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Abstract 

 

Latent Class Analysis for PTSD Subtype Discovery 

By Praveen Suthaharan 

 

Background: Exposure to trauma presents a public health concern worldwide. Common 

traumatic events include child abuse, military combat, personal assaults, and car accidents. 

It has been shown that more than half of the female and male population experience at least 

one traumatic event in their lifetime. Although more than half experience trauma, only a 

small percentage develop post-traumatic stress disorder (PTSD). Moreover, little is 

understood about the underlying neurobiological mechanism contributing to this extreme 

heterogeneity in PTSD. 

 

Objective: To discover PTSD subtypes in our cohort study for explaining the extreme 

symptomatologic heterogeneity. 
 

Methods:  A cluster analysis was performed on the Grady Trauma Project study. The 

cluster analysis involved a Dirichlet Process (DP)-based Latent Class Analysis (LCA) to 

discover PTSD subtypes. We performed a non-parametric Bayesian technique, DP, in 

conjunction with the LCA to non-empirically discover subtypes of PTSD. 
 

Results: The clustering analysis revealed 4 distinct subtypes of patients with resulting 

groups of 23 patients, 15 patients, 9 patients and 31 patients in each of the groups, 

respectively. Likewise, the three clinically-defined symptom (intrusive, 

avoidance/numbnesss, and hypearousal) categories characterize the PTSD subtypes into 

clear, separable clusters – cluster 1 with moderate- to high- intrusive symptom-present 

patients, low- to high- avoidance/numbness symptom-present patients, low- hyperarousal 

patients, cluster 2 with moderate- to high- symptom-present patients, cluster 3 with high 

symptom-present patients, and cluster 4 with symptom-absent to low symptom-present 

patients.    
 

Conclusions: Our research reveals discovery of PTSD subtypes as a benchmark for 

explaining the inherent symptomatologic heterogeneity in PTSD symptom profiles. 

However, this raises important questions regarding the association between the underlying 

neurobiological mechanism and behavioral difference. We aim to further explain the 

symptomatologic heterogeneity through brain network analyses to discover important 

brain connectivity patterns that influence the onset of the various symptoms of PTSD.  
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Introduction 

Trauma exposure presents a global public health concern. Some of the most common 

traumatic exposures include child abuse, military combat, and car accidents. The National 

Comorbidity Survey (NCS) reports that 60.7% of men and 51.2% of women experience at 

least one traumatic event, with a significant proportion of these events occurring during 

childhood.1 Among those who experience traumatic events, only 10-40% develop 

psychiatric symptoms of clinical relevance,2-5 such as those found in post-traumatic stress 

disorder (PTSD).  

The Diagnostic and Statistical Manual (DSM) is typically used as the diagnostic criteria 

for mental disorders, including PTSD.6 After a certain period of traumatic exposure, based 

on the DSM, symptoms of PTSD emerge into PTSD. PTSD is primarily defined by three 

main clinically-relevant symptom clusters: (1) re-experiencing (i.e., intrusive), (2) 

avoidance and emotional numbing, and (3) hyperarousal, although the latest DSM (DSM-

V) further divides the second cluster resulting in four clusters. Each of these symptom 

clusters is further stratified into multiple symptoms based on the 17 question PTSD 

Symptom Scale (PSS). On this scale, symptoms 1-4,17 are of intrusive-type, symptoms 5-

11 are of avoidance and numbness-type, and symptoms 12-16 are of hyperarousal-type. 

This use of multiple defining symptoms raises the problem of heterogeneity.  

