useful contrast in MRI comes not

only from spatial variation in the density of water, but also from differences in nu-

clear magnetic properties known as relaxation. They are characterized by distinct
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rates or relaxation times, used in MRI to distinguish between tissue types. Three

relaxation times are of primary interest in MRI: T1, T2 and T ∗2 . T1 effects measure

recovery of longitudinal magnetization that is parallel to the main magnetic field. T2

refers to decay of transverse magnetization that is perpendicular to the main magnetic

field. T1 time refers to interval where 63% of longitudinal magnetization is recovered,

and T2 time refers to the interval where only 37% of original transverse magnetization

is present. When T2 dephasing is due to one or more localisable sources, it is referred

to as as T ∗2 . fMRI is a T ∗2 image. The raw data obtained from an MRI scanner are

collected in the frequency domain. The inverse Fourier transform is then used to

transfer the data into image space, where data analysis is performed (Ogawa et al.,

1990).

1.2.4 Electroencephalography (EEG) of Brain Electrical Activity

Electroencephalography (EEG) is an electrophysiological monitoring method to

record electrical activity of the brain. It requires to place multiple electrodes along

the scalp and measure voltage fluctuations resulting from ionic current within the

neurons of the brain. In clinical contexts, EEG is usually referred as the recording

of the brain’s spontaneous electrical activity over a period of time. Research based

on EEG generally focus either on event-related potentials or on the spectral content

of EEG. The former investigates potential fluctuations time locked to an event like

stimulus onset or button press. The latter analyses the type of neural oscillations

that can be observed in EEG signals in the frequency domain.

For clinical purpose, EEG is most often used to diagnose epilepsy, which causes

abnormalities in EEG readings. Some other symptoms, i.e. diagnose sleep disorders,

depth of anesthesia, coma, encephalopathies, and brain death can also be reflected in

EEG data. EEG has used to be a first-line method of diagnosis for tumors, stroke and

other focal brain disorders. Recently with the advent of high-resolution anatomical
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imaging techniques such as MRI and CT, the use of EEG has decreased. Despite

limited spatial resolution, EEG continues to be a valuable tool for research and di-

agnosis. It is one of the few mobile techniques available and offers millisecond-range

temporal resolution which is not possible with CT, PET or MRI.

1.3 Statistical Methods of Neuroimaging Studies

Exploring scientific and clinical outcomes have always been primary objectives for

neuroimaging studies. The main focus of neuroimaging studies include the followings

areas. 1) Activation studies target to identify particular brain regions that associate

significant signal changes. The general objective of activation study is to localize brain

areas that involved in task-related signal processing. Another objective is to compare

response and non-response neural regions among different subgroups of individuals,

i.e. treatment groups. 2) Connectivity studies seek to identify brain areas that show

similar patterns of activity over time, yielding distributed networks of brain function.

3) Predictive studies try to use neuroimaging scans and patients’ demographics to

predict future neural outcomes. Prediction in neuroactivity presents influencing clin-

ical significance, for example, studying the change in brain activities over time can

help to monitor disease progression; forecasting brain reaction to different treatment

strategies can provide insights on medical effect thus assist therapeutic designs; etc.

4) Classification study to classify individuals into different groups based on their neu-

roimaging biomarkers. Instead of considering the neuroimages as dependent factors

to explore brain physiology, the imaging data can be utilized as features to predict

clinical outcomes such as disease status and treatment response. The classification

methods can also select neuroimaigng based biomarker for diagnostic purposes.

Data from a functional neuroimaging study consist of a series of 3D images, typi-

cally obtained while the subject performs a certain cognitive, behavioral or emotional

task, or while at rest. In an fMRI study, typically hundreds of such 3D images are ob-
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tained, taken approximately 2-4 seconds apart. In a PET study, the number of scans

is significantly smaller since the maximum number of scans per subject is limited due

to the total isotope dose allowed. The brain images are obtained much less frequently

due to the same reason. Each 3D image comprises of a large number (>100,000

in an fMRI study; usually smaller for PET) of voxels. In addition, the experiment

may be repeated for the same subject, as well as for multiple subjects. Because of

the neurophysiology of the network organization of the brain, spatial correlations are

very likely. Also, temporal correlations both within and between scanning sessions

are present due to repeated scanning.

1.3.1 Preprocessing Pipeline

The scans images usually undergo several preprocessing steps before statistical

analysis in order to reduce artifacts caused by the scanner machine and possible

movement of the subject, and to map individual brains to a standard brain atlas in

order to perform group analysis and to make population inference.

For PET scan data, the pre-processing steps include the following steps. 1) Frame

extraction: separate frames (usually five minutes apart) are extracted from the image

file for registration purposes. 2) Co-registration: separate frames are co-registered

to one another lessening the effects of patient motion. 3) Averaging: all five-minute

apart frames are averaged into one image. 4) Spatial re-orientation and intensity

normalization: each subjects image from their baseline PET scan is reoriented into

a standard 16016096 voxel image grid having 1.5 mm cubic voxels. 5) Smoothing:

each image set is filtered with a scanner-specific filter function to produce images of

a uniform isotropic resolution. Details of the PET scan preprocessing procedure can

refer to http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/.

For fMRI data, the following steps are involved. 1) Brain extraction: strip the

skull and non-brain tissues and generates a brain mask. 2) Motion correction: re-
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aligns 3D images to a common reference by using rigid body transformation with 6

degrees of freedom. 3) Slice timing correction: each voxel’s time course is shifted

by interpolation and resampling in order to be assumed that they are measured si-

multaneously. 4) Registration: register each subjects brain to a standard template

brain atlas for example MNI space or Talairach space, using linear/affine transforma-

tion with 12 degree of freedom or nonlinear matrix transformation. 5) Normalization

which is important in group analysis and attempts to register each subject’s brain

to a standard template brain; 6) Spatial smoothing: convolving the 3D images with

a Gaussian kernel. Spatial smoothing is done for several reasons: it may improve

inter-subject registration, it ensures that the assumptions of the random field theory

are satisfied, and to increase signal to noise ratio. However, spatial smoothing causes

a loss of acquired data and may introduce artificial spatial correlation between nearby

voxels. The above preprocessing steps and the order in which they are performed are

important because they influence both the spatial and temporal correlation structure

of the image data.

For EEG data, detailed preprocessing steps are explained in Chapter (IV).

1.3.2 Activation Studies

The general objective of activation studies is to identify brain locations that are

involved in the neural processing associated with tasks that subjects perform while

in the scanner and possibly to compare these neural processing traits between tasks

or between subgroups of individuals. Commonly, a two-stage statistical modeling

procedure is used. At the first level, activation coefficients are calculated for single

subjects under different experiment condition independently; then the second level

conducts group level analysis on the summarized coefficients while adjusting for the

covariates such as age, gender, and race (Bowman et al., 2008). The general linear

model (GLM) is the most population way to analyze the single subject fMRI data
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for activation study (Worsley and Friston, 1995; Friston et al., 2002). Statistical

hypothesis can be conducted to the model to test the increase in brain activity during

the on signal versus during the off signal. Usually, individual model parameters can be

tested using a t-test and subset of parameters using a partial F-test. Typically, multi-

subject analysis of fMRI data from an activation study is performed using hierarchical

models, which provide a framework for performing mixed-effects analysis. The group

level or population parameters represents the effects related to different sessions or

the effects associated with different subpopulations, e.g. treatment groups. Based on

the hierarchical model, statistical inference between the different sessions or different

groups can be conducted.

1.3.3 Connectivity Analysis

Functional connectivity has been defined as the temporal correlation between

spatially remote neurophysiologic events. Since most brain functions are realized by

certain kinds of functional connectivity of brain neurons, it is a very important focus

of neuroimaging study. There are two research focus: 1) to study brain functional

connectivity in resting state; 2) to study brain functional connectivity given specific

stimuli. Usually during deep sleep the functional connectivity is much weaker than

during awake status. Functional connectivity in resting state is much weaker than

under stimuli. For fMRI data, functional connectivity analysis is based on a time

series of BOLD signals. On the other hand, structural connectivity measures the

white matter fibre tracts based on DTI imaging. The estimation is based on the

path of water molecules’ motion direction. It has intrinsic relation with functional

connectivity because the neural signal is passed through axons in the white matter

(Honey et al., 2009). In the following, we mainly focus on the models for functional

connectivity.

The idea of seed voxel approach for connectivity study start from selection of a
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voxel or a set of voxels based on functional or anatomical knowledge gained previously.

Then the average time course of the selected voxel is studied and correlates with the

remaining voxels. As a result the whole brain connectivities can be built based on the

those reference voxels. The seed voxel approach is easy to calculate but the choice

of the seed voxel could be subjective and it ignores network relationship between

all voxels. Greicius et al. (2003) applied seed voxel approach to resting-state fMRI

data for functional connectivity analysis, and revealed the connectivity between the

posterior cingulate cortex and the ventral anterior cingulate cortex and provided

evidence of a default mode networks (DMN) of brain function.

Cluster analysis is also widely used for connectivity analysis. It intends to iden-

tify networks or clusters that consist voxels of correlated patterns of measured brain

activity. Although the clustering solutions only reflect functional association between

voxels and do not define the underlying neuroanatomical connections, voxels from

the same anatomical region ideally should exhibit high functional or spatial auto-

correlation, validating that the neural responses within the same anatomical region

are functional related. Most clustering methods are based on the dissimilarity of the

activity time courses between different voxels. Two typical dissimilarity measures

are Euclidean distance, which is for continuous variables, and Mahalonobis distances,

which is for categorical variables. The voxels within the same cluster are expected

to have more coherent performance. Commonly used clustering algorithms include

hierarchical clustering and partitioning algorithms. There are also model-based clus-

tering methods that do not require pre-specification of the number of clusters. For

example, infinite mixture model via the Dirichlet Process or Chinese Restaurant Pro-

cess allows simultaneous assignment of cluster membership along with optimization

of the number of clusters.

There are also methods to use graph theory to study connectivity. The brain’s

structural and functional connectivity network has complex network topological fea-
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tures, such as high clustering, small worldness, the presence of high degree nodes,

assortativity, modularity or hierarchy at both the whole-brain scale and local level.

The graph composed by the nodes (voxels) and edges (connectivities between voxels)

of brain network could provide an amount of metrics to describe the whole brain

complex network, e.g. the degree of a node, assortativity, cluster coefficient, path

length, connection density, and so on.

1.3.4 Prediction and Classification

Both activation and connectivity studies uses neuroimaging outcome to explore

brain physiology. We can also consider the neuroimaging data as features to predict

clinical outcomes such as disease status and treatment response (Evans et al., 2006).

To achieve this goal, feature selection and classifier construction are two major tasks.

Feature selection is a technique to choose a subset of most related features to the

outcomes based on supervised learning models. Due to the curse of high-dimensionality,

dimension reduction techniques are usually used for predictive analysis of neuroimag-

ing data. There are two typical categories of feature selection algorithms. The first

category is based on creating filters that preset threshold on statistic metrics of all

features and elimitates those that do not pass. Many methods have been developed

to control the false positive discovery rate for the large scale tests, for example local

false discovery rate method by Efron (2005). The second category is called wrapper

methods, which is objective function oriented and searches for the optimum set of

possible features to achieve highest objective function value. One example is the re-

cursive feature elimination algorithm by Guyon et al. (2002). The shrinkage method

such as Lasso and elastic network could also be categorized as wrappers, since the

variables selected are based on the penalized objective function Efron et al. (2004);

Zou and Hastie (2005). The selected features could be used as inputs of the following

classification models.
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Machine learning classification methods have been successfully applied to neu-

roimaging data, for example, support vector machines (SVM), aritificial neural net-

work classifiers, decision tree based algorithm such as CART and random forest,

Bayesian classifiers, and the most recent convolutional neural network (CNN). Those

supervised learning procedures usually include two steps: model training and predic-

tion. In the training step, a part of the subjects are used to build the model with the

objective of high classification rate with certain constraints. In the prediction step,

the rest of the subjects are used to test based on the trained model for evaluation and

future use. The cross validation procedures such as k-fold and leave-one-out could be

applied.

1.4 Motivation Example and Proposed Research

1.4.1 Alzheimer’s Disease Neuroimaging Initiative Study (ADNI)

Alzheimer’s Disease Neuroimaging Initiative (ADNI) http://www.loni.ucla.

edu/ADNI/ is a large national project with a goal to develop biomarkers of Alzheimer’s

Disease (AD) in elderly subjects, to define the rate of progress of mild cognitive im-

pairment (MCI) in Alzheimer’s disease, and to provide a large database which will

improve design of treatment trials.

In this dissertation, PET data of 69 typical controls subject (TC), 49 AD patients,

and 117 MCI patients are obtained from the ADNI database and used to study the

disease status and progression. The neuroimaging scans and all clinical covariates are

collected longitudinally at baseline, six months and twelve months. The goals include:

1) to predict subject’s follow-up (18 month) brain image outcome based on the existing

brain images; 2) to classify or predict patients’ disease status given existing brain

image measurements; 3) to investigate different effects of clinical variables on brain

activities and disease status.
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In the first dissertation topic, a novel Bayesian non-parametric model is proposed

and used to study Alzheimer’s disease. The model is able to learn both spatial associ-

ation and temporal changes of PET scans through multiple time sessions. The model

is used to predict the follow-up imaging outcome, to identify changes in brain areas,

and to investigate the spatial and temporal influence of different clinical factors. The

method outputs smoothed brain signals and adjust for patients’ individual factors

and characteristics. Both time-varying and time-independent covariates are consid-

ered so that we can achieve both group specific influence, i.e. treatment groups, and

task specific effect, i.e. task indicator.

1.4.2 Autism Spectrum Disorder (ASD) Study

Autism spectrum disorder (ASD) is a widely recognized disease characterized by

qualitative impairment in social reciprocity, and by repetitive, restricted, and stereo-

typed behaviors. Due to its high prevalence in children with a more than 1% occur-

rence rate, there is strong need to further understand the mechanisms underlying ASD

in order to identify ways of earlier diagnosis, optional treatment selection, and better

outcome prediction. Autism Brain Imaging Data Exchange (ABIDE) is a consor-

tium of the International Neuroimaging Datasharing Initiative. ABIDE collaborated

16 international imaging sites and collected neuroimaging data from 539 individuals

suffering from ASD and 573 typical controls (TC). The datasets are composed of

structural and resting state functional MRI data along with an extensive array of

prototypical information. The major goal of ABIDE is to provide data support to

accelerate research of the neural based of ASD (Di Martino et al., 2014).

In the second dissertation topic, an ensemble classification methods is proposed

to predict ASD status using a large-scale resting state fMRI data in the Autism

Brain Imaging Data Exchange (ABIDE) study data, and lead to a better prediction

accuracy than the existing best result.
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1.4.3 Electroencephalogram Alcoholism Study

Electroencephalography, EEG, study of alcoholism; see http://kdd.ics.uci.

edu/datasets/eeg/eeg.data.html. The objective is to estimate the relationship

between alcoholism and brain activity through peak location and magnitude. The

study compromises 122 subjects: 77 alcoholic subjects and 45 non-alcoholic controls.

For each subject, 64 electrodes were placed on their scalp and EEG was recorded

from each electrode at a frequency of 256 Hz (3.9-msec epoch) for 1 second.

In the third dissertation topic, we build a Bayesian model making inference on

peaks via spatially adaptive non-stationary Gaussian processes. The method is able

to locate peaks of one-dimensional curves and multi-dimensional surfaces. Gaussian

process computing techniques are used to achieve efficiency in large scale data settings.

We apply the proposed method to analysis of electroencephalogram (EEG) time series

in a study of alcoholism. In particular, the proposed method is applied to find the

peaks of the EEG time series in the temporal domain and peaks of the signal power in

the frequency domain. We also construct a peak-based classifier on alcoholism versus

normal controls.
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CHAPTER II

Topic 1: Bayesian Gaussian Process Modeling of

Large Scale Longitudinal Neuroimaging Data

2.1 Introduction

Developed biomedical technology has made more longitudinal neuroimaging data

available, where brain images are collected at several time points. Studying brain

activities at repeated occasions is gaining increased attentions in the neuroimaging

community because it creates opportunity to further understand the structural and

functional development of healthy or pathological brains. The datasets for longitu-

dinal analysis are usually large and complicated, where the response data contain

multiple measurements of three-dimensional (3D) brain images for each subject with

some of the covariates to be time-varying as well.

2.1.1 Longitudinal Neuroimaging Analysis

Longitudinal neuroimaging analysis is attempt to describe the marginal expecta-

tion of the study outcome as a function of given covariates while accounting for the

correlation among the repeated imaging measurements. The most common method to

fit longitudinal model is the generalized estimating equation (GEE) approach (Zeger
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and Liang , 1986), where a mean function and a working correlation structure for the

correlation between a subject’s repeated measurements are assumed. GEE is only

designed for non-high dimensional problem, and its performance is highly limited by

the requirement that all covariates have to be time independent, and that the work-

ing correlation structure has to be arbitrarily specified (Sullivan Pepe and Anderson,

1994; Fitzmaurice, 1995). To improve performance of GEE so that covariates are

allowed to be time-dependent, Lai and Small (2007) proposed the use of generalized

method of moment (GMM) for longitudinal data with three types of time-varying co-

variates and claimed that GMM either outperforms or is comparable with GEE. Skup

et al. (2012) extended GMM to a multiscale adaptive generalized method of moment

(MA-GMM) incorporating spatial information in model estimation based on an iter-

atively increasing neighborhood concept. Although MA-GMM models between-voxel

correlation adaptively to gain computation efficiency, the method fails to work for

long range spatial correlations due to the curse of dimensionality. A few literatures

tend to explore different modeling strategies for time-varying covariates based on dif-

ferent problem focuses. Xu et al. (2008) presented a nonlinear mixed model to study

multivariate longitudinal image data that exhibit asymptotic growth trends. Their

model requires specification of a parametric function of time for temporal trend. Li

et al. (2010b) proposed a semi-parametric mixed model, using a nonparametric func-

tion based on cubic smoothing splines to model time effects and a parametric function

to model other covariate effects. The model uses Bayesian formulation and inference

and is applied to longitudinal reproductive hormone dataset. The most recent sta-

tistical toolbox conducting longitudinal neuroimaging analysis, called LSTGEE, uses

GEE methods but doesn’t incorporate spatial dependence (Li et al., 2009).
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2.1.2 Machine Learning methods for Neuroimaging Study

Nonparametric methods are more flexible to model spatial dependence of brain im-

ages. Principle component techniques are commonly used to extract multiple principle

components from spatially correlated imaging data (Friston et al., 1996; Kerrouche

et al., 2006). Functional regression models are also an important tool to incorporate

complex correlations. Reiss and Ogden (2010) used functional principal component

regression for image data but without regularization to impose sparsity. Zhao et al.

(2012) proposed a general wavelet-based Lasso approach in functional linear regression

for one dimensional regression coefficient function. Wang et al. (2014) proposed a reg-

ularized Haar wavelet-based approach that identify brain subregions associated with

cognition. For longitudinal analysis, the multilevel functional principal component

analysis (MFPCA) by Di et al. (2009) used functional principal component as bases

and gave description of multilevel functional exposures. Crainiceanu et al. (2009)

developed generalized multilevel functional linear models (GMFLMs) for association

studies between longitudinal outcomes and multilevel functional exposures. They

applied their method on imaging data and provided both frequentest and Bayesian

inferences. One of the limitations of functional analysis is that it is difficult to find

reasonable clinical representation for functional outcomes and regressors. For some

cases, complex functional models may have computational bottleneck.

Machine learning tools have also been widely applied for high-dimensional data

classification and prediction. Support vector machine methods are among the most

popular machine learning techniques due to its efficiency and robustness. Cox and

Savoy (2003) used statistical pattern recognition algorithms including LDA and SVM

to separate brain activation maps from an fMRI experiment in which participants

viewed images of objects. The objects belonged to various categories, both of similar

and differing forms. They successfully classified neuroimages into different groups
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based on what object is viewed when fMRI is conducted. Mitchell et al.(2004) present

case studies in which they have successfully trained three classifiers: a Gaussian Naive

Bayes classifier, k-nearest neighbor, and linear SVMs, to distinguish cognitive states

such as whether the human subject is looking at a picture or a sentence or whether

the word the subject is viewing is a word describing food, people, buildings, etc.

Chen and DuBois Bowman (2011) developed a support vector classifier based on an

augmented reproducing kernel function that leverages longitudinal information.

Bayesian spatial modeling approaches have been widely proposed to model the cor-

relation between neighbouring voxels (Bowman, 2005). Marquand et al. (2010) evalu-

ated the predictive capability of Gaussian process models for two types of quantitative

prediction: multivariate regression and probabilistic classification, using whole-brain

fMRI volumes from a study investigating subjective responses to thermal pain. They

showed that Gaussian process regression models outperform support vector and rele-

vance vector regression. However, the difficulties arise for high dimensional problems

since the inversion of the correlation matrix is computationally challenging. To over-

come this difficulty, Banerjee et al. (2012) introduced the dimension reduction tech-

niques where the original high dimensional space is projected onto a low dimensional

subspace with the closest distance to the original matrix.

