
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Hanyi Yu Date



Computational Image Processing and Deep Learning with Multi-Model Biomedical
Image Data

By

Hanyi Yu
Doctor of Philosophy

Computer Science and Informatics

Jun Kong, Ph.D.
Advisor

Vaidy Sunderam, Ph.D.
Co-advisor

Imon Banerjee, Ph.D.
Committee Member

John Nickerson, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D., MPH
Dean of the James T. Laney School of Graduate Studies

Date



Computational Image Processing and Deep Learning with Multi-Model Biomedical
Image Data

By

Hanyi Yu
B.Eng., Shanghai Jiao Tong University, Shanghai, China, 2014
M.Eng., Shanghai Jiao Tong University, Shanghai, China, 2017

Advisor: Jun Kong, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2022



Abstract

Computational Image Processing and Deep Learning with Multi-Model Biomedical
Image Data
By Hanyi Yu

With the rapid advance in medical imaging technology in recent decades, computa-
tional image analysis has become a popular research topic in the field of biomedical
informatics. Images from various imaging acquisition platforms have been widely
used for the early detection, diagnosis, and treatment response assessment in a large
number of disease and cancer studies. Although conventional computational methods
present higher analysis efficiency and less variability than manual analyses, they re-
quire appropriate parameter settings to achieve optimal results. This can be demand-
ing for medical researchers lacking relevant knowledge about computational method
development. In the last decade, deep neural networks trained on large-scale labeled
datasets have provided a promising and convenient end-to-end solution to biomedical
image processing. However, the development of deep-learning tools for biomedical
image analysis is often restrained by inadequate data with high-quality annotations
in practice. By contrast, a large number of unlabeled biomedical images are gen-
erated by daily research and clinical activities. Thus, leveraging unlabeled images
with semi-supervised or even unsupervised deep learning approaches has become a
significant research direction in biomedical informatics analysis.

My primary doctoral research focuses on the field of medical image process-
ing, utilizing computational methods to facilitate biomedical image analysis with
limited supervision. I have explored two ways to achieve this goal: (1) Optimiz-
ing the model of existing approaches for specific tasks and (2) Developing semi-
supervised/unsupervised deep learning approaches. In my research, I mainly focus
on image segmentation and object tracking, two common biomedical image analysis
tasks. By experimenting with different types of images (e.g., fluorescence microscopy
images and histopathology microscopy images) from various sources (e.g., bacteria,
human liver biopsies, and retinal pigment epithelium tissues), my developed methods
demonstrate their promising potential to support biomedical image analysis tasks.
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Chapter 1

Introduction

In recent decades, the rapid development of medical imaging technologies makes the

computational image analysis important and active in the field of biomedical infor-

matics. Numerous imaging acquisition methods, e.g., computed tomography (CT),

magnetic resonance (MR), positron emission tomography (PET), ultrasound, X-ray,

fluorescence microscopy, and histopathology microscopy, produce image data of a

large number of image modalities widely used for the early detection, diagnosis, and

treatment response assessment of diseases [1].

The analyses and interpretations of biomedical images have been mostly con-

ducted by domain experts. Although conventional computational methods present a

higher efficiency and robustness than manual analyses, medical researchers need to be

knowledgeable with relevant computational expertise before they can set parameters

appropriately and achieve optimal results. In the last decade, deep neural networks

trained on sufficiently large labeled datasets have provided convenient end-to-end

solutions to biomedical image processing. However, the performance of supervised

deep-learning methods for biomedical image analysis highly depends on large-scale

good-quality annotations. In practice, such annotated data collection is restrained

by the limited human annotation bandwidth, various ethical and legal constraints,
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and large intra- and inter-variability [2]. By contrast, daily research and clinical ac-

tivities produce a large number of unlabeled biomedical images. Thus, leveraging

unlabeled images with semi-supervised and even unsupervised deep learning meth-

ods has emerged as a promising research direction in the field of biomedical image

analysis.

1.1 Research contributions

This dissertation presents medical image processing research solutions that utilize

computational methods to facilitate biomedical image analysis under limited su-

pervision. Two ways have been explored to achieve this goal: (1) Optimizing the

architecture of existing models for specific analysis tasks and (2) Developing new

semi-/unsupervised deep learning methods. Two common biomedical image analysis

tasks are included in this dissertation: image segmentation and object tracking. Val-

idated by different image types (e.g., fluorescence microscopy images and bright field

histopathology microscopy images) from various sources (e.g., bacteria, lung cancer

spheroids, human liver biopsies, and retinal pigment epithelium tissues), the devel-

oped methods demonstrate their promising potential to support biomedical image

analysis tasks. In summary, my research work contribution includes the following

four aspects.

• Object motion analysis for time-Lapse image sequences. Two different

models were presented to improve the tracking performance in non-Gaussian

conditions. In addition, a new tracking management strategy was designed to

accelerate the model updating. With the new mapping step after updating the

particle states, the tracking accuracy was improved. The performance of this

developed approach was demonstrated with both artificial image sequences and

real time-lapse fluorescent image datasets that captured 2D bacteria and 3D
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lung cancer cells in motion. This work has been published as a book chapter

in Modern Statistical Methods for Health Research [3]. Besides, this work also

supported the bacteria motion analysis in an immunology study [4].

• Biomedical image segmentation with supervised learning. A novel

UNet-based deep convolutional neural network was developed to automatically

segment portal tract regions from high-resolution liver biopsy Whole Slide Im-

ages (WSIs). The two cascaded convolution structures in the original UNet de-

sign were substituted by a Residual Spatial Attention (RSA) processing block to

enhance network performance. Additionally, the output layer of the developed

network directly synthesized up-sampling features from multiple image resolu-

tions. By such a Multiple Up-sampling Path (MUP) mechanism, the developed

deep learning model reduced the false-negative rate and generated smoother

borders. The network was trained with image patches and applied to liver

biopsy WSIs. The resulting portal tract fibrotic percentage and average por-

tal tract fibrotic area computed by the developed method presented a strong

correlation with the clinical Scheuer fibrosis stage. The performance of this

developed approach was both qualitatively and quantitatively compared with

that of the widely used methods. To demonstrate the contributions of individual

modules, I also conducted ablation experiments and presented ablation study

results. The developed method presented superior performance, suggesting its

promising potential to assist clinical diagnosis. This work has been published

by Computers in Biology and Medicine [5].

• Biomedical image segmentation with semi-supervised learning The

Generative Adversarial Networks (GANs) mechanism was leveraged to enrich

the training dataset with a massive amount of unlabeled weak RPE cells and

mitigate the model overfitting problem. The resulting deep learning model,
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namely MultiHeadGAN, was built upon the state-of-the-art image segmenta-

tion model UNet, but with a new training strategy simultaneously leveraging a

small set of annotated and a large set of unlabeled RPE cells from flatmount

microscopy images for morphology feature extraction and RPE structure recon-

struction. Additionally, a new shape loss for model training was designed to pro-

duce closed cell borders. The method was both qualitatively and quantitatively

evaluated and compared with state-of-the-art deep learning approaches. The

extensive experimental results demonstrated the superiority of the developed

segmentation method, suggesting its potential to facilitate further biomedical

research on RPE aging. This work has been published by Computers in Biology

and Medicine [6]. Besides, this work also supported cell morphological analysis

in an ophthalmology study [7].

• Biomedical image segmentation with self-supervised learning A self-

supervised learning strategy was developed to train a semantic segmentation

network with an encoder-decoder architecture. A reconstruction and a pairwise

representation loss were employed to make the encoder extract structural infor-

mation, while a morphology loss was created to have the decoder produce the

segmentation map. In addition, a novel image augmentation algorithm (Aug-

Cut) was developed to produce multiple views for self-supervised learning and

enhance the network training performance. To validate the method efficacy,

the developed S4 method for RPE cell segmentation was compared with other

state-of-the-art deep learning approaches. The developed method demonstrated

a better performance by both qualitative and quantitative evaluations, suggest-

ing its promising potential to support large-scale cell morphological analyses

in RPE aging S4 investigations.This work is currently under review by Medical

Image Analysis.
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1.2 Paper list

The publications that I substantially contributed to during my Ph.D. study are listed

as follows:

• Yu, H., Yoon, S. B., Kauffman, R., Wrammert, J., Marcus, A., and Kong, J.

(2021). Non-Gaussian Models for Object Motion Analysis with Time-Lapse

Fluorescence Microscopy Images. In Modern Statistical Methods for Health Re-

search (pp. 15-41). Springer, Cham. https://doi.org/10.1007/978-3-030-72437-5_

2

• Yu, H., Wang, F., Teodoro, G., Nickerson, J., and Kong, J. (2022). Multi-

HeadGAN: A deep learning method for low contrast retinal pigment epithe-

lium cell segmentation with fluorescent flatmount microscopy images. Com-

puters in Biology and Medicine, 146, 105596. https://doi.org/10.1016/j.

compbiomed.2022.105596

• Yu, H., Sharifai, S., Jiang, K., Fusheng, W., Teodoro, G., and Kong, J. (2022).

Artificial Intelligence based Liver Portal Tract Region Identification and Quan-

tification with Transplant Biopsy Whole-Slide Images. Computers in Biology

and Medicine, 150, 106089. https://doi.org/10.1016/j.compbiomed.2022.

106089

• Yu, H., Wang, F., Teodoro, G., Chen, F., Guo, X., Nickerson, J. and Kong,

J. Self-supervised semantic segmentation of retinal pigment epithelium cells

in flatmount fluorescent microscopy images. Under Review by Medical Image

Analysis.

• Guo, X., Yu, H., Rossetti, B., Teodoro, G., Brat, D., and Kong, J. (2018, July).

Clumped nuclei segmentation with adjacent point match and local shape-based

https://doi.org/10.1007/978-3-030-72437-5_2
https://doi.org/10.1007/978-3-030-72437-5_2
https://doi.org/10.1016/j.compbiomed.2022.105596
https://doi.org/10.1016/j.compbiomed.2022.105596
https://doi.org/10.1016/j.compbiomed.2022.106089
https://doi.org/10.1016/j.compbiomed.2022.106089
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intensity analysis in fluorescence microscopy images. In 2018 40th Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Soci-

ety (EMBC) (pp. 3410-3413). IEEE. https://doi.org/10.1109/EMBC.2018.

8512961

• Kauffman, R. C., Adekunle, O., Yu, H., Cho, A., Nyhoff, L. E., Kelly, M.,

Harris, J. B., Bhuiyan, T. R., Qadri, F., Calderwood S. B., Charles, R. C.,

Ryan, E. T., Kong, J., and Wrammert, J. (2021). Impact of immunoglobulin

isotype and epitope on the functional properties of Vibrio cholerae O-specific

polysaccharide-specific monoclonal antibodies. Mbio, 12(2), e03679-20. https:

//doi.org/10.1128/mBio.03679-20

• Kim, Y. K., Yu, H., Summers, V. R., Donaldson, K. J., Ferdous, S., Shelton,

D., Zhang, N., Chrenek, M. A., Jiang, Y., Grossniklaus, H. E., Boatright, J. H.,

Kong, J., and Nickerson, J. M. (2021). Morphometric analysis of retinal pigment

epithelial cells from C57BL/6J mice during aging. Investigative Ophthalmology

and Visual Science, 62(2), 32-32. https://doi.org/10.1167/iovs.62.2.32

• Li, H., Yu, H., Kim, Y. K., Wang, F., Teodoro, G., Jiang, Y., Nickerson, J. M.,

and Kong, J. (2021). Computational Model-Based Estimation of Mouse Eye-

ball Structure From Two-Dimensional Flatmount Microscopy Images. Trans-

lational Vision Science and Technology, 10(4), 25-25. https://doi.org/10.

1167/tvst.10.4.25

1.3 Outlines

The rest of the dissertation is organized as follows: Chapter 2 introduces the back-

ground knowledge of relevant research fields and significant studies in each field;

Chapter 3 presents my developed method for object motion analysis and evaluation

https://doi.org/10.1109/EMBC.2018.8512961
https://doi.org/10.1109/EMBC.2018.8512961
https://doi.org/10.1128/mBio.03679-20
https://doi.org/10.1128/mBio.03679-20
https://doi.org/10.1167/iovs.62.2.32 
https://doi.org/10.1167/tvst.10.4.25
https://doi.org/10.1167/tvst.10.4.25


7

results with multiple time-lapse fluorescence image datasets; Chapter 4 presents my

developed method for supervised biomedical image segmentation and evaluation re-

sults with a liver biopsy image dataset; In Chapter 5 and 6, I respectively present

methods utilizing semi-supervised learning and self-supervised learning for biomedical

image segmentation and evaluation results with a retinal pigment epithelium fluores-

cent microscopy image dataset; In Chapter 7, I conclude my research work and discuss

future directions.
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Chapter 2

Literature Review

This chapter provides a comprehensive review of the research work related to biomed-

ical image processing on image segmentation, object tracking, unsupervised learning,

generative adversarial networks, and data augmentation.

2.1 Deep learning

In recent decades, machine learning has become one of the most popular topics in

the field of computer science. Traditionally, the performance of machine learning al-

gorithms highly relies on the quality of extracted feature representations from data.

Therefore, the feature engineering has been a significant research topic in machine

learning for a long time [8]. Comparatively, deep learning algorithms, as a rising

branch of machine learning algorithms, perform feature extraction in an automated

way. They train multiple layers of artificial neural networks to extract latent repre-

sentations of inputs for downstream tasks. Deep learning algorithms have achieved a

great success in numerous application domains, including computer vision [9], natu-

ral language processing [10, 11], audio processing [12], and 3D point cloud processing

[13], and reshaped a large number of industries, such as medical diagnosis [14, 15],

autonomous driving [16], and traffic monitoring [17]. In some real-world applica-
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tions, supervised learning models trained with sufficient high-quality data present

dominant performance. However, deep learning models often suffer from inadequate

labeled training data due to ethical and economic constraints in many fields. In

such cases, unsupervised learning, semi-supervised learning, and weakly supervised

learning become promising solutions [18, 19, 20].

Self-supervised learning is a collection of unsupervised learning methods that ex-

tract training signals from enormous amounts of unlabeled data and build good rep-

resentations to facilitate downstream tasks. Based on how samples are organized,

self-supervised learning approaches can be roughly divided into two broad categories:

self-prediction and contrastive learning.

One typical set of self-prediction methods is to reconstruct the input signals us-

ing a bottleneck architecture that encodes a high-dimensional input into a latent

low-dimensional code [21, 22, 23, 24]. Besides the reconstruction, some methods

intentionally drop a part of the sample and predict the missing part of the sam-

ple given the existing part [25, 26, 27]. In these studies, some transformation (e.g.,

rotation, and jigsaw) of one data sample either maintains the original information

or follows the desired innate logic, which provides supervision without task-specific

labels [28, 29, 30].

Contrastive learning is a group of unsupervised representation learning methods

with inputs from different branches encoded as latent representations for the loss

calculation. The intent of contrastive learning is to associate representations of related

inputs and disassociate representations of unrelated inputs. Multiple studies have

suggested that a large number of negative representations can effectively boost the

contrastive learning performance [31, 32, 33]. To achieve this goal, some studies store

the representations of inputs in previous training epochs as negative representations

[31, 32, 34, 35]. In addition to storing negative representations in a memory bank,

other studies directly use negative inputs within the same training data batch [33,
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36, 37].

Generative Adversarial Networks (GANs) [38] have achieved an impressive success

in the field of image generation [39, 40, 41], image representation learning [42, 43],

and image translation[44, 45, 46, 47, 48]. In general, a GAN structure consists of

a generator and a discriminator. The discriminator is trained to judge if inputs are

real or fake, while the generator is trained to produce synthetic outputs similar to

real ones. For the supervised learning, the GAN-based method pixel2pixel provides

a general framework for a wide range of applications, such as style transfer, object

replacement, and background removal [44]. For the unsupervised learning, some

studies adopt cycle consistency loss to make generators retain structural information

[45, 46, 47]. In addition, CUT is another solution to the unsupervised learning by the

contrastive learning in the training process [48].

2.2 Image segmentation

Semantic segmentation and instance segmentation are two typical image segmentation

types that are frequently employed to support image analysis in biomedical research

[49, 50, 51, 52, 53]. While semantic segmentation algorithms assign a class label to

each pixel in an image, the goal of instance segmentation is to detect each object and

delineate it with a bounding box or segmentation mask [54].

Early semantic segmentation approaches rely on hand-crafted features and tradi-

tional classifiers, including boosting [55], support vector machine [56], and random

forest [57]. In the recent decade, deep neural networks have much advanced the devel-

opment of semantic segmentation. For example, Fully Convolution Network (FCN)

can create segmentation maps by replacing fully connected layers in classification neu-

ral networks [58, 59, 60] with deconvolution layers [61]. Built upon FCN, DeepLab

successfully improves its performance by a multitude of techniques, such as atrous
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convolution, conditional random field, and spatial pyramid pooling [62]. Additionally,

UNet is developed from FCN and adopts a symmetric encoder-decoder structure with

skip connections between the encoder and the decoder at each resolution level [63].

Due to this architectural change, it alleviates the information loss problem.

Instance segmentation applications have shown success with the Region Convolu-

tional Neural Network (R-CNN) and its derivatives (Fast R-CNN, Faster R-CNN, and

Masked R-CNN). The basic stream of R-CNN is to generate each proposal Region of

Interest (RoI), extract features from each RoI with CNN, evaluate each RoI with a

classifier, and adjust bounding boxes with a regressor [64]. Fast R-CNN accelerates

the processing speed by selecting RoI on feature maps instead of input images [65].

By introducing a Region Proposal Network (RPN) to dynamically generate proposal

RoI, Faster R-CNN further improves the efficiency [66]. In addition to the exist-

ing branches for classification and bounding box regression in Faster R-CNN, Mask

R-CNN adds a branch for predicting a segmentation mask [67].