Despite efforts to understand the psychopathology of PTSD symptoms, there still remain 

important unanswered questions regarding symptomatologic differences of patients and 

whether certain symptoms of PTSD play important roles in the brain network topology. 
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One of the challenges in addressing our question of interest is the extreme heterogeneity 

seen in the symptom profiles of PTSD patients. Studies have shown that over half of the 

US population experience some form of trauma in their lives, but only 7-8% show 

symptoms of PTSD.1,7 Although factors like personal/family history of psychiatric 

disorders, early lifetime traumatic experience, and/or gender (i.e., predominantly female) 

were shown to be associated with elevated risks for developing PTSD, they may not fully 

explain the heterogeneous symptom characteristic of PTSD.2,8 

Current neurobiological models postulate that PTSD symptoms rise from dysfunctions in 

fear extinction caused by traumatic events.9 Fear extinction is our neurobiological ability 

to adapt, as situations change, by learning to suppress a previously learned fear. In 

individuals with PTSD, this suppressed fear comes back and cannot be completely erased. 

This suggests that deficits in fear extinction retention underlies PTSD, leading to the 

persistence of PTSD-related symptoms.10 Many brain regions have been shown to 

contribute to the onset of anxiety disorders.11 However, no single brain region is known to 

be strictly responsible for causing anxiety disorders. Therefore, it is of increasing interest 

to identify dysfunctions in brain circuits that yield PTSD-related behavioral symptoms. 

These dysfunctional brain circuits are usually identified based on differences in functional 

connectivity across brain regions between healthy individuals and individuals with mental 

conditions of interest.12 Existing brain imaging studies have been conducted to classify 

individuals with different PTSD status; however, these studies do not focus on 

investigating significant brain circuits that drive symptomatologic differences of PTSD 

patients.13,14 There is also a need for prediction and inferential tools that utilize symptoms 

of PTSD and the brain network to identify significant network features that drive 
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symptomatologic differences. Therefore, it is of importance to investigate brain circuits in 

hopes of revealing significant neurobiological biomarkers for optimal diagnosis and 

treatment of PTSD. It is obvious that trauma-induced PTSD is a significant public health 

concern and addressing the underlying biological mechanisms driving the heterogeneity of 

the psychopathology of PTSD symptoms is of paramount importance.  

With the advent of robust neuroimaging technology, there are unprecedented opportunities 

to investigate how traumatic events interact with brain circuits which lead to PTSD-related 

behavioral symptoms. There are several major challenges in achieving this goal: 

i. the brain imaging data is high dimensional and noisy  

ii. it is unclear how to identify relevant brain connectome features as biological 

phenotypes for PTSD-related symptoms 

modeling relationship between the high dimensional brain network with behavioral 

outcomes is complex. 

In this thesis, we investigated PTSD subtypes to explain the symptomatologic 

heterogeneity issue through subtype analysis and propose a network analysis to investigate 

whether connectivity among certain brain regions were predictive of symptoms of PTSD. 

We focused our examination at the level of the symptom as illustrated in Figure 1 (Stage 

II Analysis is described in more detail in the Further Research section). 

 



4 
 

 

Figure 1. Process diagram of two-stage approach. The two-stage approach involves analysis 

on both the clinical data and brain data taken from the Grady Trauma Project (GTP). In Stage I, 

we cluster the data based on clinical features using the Dirichlet Process (DP) and Latent Class 

Analysis (LCA). In Stage II (discussed in the Further Research), using the cluster output from 

Stage I, we perform estimation of the brain network to discover brain connectivity patterns in 

order to yield evidence for network-influenced PTSD symptoms.   

 

First, we used a non-parametric Bayesian-based latent class analysis (LCA) to identify 

subtypes (or clusters) of patients sharing commonalities among symptoms. In a prior study 

investigating subtypes of PTSD symptoms, four subclasses were suggested: high severity 

and comorbidity symptoms, moderate severity symptoms, low symptoms, and a resilient 

class with low symptoms.15 We were more interested in performing cluster analysis on the 

basis of a Bayesian framework to overcome the process of empirically selecting the number 

of clusters. 

