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Abstract

Synthetic Generation of Datasets With Complex Attributes

By Yunfan Jiang

Synthetic data generation has been applied usefully in many domains, when real
data is unavailable, for example, due to logistical, technical, or policy issues, like
privacy or security. However, there is a lack of study on synthetic data generations of
complex datasets that contain temporal features or categorical features with a large
number of labels. This thesis focuses on identifying a robust generative method to pro-
duce accurate results for such datasets. We studied a university student dataset with
the DataSynthesizer tool. We developed and tuned appropriate data preprocessing,
data encodings and model configurations to improve the quality of the synthesized
results. Using both standard visualizations and student-specific statistics, we show
how our approach can achieve feasible synthetic results that are as good as those from
less complex datasets.
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Chapter 1

Introduction

Data analytics, including statistical models, have become important in many domains,

such as cancer prediction [1]. High quality data are critical for the analytics to be

useful. For instance, data analysis tasks like classification and prediction may be

inaccurate without enough quality data to analyze.

In many cases, enough high quality data may not be available due to privacy

or security issues. For example, in the medical area, drug response prediction is

challenging due to data unavailability [1]. To deal with data unavailability, synthetic

data generation has become a viable technique. Synthetic data generation is the

process of creating artificial data that have the same statistical properties as a real

dataset, making it indistinguishable from real data. It has several benefits, such as

increasing data availability and protecting privacy. Hence, it has been applied in

many areas, such as renewable energy resources [11], traffic sign recognition [13], and

medical research [6]. These works demonstrate good performance on datasets with

either continuous attributes like wind speed [11] or categorical attributes that have a

small set of values [13]. However, due to limited studies, their performance on more

complex datasets, such as datasets with temporal features or categorical features

with a larget set of values, is unknown. Though [6] claims to study their model on
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a large-set dataset, the maximum count of categories is still less than 200, whereas

more complex data, for example our university student dataset, can have categorical

attribute sets greater than 3000.

This work studied the synthetic generation of a dataset of university student course

records. This dataset satisfies our research interest, since it contains a course name

attribute, which is a categorical attribute with a large and specific set of values. It also

includes a term attribute, which is a temporal feature. As a result, this project aimed

to identify a robust generative method that effectively synthesizes complex datasets

with categorical attributes that have large set size, and we tested our method with a

student course record dataset.

Our general approach is based on an existing generation tool, DataSynthesizer

[12], that uses a Bayesian network. We tuned the tool’s configuration and incorpo-

rated other enhancements to address issues raised by our dataset. We demonstrate

that our finalized model is effective according to both standard visualization met-

rics and student-specific statistics. Summarily, we developed a set of techniques and

enhancements that allowed the tool to generate accurate results for complex datasets.

In this thesis, Chapter 2 introduces relevant background and related literature.

Chapter 3 describes the methodology behind the data generation process, including

generic computer science models, evaluation strategies, and an established tool to help

synthesize data. Chapter 4 details our experiments, dataset, testing methodology,

experimental setup, results, and result analysis. Finally, in Chapter 5, we conclude

with a summary of our work and opportunities for future improvements.
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Chapter 2

Background & Related Work

A general synthetic data generation process involves three main components: a real

dataset as an input, a generation model, and evaluation methods. The input dataset

will be applied into a generation model, and the model will produce a synthetic

dataset that will be evaluated according to some preset metrics. This process is also

demonstrated in Figure 2.1. The process may be iterative if evaluation results are

unsatisfactory, with parameter tuning and model adjustments incorporated into the

generation workflow.

2.1 Input & Synthetic Datasets

In this section, we introduce some definitions related to both input and synthetic

datasets that are involved in the generation process.

Our dataset comprises courses records, which are represented as rows, and each

column represents an attribute. We used the terms “attribute” and “feature” inter-

changeably to name the variable that each column of the dataset represents, with the

assumption that all values of an attribute are the same category or “type” of data.

For example, if “age” is an integer attribute, every unique instance will be an integer

rather than some other type such as a string.
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Figure 2.1: The general synthetic data generation process: a real dataset is input into
a generation model to produce synthetic data, which is then evaluated for quality.
This process can include iterative parameter tuning and model adjustments until the
synthetic data quality is evaluated to be good.

Second, we used the term “domain size” [12] to represent the size of the set of

legal values of a categorical attribute. For instance, if an attribute called “gender”

only has two distinct values, its domain size will simply be 2. Since each attribute

has a different domain size, the “largest domain size” of a dataset is further defined

as the one that has the largest value among all attributes’ domain sizes.

Third, in synthetic data generation, categorical and non-categorical features are

treated differently. If an attribute is categorical, the distribution percentage of each

category in synthetic datasets should be close to that in real datasets, making the

generation process more complicated. By contrast, rather than evaluating distribu-

tions of each value, non-categorical features will be evaluated based on each group

that includes a range of values, so they are evaluated less strictly. This is reasonable

because non-categorical attributes do not have a fixed value set, so it is not significant

to learn each value’s distribution. However, categorical and non-categorical features

are hard to distinguish: perspectives vary about how small the domain size of an

attribute needs to be to be regarded as categorical, so we define a numerical vari-
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able called “categorical threshold” to help clarify [12]. If the categorical threshold

value is 20, attributes with domain sizes less than 20 will be categorical. By contrast,

attributes with domain sizes greater than or equal to 20 will be non-categorical.

