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 Abstract 

 
Assessing the Impact of Misclassification in Case-Control Studies: An Examination of 

Bayesian Credible Intervals 
 

                                                          By Jiali Lu 
 
 
Objectives: Case-control studies are fundamental in identifying associations between exposures 
and rare diseases, yet the accuracy of odds ratio (OR) estimates can be compromised by 
misclassification. Traditional Wald confidence intervals have limitations, especially with small 
sample sizes or extreme proportions. Bayesian methods utilizing Jeffreys priors have been 
proposed as a robust alternative, yet empirical evidence on their comparative efficacy is sparse 
when misclassification is an issue. This study aimed to evaluate the performance of Bayesian 
methods with Jeffreys priors against traditional Wald approaches in interval estimation for the 
exposure odds ratio, focusing on interval width and frequentist coverage in the context of case-
control studies with main and internal validation data. 
Methods: We analyzed a real dataset to compare a naïve log odds ratio estimate versus an adjusted 
(via maximum likelihood) estimate, and to compare the Wald-type confidence interval with a 
proposed credible interval based on a Jeffreys Dirichlet prior. Then, we conducted simulations 
with smaller case and control sample sizes to compare the performance of Wald-based and 
Bayesian credible intervals in terms of interval width and coverage probability. The simulations 
were designed to reflect a realistic range of exposure misclassification scenarios encountered in 
epidemiological research. 
Results: Our simulations demonstrated that the proposed Bayesian credible interval, compared to 
the Wald interval, offered significantly narrower interval widths while maintaining near-nominal 
frequentist coverage across a variety of exposure odds ratios and misclassification scenarios. 
Specifically, Bayesian methods provided more precise interval estimates and favorable coverage 
probabilities, underlining their potential for more accurate and reliable statistical inference in 
case-control studies. 
Conclusions: The findings suggest that Bayesian methods utilizing Jeffreys priors represent a 
significant advancement over traditional Wald intervals for the estimation of exposure odds ratios 
in case-control studies featuring main and internal validation study data. This study supports the 
adoption of Bayesian approaches in epidemiological research, especially in the presence of 
misclassification and when precise interval estimation is critical. 
Keywords: Case-control studies, Bayesian methods, Jeffreys priors, Misclassification. 
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                                         1. Introduction 
 
Case-control studies serve as a cornerstone in understanding the connections between exposures 

and rare diseases, revealing potential risk factors through the analysis of exposure distributions 

between cases and controls1. It is imperative to acknowledge that choosing cases and controls 

reflects a deliberate design decision rather than a reflection of inherent biological significance. 

Despite this, the odds ratio (OR) stands as a reliable measure of risk ratio, rooted in methodology 

rather than biology2. However, the accuracy of OR estimates can be compromised by 

misclassification—where participants are erroneously categorized due to observational or 

measurement inaccuracies—obscuring the true relationship between exposure and outcomes2. The 

introduction of a misclassification matrix by Barron accentuates the gravity of this error by 

showcasing its ability to distort relative risk estimation3. Additionally, Lyles' demonstration of a 

closed-form ML estimator for the OR in the milieu of exposure misclassification when internal 

validation data are available furthers our understanding of its effects4. An examination of 

Greenland's analysis of antibiotic use during pregnancy and its correlation with sudden infant death 

syndrome provides a practical illustration of these principles within case-control studies5. 

 

Wald-based confidence intervals are widely used in statistical analysis, but they are not without 

their limitations, which become particularly pronounced with small sample sizes or when dealing 

with extreme proportions6. Moreover, Brown and Cai have highlighted that Wald intervals can 

yield unreliable inferential results about binomial proportions, even with large sample sizes, and 

especially in scenarios involving extreme proportions. They furthered this critique by studying the 

benefits of alternative methodologies grounded in Jeffreys prior7, providing valuable 



 

advancements and advice for analysis. These alternatives promise more robust statistical inference, 

potentially rectifying the deficits inherent in the conventional use of Wald intervals. 