2.3 Object tracking

Image object tracking is to track the movement of objects in time-lapse imaging data.

Traditional approaches used for tracking low-speed small objects usually consist of

two stages. In the first stage, objects in each image frame of an image sequence

are detected individually. When the objects are sparsely distributed and have high

contrast to the background pixels, multi-level threshold methods are effective [68].

Although watershed-based methods are useful for dealing with clumped objects, they

frequently suffer from the over-segmentation problem [69]. Methods based on the

gradient flow are good solutions when image gradient vectors within objects generally

point to their centers [70]. In the second stage, detected objects are modeled and

linked to recover motion trajectories by various strategies, such as nearest neighbor
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[71], meanshift [72], and dynamic programming [73]. As these approaches only utilize

the static object information with dynamic information omitted, their performance

declines when objects either are overlapped or move at a high speed.

Algorithms based on particle filtering can produce robust tracking results as they

contain and update dynamic information in object states [74]. In addition to the

commonly used Gaussian distribution model for biomedical images [75, 76], some

studies attempt to use parametric active contour models as an alternative to fit objects

with more complex shapes [77, 78, 79]. However, active contour models have a large

number of parameters and require an exponentially growing number of particles to

cover the state space, resulting in a worse computational performance.

2.4 Data augmentation

Image augmentation artificially creates training images by different processing ways

and their combinations. It significantly improves the performance of deep networks.

Image augmentation is also a critical component in pairwise learning, as it creates

views with the same semantics but in different appearances. In addition to such

typical image translations as random rotation, shifts, shear, and flips, Mixup trains

a neural network by the convex combinations of pairs of three examples and their

labels as augmentation [80]. CutMix improves regional dropout using a new strat-

egy where patches are cut and pasted among training images, and the ground truth

labels are also mixed proportionally to the area of the patches [81]. RandConv uses

a convolution operation with random parameters to create new samples. Intuitively,

the randomized convolutions create an infinite number of new domains with similar

global shapes but random local textures [82]. Copy-Paste takes advantage of segmen-

tation labels for instance segmentation and randomly pastes objects onto an image

to generate new samples [83]. Background-Augmentation generates saliency masks
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to separate background and foreground objects and includes multiple background

operation methods for contrastive learning frameworks [84].
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Chapter 3

Object Motion Analysis for

Time-Lapse Image Sequences

In this chapter, I present the developed object motion analyzing method and its

applications in multiple biomedical image datasets.

The analysis of fluorescence microscopy images has emerged as an effective av-

enue for a large spectrum of biological and cancer studies. Thanks to modern fluo-

rescence microscopy technologies, a high throughput time-lapse imaging data can be

routinely generated to characterize diverse biomedical objects of interest, including

cells, vesicles, proteins, and bacteria among others. As numbers of these objects in

most biomedical research are large and varying over time, it is infeasible to manually

analyze their motion patterns with sufficient accuracy and efficiency. Therefore, de-

velopment of efficient, accurate, robust, and automated object tracking methods is of

great importance to facilitate biomedical investigations.

Compared with two-stage tracking algorithms [71, 72, 73], particle filtering (PF)

based algorithms [75, 85, 76] can produce robust tracking results when objects move

at a high motion speed. However, due to the complex object shape and limited micro-

scopic image resolution, such object intensities may not always follow the Gaussian
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Figure 3.1: Illustration of fluorescent images with (A) object intensity following the
Gaussian model, (B) objects with sharp edges (yellow) and shifted center (red), and
(C) deformed objects due to motion blur.

distribution. Figure 3.1 illustrates cases when object intensity can and cannot be

modeled as a Gaussian distribution. Although some studies [79, 78, 77] overcome

such deficiency by leveraging parametric active contours for more precise object state

descriptions, they are vulnerable to large shape variations, especially in the 3D space.

Additionally, the larger number of parameters necessary for such models inevitably

requires an exponentially increasing number of particles (or random guess) to cover

the state space, resulting in a worse computational performance.

To address these problems, I generalize the traditional particle filtering approaches

in this work. Specifically, two different models are presented to improve the tracking

performance in non-Gaussian conditions. In addition, a new tracking management

strategy is designed to accelerate the model updating. With this new mapping step

after updating the particle states, the tracking accuracy can be improved. Experi-

ments on both artificial and real biomedical time-lapse fluorescence image data for 2D

and 3D space demonstrate the robustness and accuracy of the generalized method.
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3.1 Method

The tracking approach developed in this work is based on the particle filtering al-

gorithm. In this section, I first briefly recapitulate the particle filtering tracking

framework and introduce the object segmentation method used to distinguish objects

from background. Next, I present the realization of observation models and dynamics

models that are customized for biomedical fluorescent imaging applications. Finally,

I explain how the method is extended to multiple objects. As the methods for 2D im-

ages can be directly derived from those for 3D images, the description of the developed

approach focuses on the 3D case.

3.1.1 Particle tracking framework

Particle filtering algorithm is derived from the Bayesian estimation that infers knowl-

edge about the hidden object state xt with a sequence of noisy observations z1:t =

{z1, . . . ,zt}. A recursive formula to estimate the evolution of the hidden state is

given in [86]:

p(xt|z1:t) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (3.1)

where p(xt|z1:t) is the posterior density function, p(xt|xt−1) is the state transition

model, and p(zt|xt) is the likelihood distribution. The merit of the recursion represen-

tation is that is enables real-time processing so that it is not necessary to re-compute

previous data if a new observation is generated. With the probability density func-

tion p(xt|z1:t), an estimation of the state can be easily computed by such statistical

method as expectation and minimum mean squared error (MMSE) estimate.

One problem with such this approach, the optimal solution of Eq 3.1 is only solv-

able in some rare cases, such as Gaussian or grid-based modeling [87]. For practical

applications, particle filtering algorithm is frequently used by a feasible approxima-
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tion where the desired posterior density function is estimated with N random samples

and associated weights {x(n)
t , w

(n)
t }Nn=1:

p(xt|z1:t) ≈
N∑

n=1

w
(n)
t δ(xt − x

(n)
t ) (3.2)

These weights are updated and normalized recursively by sequential importance

sampling:

wn
t ∝

p(zt|x(n)
t )p(x

(n)
t |x(n)

t−1)

q(x
(n)
t |x(n)

t−1, zt)
w

(n)
t−1 (3.3)

where the importance function q(xt|xt−1, zt) describes the possibility of the distribu-

tion of the new state xt in the state-space. Therefore, the generation of particle x
(n)
t

follows the importance function.

3.1.2 Object segmentation

Segmentation is an essential step in the tracking analysis, as the initialization and

the updating of hidden states xt require that voxels of each object are accurately

assigned with a distinct label. One can either manually choose a threshold or use

Otsu algorithm [88] to calculate a data-driven threshold for simple segmentation.

Unfortunately, objects in fluorescence microscopy images are often so clumped that it

is too challenging to separate them with a single threshold. Therefore, an automated

object segmentation method that uses voxel gradient information is applied [70].

The segmentation method is based on the hypothesis that the fluorescent intensity

captured by each object of interest declines from its center to its periphery gradually.

Thus, the gradient f = ∇I = (fx, fy, fz) within an object points to the object center.

With this property, an image volume can be segmented by assigning the same object

label to all voxels pointing to the same object center. However, due to varying image

noise, directions of gradient vectors are deteriorated, leading to over-segmentation.

In order to obtain biologically meaningful results, the gradient field is regulated by
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gradient vector flow (GVF) [89], a non-irrotational external force field that does not

need any prior knowledge about image edges. The GVF field g = (u, v, w) of a 3D

fluorescence image volume I(x, y, z) can computed by solving the following Euler-

Lagrange equations:

µ∇2u− (u− Ix)(I
2
x + I2y + I2z ) = 0

µ∇2v − (v − Iy)(I
2
x + I2y + I2z ) = 0 (3.4)

µ∇2w − (w − Iz)(I
2
x + I2y + I2z ) = 0

where µ is a weight coefficient and ∇2 is the Laplacian operator. The reason to use

GVF algorithm to segment objects in this work is that GVF can be applied directly

without training and is resistant to image noise.

After computing the GVF field g, voxels are grouped into sub-volumes with

distinct object labels by finding paths in the GVF field. Given a voxel r(i) =

(x(i), y(i), z(i))T , its linked voxel r(i+1) is:

r(i+1) = r(i) + S(g(r(i)), ξ) + S(g(r(i)),−ξ)− (1, 1, 1)T (3.5)

where S(g) is a vector of step functions:

S(g, ξ) =


ε(u+ ξ)

ε(v + ξ)

ε(w + ξ)

 , ε(a) =


1, a ≥ 0

0, a < 0

Eq.3.5 suggests that the next voxel to be linked, i.e. r(i+1), can be found by moving

forward or backward along the corresponding direction according to the sign of the

GVF vector at r(i), i.e. g(r(i)) = (u(r(i)), v(r(i)), w(r(i))), when the absolute value of

at least one GVF field component is greater than or equal to ξ, i.e. |u| ≥ ξ or |v| ≥ ξ
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or |w| ≥ ξ. Otherwise, such linking process is terminated. Thus, the parameter ξ

controls the speed of linking process. This linking process is repeated until all voxels

are connected to some center voxels. Further, I assign the same but unique label

to all voxels connected with the same center voxel and consider the space by all

voxels sharing the same label a distinct sub-volume. By this approach, background

voxels would be linked to some center voxel for each sub-volume. To remove such

background voxels, Otsu algorithm [88] is used to compute a global threshold and

local thresholds for each sub-volume. Voxels with intensity either lower than the

global threshold or the corresponding local threshold would be labeled as zero, i.e.

the label for background.

3.1.3 Observation and dynamics models

To apply the particle filtering algorithm to time-lapse fluorescence microscopy images,

the observations are time series of gray-scale images of size A × B × C. Thus, ob-

servation zt = {zt(i, j, k) | i ∈ [1, A], j ∈ [1, B], k ∈ [1, C]} is interpreted as the voxel

intensity at location (i, j, k) and time t, while the state vector xt characterizes a vec-

tor of status properties of an object of interest at time t. As shown in Eq. 3.3, particle

filtering algorithm also requires computation of the likelihood function p(zt|x(n)
t ) that

assesses the appropriateness of particle x
(n)
t for a given observation zt, and the tran-

sition prior p(xt|xt−1) that describes the state evolution used for particle generation.

A common state space vector for fluorescence microscopy image is xt = (rt,vt, st, It),

where rt = (xt, yt, zt), vt = (ẋt, ẏt, żt), st = (σmax,t, σmin,t, σz,t, θt), and It denote

the spatial position, velocity, shape, and object intensity, respectively [74, 85]. This

model assumes that the contribution of the state xt to the observation intensity can

be well approximated by a Gaussian function, thus:

ht(i, j, k;xt) = It exp(−
1

2
mTRTΣ−1Rm) + bt (3.6)
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where bt denotes the estimated background intensity; Σ = diag(σ2
max,t, σ

2
min,t, σ

2
z,t)

is the covariance matrix; R = R(θt) is the rotation matrix on the x-y plane, and

mT = (i − xt, j − yt, k − zt). The likelihood function can be defined in multiple

ways, including Sum of Absolute Difference (SAD) [74], Normalized Cross Correlation

(NCC) [71], or other intensity-based similarity metrics.

However, due to the aggregated effect from diverse factors in the imaging acqui-

sition process, objects of interest in fluorescence microscopy images dot not always

fit the Gaussian model that assumes the voxel intensity varies smoothly and reaches

the peak at the object center. To address this issue, two models are designed for

non-Gaussian cases.

(1) Ellipsoid Model

Figure3.1B illustrates the transition between object foreground and background

could be abrupt and brighter voxels could deviate from the object center in fluores-

cence microscopy image data of real biomedical research. For such cases, a more

appropriate ellipsoid model is designed to fit 3D object voxel intensity distribution.

By this model, the volumes of objects from gray-scale image zt are extracted with the

segmentation method described in Section 3.1.2. The resulting object volumes are

denoted as G(zt). Next, each object volume gt ∈ G(zt) is fitted by an ellipsoid Et in

a way such that the overlap between volume gt and the ellipsoid is maximized. Since

most objects are noticed to have a small range along the z direction in a large number

of biomedical applications, the elevation angle is ignored. Thus, the ellipsoid Et has

two axes σmax,t, σmin,t parallel to the x-y plane, and the third axis σz,t perpendicu-

lar to the x-y plane. With the ellipsoid Et, I define the state vector xt = (rt,vt, st)

where rt = (xt, yt, zt), vt = (ẋt, ẏt, żt), and st represent the ellipsoid centroid, velocity,

and the shape vector, respectively. For shape characterization, st includes the half

principal axis length σmax,t, σmin,t, σz,t and the rotation angle θt around the z-axis.

The likelihood function computes the degree of overlap between the state vector
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specified volume and the segmented object volume. With the ellipsoid model, the

likelihood function is defined as:

p(zt|x(n)
t ) = max

gt∈G(zt)

∣∣∣gt ∩ E
(
x
(n)
t

)∣∣∣∣∣∣gt ∪ E
(
x
(n)
t

)∣∣∣ (3.7)

where E(x
(n)
t ) = {e(i, j, k;x(n)

t )} represents a 3D volume with an ellipsoid mask

specified by the state vector x
(n)
t . Additionally, the voxel value e(i, j, k;x

(n)
t ) can be

either 0 or 1 determined by the formula modified from Eq.3.6:

e(i, j, k;x
(n)
t ) = ϵ(mTRTΣ−1Rm− 1), (3.8)

where ϵ(·) is the unit step function.

Meanwhile, I assume that changes in object motion and shape are independent.

Thus, the transition prior can be factorized as:

p(xt|xt−1) = p(yt|yt−1)p(st|st−1), (3.9)

where the motion vector yt = (xt, ẋt, yt, ẏt, zt, żt).

Further, the transition prior for the motion vector is given by:

p(yt|yt−1) = N (Pyt−1, q1) (3.10)

where N (µ,Σ) is the normal distribution with mean µ and covariance matrix Σ. The

process transition matrix P is defined as following:

P =


P ′ 0 0

0 P ′ 0

0 0 P ′

 , P ′ =

1 1

0 1

 .
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Similarly, the transition prior for the shape vector is given by another normal distri-

bution:

p(st|st−1) = N (st−1, q2) (3.11)

In Eq. 3.10 and 3.11, q1 and q2 represent the noise level for motion and shape,

respectively. Note both parameters can be tuned during experiments.

(2) Voxel-Based Model

Although the ellipsoid model can be used to characterize objects with non-Gaussian

intensity distribution, it still assumes objects are approximately ellipsoidal by shape.

As presented in Figure 3.1C, objects from images of real biomedical studies can be

elongated in shape due to motion blur. To enable particle filtering algorithm for such

cases, a Voxel-Based (VB) model is designed to accommodate such shape aberra-

tions. Instead of using a shape vector for shape representation, VB model records

voxel coordinates of an object associated with a particle based on its state vector.

The resulting state vector is defined as xt = (rt,vt, Ct) = (yt, Ct) where Ct denotes

the object voxel coordinate set. Therefore, the likelihood function is given as:

p(zt|x(n)
t ) = max

gt∈G(zt)

∣∣∣gt ∩ C
(n)
t

∣∣∣∣∣∣gt ∪ C
(n)
t

∣∣∣ . (3.12)

Note that I only consider the change of motion vector yt, and spatial shift of the

coordinate set Ct for the transition prior computation. Thus, spatial coordinate set

cab be updated by the following equation:

Ct = Ct−1 + rt − rt−1 (3.13)

Therefore, unlike the factorization Eq.3.9 in the ellipsoid model, the transition
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Algorithm 1 Multiple object tracking management framework
Input: time lapse image volumes {zt}, t ∈ [1, T ]
Output: object state sets {xt,k| k ∈ [1,Mt], t ∈ [1, T ]}
1: Initialize state set {x1,k} with z1

2: for t = 2 : T do
3: Extract states {xt,k} from zt and set their labels to 0
4: for j = 1 : Mt−1 do
5: Generate particles {x(n)

t,j } according to the state xt−1,j

6: Compute weight πn
t,j for each particle x

(n)
t,j

7: Normalize weights such that
∑N

n=1 π
n
t,j = 1

8: Compute the estimated state x′
t,j

9: end for
10: Map labels of estimated states {x′

t,j} to detected states {xt,k}
11: end for

prior in this case is simplified as:

p(xt|xt−1) = p(Ct|Ct−1) = p(yt|yt−1) (3.14)

As the developed VB model does not take into account shape information, I next

present a tracking management strategy developed to replace the shape information

update missing in the VB model.

3.1.4 Multiple object tracking management

I have developed an automatic tracking management process for multiple object

tracking problems. This strategy includes four steps: initialization, prediction, updat-

ing, and mapping. The complete workflow is illustrated in a diagram in Figure 3.2.

Note that all steps but initialization, can be executed recurrently, thus leading to

a reduced computational complexity. An algorithmic description of the developed

approach is presented in Algorithm 1. In addition, I provide step details as follows.

(1) Initialization: In this step, global parameters are initialized: particle num-

ber N , noise levels q1 and q2. A large N in general results in a higher tracking
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Figure 3.2: Overall schema for multiple object tracking management method. Raw
3D images (first row) are first processed to assign each object of interest a unique
label (second row). Labels are further modified by the tracking process (remaining
rows) such that each object of interest retains the same unique label in temporal
imaging data. For tacking process, the estimated states are represented in red texts,
while produced particles are in blue.

precision but at a higher computational time cost. Additionally, a higher noise level

helps tracking drastic changes in object states, but decreases the resistance to inter-

ference when object density is high. In this step, the time lapse image data zt is

segmented as a temporal volume set {G(zt)} by the gradient-based algorithm pre-

sented in Sect. 3.1.2. I denote the number of volume in G(zt) as Mt = |G(zt)|.

