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ABSTRACT 

In research using epidemiological surveillance data, counts of health outcomes are often 

censored in order to protect privacy when the nonzero number of health outcomes occurring in 

specific times and places is small. Several common approaches to modeling such censored, 

hierarchically structured, over-dispersed count data neglect either the uncertainty in true counts 

from the censoring process, or the hierarchical structure of the spatiotemporally clustered data. 

Mixed-effects interval-censored negative binomial regression has potential to address these 

methodological issues directly. In this study, we conducted simulations to contrast the 

performance of mixed-effects interval-censored negative binomial regression against three other 

approaches, to illustrate how the extent of censoring, between-cluster variation, sample size, and 

strength of the true association can affect the findings from this method and comparison 

methods.  

We assessed the bias in parameter estimates and standard errors, 95% confidence interval 

coverage, statistical power, and type I error rates of our model and the alternative approaches. 

The simulated data was generated under a hierarchical negative binomial process to which a 

mixed-effects negative binomial model was fit (Model 1). Then interval-censoring was imposed 

on the dataset and the interval-censored mixed-effects negative binomial regression was applied 

(Model 2). Next, we applied a condition on the dataset wherein the censored values were all 

deterministically imputed at a fixed value in the middle of the range of plausible counts. Under 

this condition that had some misclassification of the true counts, we applied mixed-effects 

negative binomial regression. Lastly, we then fitted fixed-effects negative binomial regression 

models that accounted for the interval-censoring, but neglected the hierarchy (Model 4). Building 

upon this, we applied the four modeling approaches to a real-world uncensored dataset of 

monthly mortality rates among black South Africans over 1997-2013, to examine the estimates 

of association of precipitation with mortality across Models 1-4, applying artificial censoring and 

deterministic imputation to mirror the simulations. Overall, in the simulated data, Models 1, 2, 

and 4 performed well in all measures. However, Model 3 performed increasingly poorly as the 

true effect size increased with the other parameters in the model. In the South Africa dataset, 

Models 1, 2, and 3 obtained similar estimates suggesting an inverse association of precipitation 

with mortality in black South Africans, while Model 4 gave a divergent finding. In conclusion, 

interval-censored mixed effects negative binomial regression should be considered as an 

analytical option when outcome data have both clustering and interval censoring. 
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BACKGROUND 
 

In public health research, models with count response variables are often used to 

describe patterns such as the number of deaths in a defined population, the number of 

days absent from school or work, the number of alcoholic drinks consumed per day, or 

the number of bacteria in dilution assays (Coxe, West, & Aiken, 2009). Poisson 

regression is a generalized linear model form commonly used to addresses research 

questions about counts, with the key assumption that the variance equals the mean and 

that observations are independent and identically distributed. However, in many areas of 

research, real-world count data is over-dispersed and may be more adequately described 

by negative binomial models that assume variance is proportionate, but not necessarily 

equal, to the mean (Smithson & Merkle, 2014). Other extensions to the basic Poison 

model are often necessitated by quirks of the data-generating processes being studied. 

Observations in real-world studies are seldom independent; for example, in many 

surveillance studies, data on event counts are collected repeatedly from the same places 

over time (e.g., county-years of surveillance). Mixed-effect models account for this 

hierarchical clustering of observations by estimating an underlying distribution of cluster-

specific parameters (e.g., random intercepts representing cluster-specific differences from 

the grand mean), and fitting the rest of the model (i.e., fixed effects) conditional on these 

cluster-specific parameters (Laird & Ware, 1982). 

Censoring of the outcome variable is a frequent complication of applied research 

(Touloumi, Pocock, Babiker, & Darbyshire, 1999) (Wu, 1986). Censoring can arise in 

applied analyses of count data when events are rare, such as the number of deaths that 

occur in rural or very small populations, and data administrators (e.g., government 

agencies) censor the precise number of events in order to protect the privacy of persons 
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who experienced those events (Bartell and Lewandowski, 2011), providing data analysts 

only with an interval within which the correct number of counts is contained. When the 

probability of censoring is related to the underlying exposure-outcome dose-response, 

this is an example of informative missingness and can introduce bias if unaddressed 

(Schluchter, 1992). Statistical methods exist to account for this censoring process directly 

(Terza, 1985) (Hilbe & Judson, 1998). 

Mixed-effects Poisson and negative binomial regression models accounting for 

censoring of counts been used previously in a few applications (Quiroz, Wilson, & 

Roychoudhury, (2012) (Bartell & Lewandowski, 2011) (Lynch et al. (2018), but 

assessment of the performance of interval censored mixed-effects negative binomial 

models, vis-à-vis simplified alternatives, and versus mixed-effects negative binomial 

models fitted to uncensored complete data, remains to be explored.  

The objective of this simulation study is to assess the performance of these 

methods, regarding bias in parameter estimates and standard errors, 95% confidence 

interval coverage, statistical power, and type I error rates. The contrasts between these 

approaches are then illustrated using a dataset of precipitation and monthly mortality 

rates among black South Africans over 1997-2013.  

METHODS 

SIMULATION 

We developed a macro for SAS 9.4 software (SAS, Cary, NC) to conduct the 

simulations. The SAS IML (“interactive matrix language”) procedure is utilized within 

the macro to create the matrices, variables, and to set the parameter values for the 

simulations. In this study, we ran 1,000 simulations for each set of explored parameter 
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values, including the baseline log-count (β0), the variance of the random intercept 

reflecting differences in baseline log-counts (σ²), the effect of the exposure on the 

outcome (β1), the effect of the covariate (β2), the negative binomial dispersion factor (),  

the number of counties (N), and the number of study-years (K), resulting in 80,000 total 

simulations. 

  In order to examine how the models’ performance was influenced by sample size, 

a five possible combinations of cluster-years were considered. Similarly to the Lynch et 

al. (2018) study, we will refer to the cluster-years as county-years throughout this paper 

given that the geographic unit of analysis is at the county level. The number of counties 

ranged from 10 to 500 and the number of years of observation per county ranged from 10 

to 20 years. This resulted in a range of simulations with a minimum of 100 county-years 

and a maximum of 10,000 county-years. The combinations of county-years considered in 

this study are described in Table 1. 

Data were simulated under four values of β1: 0.01, 0.10, 0.20, and 0.50. We 

simultaneously changed the β0 values: 2.25, 2.25, 2.25, and 0.00. The σ² parameter was 

also simultaneously changed and had values of 0.005, 0.05, 0.05, and 0.10. The 

parameter β2 was held constant at 0, and  remained constant at a value of 0.25. This 

resulted in the following combinations of true parameter values for simulation across the 

different county-year levels. 

        β0 = 2.25, β1 = 0.01, β2 = 0.00, α = 0.25, σ² = 0.005. 

              β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, σ² = 0.05.
 

 β0 = 2. 25, β1 = 0.20, β2 = 0.00, α = 0.25, σ² = 0.05. 

 β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, σ² = 0.10. 

 A uniformly distributed exposure variable ranging from 0-10 was generated as the 

primary independent variable. The outcome variable in the simulations was a negative 
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binomial count variable. A uniformly distributed covariate ranging from 1-20 was also 

generated.   

Thus, each simulation generated a complete negative binomial outcome dataset 

conditional on the exposure and other parameter values specified above.  

Statistical Analysis of Simulated Data 

 We tested the performances of four models in this study that differed from each 

other in terms of how they modeled censored data, between-cluster variation, or both.  

Model 1 a mixed-effects negative binomial regression of the following form fit to 

the complete simulated dataset: 

=(  

where xij is the exposure for county i in year j, Z is the covariate, and (b0i) is a normally-

distributed random intercept. Model 1 uses the following likelihood contribution for 

county i in year j: 

 

Model 2 has a similar linear predictive form and when the number of deaths (yij) 

is not censored (counts are 0 or > 10), the same likelihood contribution is used. However, 

when the number of deaths is censored (deaths 1-9), the conditional likelihood 

contribution becomes:  

 

based on the negative binomial model. 