 

The Bayesian method offers a sophisticated alternative for statistical estimation, akin to the 

concept of shrinkage, which refines the precision of estimates9. Research conducted by Agresti 

and Min underscores the effectiveness of the Jeffreys prior in the development of Bayesian credible 

intervals, particularly for 2x2 contingency tables where significant effects are present10. Lyles, 

Weiss and Waller further this discussion when estimating a single binomial proportion, advocating 

for a balanced approach that combines the conservatism of the Clopper-Pearson method with the 

flexibility of Jeffreys prior and thereby optimizing with respect to criteria incorporating aspects of 

both coverage and interval width11. Extending these methodologies, Beavers and Stamey have 

advanced the field by developing a Bayesian framework for sample size determination within a 

covariate misclassification model, even in the absence of a gold standard12.  

 

This study builds upon these foundational insights to scrutinize whether Bayesian methods 

utilizing Dirichlet priors can surpass traditional Wald-based approaches for interval estimation for 

the exposure odds ratio in the context of a main/internal validation study design as considered by 

Greenland5, Morrissey and Spiegelman13, and Lyles4, among others. Through extensive 

simulations, we meticulously compare these methods, focusing on interval width and frequentist 

coverage. Our goal is to discern whether the Bayesian framework, with its Dirichlet priors, 

represents a significant advancement over standard methodologies for point and interval estimation 

of estimation of a particular nonlinear function of multinomial parameters (i.e., the natural log of 

the true exposure odds ratio). We conducted simulation studies to examine the coverage and width 



 

properties associated with each interval in the case-control setting with main and internal 

validation data. Of particular interest in this project are the variations in relative performance of 

the Wald-based and Dirichlet-based Bayesian credible intervals, as conditions (such as the true 

exposure odds ratio) are varied. 

 

2. Methods 
 

 
2.1 A case-control study with misclassification 
 
 

We provide the data layout for a case-control study based on a main/internal validation study 

design in Table 1. Here, D (= 0,1) denotes disease status (case), and X (= 0,1) represents the 

surrogate (i.e., potentially mismeasured) exposure status. The study's design ensures sampling 

conditional on D, with the assumption of accurate classification for disease status. To augment the 

primary study data, which comprises pairs of (D, X), a subset of participants is selected for an 

internal validation process, which involves the use of a gold-standard exposure variable E (= 0,1).  

 

Here, we define: 

 

The true probability of exposure among cases and controls: 

          

𝜋! = Pr(𝐸 = 1	| 	𝐷 = 𝑑)		(𝑑 = 0,1)		 

 

The probability of exposure as measured via the error-prone approach among cases and controls: 

 

(1) 

(2) 



 

𝜋!∗ = Pr(𝑋 = 1	| 	𝐷 = 𝑑)			(𝑑 = 0,1)		 

 

The Odds Ratio of interest: 

 

𝑂𝑅 = 	
𝜋#(1 − 𝜋$)
𝜋$(1 − 𝜋#)

 

 

The sensitivity and specificity under potentially differential misclassification: 

 

𝑆𝐸! = Pr(𝑋 = 1	|	𝐸 = 1, 𝐷 = 𝑑)			(𝑑 = 0,1)		 

𝑆𝑃! = Pr(𝑋 = 0	|	𝐸 = 0, 𝐷 = 𝑑)			(𝑑 = 0,1)		 

 

 

The positive and negative predictive value under potentially differential misclassification: 

 

𝑃𝑃𝑉! = Pr(𝐸 = 1	|	𝑋 = 1, 𝐷 = 𝑑)			(𝑑 = 0,1)		 

𝑁𝑃𝑉! = Pr(𝐸 = 0	|	𝑋 = 0, 𝐷 = 𝑑)			(𝑑 = 0,1)	 

 
 
 

Main Study 

Internal Validation Study 
 

 D=1  D=0  

D X=1 X=0  X E=1 E=0  E=1 E=0  

1 𝑛## 𝑛#%  1 𝑛#& 𝑛#'  𝑛$& 𝑛$'  

0 𝑛$# 𝑛$%  0 𝑛#( 𝑛#)  𝑛$( 𝑛$)  

 
TABLE 1: Main and Internal Validation Study Data 

 

D: case status; E: gold standard exposure measure; X, surrogate exposure measure (D, X, E = 0,1).  