Second, as discussed in the Further Research, we will introduce network analyses using a 

Bayesian binary logistic regression model to map functional connectivity patterns to each 

symptom in order to discover important connections that are predictive of the symptoms 
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of PTSD. Current research regarding the effects of PTSD symptoms on the network 

topology have shown significant associations of emerging between symptom pairs as 

evident by strong network connection using correlation models.16,17 However, there are 

limited applications of Bayesian modeling for functional connectivity inference at the level 

of the symptoms 

The rest of this thesis is organized as follows. Section 1 describes the methodology of the 

clustering. Section 2 presents subgroup identification and characterization from the 

clustering technique. Section 3 summarizes the results found from the clustering analysis 

and discusses future extension in the setting of network analysis. Section 4 emphasizes 

certain limitations of the analysis and presents the conclusions. 

Methods 

We implement a systematic approach for discovering PTSD subtypes. This approach 

provides a framework for revealing hidden groups in a flexible manner. The Bayesian-

based framework is illustrated in Figure 2. We use a non-parametric Bayesian technique in 

conjunction with a finite mixture model to discover PTSD subtypes. 

Data description 

Grady Trauma Project (GTP)  

We use data from the Grady Trauma Project (GTP), a publicly funded, tertiary care center 

serving a predominantly socioeconomically disadvantaged inner-city population. The GTP 

cohort study recruited participants with a history of civilian trauma exposure for the last 12 

years and includes data on childhood and adult trauma, as well as PTSD (PTSD symptom 
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scale, or PSS). Subjects (n=78) used in this analysis were all females, primarily African 

American, low socioeconomic and inner-city population.  

 

 

Figure 2. Process diagram of Bayesian-based framework. The proposed Bayesian framework 

is a detailed version of the Stage I analysis section of Figure 1. We begin stage I analysis by 

representing the data as binary data for analysis of symptom-absent (0) versus symptom-present 

(1) patients. A DP approach was used to first non-parametrically estimate the number of clusters 

appropriate for clustering the clinical data. We use these estimated number of clusters (four) into 

our LCA model to cluster our data into four PTSD subtypes. The proposed two-stage approach 

for future work is illustrated in Appendix II. 

 

Clinical data  

The clinical features of interest for our analysis focused on the 17 PSS scores 

corresponding to the 17 DSM-IV PTSD symptoms. The symptoms were measured based 

on a semi-structured interview questionnaire (see Appendix I) called Modified PTSD 

Symptom Scale (MPSS) that consist of 17 questions, corresponding to the 17 symptoms of 

PTSD, aimed at measuring the frequency and intensity of each symptom. The resulting 

PSS scores range from 0 to 3, denoting the absence (0), low presence (1), moderate 

presence (2) and extreme presence (3) of each symptom.  
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Analysis 

Our analysis consists of a one-stage approach utilizing the clinical data. Stage I analysis 

(Bayesian-based cluster modeling) focuses on discovering subtypes by revealing hidden 

patient characteristics, based on the PTSD symptoms, using well-known clustering 

techniques.  

Stage I Analysis: Bayesian-based Cluster Modeling 

A latent class analysis (LCA) was used to discover PTSD subtypes in an unsupervised 

manner. The clinical data contains the 17 symptoms, re-labeled as symptom A-symptom 

Q, for all 78 subjects. These 17 polytomous outcome variables (i.e., symptoms with 4 PSS 

scores – 0,1,2,3) were dichotomized (i.e., symptoms with 2 PSS scores – 0,1) into two 

categories where scores equal to zero represent symptom-absent (0) patients and scores 

greater than zero represent symptom-present (1) patients. For this thesis, the variables were 

dichotomized in the interest of investigating the influence of brain connections on the 

absence/presence of a symptom, not in the interest of looking at the severity of PTSD 

(discussed in the Further Research section). These 17 dichotomous outcome variables 

were then used to cluster all 78 subjects. As a means to properly estimate the number of 

clusters to use in the LCA analysis, we incorporated a non-parametric Bayesian technique 

called the Dirichlet Process (DP). 