Therefore, states x1,1,x1,2, . . . ,x1,M1 are extracted from the first image volume when

t = 1. In addition to the basic information of an object, i.e. location, speed, intensity
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among others, a state vector xt,k contains an object label for identification of the

same object traversing image volumes at different time points.

(2) Prediction: In the prediction step, particles {x(n)
t,k | n ∈ [1, N ], k ∈ [1,Mt−1]}

are generated according to Eq. 3.9, Eq.3.10, and Eq.3.11 when the ellipsoid model is

used. When VB model is adopted, Eq. 3.10, Eq.3.13, and Eq.3.14 are used for particle

generation instead. As each state has N particles, the total number of particles in

each iteration is N ×Mt−1.

(3) Updating: The likelihood of each particle is updated by Eq. 3.7 and Eq. 3.12

when the ellipsoid model and VB model are used respectively. I use the likelihoods as

particle weights πn
t,k and normalize them with

∑N
n=1 π

n
t,k = 1. Therefore, the estimated

state is computed by:

x′
t,k =

N∑
n=1

πn
t,kx

(n)
t,k

(4) Mapping: Finally, the relationship between estimated state x′
t,k and detected

state xt,k is characterized by the likelihood function. For each estimated state x′
t,j, I

compute its likelihood with all detected states {xt,k} and assign the label of the j-th

state in frame t − 1 to the state with the highest likelihood in frame t. Note when

the highest likelihood is less than a specified threshold D, such labeling process does

not occur. Objects without any matched estimated state are treated as disappearing

objects, while the ones without any matched detected state are treated as newly

emerged objects with unused labels assigned.

3.2 Results

To validate and assess the developed tracking method performance, I apply the com-

plete and automated workflow to multiple time-lapse fluorescence microscopy image

data sets, including one artificial dataset with known ground truth, as well as real

biological image data sets from two time-lapse microscopy studies on bacteria motility
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Figure 3.3: Experimental results of artificial data with left to right and top to bottom
time order. Trajectories are color coded and overlaid on original images. Note that
object 1 and 2 are overlapped in frame 3 and 4. Additionally, object 3 is split into
two child objects, i.e. object 4 and 5, from frame 17. In both cases, the developed
method can track objects correctly.

and 3D lung cancer spheroid analysis.

3.2.1 Validation with artificial data

My developed tracking approach is first tested and validated with a synthetic 2D

image data set with each image of 1000×1000 pixels in size. This data set is generated

by artificially initializing object states, updating states with the Gaussian model, and
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producing individual temporal image frames with evolving object states and noise

background. In the data set, 10 objects are pruduced initially with speed subject to a

uniform distribution between 8 and 11 pixels per frame. Each object can split into two

child objects with probability 0.02 in each frame. Parameters of the approach with

the ellipsoid model are fixed with the following values: N = 200 for each object, q1 =

(10, 1, 10, 1), and q2 = (0.5, 0.5, 0.2). As objects in synthetic images are sparse and

move relatively slow, almost all objects in all frames are correctly tracked in reference

to their ground truth, with the overall tracking accuracy 99.7%. Additionally, the

Root Mean Square Error (RMSE), a frequently used metric computed with the ground

truth and estimated object positions, is 1.91±0.32 for those correctly tracked objects.

Figure 3.3 demonstrates typical tracking results where motion trajectories of objects

are illustrated. When objects are split, both object and its parent trajectories are

represented by forked chains in one color. Note that in Figure 3.3 both motion

crossed and proliferated objects are correctly tracked. For example, object 1 and 2

are partially overlapped in frame 3 and 4. However, the developed method manages

to track them after their collision. Additionally, object 3 is an example where one

object is proliferated into two child objects, i.e. object 4 and 5, from frame 17.

The trajectories of the resulting two child objects are linked to the trajectory of

object 3, clearly demonstrating their pedigreed relationship. All result above suggest

the effectiveness, robustness, and positioning accuracy of the developed approach in

simple cases where objects are sparse and present a good contrast to the background.

3.2.2 Bacteria motility analysis

I further test the developed method with a real time-lapse 2D fluorescence image

data set on the motility of the bacterial pathogen Vibrio cholerae after treatment with

bacteria-specific motility inhibiting monoclonal antibodies. In this experiment design,

the inhibition of bacteria average speed is considered as the metric of bacteria vitality.
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Figure 3.4: (A) A typical raw image frame from a data set for bacteria motility study;
(B) Bacteria segmentation results; (C) Tracking result demonstrated with all bacteria
trajectories overlaid on the image.

This is inversely proportional to the potential protective efficacy of cholera vaccines

that aim, in part, to induce antibodies able to inhibit bacterial motility. With a high-

speed confocal microscope, motility of bacteria is observed at 100ms intervals for five

seconds, with five minutes post treatment on six types of antibodies in various dose

concentrations. The resulting data set consists of 23 image sequences. Each includes

50 temporal image frames of 512×512 pixels in image resolution. Figure 3.4A presents

an image frame of a typical image sequence that captures both active bacteria with

high speeds and in elongated shape, as well as slow-moving bacteria with vitality

significantly reduced by vaccine. I have applied the developed tracking method with

the VB model to bacteria image sequences with following empirical parameter setup:

N = 200 per object, and q1 = 2. Figure 3.4B presents the bacteria segmentation result

of Figure 3.4A. In Figure 3.4C, bacteria tracking results are illustrated. Specifically,

the motion trajectories of bacteria are plotted in colors. For each bacterium, its

trajectory is visualized from the frame of its occurrence to the current example frame

shown in Figure 3.4A. Additionally, I present the dynamic tracking results frame by

frame in Figure 3.5 where each bacterium tracking result over eight temporal frames

is illustrated. In particular, I demonstrate one specific bacterium motion tracking
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Figure 3.5: Illustration of the tracking result dynamics of a 2D bacteria motility
dataset. With the image inset, one typical bacterium from a local region is enlarged
for its trajectory demonstration in detail.

trajectory in an inset.

I quantitatively assess the developed track method by comparisons of manually

annotated and machine produced bacteria trajectories from a validation set. The

validation set includes 230 bacteria randomly selected from random image sequences

at each time point. Two metrics, i.e. precision and recall, are used to evaluate the

tracking performance: Recall = L1

L3
, Precision = L1

L2
, where L1, L2, and L3 represent

the number of frames with correct tracking results, total number of frames tracked by

the developed method, and the number of frames by human annotations, respectively.

To assess the performance of the developed method, I apply the classical particle

filtering method [75], the particle filtering method improved by data-dependent impor-

tance sampling [85], and the developed method with two developed models to bacteria

image sequences. The particle numbers for all methods are set to N = 200 per object.

In the developed models, I empirically set q1 = (2, 0.5, 2, 0.5) and q2 = (0.2, 0.2, 0.2).

The validation set includes 50 low and 50 high speed bacteria randomly selected from

image sequences at each time point. The cutoff value between low and high speed
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Figure 3.6: (A) Tracking Recall grouped by bacteria motion speed; (B) Tracking
Precision grouped by bacteria motion speed; (C) Distribution of bacteria trajectory
length for low and high speed bacteria populations with speed threshold of 3 pixels
per frame.

populations is three pixels per frame. I compute the trajectory Precision and Recall

for bacteria populations with low and high speed and present tracking results from

different methods in Table 3.1. For the low speed bacteria population, all methods

present good performance with minor difference. However, the developed method,

especially with the VB model, is superior to other two state-of-the-art methods for

tracking the high speed population.

To better understand behaviors of the developed method, I further analyze track-

ing Recall and Precision of 460 randomly selected individual bacteria using the de-

veloped VB model. As shown in Figure 3.6A and Figure 3.6B, it is noticeable these

performance metrics decrease as the bacteria motion speed increases. In the mean-
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Figure 3.7: Comparison of trajectory Recall for low and high speed bacteria popula-
tions in the 2D validation set. (A) Distribution of trajectory Recall; (B) Scatter plot
of trajectory Recall. Note the unit of trajectory length is frame number, and size of
each dot represents number of bacteria samples.

Figure 3.8: Comparison of trajectory Precision for low and high speed bacteria popu-
lations in the 2D validation set. (A) Distribution of trajectory Precision; (B) Scatter
plot of trajectory Precision. Note the unit of trajectory length is frame number, and
size of each dot represents number of bacteria samples.

while, I investigate the trajectory length distribution for high and low speed bacteria

with the speed cutoff value of three pixels per frame. Note that in Figure 3.6C most
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Table 3.1: Comparison of trajectory Precision and Recall for bacteria of different
motion speeds.

Population Method Precision Recall

mean std mean std

High speed

Classical [75] 0.6338 0.1415 0.7393 0.1699
Improved [85] 0.7327 0.1577 0.7410 0.1738

Ellipsoid model 0.7768 0.1904 0.7586 0.2173
VB model 0.8032 0.1679 0.7970 0.1698

Low speed

Classical [75] 0.9450 0.1177 0.9647 0.0626
Improved [85] 0.9544 0.0784 0.9670 0.0596

Ellipsoid model 0.9591 0.1076 0.9615 0.0961
VB model 0.9594 0.0575 0.9562 0.0964

high speed bacteria are captured in less than 10 image frames, with an average of

6.6 frames. These analyses explain why the trajectory Recall and Precision of most

high speed bacteria tend to be substantially deteriorated even if there is only one

erroneously tracked image frame. Additionally, the comparisons between low and

high speed bacteria populations by Recall and Precision are presented in Figure 3.7,

and Figure 3.8, respectively. Note that Recall and Precision of low speed bacteria

are mostly larger than 0.9, while these two metrics of high speed bacteria are mostly

larger than 0.66.

3.2.3 Tumor spheroid study

For further method validation, I test the developed method with 3D time-lapse imag-

ing data from an in vitro experiment investigating 3D spheroid invasion in the 4T1

mouse mammary carcinoma cell line. In vitro spheroids are formed by centrifug-

ing 3000 4T1 murine cancer cells in a round bottom, ultra-low attachment 96-well

plate (Corning). After 72 hours, compacted spheroids are collected and embedded in

3.0 mg/ml rat tail collagen type-I (Corning) in a µ-Slide 8 well chamber slide (Ibidi).

Images are taken every 10 minutes for 16 hours post-embedding using a Leica SP8

confocal microscope at 10X magnification. Time-lapse data show that these cancer
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cells invade with different behaviors, i.e. either collectively (in chain-like cellular

protrusions) or individually. Cancer cells moving in collective chains are termed “in-

chain” cells, while the invading cells not in chains are termed “single” cells. Through

quantitative analyses, distinct moving patterns for each cancer cell population are

supposed to be characterized.

The data set for analysis in this study consists of four longitudinal 3D image

sequences acquired at 93 time points. Each image volume at one time point includes

24-32 image planes of 512× 512 pixels in resolution. Figure 3.9A presents a x-y slice

of a typical RGB-model fluorescent image volume at a time point. For computation

convenience, each RGB 3-channel image is transformed to a gray-scale image. As

cells in this study are captured by fluorescent signals from the green channel, I first

extract the green channel from the original images and use it as the derived gray-scale

image. Note that in Figure 3.9B the background surrounding the central spheroid

is noisy and has similar intensity values to that of cancer cells, resulting in poor

algorithm performance. To address this problem, a feasible mapping formula is used

to effectively distinguish cells from background: Igray = −0.5r + g − 0.5b, where r,

g, and b represent red, green, and blue channel, respectively. The enhanced image is

demonstrated in Figure 3.9C.

In this study, I are only interested in tracking and characterizing cells invading

out of the central core of the spheroid. Thus, a mask is implemented to remove cells

of non-interest within the core of the spheroid before the tracking process, which

enormously increases the computation speed. For automatic identification of such

mask, the resulting gray-scale image is converted to a binary image with thresholding

(Figure 3.9D), followed by morphological algorithms to fill holes, remove outliers

(Figure 3.9E) and smooth the resulting mask contour (Figure 3.9F). Figure 3.9G

presents the rough cell segmentation result of Figure 3.9C where each color coded

block contains a cell of interest and its surrounding background. Figure 3.9H presents
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Figure 3.9: 2D x-y cross section views of preprocessing and segmentation results for
a 3D tumor spheroid dataset. (A) Original image; (B) Gray-scale green channel; (C)
Improved gray-scale image by mapping in the RGB color space; (D) Binary image
after thresholding; (E) Binary mask with holes filled and outliers removed; (F) Final
mask after mask contour regulation; (G) Rough segmentation result; (H) Refined
segmentation result with a global and a local Otsu threshold applied to each block;
(H) Final segmentation result with removed mask-specified spheroid.

the refined segmentation result after a global and a local Otsu thresholding are applied

to each block. Next, with the spheroid mask illustrated in Figure 3.9F, the volume

of the core of the spheroid is removed from tracking analysis. The final segmentation

result is illustrated in Figure 3.9I. As this data set captures cancer cells in 3D, I present
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Figure 3.10: (A) 3D view of the preprocessed tumor spheroid image volume; (B) 3D
segmentation result of the 3D image volume.

a 3D view of a typical 3D image volume before and after the segmentation analysis in

Figure 3.10A and Figure 3.10B, respectively. After segmentation, all cells of interest

are uniquely labeled at each time point. Next, the developed tracking method with

the ellipsoid model is applied to the time-lapse 3D labeled imaging volumes with the

following empirical parameter setup: N = 500 per object, q1 = (5, 1, 5, 1, 1, 1), and
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Figure 3.11: Cancer cell tracking results of a 3D tumor spheroid dataset presented in
three different views. (Top) 3D view; (Middle) y-z view; (Bottom) x-y view.
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Figure 3.12: 3D view of tracking results with 3D cancer cells color coded by motion
speed. The frame interval for visualization is five for enhanced motion effect. The
figure insets present enlarged details sub-volumes capturing representative “in-chain”
and “single” cells.

q2 = (2, 2, 0.5, 0.2). Figure 3.11 demonstrates 3D views of the tracking result of a

longitudinal image data where all cell trajectories are recovered.

To assess the tracking performance, I generate the validation set with 200 cells of

interest by the same strategy as Section 3.2.2. After manually checking trajectories

of “in-chain” cells and “single” cells shown in Figure 3.11, Note that, in general, the

former population moves radially outward from the spheroid center to peripheral areas

at a moderate speed, while the latter group moves either at a near to zero speed or at a

relatively high speed with frequently varying directions, leading to zig-zag trajectories.

Typical examples of “single” cells, typically with z-axis value z > 20, can be clearly

observed from the y-z view in Figure 3.11. Additionally, Figure 3.12 visualizes cells

of interest with color codes representing motion speed. From this figure, it is salient

that spatial invasion patterns of “in-chain” and “single” cells are different. Insets of
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Table 3.2: Comparison of trajectory Precision and Recall for cancer cells of different
populations.

Population Method Precision Recall

mean std mean std

Single
Classical [75] 0.9014 0.1114 0.8973 0.1011
Improved [85] 0.9190 0.0909 0.9135 0.0923

Ellipsoid model 0.9342 0.0794 0.9097 0.0969

In-Chain
Classical [75] 0.9364 0.0596 0.9519 0.0347
Improved [85] 0.9388 0.0573 0.9592 0.0402

Ellipsoid model 0.9578 0.0451 0.9584 0.0314

each 3D plot enlarge subvolumes that capture representative cell chains color coded

in purple for moderate speed. These subvolumes also capture some representative

“single” cells in cyan and yellow, suggesting low and high motion speed, respectively.

Table 3.2 presents quantitative evaluation of tracking quality with the metrics defined

in Section 3.2.2. Note that both Precision and Recall for cells moving at different

speed levels are promising, suggesting the efficacy of the developed approach for

cell invasion automatic tracking and quantitative motion pattern characterization in

cancer research.

3.3 Summary

In this work, I extend the particle filtering approach by developing non-Gaussian

models and the corresponding tracking management strategy. With a gradient-based

segmentation algorithm, objects in image sequences are extracted and modeled by

states. The evolution of these states can be used to recover object motion trajecto-

ries and quantitatively characterize object motion behaviors. Experiments on both

artificial and real biomedical time-lapse fluorescence image data for 2D and 3D space

demonstrate the robustness and accuracy of the generalized approach.
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Chapter 4

Biomedical Image Segmentation with

Supervised Learning

In this chapter, I present the developed supervised semantic segmentation method

and its application in detection of liver portal tract regions and diagnosis of liver

fibrosis stage.

Detection of early-stage fibrosis in transplant liver biopsies is important for pre-

dicting disease progression and guiding medical management [90]. Known as a strong

predictor of liver disease progression and mortality, liver fibrosis can be captured

by multiple non-invasive medical imaging techniques, such as computed tomogra-

phy (CT), magnetic resonance elastography (MRE), and transient elastography (TE)

[91]. For accurate liver fibrosis staging, however, the histopathologic examination of

liver biopsy samples remains the “gold standard” for liver fibrosis assessment [90]. Al-

though numerous histopathological staging systems have been utilized for liver fibrosis

evaluation in current clinical practice, including Knodell, Metavir, Ishak, and Scheuer

systems, only manual reviews or semi-quantitative evaluations are conducted by these

staging systems, resulting in large inter- and intra-observer variability [92, 93, 94].

To reduce such variations, evaluation methods based on machine learning based
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algorithms, such as random forests, K-nearest neighbors, and support vector ma-

chines, have been developed to provide objective diagnostic tools for liver fibrosis

staging [95, 96, 97]. In contrast to these conventional machine learning methods,

deep learning has emerged as a powerful tool for diverse biomedical image processing

studies due to its great success across different image modalities [98]. Unlike the tra-

ditional machine learning methods, deep learning methods require no manual feature

engineering and can support multiple imaging modalities for liver fibrosis diagnosis,

including CT [99, 100], MRI [91], and ultrasonography images [101, 102]. The result-

ing image features and other clinical demographic information (e.g., gender and age)

can be leveraged for an integrated prediction analysis by multiple fully connected

layers attached to the convolutional neural network backbone.