2.2 Synthetic Data Generation Methods

Before discussing generation models, we introduce the generic concept of synthetic

data generation. In general, modeling attribute distributions is an important aspect

of successfully generating synthetic data. If the distribution of a real dataset is known

beforehand, machine learning methods can be applied to fit the distribution, so similar

statistical properties can be maintained in the synthetic data. We define this method

as “learning from distribution”. As datasets become complex either due to a large

domain size or involving a temporal attribute, there will be more combinations of

values. Also, the probability of synthesizing some values for one variable can depend

on other variables’ values, so this introduces conditional probabilities. Modeling this

dependency between variables is an important challenge to tackle in synthetic data

generation. If it can be captured, then using conditional probability distributions,

sampling methods can be applied to produce synthetic data.

2.2.1 Some Synthetic Data Generation Methods

Some common synthetic data generation models are based on deep learning techniques

such as variational autoencoders (VAE) and generative adversarial network (GAN).

For instance, Miok et al.’s work [10] incorporated VAE with a Monte Carlo Dropout

method, lowering the running time while maintaining similar accuracy with baseline

methods. In the medical domain, Lu et al. used generative adversarial networks

(GAN) [8], and Choi et al. [3] combined autoencoders and generative adversarial

network to deal with multi-label discrete variables in patient records. While the
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Figure 2.2: A simple Bayesian network: variable C is a root parent, and it has two
child attributes, variables A and B. There is no edge between variable A and B
which are conditionally independent. Variable D has two parents, so it conditionally
depends on both variable A and variable B.

former work confirms the effectiveness of normal GAN models in producing synthetic

data, the latter combines the two deep learning tools to address the issue of discrete

variables in the medical area.

Another probabilistic model is hidden Markov model. Dahmen and Cook [4]

introduced a tool called SynSys to synthesize smart home sensor data, which is based

on nested sequences using hidden Markov and regression models. It works well when

a limited amount of ground truth data is provided and the data is sequenced by time

[4].

Other related works focus on the usability of generation tools. For example, Man-

nino and Abouzeid developed a tool called Synner, which visually and declaratively

specifies properties of the datasets that users intend to generate. Users will also

receive instant feedback, so less time is required to complete complex tasks [9].

2.2.2 Bayesian Network

We choose a Bayesian network model to capture probability distributions for creating

synthetic results. A Bayesian network uses probabilities to present hidden relation-
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ships between different variables and calculate their conditional dependencies. It is a

graphical model: the dependency relationships are visualized as edges in a structured

directed acyclic graph. When incorporating Bayesian networks in machine learning

models, each node represents a corresponded attribute, and the directed edge indi-

cates that a child attribute forms a conditioned distribution depending on its parents’

values. One node can have multiple parent nodes, and we call the maximum number

of parents the “degree” of a Bayesian network. Bayesian networks assume conditional

independence of certain variables, which is an intermediate stage between complete

independence and dependence. For example, in Fig 2.2, each node refers to an at-

tribute. If there are two nodes A and B which are not directly connected through

an edge, then they are considered to be conditionally independent. That is to say,

any extra information of B will not affect the distribution of node A. A challenge

for probabilistic models is that it is computationally expensive to capture dependen-

cies among all attributes, so Bayesian networks deal with this issue by using partial

conditional independence.

Bayesian networks are also helpful in synthetic data generation because they help

capture the probability inferences among attributes in the input dataset, which ad-

dresses the conditional dependency problem and helps to determine the sampling or-

der. For example, the distribution of a child attribute will be conditional and sampled

after its parents. Thus, Bayesian networks are useful probabilistic model that should

serve our goal. There are many works based on Bayesian networks. For instance,

Kaur et al. [7] applied Bayesian network techniques to improve existing GAN-based

model by dealing with complexity and dimensionality issues in healthcare datasets

[7]. Tucker et al. [2] also used Bayesian network to synthesize healthcare data and

maintain privacy. Ping et al. [12] developed a user-friendly synthetic generation tool

called DataSynthesizer, which is also based on Bayesian network. DataSynthesizer

has been applied on urban homelessness data, criminal sentencing data, and some
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typical machine learning data [12]. Good results have been shown.

2.3 Evaluation

An effective evaluation method is important to determine the quality of synthetic

data. Though there are many evaluation methods in related literature above, some

only work for specific datasets. For instance, the smart home dataset in [4] contains

location information, so they use Euclidean distance. The goal of [9] focuses on user

experience in data generation interface, so usage time is considered an evaluation

metric.

There are also some common evaluation metrics, such as utility metrics like corre-

lation matrices and classification accuracy in [3], and statistical features like difference

of mean and standard deviation between the matching attributes in real and synthetic

datasets [10].

We will leverage both standard and dataset-specific evaluation strategies. First,

we will use overall distribution and mutual correlation of synthetic datasets. We

will present them through visualizations such as histograms and heat maps. Second,

we will evaluate some statistical features that are specific to student course record

datasets.

2.4 Comparison to Our Work

None of the related works focused on datasets that contain temporal attributes or

attributes with large domain size. Therefore, the performance of those methods for

our case is unknown. Similar to the works on smart home sensor data and patient

records, model adjustments might be needed for existing generative models to work

well for us.

To the best of our knowledge, the only work specific to student data generation
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is by Dorodchi et al. [5] who proposed to use the DataSynthesizer, an existing tool

developed by Ping et al. [12], to create open access versions of student data. In

other words, their goal is to increase data availability. They synthesized a dataset

consisting of first-time college students between 2010-2013 and received similar results

after training a random forest classifier with both real and synthetic datasets.

While Dorodchi et al.’s work [5] has similar goals, it has two limitations. They only

tested a relatively simple dataset with low domain size values and did not evaluate

any temporal aspect.