(3) 

(4) 
(5) 

(6) 
(7) 



 

As an example, we explore a previously published dataset through a dual framework of main and 

internal validation. We examine the potential link between sudden infant death syndrome (SIDS) 

and maternal antibiotic use during pregnancy5,14. Our investigation is supported by both primary 

and validation datasets, as delineated in Table 1. Specifically, we consider 775 cases (𝐷# = 775) 

and 797 controls (𝐷$ = 797), yielding estimated sensitivity for cases as 0.61 (𝑆𝐸# = 0.61)and 

estimated specificity for cases as 0.88 (𝑆𝑃# = 0.88). The control group has estimated sensitivity 

of 0.60 (𝑆𝐸$ = 0.60) and specificity of 0.93 (𝑆𝑃$ = 0.93). After adjusting for misclassification 

via methods reviewed below, the estimated true exposure probabilities for cases and controls are 

0.212 and 0.179, respectively. A subset, comprising approximately 25% of the subjects, was 

randomly chosen for the internal validation set. Table 2 presents the cell counts for the SIDS study 

data, reflecting the layout of Table 1. Exposure assessments labeled as the gold standard (E) derive 

from medical records, whereas the surrogate (X) assessments rely on self-reported antibiotic use. 

 
 

Main Study 

Internal Validation Study 
 

 D=1  D=0 
 

D X=1 X=0  X E=1 E=0  E=1 E=0 
 

1 𝑛!!=122 𝑛!"=442  1 𝑛!#=29 𝑛!$=22  𝑛%#=21 𝑛%$=12 
 

0 𝑛%!=101 𝑛%"=479  0 𝑛!&=17 𝑛!'=143  𝑛%&=16 𝑛%'=168 
 

 
TABLE 2: Main and Internal Validation of SIDS 

 

  

 
 
 
2.2 Maximum Likelihood Estimators of Parameters 
 
 



 

Lyles' work enabled us to ascertain the likelihood for the twelve distinct observation types reflected 

in Table 14. Morrissey & Spiegelman have developed a method to express this likelihood in terms 

of the log odds ratio13. They clarified how the inverse matrix and maximum likelihood (ML) 

methods are comparable within the studied context. Based on these two references, we advocate 

for the predominant use of the closed-form MLE previously introduced as the “inverse matrix” 

method for the odds ratio when differential misclassification is present, and an internal validation 

study is conducted8.  

 

By applying the matrix method by Barron3 and the inverse matrix method of Marshall we can get 

the two identities8: 

 

𝜋!∗ = 𝑆𝐸! 	𝜋! + (1 − 𝑆𝑃!)(1 − 𝜋!)	(𝑑 = 0,1)		 

 

 

𝜋! = 𝑃𝑃𝑉!𝜋!∗ + (1 − 𝑁𝑃𝑉!)(1 − 𝜋!∗)	(𝑑 = 0,1)		 

 

By solving for 𝜋! and  𝜋!∗ , we have convenient forms for estimators of the true and error-prone 

prevalence: 

 

𝜋@! =	
𝜋@!∗ + 𝑆𝑃!A − 1
𝑆𝐸!A + 𝑆𝑃!A − 1

	(𝑑 = 0,1)		 

 

 

(8) 

(9) 

(10) 



 

𝜋@!∗ =	
𝜋@! + 𝑁𝑃𝑉!B −1
𝑃𝑃𝑉!B +𝑁𝑃𝑉!B −1

	(𝑑 = 0,1)		 

 

 

We can obtain the MLEs for 𝑆𝐸! , 𝑆𝑃! , 𝑃𝑃𝑉! and 𝑁𝑃𝑉! based on the cell counts in Table 14: 

 

𝑆𝐸!A =	
𝑃𝑃𝑉!B𝜋@!∗

𝜋@!
		(𝑑 = 0,1)		 

 

𝑆𝑃!A =	
𝑁𝑃𝑉!B(1− 𝜋@!∗)

1 − 𝜋@!
		(𝑑 = 0,1)		 

 

𝑃𝑃𝑉!B =	
𝑛!&

𝑛!& + 𝑛!'
		(𝑑 = 0,1)		 

 

𝑁𝑃𝑉!B =	
𝑛!)