Based on the literature review above, the majority of current brain study methods

are either based on seed voxel analysis or region representative analysis. Due to partial

selection of seed voxels or ignoring between regional variation, these methods may

lead to substantial information loss and subject to misleading understand in brain

functions. There is strong need for a comprehensive method that simultaneously

accounts for brain wide spatial and temporal correlations, while adjusting for clinical

covariate effects such as age, gender, and medical history. Targeting broad brain area

helps reveal potential median to long range changes in brain activities that capable

of providing new clues to disease diagnosis, progression, or recovery. We intended

20



to overcome some shortcomings of the existing models by incorporating long range

spatial correlations and involving temporal effect through multiple time sessions. We

designed a novel Bayesian non-parametric model to predict follow-up neural activities,

to identify difference in brain outcomes, and to find potential location and time

specific influential covariates. The method incorporates effects of patients’ individual

characteristics. Both time-varying and time-independent covariates are considered

so that our method is not only capable of identifying group specific spatial-temporal

influence, i.e. treatment groups, but also able to locate spatial effect of time varying

covariates, i.e. task indicator.

2.1.3 Gaussian Processes and Its Properties

Gaussian processes (GPs) are a generalization of multivariate Gaussian distribu-

tion to infinitely many dimensions, with a constraint that any finite number has a

multivariate normal distribution. GPs are considered to be a powerful tool in various

areas, such as non-linear interpolation, supervised and unsupervised machine learn-

ing. In statistical modeling, Gaussian process is usually used as a prior probability

distribution over functions to make Bayesian inference. Inheriting the good properties

of normal distribution, Gaussian process has the advantage of modeling correlation

structures so that has been widely used for spatial or temporal models (Marquand

et al., 2010; Gelfand et al., 2003). However, the difficulty arises for high dimensional

problems for which inversion of the correlation matrix is computationally unfeasible.

There has been many explorations in literature to overcome this difficulty. One way

to solve this is to use dimension reduction techniques, for example, Banerjee et al.

(2008) project the original high dimensional space onto a low dimensional subspace

that has the closest distance to the original matrix. The other aspect is to add

assumptions to involve conditional independence to simplify posterior computation

(Quinonero-Candela and Rasmussen, 2005). Our research is based on an explicit
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form of Karhunen-Loéve (K-L) representation of GP using a special kernel function

as introduced below.

Suppose f ∼ GP(µ, γ), then there exists a unique orthogonal expansion of f(v)

on B, such that

f(v) = µ(v) +
∞∑
l=1

θlφl(v),

∫
Rd

φl(v)φl′(v)dv = δll′ , and θl
iid∼ N(0, λl), (2.1)

where δll′ = 1 if l = l′ and δll′ = 0, otherwise. Equation (2.1) is known as the K-L

spectral representation of the process f(v). The terms λl and functions φl(v) are the

eigen values and eigen functions of the covariance kernel γ(v,v′), that is, they are

the solutions of the following equation γ(v,v′) =
∑∞

l=0 λlφl(v)φl(v
′).

The eigen vectors φl(v)’s and eigen values λl’s have explicit form for certain co-

variance kernel function with special forms. In one dimensional cases, given the

covariance kernel

k1(x, x′; a, b) = exp(−ax2 − b(x− x′)2 − ax′2),

the eigenvalues λk’s can be calculated as functions of a and b, and the eigenfunctions

φk(·)’s can be expressed using a, b and normalized hermit polynomial functions. The

explicitness can be generalized from one-dimensional to d−dimensional kernels

kd(x,x
′; a, b) =

d∏
i=1

exp(−ax2
i − b(xi − x′i)2 − ax′2i ).

Detailed derivation is listed in Appendix 2.6.1.
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2.2 The Model

Suppose we collect longitudinal imaging data from n subjects at m occasions over

the whole three-dimensional (3D) brain B ⊂ Rd, where Rd denotes the d−dimensional

Euclidean space. For i = 1, . . . , n and t = 0, 1, . . . ,m, denote by yi,t(v) ∈ R the

longitudinal imaging outcome at voxel v ∈ B in occasion t for subject i. Denote by

xi,t = (xi,t,1, . . . , xi,t,p)
T ∈ Rp a p−dimensional vector of time varying covariates for

subject i and in time occation t and zi = (zi,1, . . . , zi,q)
T ∈ Rq a q−dimensional vector

of time independent covariates for subject i.

2.2.1 A Spatial-Temporal Model

For each v ∈ B and each occasion t = 0, 1, . . . ,m, we assume the longitudinal

imaging outcome

yi,t(v) = αt(v) +

p∑
j=1

xi,t,jβj(v) +

q∑
k=1

zi,kηt,k(v) + εi,t(v), (2.2)

where random error processes εi,t(v) are mutually independent over subjects, occa-

sions and voxels so that εi,t(v)
iid∼ N(0, σ2). In Equation (2.2), the spatially-temporally

varying intercept αt(v) ∈ R is the population-level baseline spatial-temporal effects;

the spatially varying coefficient βj(v) is the spatial effects of time varying covariate;

the spatially-temporally varying coefficient ηt,k(v) represents the spatial-temporal ef-

fects of time independent covariates.

2.2.2 Prior Specifications

Gaussian processes (GPs) are employed to serve as priors for the spatial-temporal

effects in model (2.2). More precisely, let GP(µ, γ) denote a Gaussian process with

mean process µ(v) and covariance kernel γ(v,v′). For t = 1, . . . ,m, j = 1, . . . , p, and
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k = 1, . . . , q, we assume

[αt | αt−1 ]
iid∼ GP(αt−1, τ

2
ακ), and α0 ∼ GP(0, τ 2

α,0κ),

βj
iid∼ GP [0, τ 2

βκ],

[ηt,k | ηt−1,k ]
iid∼ GP [ηt−1,k, τ

2
ηκ], and η0,k ∼ GP(0, τ 2

η,0κ), (2.3)

where κ(v,v′) is a standardized correlation kernel function for any v,v′ ∈ B. Usually,

we have κ(v,v) = 1, for ∀v ∈ B. In this way, τ 2
· = (τ 2

α, τ
2
α,0, τ

2
β , τ

2
η , τ

2
η,0, τ

2
ρ ) shows

the prior variance of different parameters. For certain κ with special forms that

κ(v,v) 6= 1, τ 2 can be considered as a scale parameter that invariant across location,

thus τ 2
· κ(v,v) presents the prior variance of different parameters. Furthermore, the

hyperprior parameters for τ 2
· are specified as follows:

τ 2
α ∼ IG(aα, bα), τ 2

β ∼ IG(aβ, bβ), τ 2
η ∼ IG(aη, bη),

τ 2
α,0 ∼ IG(aα, bα), τ 2

η,0 ∼ IG(aη,0, bη,0), and σ2 ∼ IG(aσ, bσ), (2.4)

where IG(a, b) denotes an inverse-gamma distribution with shape a and scale b.

From prior distributions (2.3), we know that τ 2
α,0 presents the prior variance of the

population-level baseline effects at the initial time occasion, and τ 2
α presents the prior

variance of the population-level baseline effects between time occasions. As a result,

τ 2
α,0 and τ 2

α are assumed with different hyperprior distributions in (2.4). The same

assumption applies to τ 2
η,0, the prior variance of the effects of time independent co-

variates at the initial time occasion, and τ 2
η , the prior variance of the effects of time

independent covariates between time occasions.
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2.2.3 Model Representation

The standard human brain template usually contains around 200,000 voxels.

Thus, posterior inference on the proposed model in Sections 2.2.1 and 2.2.2 for a whole

brain analysis involves the extremely challenging ultra-high dimensional GP fitting.

To mitigate this problem, we adopt the model representation using the Karhunen-

Loéve (K-L) expansion. Suppose the correlation kernel κ in Equation (2.3) has the

following expansion:

κ(v,v′) =
∞∑
l=0

ζlψl(v)ψl(v
′). (2.5)

with
∫

Rd
φl(v)φl′(v)dv = δll′ where δll′ = 1 if l = l′ and δll′ = 0, otherwise. Then

the prior models on αt, βj, and ηt,k can be respectively represented using the K-L

expansion as

αt(v) =
∞∑
l=0

θα,t,lψl(v), θα,t,l
iid∼ N

[
θα,t−1,l, τ

2
αζl
]
, θα,0,l

iid∼ N(0, τ 2
α,0ζl)

βj(v) =
∞∑
l=0

θβ,j,lψl(v), θβ,j,l
iid∼ N

[
0, τ 2

βζl
]

ηt,k(v) =
∞∑
l=0

θη,t,k,lψl(v), θη,t,k,l
iid∼ N[θη,t−1,k,l, τ

2
η ζl], θη,0,k,l

iid∼ N[0, τ 2
η,0ζl].

(2.6)

Thus, model (2.2) can be represented as

yi,t(v) =
∞∑
l=0

θα,t,lψl(v) +

p∑
j=1

∞∑
l=0

θβ,j,lψl(v)xi,t,j

+

q∑
k=1

L∑
l=0

θη,t,k,lψl(v)zi,k + εi,t(v). (2.7)

25



To create the matrix form of the above linear model, define 0d = (0, . . . , 0︸ ︷︷ ︸
d

)T, 1d =

(1, . . . , 1︸ ︷︷ ︸
d

)T, Id = diag(1d), Jd = 1d1
T
d and Kd = (kij)1≤i,j≤d with kij = min{i, j} − 1.

Denote by yi(v) = [yi,0(v), . . . , yi,m(v)]T an m+1 vector of the outcome variable. The

design matrix is constructed as Di(v) = [Im+1,Xi, z
T
i ⊗Im+1] of dimension (m+1)×Q,

where “⊗” is the kronecker product, Xi = (xi,0, . . . ,xi,m)T of dimension (m+ 1)× p

with xi,t = (xi,t,1, . . . , xi,t,p)
T, zi = (zi,1, . . . , zi,q)

T, and Q = m+p+(m+1)q+1. The

coefficient parameters are constructed as Θl = (θT
α,·,l,θ

T
β,·,l,θ

T
η,·,·,l)

T a Q × 1 vector

of coefficients, where θα,·,l = (θα,0,l, . . . , θα,m,l)
T, θβ,·,l = (θβ,1,l, . . . , θβ,p,l)

T, θη,·,·,l =

(θT
η,·,1,l, . . . ,θ

T
η,·,q,l)

T with θη,·,k,l = (θη,0,k,l, . . . , θη,m,k,l)
T. From the K-L expansion

parameters’ prior assumptions in Equation (2.6), it is straightforward to show that

θα,·,l ∼ N[0m+1, ζl(τ
2
α,0Jm+1 + τ 2

αKm+1)],

θβ,·,l ∼ N(0p, ζlτ
2
βIp),

θη,·,l ∼ N[0(m+1)q, ζlIq ⊗ (τ 2
η,0Jm+1 + τ 2

ηKm+1)]. (2.8)

The matrix form of Equation (2.7) is thus given by

yi(v) = Di(v)
∞∑
l=1

ψl(v)Θl + εi(v), (2.9)

where εi(v)
iid∼ N(0m+1, σ

2Im+1) with εi(v) = [εi,0(v), . . . , εi,m(v)]T , and Θl
iid∼ N(0Q,Σl)

with

Σl = ζldiag{(τ 2
α,0Jm+1 + τ 2

αKm+1), τ 2
βIp, Iq ⊗ (τ 2

η,0Jm+1 + τ 2
ηKm+1)}.
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2.2.4 Posterior Computation

2.2.4.1 Algorithm I: K-L approximation

For computation purpose, the K-L expansion in Equation (2.5) is usually approx-

imated by finite number of summations,

κ(v,v′) ≈
L∑
l=1

ζlψl(v)ψl(v
′). (2.10)

where L is sufficient large to control the approximation error. This finite expansion

is further applied to the prior models of αt, βj, and ηt,k in Equations (2.6) and then

the matrix form regression model in Equation (2.9) so that

yi(v) ≈ Di(v)
L∑
l=1

ψl(v)Θl + εi(v), (2.11)

Let y = (y1; . . . ; yn) with yi = (yi(v))v∈B, and Θ = (ΘT
1 , . . . ,Θ

T
L)T . Let τ 2

· =

(τ 2
α, τ

2
α,0, τ

2
β , τ

2
η , τ

2
η,0). Denote byψ(v) = (ψ1(v), . . . , ψL(v))T and Σ = diag{Σ1, . . . ,ΣL}.

The full conditional posterior density of Θ is given by

π(Θ|y, τ 2
· , σ

2) ∝ π(y|Θ, τ 2
· , σ

2)π(Θ|τ 2
· )

∝
n∏
i=1

∏
v∈B

exp

{
− 1

2σ2
‖yi(v)−Wi(v)Θ‖2

}
exp

(
−1

2
ΘTΣ−1Θ

)
(2.12)

where Wi(v) = Di(v)[ψ(v)T⊗ IQ]. This implies Θ given y, τ 2
· and σ2 can be drawn

from N(µpost,Σpost) with

µpost = Σpost

(
1

σ2

n∑
i=1

∑
v∈B

Wi(v)Tyi(v)

)
,

Σpost =

(
1

σ2

n∑
i=1

∑
v∈B

WT
i (v)Wi(v) + Σ−1

)−1

. (2.13)

27



Note that Equation (2.13) evolves calculating the inverse of matrix Σ and matrix

Σ−1 + 1
σ2

∑n
i=1

∑
v∈BWT

i (v)Wi(v), both of which are of size Q×L. When Q×L is

small, which may due to that the size of imaging outcomes is moderate, only limited L

is required in the K-L expansion in Equation (2.10), and only limited number of time-

dependent and time-independent covariates are involved in the model, calculating

µpost and Σpost can be direct and fast using Equation (2.13). However, it may arise

problem when Q × L is large. In this case, the following methods are suggested to

achieve efficiency.

2.2.4.2 Algorithm II: block updates

Define coefficients Θ = (ΘT
1 , . . . ,Θ

T
L)T with Θl = (θT

α,·,l,θ
T
β,·,l,θ

T
η,·,·,l)

T. The full

conditional distribution of Θl, given y, Θ−l = {Θr, r ∈ [1, . . . , L], r 6= l}, τ 2, and σ2

is as follows

π(Θl | y,Θ−l, τ 2, σ2) (2.14)

∝
n∏
i=1

∏
v∈B

exp

{
− 1

2σ2
‖yi(v)−Diψl(v)Θl −Di

∑
r 6=l

ψr(v)Θr‖2

}
L∏
l=1

exp(−1

2
ΘT
l Σ−1

l Θl).

Thus, Θl, given y, Θ−l, τ
2, and σ2 can be drawn from N(µpost,l,Σpost,l) where

µpost,l = Σpost,l ×
n∑
i=1

∑
v∈B

ψl(v)DT
i

(
yi(v)− (

∑
r 6=l ψr(v)DiΘr)

)
σ2

,

Σpost,l = [Σ−1
l +

n∑
i=1

∑
v∈B

ψ2
l (v)DT

i Di

σ2
]−1, (2.15)

and Σl = ζldiag{(τ 2
α,0Jm+1 + τ 2

αKm+1), τ 2
βIp, Iq ⊗ (τ 2

η,0Jm+1 + τ 2
ηKm+1)}. Note that

comparing posterior distribution of (2.15) with (2.13), the matrix scale that needs

inverse operation is reduced to Q from Q×L so as to achieve computational efficiency.
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2.2.4.3 Algorithm III: fast computation

To simply equation (2.15), we take advantage of the orthogonality of ψl, where∫
R3 ψl(v)ψr(v)dv = 0, when l 6= r. Given the following two assumptions: 1) ψl(v)

.
=

0,∀v ∈ Bc; 2) there are sufficiently many and equally spaced locations inside B,

the following equation applies that
∫
v∈R3 ψl(v)ψr(v)dv

.
=
∑

v∈B ψl(v)ψr(v)dv. Thus∑
v∈B ψl(v)ψr(v)

.
= 0, l 6= r, and posterior distribution (2.15) can be approximated

with a short calculation of mean function,

µ̃post,l = Σpost,l ×
n∑
i=1

∑
v∈B

ψl(v)DT
i yi(v)

σ2
. (2.16)

Note that µpost,l in (2.15) can be approximated by µ̃post,l in (2.16) only when assump-

tions 1) and 2) stand.

2.2.5 An STGPR based Classifier

Suppose one of the time independent variables is categorical, i.e., a group indicator

denoted by ui and taking values of 1, . . . , G, where G is the number of groups. Rewrite

zi = {ui,wi} so that wi = {wi,k, k ∈ [1, . . . , q − 1]} denote the remaining time-

independent variables. Based on the previous regression model, a spatial-temporal

Gaussian process classifier is developed in order to gain knowledge of Pr(ui = g), g =

1, . . . , G given observed neuroimaging outcomes yi,t(v), time varying covariates xi,t

and the other time independent covariates wi for subject i in time occasion t.

Furthermore, given the priors on ui specified as

Pr(ui = g) = πg, g = 1, . . . , G,
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the posterior predictive distribution of ui is given by

Pr(ui = g|Yi,wi,Xi, {Yl, zl,Xl}l 6=i,l∈{1,...,n})

∝ πg

∫
π(Yi|ui = g,wi,Xi,Θ)

∏
l 6=i

π(Yl|zl,Xl,Θ)π(Θ)dΘ.

Assume posterior samples of Θ are calculated as Θ(1), . . . ,Θ(N), then an efficient

importance sampling can be used to compute leave-one-out cross validation error to

examine the predictive performance of the proposed spatial-temporal classifier, where

the disease group can be predicted as the one with the largest posterior predictive

probability after computing the posterior distribution of ui as follows:

Pr(ui = g|·) = πg

N∑
r=1

π(Yi|ui = g,wi,Xi,Θ
(r))

π(Yi|ui,wi,Xi,Θ
(r))

. (2.17)

2.3 Simulation Studies

To show the performance of our model, we conducted Monte Carlo simulation

studies, and compared the proposed spatial temporal Gaussian process regression

methods (STGPR) with a basic linear regression model (LM), which formulates the

same as (2.2) but only to assume mutual independence for αt(v), β(v) and ηt(v)

over occasions and voxels. Therefore, those parameters are estimated using linear

regression method conducted at each individual voxel location and time occasion.

For LM prediction, the parameter values at future time points are predicted to be

the parameter estimates at the previous time points so that α̂m(v) ≡ α̂m−1(v) and

η̂m,k(v) ≡ η̂m−1,k(v) for k = 1, . . . , q, ∀v ∈ B. Then, the predicted outcome variables

are calculated by f̂i,m(v) = α̂m(v) +
∑p

j=1 xi,m,jβ̂j(v) +
∑q

k=1 zi,kη̂m,k(v) at future

time m. Point and standard error estimates for all parameters in LM are provided

by least square estimators.

We provided two simulation settings with different imaging size to demonstrate
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Algorithm II and Algorithm III accordingly. Scenario 1, utilizing Algorithm II, is

designed over spatial data of size 60×60 and equally spread on two dimensional space

of [−1.8, 1.8]2. Scenario 2, utilizing Algorithm III, is designed over 100× 100 equally

spaced points on [−1.8, 1.8]2, where 1)[−1.8, 1.8]2 constrains the effective region with

nonzero eigen functions and 2)the fine grids of 100 × 100 enables the orthogonal

approximation. Both simulation scenarios contains 20 samples each measured at four

sequential time occasions.

For both scenarios, two time-dependent covariates are generated by xi,1(t) = 1.5×

t+ εi,1,t and xi,2(t) = 2.5× t+ εi,2,t respectively, where εi,j,t ∼i,t N (0, 1), j = 1, . . . , p.

These time-dependent covariates are considered as continuous variables and are stan-

dardized over subjects and over time before being incorporated into the model. In

addition, two time-independent covariates, zi,t,1 and zi,t,2 are sampled independently

from Bernoulli distribution with success probability to be 0.5 and 0.1. The coeffi-

cients, αt, βj, ηt,k are generated based on equation (2.3) and κ(v,v′) = e−
d(v,v′)

s with

d(v,v′) calculating the l2 distance between in B. The value of hyperprior parameters

in the simulation study can be found in Table (2.1).