Their work sets the categorical threshold value to be a small number, 20, based

on the domain sizes of their categorical attributes [5], and Ping et al. [12] also set

it to be 20 for one of their sample datasets. In other words, both [5] and [12] use

relatively small threshold value, yet our work targets a more complex dataset with

much greater domain size. We intend to explore a method that works well with

datasets that have domain sizes around 3000. Student datasets satisfy our goal, since

if it has an attribute of course name, this attribute has to be treated as categorical

to avoid synthesizing fictional courses. In this scenario, datasets contain categorical

attributes with sufficient complexity.

Second, their datasets only record first-time-in-college students [5], which means

there is a lack of testing on attribute value changes over time. After a student first

enters the university, their information will be collected, but after that, they did not

continuously collect data on this specific student. By contrast, our work involves

an attribute with temporal nature. Our dataset contains a timestamp feature, so

a student is able to appear multiple times, and we intend to capture the change of

attributes from the same student in time trend. Some example changes of attribute

could be gradually taking higher level courses and earning higher grades.
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Chapter 3

Methodology

Our ultimate goal is to identify a synthetic data generation method that works well

with complex datasets based on multiple evaluation strategies. First, we will develop a

method to synthesize data. The three main steps in this part are acquiring conditional

distribution with probabilistic models, maintaining differential privacy 1 (that is,

learning from personal or private data without exposing), and sampling based on the

distribution results. In particular, we intend to construct a Greedy Bayesian network

to extract the value probability of each attribute and store the conditional correlation

between two attributes. Then for differential privacy, we inject random noise to the

conditional distributions of the Bayesian network. Finally, we will sample from the

distribution. Since Bayesian networks also imply sampling orders, there are some

well-designed sampling algorithms. An intuitive strategy is starting from the root

attribute and moving down in the network following a breadth first approach. Since

methods that are based on Bayesian networks are common in the field of synthetic

data generation, we first attempt existing tools and explore whether they already

provide good results on complex student datasets. When necessary, we will adjust

those tools as appropriate.

As previously discussed, our evaluation method includes both standard visualiza-

1In this work, we do not evaluate differential privacy.
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tion metrics and student-specific statistics.

We tested our dataset on the generation method, evaluated our synthetic output,

and iteratively experimented with model configurations to improve performance.

3.1 The DataSynthesizer Tool

We used Dorodchi et al.’s tool [5], DataSynthesizer, since it not only matches our

generic approach, but also has been demonstrated to function well for less complex

student datasets.

DataSynthesizer inputs a real dataset and generates a synthetic dataset as output.

Its distinguishing feature is its usability–while users have the choice to specify param-

eters manually, the model can infer the information itself. It has three main compo-

nents: DataDescriber, DataGenerator, and ModelInspector [12]. DataDescriber infers

a data summary, which includes both the frequency distribution and attribute infor-

mation such as data types. DataGenerator generates data in different ways according

to the data types. Determined by the categorical threshold value, if an attribute is

non-categorical and numerical, DataGenerator uses uniform sampling to sample from

an equi-width histogram. For non-categorical string attributes, random string values

are generated, and they will have the same string length as real values. By contrast,

categorical features will be synthesized by drawing from the frequency distribution

obtained from the DataDescriber.

Finally, ModelInspector inspects and compares the overall distribution and mutual

correlation between real and synthetic datasets [12]. Side-by-side histograms are used

to compare the overall distribution of each category of an attribute, and side-by-side

heat maps are presented to compare pairwise mutual correlations.

Moreover, DataSynthesizer can act in three modes: correlated attribute mode,

independent mode, and random mode. The correlated attribute mode learns a dif-
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ferentially private Bayesian network through a GreedyBayes algorithm to capture

the mutual correlation between features. Then, it samples the root attribute from

an unconditional distribution and children attributes from conditional distributions,

with noises injected. The independent attribute mode draws samples from uncondi-

tional distributions and also maintain differential privacy through adding controlled

noise. The random mode only generates random values matching the same types of

attributes [12].

We did not consider the random model, since completely random data does not

meet our goal. Independent attribute mode should be used only when correlated

attribute mode is too computationally expensive due to the complexity of Bayesian

network or the size of real data is too small to be sufficient in building a reasonable

model [12]. For these reasons, we favor the correlated attribute mode. After the mode

is chosen, it remains fixed for the experiment.

While the only required input of this tool is a real dataset, there are three essential

parameters that can be tuned. The first parameter is the categorical threshold value.

The second one is the epsilon value associated with differential privacy, and the general

rule is that lower epsilon value leads to higher privacy and lower accuracy. In our

work, we will set this value to be maximum 1 to preserve privacy. The final parameter

is the degree of Bayesian network, which determines the network’s structure. Users

also can choose the size of synthetic datasets, but the size is not going to affect the

overall accuracy. Thus, this parameter is not a part of our tuning.

Some attributes can be set as the candidate keys of the dataset, which are selected

features that act as the key variable. In other words, values of candidate keys are

unique, and there is no repetition. This characteristic will also be reflected in synthetic

datasets. Candidate key is an optional parameter, and it is fine that users do not

assign an attribute to be candidate key.
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3.2 Evaluation Method

Our evaluation uses the ModelInspector tool of DataSynthesizer [12] and 11 student-

related evaluation statistics. The ModelInspector is utilized to compare overall dis-

tribution and mutual correlation, which are two fundamental statistical properties

reflecting the quality of synthetic data. With side-by-side histograms and heat maps

as visual comparison, this is the most straightforward evaluation strategy.

In addition, we also developed 11 evaluation statistics that work specifically for

student course records. Shown in Table 3.1, these features can be roughly divided

into two types: temporal and non-temporal types. Non-temporal features are aggre-

gated statistics calculated over the entire time range, including the mean number of

courses taken by a student, the mean number of terms that a student takes courses,

the percentage of students who take at least one repeated course, the mean and stan-

dard deviation of student grades, the mean and standard deviation of student grades

grouped by subject, and the mean grade differences between high level and low level

courses distinguished by a threshold value. These values can be directly calculated

without grouping records by student identities.