𝑛!( + 𝑛!)	
		(𝑑 = 0,1)		 

 

𝜋@!∗ =
𝑛!# + 𝑛!& + 𝑛!'

𝑛!
		(𝑑 = 0,1)		 

 

where: 

𝑛! =	𝑛!# + 𝑛!% + 𝑛!& + 𝑛!' + 𝑛!( + 𝑛!) 

The MLE for 𝜋! (d=0,1) is obtained by inserting the estimates in equations (14)-(16) into equation 

(9). The MLE for the ln	(𝑂𝑅) then follows directly. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 



 

2.3 Approximate Frequentist Intervals 

 
 
The Confidence Interval for a binomial proportion, derived from inverting the Wald test, is a 

common statistical tool15. Agresti and Coull investigate the coverage properties of confidence 

interval construction for a binomial parameter15. They compared score intervals attributed to 

Wilson16 with Wald17 intervals and exact intervals based on binomial probabilities. 

 

Wald: 

 

�̂� ± 𝑧#*+/%I
�̂�(1 − �̂�)

𝑛  

 

Wilson: 

 

�̂� +
𝑧+/%%

2𝑛 ± 𝑧+/%I
�̂�(1 − �̂�)

𝑛 +
𝑧+/%%

4𝑛%

1 +
𝑧+/%%

𝑛

 

 

where: 

𝑛 = sample size, 

�̂� = sample proportion, 

𝑧#*+/% = 100(1 − 𝛼/2) standard normal distribution quantile 

 

(18) 

(19) 



 

However, when estimating a proportion's interval, coverage probabilities can be excessively high 

for "exact" confidence intervals based on inverting the binomial test and excessively low for those 

based on the Wald large-sample normal test. The latter discrepancy arises due to reliance on the 

central limit theorem, which can be unreliable when dealing with small sample sizes or success 

probabilities near 0 or 17. 

 

Quesenberry and Hurst18 adapted the methods of Wilson16 for simultaneous construction of 

multinomial parameters and Goodman19, invoking a Bonferroni argument. Thus, the Wilson 

intervals are a special case of the Quesenberry and Hurst18 and Goodman19 intervals. Agresti and 

Coull15 suggested using the Wilson intervals for the binomial proportion. If we are in a case of 

multinomial, the Goodman19 intervals are preferred. 

 

Our research conducts log odds ratio and maximum likelihood estimation of the log odds ratio 

based on the main/internal validation study setting studied by Morrissey and Spiegelman13 and 

Lyles4. The log odds ratio estimated without adjusting for misclassification (“Naïve”) is the initial 

estimate of the log odds ratio using the observed (main study only) data, mistakenly assuming that 

the exposure is measured correctly. The Maximum Likelihood Estimate of the log odds ratio4 

accounts for misclassification. This method uses additional information (e.g., the estimated 

positive predictive values and negative predictive values based on internal validation data) to 

adjust the odds ratio estimate. It aims to provide a more accurate estimate of the true association 

between exposure and outcome by correcting for the bias introduced by misclassification. 

The asymptotic variance for the ln	(𝑂𝑅) estimator is given as follows4: 



 

𝑉𝑎𝑟% &ln)𝑂𝑅% ,- = 	0{𝜋3((1 − 𝜋3()})"
!

(*%

× :)𝑃𝑃𝑉(< +𝑁𝑃𝑉(< +1,"𝑣𝑎𝑟@ (𝜋3(∗) + (𝜋3(∗)"𝑣𝑎𝑟@ )𝑃𝑃𝑉(<,+ (1 − 𝜋3(∗)"𝑣𝑎𝑟@ )𝑁𝑃𝑉(<,A 

where: 

𝑣𝑎𝑟Q (𝜋@!∗ ) = 	
𝜋@!∗(1 − 𝜋@!∗ )
∑ 𝑛!-)
-.#

 

𝑣𝑎𝑟Q S𝑃𝑃𝑉!BT =	
𝑃𝑃𝑉!B(1− 𝑃𝑃𝑉!)B

𝑛!& + 𝑛!'
 