Table 2.1:
The hyperprior parameters used in simulation study to generate baseline
function, coefficients, and random noise

α
τ2α0

= 1 sα0 = 1 τ2α = 0.1 sα = 1

η1
τ2η0,1 = 0.5 sη0,1 = 1 τ2η1 = 0.1 sη1 = 1

η2
τ2η0,2 = 0.5 sη0,2 = 1 τ2η2 = 0.1 sη2 = 1

β
τ2β1 = 0.5 sβ1 = 1 τ2β2 = 0.1 sβ2 = 1

σ2

σ2 = 1

In order to show both estimation and prediction performance of STGPR compared

to LM, we divide the simulated data into two parts: the first three time occasions

for model fitting and the fourth time occasion for prediction. Here, two statistical

measures are designed to evaluate the performance of LM and STGPR in regards
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to both estimation and prediction of model parameters and imaging outcomes. The

relative L1 Loss (RL1) averages over space the absolute values of the percentage bias

between model calculates and truth. The gradients’ relative L1 Loss (GRL1) measures

a spatial average of the absolute percentage difference between the first derivatives

of model calculates and the truth. For time varying parameters or outcomes, RL1

Loss and GRL1 Loss perform an average over both time and space. Assume g(v)

to represent any functions with respect to voxels v ∈ B and ĝ(v) to be the model

estimates. LetB represent the total number of voxels. For time-independent functions

like βj(v), ∀j, the above statistical measures are formulated as:

RL1(g) =
1

B

∑
v∈B

| ĝ(v)− g(v)

g(v)
|

GRL1(g) =
1

dB

∑
v∈B

d∑
s=1

|∂ĝ(v)/∂vs − ∂g(v)/∂vs
∂g(v)/∂vs

|

where ∂g/∂vs represent the s-th partial derivative for function g. For time-dependent

functions like αt(v), ηt,k(v),∀k and yt(v), the above statistical measures are formu-

lated as follows:

RL1(g) =
1

B(m− 1)

∑
v∈B

m−1∑
t=1

| ĝt(v)− gt(v)

gt(v)
|

GRL1(g) =
1

dB(m− 1)

∑
v∈B

m−1∑
t=1

d∑
s=1

|∂ĝt(v)/∂vs − ∂gt(v)/∂vs
∂gt(v)/∂vs

|

The statistical measures for prediction of time-dependent variables at t = m are:

RL1(gpred) =
1

B

∑
v∈B

| ĝm(v)− gm(v)

gm(v)
|

GRL1(gpred) =
1

dB

∑
v∈B

d∑
s=1

|∂ĝm(v)/∂vs − ∂gm(v)/∂vs
∂gm(v)/∂vs

|

Table (2.2) showed the simulation results for Algorithm II and Algorithm III over
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100 repeated trials. We can see that LM and STGPR have comparable estimation

performance, however STGPR provides a smaller and stabler prediction of parameters

and image outcomes.

Table 2.2:
Simulation results comparing LM and STGPR in regards to estimation
and prediction of both coefficients and outcome variables through RL1

Loss(relative L1 Loss) and GRL1 (gradients’ relative L1 Loss) averaging
over space and necessarily over time. For STGPR, Algorithm II is used
on simulated data of size 60× 60 and Algorithm III is used for simulated
data of size 100× 100. The values in the parenthesis are standard error of
the quantities of interest.
Algorithm II Size(60× 60)

LM STGPR
RL1 GRL1(×10) RL1 GRL1(×10)

α 1.06(0.07) 244.66(434.68) 0.76(0.02) 9.52(1.10)
β1 1.31(0.25) 10.91(7.68) 1.09(0.04) 1.13(0.39)
β2 0.73(0.07) 12.00(2.53) 0.77(0.02) 1.99(0.65)
η1 0.94(0.06) 7.52(6.55) 1.17(0.02) 0.97(0.54)
η2 0.61(0.05) 3.15(0.69) 0.42(0.01) 0.45(0.01)
f 0.37(0.01) 3.92(1.89) 1.01(0.01) 1.84(0.56)

αpred 5.15(0.36) 9.92(16.71) 4.85(0.06) 1.12(0.41)

η1,pred 3.12(0.16) 24.40(20.02) 3.22(0.03) 5.60(4.08)

η2,pred 5.11(0.96) 15.35(36.78) 4.31(0.10) 5.53(0.98)

ypred 2.57(0.21) 7.39(26.32) 2.93(0.01) 1.51(0.76)

Algorithm III Size(100× 100)
LM STGPR

RL1 GRL1(×10) RL1 GRL1(×10)
α 1.20(0.15) 10.79(17.30) 0.60(0.02) 1.21(3.30)
β1 1.02(0.08) 159.41(1078.06) 0.52(0.03) 1.28(4.83)
β2 0.65(0.06) 6.70(7.88) 0.25(0.01) 0.60(0.41)
η1 1.38(0.23) 2.53 (0.87) 0.41(0.03) 0.32(0.05)
η2 0.59(0.05) 2.37(2.07) 0.43(0.01) 0.27(0.08)
f 1.17(0.64) 2.11(0.53) 0.81(0.15) 0.98(0.94)

αpred 3.13(0.15) 3.37 (3.32) 2.73(0.05) 0.72(0.54)

η1,pred 4.91(0.44) 15.60(7.61) 4.82(0.08) 7.36(25.39)

η2,pred 4.06(0.73) 6.30(9.66) 3.87(0.13) 2.03(0.53)

ypred 2.16(0.09) 1.56(0.68) 2.19(0.02) 0.69(0.57)

Based on the above simulation results, we can conclude that both LM and STGPR

provide reasonable parameter and outcome estimation and prediction. The LM model

is more influenced by random noise, while STGPR model provides stabler estimation

with smaller standard errors of RL1 and GRL4 than LM model. The STGPR model

results in a much smaller GRL4 than the LM model for all the parameters and outcome

variables, indicating that the smoothness of the estimated curves by the proposed

method are much closer to the truth. As a result, the proposed STGPR model
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provides stable outcome prediction and reliable estimates of the covariates’ spatial

and temporal effects.

2.4 ADNI Data Analysis

In order to show the usefulness of our method, we illustrate the model using PET

images of patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

study (http://www.loni.ucla.edu/ADNI/). The goal of this national multi-center

project is to develop biomarkers of Alzheimer’s Disease (AD) in elderly subjects. For

more details about the ADNI, see Mueller et al. (2005). Participants are classified

as having mild cognitive impairment (MCI), as Alzheimer’s disease (AD) patients,

or as typical controls (TC). PET scans are obtained for each participants at baseline

(screening) and 6 months and 12 months. The processing steps for the PET scans

include co-registration, averaging, and standardizing image and voxel size into a stan-

dard 160 × 160 × 96 image grid and spatial smoothing. In addition, we perform a

spatial normalization to a standard 91×109×91 MNI space (Tzourio-Mazoyer et al.,

2002).

In this study, we apply STGPR to brain images of 219 subjects collected at base-

line, 6 months, and 12 months sequentially and include a subset of available covariates

collected by ADNI as potential regressive predictors. For the time-independent co-

variates, we include gender and diagnostic status (AD, MCI, or TC) and investigate

their corresponding spatial and temporal influence on imaging responses. For time

dependent covariates, we use age and weight and considered their spatial-varying

effects on the response images. The diagnostic status is treated as the group indi-

cator. We also performed classification analysis based on the results from STGPR.

The brain images are divided into 116 regions based on automated anatomical label-

ing (Tzourio-Mazoyer et al., 2002). In Alzheimer’s disease, the hippocampus regions

are known by researchers to be one of the first brain area to suffer damage in that
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good prediction on brain response at these locations can contribute to studies of AD

initiation and development. We particularly choose the two hippocampus regions to

test the performance of STGPR.

Five-fold cross validation is conducted to compare STGPR and LM for their pre-

dictive performances. When dividing individual data into five folds, it is guaranteed

that at least 4 AD individuals are in each fold to facilitate balanced estimation and

prediction. The predictive results are listed in Table (2.3). STGPR shows smaller

or comparative predicted mean squared error (PMSE) than LM, specifically for AD

group or for MCI group on brain region of Hippocampus left.

Table 2.3:
A summary of results for ADNI data analysis. MSE(mean squared error)
and PMSE(predicted mean squared error) are provided based on five-fold
cross validation conducting on both Hippocampus left and right regions
and for all subjects, AD group, and MCI group respectively.

Hippocampus L

All Subjects AD MCI
MSE PMSE MSE PMSE MSE PMSE

LM 0.01109 0.01813 0.01210 0.008612 0.01029 0.02464
STGPR 0.01112 0.01812 0.01215 0.008603 0.01036 0.02464

Hippocampus R

All Subjects AD MCI
MSE PMSE MSE PMSE MSE PMSE

LM 0.01032 0.01727 0.01042 0.00567 0.00972 0.02434
STGPR 0.01034 0.01726 0.01047 0.00565 0.00975 0.02434

We also apply the STGPR on the slice of neuroimages that covers most areas of

Hippocampus regions. The parameter estimation results of the use area are shown

in Figure (2.1). The spatial maps of covariates’ effects at different time occasions

estimated by STGPR are provided. α̂t’s in the first row provided the estimated

population-level baseline spatial-temporal effects; η̂t,1’s (or η̂t,2’s) showed the esti-

mated mean spatial and temporal difference in brain responses between AD (or MCI)

and NORM subjects when other covariates are the same. ηt,3 demonstrated the es-

timated mean spatial and temporal difference in brain response between female and
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male subjects given all other covariates remain the same. β̂1 or β̂2 provided a spatial

map of brain response changes given unit change in age or weight when all other

covariates stays the same.

Figure 2.1:
Maps of coefficients’ effects estimated by proposed STGPR for ADNI
data. Plots include population baseline effects, α̂t, spatial effects for time-
varying covariates, β̂j, and spatial-temporal effects for time-independent
covariates, η̂t,j
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2.5 Discussion

We develop a spatial-temporal Gaussian process regression model to localize brain

activities and characterize their changes over time. The proposed model takes into

account spatial correlation of imaging outcome and the temporal correlation between

successive longitudinal imaging outcomes over space. The proposed model is also

capable of making inference on the spatial effects of time varying covariates and the

spatial-temporal effects of time independent covariates on the brain activities. Also,

it can be used to make prediction on brain activities. We develop fast posterior

computation algorithms for model fitting, which are computationally efficient and

feasible for high-dimensional neuroimaging data. It takes a regular computer with i5

cpu and 8G memory less than 1 hours to complete the analysis of the largest brain

region which contains about 5100 voxels. An interesting consideration for future

research would be to conduct brain-wise analysis by specifying a between region

convariance structure and make prediction on the disease status using longitudinal

imaging data of the entire brain area.

There are rather limited study in the brain imaging literature for longitudinal

neuroimaging models, especially when spatial correlation structures are considered

over broad brain areas. It is also unique for our study to consider spatial and tempo-

ral structures in covariates’ effects. Furthermore, the fast computational algorithms

proposed provide an option for extremely large scale brain imaging analysis. The

above listed are contribution of this work to large scale longitudinal neuroimaging

study.
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2.6 Appendix

2.6.1 Explicit Forms of Eigen Values and Eigen Vectors

In one-dimensional cases, for covariance kernel

k1(x, x′) = exp(−ax2 − b(x− x′)2 − ax′2),

define

c =
√
a2 + 2ab,

A = a+ b+ c,

B = b/A.

For k = 0, 1, . . . , n, the kth eigenvalues λk and eigenfunctions φk(·) are respectively

given by

λk =

√
π

A
Bk,

φk(x) = (
√

2c)1/2 exp(−cx2)H̃k(
√

2cx),

k1(x, x′) =
∞∑
k=0

λkφk(x)φk(x
′),

where H̃k(·) is the kth order normalized hermit polynomial, which is defined by

H̃k(x) = (2nn!
√
π)−1/2 exp(x2)

dn

dxn
exp(−x2).

For d−dimensional case (d ≥ 2), we have covariance kernel

kd(x,x
′; a, b) =

d∏
i=1

exp(−ax2
i − b(xi − x′i)2 − ax′2i ).
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The connection between kd(x,x
′) and k1(xi, x

′
i) can be given by

kd(x,x
′; a, b) =

d∏
i=1

k1(xi, x
′
i) =

d∏
i=1

∞∑
k=0

λkφk(xi)φk(x
′
i)

= (λ0φ0(x1)φ0(x′1) + . . .)(λ0φ0(x2)φ0(x′2) + . . .)(λ0φ0(x3)φ0(x′3) + . . .) . . .

=
∞∑
k=0

∑
m1+m2+···md=k

d∏
i=1

λmiφmi(xi)φmi(x
′
i)

=
∞∑
k=0

∑
m1+m2+···md=k

d∏
i=1

√
π

A
Bmiφmi(xi)φmi(x

′
i)

=
∞∑
k=0

∑
m1+m2+···md=k

d∏
i=1

√
π

A
Bmi ×

d∏
i=1

φmi(xi)φmi(x
′
i)

=
∞∑
k=0

(√
π

A

)d
Bk

∑
m1+m2+···md=k

d∏
i=1

φmi(xi)φmi(x
′
i)

=
∞∑
l=0

λlψl(x)ψl(x
′)

The eigenvalues and eigenfunctions of d−dimensional kernel are given by

λl =

(√
π

A

)d
Bk,

(
k − 1 + d

d

)
≤ l ≤

(
k + d

d

)
− 1

λ̃k =
∑

(k−1+d
d )≤l≤(k+dd )−1

λl =

(
k + d− 1

d− 1

)(√
π

A

)d
Bk

∞∑
k=0

λ̃k =
1

(1−B)d

(√
π

A

)d
∑m

k=0 λ̃k∑∞
k=0 λ̃k

= (1−B)d
m∑
k=0

(
k + d− 1

d− 1

)
Bk

39



2.6.2 Full Conditional Posterior Density of Hyperparameters

The full conditional posterior density of τ 2
α,0 is given by

π(τ 2
α,0|y,Θ, τ 2

−α,0)

∝ π(Θ|τ 2
· )π(τ 2

α,0)

∝
L∏
l=1

|ζl(τ 2
α,0Jm+1 + τ 2

αKm+1)|−1/2 exp(−1

2

L∑
l=1

θTα,·,l[ζl(τ
2
α,0Jm+1 + τ 2

αKm+1)]−1θα,·,l)

×pinv−gamma(τ 2
α,0; aα,0, bα,0)

The full conditional posterior density of τ 2
α is given by

π(τ 2
α|y,Θ, τ 2

−α)

∝ π(Θ|τ 2
· )π(τ 2

α)

∝
L∏
l=1

|ζl(τ 2
α,0Jm+1 + τ 2

αKm+1)|−1/2 exp(−1

2

L∑
l=1

θTα,·,l[ζl(τ
2
α,0Jm+1 + τ 2

αKm+1)]−1θα,·,l)

×pinv−gamma(τ 2
α; aα, bα)

The full conditional posterior density of τ 2
β is given by

π(τ 2
β |y,Θ, τ 2

−β)

∝ π(Θ|τ 2
· )π(τ 2

β)

∝
L∏
l=1

|ζlτ 2
βIp|−1/2 exp(−1

2

L∑
l=1

θTβ,·,l[ζlτ
2
βIp]

−1θβ,·,l)× pinv−gamma(τ 2
β ; aβ, bβ)

∝ pinv−gamma(τ
2
β ; aβ +

Lp

2
, bβ +

1

2

L∑
l=1

θTβ,·,lθβ,·,l

ζl
)
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The full conditional posterior density of τ 2
η0

is given by

π(τ 2
η,0|y,Θ, τ 2

−η,0)

∝ π(Θ|τ 2
· )π(τ 2

η,0)

∝
L∏
l=1

|ζl(τ 2
η,0Jm+1 + τ 2

ηKm+1)|−q/2

× exp(−1

2

L∑
l=1

q∑
k=1

θTη,·,k,l[ζl(τ
2
η,0Jm+1 + τ 2

ηKm+1)]−1θη,·,k,l)

×pinv−gamma(τ 2
η,0; aη,0, bη,0)

The full conditional posterior density of τ 2
η is given by

π(τ 2
η |y,Θ, τ 2

−η)

∝ π(Θ|τ 2
· )π(τ 2

η )

∝
L∏
l=1

|ζl(τ 2
η,0Jm+1 + τ 2

ηKm+1)|−q/2

× exp(−1

2

L∑
l=1

q∑
k=1

θTη,·,k,l[ζl(τ
2
η,0Jm+1 + τ 2

ηKm+1)]−1θη,·,k,l)

×pinv−gamma(τ 2
η ; aη, bη)

The full conditional posterior density of σ2 is given by

π(σ2|y,Θ)

∝ π(y|Θ, σ2)π(σ2)

∝
n∏
i=1

∏
v∈B

(σ2)−(m+1)/2 exp(− 1

2σ2
‖yi(v)−Wi(v)Θ‖2 × pinv−gamma(σ2; aσ2 , bσ2)

∝ pinv−gamma(σ
2; aσ2 +

nd(m+ 1)

2
, bσ2 +

∑n
i=1

∑
v∈B ‖yi(v)−Wi(v)Θ‖2

2
)
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CHAPTER III

Topic 2: Ensemble Classification Methods For

Feature Combination of Large Scale Neuroimaging

Data

3.1 Introduction

For many neurological diseases, to predict disease status and forecast disease pro-

gression is of great clinical importance and has very influential therapeutic meanings.

For example, autism spectrum disorders (ASDs), which refers to a syndrome of social

communication deficits and repetitive behaviors or narrow interest, usually appears

during patients’ infancy or childhood. Researches have shown that early identification

of ASD and a subsequent early and intensive behavioral intervention help to improve

patients’ cognitive function and decrease symptom severity (Fein et al., 2013; Rogers

and Vismara, 2008). Given that the ASDs have an estimated prevalence of 1:68 in the

USA, research into the early identification of ASDs represents a public health priority

(Developmental et al., 2014). Another example could be Alzheimer’s disease (AD),

which leads to the death of nerve cells and tissue loss throughout the brain. When

patients start to experience dementia, which usually appears to be the indicative

symptoms of AD, the disease usually has already caused irreversible brain damage.

Early diagnosis of AD will provide an opportunity for early medical intervention so
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as to effectively slow down disease progression, reduce lost of brain functions, and to

the best lead to successful therapeutic treatment (?).

Due to the fact, disease diagnosis is one of the major tasks of statistical neuroimag-

ing studies. To achieve this goal, imaging data, which provides detailed information

about brain structure and function information, are utilized as predictive biomarkers

or quantitative traits to imply disease categories of interest. There are many sta-

tistical challenges for categorizing patients’ disease groups using neuroimaging data.

First, neuroimaging data are often extremely high throughput in the order of hun-

dreds of thousands to millions voxels but with very few samples, which raises both

practical and theoretical challenges of high dimensionality problems for model fitting

(Fan and Fan, 2008). Second, from a neuroscience point of view, a human brain is

considered a complex system that multiple brain regions are anatomically connected

and functionally interact with each other. As so, neuroimaging data, considered as

predictors, usually include spatial correlation. Complex spatial correlation especially

under high dimensional scenarios brings challenge to both model building and com-

putation. Third, patients could have brain images taken at various time occasions.

The temporal change of multiple consequent measurements may also relate to disease

diagnosis and progression. However, in most cases, only limited number of longitu-

dinal records are available in neuroimaging study, for example, MRI scan that taken

at baseline, after 6 months, after 12 months, etc. This requires a model to cap-

ture temporal change from only a few sequential inputs while accommodating spatial

variation. Fourth, patients’ demographic information and other relative covariates

may also reflect disease status. How to include these factors into disease prediction

and correctly model their underlying correlation with neuroimaging biomarkers also

brings challenge to build the classification model.

Many research have been conducted for disease diagnosis using neuroimaging data.

Both statistical models and machine learning methods have been shown success in
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disease classification. In the following, section (3.1.1) provides a detailed review of

existing methods and their limitations. Section (3.1.2) provides an introduction of

the support vector machine classifier which the proposed method is based on. Section

(3.1.3) reviews existing ensemble classification methods, where the proposed method

is chosen from.

3.1.1 Disease Prediction Using Neuroimaging Data

Many efforts have been made for disease diagnosis utilizing a combination of means

including clinical measures, cognitive test, neuroimaging study, genetic biomarkers,

and etc. Neuroimaging scans, such as structural MRI (sMRI), functional MRI (fMRI),

positron emission tomography (PET), directly record brain activities and have been

used broadly of diagnosis of a number of medical disorders and illnesses.

Many statistical methods and multiple machine learning techniques have been

employed to leverage neuroimaging data for disease discrimination study. The main

idea is to identify disease related features to distinguish between disease groups and

typical controls (TC). However, one of the main challenges in imaging classification

is the high dimensionality of the feature space. Many learning based methods di-

rectly use low-level features related to anatomical brain structures for discrimination

among disease groups. These features, relatively low dimension, are extracted from

neuroimaging data and are designed to capture disease related variations. Some ex-

ample of the low-level features includes ventricles size, hippocampus shape, cortical

thickness, brain volume, and etc. Based on these low-level features, typical classifiers

can be used to distinguish disease groups and TC. Among the most popular are lin-

ear discriminant analysis (LDA), neural network (NN) and support vector machines

(SVM) (French et al., 1997; Savio et al., 2009; Magnin et al., 2009). LDA aims to find

the mapping that reduces the input dimensionality, while preserving the most class

discriminatory information. Adeli-Mosabbeb et al. (2015) proposed a LDA method
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that is robust to sample-outliers and feature-noises and tested on two brain neu-

rodegenerative disease, particularly for Parkinsons disease and AD. Belmokhtar and

Benamrane (2012) proposed a multiclass classification method based on binary SVM

to distinguish between patients with AD, patients with mild cognitive impairment

(MCI) and elderly control subjects. Chen and DuBois Bowman (2011) developed a

novel support vector classifier for longitudinal high dimensional data that leverages

the additional longitudinal neuroimaging information to achieve better classification

performance.