 We use the SAS NLMIXED to specify this log-likelihood conditional on the 

random effects. Taking advantage of the recursive properties of the gamma function, 
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contributions for the censored deaths are specified and the indicator for outcomes existing 

within the censoring window is defined within the procedure. 

 Model 3 has the same likelihood contribution as Models 1 and 2 when outcome 

counts are 0 or > 10, but when the number of events is in the window [1,9], the outcome 

variable is forced to equal 5, and the likelihood contribution becomes:  

 

This analytic approach is equivalent to deterministic imputation of censored 

counts by a count in the middle of the censoring window. 

Model 4 accounts for censoring but does not account for the hierarchical structure 

of the data, and therefore its linear predictive form and conditional likelihood 

contribution are slightly different from the other models. When the number of deaths are 

in the censoring window [1-9], its likelihood contribution becomes: 

  

A summary of all the model forms and likelihood contributions can be found in Table 2. 

Simulation Summaries 

Applying these 4 models to the 1,000 simulated datasets for each set of parameter 

values generated a set of 1,000 β1 estimates and 1,000 β1 standard errors of those 

estimates per approach for each data-generating process. The SAS MEANS procedure 

was applied to this distribution of β1 estimates and distribution of β1 standard errors to 

obtain the averages of those estimates for each modeling approach, applied to data from 

each data-generating process. 
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  Confidence intervals (CIs) with intended 95% coverage for β1 estimates were 

calculated under normality assumptions. Confidence interval coverage was calculated as 

the percentage of the 1,000 simulations wherein the confidence intervals generated within 

each dataset contained the true data-generating parameter value β1. Statistical power was 

calculated as the percentage of the 1,000 simulations wherein the confidence intervals 

excluded zero. Both these conditions were tabulated using the SAS FREQ procedure. 

  The percentage bias of each β1 parameter estimate was obtained by calculating 

the absolute value of the difference between the true value of β1 and the estimated β1, and 

dividing by the true β1; then multiplying by 100 to express as a percentage. The SAS 

Compare procedure was used to perform this calculation. 

 Type I error rates were calculated as the percentage of the simulations, under a 

given set of parameter values where the true β1 was 0, wherein the confidence intervals 

generated within each dataset excluded 0. The SAS FREQ procedure was used to tally 

the number of times per set of 1,000 simulations that this condition was met. 

SOUTH AFRICAN DATA ANALYSIS 

Mortality Data 

Mortality data for black South Africans from each district of South Africa’s civil 

registration system were obtained from Statistics South Africa (2013). The mortality 

file’s completeness ranged from ~ 89% to ~ 94% throughout the study period of 

February 1st 1997 - December 1st 2013. This resulted in a total sample size of 10,607 

district-months. Total population counts were used in this thesis as a surrogate for the 

black South African populations at risk of contributing to the black South African 



7 
 

mortality outcomes. Population sizes were assumed to be constant within the years 1996-

2000, 2001-2006, 2007-2010, and 2011-2013.  

Standardized Precipitation Index  

 The primary exposure variable in the South African data set is based on the 

Standardized Precipitation Index (SPI). The SPI characterizes the meteorological drought 

conditions on a range of timescales. For this study, a 6-month timescale was used as a 

better indicator of climatological conditions (Keyantash, 2016). SPI is a common 

international indicator of can be compared across regions with markedly different 

climates. It quantifies observed precipitation as a standardized departure from a selected 

probability distribution function that models the raw precipitation data. The raw 

precipitation data are typically fitted to a gamma or a Pearson Type III distribution, and 

then transformed to a normal distribution (McKee et al., 1993). SPI values can be 

interpreted as the number of standard deviations by which the observed anomaly deviates 

from the long-term mean.  

The dataset includes 6-month weighted averages of SPI values for every district in 

South Africa on a monthly timescale for the study period. The SPI ranges from -3 to 3, 

where values above 0 represent increasingly wet conditions and values below 0 represent 

increasingly dry conditions. This index was treated as a continuous variable for the main 

analysis, but coded as increasingly wet quartiles for a sensitivity analysis. 

Model Specification and Statistical Analysis 

  Models analogous to those applied in the simulation study were fitted to the South 

African precipitation and mortality dataset (Table 2). In this application, SPI is the 
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exposure variable, the covariate is the 17 year time period variable, and an added offset fi 

reflects the ln(population) of each district at risk of developing mortality events.  

 In contrast to the simulation study, the true value for the effect of the exposure 

(SPI) on mortality is not known. As a result, the β1 estimate from Model 1, based on 

complete data, is used as the basis for comparison for the β1 estimates obtained from 

Models 2-4, which treat some of the outcomes as censored or imputed. The SAS 

procedure GLIMMIX was used to obtain plausible initial values for the negative binomial 

parameters used in the PARMS statement of the SAS NLMIXED procedure. 

 In addition to the main analysis modeling SPI as a continuous linear predictor, a 

sensitivity analysis was conducted to confirm that a linear dose-response was adequate, 

the SPI variable was transformed into quartiles to allow for a possibly non-linear dose-

response. Because SAS NLMIXED does not have a ‘class’ statement available, SAS 

procedure GLIMMIX was used to obtain the β1 parameter estimates of the SPI quartiles 

in this sensitivity analysis. Model results were visualized using ggplot2 package 

(Wickham, 2016) in the R programming language (R Core team, 2019). 

RESULTS 

Simulation Study 

 All simulation results are displayed in appendix A. When  β0 = 2.25, β1 = 0.01, 

β2 = 0.00, α = 0.25, and σ² = 0.005, all of the models had similar performance. Relative 

bias of the β1 parameter estimate was 1-2%. Model 3 had the smallest average standard 

error size. All four models had empirical confidence interval coverage that was 

permissive compared to the desired coverage level. Model 3 had the worst confidence 
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interval coverage (93.16%) compared to 94.66% for Model 1, 94.52% for Model 2 and 

94.60% for Model 4. Power varied from ~30% to ~99% depending on sample size. 

 When  β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, and σ² = 0.05, differences 

between the models became more apparent. The mean percentage bias was small for 

Model 1 (0.06%), Model 2 (0.07%), and Model 4 (0.20%), whereas Model 3 had an 

average percentage bias of 3.22%. Model 1 had the smallest average standard error size, 

Model 2 had the second, Model 3 had the third, and Model 4 had the largest. Model 3 has 

very permissive confidence interval coverage at larger sample sizes: 81.30% for 5,000 

county-years and 66.10% for 10,000 county-years. Statistical power reached 100% for all 

models at 500 county-years.  

 When  β0 = 2. 25, β1 = 0.20, β2 = 0.00, α = 0.25, σ² = 0.05, model 3 had the 

largest percent bias (2.13%) observed at 1,000 county-years. The same standard error size 

pattern that was seen at a true β1 value of 0.10 also occurred here. Confidence interval 

coverage for Models 1, 2, and 4 ranged from 92-95% for every county-year level, with 

Model 2 having best coverage. Model 3 reached coverage levels of approximately 90-

94% until the simulations at 5,000 and 10,000 county-years, where its coverage dropped 

to 71.80% and 51.20%, respectively. Power was ~100% for all models at all sample 

sizes. 

When  β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, and σ² = 0.10, models 1 and 2 

had biases below 0.13% at every county-year level, and Model 4 had a slightly higher 

amount (0.20 being the minimum and 0.26 being the maximum). In contrast, Model 3 had 

an average bias of 15.5% across all of the county-year levels. Model 3 had the smallest 

average standard error, followed by models 1, 2, and 4 respectively. Models 1, 2, and 4 
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had confidence intervals coverage of 93-95%. In contrast, Model 3 coverage peaked at 

12.5% at 100 county-years, and for the rest of the county-year levels the coverage was 

~0.00%. Power was ~100% for all of models at all sample sizes.  

All models had similar type I error rates (4-5%). Model 3 had the highest rate of 

6.10% at 100 county-years and model 1 had the lowest with 3.90% at 1,000 county-years. 