𝑣𝑎𝑟Q S𝑁𝑃𝑉!BT =	
𝑁𝑃𝑉!B(1−𝑁𝑃𝑉!)B

𝑛!( + 𝑛!)
 

 

2.4 Bayesian Credible Intervals with Jeffreys Priors 

  
In Bayesian statistics, credible intervals represent a range of values within which an unobserved 

parameter is expected to fall with a specified probability. This interval is delineated within the 

domain of either a posterior or predictive probability distribution22. Agresti and Min investigate 

the performance of Bayesian credible intervals for the difference of proportions and consider beta 

priors, logit-normal priors, and related correlated priors10.  The most popular Bayesian credible 

intervals for p are based on Jeffreys beta priors, which leads to corresponding beta posteriors, The 

Jeffreys interval comes highly recommended for its satisfactory average coverage properties7. In 

our study, we considered credible intervals for the log odds ratio [ln(𝑂𝑅)] and for the odds ratio4,13. 

The first of these refers to a range of values for the logarithm of the odds ratio (OR) as evidenced 

(20) 

(21) 

(22) 

(23) 



 

by the data. The logarithmic transformation is often applied because odds ratios can only take 

positive values, and their distribution tends to be right skewed23. The Odds Ratio Credible Interval 

provides a range of values within which the true odds ratio is expected to lie, with a certain 

probability, based on the Bayesian analysis. It is directly related to the ln(𝑂𝑅)	credible interval 

but is expressed in the original odds ratio scale rather than the logarithmic scale24. In presenting 

our results, we focus here on intervals for the ln(𝑂𝑅). 

The Dirichlet distribution is the conjugate family of priors for the multinomial distribution. The 

parameters of the Dirichlet prior have the same sort of interpretation as those of a beta prior, which 

of course is a special case of the Dirichlet20. The Jeffreys prior is a weakly informative prior 

distribution commonly applied to parameter spaces21. We use 𝐵𝑒𝑡𝑎	(𝜅, 1 − 𝜅) and 𝐵𝑒𝑡𝑎	(1 −

𝜅, 𝜅) priors to calculate the lower bound and upper bound of the credible interval. In this study, 

we use a variant on this approach for multinomial data that is analogous to choosing 𝜅 =0.5, to 

produce credible intervals for association parameters. Specifically, we use 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡	(0.5, … , 0.5) 

priors for the six multinomial proportions underlying the cells in Table 1, separately for cases and 

controls. Our approach is to generate a large number of draws from the corresponding Dirichlet 

posteriors, converting these to draws of the 12 cell counts in Table 1. For each such draw, we 

mimic the ML estimand. The credible interval is produced by taking the 2.5th and 97.5th percentiles 

of the resulting estimands.  

 

2.5 Simulation Process 

 



 

The SAS statistical package V9.4 was used for generating the simulations. Wald intervals were 

simulated within the SAS IML procedure. A SAS macro generating Dirichlet random variables 

was built. Credible intervals were estimated based on the posterior distribution. For each scenario 

considered, 5000 simulations were generated with the number of Dirichlet draws set to 10,000 per 

simulation. 

We initiate a simulation study in a case-control setting to evaluate the effects of differential 

misclassification on odds ratio estimates. Based on specified parameters including the sensitivities 

and specificities, the program calculates other essential parameters like the true odds ratio, its 

logarithm, and predictive values. It then generates data for both cases and controls using the 

appropriate multinomial distribution based on the specified parameters. Once the data are 

generated, the program computes the MLE of the ln(𝑂𝑅) parameter of interest (equivalent to 

Marshall’s inverse matrix estimator4,8), along with its standard error. 

The simulation iterates through multiple runs, each time generating data and calculating 

confidence intervals for both the original (without misclassification) and adjusted odds ratio 

estimates (with misclassification). Additionally, a macro performs further analysis, employing the 

Dirichlet distribution for posterior distribution estimation and analyzing Bayesian credible 

intervals. The final step compiles all results, providing a comprehensive analysis of the credible 

intervals and their coverage, and reports findings through summary statistics, offering insights into 

the impact of misclassification in epidemiological studies. 