Recent studies have shown that feature fusion from multiple imaging modalities

can enhance the diagnostic performance, i.e. gray matter tissue volume from MRI,

mean signal intensities from PET (Hinrichs et al., 2011; Suk et al., 2015). Kohannim

et al. (2010) concatenated low-level features from different modalities into a vector

and trained a SVM classifier. Hinrichs et al. (2011) and Zhang et al. (2011) utilized

a multi-kernel SVM to combine information from multimodal data. Shi et al. (2014)

took into account the association among low-level features extracted from neuroimag-

ing data and devised a coupled feature representation by utilizing intra-coupled and

inter-coupled interaction relationship. Regarding multi-modal feature fusion, they

proposed a coupled boosting algorithm that analyzes the pairwise coupled-diversity

correlation between modalities. There are also a growing number of publications that

use deep learning to solve neuroimaging classification problem, i.e. manifold learning

with restricted Boltzmann machine (Brosch et al., 2013), a multiclass deep learning

framework with modified k-sparse autoencoder (Bhatkoti and Paul , 2016), and a meta

analysis of different state of the art approaches (Plis et al., 2014).

Although the above listed researches presented the effectiveness of their meth-

ods for neuroimaging classification, the main limitation is that they considered only

simple low-level features. However, some latent information inherent in the origi-

nal neuroimaging data also provide helpful to improve model performance. Utiliz-
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ing neuroimaging data from the whole brain incorporate most information so that

lead to improved performance for disease classification. With increase computation

power, there are more methods that take advantage of high throughput voxel level

neuroimaging data to perform disease diagnosis. Guo et al. (2015) developed a super-

vised dimension reduction framework, called spatially weighted principal component

analysis, for high-dimensional imaging classification. Filippone et al. (2012) proposed

a multi-modality multinomial logit model using Gaussian process as priors to predict

disease status based on whole-brain neuroimaging data and analyze the relative infor-

mativeness of different image modalities and brain regions. Their method was used

for discrimination of three Parkinsonian neurological disorders from one another and

healthy controls and showed a promising predictive performance. Hosseini-Asl et al.

(2016) proposed to predict the AD with a deep 3D convolutional neural network,

which can learn generic features capturing AD biomarkers and adapt to different do-

main datasets. The 3D-CNN is built upon a 3D convolutional autoencoder, which

is pre-trained to capture anatomical shape variations in structural brain MRI scans.

Fully connected upper layers of the 3D-CNN are then fine-tuned for each task-specific

AD classification. Zhu et al. (2014) proposed a novel matrix similarity based loss

function for joint regression and classification in AD diagnosis.

In this study, we investigate ensemble methods inspired by boosting strategy,

which is proposed by Demiriz et al. (2002), for its use in predicting Autism disease.

First multiple SVM are trained as basic classifiers to predict disease status based on

different sources, containing demographic and clinical information, neuroimaging data

from separate brain regions and at multiple time occasion, and etc. After classification

results are collected based on different sources, a linear programming boost approach

is conducted to find optimal combination of basic classifiers so as to achieve maximized

classification performance. We also provide insights of when combination methods can

be expected to work and how the benefit of complementary features can be exploited
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most efficiently.

3.1.2 Support Vector Machine Classifiers

In machine learning, support vector machine classifiers are supervised learning

methods that classify outcome variable into different categories without using prob-

abilistic models. It has been shown to have good performance to solve challenging

classification problem in a wide range of application domains. The original idea of

SVM is proposed by Vapnik (1963) to choose the linear separating hyperplane that

maximize the margin between the hyperplane and the closest examples. Linear SVM

is then generalized to nonlinear by applying kernel trick (Aronszajn, 1944; Boser

et al., 1992). The current popular and widely used SVM which allows some exam-

ples to violate the constraints by introducing soft margins was introduced by Vapnik

(1995). The new loss function in this case includes penalization term of training set

errors.

Typically an SVM approach requires the solution of a quadratic programming

(QP) or a linear programming (LP) problem depending on whether to use L2 norm

or L1 norm to measure the margin (Wu and Zhou, 2005; Kecman and Hadzic, 2000).

The general QP algorithms via quasi-Newton methods or primal-dual interior-point

methods can only handle problem of small sample size, i.e. thousands of points. The

LP algorithms based on simplex or interior points can solve problems of moderate size,

i.e. hundreds of thousands of data points (Bennett and Campbell , 2000). The scale of

SVM using QP and LP is also limited by the possible computer memories since these

algorithms need operations on the original data matrix or the kernel matrix. There

are several approaches to solve SVM for larger datasets include techniques where

kernel components are discarded after evaluated (Frie et al., 1998), chunking and

decomposition methods where subset of data is used (Joachims , 1998; Collobert and

Bengio, 2001; Platt et al., 1999; Keerthi et al., 2001), and etc. In neuroimaging study,
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since the collected data samples are usually limited, QP algorithms are commonly

chosen to solve SVM.

The most common technique in practice to do multiclass classification with SVM

is to build K one-versus-rest classifiers and to choose the class which classifies the

data with greatest margin. Another strategy is to build a set of one-versus-one clas-

sifiers, and to choose the class that is selected by the most classifiers, which involves

building K(K − 1)/2 classifiers. The time used by the one-versus-one strategy may

actually decrease compared to one-versus-all strategy, since the training dataset for

each classifier is much smaller. Some authors also proposed methods that consider all

classes in one optimization formulation (Weston and Watkins , 1998; Crammer and

Singer , 2002). Among all, one-against-one approach based on binary SVM classifier

has been shown competitive and suitable to use in practice in terms of accuracy and

computational cost (Pal , 2008; Hsu and Lin, 2002). One of the most popular SVM

librariy LIBSVM choose to implement the one-versus-one methods for SVM (Chang

and Lin, 2011).

3.1.3 Ensemble Classification Methods

Ensemble methods are learning algorithms that combine results from multiple

classifications to improve performance. The initial classifications can be made by one

or several traditional classifiers, e.g. Decision Trees, Neutral Networks, SVM, and

etc., and can be trained on data from different physical domains, or from different

types of analysis, or even from repeated samples from the same data. The results from

these individual classifiers can be weak with low predictive power, while the combi-

nation improves the final classification power. There are various types of ensemble

rules that has shown improved performance by combining the basic set of classifiers,

especially for complicated datasets (Duin and Tax , 2000; Kittler et al., 1998). The

popular combination ideas include majority vote that selects the most frequently as-
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signed class label, averaging methods of additive equally weighted classifiers, product

methods of multiplicative equally weighted classifiers, and optimal linear combina-

tion methods to optimize jointly over a linear combination of classifiers, etc. Some

commonly used ensemble methods include Bayesian averaging, that the ensemble

consists of all single classifiers weighted by its posterior probability, Bootstrap ag-

gregating (Breiman, 1996), and boosting. Different classifier ensemble methods have

been widely applied to different areas including hand writing classification (Xu et al.,

1992), image classification (Gehler and Nowozin, 2009) and etc.

Boosting is a machine-learning method that boost the accuracy of weak or base

classifiers by assigning each classifier an additive weight and evaluate their aggregate

response. The weak classifiers, when considered individually may have low predic-

tive power, usually show improved results when combine. The underlying premise is

that if the weak classifiers’ errors are uncorrelated, their combination gives a better

approximation of the underlying signal. The early and most well known boosting al-

gorithm for binary classification is AdaBoost algorithm (Freund and Schapire, 1995).

Since it was first introduced, various versions of the Adaboost algorithm have been

used in a variety of applications and have proven to be very competitive with each

other in terms of prediction accuracy (Friedman et al., 2000; Efron et al., 2004; Grove

and Schuurmans , 1998), among which Linear Programming boosting (LPboost), first

proposed by Demiriz et al. (2002), fit the boosting approach into a linear optimization

framework with a soft margin bias. At first, LPBoost is considered intractable for

large dataset because of the scale of optimization (Breiman, 1999). After a column

generation based simplex method was proposed (Demiriz et al., 2002) as efficient so-

lution to solve LPBoost, it has been widely used in a variate of applications, especially

when used as online learning algorithms in computer vision, (Saffari et al., 2010).

The idea of LPBoost is to separate the feature space into two regions, where each

region contains either positively or negatively labeled examples. The weights of differ-

49



ent basic classifiers are achieved by maximizing the margin between the positive and

negative regions. Compared to early boosting methods such as AdaBoost, LPBoost

adjust all weights of existing basic classifiers every time when a new classifier is added

so that allows faster convergence. In contrast to gradient boosting algorithms, which

may only converge in the limit, LPBoost converges in a finite number of iterations to

a globally optimal solution satisfying well-defined optimal conditions. The optimal

solutions of LPBoost are very sparse in contrast with gradient based methods. In re-

gards to computational cost, an iteration of LPBoost is slightly more expensive than

an iteration of AdaBoost, but on the other hand LPBoost needs far fewer iterations

than AdaBoost to converge.

3.2 Methods

Suppose we collect neuroimaging data from n subjects over the whole three-

dimensional (3D) brain B ⊂ Rd, where Rd denotes the d−dimensional Euclidean

space, and d = 3. Assume the whole brain is divided into r separate regions such

that B = ∪rk=1Bk, Bk ⊂ Rd, and Bk ∩ Bk′ = ∅ when 1 ≤ k 6= k′ ≤ r. Let sk rep-

resenting the number of voxels in brain region k, and let s =
∑r

k=1 sk representing

the total number of voxels in the whole brain. For i = 1, . . . , n, denote by yi(v) ∈ R

the imaging outcome at voxel v ∈ B for subject i. Denote y
(k)
i = {yi(v),v ∈ Bk},

a sk dimensional vector of imaging signals at brain region k for subject i. Denote

yi =
⋃r
k=1 y

(k)
i = {yi(v),v ∈ B}, a s dimensional vector of imaging signals covering

all brain regions for subject i. For i = 1, . . . , n, let gi represent the group indicator

taking values of 1, . . . , c, where c is the number of groups. For example, in the ABIDE

dataset, c = 2 represent the typical control (TC) and disease group.

Other than the above notation of the observed data records, we choose to use

capital letters to represent the corresponding random variables and random vectors.

Denote Y (v) ∈ R a random variable representing the brain signal at voxel v, Y(k) =
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{Y(v),v ∈ Bk} a random vector representing brain signals at brain region Bk, and

Y = {Y(k), k = 1, . . . , r} a random vector representing brain signals of the whole

brain. Denote G a random variable representing the disease group. The interest of

this study is to determine Pr(G = g|Y) with g = 1, . . . , c, the probability of a patient

belong to group g given observed neuroimaging data Y of all brain regions. Since the

scale of Y, which is s, can be very large, we proposed to build separate probabilistic

model for each brain region and use LPBoost methods to combine the predictive

results together. As so, we first build r basic classifier as

fk : Y(k) −→ G ∈ {1, . . . , c},

mapping the sk dimensional random vector Y(k) to random variable G indicating

group labels. Each of the basic classifiers is to be used to predict group label us-

ing neuroimaging data from brain region k. Second, we use an ensembled classifier

to combine the classification results from all brain region basic classifiers. The en-

sembled classifier takes advantage of each basic classifier so as to improve the final

classification performance. In the following, we will first introduce support vector

classifier and its extensions which are good candidates for basic classifiers. Then we

will introduce linear programming boosting, an ensemble classification method that

optimize combination of all basic classifiers.

Note that when longitudinal neuroimaging data is provided such that there are

multiple observation of brain images at different time occasions. For example yi,t, and

t = 0, . . .m. Separate basic classifiers are suggested to be constructed based on brain

images at each brain regions and every single time occasions, and LPBoost is then used

to combine predictive results from all basic classifiers. Moreover, if additional feature

besides neuroimaging data are collected, e.g. time-varying covariates xi,t ∈ Rp, time-

independent covariates wi ∈ Rq, or genetic information ai ∈ Rl. Then the method can
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be generalized to model Pr(Gi = g|yi,t,xi,t,wi, ai). Separate basic classifiers should be

constructed based on time-varying covariates, time-independent covariantes or genetic

information independently and then combined together for ensemble performance.

However, for simplicity, the presentation below only shows model formulation based

on single time neuroimaging data.

3.2.1 Binary Support Vector Classifiers

In this section, we demonstrate the use of support vector machine and its role as

a basic classifier to be used in our model. First we consider a binary classification

problem with two categories. Without loss of generality, we create a mapping function

to map random variable G ∈ {1, 2} and random variable O ∈ {−1, 1}, so that

o(G) =

 −1 G = 1

1 G = 2
(3.1)

O = o(G) also represents a binary state associated with disease statues. According to

the mapping, O = −1 represent group of typical controls (TC), and O = 1 represent

group of patients with disease (PD). Binary variableO is the output of SVM classifiers.

The idea of building a SVM classifier can be explained by constructing a separating

function h(·) = w · Φ(·) + b that separate neuroimaging data satisfying h(·) ≤ 0 into

group TC, and the ones satisfying the opposite, h(·) ≥ 0, into group PD. Feature

vectors that are on hyperplanes |h(·)| = 1 are called supporting vectors. When data

from the two groups are completely separable, supporting vectors are points from the

two groups that are with the shortest distance to the separating hyperplane h(·) = 0.

Thus the separating function can be obtained by maximizing the margin, which is

defined as the distance between two hyperplanes, i.e. h(·) = −1 for group TC and

h(·) = 1 for group PD. For cases when data are not completely separable, a ’soft

margin’ is introduced that allows some neuroimaging data to be misclassified. In
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this case, the separating function aims to maximize the margin and at the same time

controlling the distance between misclassified data points from hyperplane |h(·)| = 1

of the correct side. Φ(·) in the separating function is a feature function that can either

be linear or nonlinear which determines the linearity of the SVM classifer. When Φ(·)

is nonlinear, it performs nonlinear transformation from the original input space to a

transformed feature space where the separating hyperplane is built. Through Φ(·),

the SVM classifier is able to map input data into a higher dimension, where separation

of the input data becomes achievable. Instead of defining Φ(·) directly, the nonlinear

transformation is often defined through kernel functions, characterized by K(X,X′),

the dot product of Φ(X)TΦ(X′), where X represents the input random variables. The

kernel trick allows the transformed space to be generalized to some unspecified high

dimensions (Boser et al., 1992). Some commonly used kernels include homogeneous

polynomial, inhomogeneous polynomial, hyperbolic tangent, and etc. In this study,

Gaussian radial basis function kernel, or RBF kernel, is used where

K(X,X′) = exp(−γ||X−X′||), γ > 0.

The RBF kenel is one of the most commonly used kernel in SVM and has shown good

performance (Chang et al., 2010).

In this problem, we formulate the SVM classifiers for region k as

fk(Y
(k)) = o−1[sign{hk(Y(k))}] (3.2)

hk(Y
(k)) = wk · Φk(Y

(k)) + bk, (3.3)

where hk(·) = 0 defines the separating hyperplane for region k, and wk and bk are the

corresponding parameters. Given observations of n subjects, including neuroimaging

data and the corresponding group labels denoted by y
(k)
i and oi ∈ {−1, 1}, i =

1, . . . , n, the SVM parameters can be solved by minimizing the following optimization
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function:

min Pk(wk, bk) =
1

2
||wk||2 + Ck

∑
i

H[oihk(Y
(k)
i )]. (3.4)

Geometrically, 2/||wk||2 quantifies the distance between the two hyperplanes |hk(·)| =

1. The Hinge loss H(·), which is defined as H(z) = max(0, 1 − z), quantifies the

misclassified distance. The constraint constant Ck is the tuning parameter regarding

the tolerance level of misclassification.

To solve (3.4), we introduce slack variable ξ
(k)
i = max[0, 1−oi{wk ·Φk(Y

(k)
i }+bk)],

and ξ
(k)
i is the smallest nonnegative number satisfying oi(wk ·Φk(Y

(k)
i )+bk) ≤ 1−ξ(k)

i .

Problem (3.4) can be rewritten as the following constrained optimization problem:

min Pk(wk, bk, ξ
(k)) =

1

2
||wk||2 + Ck

n∑
i=1

ξ
(k)
i (3.5)

subject to oi(wk · Φk(Y
(k)
i ) + bk) ≥ 1− ξ(k)

i

ξ
(k)
i ≥ 0,∀i

Consider (3.5) as a primal problem. In order to solve the primal problem, the

Lagrangian dual of (3.5) is introduced to obtain a simplified optimization:

max Dk(α(k)
1 , . . . , α(k)

n ) = −1

2

n∑
i=1

n∑
j=1

α
(k)
i oiΦk(Y

(k)
i )TΦk(Y

(k)
j )ojα

(k)
j +

n∑
i=1

α
(k)
i

subject to
n∑
i=1

α
(k)
i oi = 0, and 0 ≤ α

(k)
i ≤ Ck,∀i (3.6)

The dual problem (3.6) is an optimization with a convex quadratic objective and only

linear constraints, which can be efficiently solved by quadratic programming methods.

Assume α̂(k) = (α̂
(k)
1 , . . . , α̂

(k)
n ) is a solution of the dual problem (3.6), the solution
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of the primal problem (3.5) is then recovered as:

ŵk =
n∑
i=1

α̂
(k)
i oiΦk(Y

(k)
i ) (3.7)

b̂k = arg min
b

n∑
i=1

[1− oi(ŵk · Φk(Y
(k)
i ) + b]+ (3.8)

where ŵk is the direction of the hyperplane and b̂k is the intercept. When there is

new data with brain signals Y
(k)
new to be classified, the linear discriminant function is

first calculated

hk(Y
(k)
new) =

n∑
i=1

oiα̂
(k)
i Φk(Y

(k)
i )TΦk(Y

(k)
new) + b̂k, (3.9)

and the class label is assigned based on o(sign(hk(Y
(k)
new)).

SVM have become a popular technique to handle classification problems, though

there are some drawbacks. First SVMs scale with the data size due to the quadratic

optimization algorithm and the kernel transformation. This cause challange when

solving problem with large dataset. Second, the correct choice of kernel parameters

is crucial for obtaining good results, which practically means that an extensive search

must be conducted on the parameter space before arriving a trustful results, which

often complicates the task. Recent algorithms for finding the SVM classifier include

sub-gradient descent and coordinate descent. Both techniques have proven to offer

significant advantages over the traditional approach when dealing with large, sparse

datasets. Sub-gradient methods are especially efficient when there are many training

examples, and coordinate descent when the dimension of the feature space is high.

In this study, since the number of samples for neural imaging study often appears

to be relative small, traditional quadratic programming is used to solve SVM. The

implementation is based on LIBSVM package (Chang and Lin, 2011).

55



3.2.2 Binary LPBoosting through Column Generation

Continuing to solve the original classification problem, we target to classify a

patent’s disease group based on the neuroimaging data collected from r brain regions.

Assume that r independent basic SVM classifiers are already built corresponding to

different brain regions. Denote the separating functions for the k-th SVM classifier

as hk(·) with parameters ŵk and b̂k, k = 1, . . . , r. A boosting ensemble classifier is

a linear combination of basic classifiers via optimized weights. In this problem, the

final classifier can be written as

fensemble({Y(1), . . . ,Y(r)}) = o(sign
r∑

k=1

βkhk(Y
(k))),

where Y(k), k = 1, . . . , r is the random variables representing neuroimaging data from

r regions. Denote by H a matrix with elements Hik = hk(y
(k)
i ), representing the label

given by the k-th classifier on the training sample i, k = 1, . . . , r, i = 1, . . . , n. In

order to solve the linear weights, β = (β1, . . . , βr), a linear program can be formulated

with the same soft margin cost used in SVM (Demiriz et al., 2002):

max
β,ρ,ε

P(β, ρ, ε) = ρ−D
n∑
i=1

εi, (3.10)

subject to


∀i, oi ·

∑r
k=1 βkHik ≥ ρ− εi

∀i, εi ≥ 0

∀k, βk ≥ 0, and
∑r

k=1 βk = 1.

(3.11)

Here, εi ≥ 0 are the slack variables, showing the scale of how wrongly sample i is

misclassified. ρ represents margin, quantifying the distinction between two classes.