By contrast, temporal features require grouping data based on each individual

student, including trend analyses on change of students’ grades, change of course

level, subject changes, and change of the number of course taken. As an example,

to explore how students’ grade change over terms, we have to first filter out a subset

of data that belongs to one student, then calculate grade changes, and finally take

the mean of this change over all students. Through this method, we eliminate the

effects of factors that some students might take much more courses than others, and

some terms that have less data records. Unlike non-temporal features which can be

calculated by considering all data together, temporal features require grouping first.

Specifically, as these time analyses are based on terms, the time unit will be one

semester. As the capability of Bayesian network to capture temporal correlation is
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Non-temporal statistics

mean-courses: mean number of courses a student takes
mean-terms: mean number of terms a student takes

percentage-repeated-courses: percentage of students who take at least one valid re-
peated course

mean-grades: mean of grades
sd-grades: standard deviation (sd) of grades

mean-sd-subject-grades: mean and standard deviation of grades grouped by sub-
ject

difference-grades: difference between mean grades of low level & high level
courses

Temporal statistics

change-term-grades: change of students’ grades over terms
change-term-course-level: change of course level over terms

change-term-count-subjects: change of count of different subjects over terms
change-term-count-courses: change of count of number of courses over term

Table 3.1: Student-related evaluation statistics

unknown, we will compare both temporal and non-temporal features between real

and synthetic datasets as a quantitative measurement. In case the time attribute of

a dataset is not semester based, these statistics could be calculated in a similar way.
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Chapter 4

Experiment & Results

4.1 Dataset

Our dataset comprises student course records. The dataset contains the courses taken

by all Emory students who have taken at least one Computer Science (CS) track

course, like CS or Maths courses. It contains 113894 rows or data records and seven

columns or features: student identifier, term, subject, course catalog number, course

section, grade, and grade basis. Each record or row represents a student who took

a course in a specific term and section and earned either a letter grade or pass/fail

depending on the basis.

The student identifier is a random string; term, the only integer type, indicates the

semester the course was taken. The term feature covers data from 2008 to 2018. Each

term instance is a 4-digit number such as 5129. While the first digit is meaningless,

the second and third digits indicate the year this course was taken. The last digit

could only be 1, 6, or 9, which respectively means spring, summer, and fall semesters.

Thus, 5129 refers to the fall semester in 2012. The rest of the features are string types.

For instance, grade is in letter form, and the catalog number sometimes contains one

letter, for example, “W” as suffix to indicate the writing nature of a course. In our
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work, we plan to treat all features, except student identity which is a random string,

to be categorical to avoid unreasonable values, especially course numbers and grades.

For instance, we do not want non-existing courses or a mismatched grade and grade

basis.

This dataset includes attributes with large domain size and temporal features.

First, course information in this dataset has large domain size. The only requirement

for a course record to be collected is that it is taken by a student who at least takes

one course in CS-track study. That is to say, there are two scenarios. If a student

takes an introductory CS-track course but does not pursue further CS study, only

the record of this one CS-track course is recorded. Thus, some students only appear

once. However, if students continue their CS path, all of the courses, regardless of

the subject, taken by this student will be included. Thus, it is reasonable to have

subjects like Art or Music in the dataset. This characteristic significantly increases

the domain size of subject and catalog number. The domain sizes of the catalog

number and subject features are respectively 1383 and 173. To avoid producing

fictional courses, it was necessary to consider the subject and catalog number as a

fixed pair and regard the pair as a new categorical feature, which resulted in a final

domain size of 3711. Hence, we expect our dataset to be sufficiently complex, and

our final model must deal with this complexity.

Second, the term attribute of this dataset has a temporal element. Students can

take multiple courses throughout different terms, and there is a a total of 17355 unique

students within these 113894 records. As the same student identity can be tracked

as terms change, we can evaluate if synthetic data generation methods are able to

capture student growth and attribute value changes over time.
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4.2 Experimental methodology

In this section, we detail our experiment and evaluation.

4.2.1 Preprocessing

Preprocessing can be essential for probabilistic models, since good output can be

highly sensitive to the input quality. Our first preprocessing step excluded uninter-

esting features, like section, and merging highly-connected features, like subject with

course catalog number and grade with grade basis. Hence, students will not earn a

letter grade with a pass/fail grade basis or take a course that does not exist in Emory

University’s course curriculum. Meanwhile, we have to treat these two new attributes

as categorical for the same reasons.

As a result of our preprocessing, the number of features was reduced from seven to

four (student identity, term, grade-basis, and course), but the domain sizes increased

due to the combinations. After merging 173 categories of subject and 1383 distinctive

course catalog numbers, the domain size of the new course feature is 3711. This new

highest domain size will be set as the threshold value, and we claim this merge is

acceptable as it does not change the order of magnitude of the domain size.

The second preprocessing step deals with an issue caused by the student identifier

attribute in our dataset. Each row of our dataset represents a course taken by a

student. Using the student identifier as the candidate key is not appropriate, since

it will make each synthetic student identity unique. We do not want random and

nonrepeated student identities, since we are interested in whether student growth

will be captured by the DataSynthesizer. Thus, generating sets of course records

that belong to the same student is important. However, we also do not want to

directly treat student identity as categorical, otherwise, we will undesirably select

from only a set of students. Our solution was to force repetition by setting a numerical



18

range less than the size of synthetic dataset, i.e. pigeonholing. To make this work,

student identities had to be converted to numerical values, so we mapped each student

identity to a random integer and kept a copy of this converted dataset for later

experimentation. That is, we now had two preprocessed datasets. One is the normal

preprocessed dataset; the other one further converts student identity into numerical

form, called the “id-encode preprocessed dataset”.