However, few studies have been carried out for deep learning based fibrosis analysis

with the "gold standard", i.e., liver biopsy histopathology whole-slide images (WSIs).

Although a study used a pre-trained AlexNet [58] to predict the liver fibrosis stage,

its input images were acquired from second-harmonic generation microscopy [94]. A

modified UNet architecture was also utilized to detect portal tract regions in mouse

liver biopsy histopathology WSIs, but no comparison experimental result was given

[103]. In the prior work [90], researchers have manually delineated portal tract regions

in liver biopsy images and demonstrated that the resulting quantitative portal tract

fibrotic percentage and average portal tract area of portal tract regions are correlated

with the liver fibrosis stage made by domain experts. However, such results are subject

to intra- and inter-observer variability due to the manual annotation process [92].

Therefore, the development of fully automated and accurate segmentation algorithms

for liver portal tract regions is an essential step to improve the evaluation consistency.

To address this problem, a Multiple Up-sampling and Spatial Attention guided

UNet model (MUSA-UNet) is developed to segment liver portal tract regions in whole-

slide images of liver tissue slides. To enhance the segmentation performance, depth-
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wise separable convolution, the spatial attention mechanism, the residual connection,

and multiple up-sampling paths are adopted in the developed model. The network

is trained with image patches and applied to liver biopsy WSIs. The segmentation

performance evaluation and clinical correlation analysis demonstrate the efficacy of

the developed method.

4.1 Method

The overall schema of the developed method is presented in Figure 4.1A. Images in

the dataset are scanned with stained liver biopsy sections and utilized for training

the developed deep neural network. With network prediction results and human

annotations, I quantitatively evaluate the network performance by statistical analyses.

4.1.1 Deep neural network architecture

To make a full use of image information for segmentation, I have developed a Multiple

Up-sampling and Spatial Attention guided UNet model (MUSA-UNet) that leverages

the UNet architecture as the building block. The UNet architecture is known as a

symmetric encoder-decoder framework that can effectively differentiate foreground

pixels from the background by learning and incorporating local features from the

higher resolution images and global information from the lower resolution images

[63]. However, the UNet model demonstrates a noticeably high false-negative rate by

the experiments. To enhance model performance, two new mechanisms are designed

to specifically address this problem.

(1) I have developed a new Residual Spatial Attention (RSA) block to replace

the sequence of two convolution layers in the original UNet for enhanced network

performance. The designed RSA block consists of a residual network embedded with

one Depth-wise Separable Convolution (DSC) and one Spatial Attention (SA) module.
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Figure 4.1: Overall schema of the developed model. (A) Tissue sections were fixed,
embedded, stained, and scanned for WSI generation. Resulting WSIs with human
annotations are provided to the developed MUSA-UNet for portal tract segmenta-
tion and statistical analyses; (B) I present the structure of the developed RSA block
that substitutes cascaded convolutional layers in the traditional UNet architecture. It
primarily consists of one Depth-wise Separable Convolution (DSC) block and one Spa-
tial Attention (SA) module connected by a residual network; (C) The developed deep
learning neural network MUSA-UNet for image segmentation concatenates features
from all decoders. As there are multiple paths providing lower resolution features
from decoders to the output layer, such a Multiple Up-sampling Path (MUP) mech-
anism alleviates the false negative problem noticeable in the original UNet model in
this study.

The RSA block architecture is presented in Figure 4.1B. Specifically, the output of a

RSA block can be formulated as follows:

RSA (x) = SA (DSC (x)) + x (4.1)

where x is the input feature array; SA(·) and DSC(·) are the spatial attention and

the DSC module, respectively.
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A DSC module has been adopted to divide a regular convolution layer into a depth-

wise and a point-wise convolution layer for parameter number regulation [104, 105].

It has been shown that the performance of a DSC module is similar to that of the

regular convolution layer in UNet architecture [106]. I replace the regular convolution

modules with DSC modules in the RSA model to reduce model parameter number

and accelerate training speed.

Additionally, SA modules are adopted to further improve network performance.

Both SA and Channel Attention (CA) modules are originally proposed as components

of the Convolutional Block Attention Module (CBAM) [107], a lightweight attention

method. As the training and testing input image sizes can be different, the CA module

barely improves or even degrades the segmentation performance in tests. Therefore,

only the SA module is leveraged in the developed model. The output of the SA

module can be represented as SA(x) = MSA(x) ⊗ x, where ⊗ denotes element-wise

multiplication, and MSA(x) is the 2D spatial attention map. To enable the element-

wise multiplication, I broadcast the spatial attention map along the channel dimension

to match the tensor size. The spatial attention values are determined by the average-

and max-pooled features across channels. Specifically, the average- and max-pooled

features are concatenated and convolved in a convolution layer:

MSA(x) = σ(f 7×7([AvgPool (x) ;MaxPool (x)])) (4.2)

where σ(·) denotes the sigmoid function and f 7×7(·) denotes a convolution operation

with kernel size of 7× 7.

I further use the residual connection to encapsulate the DSC and SA modules

for direct information forward-feeding and back-propagation paths in the developed

deep network. Originally adopted to improve the image classification [108], residual

connection block has shown its promising efficacy for the biomedical image segmen-
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tation tasks [51, 109]. Given the original network is denoted as H(x), its residual

representation is H(x) + x. The residual connection in the developed RSA block can

improve the network performance without extra convolution layers.

(2) The second primary method development contribution is that I concatenate

features from all decoders at different resolution levels as input to the output layer

(i.e., orange arrows in Figure 4.1C. In addition to features at the highest image level,

the feature arrays in the lower image resolutions are leveraged in the developed model

by convolving with a 3×3 filter for feature dimension reduction. The reduced features

are resized to the highest image resolution by the bilinear interpolation before they are

concatenated at the output layer. In contrast to FCN utilizing features from encoders

[61], the developed model uses features from decoders. This design enables the output

layer to make full use of multi-scale features and avoid the false negative problem with

only a negligible increase in the parameter number. As there are multiple signal paths

that lower resolution features from decoders can follow to reach the output layer in

the model architecture, such a Multiple Up-sampling Path (MUP) mechanism is an

effective solution to remedy the false negative problem observed in the UNet model

in this study.

The architecture of the developed MUSA-UNet model is presented in Figure 4.1C.

Specifically, the MUSA-UNet consists of one input layer, four encoder-decoder pairs,

and one output module. The encoders gradually decrease the image resolution by

max-pooling layers while the decoders increase the image resolution by bilinear inter-

polation layers. In addition to the primary information encoding and decoding path,

there are skip connections between the encoder output and the decoder input at each

spatial resolution level. Therefore, there are two information sources provided to each

decoder, one from a lower resolution decoder and another from the encoder output at

the same resolution level. Note the feature representations from the lower resolution

decoder are up-sampled and convolved before they are concatenated with the encoder
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output from the same resolution level. The outputs from distinct resolution levels are

convolved and up-sampled before they are concatenated as the input to the output

module.

4.1.2 Model implementation

Due to the overwhelming size of histopathology WSIs and the limited Graphical Pro-

cessing Unit (GPU) memory size, deep learning models cannot be practically trained

or tested on arbitrarily large images to achieve seamless segmentation. Therefore, I

divide each WSI into image patches, apply trained models to individual patches, and

assemble the patch-wise results.

A straight-forward partitioning strategy is to divide each WSI by a grid pattern. In

that way, the segmentation output image can be produced by patch-wise segmentation

results in the same spatial order of input image patches. However, the performance

of this strategy could be degraded by the image patch border effect. Note that the

prediction results of the same region in patches of varying sizes can be inconsistent,

especially for those regions near patch borders. As deep learning analyses heavily

depend on convolution operations and produce output patches of the same size as the

input patches, padding methods for convolutions on pixels close to image borders are

required [110]. The prediction results of pixels near patch borders are subject to the

padded pixels and, therefore, can deviate from the ground truth.

To mitigate such image border effect, a patch partitioning strategy is adopted to

support a seamless semantic segmentation [63]. Its overall schema is presented in

Figure 4.2. First, an input WSI is divided by a regular grid pattern. To predict

a target image patch in the grid, its region scope is extended before provided to

the network MUSA-UNet for image segmentation. In Figure 4.2, the image regions

denoted by dotted lines are the target image patches, while those in solid boundaries

are extended counterparts. The margin for such an image patch expansion is set in
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Figure 4.2: The patch partitioning strategy for seamless semantic segmentation in
a large-scale image. To predict target patches in dotted lines, these image patches
are extended before they are provided to the deep learning network for segmentation.
The resulting segmentation output images are cropped back to the original patch size
before the segmentation map aggregation.

such a way that prediction results of the original image patches are not influenced

by padded pixels. After segmentation analysis by the deep learning network, I retain

the segmentation result of the interior regions associated with the original image

patch region and assemble such results for the whole-slide segmentation maps by

their spatial positions.

In the testing stage, only image patches with enough foreground tissue (i.e., fore-

ground patches) are expanded and provided to the trained network. Those with no

significant tissue presence are skipped for the segmentation analysis, and the corre-

sponding pixels in the resulting segmentation map are set to zero. For foreground

patch recognition, each image patch is converted from the RGB to HSV color space

and count the number of foreground pixels with a saturation value larger than 0.2.

Those with more than 1% foreground pixels are considered as foreground patches. To

accelerate the testing speed, the image resolution is reduced by 16 times before the
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foreground detection approach is applied in practice.

Note that the strategy allows parallel computing on multiple GPUs. I implement

codes in the Python 3.6 programming language and PyTorch 1.7.1 machine learning

framework [111] and run programs on two NVIDIA Tesla K80 GPUs. Balancing the

tradeoff between network efficacy and computational efficiency, I design five image

resolution levels in the developed model, with 64, 128, 256, 512, and 1024 filters

from the highest to the lowest level, respectively. The loss function is the binary

cross-entropy that can effectively reflect the pixel-wise difference between label and

prediction. The model is trained with the Adam optimization algorithm [112] for 40

epochs. The initial learning rate is set as 0.001 and the learning rate decay is 0.1

per ten epochs. In the testing stage, each image patch has 1, 000 × 1, 000 pixels,

with an extended margin width of 140 pixels. Thus, each extended image patch has

1, 280× 1, 280 pixels by size.

4.1.3 Portal tract guided fibrosis quantification

As reported in the prior study [90], portal tract fibrotic percentage (i.e., portal tract

fibrosis%) and average portal tract area derived from portal tract regions are corre-

lated with Scheuer fibrosis staging. In this study, the Aperio ImageScope Positive

Pixel Count (PPC) algorithm (Aperio Technologies Inc., Vista, CA) is applied to

portal tract regions for quantification of the fibrous component in each portal tract

by blue hue in the Masson’s Trichrome stain. After the fibrous components from the

portal tract regions are measured by the PPC algorithm, the portal tract fibrosis%

and the average portal tract area are computed. The portal tract fibrosis% is calcu-

lated as the proportion of the total fibrosis area in the total portal tract region area,

while the average portal tract area is computed by dividing the total portal tract area

by the portal tract region number in a slide. I further investigate the correlation of

1) Scheuer stage scores and average fibrosis areas; and 2) Scheuer stage scores and
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portal tract percentages (i.e., portal tract%), respectively. The average fibrosis area

is computed by dividing the total fibrosis area by the portal tract number in a slide,

while the portal tract% is the proportion of the total portal tract area in the total tis-

sue area in a slide. The total tissue area is computed by subtracting the background

pixel number from the total pixel number in an image.

4.1.4 Statistical analysis

In this study, statistical analyses are performed with Python 3.6 and MATLAB

R2021a (MathWorks Inc., Natick, MA). For the segmentation performance evaluation,

precision, recall, F1 score, accuracy, Jaccard index, and Fowlkes–Mallows index are

computed. For performance comparisons, the paired sample t-test is used to deter-

mine the statistical significance of differences in these metrics. Correlations between

fibrosis stage and portal tract measures (including portal tract fibrosis%, average

portal tract area, average fibrosis area, and portal tract%) are evaluated by linear

regression and Spearman correlation analysis. The paired sample student’s t-test is

used to determine the statistical significance of the calculated Spearman correlation

coefficients. A p-value less than significance level 0.05 is considered significant.

4.2 Results

4.2.1 Training and testing datasets

The dataset for this study includes 53 WSIs of liver tissue biopsies. Two patholo-

gists with GI/Liver pathology expertise (K.J. and A.B.F.) provide portal tract region

ground truth for the dataset. The portal tract regions are first annotated by K.J. and

then validated and corrected by A.B.F. Biopsies are partitioned into training, valida-

tion, and testing dataset. Note all biopsies for the training and validation are mutually

exclusive from those for the testing. Of all biopsies, 30 biopsies including 22 men and
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8 women are used to generate image patches for model training and validation, with a

mean ± standard deviation (S.D.) age of 54.5± 6.9 years. We programmatically load

manually annotated portal tract contours, calculate their bounding boxes, and divide

them into patches of size 512 × 512 pixels. Additionally, we rotate image patches

by 90, 180, and 270 degrees for training data augmentation. In total, we generate

6,012 image patches, with 80% and 20% for training and validation, respectively. The

remaining 23 biopsies WSIs are allocated for testing, with 18 men and 5 women with

a mean ± S.D. age of 51.8± 7.7 years.

4.2.2 Deep learning model validation

Figure 4.3A presents a typical portal tract region segmentation result by the devel-

oped MUSA-UNet network. The model detected portal tract region borders are in

yellow, while the ground truth portal tract regions are manually delineated and in-

dicated by green borders in Figure 4.3B. Such portal tract regions are automatically

identified by binarization of the probability maps from the network in Figure 4.3C.

By visual assessments, Note that the predicted region contours are highly concordant

with the corresponding ground truth regions, suggesting the effectiveness of the de-

veloped model. As detailed in the methods section, each original WSI for testing is

divided into a set of patches and process them separately. Due to this partitioning

step, portal tract regions close to image patch borders are subject to an image padding

effect, resulting in inaccurate segmentation results. Figure 4.4 presents portal tract

segmentation results of two typical biopsy image regions divided with and without

patch expansion partitioning strategy. Note that inaccurate segmentation results (by

yellow arrows) when images are divided directly (blue dashed lines). Due to the

border effect, portal tract regions on patch borders tend to be missed by the model.

By contrast, the expanded patches by the patch expansion partitioning strategy are

indicated by solid blue lines. This strategy substantially eliminates the segmenta-
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Figure 4.3: typical portal tract segmentation result with a liver biopsy WSI. (A)
Manual annotations (i.e., ground truth) and deep learning results of portal tract
regions by the MUSA-UNet deep neural network are delineated in green and yellow,
respectively; (B) Annotation and segmentation details are presented in close-up views;
(C) The model generated prediction probability maps are presented for the same
corresponding image regions.

tion errors by adding additional image margins to make the inception fields more

informative and consistent.

In addition to qualitative assessments, I next validate the developed model quan-

titatively. The developed MUSA-UNet model is compared with three widely used

approaches, i.e., FCN [61], UNet [63], and DeepLab [62]. FCN and UNet have been
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Figure 4.4: Comparison of portal tract segmentation results of two biopsy tissue
regions with and without the partitioning strategy. (A) Ground truth portal tract
contours are annotated by human experts; (B) Portal tract segmentation results are
presented when WSIs are simply divided into non-overlapping patches with their
borders in blue dashed lines. The resulting segmentation defect is highlighted by
a yellow arrow; (C) Portal tract segmentation results are demonstrated when the
patch expansion partitioning strategy is used. The solid blue lines in (B) represent
the borders of the expanded patches. With the expansion partitioning strategy, such
negative border effects are successfully mitigated.

widely applied to a large number of biomedical image segmentation tasks [98]. The

DeepLab model is derived from the FCN model, but with an atrous convolution [62].

This change expands the convolution perception field for enhanced segmentation ac-

curacy without an increase in the parameter number. All the approaches are trained

with the same training parameters and dataset as the developed model. I present

and compare typical normal tissue segmentation results by these models in Figure

4.5. By visual comparisons, the segmentation results from the MUSA-UNet are more

concordant with the ground truth than other methods. Additionally, I present and

compare typical abnormal portal tract segmentation results in Figure 4.6. These ab-

normal portal tract types include portal tracts with (1) lymphoid aggregate, (2) duc-
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Figure 4.5: Qualitative comparison of deep learning models for normal liver portal
tract segmentation. Typical segmentation results of four normal liver tract regions are
presented by (A) human annotations (i.e., ground truth), (B) the developed MUSA-
UNet model, (C) DeepLab, (D) UNet, and (E) FCN, respectively.

tular proliferation with minimal collagen, (3) edema, mild inflammation, and ductular

proliferation, (4) features of acute cellular rejection, including mixed inflammatory

infiltrate and ductitis, and (5) portal vein herniation and moderate chronic inflamma-

tion. Compared with FCN and DeepLab, the developed MUSA-UNet demonstrates

a better generalizability on abnormal portal tract segmentation.