Dirichlet Process 

We implement a fit of the Dirichlet process model to perform density estimation on the 

dichotomous PSS symptom responses.19 The statistical advantage of using the non-

parametric prior from the Dirichlet model allows us to identify different distributions over 

the observed data and estimate underlying clusters of the data. This process helps overcome 
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the inherent heterogeneity present in PSS symptom responses. The function DPdensity in 

R was performed on the data to model the symptom scores using the default priors.19 The 

resulting estimated number of clusters suggested the data should be clustered using four to 

five clusters. In this analysis, we performed our LCA analysis using four clusters based on 

the findings from a previous study but for future analyses we will conduct a comparative 

analysis using three to five clusters (as discussed in the Further Research section).15  

Latent class analysis (LCA) model 

LCA is a commonly used finite mixture model for subtype analysis of discrete and 

categorical variables. It assumes that there exists an underlying unobserved (or latent) 

categorical variable that stratifies observations into mutually exclusive latent groups or 

“classes”. 

Suppose x is the p-dimensional response pattern of the dichotomized PSS symptom 

responses for each patient. Denote the jth symptom response of x as xj, where j = 1,…,p (p 

represents the total number of symptoms). Given a particular response pattern, the LCA 

defines the probability 𝑃(𝑿 = 𝒙) as follows: 

 

 
𝑃(𝑿 = 𝒙) = ∑ 𝛼𝑘

𝐾

𝑘=1

∏ ∏ 𝜌
𝑗 ,𝑟𝑗 |𝑘

𝐼(𝑥𝑗=𝑟𝑗)

𝑅𝑘

𝑟𝑗=1

𝑝

𝑗=1

 
(1) 

 

where K represents the total number of clusters (determined by DP), Rk represents the total 

number of responses for every symptom of the kth cluster. The probability, ρ, is calculated 

using the EM algorithm.20 It forms a matrix of dimension p × Rk for cluster k. Hence, for 
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cluster k, the 𝜌
𝑗,𝑟𝑗|𝑘

𝐼(𝑥𝑗=𝑟𝑗)
 represents the probability that a patient with response 𝑟𝑗  ∈ {0,1} for 

the jth symptom response in the clinical phenotype (e.g., anxiety, insomnia, or emotional 

numbness) x. The coefficient αk represents the latent subtype membership probability for 

each patient in cluster k. We also establish the indicator function I(xj = rj) to be 0 or 1.20  

The nature of the data (discrete, categorical) allows us to apply this latent class model on 

the PSS symptom responses to obtain PTSD subtypes. This is performed using the poLCA 

package in R, where the number of clusters is set equal to the number of clusters estimated 

in the DP analysis.21 

Results 

A one-staged analysis was performed to discover PTSD subtypes within the GTP cohort. 

We report results from our latent class cluster analysis where we group our patients based 

on the clinical data.  

Clustering results 

We implemented a latent class analysis on polytomous categorical PSS symptom 

responses, represented as dichotomous variables, for the sole purpose of clustering 

symptom-absent (0) and symptom-present (1) patients. A Dirichlet Process was 

implemented on the clinical data to estimate the number of clusters to specify in the LCA. 

The estimated number of clusters specified in the latent class model was four clusters. The 

analysis was then performed to cluster the subjects (n=78) based on the 17 dichotomized 

PSS symptom responses. We clustered the patients into four clusters with resulting 

groupings of 23 patients, 15 patients, 9 patients and 31 patients in each of the clusters, 

respectively. 
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Figure 3 illustrates the relationship between symptom responses (scores) and PTSD 

obtained the LCA model-based clustering. We were interested in identifying any 

significant symptom groupings based on the three main symptom categories of PTSD – 

intrusive, avoidance/numbness, and hyperarousal. The mean PSS scores were calculated 

for all symptoms across the subjects for each of the four clusters. Several interesting 

symptom-cluster characteristics were identified. The mean PSS scores closer to zero define 

those symptom-absent subjects; for example, in cluster 4, we can see the majority of the 

symptom-absent subjects, across all symptoms, were grouped together in this cluster. In 

particular, there were no subjects that displayed symptoms B, C and H as evident by the 

mean PSS scores of zero. Clusters 1-3 also contain significant cluster characterization. We 

can see that cluster 1 contains symptom-present subjects with moderate intrusive 

symptoms, low to high avoidance/numbness symptoms and low hyperarousal patients. 