4.2.2 Using DataSynthesizer

We first tested the DataSynthesizer tool on the normal preprocessed dataset due to

its relatively lower computational cost. We used the ModelInspetor to check if the

overall distribution and mutual correlations are similar to those in the real dataset.

When there were obvious differences, we attempted to tune the model parameters to

improve the accuracy as described in section 3.1.

When parameter tuning alone did not produce satisfactory synthetic data, we

attempted to adjust the overall tool. When modifying DataSynthesizer by adding

new functions or algorithms satisfied the ModelInspector evaluation, we then tested

with and evaluate the id-encode preprocessed dataset.

4.3 DataSynthesizer with Default Parameters

4.3.1 Experimental Setup

We first tested the normal preprocessed dataset using DataSynthesizer with the cor-

related attribute mode. We set the categorical threshold to be 3715, slightly more

than 3711, which is the greatest domain size among the three categorical features.

Epsilon, which controls the noise injection, is set to 1. The degree of the Bayesian

network is set to 2, and the size of synthetic dataset is set to 1000. We also set

student identity as the candidate key, so it is not considered in evaluation: since
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DataSynthesizer will just generate random and unique values for candidate key, there

is no need to evaluate it. We ran our experiments based on Ping et al.’s code with

version 0.1.8 on https://github.com/DataResponsibly/DataSynthesizer [12].

4.3.2 Experimental Results

Figure 4.1 and Figure 4.2 show our results for term and grade-basis. The distribution

shapes for the synthetic data generated with the correlated mode are not similar to

the real distributions. We also found that the attributes in synthetic data form a

distribution that is close to a discrete uniform distribution. The categories that are

supposed to occur with much higher frequencies have a lower frequency than those

in our real dataset, and vice versa for some categories with low frequency in the real

dataset. For instance, in Figure 4.2, approximately 35% of the grades in the real

distribution are A’s, yet the distribution percentage A’s in synthetic data is less than

5%. Similarly, in Figure 4.1, the real distribution maintains two clear patterns. First,

every term value ending with 6 will have much lower frequencies than other categories,

since those terms refer to summer semesters. Second, in the real datset, there is a

general increasing trend from the earliest term to the latest term. However, these

two patterns are not captured by synthetic term data for correlated mode. Lastly,

all term categories are roughly between 3% and 4 %, which is not similar to the real

distribution.

We also tried independent mode and surprisingly found that the synthetic student

data generated from the independent mode has a much closer distribution to the real

dataset (discussed later). The results are shown in Fig 4.1c and Fig 4.2c. Both

figures demonstrate clearly better overall distributions compared to the correlated

mode graphs in the middle. This finding is surprising because the correlated attribute

mode should generate better synthetic data according to Ping el al.’s work [12]. If

independent attribute mode contributes to good results, the correlated attribute mode
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

(c) Synthetic data using independent mode.

Figure 4.1: Term distributions for DataSynthesizer with default parameters.
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

(c) Synthetic data using independent mode.

Figure 4.2: Grade-basis distributions for DataSynthesizer with default parameters.
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is supposed to be even better.

To tune the correlated attribute mode case, we decreased the max degree of

Bayesian network from 2 to 1. Since we only have three categorical features, a rela-

tively small number of attributes, we do not need a more complex Bayesian network

that accumulates more noises. The new synthetic results of correlated attribute mode

are shown in Figure 4.3c and Figure 4.4c. The comparison indicates small accuracy

improvement. However, the results still cannot be considered as good. First, some

dominant categories like “A” grades and “A-” grades take roughly 15% and 8% in

synthetic data, which are still far from their frequency percentages in the real distri-

bution. Second, some categories that are supposed to take extremely small percentage

close to 0% take unusually high percentage in the synthetic data distribution. Con-

sequently, further work was needed to increase synthetic data quality and better

understand the correlated attribute mode.

4.3.3 Result Analysis

To figure out the reason for the incorrect distribution with the correlated attribute

mode, we checked the correlation coefficients of our dataset, shown in Figure 4.5. Our

correlation coefficients are even greater than those used in the sample datasets by the

model creators [12], so correlation between attributes should not be the cause.

We performed a detailed comparison with the generation process of the sample

datasets used by Ping et al. [12]. We found that many distribution-related statistics

are actually 10 times less than those in their sample datasets. This explains why

parameter tuning helped a little and also why independent attribute mode generates

better results. First, having an overly complex network is not necessarily a good thing.

Noises added to parents will be passed down to and accumulate in the network, a

child attribute with two parents will be injected with more noise than one with only

one parent. This extra noise may be too much for our dataset. Since the course
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

(c) Synthetic data using correlated attribute mode after tuning parameters.

Figure 4.3: Term distributions for DataSynthesizer with default & tuned parameters.
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

(c) Synthetic data using correlated attribute mode after tuning parameters.

Figure 4.4: Grade-basis distributions for tests with default & tuned parameters.
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(a) Real data. (b) Synthetic data using correlated mode.

Figure 4.5: Pairwise mutual correlations for DataSynthesizer test with default
parameters.

attribute has a domain size over 3000, conditional probability values will be much

smaller compared to those in other related works, so the noise can be too much in a

complex network. In Ping et al.’s related work [12], the greatest domain size of their

sample datasets is 20, so it is reasonable that their conditional probability values

will be greater and suffer less from larger amounts of noise. Thus, by decreasing the

degree of Bayesian network, it reduced noise levels in a relatively simple Bayesian

network that has only three attributes.