Additionally, I compare segmentation results from different models with the ground

truth from human annotations and quantitatively evaluate their performances. Com-

pared to the ground truth, each pixel in the segmentation map is labeled as one of
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Figure 4.6: Qualitative comparison of deep learning models for abnormal liver portal
tract segmentation. Typical segmentation results of multiple abnormal liver tract
regions are presented by (A) human annotations (i.e., ground truth), (B) the devel-
oped MUSA-UNet model, (C) DeepLab, (D) UNet, and (E) FCN, respectively. From
top to bottom, abnormal portal tracts contain (1) lymphoid aggregate, (2) ductu-
lar proliferation with minimal collagen, (3) edema, mild inflammation, and ductular
proliferation, (4) features of acute cellular rejection, including mixed inflammatory
infiltrate and ductitis, and (5) portal vein herniation and moderate chronic inflam-
mation.
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Figure 4.7: Pixel-wise segmentation labels for quantitative evaluation. Ground truth
and deep learning segmentation results are represented by green and yellow contours.
(A) TP is the class for pixels that are correctly segmented as portal tract; (B) FP
is the label for pixels that are falsely recognized as portal tract; (C) FN is class for
pixels that are missed as portal tract by mistake; (D) TN is the label for pixels that
are correctly recognized as non-portal tract.

the four classes, True Positive (TP), False Positive (FP), False Negative (FN), and

True Negative (TN). TP is the class for pixels that are correctly segmented as portal

tract; FP is the label for pixels that are falsely recognized as portal tract; FN is the

class for pixels that are missed as portal tract by mistake. Finally, TN is the label

for pixels that are correctly recognized as non-portal tract. These four classes of pix-

els are illustrated in Figure 4.7. With these defined classes, I compute pixel-based

evaluation metrics (each ranging from 0 to 1), including Precision (P), Recall (R), F1
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Table 4.1: Quantitative performance comparison across the developed MUSA-UNet
model and other state-of-the-art segmentation models by multiple evaluation metrics
(mean ± standard deviation).

Model Precision Recall F1 Score Accuracy JI FMI
UNet 0.943 0.806 0.858 0.866 0.765 0.900
FCN 0.958 0.688 0.776 0.798 0.664 0.780

DeepLab 0.942 0.830 0.874 0.870 0.787 0.900
MUSA-UNet 0.940 0.847 0.886 0.889 0.801 0.914

score (F1), Accuracy (A), Jaccard index (JI), and Fowlkes–Mallows Index (FMI):

P =
TP

TP + FP
, R =

TP

TP + FN
,

F1 =
2 · P ·R
P +R

, A =
TP + TN

TP + FP + FN + TN
,

JI =
TP

TP + FP + FN
, FMI =

√
P ×R.

(4.3)

Table 4.1 presents quantitative evaluation results of all models for comparison

with Precision, Recall, F1 score, Accuracy, Jaccard index, and Fowlkes–Mallows In-

dex. Although FCN has the best performance by Precision (0.958), other methods

(i.e., UNet, DeepLab, and MUSA-UNet) do not present significantly worse perfor-

mances by paired sample t-tests with p-value 0.59, 0.30, and 0.29, respectively. By

Recall, the MUSA-UNet demonstrates the best performance (0.847) and a statistically

significant performance difference compared with UNet, FCN, and DeepLab with p-

value 0.007, <0.001, and 0.03, respectively. By F1 score, the MUSA-UNet achieves

the best performance (0.886) and presents a statistically significant performance dif-

ference compared with UNet, FCN, and DeepLab with p-value 0.01, <0.001, and

0.03, respectively. When assessed by Accuracy, the MUSA-UNet presents the best

performance (0.889) and a statistically significant performance difference compared

with UNet, FCN, and DeepLab with p-value 0.04, 0.002, and 0.04, respectively. By

JI, MUSA-UNet has the best performance (0.801) and presents a statistically sig-

nificant performance difference compared with UNet, FCN, DeepLab with p-value
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Figure 4.8: Quantitative comparison of deep learning models for liver portal tract
segmentation. (A) Paired sample t-tests between the MUSA-UNet and other three
widely used models (i.e., FCN, UNet, and DeepLab) suggest a statistically significant
performance difference with p-values<0.05 by Recall, F1 score, Accuracy, JI, and
FMI; (B) Of all deep learning models for comparison, the developed MUSA-UNet
achieves the best AUC with Receiver Operating Characteristic (ROC) curves.

0.01, <0.001, and 0.03, respectively. the MUSA-UNet presents the best performance

by FMI (0.914) and a statistically significant performance difference compared with

UNet, FCN, and DeepLab with p-value 0.03, <0.001, and 0.05, respectively. I present

the evaluation results in Figure 4.8A where evaluation performances of deep learning
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Table 4.2: Quantitative model performance comparisons for the ablation study (mean
± standard deviation).

Model Precision Recall F1 Score Accuracy JI FMI
UNet 0.943 0.806 0.858 0.866 0.765 0.900

UNet+DSC+CBAM 0.942 0.757 0.822 0.879 0.716 0.833
UNet+DSC+CA 0.957 0.530 0.633 0.860 0.504 0.797
UNet+DSC+SA 0.940 0.846 0.885 0.880 0.799 0.911

UNet+RSA 0.941 0.844 0.884 0.888 0.799 0.914
UNet+MUP 0.942 0.816 0.867 0.866 0.774 0.899
MUSA-UNet

(UNet+RSA+MUP) 0.940 0.847 0.886 0.889 0.801 0.914

models for comparison are demonstrated by all six metrics. Note that MUSA-UNet

presents fewer outliers than other methods, implying its strong stability. In Figure

4.8B, I present and compare the Receiver Operating Characteristic (ROC) curves of

MUSA-UNet, UNet, DeeplabV3, and FCN models, respectively. Of all these models,

the developed MUSA-UNet model achieves the largest Area Under the Curve (i.e.,

AUC=0.91).

4.2.3 Ablation study

To investigate the contribution of individual modules for portal tract segmenta-

tion, I carry out ablation experiments and present the ablation study results in

Table 4.2. Small Attention (SmaAt) UNet replaces convolution layers with two cas-

caded DSC modules and appends CBAM (CA+SA) blocks to DSCs [113]. Noticeably,

model UNet+DSC+CBMA (i.e., SmaAt UNet) presents an inferior performance to

that of the UNet model for the portal tract segmentation task. To identify the

performance degradation reason, I remove either a SA or a CA module from the

UNet+DSC+CBMA separately. The experimental results suggest that the DSC+CA

dramatically decreases the performance while the DSC+SA improves Recall (0.846),

F1 score (0.885), Accuracy (0.880), JI (0.799), and FMI (0.911). I thus design a new

RSA block by retaining only one DSC module and encapsulating the DSC and SA
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Figure 4.9: Qualitative comparison of ablated models for liver portal tract seg-
mentation. I illustrate and visually compare typical tissue segmentation results
of ablated UNet models (i.e., (A) UNet+DSC+CBAM, (B) UNet+DSC+CA, (C)
UNet+DSC+SA, (D) UNet+RSA, and (E) UNet+MUP) in green and those of the
developed MUSA-UNet model in yellow.

models in a residual connection structure. In addition to an improved processing

speed, the designed RSA block achieves 0.844, 0.884, 0.888, 0.799, and 0.914 by Re-

call, F1 score, Accuracy, JI, and FMI, respectively. The paired sample t-test between

DSC+SA and RSA block results in a p-value less than 0.001, suggesting a compara-

ble model performance of the designed RSA block. To prove the effectiveness of the

MUP mechanism, I add it to the original UNet and achieve improved performance

by Recall (0.816), F1 score (0.867), Accuracy (0.866), JI (0.774) and FMI (0.899).
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Table 4.3: Summary statistics for multiple portal tract measures (Mean ± standard
error; Range).

Measure Reviewer 1 Reviewer 2 MUSA-UNet

Portal Tract Fibrosis% 51.06±3.61;
19.60 to 89.50

41.27±3.55;
14.36 to 83.28

42.97±3.55;
15.72 to 84.54

Average Portal Tract Area 56,468±8,628;
8,583 to 215,486

50,349±7,153;
5,373 to 181,709

49,688±8,000;
3,226 to 202,321

Average Fibrosis Area 22,541±3,820;
1,618 to 83,115

21,761±3,748;
1,268 to 80,599

22,406±4,090;
1,207 to 91,188

Portal Tract% 2.02±0.40;
0.25 to 9.25

1.86±0.35;
0.22 to 7.93

1.89±0.38;
0.13 to 8.39

Figure 4.9 presents typical segmentation results of four tissue regions by multiple

ablated models for comparison. By visual comparisons, the segmentation results

from DSC+CA are the worst as multiple portal tract regions are missing. This visual

assessment conclusion agrees with the quantification analysis results. Although the

result difference between the UNet+RSA and MUSA-UNet model is visually subtle,

MUSA-UNet tends to produce smoother portal tract boundaries due to the new MUP

design.

4.2.4 Clinical correlation analysis

I investigate the correlation across measures of the portal tract area, the fibrosis area,

and the clinical staging score. In addition to the ground truth established by the

primary reviewers (reviewer 1: K.J., A.B.F.), a secondary board-certificated pathol-

ogist with GI/Liver pathology fellowship training (reviewer 2: N.S.) annotates portal

tracts independently for this correlation analysis. Figure 4.10 demonstrates the mul-

tivariate analysis results with the linear regression and Spearman correlation. With

manually delineated and MUSA-UNet predicted portal tract regions, I compute mul-

tiple measures, including portal tract fibrosis%, average portal tract area, average

fibrosis area, and portal tract%. Additionally, I investigate and compare their corre-

lations with the clinical Scheuer staging score (mean ± standard error: 0.85±0.23).
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Figure 4.10: Multivariate correlation analysis across portal tract area, fibrosis area,
and clinical staging score. The four subplots present the correlation analysis results
between Scheuer staging score and (A) portal tract fibrotic percentage, (B) average
portal tract area, (C) average fibrosis area, and (D) portal tract percentage, respec-
tively. In each subplot, results from linear regression (top-right) and Spearman corre-
lation (bottom-left) are presented to support the multivariate analysis. For Spearman
correlation results, larger correlation coefficients and lower p-values are indicated by
darker colors and larger circles.

The summary statistics for these measures are presented in Table 4.3. By Spearman

correlation analysis, average portal tract area and portal tract fibrosis% derived from

deep learning detected portal tract regions are correlated with clinical Scheuer staging

score (R=0.681; p<0.001 and R = 0.335; p=0.020, respectively). When the MUSA-
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UNet derived measures are replaced with those from portal tract regions annotated by

reviewer 1 and reviewer 2, average portal tract areas present comparable correlation

relationships with clinical Scheuer staging score (i.e., R=0.680, p<0.001; and R =

0.574, p<0.001, respectively). With portal tract regions annotated by reviewer 1 and

2, the portal tract fibrosis% presents similar correlation relationships with clinical

Scheuer staging score (i.e., R=0.437, p=0.002; and R = 0.326, p=0.016). Such com-

parable correlation results imply the good concordance between portal tract regions

recognized by the developed deep learning model and manual annotators. Figure

4.10A and Figure 4.10B demonstrate a strong correlation between human and deep-

learning-derived measures, including portal tract fibrosis% and average portal tract

area. Suggested by Figure 4.10C, the correlation between Scheuer staging score and

average fibrosis area from deep learning identified portal tract regions is comparable to

that between Scheuer staging score and average fibrosis area from human-annotated

portal tract regions. By contrast, the correlation between Scheuer staging score and

portal tract% from deep learning identified portal tract regions is stronger than that

between Scheuer staging score and portal tract% from human-annotated portal tract

regions in Figure 4.10D.

Additionally, the differences in the clinical support between the developed model

and other methods for comparison are demonstrated. In Figure 4.11, I plot portal

tract percentage populations by five Scheuer staging score groups, i.e., stage 0 to

4. Applied to the segmentation results from the developed MUSA-UNet model, the

analysis of variance (ANOVA) test suggests a significant difference in population

means across staging groups with a p-value 1.44e-4. By contrast, p-values with results

from UNet, FCN, and DeepLab are 3.32e-4, 2.92e-2, and 7.70e-2, respectively.
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Figure 4.11: Comparison of deep learning models for clinical support. By ANOVA
test, the significance of population mean difference across Scheuer staging groups with
the portal tract percentage derived from segmentation results of (A) MUSA-UNet,
(B) FCN, (C) UNet, (D) DeepLab, is respectively presented.

4.3 Discussion and summary

Leveraging the UNet architecture as a building block, the MUSA-UNet model is de-

veloped for liver portal tract region segmentation with liver biopsy WSIs. To reduce

the parameter number and accelerate the model processing speed, the regular convo-

lution layers in UNet are replaced with cascaded Depth-wise Separable Convolution

(DSC) modules. By experiments, I notice UNet has a limited performance by Recall

or JI. To further improve its performance, the attention mechanism is included in the

model. Inspired by SmaAt UNet [113], I first append a Convolutional Block Attention

Module (CBAM) to the cascaded DSC modules (i.e., UNet+DSC+CBAM), leading
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Table 4.4: Model comparison by parameter number and the average processing time
cost for a 512× 512 image patch.

Model Parameter number Processing time (ms)
UNet 37,384,833 30.5
FCN 51,938,881 31.1

DeepLab 58,625,857 39.9
MUSA-UNet 9,123,958 23.4

to worse results. To investigate the cause of the model degradation, Channel Atten-

tion (CA) and Spatial Attention (SA) modules (i.e., two components in CBAM) are

respectively appended to the cascaded DSC modules. The resulting UNet+DSC+CA

model presents a degraded segmentation performance, while the UNet+DSC+SA

model demonstrates an improved performance. Therefore, I only retain one DSC

module, add a SA module, and encapsulate them by a residual connection block to

make it more effective for back-propagation. This structure is defined as a Residual

Spatial Attention (RSA) block. The resulting model (i.e., UNet+RSA) has fewer

parameters, contributing to a better prediction performance and a faster execution

speed.

The UNet architecture tends to focus on features derived from the highest image

resolution level. By contrast, Fully Convolutional Networks (FCNs) only up-sample

the output from the lowest image resolution layer (e.g., the FCN-32s model) [61].

Enlightened by these facts, I address the false-negative segmentation problem com-

monly seen around portal tract region boundaries by combining features from multiple

image resolution levels for the probability map generation. Therefore, the network

has a Multiple Up-sampling Path (MUP) mechanism, as there are multiple signal

connections between lower resolution features from decoders and the output layer.

By experimental results, the concatenated use of features from the top three image

resolution levels significantly improves performance. Features from additional lower

image resolution levels marginally improve the model performance, but at the cost of

the increased model complexity.
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In the model design, DSC modules are used to decrease the model parameter

number. Table 4.4 presents the parameter number and processing time cost of di-

verse models for performance comparisons. The processing time cost is calculated by

averaging the time cost of 50 image patches of size 512 × 512. Compared with the

developed MUSA-UNet, the original UNet model has the same image resolution level

number and the feature number in each level. The FCN model and the DeepLab

model are constructed on the base of the ResNet101 backbone [108]. By Table 4.4,

the parameter numbers in the models without DSC modules (i.e., UNet, FCN, and

DeepLab) are one order of magnitude larger than that of MUSA-UNet. This large

difference in model parameter number has an important impact on the resulting pro-

cessing speed. It takes about two hours for UNet to complete training with a data

epoch on the current hardware setup, while the training time cost for the MUSA-UNet

model is about 25 minutes. On average, it takes 23.4 ms for MUSA-UNet to predict

a 512× 512 image patch, promising to support an efficient segmentation analysis for

clinical settings.
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Chapter 5

Biomedical Image Segmentation with

Semi-supervised Learning

In this chapter, I present the developed semi-supervised semantic segmentation method

and its application in retinal pigment epithelium (RPE) cell segmentation with flat-

mount fluorescent microscopy images.

RPE is a pigmented cell layer between the choroid and the neurosensory retina.

The main RPE functions are to transport nutrients, maintain the photoreceptor ex-

citability, and secrete immunosuppressive factors [114]. Aging of the RPE can cause

a loss or reduction of the indicated functions that affect the function and survival of

photoreceptor cells and choroidal cells. Therefore, it may result in the secondary de-

generation of photoreceptors and finally lead to irreversible vision loss [115]. Previous

studies have suggested that RPE cell morphological features, such as area, perime-

ter, aspect ratio, polymegathism, and pleomorphism, can be indicators of the cell

pathophysiologic status to determine the degree of RPE aging [116, 117, 7].

RPE flatmount images have been widely used to characterize RPE cell morpho-

logical features. In the prior work [7], a machine-learning-based ImageJ (National

Institutes of Health, Bethesda, MD, USA) plugin known as Trainable Weka Segmen-
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Figure 5.1: Representative examples of RPE flatmount image regions. (A) RPE cells
in damaged regions present weak or missing cell borders with a partial or complete
cell structure loss. (B) RPE cells in normal regions often have cell borders with a
high contrast.

tation [118] was utilized to extract cell borders with a limited success, especially in

impaired regions enriched with weak or missing RPE cell borders. Typical examples

of damaged regions are given in Figure 5.1. Cell segmentation is a prerequisite step

to extract useful parameters such as the average size, shape, orientation, and varia-

tions of individual RPE cells. Although computational tool suites are available for

cell feature measurement (e.g. CellProfiler [119]), they highly depend on accurate
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cell segmentation results with RPE tissue sheets. To ensure the accuracy of down-

stream morphology analyses, manual post-processing steps are, therefore, required

to remove these damaged regions from further analyses. This process is not only

time-consuming but also significantly reduces the scale of data for analysis, resulting

in a weaker study power. More importantly, such an exclusion makes it infeasible

to study RPE cell morphology and structures within damaged regions necessary for

RPE recovery mechanism and aging investigations. Thus, it is imperative to develop

an effective and efficient approach to recover blurred and missing RPE cell borders

in large scale flatmount microscopy images.

Unlike traditional machine learning methods, deep neural networks require no

manual feature engineering and present an enhanced data learning power to support

biomedical research [98, 120]. The basic structure of a deep neural network is com-

posed of layers of computational nodes analogous to brain neurons. For semantic

segmentation tasks, a class of deep neural networks consists of an encoder for latent

feature extraction from input images and a decoder for mapping the extracted features

to desired segmentation results. Deep neural networks have been widely used for seg-

mentation with multiple image modalities, ranging from bright field histopathology

image slides [121, 49], CT [50, 122], MRI [51], and immunofluorescence microscopy

images [123, 124]. Although there are multiple state-of-the-art deep learning models

[124, 61, 63, 62] that can be potentially used to segment RPE cells presenting blurred

or missing cell borders, they require a large-scaled annotated training dataset. As the

manual annotations on RPE cells in damaged regions are time-consuming, we only

have a small set of annotated weak RPE cells insufficient to support the supervised

learning strategy by these state-of-the-art deep learning models.