Precipitation and Mortality Rates among Black South Africans 

 Descriptive statistics on South African mortality counts per district are 

summarized in Appendix B. The approximate population size of the districts ranged from 

52,010 to 4,434,922 persons, with a mean of 876,296 over the study period. 

In models relating the numbers of deaths per district-month to precipitation, 

Models 1 estimated a rate ratio of 0.96 (95% CI 0.95, 0.97), Model 2 estimated a rate 

ratio of 0.96 (95% CI 0.95, 0.97), Model 3 estimated a rate ratio of 0.96 (95% CI 0.95, 

0.97), and Model 4 produced a divergent estimated rate ratio of 0.95 (95% CI 0.93, 0.96). 

Although the divergent estimated rate ratio produced by Model 4 is only 1% different 

than the other models, at a national level this 1% difference in increased mortality rates 

corresponds to a difference of thousands of estimated deaths over time. 

  In a sensitivity analysis for possible non-linearity of the dose-response, there was 

a monotonic dose-response of increasing mortality with increasingly drought-like 

conditions. Comparing the second-wettest quartile of district-months to the wettest 

quartile of district-months resulted in a mortality rate ratio of 1.01, (95% CI 0.99, 1.04). 

Comparing the second-driest quartile of district-months to the wettest quartile of district-

months resulted in a mortality rate ratio of 1.04 (95% CI 1.02, 1.06). Contrasting the 
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driest quartile of district-months against the wettest quartile of district months resulted in 

a mortality rate ratio of 1.10 (95% CI 1.08, 1.12). 

DISCUSSION 

 The simulation study indicates that all of the models perform relatively similarly 

when the model true parameters were set to β0 = 2.25, β1 = 0.01, β2 = 0.00, α = 0.25, and 

σ² = 0.005 Where differences begin to come apparent is when the effect size of β1 and σ² 

were increased for the next two sets of simulations, where the true model parameter 

values were β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, σ² = 0.05 and β0 = 2. 25, β1 = 

0.20, β2 = 0.00, α = 0.25, σ² = 0.05 respectively. Here, model three begins to be 

increasingly influenced by differential measurement error of outcome by exposure. This 

influence became the most pronounced when measured at the true parameter values of β0 

= 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, and σ² = 0.10.  

Given that there is a true association between the exposure and outcomes in the 

simulation, as the exposure increases the number of events in a county should increase. 

As a result, due to this dose-response, counties at higher levels of exposure will have 

fewer events in the censoring interval. Thus, if the outcome is imputed with error (as seen 

in Model 3), the outcome measurement error would affect the unexposed more than the 

exposed. This leads to the large bias, non-existent confidence interval coverage, and 

falsely small standard error sizes we found when applying Model 3 to data simulated 

under the true values of β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, and σ² = 0.10. The 

other models were not influenced by this error likely due to the specified likelihood 

contribution used to address the censoring. Overall, a similar pattern emerged between 

Models 1, 2, and 4 as the true value of β1 increased with the other parameters. Model 2 

performed very similarly to the uncensored model (model 1) and model 4 also performed 
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similar, but had slightly decreased confidence interval coverage, and slightly increased 

degree of bias and standard error size. 

 In the South African dataset, Model 3 appeared to perform well, but Model 4 

appeared to perform poorly in terms of β1 estimation. This likely occurred due to the 

larger between-district variance of the outcome observed in our South African data 

compared to the smaller between-county variance seen in the simulation study.  

An additional finding from this dataset was observing a statistically significant 

association between SPI and mortality among black South Africans. It was suspected a 

U-shaped relationship could be found, but the SPI dose-response was found to be linear. 

This lack of a U-shaped relationship is likely contributed to the fact that the SPI does not 

take into consideration the intensity of precipitation (National Center for Atmospheric 

Research, 2019). However, it is intuitive that drier periods would be associated with 

increased mortality due to the effects on agriculture and soil composition.       

 Few studies have robustly examined mixed-effect negative binomial models with 

interval censoring. Similar models have been employed in research conducted by Bartell 

and Lewandowski (2011), Quiroz et al. (2012), and Lynch et al. (2018), but none 

compare interval censored+ mixed-effect negative binomial models performance versus 

imputation methods and censored regression that estimates fixed-effects only. This 

simulation study observed results that contrast the findings by Bartell and Lewandowski 

(2011) with regard to substitution (imputation) methods. They found the effects of 

substitution to be negligible when two conditions are met: (1) few observations are below 

the censoring cutoff and (2) the censoring cutoff is relatively small compared to most of 

the measurements. However, in our simulations where β0 = 2.25, β1 = 0.01, β2 = 0.00, α 
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= 0.25, and σ² = 0.005, the substitutions Model 3 implemented had negligible effects. In 

this case, approximately 50% of the data was within the censoring interval. 

 This simulation study had some notable limitations. Only four β1 effect sizes 

were explored. The research could have been improved upon if more effect sizes were 

explored, particularly negative β1 values. The results would have also provided stronger 

evidence if β1 had been the only parameter value changed between simulations. However, 

at lower true values of β1 this was not possible because a large enough effect size had to 

be produced in order for the SAS macro to generate observations where more than 9 

deaths occurred. Subsequently, the effect size of β0 had to be increased to a point where 

not only censored data was being generated. Additionally, a larger censoring interval than 

[1-9] could provide additional insight. However, coding logistics made it difficult to 

expand the interval to a much larger size (see appendix C). For future research, taking 

advantage of recursive properties or arrays within SAS procedure NLMIXED would 

simplify this issue and allow for examination of larger censoring intervals 

 Within the South Africa dataset, one apparent limitation of a methodological 

comparison is that the true association between SPI and mortality among black South 

Africans is not known, whereas the true exposure-outcome relationship in the simulation 

study is known. Therefore, Model 1 is used as an approximation for the true association. 

 Monthly or yearly demographic information was not available at the time of this 

research. A large assumption was made when postulating that population size held 

constant over a 5-year period. This portion of the study could have been improved upon if 

more detailed demographic information was integrated and the population size of black 

South Africans was known. The effect size found was also fairly small compared to some 
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of simulations, so it is possible that bias seen Model 3 did not manifest as it did in the 

simulation study due to this. 

CONCLUSION 

 

Overall, out of the censored models, Model 2, interval-censored mixed effects 

negative binomial regression, was the only model that performed well in both the 

conditions of the simulated and South African real-world dataset. Model 2 was not 

subject to large estimate bias, poor confidence interval coverage, or falsely decreased or 

inflated standard error sizes. This well-performing approach opens up further possibilities 

for more accurate research findings when examining environmental exposures and 

adverse human health outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

References 

Bartell, S. M., & Lewandowski, T. A. (2011). Administrative censoring in ecological 

analyses of autism and a Bayesian solution. Journal of Environmental and Public 

Health, 2011, 1–5. https://doi.org/10.1155/2011/202783 

Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle 

introduction to Poisson regression and its alternatives. Journal of Personality 

Assessment, 91(2), 121–136. https://doi.org/10.1080/00223890802634175 

Hilbe, J. (2011). Negative binomial regression. Cambridge: Cambridge University Press. 

doi:10.1017/CBO9780511973420 

Hilbe, J. M., & D. H. Judson. (1998). sg94: Right, left, and uncensored Poisson 

regression. Stata Technical Bulletin 46: 18–20. College Station, TX: Stata Press. 

Keyantash, J., & National Center for Atmospheric Research Staff (Eds). (2016). The 

Climate Data Guide: Standardized Precipitation Index (SPI). Retrieved from: 

https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-

spi. 

Laird, N., & Ware, J. (1982). Random-effects models for longitudinal 

data. Biometrics, 38(4), 963-974. doi:10.2307/2529876 

Lynch, K., Lyles, R. H., Waller, L. A., Bell, J. E., & Gribble, M.O. (2018). Drought 

severity and all-cause mortality rates among adults in the United States: 1968-

2014. Master’s Thesis. Emory University Rollins school of public health. Atlanta, 

Georgia, United States. 