 
 

3. Results 
 
3.1 Example of SIDS 
 



 

In the analysis of the SIDS dataset, we estimated the values for each parameter, some of which are 

presented in Table 3. The naïve estimate of exposure prevalence for cases (𝑝#)	 is 0.223, whereas 

for controls (𝑝$) it is 0.168. The derived ln(𝑂𝑅) estimate of 0.351 reflects the odds of exposure 

between cases and controls, serving as an initial measure of association without adjusting for 

misclassification. Furthermore, the maximum likelihood estimates (MLE) suggest that the 

exposure probability for cases stands at 0.209, and for controls at 0.179. The MLE of the log odds 

ratio is computed to be 0.193, as detailed in Table 3. We can see that the values of the estimates 

are close, but the suggestion is that the naïve ln(𝑂𝑅) estimate may be biased away from the null. 

Table 4 provides an analytical comparison between Wald intervals and Bayesian Credible Intervals. 

It is noteworthy that the lower limits (-0.241 vs. -0.236), upper limits (0.626 vs. 0.627), and widths 

of the intervals (0.867 vs. 0.863) share a marked resemblance. 

      

 Naïve Estimates MLE Estimates 
𝑝# 0.223 0.209 
𝑝$ 0.168 0.179 

ln(𝑂𝑅)	[SE] 0.351 [0.130] 0.193 [0.22] 
 

TABLE 3: Naïve vs. ML Estimates for SIDS Data 
 
 

 
 
 

      

 Wald Interval Bayesian Credible Interval 
Width 0.867 0.863 
Lower -0.241 -0.236 
Upper 0.626 0.627 

 
TABLE 4: Comparing Intervals for ln(𝑂𝑅) Based on SIDS Data 

 



 

3.2 Analysis of Naïve and ML Estimates for Log Odds Ratios  
 

We present simulation studies with much smaller sample sizes (100 cases and 100 controls), but 

otherwise directly mimicking the SIDS data example. Table 5 shows the mean “naïve” and ML 

ln(𝑂𝑅)estimates and their empirical SDs. Across 5,000 simulation runs, the Naïve method 

estimates ln(𝑂𝑅) at 0.384 on average with a smaller empirical standard deviation, suggesting more 

precision. In comparison, the ML estimate at 0.213 on average demonstrates a higher standard 

deviation, indicative of less precision for statistical inference. The sacrifice in precision upon 

adjusting for misclassification is expected, as generally one expects a bias-variance tradeoff. As 

we can see, the ML estimate is far less biased, while the naïve estimate is biased away from the 

null. 

      

 Naïve ML 

ln	(𝑂𝑅) 0.384(0.374) 0.213(0.725) 
	
true	ln	(𝑂𝑅) 0.193 0.193 

 
Table 5. Simulation Comparison of Naïve and ML Estimates  

 

 

3.3 Brief Analysis of Interval Estimates 
 

Table 6 provides a comparative overview of the 95% Naïve Interval, Wald Confidence Interval 

(CI), and Bayesian Credible Interval for their width and coverage properties. The Naïve Interval 

is the narrowest at 1.437 on average, offering a somewhat sub-nominal coverage of 92.50%. The 

Wald CI is wider at a mean of 2.643 with a coverage of 95.70%. Notably, the Bayesian Credible 

Interval, while somewhat narrower in width than the Wald CI at 2.572, exhibits favorable 



 

frequentist coverage (96.1%). Thus, while the difference remains small under these simulation 

conditions, the credible interval is narrower on average than the Wald CI while maintaining near-

nominal coverage. This suggests that the Bayesian Credible Interval may be more reliable for 

encompassing the true parameter value, making it a potentially better choice in cases where 

maximizing coverage is crucial. 