To address this challenge, a semi-supervised deep learning approach, namely Mul-

tiHeadGAN, is developed to segment low contrast cells from impaired regions in RPE

flatmount images. The developed deep learning model has a multi-head structure
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that allows model training with only a small scale of human annotated data. To

strengthen model learning, I further train the model with RPE cells without ground

truth cell borders by generative adversarial networks. Additionally, a new shape loss

is designed to guide the network to produce closed cell borders in the segmentation re-

sults. Compared with other state-of-the-art deep learning approaches, the developed

method demonstrates its superior qualitative and quantitative performance.

5.1 Methods

5.1.1 Deep neural network architecture

For deep learning based image segmentation, deep neural networks often consist of an

encoder and a decoder that are trained with a large amount of annotated data. By

contrast, a GAN-based image translation mechanism and a semi-supervised learning

strategy are used to improve the model performance due to a limited set of data

annotations available in this work. In image translation tasks, GANs usually consist

of two key components, i.e., a generator and a discriminator. The generator attempts

to minimize the adversarial loss and translate inputs to images indistinguishable from

real target images by the discriminator. By contrast, the discriminator is trained to

maximize the adversarial loss and distinguish the fake images from real ones.

The overall architecture of the developed multi-head deep learning model (Mul-

tiHeadGAN) is presented in Figure 5.2. Note MultiHeadGAN makes a full use of

both limited data with annotations and a large set of unlabeled images for training.

The generator in MultiHeadGAN is derived from the U-Net [63, 44], but extended

to multi-heads for contrast enhanced gray-scale and binary segmentation outputs.

Different from the U-Net with one encoder and one decoder, the developed generator

has one encoder, two decoders, and one feature extractor. For each encoder input s,

there are two decoder output images G1(s) and G2(s) and a feature extractor output
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Figure 5.2: Overall schema of the developed multi-head deep learning approach Mul-
tiHeadGAN. The developed deep learning generator consists of one encoder, two
decoders, and one feature extractor. For each image input, the network produces two
output images and one feature vector. Note the generator has four image resolution
levels. Not all levels are shown in the schema for conciseness. With such a model de-
sign, RPE cell borders in damaged regions within flatmount microscopy images can
be effectively detected. Conv : Convolution layer; DC : Double convolution layers;
FC : Fully connected layer; MP : Max-pooling layer; MLP : Multi-layer perceptron;
UC : Up-sampling + convolution layer.

V (s). G1(s) from Decoder 1 represents a segmentation map, while G2(s) from De-

coder 2 is the translated image with enhanced RPE cell borders. The output from the

feature extractor V (s) is used for the contrastive representation learning in the model

training. Although the generator has four resolution levels, not all levels are shown

in Figure 5.2 for conciseness. At each image resolution level, the encoder convolves

the image with a double convolution layer and next scales down the convolution re-
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sponse by a max-pooling layer. In the decoding analysis, an image representation

is up-sampled, interpolated by a bilinear interpolation layer, and convolved with a

double convolution layer in turn at each image resolution level. Additionally, the

encoder outputs at different image resolution levels are processed by Multi-Layer

Perceptron (MLP) modules, with the outcomes concatenated for the image feature

vector construction.

To process two image outputs G1(s) and G2(s) from the generator, I include

two corresponding discriminators D1 and D2. Each discriminator has multiple con-

volution layers and a fully connected output layer [45]. These discriminators help

recognize the difference between generated and true images and thus force the gener-

ator to produce high-quality images similar to the true counterparts.

5.1.2 Model implementation

With training batches P ⊆ P , X ⊆ X , and Y ⊆ Y , I would like to achieve two

training objectives on image segmentation and translation. 1) For a given image and

its ground truth pair (z, w) ∼ P , the segmentation result G1(z) from the generator

is supposed to be similar to the segmentation ground truth w and indistinguishable

by discriminator D1. 2) For RPE cells with weak (i.e., x ∼ X) and strong borders

(i.e., y ∼ Y ), the translated weak image is supposed to be G2(x) indistinguishable

by discriminator D2 and the translated strong image is supposed to keep intact, i.e.,

G2(y) ≈ y. To achieve these training goals, the objective function for the GAN

training strategy is defined as follows:

Ltotal = (1− λ)Ls (P ) + λLu (X,Y ) (5.1)

where two loss terms are balanced by the relative contribution factor λ.
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This weight λ is dynamic and depends on the epoch number t:

λ(t) =


1 t ≤ t1

1− 1−c
t2−t1

· (t− t1) t1 < t < t2

c t ≥ t2

(5.2)

where t1 and t2 are transient time cutoff values; The constant c is the weight factor

after λ is stablized.

The first loss term Ls describes the similarity between the output of Decoder 1

and the segmentation ground truth:

Ls(P ) = Ls−GAN(P ) + λ1Ls−idt(P ) + λ2Lshape(P )

= E(z,w)∼P (log (1−D1 (G1 (z))) + logD1 (w))

+ λ1E(z,w)∼P ∥G1(z)−w∥1

+ λ2E(z,w)∼P ∥ (G1(z)−w) ·w∥1

(5.3)

In Eq. 5.3 the first two terms are the adversarial loss and the identity loss widely

used in supervised GAN approaches [44, 45]. In this work, the exploratory experimen-

tal results suggest that the segmented RPE cell borders are often not closed, leading

to a significantly different RPE cell topology. This artifact results from the fact that

the misclassification of cell border pixels has a small influence on the identity loss

that in turn is due to a small proportion of cell border pixels in an entire image. In

favor of closed RPE cell contours in the segmentation results, cell border misclassifi-

cation is penalized more by a shape loss (i.e., the third term in Equation 5.3). In the

designed shape loss term, training attention of the developed model is directed to cell

border misclassification events by multiplying the ground truth w to the difference

between G1(z) and w. As border and background pixels in the ground truth take

value 1 and 0, respectively, such a multiplication results in a focused attention to the
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misclassification on cell borders.

Similarly, the second loss term Lu characterizes the quality of gray-scale outputs

from the generator:

Lu(X,Y ) = Lu−GAN(X,Y ) + λ3Lu−idt(Y )

+ λ4LNCE(X)

(5.4)

In Eq. 5.4, the first term Lu−GAN(X,Y ) is the adversarial loss for unsupervised

GAN learning that takes the following format:

Lu−GAN(X,Y ) = Ex∼X log (1−D2 (G2 (x)))

+ Ey∼Y logD2(y)

(5.5)

The second term Lu−idt(Y ) in Eq. 5.4 is the identity loss to retain strong images at

the generator output in the unsupervised image translation. While I aim to transfer

weak to strong images by the generator, I also would like to keep those strong images

unchanged during the translation. Therefore, the identity loss Lu−idt(Y ) is defined

by:

Lu−idt(Y ) = Ey∼Y ∥G2(y)− y∥1 (5.6)

The third term LNCE(X) in Equation 5.4 is Noised Contrastive Estimation (NCE)

loss [125]. It aims to train an encoder that associates only corresponding inputs [126].

In the unsupervised GAN training, this NCE loss prevents a generator from randomly

producing images with high quality in the target domain but irrelevant to inputs [48].

Applying this loss, I aim to achieve a high mutual information between an input

xi and its translation output G2(xi), and a low mutual information between the

input xi and other translation outputs G2(xj). Illustrated in Figure 5.2, encoded

feature maps are processed with MLP modules for a vector representation V (s). Let

vi = V (xi) and v̂i = V (G2(xi)), the NCE loss contributed by image xi is defined
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with a cross-entropy loss:

li = − log
evi·v̂i/τ

evi·v̂i/τ +
∑N

j ̸=i e
vi·v̂j/τ

(5.7)

where τ is the scaling factor.

The resulting NCE loss for a training batch X is defined as:

LNCE =
1

N

N∑
i=1

li (5.8)

I implement the segmentation model with Python 3.8 programming language and

PyTorch 1.8.1 deep learning framework [111] and run the segmentation analysis with

two NVIDIA Tesla K80 GPUs. Balancing the tradeoff between computational ef-

ficiency and deep network efficacy, four image resolution levels are designed in the

generator, with 64, 128, 256, and 512 filters from the highest to the lowest level,

respectively. Each MLP embedding image features from the Encoder has two neural

network layers, with 256 units at each layer. For discriminators, two convolutional

neural networks are included, both including the same resolution levels and filter

numbers as the generator. Instead of max-pooling layers, image representations in

discriminators are down-sampled by convolution layers of stride 2. For training pa-

rameters, I have t1 = 40, t2 = 70, c = 0.7, λ1 = λ2 = 0.5, λ3 = λ4 = 1, and the

scaling factor τ = 0.07 determined empirically. In each training epoch, 24 image

patches from each training set (i.e., the annotated set P , the negative set X , and the

positive set Y) are randomly selected and cropped into image regions of size 64 × 64

pixels from these patches as the augmented training batch.

5.1.3 Evaluation metrics

In this work, border and background pixels are set as positive and negative classes,

respectively. I derived metrics from the confusion matrix for model evaluations
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Figure 5.3: Evaluation of segmentation results. (A) A representative image (top) and
its ground truth for segmentation (bottom) are presented. The (B) correct, (C) over-,
and (D) under-segmentation results are illustrated, respectively. In (B-D), the top
images present the segmentation results, while the bottom images highlight regions
with erroneous segmentation results (red).

[61, 63, 62]. The confusion matrix results in TP (number of correctly classified border

pixels), FP (number of incorrectly classified background pixels), FN (number of in-

correctly classified border pixels), and TN (number of correctly classified background

pixels). As TN is much larger than the other three in practice, I do not use accu-

racy ACC=(TP+TN)/(TP+FP+FN+TN)) as a metric. Instead, I adopt precision

P=TP/(TP+FP) and recall R=TP/(TP+FN) for model evaluation.

Additionally, I introduce metrics to indicate RPE cell topology. For each cell with

ground truth, its Intersection over Union (IoU) is computed with all overlapped cells

predicted from models. If a cell has an IoU larger than 0.5, it is marked as a correct

hit (CH); otherwise, it is a wrong hit (WH) as presented in Figure 5.3. The Correct

Rate (CR) of segmentation is defined as:

CR =
|CH|

|CH|+ |WH|
(5.9)
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where | · | represents the set size.

To penalize wrong segmentation by the cell size, I also use such information to

calculate the Weighted Correct Rate (WCR) of segmentation:

WCR =

∑
r∈CH |r|∑

r∈CH |r|+
∑

r∈WH |r|
(5.10)

5.2 Results

5.2.1 Training and testing datasets

In this study, the mouse RPE flatmount images are selected from our reference

database [127, 128]. As these RPE images have high resolutions (around 4,000 ×

4,000 pixels each), each image is divided into non-overlapping patches. Both a small

set of annotated and a large set of unlabeled RPE cells are included in the training

set. The annotated set P = {(zi, wi)} includes patch pairs where zi and wi are the

image patch and manually annotated ground truth, respectively. The large number

of unlabeled RPE cells for training come from a negative and a positive set. The

negative set X = {xi} includes image patches of RPE cells with as many weak or

missing borders as possible, while the positive set Y = {yi} includes image patches of

only RPE cells with strong borders. As RPE cells with weak or missing borders are

often spatially mixed with those presenting strong borders, it becomes challenging to

find the positive training set including only RPE cells with strong borders and the

negative training set including as many RPE cells with weak or missing borders as

possible when the patch size is unduly large. After multiple experiments, the size of

each image patch is set to 96 × 96 in pixels. The number of image patches in training

set P , X , and Y is 155, 987, and 653, respectively. For the testing set, I include

34,742 RPE cells with weak or missing cell borders from 200 image patches.
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5.2.2 Deep learning model validation

To validate the method performance, I compare the developed method MultiHeadGAN

with four state-of-the-art models, including FCN [61], DeepLab [62], UNet [63], and

Cellpose [124]. FCN, DeepLab, and UNet have been widely applied to a large num-

ber of biomedical image segmentation applications [98]. Cellpose is a pre-trained cell

segmentation model built on UNet. It is trained to predict gradient vector fields and

produce segmentation results by gradient tracking. For fair comparisons, CycleGAN

[45] and CUT [48] are used to enhance the RPE cell border contrast before UNet

is used for segmentation. While FCN, DeepLab and UNet are trained with the an-

notated training set P , CycleGAN and CUT model are trained with the unlabeled

training set X and Y . Typical tissue segmentation results of these models are pre-

sented in Figure 5.4. By visual comparisons, the results from FCN, DeepLab and

UNet have large under-segmented regions. CycleGAN and CUT can effectively mit-

igate the degree of under-segmentation, while the developed MultiHeadGAN model

achieves the best segmentation results. Although Cellpose can generate separated

cell masks, its performance highly depends on the gradient vectors in cells. As not

all cells present convergent gradient fields, Cellpose can fail in these cases.

I quantitatively evaluate segmentation results by Correct Rate (CR), Weighted

Correct Rate (WCR), Precision (P) and Recall (R). Demonstrated in Table 5.1, the

developed MultiHeadGAN achieves the best performance with 85.4% (CR), 88.8%

(WCR), 87.3% (Precision) and 80.1% (Recall), respectively. In Figure 5.5, quanti-

tative evaluation results are plotted to present the statistical difference between the

developed approach and others. Noticeably, MultiHeadGAN presents fewer outliers

and a smaller variation, implying its strong stability. By metrics of WCR, P and R,

MultiHeadGAN is significantly better than all other approaches. By CR, it is also

significantly better than all other approaches except Cellpose.

Additionally, I test all approaches on a human RPE flatmount image dataset. Each



77

Figure 5.4: Qualitative comparison of deep learning approaches for RPE cell segmen-
tation with flatmount microscopy images. Four typical impaired image regions are
shown in columns (A-D) with rows for ground truth and corresponding segmentation
results of FCN, DeepLab, UNet, Cellpose, CycleGAN+UNet, CUT+UNet, and the
developed MultiHeadGAN, respectively. Column (A) demonstrates the case that the
whole region is severely blurred, while columns (B-D) present cases that cell borders
are partially missing
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Figure 5.5: Quantitative comparison of deep learning approaches for RPE flatmount
image segmentation. RPE cell segmentation performance of deep learning approaches
is compared by (A) Correct Rate, (B) Weighted Correct Rate, (C) Precision, and (D)
Recall. Paired sample t-tests between the developed MultiHeadGAN and other six
state-of-the-art approaches suggest a statistically significant performance difference.
The notations for *, **, and *** represent a p-value less than 0.05, 0.005, and 0.0005,
respectively.

image has 1,024×1,024 pixels by size. The training and testing data include 14 and

16 human samples. The human training set is used for transfer learning with FCN,

DeepLab, UNet and MultiHeadGAN. The resulting method performances are shown

in Table 5.1. As most cell borders in the human dataset are strong, all methods

for comparison present no significant difference. The developed approach achieves

the best performance by Precision (98.9%). By CR, WCR, and Recall, all methods
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Table 5.1: Quantitative performance comparison between the developed Multi-
HeadGAN and other state-of-the-art deep learning approaches by different evaluation
metrics on the mouse and human dataset. Enh: Methods for image enhancement;
Seg : Methods for image segmentation L: Training data with ground truth (i.e., P);
UL: Unlabeled training data (i.e., X , Y); CR: Correct Rate; WCR: Weighted Cor-
rect Rate; P : Precision; R: Recall. All value units are in percentage (%).Included
and excluded training data are checked by “✓” and “✗”, respectively. The absence is
represented by “/”.

Method Data Mouse Human
Enh Seg L UL CR WCR P R CR WCR P R
/ FCN ✓ ✗ 52.5 57.2 82.0 59.8 95.3 89.4 96.1 95.0
/ DeepLab ✓ ✗ 58.1 62.9 81.5 61.3 94.9 89.6 96.3 94.9
/ UNet ✓ ✗ 56.1 60.1 85.0 68.5 92.4 85.2 97.9 90.6
/ Cellpose / / 83.8 86.7 73.8 73.7 97.1 87.9 95.1 91.4

CycleGAN UNet ✓ ✓ 59.9 64.2 85.7 70.0 96.7 88.8 98.9 92.4
CUT UNet ✓ ✓ 64.5 68.8 86.1 70.3 96.9 89.0 98.9 93.0
MultiHeadGAN ✓ ✓ 85.4 88.8 87.3 80.1 96.5 88.8 98.9 92.7

Table 5.2: Quantitative performance comparison across different training loss combi-
nations by different evaluation metrics on the mouse dataset.CR: Correct Rate; WCR:
Weighted Correct Rate; P : Precision; R: Recall. All value units are in percentage
(%). Included and excluded loss terms are checked by "✓" and "✗", respectively.

Index Loss Term CR WCR P RLs−idt Ls−GAN Lu−GAN Lu−idt LNCE Lshape

1 ✓ ✗ ✗ ✗ ✗ ✗ 56.1 60.1 85.0 68.5
2 ✓ ✓ ✗ ✗ ✗ ✗ 59.4 63.4 88.7 58.7
3 ✓ ✓ ✗ ✗ ✗ ✓ 66.4 70.5 87.0 57.4
4 ✓ ✓ ✓ ✗ ✗ ✗ 53.4 57.2 86.8 60.4
5 ✓ ✓ ✓ ✓ ✗ ✗ 67.7 71.3 86.7 59.4
6 ✓ ✓ ✓ ✓ ✓ ✗ 80.9 84.2 86.7 78.9
7 ✓ ✓ ✓ ✓ ✓ ✓ 85.4 88.8 87.3 80.7

present similar performances. The difference between the developed approach and

the best approach is only 0.6%, 0.6%, and 2.3%, respectively.