The constant factor D > 0 is the tradeoff parameter between misclassification error

and margin maximization.
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A dual problem of (3.10) is written as

min
µ,γ

D(γ) = γ, (3.12)

subject to

 ∀i,
∑r

k=1 µkoiHik ≤ γ

∀k, 0 ≤ µk ≤ D, and
∑r

k=1 µk = 1
(3.13)

Comparing the primal solution that gives the weightings of the weak learners, the

dual solution provide the distributions over examples. In (3.13), we can consider µi

as misclassification cost to each train sample points such that the µi sum to 1. The

complementarity of the primal solution (3.10) and the dual solution (3.12) can be

expressed as equality of the primal and dual objectives:

ρ−D
n∑
i=1

εi = γ, (3.14)

and the weights of basic classifiers, βk’s, in the primal problem and the weights of

samples, µi’s,in the dual problem have the following property:

µi(oi

r∑
k=1

Hi,kβk + εi − ρ) = 0, i = 1, . . . , n (3.15)

βk(
n∑
i=1

µioiHi,k − γ) = 0, k = 1, . . . , r. (3.16)

The dual constraint
∑n

i=1 µioiHik in (3.13) scores each weak classifier hk(·) by cal-

culating the weighted sum of correctly classified points minus the weighted sum of

the incorrectly classified points. For a given µ = (µ1, . . . , µn), the set of best weak

classifiers will have a score of γ. By minimizing γ, the dual problem finds the optimal

µ that maximize the primal objective. From the complementary slackness conditions

(3.15) and (3.16), only the training samples that are misclassified and that are on

the margin have positive misclassification cost µi, and only the basic classifier with
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scores equal to γ can associate to positive weights βj in the primal space.

When the number of basic classifiers are large, traditional linear programming

methods, i.e. simplex method, and interior point method, are considered intractable.

The classic technique of column generation avoids taking into consideration all the

variables explicitly, so that it is shown to solve LPBoost efficiently. Especially when

there are huge number of variables compared to the number of constraints, most

variables are set to be zero in the optimal solution, and only a subset of variables need

to be considered. Column generation leverages this idea to generate only the variables

which have the potential to improve the objective function, instead of enumerating all

possibilities. The problem is first formulated as a restricted master problem (RMP).

This RMP has as few variables as possible, and new variables are brought in only when

it is associated with a negative reduced cost under current dual variables. The variable

with the most negative reduced cost is added to the RMP and the master program is

re-solved. Resolving the master program will generate a new set of dual values and

this process is repeated until no negative reduced cost variables are identified. When

all the restrictions are satisfied, the solution can be concluded to be optimal. The

detailed algorithm of column generation is as follows:

ALGORITHM: LPBoost

INPUT:

D,H

INITIALIZATION:

j ← 0, no weak hypotheses are included

β ← 0, all coefficients are 0

γ ← 0

µ← ( 1
n
, . . . , 1

n
), corresponding optimal dual
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REPEAT:

j ← j + 1

Find l(j) = arg max
k∈(1,...,r)

∑n
i=1 µioiHik

If
∑n

i=1 uioiHil(r) ≤ γ, then j ← j − 1, break

Otherwise, solve RMP for new costs µ and γ:

Goal: arg min γ (3.17)

Constraint:
n∑
i=1

uioiHil(a) ≤ γ, a = 1, . . . , j

0 ≤ ui ≤ D, i = 1, . . . , n

OUTPUT:

β ← Lagrangian multipliers from last LP

f =
∑j

a=1 βahl(a)

Practically we found D = 1
nν
∈ ( 1

n
, 1) preferable because of the interpretability

of the parameter. By picking ν appropriately we can force the minimum number of

support vectors, which is the number of points misclassified plus the points on the

margin.

3.2.3 Multiclass SVM and LPBoost

We extend our method to deal with situation when there are more than two

groups to be classified, e.g. patients with three Alzheimer status including typical

control(TC), MCI, and AD. Denote c the number of classes and c ≥ 3. Without loss

of generality, multiclass SVM is used as basic classifiers. In practice, the multiclass

SVM decomposes multiclass problem into a series of binary classification such that

59



the standard two class SVM can be directly applied. Two representative schemes are

one-versus-rest (Vapnik , 1998) and one-versus-one (Kreßel , 1999) approaches. The

one versus rest method builds c classifiers, and chooses the class which classifies the

test data with greatest margin. The one versus one methods build a classifier for

every two of the C groups and choose the class that is selected by the most classifiers.

While this involves building c(c − 1)/2 classifiers, the time for training all classifiers

may actually decrease, since the training dataset for each classifier is much smaller

compared to one versus the rest method (Weston et al., 1999; Demiriz et al., 2002;

Gehler and Nowozin, 2009). Although the multiclass problem can also be addressed in

one single optimization process that combines multiple binary class optimization into

one single objective function and simultaneously achieves classification of multiple

classes, a larger computational complexity is required in this case due to the size

of the resulting quadratic programming problem. In this study, the one-versus-one

strategy is used as provided in the implementation of LIBSVM package.

After multiclass basic SVM classifiers are trained, the results are provided to

multiclass LPBoost to find optimal ensemble solution. To continue with previous

notation, we assume that there are c classes, and r basic classifiers from different

regions. Denote hk(·) the k’th basic classifier. Instead of having a real valued output

for binary classification, hk(·) takes feature input Y(k) from region k and map into a

Rc dimensional space. Denote Hik the outcome of the k’th basic classifier for subject

i, so that Hik is a vector of length c. Denote Hikc the c’th elements in Hik. Note that

Hik are trained by basic classifiers in the first step.

Following the idea of using multi-class SVM, multiclass LPBoost can also be

decomposed into binary LPBoost problem. One versus rest LPBoost builds linear

combination function f
(a)

ensemble
to distinguish in class a versus not in class a. After

a total number of c binary LPBoost models are built, the predicted label is choose

to be the class with the highest f
(a)

ensemble
score. One versus one LPboost builds a
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number of c(c− 1) binary LPboost and take the predicted label as the class with the

majority vote.

Other than relying on binary LPboost, there are two variation of multiclass LP-

Boost methods based on over all optimization but having different feature weights’

assumption. The first method, LP-β, uses a single vector β of length r as ensem-

ble weights for all classes jointly. Alternatively, the second method, LP-B, defines a

weight matrix B ∈ Rr×c so that each class preserves its own ensemble weight vector

over c features spaces.

In LP-β, the ensemble rules are:

fensemble({Y(1), . . . ,Y(r)}) = arg max
g∈{1,...,c}

r∑
k=1

βkhk(Y
(k)), (3.18)

The mixing coefficients β = (β1, . . . , βK) are learned by the following multiclass

extension of LPBoost:

max
β,ρ,ξ

P(β, ρ, ξ) = ρ− 1

νn

n∑
i=1

εi, (3.19)

subject to


∀i,

∑r
k=1 βkHikoi − arg max

oj 6=oi

∑r
k=1 βkHikgj ≥ ρ− εi,

∀i, εi ≥ 0

∀k, βk ≥ 0, and
∑r

k=1 βk = 1.

(3.20)

Here, εi ≥ 0 are the slack variables, showing the scale of how wrongly sample i

is misclassified. ρ represents margin, quantifying the distinction between two classes.

The constant factor D > 0 is the tradeoff parameter between misclassification error

and margin maximization.

In LP-B, the ensemble rules are:

fensemble({Y(1), . . . ,Y(r)}) = arg max
g∈{1,...,c}

r∑
k=1

Bk,ghk(Y
(k)), (3.21)
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where Bk,g represents the ensemble weight of the k’th basic classifier for the g’th

group. B is learn by multiclass LPBoost via solving the following optimization:

max
β,ρ,ξ

P(β, ρ, ξ) = ρ− 1

νn

n∑
i=1

εi (3.22)

subject to


∀i, and oj 6= oi,

∑r
k=1 BkoiHikoi −

∑r
k=1BkojHikoj ≥ ρ− εi,

∀i, εi ≥ 0

∀k, g Bkg ≥ 0, and
∑r

k=1 Bkg = 1,

(3.23)

The training procedure for LP-β and LP-B are similar. The ideal case is that there

is enough data to estimate Hikc and β on independent sets. However, in most situa-

tion, we need to share data when achieving solutions for basic svm and the ensemble

LPBoost. The following two stages scheme are used to avoid biased estimates. First,

five fold cross validation (CV) can be performed to select the best hyperparameter

for each basic SVM model individually. In this case, this is to find the balancing

parameter Ck for each basic multiclass SVM model. At this point the only parameter

left is ν. Since there is no independent training data left to set this parameter, we

compute for each Hikc the CV output using its best hyperparameter identified before.

This results in a prediction for each training point using a classifier which was not

trained using that point, but on other 80% of the training data. The CV outputs

of all SVMs are used as training data for LP-β. We perform CV to select the best

parameter ν and subsequently train the final combination β. The main concern using

this scheme is that the input to the ensemble method is from CV and not from the

classifier hk later used in the combination. However, it is reasonable to assume that

the learners used to produce the training data for LP-β are not too different. Com-

paring LP-β and LP-B, they are both linear programming problem, while LP-B have

more parameters so that more expensive to solve than LP-β. Fitting c× r instead of

r parameters demands for more training data, if not, LP-B may results worse model
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compared to LP-β.

3.3 Simulation Study

To show the performance of our model, simulation study is conducted to exam the

performance of SVM and LPBoost. Simulated data are designed in this way: assume

there are three disease categories, i.e. g ∈ {0, 1, 2}, each of which has 500 samples.

Each sample contain r = 100 image regions and each region is composed of 10 × 10

voxels. Denote µg,k, σg,k the mean value and standard deviation for group g and

region k respectively. Y
(k)
10×10 is the random variable representing voxel level signals

in region k. Detailed data simulation description is shown in Table (3.1). For the

first 25 regions, samples from different disease groups show no difference, so that they

have the same regional mean, µ0,k = µ1,k = µ2,k, k = 1, . . . , 25 and the same regional

standard deviation, σ0,k = σ1,k = σ2,k, k = 1, . . . , 25. The region mean is randomly

sampled from standard Gaussian distribution. The region standard deviation is set

to equal to 1 constant. For 26 to 50 regions, image samples from different disease

group show difference in the regional mean value, µ0,k < µ1,k < µ2,k, but with the

same regional standard deviation σ0,k < σ1,k = σ2,k = 1. For regions 51 to 75, image

samples from different disease group show difference in the regional mean value, µ0,k <

µ1,k < µ2,k, but with the same standard deviation σ0,k < σ1,k = σ2,k = 2. The regional

standard deviation in region 51 to 75 is higher than region 26 to 50. For the 76-100

regions, images from different disease group show the same regional mean value, µ1,k =

µ2,k, k = 76, . . . , 100 but with different variance, σ0,k < σ1,k < σ2,k, k = 76, . . . , 100.

The regional standard deviation is randomly drawn from Gaussian distribution with

given mean and variance shown in Table(3.1).

Three scenarios are used to simulate three different types of spatial correlation of

the images. For every region with a given mean and standard deviation, the voxel

signals within a region are generated either random, or following Gaussian Process
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Table 3.1:
Simulation Setting of Mean and Standard Deviation Values of 100 Regions

Regions Mean and Standard Deviation Description

Region 1 ∼ Region 25
µ0,k = µ1,k = µ2,k ∼ N (0, 1)

no difference across three groups
σ0,k = σ1,k = σ2,k = 1

Region 26 ∼ Region 50

µ0,k = 0
group difference in mean value,
same within-region standard
deviation

µ1,k ∼ N (µ0,k + 0.1, 0.022)
µ2,k ∼ N (µ1,k + 0.1, 0.022)
σ0,k = σ1,k = σ2,k = 1

Region 51 ∼ Region 75

µ0,k = 0
group difference in mean value,
same but greater within-region
standard deviation

µ1,k ∼ N (µ0,k + 0.1, 0.022)
µ2,k ∼ N (µ1,k + 0.1, 0.022)
σ0,k = σ1,k = σ2,k = 2

Region 76 ∼ Region 100

µ0,k = µ1,k = µ2,k = 0
group difference in standard
deviation, same mean

σ0,k = 1
σ1,k ∼ N (σ0,k + 0.05, 0.012)
σ2,k ∼ N (σ1,k + 0.05, 0.012)

with low correlation, or following Gaussian Process with moderate correlation. The

detailed simulation setting for regional spatial correlation can be found in Table(3.2).

Figures (3.1), (3.2) and (3.3) show sample simulated images from different groups

(g = 0, 1, 2) following these three scenarios.

Table 3.2: Three Scenarios of Simulation Study

Scenario I Yk ∼i.i.d N (µk, σ
2
k)

Scenario II Yk ∼ GP(µk, KII), where KII(x,x
′) = σ2

k exp(− ||x−x
′||2

2l2II
) , lII = 3

Scenario III Yk ∼ GP(µk, KIII), where KIII(x,x
′) = σ2

k exp(− ||x−x
′||2

2l2III
), lIII = 7

Note: Yk denote neuroimaging data of dimension 10× 10 from region k

Among all simulated image data, we randomly sample 60% to be training data

set, 20% to be valid data set, and the rest 20% to be test data set. Parameters of

basic classifiers are learned through training data. Five fold cross validation (CV)
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Figure 3.1:
One replicate of simulated imaging data of three disease groups, contain-
ing 100 regions and each has a 10× 10 voxel space, the simulated images
are generated under senario I, so that the data has no spatial correlation
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is used in training data set to determine the best tuning parameter Ck for each

SVM classifier of region k. The parameters of LPBoost are learned through valid

data, using predicted label from trained SVM classifiers as input. Five fold CV is
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Figure 3.2:
One replicate of simulated imaging data of three disease groups, contain-
ing 100 regions and each has a 10× 10 voxel space, the simulation images
are generated under senario II
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used in valid data to determine the best tuning parameter D for LPBoost. The

proposed LPBoost method is compared to a baseline SVM classifier (PCA+SVM),

which is built based on principle components extracted over all regions combining

66



Figure 3.3:
One replicate of simulated imaging data of three disease groups, contain-
ing 100 regions and each has a 10× 10 voxel space, the simulation images
are generated under senario III
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train and valid data sets together. All predictive errors are calculated through test

data. Table(3.3) and Table(3.4) show the simulation results of binary classification

and three group classification respectively. The results are based on one random split
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of train, valid and test data set. Table(3.5) and Table (3.6) show simulation results

of LPBoost weights of different regions under three simulation scenarios based on the

same train, valid, data set separation. Ranking based on LPBoost weight and also

the SVM predictive errors are also provided.

Table 3.3:
Result summary of simulation study for binary classification. The test
errors of basic classifier SVM, PCA+SVM, and LPBoost methods are listed
based on one random Train/Valid/Test split

Regional SVM, mean (sd) [min, max] PCA+SVM LPBoost
Region 1∼25 Region 26∼50 Region 51∼75 Region 76∼100 All Region All Region

Scenario I 0.501(0.028) 0.358(0.055) 0.463(0.035) 0.417(0.049) 0.218 0.135
[0.430, 0.555] [0.260, 0.450] [0.385, 0.515] [0.315, 0.510]

Scenario II 0.500(0.026) 0.376(0.045) 0.454(0.034) 0.411(0.033) 0.201 0.140
[0.445, 0.565] [0295, 0.460] [0.385, 0.515] [0.355, 0.470]

Scenario III 0.494(0.024) 0.435(0.037) 0.484(0.028) 0.458(0.034) 0.357 0.300
[0.435, 0.530] [0.370, 0.510] [0.420, 0.525] [0.400,0.540]

Table 3.4:
Result summary of simulation study for three group classification. The
test errors of basic classifier SVM, PCA+SVM, and LPBoost methods are
listed based on one random Train/Valid/Test split

Regional SVM, mean (sd) [min, max] PCA+SVM LPBoost
Region 1∼25 Region 26∼50 Region 51∼75 Region 76∼100 All Region All Region

Scenario I 0.676(0.030) 0.478(0.051) 0.586(0.049) 0.556(0.038) 0.311 0.253
[0.620, 0.735] [0.39, 0.580] [0.475, 0.665] [0.505, 0.635]

Scenario II 0.668(0.037) 0.474(0.036) 0.587(0.043) 0.550(0.039) 0.354 0.289
[0.595, 0.735] [0.395, 0.530] [0.485, 0.690] [0.480, 0.665]

Scenario III 0.672(0.035) 0.578(0.040) 0.644(0.026) 0.591(0.033) 0.396 0.344
[0.600, 0.725] [0.460, 0.640] [0.580, 0.685] [0.515,0.655]

In order to further test the performance of proposed LPBoost method, the exper-

iments are conducted 50 times based on random splits of train, valid, and test sets.

Table (3.7) shows the mean and standard error of the classification error of LPBoost,

the classification error of PCA+SVM, the ratio of the classification error of LPBoost

divided by the best regional SVM classifier, and the ratio of the classification error

of LPBoost divided by the one of PCA+SVM. As a result, the proposed LPBoost

method has smaller classification error under all three scenarios, along with smaller

standard error. For binary classification, the proposed LPBoost method decreases the

classification error by around 43% through ensemble for scenario I and II, and around
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Table 3.5:
Result summary of simulation study for binary classification. The relative
importance of different regions (one random Train/Valid/Test split) based
on basic SVM classifiers and on LPBoost are listed.

Scenario I Scenario II Scenario III
Region LPBoost SVM LPBoost SVM LPBoost SVM

# order coef order pe order coef order pe order coef order pe
1 66 0.000 74 0.495 72 0.000 86 0.500 70 0.000 76 0.500
2 66 0.000 60 0.470 72 0.000 80 0.490 70 0.000 52 0.475
3 66 0.000 83 0.500 32 0.011 94 0.505 70 0.000 96 0.520
4 66 0.000 98 0.540 72 0.000 96 0.520 70 0.000 76 0.500
5 66 0.000 96 0.530 72 0.000 86 0.500 70 0.000 56 0.480
6 66 0.000 98 0.540 72 0.000 86 0.500 70 0.000 76 0.500
7 66 0.000 83 0.500 72 0.000 100 0.565 70 0.000 93 0.515
8 66 0.000 83 0.500 72 0.000 86 0.500 70 0.000 76 0.500
9 66 0.000 100 0.555 72 0.000 55 0.440 70 0.000 76 0.500
10 66 0.000 83 0.500 72 0.000 86 0.500 70 0.000 76 0.500
11 66 0.000 83 0.500 72 0.000 74 0.480 70 0.000 41 0.460
12 66 0.000 83 0.500 72 0.000 86 0.500 70 0.000 76 0.500
13 66 0.000 83 0.500 72 0.000 60 0.455 31 0.008 46 0.465
14 66 0.000 95 0.520 72 0.000 98 0.525 33 0.007 64 0.495
15 66 0.000 83 0.500 72 0.000 96 0.520 70 0.000 76 0.500
16 66 0.000 92 0.510 72 0.000 86 0.500 38 0.002 93 0.515
17 66 0.000 98 0.540 72 0.000 64 0.460 70 0.000 76 0.500
18 66 0.000 83 0.500 72 0.000 64 0.460 70 0.000 76 0.500
19 66 0.000 54 0.450 72 0.000 86 0.500 70 0.000 23 0.435
20 66 0.000 83 0.500 72 0.000 60 0.455 70 0.000 98 0.530
21 66 0.000 83 0.500 72 0.000 74 0.480 70 0.000 50 0.470
22 66 0.000 44 0.430 72 0.000 86 0.500 70 0.000 98 0.530
23 66 0.000 83 0.500 72 0.000 86 0.500 70 0.000 32 0.445
24 66 0.000 65 0.475 72 0.000 86 0.500 70 0.000 76 0.500
25 66 0.000 58 0.465 72 0.000 99 0.540 70 0.000 96 0.520
26 15 0.030 6 0.305 72 0.000 10 0.345 22 0.012 36 0.450
27 21 0.017 23 0.380 72 0.000 16 0.370 18 0.017 15 0.425
28 23 0.014 23 0.380 20 0.023 26 0.385 25 0.009 46 0.465
29 66 0.000 12 0.340 23 0.019 21 0.380 70 0.000 46 0.465
30 20 0.022 18 0.370 10 0.034 21 0.380 27 0.009 46 0.465
31 66 0.000 46 0.435 33 0.011 7 0.335 5 0.063 10 0.415
32 66 0.000 12 0.340 18 0.028 60 0.455 70 0.000 36 0.450
33 2 0.079 10 0.330 13 0.032 21 0.380 70 0.000 36 0.450
34 6 0.060 3 0.285 35 0.010 34 0.405 6 0.056 88 0.505
35 18 0.026 32 0.405 5 0.046 14 0.365 70 0.000 15 0.425
36 12 0.035 30 0.400 40 0.003 36 0.410 70 0.000 23 0.435
37 3 0.078 14 0.360 19 0.023 30 0.395 24 0.011 15 0.425
38 66 0.000 54 0.450 25 0.017 26 0.385 32 0.007 28 0.440
39 8 0.047 11 0.335 72 -0.000 1 0.280 36 0.006 1 0.370
40 66 0.000 36 0.415 1 0.077 8 0.340 16 0.025 23 0.435
41 1 0.084 5 0.295 72 0.000 3 0.305 70 0.000 5 0.395
42 28 0.003 20 0.375 72 0.000 4 0.320 70 0.000 4 0.390
43 30 0.000 36 0.415 4 0.047 6 0.330 13 0.029 8 0.405
44 7 0.054 1 0.260 8 0.035 2 0.300 70 0.000 2 0.385
45 5 0.068 54 0.450 72 0.000 56 0.445 70 0.000 36 0.450
46 17 0.029 8 0.315 9 0.034 40 0.415 70 0.000 91 0.510
47 14 0.032 2 0.270 72 0.000 10 0.345 14 0.029 18 0.430
48 66 0.000 16 0.365 3 0.047 6 0.330 12 0.033 2 0.385
49 31 0.000 20 0.375 72 -0.000 46 0.425 7 0.049 76 0.500
50 11 0.040 4 0.290 6 0.043 14 0.365 20 0.016 10 0.415