 

        

 Naïve Interval Wald CI Bayesian Credible Interval 

Width 1.437 2.643 2.572 

Coverage 92.50% 95.70% 96.10% 
 

Table 6. Simulation Comparison of Interval Widths and Coverages 

 
3.3 Varying Exposure Probabilities for Cases and Controls 
 
 
In an expanded series of simulations (each with 100 cases and 100 controls), we explore the 

application of Bayesian credible intervals across varying exposure probabilities for cases and 

controls, with sensitivity and specificity for cases (𝑆𝐸# = 0.6, 𝑆𝑃# = 0.95), while for controls, 

𝑆𝐸$ = 0.9	and 𝑆𝑃$ = 0.8.  Initially, we established the exposure probability for cases at a fixed 

rate of 0.1, while the probability for controls was varied between 0.1 and 0.9. Subsequently, we 

maintained the exposure probability for controls at 0.1 and varied the probability for cases within 

the same range of 0.1 to 0.9. The outcomes of this variation are initially depicted in Figure 1 and 

Figure 2, which demonstrate that the Bayesian credible intervals are consistently more precise—

indicated by their narrower widths—compared to the Wald intervals. This empirical evidence 

supports our initial hypothesis regarding the efficiency of Bayesian credible intervals in estimating 

exposure probability in case-control studies. 



 

In examining the coverage across different values of the exposure probability for controls (𝑝$), it 

is evident that both the Wald and Bayesian approaches significantly outperform intervals based on 

the naïve log odds ratio estimate, particularly when the exposure probability for cases is less than 

0.5. As depicted in Figure 3, the coverage for the Naive estimate starts at a lower value and 

increases sharply as 𝑝$ approaches 0.5, then stabilizes. In contrast, the Wald and Bayesian methods 

maintain coverage closer to the ideal of 95% throughout, indicating a more consistent performance. 

Figure 4 highlights coverage for only the Wald and Bayesian intervals, revealing that the Bayesian 

interval in more conservative (despite its narrower width). 

 

When the exposure probability for the case group (𝑝#) was varied, our results (as shown in Figure 

5 and Figure 6) indicate that neither the Bayesian method nor the Wald method consistently yielded 

the highest coverage. While both methods generally maintained coverage close to the ideal of 0.95, 

there are instances where the Wald intervals exhibit slightly higher coverage than the Bayesian 

credible intervals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Figure 1: Comparison of Interval Widths When Varying Control Group’s Exposure Probability 

 
Figure 1: Comparison of Interval Widths for Exposure Probability in Cases 

 
 

 
 

Figure 2: Comparison of Interval Widths When Varying Case Group’s Exposure Probability 

 
 
 

 
 
 
 
 
 

Note: The exposure probability for controls is set at 0.1. Case exposure 
probability varies from 0.1 to 0.9. The blue line represents the Wald 
intervals, and the red line represents the Bayesian credible intervals. 
Consistently narrower Bayesian intervals across most probabilities 
indicate precision gains. 
 

Note: The exposure probability for cases is set at 0.1. Control exposure 
probability varies from 0.1 to 0.9. The blue line represents the Wald 
intervals, and the red line represents the Bayesian credible intervals. The 
narrower Bayesian intervals suggest improved precision. 
 



 

 
Figure 3: Coverage of Naive Log Odds Ratio, Wald, and Bayesian Intervals 

 
 
 

 
 

 
Figure 4: Comparative Coverage of Wald and Bayesian Intervals 

 
 
 
 
 
 
 
 

Note: This plot focuses on the comparison between Wald and Bayesian 
intervals' coverage, highlighting the consistent higher coverage provided 
by Bayesian intervals as the exposure probability for cases varies. Note 
that both interval methods produce coverage at or in excess of the 
targeted 95%. 
 

Note: Coverage measures the proportion of times the true parameter 
value is contained within the interval. Ideal coverage is 0.95. This 
comprehensive plot includes the Naive method, illustrating its 
significantly lower coverage compared to Wald and Bayesian methods, 
which remain closer to the ideal coverage value. 
 



 

 
Figure 5: Coverage of Wald and Bayesian Intervals  

 
 
 
 
 
 

Figure 6: Coverage Comparison of Wald, and Bayesian Intervals 

 
 
 

 

 

Note: Coverage is represented as the proportion of simulations in which 
the true parameter is captured within the interval. This comprehensive 
plot includes the Naive method, illustrating its significantly lower 
coverage compared to Wald and Bayesian methods, which remain 
closer to the ideal coverage value. 
 