Moreover, comparing both clusters 2 and 3, we observe these clusters contain subjects that 

display moderate to high symptoms in all three categories; especially, in cluster 3, where 

we see patients for certain symptoms – intrusive (A, C, D), avoidance/numbness (E, F, I, 

K), and hyperarousal (L, M, N) – who all display that particular symptom as indicated by 

a mean score of 1. 
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Figure 3. Mean symptom score characteristics for each cluster. The mean symptom scores for 

each cluster were plotted for the 17 PTSD symptoms. These 17 symptom scores can be stratified 

into three main groups: intrusive symptoms (A-D,Q), avoidance/numbness symptoms (E-K) and 

hyperarousal symptoms (L-P).  

 

Visualizing the density and dispersion of clusters based on symptom categories is also 

valuable to cluster characterization. Figure 4 illustrates grouping of the four latent clusters 

based on the three main symptom categories – intrusive, avoidance/numbness, and 

hyperarousal – with the goal of  
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Figure 4. PTSD subgroups classified by three main symptom categories. The four resulting 

latent clusters of symptom-absent and symptom-present patients were classified based on the 

three symptom categories – intrusive, avoidance/numbness, hyperarousal. We plotted the latent-

clustered patients (color-coded) against the symptom categories as represented by the x-axis, y-

axis, and z-axis. This plot suggests clear distinctions (i.e., groupings) within the four clusters 

based on the three symptom categories.  

investigating interesting symptom-category patterns within each of the four clusters. The 

classification results of the PTSD subtypes based on the three main symptom categories is 

shown in Figure 4. It is important to understand that points closer to the origin (0,0,0) 

define those symptom-absent patients and points further away define those symptom-

present patients; hence, we see many cluster 4 patients near the origin and cluster 3 patients 

further away which aligns with Figure 3 where cluster 4 had mean symptoms scores close 

to 0 while cluster 3 had mean symptoms scores close to 1. This plot validates the 

performance of our clustering technique by highlighting the veracity behind symptom-

category groupings within each cluster. 
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Figure 5. Proportion of symptom-present patients per cluster across symptoms. The 

proportion of patients who display symptoms were plotted for each cluster across the 17 PTSD 

symptoms. For example, about 75% of patients display symptom A in cluster 2. More 

importantly, this result suggests that symptom B has a smaller patient-proportion variance in 

patients across clusters, while symptoms C and E, for example, have larger patient-proportion 

variance in patients across clusters. 

 

Figure 5 adds on to the characterization of our cluster groupings by allowing us to look at 

the patient-proportion variance for each symptom across clusters. Here, we generated 

patient proportion plots across symptoms for each cluster for the dichotomous outcome – 

symptom-absent (0) versus symptom-present (1) – patients. We can see that, in cluster 1, 
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the majority of the patients display symptom E (avoidance-related symptom which 

corresponds to question 5 of the MPSS found in Appendix I). Although identifying the 

most occurring symptom in a particular cluster is important, it is more interesting to 

identify the symptom-present patient proportion across symptoms in each cluster for 

identifying which symptoms vary the most across clusters and which symptoms vary the 

least across clusters. Thus, it is informative to investigate the difference in the height of the 

bars for each symptom as this provides us information of the patient-proportion variance; 

that is, symptom B seems to vary the least among clusters while symptoms E, L and N are 

seen to vary the most among clusters. 

In summary, the characterization of cluster groups is useful for understanding the clinical 

significance behind the clusters. Here, we have performed group-wise characterization 

(i.e., inter-cluster characterization). However, it is important to consider the question of: 

what differentiates the patients within these clusters? That is, it is important to take into 

account an intra-cluster perspective where we use the brain networks of these patients and 

understand the neurobiological underpinnings that result in behavioral differences. 