Second, it helps to explain why independent mode reaches a higher accuracy in

this case. In particular, independent mode is based on unconditional probability and

noise injected into one attribute will not affect others. Noise will follow a Laplace

distribution with mean equal to 0 and standard deviation equal to 1. The independent

nature of each attribute means that there will not be any noise accumulation. Thus,

independent attribute mode will cause less injected noise, and the overall distribution

could be better maintained.
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4.3.4 Summary

In the first phase of our experimentation, we found that the correlated attribute mode

of DataSynthesizer tool does not work well on our complex course record dataset. The

main cause is that the domain size of the course attribute in our dataset is too large.

Since there are 3711 categories of courses in the dataset, each category will only have

a small probability value. These values are too small for the amount of noise injected,

resulting into low accuracy. By contrast, parameter tuning and using independent

mode increased accuracy, since these two methods reduce the impact of injected noise.

Decreasing the number of parents in Bayesian networks passes less noise down to other

attributes. In independent mode, there is not even a network, so the noise injected

into an attribute will not be affected by other attributes.

In summary, in the first phase, we found that the large domain size of our dataset

is a serious problem, and to tackle it through the DataSynthesizer tool, we need to

develop a method to decrease domain sizes.

4.4 Incorporating a Split-encode Algorithm

Our previous findings inspired us to develop a method to lower the large domain size.

We did this by converting our dataset into another form with a smaller domain size

but maintaining all the original information. We now describe this approach and its

results.

4.4.1 Split-encode Method & Testing Methodology

We designed a split-encode algorithm to lower the threshold value. The idea is to

split the attribute with large domain size into sub-attributes, so the new dataset has

more attributes, but each attribute has a smaller domain size.

We encode the course attribute as an integer and split the integer by digits into
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separate sub-columns. Since we intended to encode 3711 different courses, we encoded

each course into a 4-digit octal number, split the number by digits, and used sub-

attributes to store these digits. We converted it to 4 digits, since the total number

of combinations of 4-digit octal numbers could cover all 3711 courses in the normal

preprocessed dataset.

For instance, if a course is encoded as 1237, then we will drop the course feature

and add four new columns that store 1, 2, 3, and 7 respectively. In this case, the four

sub-columns, which collectively represents the original course attribute, could only

have eight possible values due to the octal number system, a much smaller domain

size. As a result, through dividing an attribute with large domain size into several

attributes with lower domain size, the threshold value can be decreased.

We then synthesized the dataset with these sub-attributes through the DataSyn-

thesizer tool. After DataSynthesizer produces the synthetic data, we will decode this

sub-attributes back to the original attributes. In our case, the only feature to be split

is the course, since the domain sizes of grade-basis and term are only around 20, so

there is no need to split them.

However, there is also a problem related to using this octal number system: it

might synthesize octal numbers are “out-of-scope” and, therefore, cannot be decoded.

For example, if the domain size of a course attribute is 3710. The octal number

form of 3710 is 7176, which suggests that every course should maintain a one-to-one

relationship with numbers from 0 to 7176 in octal number system. However, it is

possible to synthesize values from 7177 to 7777, which cannot be decoded back to

a valid course value like Math 111. Consequently, our proposed solution is to apply

modulo arithmetic. If the domain size is 3710, and the extra octal number is 7177,

7177 will be converted to decimal and then taken the remainder mod 3710. In this

case, 7177 is mapped to the course that matches with the modulo. This is reasonable

because it avoids decoding fictional courses in an unbiased (uniformly distributed)
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manner. Also, only a few data records will be out-of-scope, and their individual

occurrence is small compared to the large size of synthetic datasets: as a result, there

should be no significant distribution change.

Our second set of experiments tested whether this split-encode method, through

lowering the categorical threshold value, increased synthetic data quality. A concern

is whether the Bayesian network will recognize the strong conditional dependencies

between the four sub-attributes so that the information of original attributes is not

lost. Theoretically, with the Bayesian network’s ability to capture correlation between

attributes, this should not be the case.

4.4.2 Experimental Setup & Results

After split-encoding the course attribute, the new dataset has seven features: student

identifier, term, grade-basis, and the four course digits. We set the epsilon value to

1 and degree of Bayesian network to 2, and the threshold value is set to 32. We

followed the same setup in our first experiment and generate 1000 synthetic data.

The results are shown by Figure 4.6, Figure 4.7. In Figure 4.6, the synthetic data

captures the pattern of summer semesters with small frequency less than 1% and the

overall increasing trend. In Figure 4.7, roughly 40% of the grades are A’s now, and

the distributions of other grades are also close to the real ones.

The comparative result of the course attribute is shown in Figure 4.8 after decoding

the 4 sub-attributes back to the original form. It is not shown as visual graph, since it

is hard to visualize details given this large amount of categories, so we only compared

the distribution frequencies of the top 7 courses with most occurrences. The result is

very good, as the frequency percentages of most courses in the synthetic dataset are

only different from real results by approximately 0.3%, and the greatest percentage

difference is still less than 1%.
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

Figure 4.6: Term distributions for DataSynthesizer after split-encoding the input.
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

Figure 4.7: Grade-basis distributions for DataSynthesizer after split-encode the input.
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(a) Real data. (b) Synthetic data using
correlated mode.

Figure 4.8: Distributions of the top seven courses with most occurrences after after
incorporating a split-encode algorithm.

4.4.3 Result Analysis

It appears clear that for datasets with large domain size, if we can manage to lower

the categorical threshold value, which requires decreasing the domain size of some

complex attributes, the overall quality could be significantly improved. In summary,

what we have achieved is an almost perfect match of overall distribution for attributes

with small domain size, grade-basis and term in this case, and a decent synthetic data

distribution of attributes with high domain size such as course.