McKee, T.B., Doesken, N. J. & Kliest, J. (1993). The relationship of drought frequency 

and duration to time scales. In Proceedings of the 8th Conference of Applied 

Climatology, 17-22 January, Anaheim, CA. American Meterological Society, 

Boston, MA. 179-18. 

https://doi.org/10.1155/2011/202783


16 
 

National Center for Atmospheric Research (n.d.). Standardized precipitation index (SPI). 

Retrieved from: https://climatedataguide.ucar.edu/climate-data/standardized-

precipitation-index-spi  

Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. 

Journal of Quantitative Criminology, 16(1), 21–43. Retrieved from: 

https://doi.org/10.1023/A:1007521427059 

Quiroz, J., Wilson, J. R., & Roychoudhury, S. (2012). Statistical analysis of data from 

dilution assays with censored correlated counts. Pharmaceutical Statistics 11: 63-

73. doi: 10.1002/pst.499 

R Core Team (2018). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from: https://www.R-

project.org/ 

SAS Institute Inc. (2008). SAS/STAT® 9.2 user’s guide. Cary, NC: SAS Institute Inc. 

Schluter, M. D. (1992). Methods for the analysis of informatively censored longitudinal 

data. Statistics in Medicine, 11, 1861–1870. 

Scovronick, N., Sera, F., Acquaotta, F., Garzena, D., Fratianni, S., Wright, C. Y., & 

Gasparrini, A. (2018). The association between ambient temperature and 

mortality in South Africa: A time-series analysis. Environmental Research, 161, 

229-235. Retrieved from: https://doi.org/10.1016/j.envres.2017.11.001 

Smithson, M., & Merkle, E (2014). Generalized linear models for categorical and 

continuous limited dependent variables. Boca Raton, FL: CRC Press, Taylor & 

Francis Group 

Statistics South Africa (2013). Mortality and causes of death in South Africa, 2013: 

Findings from death notification. Pretoria, South Africa: Stats SA 



17 
 

Terza, J. V. (1985). A Tobit-type estimator for the censored Poisson regression model. 

Economics Letters, 18(4), 361-365. doi:https://doi.org/10.1016/0165-

1765(85)90053-9 

Touloumi, G., Pocock, S., Babiker, A., & H Darbyshire, J. (1999). Estimation and 

comparison of rates of change in longitudinal studies with informative drop-outs. 

Statist. Med. 18: 1215 -1233. doi: 10.1002/(SICI)1097-

0258(19990530)18:10<1215::AID-SIM118>3.0.CO;2-6 

UCLA Statistical Consulting Group. (2016). Negative binomial regression | STATA 

annotated output. Retrieved from: https://stats.idre.ucla.edu/stata/output/negative-

binomial-regression/ 

Wickham, H. (2016) ggplot2: Elegant graphics for data analysis. New York, NY: 

Springer-Verlag 

Wu, M. C. (1988). Sample size for comparison of changes in the presence of right 

censoring caused by death, withdrawal, and staggered entry. Controlled Clinical 

Trials, 9(1), 32-46. doi:https://doi.org/10.1016/0197-2456(88)90007-4 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Tables 

Table 1: Simulation Design and Sample Size 

True Beta: 0.01 
 

True Beta: 0.10 

K N K*N Simulations 
  

K N K*N Simulations 

10 10 100 4,000 

 

10 10 100 4,000 

50 10 500 4,000 

 

50 10 500 4,000 

50 20 1,000 4,000 

 

50 20 1,000 4,000 

250 20 5,000 4,000 

 

250 20 5,000 4,000 

500 20 10,000 4,000 

 

500 20 10,000 4,000 

         True Beta: 0.20 

 

True Beta: 0.50 

K N K*N Simulations 

 

K N K*N Simulations 

10 10 100 4,000 

 

10 10 100 4,000 

50 10 500 4,000 

 

50 10 500 4,000 

50 20 1,000 4,000 

 

50 20 1,000 4,000 

250 20 5,000 4,000 

 

250 20 5,000 4,000 

500 20 10,000 4,000   500 20 10,000 4,000 

Where K represents the number of counties, N represents the number of years that  

counties were observed, and K*N represents the number of county-years (sample 

size).  
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Table 2. Model Descriptions and Forms 

Model Form Description 

1 

=(   

 

 

Mixed negative 

binomial model and 

likelihood contribution 

for county i in year j 

 

2 

 

=(  

 

 
 

 

Interval censored (on 

deaths 1-9) mixed-

effects negative 

binomial model and 

conditional likelihood 

contribution. 

 

3 
=(  

 

 

Midpoint imputed 

mixed-effects negative 

binomial model and 

conditional likelihood 

contribution 

 

4 
 

  

Interval censored (on 

deaths 1-9)  fixed-

effects negative 

binomial model and 

conditional likelihood 

contribution 
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Appendix 

Appendix A: Simulation Results  

Results for Mean β1 Maximum Likelihood Estimates and Standard Errors  

 

County- 

Years 

True  

β1 
Model 1 Model 2 Model 3 Model 4 

  

MLE S.E. MLE S.E. MLE S.E. MLE S.E. 

100 0.01 0.010 0.021 0.010 0.022 0.010 0.020 0.010 0.022 

500 0.01 0.011 0.009 0.010 0.010 0.011 0.009 0.010 0.010 

1,000 0.01 0.010 0.007 0.010 0.007 0.010 0.006 0.010 0.007 

5,000 0.01 0.010 0.003 0.010 0.003 0.010 0.003 0.010 0.003 

10,000 0.01 0.010 0.002 0.010 0.002 0.010 0.002 0.010 0.002 

Mean 0.01 0.010 0.008 0.010 0.009 0.010 0.008 0.010 0.009 

Mean results where the true values of β0 = 2.25, β1 = 0.01, β2 = 0.00, α = 0.25, σ² = 0.005. 

    MLE S.E. MLE S.E. MLE S.E. MLE S.E. 

100 0.10 0.100 0.020 0.100 0.021 0.103 0.021 0.100 0.021 

500 0.10 0.100 0.009 0.100 0.009 0.103 0.009 0.100 0.010 

1,000 0.10 0.100 0.006 0.100 0.006 0.103 0.007 0.100 0.007 

5,000 0.10 0.100 0.003 0.100 0.003 0.103 0.003 0.100 0.003 

10,000 0.10 0.100 0.002 0.100 0.002 0.103 0.002 0.100 0.002 

Mean 0.10 0.100 0.008 0.100 0.008 0.103 0.008 0.100 0.009 

Mean results where the true values of β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, σ² = 0.05. 

    MLE S.E. MLE S.E. MLE S.E. MLE S.E. 

100 0.02 0.200 0.020 0.200 0.020 0.204 0.020 0.200 0.021 

500 0.02 0.200 0.009 0.200 0.009 0.204 0.009 0.200 0.009 

1,000 0.02 0.200 0.006 0.200 0.006 0.204 0.006 0.200 0.007 

5,000 0.02 0.200 0.003 0.200 0.003 0.204 0.003 0.200 0.003 

10,000 0.02 0.200 0.002 0.200 0.002 0.204 0.002 0.200 0.002 

Mean 0.02 0.200 0.008 0.200 0.008 0.204 0.008 0.200 0.008 

Mean results where the true values of β0 = 2.25, β1 = 0.20, β2 = 0.00, α = 0.25, σ² = 0.05. 

  

MLE S.E. MLE S.E. MLE S.E. MLE S.E. 