5.2.3 Ablation study

To demonstrate the contribution from individual training losses in the developed Mul-

tiHeadGAN model, I carry out ablation experiments with seven loss combinations.

The resulting performances are presented in Table 5.2. Loss combination 7 is for the
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Figure 5.6: Quantitative comparison of ablated models for RPE flatmount image
segmentation. The segmentation performance of the model with different training
loss combinations is compared by (A) Correct Rate, (B) Weighted Correct Rate,
(C) Precision, and (D) Recall. The x-axis represents the loss combination index
given in Table 5.2. Paired sample t-tests between the developed combination for
MultiHeadGAN and other six loss combinations suggest a statistically significant
performance difference in most cases. The notations for *, **, and *** represent a
p-value less than 0.05, 0.005, and 0.0005, respectively.

MultiHeadGAN model with all losses and achieves the best performance. Compar-

isons between loss combination 1 and 2 imply that the GAN mechanism improves

supervised training outcome. Furthermore, comparisons between loss combination 2

and 3 suggest that the designed shape loss can boost the performance with annotated

training data. Comparisons between loss combination 2 and 4 indicate that the addi-

tion of unsupervised learning to deep learning model training may degrade the model
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Table 5.3: Quantitative performance comparison with different weight factor λ strate-
gies by different evaluation metrics on the mouse dataset. textitCR: Correct Rate;
WCR: Weighted Correct Rate; P : Precision; R: Recall. All value units are in per-
centage (%).

t1 t2 c CR WCR P R
0 0

0.5

48.9 53.3 88.4 58.0
10 40 70.2 74.4 86.5 64.7
40 70 79.6 83.2 83.4 71.7
70 100 66.3 70.2 85.5 65.4
0 0

0.7

50.6 55.0 87.8 58.7
10 40 74.5 78.7 86.7 64.9
40 70 85.4 88.8 87.3 80.1
70 100 73.3 77.2 84.3 65.4

Figure 5.7: Comparison of the model training curves with different strategies for the
weight factor λ. Training curves with stabilized weight factor c = 0.5 and c = 0.7 are
presented in (A) and (B), respectively.

performance without use of appropriate constraints (i.e., identity loss and NCE loss).

Figure 5.6 suggests that the adopted loss combination 7 statistically outperforms

other loss combinations by CR and WCR.

Note that a dynamic weight factor λ is adopted to balance the supervised and

unsupervised learning. To validate the effectiveness of this design and determine cor-

responding parameters, I have carried out ablation experiments. In Figure 5.7, the

training curves of identity loss for the supervised learning suggest that the parameter
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Table 5.4: Quantitative performance comparison with different training image and
batch sizes on the mouse dataset. CR: Correct Rate; WCR: Weighted Correct Rate;
P : Precision; R: Recall. All value units are in percentage (%).

Image size Batch size CR WCR P R
32 36 58.9 63.3 85.0 70.1
64 24 85.4 88.8 87.3 80.1
96 12 65.4 69.6 86.4 61.2

setting with t1 = 40, t2 = 70, c = 0.7 achieves the best training performance. Fur-

thermore, Table 5.3 compares the testing performance in . With a constant weight

factor λ (i.e., t1 = t2 = 0), the model is trained with both supervised and unsuper-

vised learning. The results suggest that a fixed λ has the worst performance across

dynamic factor strategies for each given stabilized weight factor c. Next, I begin

model training only with the unsupervised learning and linearly change the weight

factor λ for a semi-supervised learning. The stage only with unsupervised learning

is defined as pre-training. The performance is improved as the pre-training time in-

creases. When the pre-training time is increased to 40 epochs, the developed model

achieves the best performance. When the pre-training time is increased further, its

performance becomes worse in large part due to overfitting in the unsupervised learn-

ing. After systematic investigations, I choose parameters t1 = 40, t2 = 70, c = 0.7 for

the dynamic weight factor strategy by the experiment results.

Note that the performance of contrastive learning methods utilizing negative ex-

amples suffers from a small batch size [33]. Therefore, a reasonably large batch size

is preferred in this study. Given a large batch size and a constant GPU memory, the

resulting individual image region is limited to a small size. However, the selection of

an unduly small image region size is subject to cell topological information loss. The

best image region size is determined by ablation experiments. By Table 5.4, the best

model performance is achieved when image region size is 64 × 64 in pixels with the

batch size 24 in this study.
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5.3 Discussion and summary

RPE cell morphological information plays a vital role to facilitate a better under-

standing of RPE aging and physiology. An accurate morphological characterization,

however, is highly dependent on a high-quality segmentation. Due to lack of appro-

priate computational methods, the segmentation maps are often created by manual

annotations, suffering from a large inter- and intra-variability. Additionally, such

a human annotation process is time-consuming and insufficient to produce an ade-

quately large number of annotated RPE images from impaired regions to support

computer-based method training.

To address this challenge, a novel method (MultiHeadGAN) for segmenting RPE

cells from 2D RPE flatmount microscopy images is developed in this study. The

developed method takes a semi-supervised learning strategy and enables deep neural

networks to learn from a small set of annotated and a large set of unlabeled image

data, resulting in a more generalized feature extraction ability and learning outcome.

The resulting deep neural network is designed within a GAN training framework

equipped with one encoder, two decoders, and one feature extractor in the generator.

Two heads are created in the generator for the contrast enhanced grayscale and binary

segmentation output, respectively. Correspondingly, there are two discriminators in

the developed model that force the generator to output images with strong borders.

Additionally, a new shape loss term is created to encourages the model to produce

closed cell borders.

Demonstrated in Figure 5.3, very few mis-classified pixels can either connect sep-

arate cells or divide a single cell, leading to a huge change in the RPE cell topology.

two new metrics, i.e., Correct Rate (CR) and Weighted Correct Rate (WCR), are

designed to better characterize such cell topology. CR represents the proportion of

correctly segmented cells in the total cell population, while WCR indicates the pro-

portion of areas of correctly segmented cells in the total cell area. As shown in Figure
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Table 5.5: Comparison of deep learning segmentation models by model parameter
number, Floating Point Operations Per Second (FLOPS), and the average processing
time cost on a 96×96 image patch.

Model Parameter FLOPS Processing
number time (ms)

FCN 51.9M 7.6G 134.6
DeepLab 58.6M 8.5G 167.8

UNet 34.5M 9.2G 92.9
Cellpose 6.6M 2.9G 3,603.6

CycleGAN+UNet 43.0M 16.1G 132.6
CUT+UNet 43.0M 16.0G 125.1

MultiHeadGAN 8.5M 7.0G 35.9

5.5, the differences across different methods by CR and WCR are much larger than

those suggested by Precision and Recall. CR and WCR can better reflect performance

difference supported by the visual results in Figure 5.4.

I have systematically compared the developed MultiHeadGAN model with other

state-of-the-art deep learning methods. MultiHeadGAN manifests a superior per-

formance by RPE cell segmentation accuracy, model complexity, and computational

efficiency. By both visual and quantitative evaluations, promising segmentation per-

formance by MultiHeadGAN is demonstrated. In the ablation study, the contribution

from each loss term is systematically compared and analyzed. Although the developed

approach takes a semi-supervised training strategy for multiple network components

in a GAN framework, only Encoder and Decoder 1 is necessary in the testing stage.

As shown in Table 5.5, MultiHeadGAN includes the least parameters and requires the

least Floating Point Operations Per Second (FLOPS) for processing except Cellpose.

Although Cellpose has the least number of parameters, it requires a time-consuming

gradient tracking process, resulting in the longest average processing time (3,604 ms).

Additionally, models of CycleGAN+Unet and CUT+Unet leverage the GAN mech-

anism and include more parameters, leading to a slower analysis. By contrast, the

developed MultiHeadGAN has the lowest average processing time cost (35.9 ms),

promising to support large-scale RPE image data analysis.
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Chapter 6

Biomedical Image Segmentation with

Self-supervised Learning

With the rapid development of medical imaging technology in the past decade, com-

putational image analysis has become a significant tool to facilitate a large number

of image-related biomedical investigations. Images produced by various image ac-

quisition techniques, e.g., Computed Tomography (CT), Magnetic Resonance (MR),

Positron Emission Tomography (PET), ultrasound, X-ray, and histopathology mi-

croscopy, are widely used for the early detection, diagnosis, and treatment response

assessment of numerous diseases [1].

The pigmented cell layer between the choroid and the neurosensory retina is known

as the Retinal Pigment Epithelium (RPE). Its primary functions include secreting

immunosuppressive factors, maintaining photoreceptor excitability, and transport-

ing nutrients [114]. Therefore, RPE aging often results in secondary photoreceptor

degradation, which ultimately leads to irreversible vision loss in turn. RPE cell mor-

phological characteristics, such as area, perimeter, and aspect ratio, have previously

been proven as good indicators of the cell pathophysiologic status and the degree of

RPE aging [7, 116, 117]. RPE flatmount fluorescent microscopy images have been
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widely used to calculate RPE cell morphological features. Before cell morphological

features can be computed, cell borders have to be detected from flatmount images.

Some typical RPE cell examples in flatmount images are illustrated in Figure 6.1A.

However, the flatmount image acquisition procedure inevitably produces damaged

image regions where the RPE cells are often degraded by noise. Some RPE cells

with blurred or missing cell borders from damaged image regions are presented in

Figure 6.1B. To facilitate an accurate cell border recovery, I would like to suppress

the nucleus contrast in the resulting flatmount images. In practice, the imperfect

tissue preparation, fluorescent protein labeling, and imaging process often produce

RPE cells with highlighted nuclei in practice (Figure 6.1C). As the manual annota-

tion process for such degraded image regions are time-consuming and suffers from a

large inter- and intra-variability, annotated training data is hardly adequate to sup-

port supervised learning methods. In the previous work [6], I developed a deep neural

network for RPE cell border detection that was trained with a semi-supervised learn-

ing strategy. With this approach, the training set was further enriched by unlabeled

data. The trained model, thus, benefited from such an increase in training data scale

and sample diversity. However, its performance is still subject to the limited labeled

data in the training dataset.

To address this problem, I present in this work a novel Self-Supervised Semantic

Segmentation (S4) method that leverages a self-supervised learning strategy. Note

that this RPE cell segmentation method only requires unlabeled flatmount image

data to train deep neural networks. Specifically, the reconstruction and pairwise rep-

resentation loss are utilized to train an encoder-decoder architecture that recovers

degraded image regions. For the pairwise representation learning, a new image aug-

mentation algorithm (AugCut) is used to generate correlated views of input images.

Moreover, I formulate a novel morphology loss that incentivizes the network to gen-

erate binary outputs with closed cell borders. The developed approach is compared
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Figure 6.1: Representative RPE flatmount fluorescent microscopy image regions. (A)
RPE cells in normal regions often have cell borders with a high contrast. (B) RPE cells
in damaged regions present weak or missing cell borders with a partial or complete
cell structure loss. (C) RPE cells in damaged regions can also present cell nuclei,
making it more challenging for accurate RPE cell segmentation.

with the state-of-the-art deep learning approaches and demonstrates its superior per-

formance for RPE cell segmentation with flatmount microscopy images. Ablation

experiments present the necessity and efficacy of the developed training strategy de-

sign. With extensive tests and rigorous comparisons, the experimental performance

of the developed deep learning method suggests its promising potential to support

large-scale cell morphological analyses for RPE aging study.
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Figure 6.2: Overall schema of the developed self-supervised learning method S4. Blue,
pink, and yellow blocks represent convolutional layers, MLP layers, and traditional
image processing methods, respectively. For each image input x, two different aug-
mented views x1 and x2 are generated with operator t and t′ randomly sampled from
augmentation operator family T . Next, x1 and x2 are individually processed by the
following convolutional and MLP layers for pairwise representation learning. The
resulting latent feature vectors (p1, p2, q1, q2) are used for pairwise representation
loss. Additionally, x1 and x2 are processed by an encoder-decoder network and mor-
phology operations with output images (z1, z2, w1, w2) for reconstruction loss and
morphological loss computation.

6.1 Methods

6.1.1 Deep neural network architecture

An overview of the developed self-supervised learning method S4 is illustrated in

Figure 6.2. In the training stage, each input image x, is transformed into two related

views (i.e., x1 and x2) by two image augmentation operators randomly sampled from

the augmentation operator family T . Next, an encoder network f down-samples x1

and x2 into latent image representations (i.e., y1 and y2) that are further transformed

into latent representation vectors (i.e., p1 and p2) by a Multi-Layer Perceptron (MLP)
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projection head g. Another MLP prediction head h is used to match the mapped

representation from one view to another latent representation vector (i.e., p1 matching

q2 = h(p2), while p2 matching q1 = h(p1)) [129]. The similarity between two views

can be evaluated by the cosine similarity:

D(q1, p2) =
q1 · p2

∥q1∥2 ∥p2∥2
(6.1)

Prior studies have shown the necessity of using the stop-gradient operation, de-

noted as sg, in the pairwise learning [129, 130]. For symmetry, the pairwise represen-

tation loss is defined as:

LPR = −1

2
D (q1, sg (p2))−

1

2
D (q2, sg (p1)) (6.2)

As the defined pairwise representation loss guides the encoder f to extract struc-

tural information from impaired image regions, I also need loss functions to train the

decoder network d. I denote the outputs of the decoder on two branches as z1 = d(y1)

and z2 = d(y2), respectively. The performance of the decoder can be improved by

minimizing the difference between input x and outputs z1, z2:

LRec_i =
1

2
∥x− z1∥1 +

1

2
∥x− z2∥1 (6.3)

In addition to the comparison between input and outputs, the reconstruction

quality of the network can be evaluated by the difference between outputs z1, z2:

LRec_o = ∥z1 − z2∥1 (6.4)

Combining loss term from Eq. 6.3 and Eq. 6.4, the reconstruction loss is defined
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as:

LRec = λ1LRec_i + (1− λ1)LRec_o (6.5)

where λ1 is a weight factor ranging from 0 to 1.

In the ideal situation, the reconstruction loss LRec can be reduced to zero and

outputs z1, z2 are exactly the same as input x. However, my goal is to train a network

that can generate a binary segmentation output for each input image. Therefore, I

utilize morphological transformations m to produce a binary map w for z and design

a morphology loss as a function of the difference between w and z. By minimizing

this difference, the network can be guided to generate binary segmentation maps.

The morphology loss term is defined as:

LMor =
1

2
∥w1 − z1∥1 +

1

2
∥w2 − z2∥1 (6.6)

where w1 = m(z1) and w2 = m(z2).

Morphological transformation steps for the network training are illustrated in Fig-

ure 6.3. First, the output z from the decoder is binarized by the adaptive thresholding

[131]. Next, the holes are removed by extracting and filling the external contours. An

image opening operation with a 3× 3 structural element is used to connect borders.

Finally, I reverse the image and remove small regions with area less than 10 pixels.

Finally, the overall loss function of the method is formulated as:

L = LPR + λ2LRec + λ3LMor (6.7)

where λ2 and λ3 are loss weight factors.
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Figure 6.3: A typical example of the morphological transformation process. (A) A
representative output image example z from the decoder; (B) The binarized result
after the adaptive thresholding; (C) Hole exclusion by filling external contours; (D)
Border connections by the image opening operation (red circles); (E) The reversed
image; (F) Exclusions of small regions.

6.1.2 Image augmentation

The developed augmentation algorithm AugCut consists of two augmentation branches

(Figure 6.4A). To emulate RPE cells in damaged tissue regions, augmented images

are produced from training images with clear cell borders sampled from the dataset.

On the top branch, input images are corrupted by T1 with random Gaussian noise,

Gaussian blur, and brightness reduction. This branch imitates the images of dam-

aged tissue regions in Figure 6.1B where cell borders are blurred or even missing. By

contrast, Gaussian distributed blobs are added to input images at random locations
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Figure 6.4: Developed image data augmentation algorithm AugCut. (A) Each input
image is processed by two augmentation branches for brightness reduction, random
image blur, and noise addition. With the resulting two output images, an image sub-
region is randomly cut from one and pasted to the other at the same image location.
(B) A typical input image (in red) is presented with its augmented views (in yellow).

by T2 on the bottom branch, mimicking RPE cells with highlighted nuclei in Figure

6.1C. Similar to CutMix [81], I randomly cut an image sub-region from the output

of T1 on the top branch and paste it to the output of T2 at the same position. Thus,

the augmentation result can be described as:

T (x; i, j) =

 T1(x; i, j) (i, j) ∈ R

T2(x; i, j) (i, j) /∈ R
(6.8)

where R is a randomly selected rectangle region. In the implementation, T1 and T2

are swapped with a probability of 0.5 for symmetry. Figure 6.4B presents a typical

input image (in red) and its augmented views (in yellow) by different augmentation

operators sampled from the same augmentation operator family T .
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6.1.3 Model Implementation

I implement the developed method S4 with the Python 3.10 and PyTorch 1.8.1 deep

learning toolkit [111] and execute programs on two NVIDIA Tesla K80 GPUs. The en-

coder f consists of an input layer, three down-sampling blocks using convolution layers

with stride 2, and six residual blocks. The decoder d consists of three up-sampling

blocks using deconvolution layers with stride 1/2 and an output layer. Balancing the

trade-off between computational efficiency and deep network efficacy, I adopt 64, 128,

256, and 512 filters from the highest to the lowest resolution level, respectively. MLP

head g and h include two and one hidden layers with 512 nodes, respectively. The

length of the output representation vector from g and h is 2,048 each.