Discussion 

This study examined cluster characteristics for better explaining the heterogeneity in PTSD 

symptom responses. A latent class analysis in conjunction with DP of PSS data drawn from 

a sample of socioeconomically disadvantaged, trauma-exposed females yielded evidence 

for distinct subtypes. We conduct subtype analysis to effectively explain the heterogeneity 

in our GTP cohort by using a one-staged systematic approach: use latent class analysis to 

learn PTSD subtype in an unsupervised manner.  
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PTSD subgroup identification 

The latent class analysis used for clustering proved useful for revealing interesting cluster 

groupings using four clusters (determined by DP). Although heterogeneity exists among 

the PSS profiles (i.e. symptom responses) for each subject, the DP-based LCA discovered 

differences which were used to establish well-defined symptom subtypes based on the PSS 

profiles. Cluster 1 represents moderate to high symptom-present patients with avoidance-

related symptom being predominantly displayed by the patients. Moreover, cluster 2 

represents moderate- to high- symptom-present patients across all symptom categories. 

Additionally, cluster 3 represents very high symptom-present patients. Lastly, cluster 4 

represents symptom-absent patients across the majority of the symptoms. This cluster 

performance facilitates the process of relating each subtype to the functional connectivity 

to further explain the inherent heterogeneity in PTSD symptoms.  

Further research  

The current thesis work illustrates a one-staged clustering approach. We aim to establish a 

two-stage approach (see Appendix II) where we incorporate network analysis to 

investigate underlying neurobiological causes for behavioral differences. We first discuss 

possible extensions related to Stage I and establish a proposal approach for Stage II. 

Stage I Future Research 

As discussed in the Dirichlet Process subsection of the Methods section, we performed our 

analysis using only four clusters, but there is room for further research in performing a 

comparative analysis using three clusters, four clusters and five clusters.  We also 

performed our analysis representing the original polytomous outcome variables as 
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dichotomous variables for the purpose of analyzing two groups of patients: symptom-

absent versus symptom-present patients. To build a more robust analysis, our next steps 

will be to repeat the analysis on the original polytomous outcome variables to see if we can 

obtain well-defined clusters as well as discover interesting brain network causes based on 

the severity of PTSD. Moreover, our current analysis involves three main symptom 

categories of PTSD – intrusive, avoidance/numbness, and hyperarousal – stratified into 17 

symptoms. However, for future research, it will be important to incorporate the recent 

update in the DSM-V where avoidance and numbness are considered as two disparate 

categories; thus, analyzing on four categories instead of three categories of PTSD and 

working with 20 symptoms instead of 17 symptoms.  

Stage II Future Research 

As previously mentioned, to investigate the brain network causes for differential behavioral 

differences, we would like to incorporate a network analysis in conjunction with the cluster 

analysis. The following is a proposed extension to the one-stage approach: We will relate 

each subtype (i.e., the clusters identified by LCA with DP from Stage I) to the brain 

functional network for discovering connectivity patterns that will help us differentiate the 

different subgroups and contribute to overcome the inherent heterogeneity in our cohort 

study.  

The brain network for each subject within a subtype will be estimated based on the brain 

regions from the PFC. There will be 12 regions (i.e. v = 12) and each region will have 146 

time points (i.e. T = 146). If we define it as a matrix Ai (where A is the centered data with 

respect to the mean) of dimension 12 x 146 for subject i, then we can obtain a variance-

covariance matrix ∑i of dimension 12 x 12 for subject i as follows: ∑i = Ai*Ai
T, where the 



17 
 

operator (*) is matrix multiplication. We will then input this matrix to graphical least 

absolute shrinkage and selection operator (gLASSO) which will estimate a sparse inverse 

of the variance-covariance matrix Ω𝑖 = Σ𝑖
−1, based on a range of tuning parameters chosen 

empirically (discussed in the next section), where the observations (i.e., regions) for a given 

time point, t, follow: 𝑦𝑡  ~ 𝑁(0, Ω𝑖). We will then apply a standard threshold of 0.005 to 

obtain the adjacency matrix and extract the upper-triangular matrix (v(v-1)/2) edge set for 

each subject within a subtype. This estimated network will be generated for a range of 

gLASSO tuning parameters ρ. Then for each of the 17 symptoms, we will select the tuning 

parameter that minimized the predictive mean squared error (MSE), as described next.   