100 0.5 0.502 0.024 0.502 0.029 0.426 0.022 0.501 0.031 

500 0.5 0.501 0.011 0.500 0.013 0.425 0.010 0.499 0.014 

1,000 0.5 0.500 0.008 0.500 0.009 0.425 0.007 0.499 0.010 

5,000 0.5 0.500 0.003 0.500 0.004 0.425 0.003 0.499 0.004 

10,000 0.5 0.500 0.002 0.500 0.003 0.425 0.002 0.499 0.003 

Mean 0.5 0.501 0.010 0.501 0.012 0.425 0.009 0.499 0.012 

Mean results the true values of β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, σ² = 0.10. 
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Results for β1 mean Confidence Interval Performance and Statistical Power: True 

values of 0.01 and 0.10 

County- 

Years 

True  

β1
 a 

Model 1 
 

Model 2 

   
CI Coverage Power 

 
CI Coverage Power 

100 0.01 94.10 9.20 

 

93.70 9.13 

500 0.01 94.50 20.50 

 

94.20 18.80 

1,000 0.01 95.30 33.70 

 

94.90 31.00 

5,000 0.01 94.70 92.30 

 

95.50 91.00 

10,000 0.01 94.70 99.70 

 

94.30 99.50 

Mean 0.01 94.66 51.08 

 

94.52 49.89 

   

Model 3 

 

Model 4 

   

CI Coverage Power 

 

CI Coverage Power 

100 0.01 92.20 8.89 

 

93.70 9.12 

500 0.01 93.00 22.10 

 

94.40 18.90 

1,000 0.01 93.20 34.80 

 

95.00 31.80 

5,000 0.01 94.30 92.40 

 

95.80 91.30 

10,000 0.01 93.10 99.70 

 

94.10 99.50 

Mean 0.01 93.16 51.58   94.60 50.12 

County- 

Years 

True  

β1
 b 

Model 1 
 

Model 2 

   
CI Coverage Power 

 
CI Coverage Power 

100 0.10 92.80 99.50 

 

92.60 99.40 

500 0.10 94.20 100.00 

 

94.10 100.00 

1,000 0.10 95.60 100.00 

 

95.40 100.00 

5,000 0.10 94.60 100.00 

 

95.00 100.00 

10,000 0.10 96.20 100.00 

 

96.20 100.00 

Mean 0.10 94.68 99.90 

 

94.66 99.88 

   

Model 3 

 

Model 4 

   

CI Coverage Power 

 

CI Coverage Power 

100 0.10 91.90 99.40 

 

92.90 99.00 

500 0.10 93.80 100.00 

 

94.50 100.00 

1,000 0.10 92.00 100.00 

 

94.40 100.00 

5,000 0.10 81.30 100.00 

 

95.30 100.00 

10,000 0.10 66.10 100.00 

 

95.30 100.00 

Mean 0.10 85.02 99.88   94.48 99.80 
a
 Mean results where the true values of β0 = 2.25, β1 = 0.01, β2 = 0.00, α = 0.25, σ² = 0.005. 

b  Mean results where the true values of β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, σ² = 0.05. 
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Results for β1 mean Confidence Interval Performance and Statistical Power: 

True values of 0.20 and 0.50 

County- 

Years 

True  

β1
 c 

Model 1 
 

Model 2 

   
CI Coverage Power 

 
CI Coverage Power 

100 0.20 94.80 100.00 

 

94.50 100.00 

500 0.20 93.70 100.00 

 

94.10 100.00 

1,000 0.20 95.10 100.00 

 

95.40 100.00 

5,000 0.20 94.10 100.00 

 

94.10 100.00 

10,000 0.20 93.30 100.00 

 

93.60 100.00 

Mean 0.20 94.20 100.00  94.34 100.00 

   

Model 3 

 

Model 4 

   

CI Coverage Power 

 

CI Coverage Power 

100 0.20 94.10 100.00 

 

94.70 100.00 

500 0.20 90.90 100.00 

 

92.80 100.00 

1,000 0.20 90.03 100.00 

 

94.30 100.00 

5,000 0.20 71.80 100.00 

 

93.60 100.00 

10,000 0.20 51.20 100.00 

 

93.40 100.00 

Mean 0.20 79.61 100.00  93.76 100.00 

County- 

Years 

True  

β1
 d 

Model 1 
 

Model 2 

   
CI Coverage Power 

 
CI Coverage Power 

100 0.50 94.20 100.00 

 

93.50 100.00 

500 0.50 94.70 100.00 

 

94.40 100.00 

1,000 0.50 95.00 100.00 

 

95.70 100.00 

5,000 0.50 95.40 100.00 

 

95.60 100.00 

10,000 0.50 95.40 100.00 

 

94.30 100.00 

Mean 0.50 94.94 100.00  94.70 100.00 

   

Model 3 

 

Model 4 

   

CI Coverage Power 

 

CI Coverage Power 

100 0.50 12.50 100.00 

 

93.60 100.00 

500 0.50 0.00 100.00 

 

94.80 100.00 

1,000 0.50 0.00 100.00 

 

93.20 100.00 

5,000 0.50 0.00 100.00 

 

93.00 100.00 

10,000 0.50 0.00 100.00 

 

94.40 100.00 

Mean 0.50 2.50 100.00  93.80 100.00 

c 
Mean results where the true values of β0 = 2. 25, β1 = 0.20, β2 = 0.00, α = 0.25, σ² = 0.05. 

d
 Mean results where the true values of β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, σ² = 0.10. 
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Results for β1 Mean Bias 

County- 

Years 

True  

β1
a 

Model 1 Model 2 Model 3 Model 4 

  
 

Pct Diff Pct Diff Pct Diff Pct Diff 

100 0.01 1.25 0.21 0.84 0.14 

500 0.01 5.27 4.58 5.30 4.55 

1,000 0.01 0.84 0.85 0.27 0.90 

5,000 0.01 1.94 1.69 2.24 1.66 

10,000 0.01 0.02 0.04 0.50 0.04 

Mean 0.01 1.86 1.47 1.83 1.46 

County- 

Years 

True  

β1
b 

Model 1 Model 2 Model 3 Model 4 

  
 

Pct Diff Pct Diff Pct Diff Pct Diff 

100 0.10 0.04 0.13 3.08 0.30 

500 0.10 0.17 0.16 3.40 0.13 

1,000 0.10 0.01 0.00 3.22 0.15 

5,000 0.10 0.00 0.01 3.24 0.27 

10,000 0.10 0.06 0.06 3.16 0.17 

Mean 0.10 0.06 0.07 3.22 0.20 

County- 

Years 

True  

β1
c 

Model 1 Model 2 Model 3 Model 4 

  
 

Pct Diff Pct Diff Pct Diff Pct Diff 

100 0.20 0.03 0.11 2.10 0.70 

500 0.20 0.03 0.06 2.04 0.13 

1,000 0.20 0.16 0.17 2.13 0.24 

5,000 0.20 0.02 0.01 1.95 0.08 

10,000 0.20 0.02 0.02 1.93 0.1 

Mean 0.20 0.05 0.07 2.03 0.25 

County- 

Years 

True  

β1
d 

Model 1 Model 2 Model 3 Model 4 

  
 

Pct Diff Pct Diff Pct Diff Pct Diff 

100 0.50 0.12 0.01 17.65 0.24 

500 0.50 0.13 0.10 14.98 0.20 

1,000 0.50 0.01 0.02 14.93 0.26 

5,000 0.50 0.04 0.03 14.95 0.25 

10,000 0.50 0.04 0.03 14.97 0.26 

Mean 0.50 0.07 0.04 15.50 0.24 

Percent difference is calculated as the absolute difference between the β1estimate and the true β1 value 

divided by the true β1 value which is then multiplied by 100 to be converted into a percentage 
a
 Mean results where the true values of β0 = 2.25, β1 = 0.01, β2 = 0.00, α = 0.25, σ² = 0.005. 

b Mean results where the true values of β0 = 2.25, β1 = 0.10, β2 = 0.00, α = 0.25, σ² = 0.05. 
c 

Mean results where the true values of β0 = 2.25, β1 = 0.20, β2 = 0.00, α = 0.25, σ² = 0.05. 
d
 Mean results where the true values of β0 = 0.00, β1 = 0.50, β2 = 0.00, α = 0.25, σ² = 0.10. 
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Results for Type I Error Rate  

County- 

Years 
Model 1 Model 2 Model 3 Model 4 

  