4.4.4 Summary

In this phase, we tested a split-encode algorithm to reduce data complexity, and the

results were good. We think this addresses the large domain size issue.

The main goal of the first two phases are testing the performance of DataSynthe-

sizer tool on datasets with large domain size. Now remains our test of the dataset

that encodes student identifier in numerical form.
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4.5 DataSynthesizer with ID-encoded Data

Encoding student identifiers is important, since it addresses the issue of non-repeating

student identifiers in the synthetic dataset. If all student identities are unique, some

of our evaluation statistics become impossible to calculate. For instance, if we have

no idea which subset of courses are taken by the same student, there is no way to

calculate any temporal statistics per student.

If student identity is in numerical form, we can add a numerical range restriction

within the DataSynthesizer. For example, the id-encode dataset has 17353 different

student identities within 113872 data records. If the synthetic dataset size is set to

be the same as the original dataset, and the numerical range is set to be from 0 to

17353, there will be lots of repetitions of student identities. Besides, student identity

will be treated as a non-categorical integer type in this case, which means that this

process will not affect categorical threshold and data quality. However, since it is non-

categorical, it also indicates that the distribution of student identity will be compared

for a range of values instead of individual value. Unlike categorical attributes where

the distribution frequency is considered for each value, there is no concept of category

for student identity, so it will not strictly follow the real distribution. The average

amount of occurrences for each student is 7 for both the real and synthetic dataset.

However, their distributions are different. For example, in the real dataset, 45% and

23% of students appear once and twice respectively. For all amount of identifier

occurrences that are greater than 6, each frequency percentage is less than 1%. By

contrast, the distribution of student identifiers in the synthetic dataset is relatively

uniform. 16%, 15%, 15%, and 12% of students appear 6, 5, 7, 8 times respectively.

Students who appear once take 0.8%. This distribution discrepancy is unavoidable,

since student identifier cannot be regarded as categorical.
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4.5.1 Experimental Methodology & Setup

After this encoding process, student identity will not be considered as candidate key,

and it will be added as a new attribute in evaluation. Our final setup makes threshold

value to be 32 and sets the epsilon to 1 and degree of Bayesian network to 2. We also

added a numerical range restriction on student identifier from 0 to 17353, and the

size of the synthetic dataset was changed to 113872, same as the id-encode dataset.

4.5.2 Results & Analysis

The results are shown in Figure 4.9, and Figure 4.10. Similar to the second phase

experiment, all attributes have good frequency distribution results. Once again, the

evaluation of the course attribute, shown in Figure 4.11, is done separately due to its

large domain size.

We confirmed that the overall distribution quality is not harmed by our identity

encoding strategy, which allows us to compute all relevant statistics.

The term and grade-basis attributes maintain similar accuracy as the second phase

experiment, and the course results are slightly better than the previous results. The

distribution frequencies of all of the top 7 courses are close to real values, similar to

the results in the second phase.

4.6 Evaluation statistics

Some of our student-specific evaluation statistics are related to student’s GPA, such

as the mean and standard deviation of GPA for overall students or the trend analysis

on students’ grade. Thus, we created a copy of our dataset, which converts letter

grades in the real dataset to corresponded numeric grade points. We only kept the

normal letter grades from A to F and removed the grade such as satisfied, unsatisfied

or incomplete, since only letter grades are counted as part of GPA. Also, some spe-
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

Figure 4.9: Term attribute distributions for DataSynthesizer test after incorporating
the id-encode strategy.
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(a) Real data.

(b) Synthetic data using correlated attribute mode.

Figure 4.10: Grade-basis attribute distributions for DataSynthesizer test after incor-
porating the id-encode strategy.
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(a) Real data. (b) Synthetic data using
correlated mode.

Figure 4.11: Distributions of the top seven courses with most occurrences after after
incorporating the id-encode strategy.

cial grades such as those in Emory Goizueta Business School will also be converted

accordingly to numerical values. This copy of dataset is saved for evaluation.

Then the evaluation statistics are calculated for both the synthetic and original

datasets, and the result is shown in Table 4.1. Repeated courses are special courses

that have course values ending up with a “R” in Emory course curriculum. Normally,

students are not allowed to take the same course, but repeated courses are exceptions,

so the percentage of students who take at least one valid repeated course is also

considered as part of the evaluation.

A general student course trend is reflected by gradually taking higher level courses,

so we compared the difference between average grade of low level and high level

courses. The level is distinguished by a threshold value, and in this case we regard

catalog number less than 300 as low level and greater than or equal to 300 as high

level. This threshold value is subjective.

The rest of the statistics are temporal statistics. They reflect the overall trend

change of a particular interesting statistics for all students. We grouped data by

student identifier, calculated the relevant statistics for each student over each term,

sorted the results based on term in ascending order, calculated the average of value
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changes between each term, and finally average this result over all students. For

instance, the change-term-grades is calculated through the formula below.

change−term−grades = Avg of [Avg difference of successive term GPA] for overall student (4.1)

As for those temporal statistics, grade change and course level change demonstrate

how the student’s grade and course level change over time. The count of different

subjects indicates if a student will gradually move from studying a range of subjects

to focusing only on major subjects. Finally, count of number of courses is related to

another pattern. Some students prefer taking less classes in beginning terms, which

causes heavy workload at the end. Some students do the opposite thing. Thus, this

is another way to tell if a student dataset is real.

Most of the non-temporal statistics have similar values. The value difference of

mean-courses, percentage-repeated-course, sd-grades, and mean-grades are all less

than 0.1. The synthetic result of difference-grades is off by 0.11, which is still accept-

able. The values of all temporal statistics are close to 0 with an error less than 0.1.