80% through ensemble for scenario III. Comparing to the PCA+SVM method con-

ducting on all regions, the proposed LPBoost shows better performance which has an

about 60% smaller classification error for scenario I and II, and about 85% smaller for
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Table 3.6: Continued to 3.5
Scenario I Scenario II Scenario III

Region LPBoost SVM LPBoost SVM LPBoost SVM
# order coef order pe order coef order pe order coef order pe
51 66 0.000 74 0.495 72 0.000 58 0.450 70 0.000 64 0.495
52 66 0.000 83 0.500 16 0.029 58 0.450 70 0.000 59 0.485
53 66 0.000 44 0.430 72 0.000 78 0.485 70 0.000 76 0.500
54 66 0.000 40 0.425 72 0.000 94 0.505 70 0.000 76 0.500
55 66 0.000 46 0.435 72 0.000 40 0.415 70 0.000 18 0.430
56 66 0.000 65 0.475 72 0.000 34 0.405 39 0.000 18 0.430
57 66 0.000 49 0.445 72 0.000 68 0.465 70 0.000 93 0.515
58 66 0.000 57 0.460 39 0.003 40 0.415 70 0.000 56 0.480
59 66 0.000 65 0.475 72 0.000 74 0.480 28 0.009 62 0.490
60 66 0.000 72 0.485 72 0.000 70 0.470 70 0.000 76 0.500
61 66 0.000 83 0.500 72 0.000 60 0.455 70 0.000 28 0.440
62 66 0.000 26 0.385 30 0.013 46 0.425 70 0.000 64 0.495
63 66 0.000 83 0.500 11 0.033 64 0.460 10 0.039 59 0.485
64 66 0.000 60 0.470 36 0.007 52 0.435 21 0.015 32 0.445
65 66 0.000 65 0.475 43 0.002 52 0.435 70 0.000 76 0.500
66 66 0.000 65 0.475 28 0.015 78 0.485 70 0.000 76 0.500
67 66 0.000 94 0.515 41 0.002 68 0.465 70 0.000 52 0.475
68 66 0.000 83 0.500 29 0.014 95 0.510 70 0.000 97 0.525
69 66 0.000 29 0.395 72 0.000 46 0.425 70 0.000 64 0.495
70 66 0.000 72 0.485 14 0.030 26 0.385 29 0.008 13 0.420
71 66 0.000 39 0.420 72 0.000 86 0.500 70 0.000 76 0.500
72 29 0.001 44 0.430 17 0.029 36 0.410 70 0.000 76 0.500
73 66 0.000 54 0.450 72 0.000 74 0.480 23 0.011 56 0.480
74 66 0.000 83 0.500 7 0.039 71 0.475 70 0.000 88 0.505
75 66 0.000 49 0.445 15 0.030 49 0.430 70 0.000 88 0.505
76 66 0.000 26 0.385 72 0.000 49 0.430 15 0.028 62 0.490
77 26 0.004 28 0.390 31 0.013 18 0.375 70 0.000 23 0.435
78 66 0.000 20 0.375 72 0.000 52 0.435 70 0.000 18 0.430
79 66 0.000 8 0.315 72 0.000 40 0.415 70 0.000 52 0.475
80 66 0.000 16 0.365 42 0.002 32 0.400 8 0.046 32 0.445
81 66 0.000 28 0.390 12 0.032 28 0.390 3 0.071 36 0.450
82 66 0.000 36 0.415 2 0.054 30 0.395 1 0.092 46 0.465
83 10 0.045 14 0.360 37 0.005 32 0.400 37 0.005 10 0.415
84 9 0.045 40 0.425 72 0.000 44 0.420 70 0.000 46 0.465
85 24 0.007 65 0.475 21 0.021 49 0.430 70 0.000 76 0.500
86 66 0.000 44 0.430 34 0.011 10 0.345 2 0.071 28 0.440
87 66 0.000 34 0.410 22 0.020 21 0.380 4 0.064 23 0.435
88 25 0.005 70 0.480 38 0.005 44 0.420 70 0.000 10 0.415
89 66 0.000 49 0.445 72 0.000 21 0.380 30 0.008 36 0.450
90 4 0.068 30 0.400 72 0.000 68 0.465 70 0.000 41 0.460
91 13 0.033 10 0.330 24 0.019 12 0.355 26 0.009 6 0.400
92 66 0.000 23 0.380 72 0.000 74 0.480 70 0.000 59 0.485
93 22 0.016 34 0.410 26 0.017 26 0.385 9 0.045 28 0.440
94 66 0.000 58 0.465 27 0.015 40 0.415 35 0.006 56 0.480
95 16 0.030 65 0.475 72 0.000 14 0.365 11 0.037 8 0.405
96 27 0.003 36 0.415 72 0.000 40 0.415 19 0.016 32 0.445
97 66 0.000 92 0.510 72 0.000 68 0.465 70 0.000 88 0.505
98 66 0.000 54 0.450 72 0.000 18 0.375 17 0.024 41 0.460
99 66 0.000 70 0.480 72 0.000 74 0.480 34 0.007 100 0.540
100 19 0.024 54 0.450 72 0.000 52 0.435 70 0.000 50 0.470

scenario III. For three group classification, the proposed LPBoost methods decreases

the classification error by 64.9%, 73.2%, and 74.8% through ensemble for scenario

I, II, and III respectively. Comparing to the PCA+SVM method conducting on all

regions, the proposed LPBoost shows better performance which has an about 82.5%,
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83.5%, and 85.2% smaller classification error for scenario I, II, and III respectively.

Table 3.7:
Simulation results for binary classification and three group classification
comparing LPBoost method with PCA+SVM method and regional SVM
methods based on 50 repeated experiments, randomly spliting train, valid,
test data sets. The measurement metrics includ classification error and its
standard error, classification error ratio between two methods of interest

Scenario I Scenario II Scenario III

Binary Classification

LPBoost 0.123(0.034) 0.119(0.034) 0.292(0.040)
PCA+SVM 0.218(0.042) 0.192(0.037) 0.354(0.041)
LPBoost/PCA+SVM 0.434(0.105) 0.424(0.111) 0.808(0.101)
LPBoost/best regional SVM 0.594(0.213) 0.637(0.206) 0.846(0.152)

Three Group Classification

LPBoost 0.255(0.045) 0.289(0.051) 0.344(0.053)
PCA+SVM 0.309(0.048) 0.346(0.050) 0.403(0.054)
LPBoost/PCA+SVM 0.649(0.124) 0.732(0.118) 0.7486(0.130)
LPBoost/best regional SVM 0.825(0.210) 0.835(0.232) 0.853(0.226)

3.4 ABIDE Data Analysis

Autism spectrum disorder (ASD) is a widely recognized disease characterized by

qualitative impairment in social reciprocity, and by repetitive, restricted, and stereo-

typed behaviors. Due to its high prevalence in children with a more than 1% occur-

rence rate, there is strong need to further understand the mechanisms underlying ASD

in order to identify ways of earlier diagnosis, optional treatment selection, and better

outcome prediction. Autism Brain Imaging Data Exchange (ABIDE) is a consor-

tium of the International Neuroimaging Datasharing Initiative. ABIDE collaborated

16 international imaging sites and collected neuroimaging data from 539 individuals

suffering from ASD and 573 typical controls (TC). The datasets are composed of

structural and resting state functional MRI data along with an extensive array of

prototypical information. The major goal of ABIDE is to provide data support to

accelerate research of the neural based of ASD (Di Martino et al., 2014).

In our preprocessed data, we refer to Woods et al. (1998) for the details on the

preprocessing steps for MRI data. In the end, we keep 514 individuals with ASD and

557 TCs by removing the subjects with low quality on imaging data or having a large
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proportion of the missing values. We used only resting state fMRI data and built

classification model to detect patients’ ASD status (ASD: 1, and TC: 0). The data

contains fractional Amplitude of Low Frequency Fluctuations (fALFF) measurements

on a total of 175,493 voxels (Zou et al., 2008). The fALFF values ranging from 0 to

1. There a total of 116 different regions. The region partition system is based on

AAL (the Anatomical Automatic Labeling System) (Tzourio-Mazoyer et al., 2002).

Binary classification are performed using SVM. Individual basic classifiers are trained

on 116 regions.

There are three experiments conducted based on different train/valid/test set

splitting rules. In experiment I, stratified random sample is used to draw train, valid,

and test data sets per experimental sites following percentages of 60%, 20%, and 20%

respectively. In experiment II, all experiment sites are ranked by their number of

subjects in decreasing order and then the first 8 hospitals are selected for training

(about 63% of overall subjects), the next 6 hospitals are selected for valid (about

21%), and the last 6 hospitals are selected for test (about 16%). In experiment III,

all experiment sites are ranked by their number of subjects in increasing order, as

a result, 16 hospitals are selected for training (about 57% of overall subjects), 3 for

valid (about 26%), and 1 for testing (17%). Details about how the three experiments

are held can be found in Table (3.8, 3.9, and 3.10). The proposed LPBoost method

is applied to ABIDE study under three experiments. We achieved a classification

accuracy of about 82.4% to classify ASD and TC in experiment I, 84.4% in experiment

II (Table 3.11), which is higher than the current best results of 67% by Abraham et al.

(2017) and 70% by ? using the same ABIDE study data. The relative importance

of different regions for disease diagnostic can be reflected by the associated ensemble

weight parameters. The relative importance analysis of different brain regions can be

found in the Table (3.12), (3.14), and (3.15).
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Table 3.8:
A summary of stratified random sampling conducted for ABIDE data in
experiment I

SITE ID # # Train % Train # Valid %Valid # Test %Test
1 CALTECH 38 23 0.605 8 0.211 7 0.184
2 CMU 26 16 0.615 6 0.231 4 0.154
3 KKI 45 27 0.600 9 0.200 9 0.200
4 LEUVEN 1 28 17 0.607 6 0.214 5 0.179
5 LEUVEN 2 34 21 0.618 7 0.206 6 0.176
6 MAX MUN 56 34 0.607 12 0.214 10 0.179
7 NYU 182 110 0.604 37 0.203 35 0.192
8 OHSU 25 15 0.600 5 0.200 5 0.200
9 OLIN 35 21 0.600 7 0.200 7 0.200

10 PITT 56 34 0.607 12 0.214 10 0.179
11 SBL 30 18 0.600 6 0.200 6 0.200
12 SDSU 35 21 0.600 7 0.200 7 0.200
13 STANFORD 40 24 0.600 8 0.200 8 0.200
14 TRINITY 48 29 0.604 10 0.208 9 0.188
15 UCLA 1 73 44 0.603 15 0.205 14 0.192
16 UCLA 2 24 15 0.625 5 0.208 4 0.167
17 UM 1 110 66 0.600 22 0.200 22 0.200
18 UM 2 34 21 0.618 7 0.206 6 0.176
19 USM 96 58 0.604 20 0.208 18 0.188
20 YALE 56 34 0.607 12 0.214 10 0.179

Total 1071 648 0.605 221 0.206 202 0.189
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Table 3.9: A summary of Train/Test/Valid split of ABIDE data in experiment II
SITE ID # of Sample Total Sample Total Percentage

train

NYU 182

677 0.632

UM 1 110
USM 96

UCLA 1 73
MAX MUN 56

PITT 56
YALE 56

TRINITY 48

valid

KKI 45

227 0.212

STANFORD 40
CALTECH 38

OLIN 35
SDSU 35

LEUVEN 2 34

test

UM 2 34

167 0.156

SBL 30
LEUVEN 1 28

CMU 26
OHSU 25

UCLA 2 24
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Table 3.10: A summary of Train/Test/Valid split of ABIDE data in experiment III
SITE ID # of Sample Total Sample Total Percentage

train

UCLA 2 24

610 0.570

OHSU 25
CMU 26

LEUVEN 1 28
SBL 30

LEUVEN 2 34
UM 2 34
OLIN 35
SDSU 35

CALTECH 38
STANFORD 40

KKI 45
TRINITY 48

MAX MUN 56
PITT 56

valid
YALE 56

279 0.261UCLA 1 73
USM 96
UM 1 110

test NYU 182 182 0.170

Table 3.11:
LPBoost classification error under three experiments. Results for ex-
periment I is based on 50 replicates of stratified random sample of
Train/Valid/Test data sets

Experiment I, mean(sd) Experiment II Experiment II
LPBoost Classification Error 0.176(0.057) 0.156 0.379

LPBoost Type I Error 0.148(0.052) 0.130 0.450
LPBoost Type II Error 0.191(0.060) 0.174 0.321
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Table 3.12:
A result summary of relative importance of different brain regions for
ABIDE analysis based on 50 repeated stratified random samples under
Experiment I

LPBoost SVM
Rank Region # Region Code Region Name Coefficient Rank PE

1 89 8301 Temporal Inf L 0.068(0.194) 19 0.383(0.031)
2 90 8302 Temporal Inf R 0.047(0.139) 1 0.353(0.033)
3 56 5402 Fusiform R 0.044(0.139) 7 0.369(0.032)
4 2 2002 Precentral R 0.040(0.140) 13 0.374(0.037)
5 58 6002 Postcentral R 0.037(0.140) 8 0.370(0.029)
6 44 5002 Calcarine R 0.026(0.141) 24 0.390(0.028)
7 85 8201 Temporal Mid L 0.026(0.024) 3 0.362(0.031)
8 1 2001 Precentral L 0.026(0.022) 2 0.358(0.031)
9 30 3002 Insula R 0.023(0.021) 10 0.371(0.026)

10 86 8202 Temporal Mid R 0.020(0.021) 4 0.367(0.031)
11 92 9002 Cerebelum Crus1 R 0.018(0.019) 12 0.373(0.035)
12 55 5401 Fusiform L 0.018(0.018) 9 0.370(0.028)
13 68 6302 Precuneus R 0.017(0.023) 22 0.388(0.028)
14 67 6301 Precuneus L 0.017(0.018) 5 0.367(0.030)
15 4 2102 Frontal Sup R 0.016(0.020) 6 0.369(0.032)
16 103 9061 Cerebelum 8 L 0.015(0.015) 35 0.398(0.033)
17 82 8112 Temporal Sup R 0.014(0.016) 27 0.392(0.026)
18 59 6101 Parietal Sup L 0.014(0.016) 14 0.377(0.036)
19 91 9001 Cerebelum Crus1 L 0.013(0.017) 15 0.378(0.034)
20 20 2402 Supp Motor Area R 0.013(0.016) 26 0.392(0.035)
21 57 6001 Postcentral L 0.012(0.018) 16 0.378(0.031)
22 29 3001 Insula L 0.012(0.016) 34 0.397(0.038)
23 23 2601 Frontal Sup Medial L 0.012(0.021) 17 0.379(0.036)
24 7 2201 Frontal Mid L 0.012(0.015) 20 0.386(0.036)
25 88 8212 Temporal Pole Mid R 0.011(0.016) 67 0.420(0.036)
26 16 2322 Frontal Inf Orb R 0.011(0.015) 21 0.387(0.029)
27 3 2101 Frontal Sup L 0.011(0.016) 32 0.395(0.027)
28 28 2702 Rectus R 0.011(0.014) 68 0.421(0.036)
29 13 2311 Frontal Inf Tri L 0.010(0.014) 39 0.399(0.034)
30 43 5001 Calcarine L 0.010(0.017) 41 0.400(0.030)
31 94 9012 Cerebelum Crus2 R 0.010(0.014) 39 0.399(0.037)
32 8 2202 Frontal Mid R 0.010(0.013) 12 0.373(0.031)
33 87 8211 Temporal Pole Mid L 0.010(0.015) 39 0.399(0.030)
34 18 2332 Rolandic Oper R 0.010(0.014) 54 0.411(0.034)
35 70 6402 Paracentral Lobule R 0.009(0.017) 62 0.415(0.028)
36 50 5102 Occipital Sup R 0.009(0.013) 23 0.389(0.027)
37 38 4102 Hippocampus R 0.009(0.014) 78 0.427(0.035)
38 64 6212 SupraMarginal R 0.009(0.013) 42 0.402(0.033)
39 19 2401 Supp Motor Area L 0.009(0.014) 36 0.398(0.030)
40 78 7102 Thalamus R 0.009(0.013) 55 0.411(0.031)
41 26 2612 Frontal Med Orb R 0.008(0.012) 58 0.412(0.032)
42 40 4112 ParaHippocampal R 0.008(0.014) 31 0.394(0.033)
43 93 9011 Cerebelum Crus2 L 0.008(0.014) 51 0.408(0.031)
44 39 4111 ParaHippocampal L 0.007(0.012) 47 0.406(0.031)
45 99 9041 Cerebelum 6 L 0.007(0.012) 25 0.390(0.032)
46 34 4012 Cingulum Mid R 0.007(0.011) 33 0.396(0.033)
47 15 2321 Frontal Inf Orb L 0.007(0.012) 43 0.403(0.032)
48 83 8121 Temporal Pole Sup L 0.007(0.014) 56 0.412(0.033)
49 81 8111 Temporal Sup L 0.007(0.010) 44 0.405(0.034)
50 6 2112 Frontal Sup Orb R 0.007(0.012) 49 0.407(0.034)
51 31 4001 Cingulum Ant L 0.007(0.012) 66 0.419(0.029)
52 63 6211 SupraMarginal L 0.007(0.012) 60 0.414(0.033)
53 32 4002 Cingulum Ant R 0.007(0.013) 58 0.412(0.037)
54 97 9031 Cerebelum 4 5 L 0.006(0.012) 72 0.422(0.034)
55 51 5201 Occipital Mid L 0.006(0.011) 18 0.382(0.031)
56 5 2111 Frontal Sup Orb L 0.006(0.011) 65 0.418(0.039)
57 48 5022 Lingual R 0.006(0.010) 28 0.392(0.030)
58 106 9072 Cerebelum 9 R 0.006(0.011) 89 0.441(0.043)
59 27 2701 Rectus L 0.006(0.012) 69 0.421(0.036)
60 84 8122 Temporal Pole Sup R 0.006(0.012) 63 0.417(0.036)
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Table 3.13: Continued to 3.12
LPBoost SVM

Rank Region # Region Code Region Name Coefficient Rank PE
61 104 9062 Cerebelum 8 R 0.006(0.011) 53 0.409(0.040)
62 61 6201 Parietal Inf L 0.005(0.009) 46 0.405(0.028)
63 47 5021 Lingual L 0.005(0.009) 52 0.408(0.034)
64 17 2331 Rolandic Oper L 0.005(0.012) 62 0.415(0.029)
65 74 7012 Putamen R 0.005(0.010) 76 0.425(0.037)
66 33 4011 Cingulum Mid L 0.005(0.009) 58 0.412(0.032)
67 111 9120 Vermis 4 5 0.005(0.009) 72 0.422(0.033)
68 37 4101 Hippocampus L 0.005(0.012) 48 0.407(0.038)
69 24 2602 Frontal Sup Medial R 0.005(0.009) 30 0.393(0.033)
70 9 2211 Frontal Mid Orb L 0.005(0.012) 74 0.424(0.034)
71 66 6222 Angular R 0.005(0.009) 75 0.424(0.035)
72 69 6401 Paracentral Lobule L 0.005(0.011) 73 0.424(0.035)
73 98 9032 Cerebelum 4 5 R 0.004(0.009) 70 0.422(0.034)
74 100 9042 Cerebelum 6 R 0.004(0.008) 37 0.399(0.032)
75 105 9071 Cerebelum 9 L 0.004(0.009) 95 0.452(0.034)
76 49 5101 Occipital Sup L 0.004(0.009) 77 0.425(0.032)
77 10 2212 Frontal Mid Orb R 0.004(0.010) 79 0.428(0.034)
78 52 5202 Occipital Mid R 0.004(0.010) 45 0.405(0.035)
79 102 9052 Cerebelum 7b R 0.004(0.008) 91 0.444(0.034)
80 46 5012 Cuneus R 0.004(0.010) 64 0.418(0.034)
81 72 7002 Caudate R 0.004(0.008) 93 0.447(0.031)
82 71 7001 Caudate L 0.003(0.009) 86 0.437(0.038)
83 12 2302 Frontal Inf Oper R 0.003(0.008) 50 0.408(0.032)
84 65 6221 Angular L 0.003(0.008) 81 0.429(0.036)
85 77 7101 Thalamus L 0.003(0.008) 85 0.434(0.030)
86 14 2312 Frontal Inf Tri R 0.003(0.007) 80 0.429(0.036)
87 60 6102 Parietal Sup R 0.003(0.007) 29 0.393(0.037)
88 54 5302 Occipital Inf R 0.003(0.008) 88 0.439(0.028)
89 53 5301 Occipital Inf L 0.003(0.008) 90 0.441(0.036)
90 25 2611 Frontal Med Orb L 0.003(0.008) 84 0.433(0.034)
91 22 2502 Olfactory R 0.002(0.006) 96 0.456(0.039)
92 62 6202 Parietal Inf R 0.002(0.007) 82 0.432(0.025)
93 73 7011 Putamen L 0.002(0.007) 92 0.446(0.030)
94 11 2301 Frontal Inf Oper L 0.002(0.006) 97 0.462(0.034)
95 101 9051 Cerebelum 7b L 0.001(0.005) 87 0.437(0.032)
96 112 9130 Vermis 6 0.001(0.004) 94 0.450(0.035)
97 42 4202 Amygdala R 0.001(0.005) 106 0.485(0.031)
98 75 7021 Pallidum L 0.001(0.004) 105 0.485(0.032)
99 108 9082 Cerebelum 10 R 0.001(0.005) 101 0.476(0.029)