Type I 

Error 

Type I 

Error 

Type I 

Error 

Type I 

Error 

100 5.00 5.10 6.10 5.20 

500 5.40 4.90 5.40 4.80 

1,000 4.80 5.10 5.70 4.90 

5,000 3.90 3.60 4.00 3.10 

10,000 4.30 4.10 4.70 4.00 

Mean 4.68 4.56 5.18 4.40 

 Results from 1,000 simulations at each county-year level where  

the true values of β0 = 2.25, β1 = 0.00, β2 = 0.00, α = 0.25, σ² = 

0.01.  A result was considered a type I error if the beta-1 estimate  

confidence interval did not contain zero when the value was truly  

zero. This frequency was then converted into a percentage.  
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Appendix B: South Africa Tables and Figures 

Black South African Mortality Statistics by District 1997-2013 

Obs District N Mean Sum Max min Median Variance 

1 Totals 10607 481.28 5104905 2548 0 426.0 168798.90 

2 Alfred Nzo 203 271.96 55208 446 83 265.0 5990.85 

3 Amajuba 204 354.12 72241 571 1 376.5 20301.38 

4 Amathole 204 798.76 162947 1153 196 864.0 52986.39 

5 Bojanala 204 752.97 153606 1116 112 812.0 49811.74 

6 Buffalo City 204 579.69 118256 829 110 629.0 26493.77 

7 Cacadu 204 127.83 26077 267 10 137.0 2085.76 

8 Cape Winelands 204 69.87 14254 127 1 75.0 701.67 

9 Capricorn 204 793.18 161809 1356 172 859.0 59038.16 

10 Central Karoo 204 11.40 2325 31 0 11.0 38.43 

11 Chris Hani 204 451.75 92156 709 79 486.5 18281.98 

12 City of Cape Town 204 517.38 105545 787 38 552.0 26887.11 

13 City of Johannesburg 204 1406.95 287018 2093 77 1510.5 223162.23 

14 City of Tshwane 204 1052.10 214629 1674 108 1141.0 123350.85 

15 Dr Kenneth Kaunda 204 490.94 100151 711 61 519.5 21419.19 

16 Dr Ruth Segomotsi Mompati 204 314.07 64070 531 27 353.0 12959.03 

17 Eden 204 65.08 13276 115 1 68.0 553.27 

18 Ehlanzeni 204 1020.83 208249 1610 63 1101.0 155516.35 

19 Ekurhuleni 204 1281.44 261413 1986 56 1362.5 209303.06 

20 Fezile Dabi 204 343.48 70070 697 16 361.5 16469.17 

21 Frances Baard 204 163.02 33257 275 7 173.0 3112.41 

22 Gert Sibande 204 754.51 153920 1325 11 794.0 83503.61 

23 Greater Sekhukhune 204 612.79 125010 934 102 660.5 31394.04 

24 Joe Gqabi 204 201.39 41084 315 35 219.0 4843.20 

25 John Taolo Gaetsewe 204 141.29 28823 255 12 152.5 2823.38 

26 Lejweleputswa 204 543.87 110950 867 55 564.5 31766.26 

27 Mangaung 204 556.18 113461 1079 50 597.5 43228.15 

28 Mopani 204 554.59 113136 865 149 596.0 22125.46 

29 Namakwa 204 6.87 1402 20 0 6.0 12.93 

30 Nelson Mandela Bay 204 472.07 96302 835 55 494.5 44523.63 
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Obs District N Mean Sum Max min Median Variance 

31 Ngaka Modiri Molema 204 500.42 102086 740 24 560.5 30851.06 

32 Nkangala 204 675.45 137792 1048 45 723.5 58688.99 

33 O.R.Tambo 204 555.70 113363 946 159 575.5 33676.68 

34 Overberg 204 24.35 4967 55 2 23.0 120.17 

35 Pixley ka Seme 204 50.18 10236 163 1 38.0 1232.32 

36 Sedibeng 204 532.16 108560 891 3 585.5 39693.56 

37 Sisonke 204 272.77 55645 463 29 285.0 10860.15 

38 Siyanda 204 45.17 9215 132 0 46.5 369.70 

39 Thabo Mofutsanyane 204 744.81 151941 1255 29 792.0 72250.88 

40 Ugu 204 603.59 123133 895 4 678.5 54731.10 

41 Vhembe 204 383.11 78154 588 95 398.0 11118.29 

42 Waterberg 204 277.31 56572 462 18 309.5 11789.37 

43 West Coast 204 47.72 9735 103 1 46.0 592.36 

44 West Rand 204 486.65 99276 814 5 523.5 34681.04 

45 Xhariep 204 139.29 28415 254 27 140.0 2031.83 

46 Zululand 204 440.79 89921 750 27 507.5 32316.79 

47 eThekwini 204 1692.04 345177 2548 270 1817.5 317555.36 

48 iLembe 204 317.00 64667 531 7 349.5 15342.15 

49 uMgungundlovu 204 763.92 155840 1180 41 822.5 85584.81 

50 uMkhanyakude 204 313.47 63947 521 43 336.5 12571.25 

51 uMzinyathi 204 333.10 67952 579 19 346.0 18144.11 

52 uThukela 204 515.71 105204 879 25 541.5 33628.73 

53 uThungulu 204 600.30 122462 938 25 623.0 41155.39 
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Appendix C: SAS Code Examples 

Simulation Data Generation and Sample Models 

 

libname Drought 'h:\bob\Gribble'; 

 

options ps=66 ls=90 nodate nonumber nonotes; 

 

title1 'PROGRAM: Sim Pgm Template 09_13_18.sas'; 

title2 'Simulating data from Negative Binomial model'; 

 

ods listing; 

 

%let nsim=1000; 

 

 

%macro iternb; 

   %do q=1 %to &nsim; 

 

 

proc iml worksize=70 symsize=250; 

 

 

k=50;      ** Number of counties **; 

n=20;        ** # observations (years)per county **; 

ntot=n*k; 

 

sig1sq=.05; 

 

**Set parameters for NB regression simulation**; 

**NOTE: 1/alpha has to be an integer to generate data, but not in 

analysis of data **; 

 

  bet0=2.25;  bet1= 0.2;  bet2=0; 

  alpha=.25;  r=1/alpha; 

 

 

t={1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20};   ** Let years 

go from 1 to 20 **; 

tmat=j(n,k,0); 

w=j(n,k,0); 

 

 

  do j1=1 to n; 

    w[j1,]=1:k; *** matrix with ID #s for exporting to proc nlmixed **; 

  end; 

 

  do i=1 to k; 

  tmat[,i]=t`; *** matrix with obs. times for exporting to proc nlmixed 

**; 

  end; 

 

 wvec=shape(w`,ntot,1);        ***STRING OUT W and T INTO VECTORS***; 

 tvec=shape(tmat`,ntot,1); 
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START DATAGEN; 

 

gamm0is=j(k,1,0); 

ymat=j(n,k,0); 

indexmat=j(n,k,0); 

linpred=j(n,k,0); 

mumat=j(n,k,0); 

pmat=j(n,k,0); 

RVx=j(r,1,0); 

 

t={1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20};   ** Let years 

go from 1 to 20 **; 

tprime=t`; 

 

   do i=1 to k; 

     

      gamm0is[i,]=0 + sqrt(sig1sq)*RANNOR(0); 

       

 

   do j=1 to n; 

      indexmat[j,i]=10*RANUNI(0); **Generate drought index for each 

county/year as uniform(0,10); 

 

   linpred[j,i]=(bet0 + gamm0is[i,]) + bet1*indexmat[j,i] + 

bet2*tprime[j,]; 

   mumat[j,i]=exp(linpred[j,i]); 

 

   pmat[j,i]=1/(1+mumat[j,i]/r); 

 

**Generating each NB outcome**; 

 

do randindx=1 to r; 

     u=RANUNI(0); 

     RVx[randindx,]=floor(log(u)/log(1-pmat[j,i])); 

    end; 

 

  **print RVx; 

 

  ymat[j,i]=sum(RVx); 

 

   end; 

   end; 