This is a good result that suggests that our grade-specific attributes are generated

effectively. There is a relatively big difference for mean-terms, different by 3 terms.

This is likely caused by our method that treats student identifier as non-categorical.

This statistics require grouping by student identifier first, yet the generation method

does not strictly synthesize the real student distribution. This also explains why we

deem 0.1 as an acceptable error range for temporal statistics.
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statistics real data results synthetic results
mean-courses 7 courses 7 courses
mean-terms 3 terms 6 terms
percentage-repeated-courses 12.95% 13.47%
mean-grades mean:3.36 mean:3.35
sd-grades sd: 0.86 sd:0.87
mean-sd-subject-grades shown separately shown separately
difference-grades 0.17 0.06
change-term-grades -0.11 0.00
change-term-course-level 0.12 0.04
change-term-count-subjects -0.06 0.01
change-term-count-courses 0.00 0.01

Table 4.1: Student-related evaluation statistics results for real and synthetic datasets.
The 6th statistics is shown in Appendix A due to its large size.
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Chapter 5

Conclusion & Future Work

In this thesis, our research goal was to identify a synthetic data generation method

that produces high quality data for complex datasets with attributes that have large

category size. To achieve this goal, we studied a complex student dataset. We

evaluated an existing tool, called DataSynthesizer, using both standard visualizations

and student-specific statistics. We conclude that the DataSynthesizer tool, with the

aid of our new split-encode algorithm, can generate quality synthetic datasets with

complex features.

While this work shows a method for generating quality data, there remains several

opportunities for further explorations, including:

• exploring other data generation models that may be able to intrinsically deal

with complex datsets like ours. These models may include variational autoen-

coders (VAE) and generative adversarial network (GAN).

• deeper analysis of the effects of model parameters, like epsilon, choice of the

root attribute, and the degree of Bayesian networks. They all affect the quality

of synthetic results. Epsilon value is inversely related to the amount of noise

injected. Changing the root attribute or the degree affects the structure of the

Bayesian network.
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• exploring the acceptable amount of overlapping data records. Synthetic datasets

should be similar to the real dataset, so it is normal to have identical records (ex-

cept the identifier attribute) between the real and synthetic datasets. However,

exploring how much overlapping data are tolerable is another future work.

• evaluating privacy metrics. Differential privacy prevents information leakage of

sensitive data. Though it is claimed to be preserved in the DataSynthesizer

tool, we have not yet evaluated this claim.

• using machine learning tasks to evaluate the quality of synthetic data. We can

further validate the quality of our synthetic data, for example, if two models,

trained by the real and synthetic dataset respectively, have similar accuracy.

• testing the same generation methods on a broader range of student or other

complex datasets.
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Appendix A

More Experimental Details

First 20 subjects sorted by frequencies in the real dataset
subjects real data results synthetic results
MATH count:29628 mean:3.20 sd:0.95 count:27825 mean:3.29 sd:0.90
CS count:11060 mean:3.21 sd:0.99 count:10426 mean:3.30 sd:0.90
MATH OX count:7739 mean:3.00 sd:1.09 count:7585 mean:3.23 sd:0.98
ECON count:6639 mean:3.44 sd:0.73 count:6114 mean:3.47 sd:0.75
BUS count:4948 mean:3.42 sd:0.59 count:5490 mean:3.40 sd:0.81
PE count:3030 mean:3.84 sd:0.54 count:2969 mean:3.41 sd:0.84
PHYS count:3013 mean:3.39 sd:0.76 count:2895 mean:3.39 sd:0.84
CHEM count:2721 mean:3.28 sd:0.81 count:2535 mean:3.41 sd:0.80
BIOL count:1889 mean:3.41 sd:0.73 count:1614 mean:3.48 sd:0.77
ENG count:1837 mean:3.61 sd:0.62 count:1662 mean:3.51 sd:0.71
MUS count:1535 mean:3.87 sd:0.45 count:1411 mean:3.49 sd:0.81
PHIL count:1046 mean:3.64 sd:0.59 count:1027 mean:3.40 sd:0.84
HLTH count:1000 mean:3.75 sd:0.48 count:1178 mean:3.43 sd:0.85
PE OX count:961 mean:3.84 sd:0.51 count:880 mean:3.36 sd:0.85
SPAN count:884 mean:3.62 sd:0.55 count:710 mean:3.44 sd:0.79
POLS count:863 mean:3.43 sd:0.74 count:819 mean:3.35 sd:0.90
PSYC count:818 mean:3.27 sd:0.84 count:756 mean:3.36 sd:0.85
JPN count:774 mean:3.56 sd:0.74 count:763 mean:3.45 sd:0.77
CHN count:759 mean:3.65 sd:0.56 count:712 mean:3.40 sd:0.85
ECON OX count:722 mean:3.44 sd:0.66 count:640 mean:3.30 sd:0.84

Table A.1: Statistics of count, mean, and standard deviation statistics of the first 20
subjects that are sorted by frequencies. While all subjects are recorded, it is hard to
put them in one table, so part of them are shown as examples.
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Grades sorted by frequencies in the real dataset
grades real data results synthetic results
A count:42839 count:41898
A- count:15117 count:14735
B count:11462 count:11421
B+ count:10883 count:10618
S count:8863 count:8759
B- count:5632 count:5802
W count:4698 count:4825
C count:4278 count:4460
C+ count:3485 count:3430
D count:1859 count:2036
F count:1826 count:1720
C- count:1698 count:1673
D+ count:801 count:1081
U count:321 count:353
I count:81 count:246
WF count:20 count:279
A+ count:8 count:232

Table A.2: Statistics of count of each grade in our dataset, sorted by grade frequencies
in the real dataset.
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