100 113 9140 Vermis 7 0.001(0.005) 113 0.495(0.036)
101 110 9110 Vermis 3 0.001(0.003) 99 0.471(0.037)
102 95 9021 Cerebelum 3 L 0.001(0.004) 116 0.505(0.031)
103 45 5011 Cuneus L 0.001(0.005) 83 0.432(0.033)
104 116 9170 Vermis 10 0.001(0.005) 115 0.501(0.033)
105 96 9022 Cerebelum 3 R 0.001(0.003) 107 0.488(0.031)
106 41 4201 Amygdala L 0.001(0.004) 108 0.490(0.035)
107 36 4022 Cingulum Post R 0.000(0.002) 111 0.493(0.031)
108 79 8101 Heschl L 0.000(0.002) 102 0.477(0.040)
109 76 7022 Pallidum R 0.000(0.002) 104 0.482(0.035)
110 35 4021 Cingulum Post L 0.000(0.002) 100 0.472(0.036)
111 21 2501 Olfactory L 0.000(0.001) 98 0.470(0.035)
112 109 9100 Vermis 1 2 0.000(0.001) 103 0.481(0.031)
113 80 8102 Heschl R 0.000(0.001) 112 0.493(0.036)
114 107 9081 Cerebelum 10 L 0.000(0.001) 109 0.491(0.033)
115 114 9150 Vermis 8 0.000(0.000) 114 0.498(0.036)
116 115 9160 Vermis 9 0.000(0.000) 110 0.491(0.033)
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Table 3.14:
A result summary of relative importance of different brain regions for
ABIDE analysis based on Experiment II

LPBoost SVM
Rank Region # Region Code Region Name Coefficient Rank PE

1 37 4101 Hippocampus L 0.054 64.0 0.425
2 64 6212 SupraMarginal R 0.043 40.5 0.401
3 56 5402 Fusiform R 0.042 71.5 0.437
4 60 6102 Parietal Sup R 0.040 47.0 0.407
5 2 2002 Precentral R 0.039 40.5 0.401
6 43 5001 Calcarine L 0.035 22.0 0.377
7 65 6221 Angular L 0.030 71.5 0.437
8 90 8302 Temporal Inf R 0.030 22.0 0.377
9 72 7002 Caudate R 0.026 93.0 0.461

10 23 2601 Frontal Sup Medial L 0.025 3.5 0.341
11 48 5022 Lingual R 0.025 53.5 0.413
12 1 2001 Precentral L 0.025 10.0 0.359
13 59 6101 Parietal Sup L 0.024 28.5 0.383
14 9 2211 Frontal Mid Orb L 0.024 86.5 0.449
15 86 8202 Temporal Mid R 0.024 60.5 0.419
16 13 2311 Frontal Inf Tri L 0.023 3.5 0.341
17 94 9012 Cerebelum Crus2 R 0.022 60.5 0.419
18 25 2611 Frontal Med Orb L 0.022 86.5 0.449
19 67 6301 Precuneus L 0.021 28.5 0.383
20 29 3001 Insula L 0.019 53.5 0.413
21 110 9110 Vermis 3 0.018 79.0 0.443
22 84 8122 Temporal Pole Sup R 0.018 13.5 0.365
23 15 2321 Frontal Inf Orb L 0.018 79.0 0.443
24 70 6402 Paracentral Lobule R 0.017 86.5 0.449
25 55 5401 Fusiform L 0.017 79.0 0.443
26 14 2312 Frontal Inf Tri R 0.016 111.0 0.509
27 47 5021 Lingual L 0.016 53.5 0.413
28 92 9002 Cerebelum Crus1 R 0.015 22.0 0.377
29 102 9052 Cerebelum 7b R 0.014 40.5 0.401
30 26 2612 Frontal Med Orb R 0.014 60.5 0.419
31 4 2102 Frontal Sup R 0.013 22.0 0.377
32 77 7101 Thalamus L 0.012 40.5 0.401
33 34 4012 Cingulum Mid R 0.012 28.5 0.383
34 39 4111 ParaHippocampal L 0.012 60.5 0.419
35 57 6001 Postcentral L 0.011 28.5 0.383
36 104 9062 Cerebelum 8 R 0.011 17.0 0.371
37 91 9001 Cerebelum Crus1 L 0.011 10.0 0.359
38 66 6222 Angular R 0.010 99.0 0.479
39 74 7012 Putamen R 0.010 47.0 0.407
40 16 2322 Frontal Inf Orb R 0.009 60.5 0.419
41 32 4002 Cingulum Ant R 0.008 66.5 0.431
42 20 2402 Supp Motor Area R 0.008 53.5 0.413
43 101 9051 Cerebelum 7b L 0.008 40.5 0.401
44 75 7021 Pallidum L 0.008 114.5 0.521
45 7 2201 Frontal Mid L 0.008 28.5 0.383
46 58 6002 Postcentral R 0.007 1.0 0.299
47 27 2701 Rectus L 0.007 71.5 0.437
48 111 9120 Vermis 4 5 0.007 95.0 0.467
49 62 6202 Parietal Inf R 0.007 35.5 0.395
50 68 6302 Precuneus R 0.007 53.5 0.413
51 85 8201 Temporal Mid L 0.007 3.5 0.341
52 78 7102 Thalamus R 0.007 40.5 0.401
53 54 5302 Occipital Inf R 0.006 71.5 0.437
54 22 2502 Olfactory R 0.005 71.5 0.437
55 24 2602 Frontal Sup Medial R 0.005 17.0 0.371
56 17 2331 Rolandic Oper L 0.005 13.5 0.365
57 8 2202 Frontal Mid R 0.005 13.5 0.365
58 49 5101 Occipital Sup L 0.003 91.0 0.455
59 28 2702 Rectus R 0.003 10.0 0.359
60 61 6201 Parietal Inf L 0.003 40.5 0.401
61 21 2501 Olfactory L 0.003 86.5 0.449
62 3 2101 Frontal Sup L 0.002 22.0 0.377
63 10 2212 Frontal Mid Orb R 0.002 47.0 0.407
64 97 9031 Cerebelum 4 5 L 0.001 66.5 0.431
65 114 9150 Vermis 8 0.001 108.5 0.503
66 100 9042 Cerebelum 6 R 0.000 86.5 0.44978



Table 3.15:
A result summary of relative importance of different brain regions for
ABIDE analysis based on Experiment III

LPBoost SVM
Rank Region # Region Code Region Name Coefficient Rank PE

1 86 8202 Temporal Mid R 1.000 39.0 0.379
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CHAPTER IV

Topic 3: Bayesian Nonparameteric Inference on

Peaks via Spatially Adaptive Non-stationary

Gaussian Processes

4.1 Introduction

There has been an increasing interest in making inference on peaks of one-dimensional

curves and multi-dimensional surfaces, motivated by a very broad range of biologi-

cal and biomedical research topics. For example, in proteomics, mass spectrometry

(MS) data have been collected for protein identification and quantifications, which

poses challenge to identify peak locations and magnitudes in the MS data (Dass and

Brodbelt , 2001; House et al., 2011). In metabolomics, there are growing interests in

analyzing the coupling of liquid chromatography and mass spectrometry (LC-MS)

data to facilitate metabolite identification and quantitation, which requires peak de-

tections on noisy data with unknown smoothness (Zhou et al., 2012). In genomics,

it has been paid attentions by biologists in detecting the feature (e.g. local extrema)

of expression profiles in the cDNA microarray experiments (Raghuraman et al., 2001;

Song et al., 2006). In the research of hormonal disruptions during the reproductive

cycle, surge times and magnitudes of hormone trajectories are considered important

features to make inference (Veiga-Lopez et al., 2008; Kang et al., 2012). In neuroimag-
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ing study, identifying peak location also relate to many implications. For example,

using brain electroencephalogram (EEG) data to detect the peak location and mag-

nitude of brain activity after certain stimulus in a temporal domain is capable of

assessing regular brain functions so that assist clinical diagnosis of disease (Liu et al.,

2013; Rangaswamy and Porjesz , 2014). It is also of great interest to localize the brain

activities by detecting the peak activation locations in a three-dimensional brain in

order to study particular brain functions or diseases (Lindquist , 2008; Kang et al.,

2011).

Several methods have been proposed in the literature for identifying peaks loca-

tions from different biological applications. For example, Raghuraman et al. (2001)

used moving-average smoothing and Fourior convolution smoothing in the applica-

tion to microarray data anaysis. Song et al. (2006) proposed a non-parametric kernel

smoothing technique that enables statistical inference on peak locations and applied

the method to microarray dataset. Kang et al. (2012) proposed a local kernel smooth-

ing method that further utilize analysis on multiple curves using the non-parametric

mixed-effects model. Wavelet regression method has also been used to model peaks,

in mass spectrometry study (Morris et al., 2008), however, the scales and locations

that index the wavelet basis functions have difficulties to relate with any biological in-

terpretation. House et al. (2011) presented a nonparametric Bayesian approach based

on Levy Adaptive Regression Kernels to model mass spectral data. Their methods are

directly interpretable and reply on informative prior distributions to define the peak

resolution. Kang et al. (2011) provided a hierarchical spatial point process model to

locate peak activation centers.

In this study, we aim to build a peak model via Gaussian process regression.

We utilize the good properties of Gaussian process in derivative calculation. The

Karhunen-Loéve (K-L) expansion of Gaussian process techniques are also adopted

to enable high dimensional computation. In simulation study, we demonstrate the
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good property of proposed method compared to the nonparametric kernel smoothing

method proposed by Song et al. (2006). In real data analysis, we demonstrate the use

of proposed method to find peak locations of one dimensional EEG data on temporal

domain, and also to locate the peak of power on the frequency domain. Based on

the peaks and the corresponding magnitude captured by the proposed methods, we

investigate the influence of alcohol on brain functions and also build a classifier based

on EEG measurement to predict the use of alcohol.

4.2 Methods

Suppose we collect data from n independent observations, denoted {(yi,xi)}ni=1,

where yi ∈ R is the outcome variable and xi ∈ Rd predictors. We assume that

yi = f(xi) + εi, (4.1)

where εi ∼ N(0, σ2) and f : Rd → R is a real-valued function defined on Rd. We

model funcitontion f as one realization of the gaussian process with mean function µ

and covariance kernel κ, denoted

f ∼ GP(µ, κ). (4.2)

We consider the Karhunen-Loéve (KL) expansion on f , which is given by

f(x) =
∞∑
l=0

θlψl(x), with θl ∼ N(0, λl), (4.3)
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where {λl}∞l=0 and {ψl(x)}∞l=0 are the eigenvalues and eigenfunctions of the covariance

kernel κ(x,x′), i.e. they are satisfied with the eigen equations.

∫
Rd

ψl(x)κ(x,x′)dx = λlψl(x
′), (4.4)

where {ψl(x)}∞l=0 are orthogonal functions over Rd, i.e.,

∫
Rd

ψl(x)ψl′(x)dx = 0, and

∫
Rd

ψ2
l (x)dx = 1.

The peaks and magnitudes of a function can be naturally determined by its deriva-

tives for a one-dimensional case or the gradient and the Hessian matrix for a multi-

dimensional case. The gradient and Hessian matrix of a function g(x) are respectively

defined as

∇g =

(
∂g

∂x1

, . . . ,
∂g

∂xd

)T

, Hg =



∂2g
∂x21

∂2g
∂x1∂x2

. . . ∂2g
∂x1∂xd

∂2g
∂x2∂x1

∂2g
∂x22

. . . ∂2g
∂x2∂xd

. . . . . . . . . . . .

∂2g
∂xd∂x1

∂2g
∂xd∂x2

. . . ∂2g
∂x2d


. (4.5)

By the linear property of the derivatives, we have

∇f(x) =
∞∑
l=0

θl∇ψl(x), and Hf(x) =
∞∑
l=0

θlHψl(x). (4.6)

Next, we consider the truncation of the K-L expansion for approximations on f(x),

∇f(x) and Hf(x) , for a sufficient large integer L, f(x) can be approximately repre-

sented as

f(x) = ψ(x)Tθ, and θ ∼ N(0L+1,Λ), (4.7)
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where θ = (θ0, . . . , θL)T, Λ = diag{λ0, . . . , λL} and ψ(x) = [ψ0(x), . . . , ψL(x)]T.

Furthermore, define ∇ψ(x) = [∇ψ0(x), . . . ,∇ψL(x)] of dimension d × (L + 1) and

Hψ(x) = [Hψ0(x), . . . ,HψL(x)] of dimension d× (L+ 1)d. Then we have

∇f(x) = ∇ψ(x)θ, and Hf(x) = Hψ(x)(θ ⊗ Id), (4.8)

where Id is a d × d identity matrix and “⊗” represents the Kronecker product. The

sampling distribution of yi is given by

[yi | xi,θ ] ∼ N(ψT(xi)θ, σ
2)

Let z and η respectively represent the location and magnitude of one peak of the

function f(x) on Rd. Then given z and η, the sampling distribution of function f can

be determined the distribution of θ, which is a truncated normal distribution given

by

[θ | z, η] ∼ TNA[µ,Σ], (4.9)

where µ = Σ12Σ
−1
22

(
η
0

)
, Σ = Λ−Σ12Σ

−1
22 ΣT

12 and A = {θ : Hψ(z)(θ ⊗ Id) < 0} with

Σ12 =

(
ψT(z)Λ

∇ψ(z)Λ

)
, and Σ22 =

 ψT(z)Λψ(z) ψT(z)Λ∇ψT(z)

∇ψ(z)Λψ(z) ∇ψ(z)Λ∇ψT(z)

 . (4.10)

4.2.1 Posterior Computation

Suppose we assign joint priors on the location z and the magnitude η, denoted

π(z, η). The joint posterior distribution of z, η and θ is given by

π(z, η,θ | y,x) ∝ π(z, η)π(θ | y,x, z, η). (4.11)
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This is the target distribution of the posterior simulation. The full conditional of θ

given other parameters is a truncated normal distribution

π(θ | y,x, z, η) ∝
n∏
i=1

π(yi | xi,θ)π(θ | z, η).

This implies that

[θ | y,x, z, η] ∝ TNA(ν,S), (4.12)

where the truncation area A is defined the same as in (4.9). The mean and covariance

matrix is given by

ν = S

[
1

σ2

n∑
i=1

yiψ
T(xi) + µΣ−1

]
, and S =

[
1

σ2

n∑
i=1

ψ(xi)ψ
T(xi) + Σ−1

]−1

.

Let g(z, η) be a joint proposal function for peak location z and peak magnitude η.

We have the following independent Metropolis-Hastings algorithm to perform the

posterior computation. Given a set of initial values of {θ(0), z(0), η(0)}, in the kth

iteration, for k = 1, . . . , K,

• Draw (z∗, η∗) ∼ g(z, η) and given (z∗, η∗), draw θ∗ from (4.12).

• Compute the acceptance ratio

α = min

{
π(z∗, η∗)g(z(k−1), η(k−1))

π(z(k−1), η(k−1))g(z∗, η∗)

}

• Draw u ∼ U(0, 1), set (z(k), η(k),θ(k)) = (z∗, η∗,θ∗) if u < α, set (z(k), η(k),θ(k)) =

(z(k−1), η(k−1),θ(k−1)), otherwise.

Of note, if we let g(z, η) = π(z, η) then we always have α = 1.
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4.3 Simulation Study

In the following, a simulation study is performed to examine the performance of

our proposed model. The power and robustness of the proposed method is evaluated

under the effects of different noise level and of the existence of multiple equilibrium

points. We compare our methods with the nonparametric kernel smoothing (NKS)

method proposed bySong et al. (2006) in regards to both point and interval estimation

for the location of local extrema.

4.3.1 Effect of Noise

The first simulation focus on the effects of noise on the robustness of the proposed

method. The data are generated from the following model with a single extrema

point at coordinate x0 = −0.6.

yi = f1(xi) + εi, i = 1, . . . , 300, (4.13)

f1(x) = 0.01× exp(−10× (x+ 0.6)2 + 5) (4.14)

where εi s were independently simulated from N (0, σ2). Clearly, the peak location

x0 = −0.6. The performance of the proposed method was assessed at different vari-

ance values, each based on 100 replicates. Table (4.1) presents the results.

Table 4.1:
Simulation results for the proposed method compared to the nonpara-
metric kernel smoothing (NKS) method in regards to mean squared error
(MSE) of peak location and 95% confidence interval coverage

Proposed Method NKS
MSE (×104) Coverage MSE (×104) Coverage

sd = 0.1 0.4752 1.00 1.5495 0.98
sd = 0.3 2.5390 1.00 7.5331 1.00
sd = 0.5 3.5605 1.00 10.3270 0.99
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4.3.2 Effect of Multiple Equilibrium Points

The second simulation focus on the performance of the proposed peak identi-

fier on locating multiple peaks. We simulate a function with two peaks of different

smoothness.

yi = f2(xi) + εi, i = 1, . . . , 300, (4.15)

f2(x) =

 sin(2πx) if x < 0

−10× (x− 0.5)2 + 2.5 if x ≥ 0
(4.16)

Clearly, two peaks locate at x
(1)
0 = −0.75 and x

(2)
0 = 0.5. Again, εi s were indepen-

dently simulated from N (0, σ2). Based on 100 replications, we summarize the results

in Table (4.2).

Table 4.2:
Simulation results for proposed method compared to NKS method in re-
gards to MSE of peak location and 95% confidence interval coverage for
two peak locations respectively

Proposed Method NKS
MSE (×104) coverage MSE (×104) coverage

x
(1)
0 = −0.75

sd = 0.1 1.42 1 2.00 0.92
sd = 0.3 2.84 0.99 4.47 0.91
sd = 0.5 3.23 0.98 10.07 0.92

x
(2)
0 = 0.5

sd = 0.1 1.13 1 160.25 0.93
sd = 0.3 1.97 1 20.54 0.83
sd = 0.5 4.28 0.99 318.95 0.88

4.4 EEG Data Analysis

The methods are applied to the data from an electroencephalography (EEG) study

of alcoholism; see http://kdd.ics.uci.edu/datasets/eeg/eeg.data.html. The

objective of our analysis is to estimate the relationship between alcoholism and brain
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activity through peak location and magnitude. The study compromises 122 subjects:

77 alcoholic subjects and 45 non-alcoholic controls. For each subject, 64 electrodes

were placed on their scalp and EEG was recorded from each electrode at a frequency

of 256 Hz (3.9-msec epoch) for 1 second. Each subject was exposed to either a single

stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen from

the 1980 Snodgrass and Vanderwart picture set. When two stimuli were shown, they

were presented in either a matched condition where S1 was identical to S2 or in a non-

matched condition where S1 differed from S2. For simplicity, we name Experiment I,

II and III representing each stimulus design. The number of trials conducted using

three experiments for each subject is shown in Table (4.8) and (4.9) in the Appendix.

We consider the average EEG across all trials under the same experiment. Note that

there are 17 trials with empty files for subject co2c1000367 and are excluded from

taking average. Subject co2c0000392 doesn’t have any record under electrodes ”X”.

As a result we remove this subject from analysis.