 

yvec=shape(ymat`,ntot,1);   ***STRING OUT Y INTO A VECTOR***; 

indexvec=shape(indexmat`,ntot,1); ***STRING OUT Drought Indices INTO A 

VECTOR***; 

 

 

FINISH DATAGEN; 

 

run datagen; 

 

datmat=wvec||tvec||yvec||indexvec; 

 

create dat from datmat; 

append from datmat; 
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truevals=bet0||bet1||bet2||alpha||sig1sq; 

 

create truevals from truevals; 

append from truevals; 

 

 

QUIT; 

 

data dat; set dat; 

  rename COL1=id; 

  rename COL2=year; 

  rename COL3=Ydeaths; 

  rename COL4=DroughtIndx; 

run; 

 

data dat; set dat; 

  Ylt10=0; 

  if Ydeaths < 10 then Ylt10=1; 

 

  Yobserved=0; 

  if Ydeaths=0 | Ydeaths ge 10 then Yobserved=1; 

run; 
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****** Model 1 ******; 

proc nlmixed data=dat; 

  parms bet0=2.25, bet1=.2, bet2=0, alpha=.2, sigsq1=.05; 

 

  bounds sigsq1 >= 0; 

 

  alphainv=1/alpha; 

  linp=(bet0+g0i) + bet1*DroughtIndx + bet2*year; 

  mu=exp(linp); 

  p=1/(1+mu*alpha); 

 

loglike=lgamma(alphainv+Ydeaths) - lgamma(alphainv) -   

lgamma(1+Ydeaths)  

          + Ydeaths*log(1-p) + alphainv*log(p);  

   

  model Ydeaths ~ general(loglike); 

  random g0i ~ normal(0, sigsq1) subject=id; 

  run; 
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****** Model 2 ******;  

proc nlmixed data=dat;    

   parms bet0=2.25, bet1=.2, bet2=0, alpha=.2, sigsq1=.05; 

   bounds sigsq1 >= 0; 

   alphainv=1/alpha; 

   linp=(bet0+g0i) + bet1*DroughtIndx + bet2*year; 

   mu=exp(linp); 

    p=1/(1+mu*alpha); 

   prYeq0=p**alphainv; 

    prYeq1=alphainv*(p**alphainv)*(1-p); 

   prYeq2=((alphainv+1)*alphainv/fact(2))*(p**alphainv)*(1-p)**2; 

 

prYeq3=((alphainv+2)*(alphainv+1)*alphainv/fact(3))*(p**alphainv)

*(1-  p)**3; 

  

prYeq4=((alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(4))*

(p**alphainv)*(1-p)**4; 

  

prYeq5=((alphainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alpha

inv/fact(5))*(p**alphainv)*(1-p)**5; 

  

prYeq6=((alphainv+5)*(alphainv+4)*(alphainv+3)*(alphainv+2)*(alph

ainv+1)*alphainv/fact(6))*(p**alphainv)*(1-p)**6; 

  

prYeq7=((alphainv+6)*(alphainv+5)*(alphainv+4)*(alphainv+3)*(alph

ainv+2)*(alphainv+1)*alphainv/fact(7))*(p**alphainv)*(1-p)**7; 

  

prYeq8=((alphainv+7)*(alphainv+6)*(alphainv+5)*(alphainv+4)*(alph

ainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(8))*(p**alphainv)

*(1-p)**8; 

  

prYeq9=((alphainv+8)*(alphainv+7)*(alphainv+6)*(alphainv+5)*(alph

ainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(9))*

(p**alphainv)*(1-p)**9; 

 

CDFterm=prYeq0 + prYeq1 + prYeq2 + prYeq3 + prYeq4 + prYeq5 + 

prYeq6 + prYeq7 + prYeq8 + prYeq9; 

 

   ** log-likelihood function when Y values are detectable ***; 

 

  if Yobserved=1 then do; 

loglike=lgamma(alphainv+Ydeaths) - lgamma(alphainv) - 

lgamma(1+Ydeaths)  

          + Ydeaths*log(1-p) + alphainv*log(p);  

  end; 

 

 ** log-likelihood function when Y values are interval censored on 

[1,9] ***; 

 

   else if Yobserved=0 then do;  

     loglike=log(CDFterm - prYeq0); 

  end; 

 

   model Ydeaths ~ general(loglike); 

   random g0i ~ normal(0, sigsq1) subject=id; 

  run; 
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****** Model 3 ******; 

 

proc nlmixed data=dat; 

   parms bet0=2.25, bet1=.2, bet2=0, alpha=.2, sigsq1=.05; 

   bounds sigsq1 >= 0; 

alphainv=1/alpha; 

   linp=(bet0+g0i) + bet1*DroughtIndx + bet2*year; 

   mu=exp(linp); 

   p=1/(1+mu*alpha); 

 

  if Ydeaths lt 10 and Ydeaths gt 0 then Ydeaths = 5; 

 

 

loglike=lgamma(alphainv+Ydeaths) - lgamma(alphainv) - 

lgamma(1+Ydeaths)  

          + Ydeaths*log(1-p) + alphainv*log(p);  

   

   model Ydeaths ~ general(loglike); 

   random g0i ~ normal(0, sigsq1) subject=id; 

  run; 
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****** Model 4 ******; 

proc nlmixed data=dat;     

   parms bet0=2.25, bet1=.2, bet2=0, alpha=.2, sigsq1=.05; 

   bounds sigsq1 >= 0; 

 alphainv=1/alpha; 

   linp=(bet0) + bet1*DroughtIndx + bet2*year; 

    mu=exp(linp); 

    p=1/(1+mu*alpha); 

 

    prYeq0=p**alphainv; 

    prYeq1=alphainv*(p**alphainv)*(1-p); 

    prYeq2=((alphainv+1)*alphainv/fact(2))*(p**alphainv)*(1-p)**2; 

 

prYeq3=((alphainv+2)*(alphainv+1)*alphainv/fact(3))*(p**alphainv)

*(1-p)**3; 

  

prYeq4=((alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(4))*

(p**alphainv)*(1-p)**4; 

  

prYeq5=((alphainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alpha

inv/fact(5))*(p**alphainv)*(1-p)**5; 

  

prYeq6=((alphainv+5)*(alphainv+4)*(alphainv+3)*(alphainv+2)*(alph

ainv+1)*alphainv/fact(6))*(p**alphainv)*(1-p)**6; 

  

prYeq7=((alphainv+6)*(alphainv+5)*(alphainv+4)*(alphainv+3)*(alph

ainv+2)*(alphainv+1)*alphainv/fact(7))*(p**alphainv)*(1-p)**7; 

  

prYeq8=((alphainv+7)*(alphainv+6)*(alphainv+5)*(alphainv+4)*(alph

ainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(8))*(p**alphainv)

*(1-p)**8; 

  

prYeq9=((alphainv+8)*(alphainv+7)*(alphainv+6)*(alphainv+5)*(alph

ainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(9))*

(p**alphainv)*(1-p)**9; 

 

CDFterm=prYeq0 + prYeq1 + prYeq2 + prYeq3 + prYeq4 + prYeq5 +   

prYeq6 + prYeq7 + prYeq8 + prYeq9; 

 

  ** log-likelihood function when Y values are detectable ***; 

  

   if Yobserved=1 then do; 

loglike=lgamma(alphainv+Ydeaths) - lgamma(alphainv) - 

lgamma(1+Ydeaths)  

          + Ydeaths*log(1-p) + alphainv*log(p);  

  end; 

 

 ** log-likelihood function when Y values are interval censored on 

[1,9] ***; 

 

   else if Yobserved=0 then do;  

   loglike=log(CDFterm - prYeq0); 

  end; 

 

   model Ydeaths ~ general(loglike);run; 
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South African Data SAS Code 
 

****** Model 1 ******; 

 

proc nlmixed data=format; 

parms bet0=3.2076, bet1= -0.04197, bet2=.000151, alpha=.1950, 

sigsq1=.1.3586; 

bounds sigsq1 >= 0; 

alphainv=1/alpha; 

linp=(bet0+g0i) + bet1*exposure + bet2*date + lnpop; 

mu=exp(linp); 

p=1/(1+mu*alpha); 