Selection of the tuning parameter ρ of gLASSO is a challenging task - a systematic way of 

selecting the tuning parameters will be proposed using the MSE obtained from a Bayesian 

binomial logistic regression analysis.  

We will apply 10 empirically-evaluated ρ values evenly-split between the range of 0.001 

to 0.04 to estimate brain networks. We will represent the estimated brain network, Eik, as 

the vectorized upper-triangular adjacency matrix for every ith subject within a subtype k 

where k=1,…,K. Likewise, we will  represent the behavioral outcome, yijkρ, for the jth 

symptom of ith subject in the kth cluster for a particular ρ. We will then formulate a non-

linear parametric relationship f(x) between the behavioral outcome and the brain network: 

 𝑦𝑖𝑗𝑘𝜌 =  𝑓(𝛽𝑗𝑘𝜌)(𝐸𝑖𝑘𝜌)                     (2) 

 

where βjkρ is the model parameter with dimensions 1 x v(v-1)/2 and its cth element is 

represented by βjkρc, where c=1,…,v(v-1)/2. There will be two requirements that must be 
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addressed in this model. The first requirement will be the selection of the mapping function 

f, where we consider the logistic link, and the second requirement will be the estimation of 

parameter βjkρ.  

To estimate the parameter βjkρ, we will use the Bayesian binomial logistic regression with 

MCMC. The R package provides the mlogit function which inputs a dependent variable 

(the symptom response variable yijkρ), independent variables (vectorized edge set variable 

Eikρ), and MCMC parameters, and then outputs the βjkρ parameters, governed by the 

Bayesian binary logistic regression model.22-24 This model assumes our latent variable, ω, 

follows a Polya-Gamma distribution ω ~ PG(b,0) with parameter b > 0, and when we 

integrate it out we get a resulting logistic regression model with a Gaussian prior on  𝛽𝑗𝑘𝜌 

and we obtain our posterior samples for our  𝛽𝑗𝑘𝜌 using the Polya-Gamma method.23 The 

number of MCMC iterations selected were M=5000, generating 5000 sets of βjkρ. We will 

then compute the average as follows 
∑ 𝛽𝑗𝑘𝜌

𝑀
𝑗=1

𝑀
 to obtain the average estimated beta 

parameters for the model that we presented in equation (2). 

As previously mentioned, we will apply the logistic link; specifically, we will select the 

standard logistic regression for the mapping function f to generate the estimated symptom 

responses 𝑦̂𝑖𝑗𝑘𝜌 as probabilities based on the following model: 

 
𝑦̂𝑖𝑗𝑘𝜌 =

𝑒
𝛽̂𝑗𝑘𝜌𝐸𝑖𝑘𝜌

1 + 𝑒
𝛽̂𝑗𝑘𝜌𝐸𝑖𝑘𝜌

                           
(3) 
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Our goal now will be to calculate MSE values, according to 
∑𝐾

𝑘=1 ∑ (𝑦𝑖,𝑗𝑘
𝑁𝑘
𝑖=1

−𝑦̂𝑖,𝑗𝑘)2

𝑁
 for 

subtype k where Nk represents the total number of patients N in each subtype k. We will 

proceed to take the mean MSE across clusters to obtain our average MSE for each of our 

10 ρ values per symptom. This will allow us to select the “optimal” tuning parameter for 

each symptom corresponding to the minimum average MSE. We will use the resulting 

“optimal” tuning parameters to estimate the brain network for the best predictive capability 

for a symptom. 