Note: This plot focuses on the comparison between Wald and Bayesian 
intervals' coverage. While neither approach yields consistently higher 
coverage in this case, both produce coverage near or in excess of the 
targeted 95%. 
 



 

4. Discussion 
 
 
This study conducted a rigorous examination of the efficacy of Bayesian methods with Jeffrey 

priors versus traditional Wald intervals for estimating exposure odds ratios in case-control studies 

with adjustment for nondifferential exposure misclassification by means of internal validation data. 

The findings reveal that Bayesian credible intervals generally maintained near-nominal coverage 

but offered narrower widths than Wald CIs, particularly when the exposure probability for cases 

is below 0.5. This suggests potential for a notable precision advantage of Bayesian intervals in 

complex data scenarios, such as under misclassification, underscoring their value in statistical 

estimation within epidemiological research. Upon further analysis, both Bayesian and Wald 

intervals showed enhanced performance over the naïve CI based on an unadjusted main study-only 

ln(OR) estimate, maintaining coverage closer to the ideal. However, we noted that it is possible 

for the naïve interval to perform well while maintaining the narrowest width, such as in our 

simulations when the exposure probability for controls exceeded 0.5 (Figure 3). Surprisingly, when 

altering exposure probabilities for controls, Bayesian methods did not always surpass Wald 

intervals. These findings contradict our initial hypotheses and indicate that the performance of 

these statistical techniques is more intricate and influenced by specific probabilities. 

 

The implications of this research could be useful for the field of epidemiology, where accurate risk 

assessment is paramount. By establishing the efficacy of Bayesian credible intervals, particularly 

in cases with lower exposure probabilities, we suggest a methodological shift that could influence 

future epidemiological analyses and public health policies. The narrower interval widths and 

improved coverage provided by Bayesian methods enhance the statistical validity of studies, which 

is critical for understanding disease etiology and for designing interventions. The utilization of 



 

Dirichlet priors in Bayesian analysis demonstrated here effectively captured the true variability 

and uncertainty, offering nuanced insights that can guide targeted public health strategies. Such 

precision becomes increasingly relevant in the current landscape where epidemiological data often 

inform immediate and consequential health policy decisions.  

 

However, the study's implications must be contextualized within its limitations. The simulation-

based design, while offering a controlled environment to compare methods, may not encapsulate 

the full spectrum of complexities presented by real-world data. In this sense, the superiority of 

Bayesian credible intervals over Wald intervals is not a given. As conditions vary, there may be 

scenarios where the Wald intervals match or even exceed the performance of the proposed 

Bayesian credible intervals in terms of the joint criteria of coverage and width. The veracity of 

Bayesian credible intervals and their superiority also hinges on the selection of appropriate priors. 

In this case, the Dirichlet priors were weakly informative by design, as our goal was to improve 

upon frequentist inference in terms of traditional interval coverage. The appropriateness of the 

Jeffreys prior might not hold across various datasets (e.g., as the number of cells increases), and 

the performance of these intervals might differ with other prior distributions. Additionally, the 

study's scope was limited to a comparative assessment between Bayesian and Wald methods and 

did not incorporate other statistical techniques that could potentially provide different insights. 

 

Given the performance disparities observed under various exposure probabilities, further 

investigation is necessary. Future research should explore the conditional performance of Bayesian 

intervals in a wider array of scenarios and assess the application of alternative priors. Validating 

these findings through practical applications in retrospective and prospective studies is essential 



 

to ascertain the utility of Bayesian credible intervals in real-world settings. In conclusion, the 

findings of this study support the adoption of Bayesian methods with Jeffreys priors in the 

estimation of exposure odds ratios in the setting considered here, perhaps heralding a new direction 

for continued exploration in the statistical methodology of epidemiology. While further research 

is imperative to overcome the study's limitations, our findings offer compelling evidence of the 

potential for Bayesian approaches to enhance the precision and reliability of public health research 

outcomes. 
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