During training, the loss function first guides the network to extract structural

information and recover the input image. After this, the loss function guides the

network to produce binary segmentation images with closed cell borders. To realize

this two-stage training, a dynamic factor λ is adopted:

λ(t) =


s t ≤ t1

s− s−e
t2−t1

(t− t1) t1 < t < t2

e t ≥ t2

(6.9)

where t1 and t2 are transition "time" cutoff values in the unit of epoch; s and e

are the constant values before and after the transition. Factor λ1 has settings: s =

1, e = 0.5, t1 = 40, t2 = 70. Factor λ2 is set to constant 0.5. Factor λ3 has settings:

s = 0, e = 1, t1 = 40, t2 = 70.
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6.2 Results

6.2.1 Training and testing datasets

In this study, the mouse RPE flatmount images are selected from our image database

[127, 128]. As these RPE images have high image resolutions (around 4, 000× 4, 000

pixels each), each image is divided into small image patches of 96 × 96 pixels for

model training. Although the developed method S4 only requires unlabeled images

with strong borders, the state-of-the-art methods in the comparison study require ad-

ditional training data. Therefore, both labeled and unlabeled RPE cells are included

in the training set. The annotated set P has 155 patches with manually annotated

ground truth. Regarding unlabeled RPE cells for training, I have two subsets. One

high quality image set X includes 653 patches and another low quality Y includes 987

image patches. The testing set includes 43,258 RPE cells from 300 image patches.

Multiple evaluation metrics are used for RPE cell segmentation evaluation. In

image segmentation tasks, metrics derived from the confusion matrix are frequently

utilized [61, 62, 63]. In this work, I assign the positive class to border pixels and the

negative class to pixels not on borders. Given these two classes, the confusion matrix

has four values: TP (number of correctly classified pixels on borders), FP (number

of incorrectly classified pixels not on borders), FN (number of incorrectly classified

pixels on borders), and TN (number of correctly classified pixels not on borders).

With these values, Precision (Pre), Recall (Rec), Intersection-Over-Union (IOU), and

Dice Similarity Coefficient (DSC) are computed for method performance evaluation:

Pre =
TP

TP+FP
, Rec =

TP
TP + FN

IOU =
TP

TP+FP+FN
, DSC =

TP × 2

TP × 2 + FP+FN

(6.10)

To utilize segmentation results for down-stream morphological feature extraction,

Correct Rate (CR) and Weighted Correct Rate (WCR) described in Section 5.1.3 are



95

adopted.

6.2.2 Model validation and performance comparison

The developed method S4 is compared with four supervised learning models (i.e.,

UNet [63], DeepLab [62], MultiResUNet [51], and Cellpose [124]), and two semi-

supervised learning methods (i.e., UNet enhanced with CUT [48] and MultiHeadGAN

[6]). UNet, DeepLab, and MultiResUNet have been widely applied to a large number

of biomedical image segmentation tasks [98]. Cellpose adopts a pre-trained UNet

model to predict gradient vector fields and segment cells by gradient tracking. Two

semi-supervised approaches using the pairwise learning mechanism have been devel-

oped to use unlabeled data for model training [6]. For method comparison, supervised

learning approaches are trained with the labeled training set P and semi-supervised

learning approaches are trained with training sets P , X , and Y .

I present and compare typical RPE cell segmentation results of these models in

Figure 6.5. By visual comparisons, the results from supervised learning approaches

except for Cellpose have large under-segmented regions. Semi-supervised learning

approaches can effectively mitigate under-segmentation, while the developed method

S4 achieves the best overall performance. Note that the performance of Cellpose is the

second best as it is trained with a large amount of labeled data. However, Cellpose

fails to produce reasonable RPE cell segmentation results when the gradient vectors

in cells do not converge.

I also quantitatively evaluate and compare segmentation results from different

models with multiple metrics (i.e., Pre, Rec, IOU, DSC, CR, and WCR). The quanti-

tative comparison results are shown in Table 6.1. The developed method S4 achieves

the best performance by Pre (85.0%), IOU (76.8%), DSC (86.7%), CR (88.9%), and

WCR (89.9%), respectively. Additionally, quantitative evaluation results are plotted

in Figure 6.6 to present the statistical difference between the developed method and
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Table 6.1: Quantitative performance comparison across the developed method S4 and
deep learning methods by multiple evaluation metrics. All values are in percentage
(%).

Method Pre Rec IOU DSC CR WCR
Supervised

UNet 74.4 67.1 54.5 70.0 53.1 57.0
Deeplab 74.4 68.6 55.5 71.0 62.6 66.3
MultiResUNet 76.7 79.9 64.2 78.0 62.3 65.2
Cellpose 68.2 89.0 62.8 76.7 88.8 89.2

Semi-supervised
CUT+UNet 78.6 82.7 67.4 80.5 72.2 75.3
MultiHeadGAN 61.2 90.1 57.5 72.9 84.3 85.6

Self-supervised
S4 (Ours) 85.0 88.4 76.8 86.7 88.9 89.9

Table 6.2: Quantitative performance comparison across different training loss combi-
nations by multiple evaluation metrics. Included and excluded terms are checked by
“✓” and “✗” respectively. All values are in percentage (%).

Loss Pre Rec IOU DSC CR WCRLRec LPR LMor

✓ ✗ ✗ 79.5 61.8 53.6 69.0 38.6 40.5
✓ ✓ ✗ 83.6 65.3 58.1 73.1 40.4 43.5
✓ ✗ ✗ 80.7 82.0 68.7 81.2 84.9 83.8
✓ ✓ ✓ 85.0 88.4 76.8 86.7 88.9 89.9

others. By Pre, IOU, and DSC, the method S4 is significantly better than all other

approaches. By CR and WCR, S4 is significantly better than all other approaches

except Cellpose. Although MultiHeadGAN achieves the best performance by Rec,

the difference between S4 and MultiHeadGAN is negligible (i.e., 1.7% with p=0.08).

6.2.3 Ablation study

I present a set of ablation experiments to demonstrate the efficacy of 1) loss term

combinations, 2) pairwise learning strategies, 3) data augmentation methods, and 4)

dynamic loss term weight factors for training.

To study the contribution of individual training losses in the developed S4 method,

ablation experiments with different loss term combinations are carried out (Table 6.2).
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Table 6.3: Quantitative performance comparison across different pairwise representa-
tion learning strategies by multiple evaluation metrics. I: input x. O: outputs z1, z2.
All values are in percentage (%).

Learning
Strategy

Loss from Pre Rec IOU DSC CR WCRI O

BYOL ✓ ✓ 84.4 84.4 73.2 84.2 81.4 84.3
✓ ✗ 84.8 88.6 76.8 86.6 89.2 90.2

SimSiam ✓ ✓ 86.9 84.0 75.0 85.4 83.6 85.6
✓ ✗ 85.0 88.4 76.8 86.7 88.9 89.9

As the reconstruction loss LRec is necessary for training, I keep this loss term and

only test with different combinations of LPR and LMor. Note that the resulting out-

put image is in grayscale when LPR is not used. For fair comparisons, the same

morphological transformations (Section 3.1) is used to binarize the grayscale out-

put in such a case. By Table 6.2, when individually combined with LRec, the loss

term LMor presents better performance than LPR by Rec (+25.6%), IOU (+18.2%),

DSC (+11.1%), CR (+110.1%), and WCR (+92.6%), respectively. Additionally, the

combination of all three loss terms used in the developed S4 achieves the best per-

formance. This suggests that the pairwise representation loss and the morphology

loss are complementary to the reconstruction loss term, contributing to an enhanced

method performance.

I further test the impact of different self-supervised learning strategies on segmen-

tation performance. In the developed method, SimSiam [129] is adopted to compute

the pairwise representation loss with augmented view x1 and x2. In the ablation

study, an additional pairwise representation loss term L′
PR related to outputs (i.e.,

z1 and z2) is adopted. Thus, I process z1 with encoder f , MLP head g, and h in

sequence and obtain p′1 = g(f(z1)) and q′1 = h(p′1). Similarly, p′2 and q′2 with z2 are

computed. The resulting overall pairwise representation loss is related to both input

and outputs, and formulated as 1
2
LPR + 1

2
L′

PR with L′
PR defined as:

L′
PR = −1

2
D (q′1, sg (p

′
2))−

1

2
D (q′2, sg (p

′
1)) (6.11)
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Table 6.4: Quantitative performance comparison among different image augmentation
strategies by multiple evaluation metrics. All values are in percentage (%).

Augmentation
Strategy Pre Rec IOU DSC CR WCR

T1 86.9 84.0 75.0 85.4 83.6 85.7
T2 80.3 72.8 61.9 76.1 53.4 56.0

Random 83.7 87.3 75.0 85.4 84.5 85.2
AugCut 85.0 88.4 76.8 86.7 88.9 89.9

Table 6.5: Quantitative performance comparison with different transition cutoff time
values in the unit of epoch for weight factor λ1 and λ3. All evaluation metric values
are in percentage (%).

t1 t2 Pre Rec IOU DSC CR WCR
0 0 86.0 78.4 69.8 81.9 83.5 85.1
0 30 / / / / / /
20 50 77.7 73.5 60.9 75.4 61.9 65.1
40 70 85.0 88.4 76.8 86.7 88.9 89.9
60 90 83.2 80.9 69.9 82.0 80.9 83.1
80 110 81.4 78.4 66.7 79.7 80.1 81.7

Similar to the ablation studies with SimSiam, I formulate the pairwise representation

loss with another state-of-the-art strategy BYOL [130] with only inputs, and both

inputs and outputs. The experimental results are presented in Table 6.3. The differ-

ence between BYOL and SimSiam is not significant by Pre (p=0.86), Rec (p=0.89),

IOU (p=0.99), DSC (p=0.98), CR (p=0.75), or WCR (p=0.78). As BYOL includes

an online and a target network, it is more time-consuming and takes more memory for

model training than SimSiam. Note that the addition of the pairwise representation

loss by outputs can impair the model performance.

Table 6.4 presents the effectiveness of the developed image augmentation algorithm

AugCut by experimental results. For comparison, the testing performance associated

with T1 and T2 is individually presented. Additionally, I show an enhanced testing

performance with input views randomly augmented by either T1 or T2. Of all aug-

mentation strategies for comparison, AugCut mixing results by T1 and T2 presents

the best performance.
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Table 6.6: Quantitative performance comparison among different stabilized values for
weight factor λ1 by multiple evaluation metrics. All values are in percentage (%).

Stabilized
value e

Pre Rec IOU DSC CR WCR

0.3 75.9 76.4 61.6 76.0 78.3 79.8
0.5 85.0 88.4 76.8 86.7 88.9 89.9
0.7 74.3 81.2 63.5 77.4 83.1 85.5

I investigate the optimal transition cutoff time settings (i.e., t1 and t2) for loss

weight factor λ1 and λ3 (Table 6.5). The study results suggest the strategy with fixed

weight factors (i.e., t1 = t2 = 0) can successfully train a network with an acceptable

overall performance. However, such a strategy is very sensitive to the network pa-

rameter initialization and often results in a degenerated network with unmeaningful

outputs. Next, I gradually increase the starting (i.e., t1) and ending time (i.e., t2) for

the transition. The stage before the transition is defined as pre-training. The seg-

mentation performance is improved as the pre-training time increases and achieves

the best when it is increased to 40 epochs. When the pre-training time is increased

further, the model performance becomes worse by all evaluation metrics.

I also study the impact of different stabilized values (i.e., e) for the weight factor

λ1 on the method performance. Figure 6.7 presents typical segmentation examples

with different e. When e takes a large value, the loss term LReci between input x and

outputs (i.e., z1 and z2) imposes a strong constraint on outputs and prevents them

from being binary. As a result, some cell borders in the outputs are still in grayscale.

By contrast, a small value for e tends to make cell borders deviate from true cell

border structures in the input images. By the ablation study, I make e = 0.5 as this

stabilized value selection can produce promising model performance by all evaluation

metrics (Table 6.6).
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6.3 Discussion and summary

A precise and complete understanding of the RPE cell morphology is the key to

improve the comprehension of RPE physiology and aging [7, 128, 132]. In turn, an

accurate segmentation is a prerequisite for the morphological characterization. Due

to lack of appropriate computational tools, RPE cell segmentation often depends on

manual annotations, a process suffering from a large inter- and intra-variability. Such

a human annotation process is also too time-consuming to produce a sufficiently large

number of annotated RPE cells in damaged tissue image regions for deep learning

training. To address this challenge, a novel method (S4) is developed for segmenting

RPE cells in flatmount fluorescent microscopy images in this study.

The developed method takes a self-supervised learning strategy and enables deep

neural networks to learn from unlabeled image data, resulting in a more generalized

feature extraction ability and learning outcome. My idea is to produce synthetic dam-

aged image regions by applying image augmentations to good quality image patches

and train a network to recover good quality images by a reconstruction loss. To

enhance the model performance, I combine this component with two MLP heads

that extract representation vectors for the pairwise learning during the training. The

ablation study results in Table 6.2 manifest that the model benefits from this combi-

nation strategy by all included performance metrics. However, this loss combination

can only produce grayscale images. To achieve RPE cell segmentation results in bi-

nary, a RPE cell morphology loss is designed to compare decoder outputs z with

their binary results w after the designed morphological transformations. With the

addition of the morphology loss, the network generates decoder outputs approaching

binarized segmentation maps. In practice, a dynamic strategy is adopted to adjust

the composition of loss terms as a function of the training epoch. At the beginning of

the training stage, the network is trained with pairwise representation loss LPR and

reconstruction loss LRec_i between input x and outputs (i.e., z1 and z2). After the
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training performance becomes stable, the weight of LRec_i is decreased to reduce the

input-output similarity constraint. Concurrently, the weight of reconstruction loss

LRec_o is increased to support the supervision by semantic information. Meanwhile,

the weight of morphology loss LMor is increased to force the model to produce binary

segmentation outputs.

In the ablation study, the superiority of the developed method design is demon-

strated by experimental results of multiple variants of the method. Specifically, it

can be observed that the addition of pairwise representation loss PR from outputs

decreases the segmentation performance in Table 6.3. The core task for the encoder

f is to extract structural information from damaged RPE image regions. However,

the loss term L′
PR makes use of the encoder f to extract information from the binary

output z, resulting in a performance decrease.

Data augmentation results in Table 6.4 suggest that the augmentation with T1

performs better than the augmentation with T2 in general. Recall that T1 augments

weak cell border cases, while T2 produces cells with strong nuclei. As missing cell

borders in the segmentation results can significantly alter the RPE cell topology, these

cells have a higher impact on the method performance. Additionally, as both weak

RPE cell borders and noisy tissue regions with highlighted nuclei are augmented in

the corrupted image views by AugCut, it creates a rich data diversity, contributing

to its best performance.
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Figure 6.5: Qualitative comparison of deep learning approaches for RPE cell segmen-
tation with flatmount microscopy images. Four typical impaired image regions are
shown in columns (A-D) with rows for ground truth and corresponding segmentation
results of UNet, DeepLab, MultiResUNet, Cellpose, CUT+UNet, MultiHeadGAN,
and the developed S4, respectively. Column (A) demonstrates the case that the whole
region is severely blurred, while columns (B-C) present cases where cell borders are
partially missing. Column (D) presents the case where RPE cells contain highlighted
nuclei.
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Figure 6.6: Quantitative comparison of deep learning approaches for RPE flatmount
image segmentation. The RPE cell segmentation performance of deep learning ap-
proaches are compared by (A) Precision, (B) Recall, (C) Intersection over union, (D)
Dice similarity coefficient, (E) Correct rate and (F) Weighted correct rate. Paired
sample t-tests between the developed S4 and other six state-of-the-art approaches
suggest a statistically significant performance difference. The notations for *, **, and
*** represent a p-value less than 0.05, 0.005, and 0.0005, respectively.
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Figure 6.7: Typical output examples of networks trained with different stabilized
values for weight factor λ1. (A) Three typical input images; (B-D) Outputs associated
with the stabilized value e = 0.3, 0.5, 0.7, respectively.
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Chapter 7

Conclusion

In summary, this dissertation focuses on designing and applying computational meth-

ods to solve various biomedical image analysis tasks. Specifically, two ways are ex-

plored to boost model performance: 1) Enhancement of existing methods by the

prior knowledge for specific tasks, and 2) Formulation of ways to leverage unlabeled

data for semi-/unsupervised deep learning algorithms. In this dissertation, I focus on

two common biomedical image analysis tasks: image segmentation and object track-

ing. Validated by different image types (e.g., fluorescence microscopy images and

bright-field histopathology microscopy images) from various sources (e.g., bacteria,

lung cancer spheroids, human liver biopsies, and retinal pigment epithelium tissues),

the developed methods demonstrate their promising potential to support biomedical

image analysis tasks.

For deep learning based image segmentation tasks, I have accumulated some

knowledge on analysis pipeline setups after intensive experimental practices. If ad-

equate high-quality labeled ground truth is available, supervised learning methods

are preferred. Otherwise, training with unlabeled image data would be a choice.

In this case, the training loss and strategy should be elaborately designed for semi-

/unsupervised deep learning. This is suggested by ablation studies in Chapter 5
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and 6 where significant differences in segmentation performance are presented when

different loss terms and training strategies are applied. In general, loss terms are

recommended to include prior knowledge of specific analysis tasks. For example, the

shape loss in Chapter 5 is developed in the sense that all cells of interest for analysis

have closed borders. Thus, the designed loss term increases when misclassification

occurs on cell borders. Besides, multi-stage strategies are useful when unlabeled im-

age data are leveraged for training. Forcing a deep learning model to generate binary

segmentation results can possibly result in model degradation, especially when input

images are corrupted by noise. Instead, we can first guide the model to produce an

enhanced gray-scale image and gradually transit to the binary result after the training

process is stabilized.

In the future, the developed methods in this dissertation can be generalized to sup-

port the analysis of biomedical images of different modalities. For further performance

improvement, one approach is to adopt “network engineering” techniques. Emerging

network architectures such as ViT [133] and MLP-Mixer [134] have presented their

promising potential to strengthen or even replace convolutional neural networks. Fi-

nally, more learning methods (e.g., weakly supervised learning and few-shot learning)

will be studied, along with their applications to more challenging biomedical image

analysis tasks.
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