For these estimated brain networks, we will calculate several graph-based metrics to 

characterize the PFC topological organization using the Brain Connectivity Toolbox in 

MATLAB.24,25 We will consider (1) the density of the network, (2) the proportion of 

positive-valued and negative-valued edges, (3) the proportion of positive-valued and 

negative-valued estimated β’s (4) the efficiency (global and local) of the network, (5) the 

characteristic path length (CPL) of the network, and (6) the mean clustering coefficient 

(MCC). The density and proportion of positive and negative edges provide inter-regional 

information, while the efficiency of a brain network measures how efficiently the nodes in 

the network communicate information. Global efficiency (GE) measures how quickly 

information of the entire network is exchanged between nodes and local efficiency (LE) 

measures the global efficiency of the nearest-neighbor nodes. The CPL holds information 

of the length of the path in a network, where a lower-valued number means shorter path 

length (i.e., path of highly-influencing network) and greater-valued number means longer 

path length. The GE and CPL are inversely-related since the longer the path length the 

lower the GE. Lastly, the MCC measures the average clustering of the brain regions (or 

nodes) in a network. In summary, these graph metrics will provide insightful brain network 
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information in relation to the symptoms since these features may highlight significant 

nodes predictive of displaying certain symptoms. 

We will use the estimated brain networks to relate them to each symptom to discover 

network-influenced symptoms. Based on these patterns, we will generate predictive models 

that map the brain network to the symptoms. A heatmap, plots of the posterior means on 

the edge network, and estimated brain network plots will be used to visualize the influence 

of regional connectivity on the symptoms of PTSD. The investigation of connectivity 

patterns on PTSD symptoms will hopefully allow us to establish well-defined distinctions 

among the different symptoms that give rise to PTSD. 

Limitations and Conclusions 

It is important to consider the limitations present in this analysis. The clinical data analysis, 

exclusively, presents a few limitations. First, the demographics of the GTP data represents 

a very specific population - African American women – which gives rise to the issue of 

generalizability (i.e., this population study may not generalize to other populations). 

Second, trauma was assessed via retrospective self-report measures of PTSD symptoms so 

any conclusions of causality should be met with caution. Third, the scope of PTSD 

measures was limited to the DSM-IV 17-item MPSS, but recently, based on the DSM-V, 

the number of symptoms increased from 17 to 20 symptoms, thus it is important to consider 

these symptoms.26  

The findings from this analysis should still be considered in light of these limitations. We 

have shown that clear distinctions lie within trauma-exposed patients. Moreover, we hope, 

with the incorporation of Stage II analysis, we will be able to show that network differences 
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exist for each PTSD symptom to better explain the underlying heterogeneity of the 

symptoms. The investigation of connectivity patterns on PTSD symptoms will hopefully 

allow us to establish well-defined distinctions among the different symptoms that give rise 

to PTSD; thus, facilitating the process for optimal diagnosis and treatment of PTSD. 
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Appendix I: Modified PTSD Symptom Scale (MPSS) 
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Appendix II: Proposed two-stage approach (Future Research) 

 

Proposed Bayesian framework for investigating network-influenced PTSD symptoms. The 

proposed Bayesian framework is a detailed version of Figure 1. It involves a Stage I analysis and 

Stage II analysis using the clinical data and brain data, respectively. We begin stage I analysis by 

representing the data as binary data for analysis of symptom-absent (0) versus symptom-present 

(1) patients. A DP approach was used to first non-parametrically estimate the number of clusters 

appropriate for clustering the clinical data. We use these estimated number of clusters (four) into 

our LCA model to cluster our data into four PTSD subtypes. As discussed in Stage II Further 

Research We will begin stage II analysis by taking the respective brain imaging data of patients 

within each discovered subtype. We will first perform the standard preprocessing (e.g., 

autoregressive moving average (ARMA) model) of the brain imaging data for all subjects. We 

will then generate a covariance matrix of our regions of interest for all subjects, which we input 

into gLASSO with 10 empirically chosen ρ values. This outputs estimated brain networks for all 

subjects. We will then perform selection for the “optimal” tuning parameter using mean squared 

error (MSE) and proceed to obtain the optimal brain networks for every subject. We will then 

regress the symptom response on the optimal brain networks using a Bayesian binomial logistic 

regression to discover network-influenced PTSD symptoms. 

 

 