Experiment I Each subject was exposed to either a single stimulus (S1)
Experiment II Each subject was exposed to two identical stimuli (S1 and S2 are identical)
Experiment III Each subject was exposed to two non-matched stimuli (S1 and S2 are different)

The data have been previously described and analyzed in Li et al. (2010a), Hung

and Wang (2012), Zhou and Li (2014), and Kang et al. (2016). Zhang et al. (1995)

described in detail the data collection process. Figure (4.4) shows example plots

of a control and alcoholic subject. The plots indicate voltage, time, and channel

and are averaged over 10 trials for the single stimulus condition. The electrode po-

sitions were located at standard sites (Standard Electrode Position Nomenclature,

American Electroencephalographic Association 1990). The spatial structure of the

electrodes is shown in Figure (4.4), which was recovered from the standard elec-

trode position nomenclature described by Fig. 1 of https://www.acns.org/pdf/

guidelines/Guideline-5.pdf.
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Alcohol Control

Alpha band, the frequency of which range from 8 Hz to 14 Hz, has been described

as an index of relaxed wakefulness and closely related to subjects’ alcoholic status.

Research has shown that EEG peak alpha frequency (PAF) (measured in Hz) has

been correlated to cognitive performance between healthy and clinical individuals, and

among healthy individuals. PAF also varies within individuals across developmental

stages, among different cognitive tasks, and among physiological states induced by

administration of various substances. The present study suggests that, among other

things, PAF reflects a trait or state of cognitive preparedness. Research has shown

the prominent effects of low doses of alcohol include increases in slow alpha activity

or lowering of alpha peak frequency, while moderate doses show increases in slow

alpha and theta bands (Ehlers et al., 2004). Alpha activity has also been positively

associated with desire to drink. We are considering to analyze the alpha band of EEG

and the corresponding power of frequency that imply the alcoholic status.

In the following, we apply our proposed method to identify peak location and

magnitude in 1) alpha band wave along one second time interval; 2) power of the

frequency curve on 0 to 20 Hz frequency domain; and 3) build classification model

using the results from 1) and 2) to distinguish alcoholic subjects from normal control,

and to study the difference in brain activity between the two groups under three

experiments.
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4.4.1 Peak of Alpha Band in Temporal Domain

The EEG is typically described in terms of rhythmic activity that can be divided

into bands by frequency according to different wave patterns. The frequency range

has a certain distribution over the scalp or a certain biological significance. Most

of the cerebral signal observed in the scalp EEG falls in the range of 120 Hz. The

common EEG frequency band include:

Delta < 4
Theta ≥ 4 and < 8
Alpha ≥ 8 and < 14
Beta ≥14

Alpha band, the frequency of which range from 8 Hz to 14 Hz, merges with closing

of the eyes and relaxation and attenuates with eye opening or mental exertion. It is

considered as the posterior basic rhythm and is usually seen in the posterior regions

of the head on both sides, higher in amplitude on the dominant side. It is described

as an index of relaxed wakefulness. Alpha is slower in young children (closer to theta
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frequency) and increases with age into high alpha frequencies and is a key feature

of EEG maturation (Niedermayer and Lopes Da Silva, 1999); alpha power is stable

throughout adult life. In order to achieve alpha band from the original EEG signal,

we use the Butterworth square-wave filter described in Pollock (2000) to filter out

waves that have frequency lower than 8 Hz and higher than 14 Hz. After Butterworth

filter, the original EEG data, plotted in Figure (4.4), was transformed to alpha band

curves, plotted in Figure (4.5).

Figure 4.1:
Plots of original EEG signal and the filtered alpha wave on electrode
P6 of subject ”co2c0000337” (first row) from control group and subject
”co2a0000364” from alcohol group. Data collected from different stimulus
types are shown in three columns
Experiment I Experiment II Experiment III
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4.4.2 Peak of Power in Frequency Domain

In this section, the peak of alpha frequency is examined for difference between

control group and the group with alcohol usage. Table (4.6) lists the electrode lo-

cations that the peak alpha frequency is significantly different among two groups.
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Figure 4.2:
Plots of the fitted curve (blue line) for the filtered alpha wave and iden-
tified peak location (red triangle) by the proposed method. The example
data is the alpha wave from electrode CP2 of subject ”co2c0000337” (first
row) from control group and subject ”co2a0000364” from alcohol group
and across different stimulus types
Experiment I Experiment II Experiment III
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Figure (4.3) shows peak locations identified by the proposed method for P6 for one

subject in the control group and one subject in the alcohol group.

4.4.3 Classification based on Peak and Magnitude

In this section, the peak locations and magnitude identified using the proposed

method are used as predictors to predict a subject’s alcoholic status. Table (4.7) shows

the classification error calculated given different peak location predictors, including

first peak location, global peak location, and average peak interval in time domain,

and peak alpha frequency in frequency domain. We achieve the overall accuracy of

20%.
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Table 4.3:
A list of electrodes that show significant difference in time locations of the
first peak after stimulus on alpha wave. The hypothesis test is based on
the Student’s T test and exams the quantity of interest between control
group and alcohol group under three different experiments

Location Control Group(1-256) Alcohol Group((1-256) p value
Experiment I

T7 97.80 124.39 0.0443
P7 61.96 81.08 0.0492

Experiment II
FZ 122.31 91.57 0.0177
C5 99.22 128.57 0.0407
F2 123.98 98.13 0.0453

Experiment III
AF2 127.78 88.42 0.0035
FZ 115.20 89.47 0.0320
FPZ 142.51 106.36 0.0109
AFZ 126.36 93.81 0.0125
FCZ 119.80 92.47 0.0399

Table 4.4:
A list of electrodes that show significant difference in time locations of the
highest peak after stimulus on alpha wave. The hypothesis test is based
on the Student’s T test and exams the quantity of interest between control
group and alcohol group under three different experiments

Location Control Group(1-256) Alcohol Group((1-256) p value
Experiment I

C3 10.07 7.22 0.0108
C4 11.60 8.17 0.0133
C2 10.76 7.53 0.0241
PO7 10.42 7.57 0.0248
OZ 10.87 7.60 0.0122

Experiment II
O1 8.58 6.32 0.0263
FT7 5.96 8.00 0.0416
PO7 8.42 6.57 0.0401

Experiment III
CP2 6.82 8.84 0.0372
P3 6.58 8.62 0.0316
P4 6.58 9.96 0.0007
PZ 6.31 8.92 0.0028
C2 6.16 8.08 0.0468
PO8 6.02 8.18 0.0124
P2 6.36 9.22 0.0017
P1 6.82 8.64 0.0443
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Table 4.5:
A list of electrodes that show significant difference in average interval of
peak locations on alpha wave. The hypothesis test is based on the Stu-
dent’s T test and exams the quantity of interest between control group
and alcohol group under three different experiments

Location Control Group(1-256) Alcohol Group((1-256) p value
Experiment I

FP1 22.69 21.83 0.0278
FP2 22.56 21.65 0.0185
F7 22.47 21.46 0.0162
AF2 22.77 21.85 0.0196
FZ 22.54 21.78 0.0403
F4 22.37 21.40 0.0305
FC5 22.40 21.54 0.0285
FC2 22.23 21.32 0.0173
T8 22.27 21.27 0.0234
C4 22.28 21.37 0.0212
CP5 22.98 22.08 0.0277
CP2 22.84 21.76 0.0070
X 22.71 21.73 0.0232
F6 22.16 21.21 0.0217
FC3 22.37 21.45 0.0102
TP8 22.56 21.55 0.0262
TP7 22.85 21.96 0.0446
AFZ 22.80 21.80 0.0167
C1 22.55 21.66 0.0243
FCZ 22.78 21.91 0.0159
CPZ 22.94 22.07 0.0079

Experiment II
FP1 22.55 21.60 0.0058
FP2 22.73 21.51 0.0009
F8 22.42 20.85 0.0001
FC6 22.47 20.86 0.0000
T8 22.19 20.68 0.0001
T7 22.43 21.53 0.0105
CZ 22.12 21.15 0.0101
C4 22.03 20.93 0.0018
CP5 22.42 21.64 0.0365
CP6 22.24 21.55 0.0461
P3 22.57 21.76 0.0175
X 22.36 21.52 0.0286

AF7 22.13 21.23 0.0277
AF8 22.32 21.25 0.0107
F5 22.12 21.36 0.0478
F6 22.17 21.21 0.0146
FT8 22.30 20.69 0.0001
FPZ 22.69 21.92 0.0423
C6 22.23 20.90 0.0001
TP8 22.39 21.09 0.0005
TP7 22.43 21.70 0.0481
CP4 22.08 21.38 0.0285
P5 22.62 21.84 0.0239
C2 22.11 21.04 0.0053
nd 22.41 21.60 0.0334

Experiment III
F8 22.24 21.42 0.0409
FC5 22.61 21.64 0.0166
C3 22.43 21.62 0.0332
CP2 22.73 21.61 0.0031
P4 22.79 21.72 0.0046
PZ 23.00 21.70 0.0020
P8 23.10 21.79 0.0001
PO2 22.50 21.72 0.0366
PO1 22.76 21.68 0.0083
O2 22.56 21.66 0.0201
F6 22.36 21.29 0.0018
FC3 22.45 21.50 0.0066
C5 22.79 21.92 0.0299
TP8 22.59 21.78 0.0428
P6 22.74 21.86 0.0091
C2 22.10 21.34 0.0146
PO8 22.43 21.74 0.0418
FCZ 22.82 22.04 0.0313
POZ 22.59 21.71 0.0177
P2 22.79 21.84 0.0070
P1 22.93 21.89 0.0143

CPZ 23.01 22.02 0.0228
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Table 4.6:
A list of electrodes that show significant difference in peak alpha frequency.
The hypothesis test is based on the Student’s T test and exams the quan-
tity of interest between control group and alcohol group under three dif-
ferent experiments

Location Control Group(8-14) Alcohol Group((8-14) p value
Experiment I

CZ 11.75 10.97 0.0337
FPZ 11.82 10.89 0.0185

Experiment II
FP1 12.67 11.64 0.0082
AF1 12.57 11.77 0.0398
P4 11.44 12.55 0.0038
F2 12.74 11.37 0.0007

Experiment III
F7 13.07 12.01 0.0060
AF2 12.61 11.60 0.0192
C3 13.27 11.88 0.0003
AF7 12.92 12.06 0.0324
F5 13.31 11.49 0.0000
FPZ 12.27 11.38 0.0284
FC3 12.66 11.71 0.0274

Figure 4.3:
Plots of the fitted curve (blue line) for the power curve of alpha wave
and identified peak location (red triangle) by the proposed method. The
example data is the power of frequency of the alpha wave on electrode
P6 of subject ”co2c0000337” (first row) from control group and subject
”co2a0000364” from alcohol group and across different stimulus types
Experiment I Experiment II Experiment III
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Table 4.7:
EEG classification results based on three experiments presented in different
rows and four types of location related predictors presented in different
columns. The mean classification error and its corresponding standard
error (in parenthesis) are calculated based on ten-fold cross validation

First Loc. Global Loc. Ave. Interval PAF Combined All
Experiment I 0.33(0.05) 0.33(0.05) 0.36(0.05) 0.31(0.04) 0.29(0.02)

Experiment II 0.34(0.03) 0.29(0.03) 0.32(0.04) 0.24(0.05) 0.24(0.04)
Experiment III 0.31(0.04) 0.28(0.05) 0.36(0.04) 0.27(0.04) 0.25(0.03)

Combined (I, II, & III) 0.31(0.05) 0.28(0.05) 0.33(0.04) 0.26(0.04) 0.20(0.02)
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4.5 Appendix

Figure 4.4:
Original EEG signal curves for all control subjects in the first row and
alcoholic subjects in the second row at electrode P6, averaged for all trials
under each of the three experiments
Experiment I Experiment II Experiment III
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Figure 4.5:
Filtered Alpha wave signals for all control subjects in the first row and
alcoholic subjects in the second row at electrode P6, averaged across all
trials under each of the three experiment
Experiment I Experiment II Experiment III
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Figure 4.6:
Alpha wave power curves for all control subjects in the first row and
alcoholic subjects in the second row at electrode P6, averaged across all
trials for each of the three experiments
Experiment I Experiment II Experiment III
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Table 4.8:
A list of EEG data for alcoholism study in regards to the total number of
trials of each subjects under three experiments

idx subjects # Trials with # Trials with # Trials with Total # of Trials
Experiment I Experiment II Experiment III

1 co2a0000364 40 27 21 88
2 co2a0000365 49 22 22 93
3 co2a0000368 39 14 20 73
4 co2a0000369 58 30 26 114
5 co2a0000370 59 29 29 117
6 co2a0000371 53 25 28 106
7 co2a0000372 57 29 29 115
8 co2a0000375 39 24 22 85
9 co2a0000377 50 25 25 100
10 co2a0000378 56 27 29 112
11 co2a0000379 54 27 26 107
12 co2a0000380 43 23 21 87
13 co2a0000381 54 25 23 102
14 co2a0000382 58 29 26 113
15 co2a0000384 49 22 29 100
16 co2a0000385 39 17 14 70
17 co2a0000386 35 20 17 72
18 co2a0000387 34 16 17 67
19 co2a0000388 38 25 24 87
20 co2a0000390 51 27 26 104
21 co2a0000392 42 28 26 96
22 co2a0000394 55 26 30 111
23 co2a0000395 46 24 28 98
24 co2a0000396 42 14 21 77
25 co2a0000398 37 30 29 96
26 co2a0000400 40 23 15 78
27 co2a0000402 50 26 16 92
28 co2a0000403 46 27 24 97
29 co2a0000404 54 25 16 95
30 co2a0000405 42 13 14 69
31 co2a0000406 30 17 13 60
32 co2a0000407 47 28 18 93
33 co2a0000409 52 26 28 106
34 co2a0000410 56 27 24 107
35 co2a0000411 48 23 23 94
36 co2a0000412 52 17 20 89
37 co2a0000414 56 30 29 115
38 co2a0000415 50 15 14 79
39 co2a0000416 36 23 25 84
40 co2a0000417 42 30 27 99
41 co2a0000418 48 25 27 100
42 co2a0000419 57 30 29 116
43 co2a0000421 49 27 24 100
44 co2a0000422 22 25 27 74
45 co2a0000423 35 19 23 77
46 co2a0000424 43 30 29 102
47 co2a0000425 7 12 10 29
48 co2a0000426 32 17 20 69
49 co2a0000427 50 20 19 89
50 co2a0000428 39 19 20 78
51 co2a0000429 29 15 15 59
52 co2a0000430 55 26 27 108
53 co2a0000432 52 28 23 103
54 co2a0000433 47 17 15 79
55 co2a0000434 38 18 18 74
56 co2a0000435 39 20 19 78
57 co2a0000436 52 28 29 109
58 co2a0000437 53 29 29 111
59 co2a0000438 54 24 23 101
60 co2a0000439 48 28 26 102
61 co2a0000440 46 25 21 92
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Table 4.9: Continuous from Table (4.8)
idx subjects # Trials with # Trials with # Trials with Total # of Trials

Experiment I Experiment II Experiment III
62 co2a0000443 44 24 15 83
63 co2a0000444 42 24 14 80
64 co2a0000445 53 25 22 100
65 co2a0000447 43 28 21 92
66 co2c0000337 40 23 15 78
67 co2c0000338 54 27 23 104
68 co2c0000339 39 19 23 81
69 co2c0000340 54 12 17 83
70 co2c0000341 51 23 25 99
71 co2c0000342 56 29 30 115
72 co2c0000344 50 20 23 93
73 co2c0000345 55 28 29 112
74 co2c0000346 53 30 28 111
75 co2c0000347 46 21 22 89
76 co2c0000348 36 23 13 72
77 co2c0000351 50 18 24 92
78 co2c0000352 17 27 17 61
79 co2c0000354 47 20 25 92
80 co2c0000355 37 15 15 67
81 co2c0000356 49 27 22 98
82 co2c0000357 41 24 23 88
83 co2c0000359 33 18 18 69
84 co2c0000362 45 18 19 82
85 co2c0000363 55 27 28 110
86 co2c0000364 47 24 27 98
87 co2c0000367 51 26 25 102
88 co2c0000370 56 27 24 107
89 co2c0000371 33 16 10 59
90 co2c0000373 37 12 11 60
91 co2c0000374 51 28 27 106
92 co2c0000378 43 15 20 78
93 co2c0000379 50 26 24 100
94 co2c0000381 52 26 24 102
95 co2c0000382 54 28 27 109
96 co2c0000383 49 30 26 105
97 co2c0000384 42 22 24 88
98 co2c0000387 53 23 22 98
99 co2c0000388 24 24 18 66
100 co2c0000389 51 23 25 99
101 co2c0000390 18 20 21 59
102 co2c0000391 12 11 18 41
103 co2c0000392 51 24 24 99
104 co2c0000393 50 29 30 109
105 co2c0000394 48 18 19 85
106 co2c0000395 51 25 28 104
107 co2c0000396 28 18 11 57
108 co2c0000397 44 18 16 78
109 co2c1000367 53 24 26 103
110 co3a0000448 32 20 14 66
111 co3a0000450 60 29 30 119
112 co3a0000451 60 28 29 117
113 co3a0000453 48 18 20 86
114 co3a0000454 40 13 15 68
115 co3a0000455 27 16 15 58
116 co3a0000456 40 18 22 80
117 co3a0000457 33 15 23 71
118 co3a0000458 47 27 27 101
119 co3a0000459 53 20 25 98
120 co3a0000460 59 30 27 116
121 co3a0000461 13 29 29 71
122 co3c0000402 54 30 27 111

101



BIBLIOGRAPHY

102



BIBLIOGRAPHY

Abraham, A., M. P. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion,
and G. Varoquaux (2017), Deriving reproducible biomarkers from multi-site resting-
state data: An autism-based example, NeuroImage, 147, 736–745.

Adeli-Mosabbeb, E., K.-H. Thung, L. An, F. Shi, and D. Shen (2015), Robust feature-
sample linear discriminant analysis for brain disorders diagnosis, in Advances in
Neural Information Processing Systems, pp. 658–666.
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Classification results of artificial neural networks for alzheimers disease detection,
in Intelligent Data Engineering and Automated Learning-IDEAL 2009, pp. 641–
648, Springer.

Shi, Y., H.-I. Suk, Y. Gao, and D. Shen (2014), Joint coupled-feature representation
and coupled boosting for ad diagnosis, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2721–2728.

Skup, M., H. Zhu, and H. Zhang (2012), Multiscale adaptive marginal analysis of
longitudinal neuroimaging data with time-varying covariates, Biometrics, 68 (4),
1083–1092.

Song, P. X.-K., X. Gao, R. Liu, and W. Le (2006), Nonparametric inference for
local extrema with application to oligonucleotide microarray data in yeast genome,
Biometrics, 62 (2), 545–554.

Suk, H.-I., S.-W. Lee, D. Shen, A. D. N. Initiative, et al. (2015), Latent feature
representation with stacked auto-encoder for ad/mci diagnosis, Brain Structure
and Function, 220 (2), 841–859.

Sullivan Pepe, M., and G. L. Anderson (1994), A cautionary note on inference for
marginal regression models with longitudinal data and general correlated response
data, Communications in Statistics-Simulation and Computation, 23 (4), 939–951.

Tzourio-Mazoyer, N., B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Del-
croix, B. Mazoyer, and M. Joliot (2002), Automated anatomical labeling of acti-
vations in spm using a macroscopic anatomical parcellation of the mni mri single-
subject brain, Neuroimage, 15 (1), 273–289.

Vapnik, V. (1963), Pattern recognition using generalized portrait method, Automa-
tion and remote control, 24, 774–780.

Vapnik, V. (1995), The nature of statistical learning theory, Springer Verlag, New
York.

109



Vapnik, V. (1998), Statistical learning theory wiley-interscience, New York.

Veiga-Lopez, A., W. Ye, D. Phillips, C. Herkimer, P. Knight, and V. Padmanabhan
(2008), Developmental programming: deficits in reproductive hormone dynamics
and ovulatory outcomes in prenatal, testosterone-treated sheep, Biology of repro-
duction, 78 (4), 636–647.

Wang, X., B. Nan, J. Zhu, and R. Koeppe (2014), Regularized 3d functional regression
for brain image data via haar wavelets, The annals of applied statistics, 8 (2), 1045.

Weston, J., and C. Watkins (1998), Multi-class support vector machines, Tech. rep.,
Citeseer.

Weston, J., C. Watkins, et al. (1999), Support vector machines for multi-class pattern
recognition., in ESANN, vol. 99, pp. 219–224.

Woods, R. P., S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C. Mazziotta (1998),
Automated image registration: I. general methods and intrasubject, intramodality
validation, Journal of computer assisted tomography, 22 (1), 139–152.

Worsley, K. J., and K. J. Friston (1995), Analysis of fmri time-series revisitedagain,
Neuroimage, 2 (3), 173–181.

Wu, Q., and D.-X. Zhou (2005), Svm soft margin classifiers: linear programming
versus quadratic programming, Neural computation, 17 (5), 1160–1187.
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