 

loglike=lgamma(alphainv+deaths) - lgamma(alphainv) - 

lgamma(1+deaths)+ deaths*log(1-p) + alphainv*log(p);  

   

  model deaths ~ general(loglike); 

  random g0i ~ normal(0, sigsq1) subject=district; 

 

ods output parameterestimates=ests1; 

title1 'NB regression with random effects, using general LL 

facility'; 

run; 

 

data ests1; 

set ests1; 

model = '1'; 

run; 

 

proc print data = ests1; 

run; 
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****** Model 2 ******; 

 

  proc nlmixed data=format; 

parms bet0=3.2076, bet1= -0.04197, bet2=.000151, alpha=.1950, 

sigsq1=.1.3586; 

bounds sigsq1 >= 0; 

 

   alphainv=1/alpha; 

   linp=(bet0+g0i) + bet1*exposure + bet2*date + lnpop; 

   mu=exp(linp); 

   p=1/(1+mu*alpha); 

 

   prYeq0=p**alphainv; 

   prYeq1=alphainv*(p**alphainv)*(1-p); 

   prYeq2=((alphainv+1)*alphainv/fact(2))*(p**alphainv)*(1-p)**2; 

  

prYeq3=((alphainv+2)*(alphainv+1)*alphainv/fact(3))*(p**alphainv)

*(1-p)**3; 

  

prYeq4=((alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(4))*

(p**alphainv)*(1-p)**4; 

  

prYeq5=((alphainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alpha

inv/fact(5))*(p**alphainv)*(1-p)**5; 

  

prYeq6=((alphainv+5)*(alphainv+4)*(alphainv+3)*(alphainv+2)*(alph

ainv+1)*alphainv/fact(6))*(p**alphainv)*(1-p)**6; 

  

prYeq7=((alphainv+6)*(alphainv+5)*(alphainv+4)*(alphainv+3)*(alph

ainv+2)*(alphainv+1)*alphainv/fact(7))*(p**alphainv)*(1-p)**7; 

  

prYeq8=((alphainv+7)*(alphainv+6)*(alphainv+5)*(alphainv+4)*(alph

ainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(8))*(p**alphainv)

*(1-p)**8; 

  

prYeq9=((alphainv+8)*(alphainv+7)*(alphainv+6)*(alphainv+5)*(alph

ainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(9))*

(p**alphainv)*(1-p)**9; 

 

CDFterm=prYeq0 + prYeq1 + prYeq2 + prYeq3 + prYeq4 + prYeq5 + 

prYeq6 + prYeq7 + prYeq8 + prYeq9; 

 

   ** log-likelihood function when Y values are detectable ***; 

 

  if Yobserved=1 then do; 

loglike=lgamma(alphainv+deaths) - lgamma(alphainv) -    

lgamma(1+deaths)  

          + deaths*log(1-p) + alphainv*log(p);  

  end; 

 

   ** log-likelihood function when Y values are interval censored on 

[1,9] ***; 

 

   else if Yobserved=0 then do;  

   loglike=log(CDFterm - prYeq0); 

  end; 
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  model deaths ~ general(loglike); 

  random g0i ~ normal(0, sigsq1) subject=district; 

 

  ods output parameterestimates=ests2; 

title1 'NB regression with random effects, Interval censored [1-9]’; 

run; 

 

data ests2; 

set ests2; 

model = '2'; 

run; 

 

proc print data = ests2; 

run; 
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****** Model 3 ******; 

 

proc nlmixed data=format; 

parms bet0=3.2076, bet1= -0.04197, bet2=.000151, alpha=.1950,    

sigsq1=.1.3586; 

 

   bounds sigsq1 >= 0; 

 

  alphainv=1/alpha; 

   linp=(bet0+g0i) + bet1*exposure + bet2*date + lnpop; 

   mu=exp(linp); 

   p=1/(1+mu*alpha); 

 

if deaths lt 10 and deaths gt 0 then deaths = 5; 

 

loglike=lgamma(alphainv+deaths) - lgamma(alphainv) - 

lgamma(1+deaths) + deaths*log(1-p) + alphainv*log(p);  

   

  model deaths ~ general(loglike); 

   random g0i ~ normal(0, sigsq1) subject=district; 

 

ods output parameterestimates=ests3; 

title1 'NB regression W/ Midpoint Imputation'; 

run; 

 

data ests3; 

set ests3; 

model = '3'; 

run; 

 

proc print data = ests3; 

run; 
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****** Model 4 ******; 

 

   

  proc nlmixed data=format; 

parms bet0=3.2076, bet1= -0.04197, bet2=.000151, alpha=.1950,   

sigsq1=.1.3586; 

bounds sigsq1 >= 0; 

alphainv=1/alpha; 

   linp=(bet0) + bet1*exposure + bet2*date + lnpop; 

   mu=exp(linp); 

   p=1/(1+mu*alpha); 

 

  prYeq0=p**alphainv; 

  prYeq1=alphainv*(p**alphainv)*(1-p); 

   prYeq2=((alphainv+1)*alphainv/fact(2))*(p**alphainv)*(1-p)**2; 

  

prYeq3=((alphainv+2)*(alphainv+1)*alphainv/fact(3))*(p**alphainv)

*(1-p)**3; 

  

prYeq4=((alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(4))*

(p**alphainv)*(1-p)**4; 

  

prYeq5=((alphainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alpha

inv/fact(5))*(p**alphainv)*(1-p)**5; 

  

prYeq6=((alphainv+5)*(alphainv+4)*(alphainv+3)*(alphainv+2)*(alph

ainv+1)*alphainv/fact(6))*(p**alphainv)*(1-p)**6; 

  

prYeq7=((alphainv+6)*(alphainv+5)*(alphainv+4)*(alphainv+3)*(alph

ainv+2)*(alphainv+1)*alphainv/fact(7))*(p**alphainv)*(1-p)**7; 

  

prYeq8=((alphainv+7)*(alphainv+6)*(alphainv+5)*(alphainv+4)*(alph

ainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(8))*(p**alphainv)

*(1-p)**8; 

  

prYeq9=((alphainv+8)*(alphainv+7)*(alphainv+6)*(alphainv+5)*(alph

ainv+4)*(alphainv+3)*(alphainv+2)*(alphainv+1)*alphainv/fact(9))*

(p**alphainv)*(1-p)**9; 

 

CDFterm=prYeq0 + prYeq1 + prYeq2 + prYeq3 + prYeq4 + prYeq5 + 

prYeq6 + prYeq7 + prYeq8 + prYeq9; 

 

   ** log-likelihood function when Y values are detectable ***; 

 

   if Yobserved=1 then do; 

 loglike=lgamma(alphainv+deaths) - lgamma(alphainv) - 

lgamma(1+deaths)   + deaths*log(1-p) + alphainv*log(p);  

  end; 

 

   ** log-likelihood function when Y values are interval censored on 

[1,9] ***; 

 

   else if Yobserved=0 then do;  

     loglike=log(CDFterm - prYeq0); 

  end; 

   

   model deaths ~ general(loglike); 
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ods output parameterestimates=ests4; 

title1 'NB regression with fixed effects'; 

run; 

 

data ests4; 

set ests4; 

model = '4'; 

run; 

 

proc print data = ests4; 

run; 
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****** Examine the Exposure in Quartiles ******; 

 

proc glimmix data = Quartiles; 

class district Quarter (ref = '4'); 

model deaths = Quarter date / dist=negbin link=log solution 

offset=lnpop; 

random intercept / sub= district; 

estimate 'Rate ratio of Q1 vs Q4' Quarter 1 0 0 -1 / exp cl; 

estimate 'Rate ratio of Q2 vs Q4' Quarter 0 1 0 -1 / exp cl; 

estimate 'Rate ratio of Q3 vs Q4' Quarter 0 0 1 -1 / exp cl; 

run; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


