
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or books)
all or part of this thesis.

Che Yeol (Jayeol) Chun April 10, 2018

Dependency Analysis of Abstract Universal Structures in Korean and English

by

Che Yeol (Jayeol) Chun

Jinho D. Choi, Ph.D.
Adviser

Department of Mathematics and Computer Science

Jinho D. Choi, Ph.D.

Adviser

Jeremy A. Jacobson, Ph.D.

Committee Member

Phillip Wolff, Ph.D.

Committee Member

2018

Dependency Analysis of Abstract Universal Structures in Korean and English

By

Che Yeol (Jayeol) Chun

Jinho D. Choi, Ph.D.

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2018

Abstract

Dependency Analysis of Abstract Universal Structures in Korean and English
By Che Yeol (Jayeol) Chun

This thesis gives two contributions in the form of lexical resources to (1) dependency
parsing in Korean and (2) semantic parsing in English. First, we describe our methodology for
building three dependency treebanks in Korean derived from existing treebanks and pseudo-
annotated according to the latest guidelines from the Universal Dependencies (UD). The original
Google Korean UD Treebank is re-tokenized to ensure morpheme-level annotation consistency
with other corpora while maintaining linguistic validity of the revised tokens. Phrase structure
trees in the Penn Korean Treebank and the Kaist Treebank are automatically converted into UD
dependency trees by applying head-percolation rules and linguistically motivated heuristics. A
total of 38K+ dependency trees are generated. To the best of our knowledge, this is the first time
that the three Korean treebanks are converted into UD dependency treebanks following the latest
annotation guidelines. Second, we introduce an on-going project for constructing a new corpus of
Deep Dependency Graphs (DDG) which are converted from the phrase structure trees in the
OntoNotes corpus with additional semantic information found in the Proposition Bank
(PropBank) and Abstract Meaning Representation (AMR). This new dataset plays a pivotal role
in our proposed novel AMR parsing scheme in which the data helps train a dependency parser,
which is subsequently trained on a new AMR parsing task through transfer learning. Since AMR
inherits the core semantic roles in PropBank, we speculate that the first training phase that
exposes the parsing model to semantic role labeling task will greatly help the model perform
AMR parsing. In this thesis, we address the preliminary step of integrating PropBank labels for
predicate argument relations during the constituent-to-dependency conversion of the OntoNotes.
It is our hope that the new corpus, with its rich syntactic information stored in DDG as well as
semantic role information provided by PropBank that fully describes the predicate argument
structure, will serve as a useful resource for semantic role labeling.

Dependency Analysis of Abstract Universal Structures in Korean and English

By

Che Yeol (Jayeol) Chun

Jinho D. Choi, Ph.D.

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2018

Acknowledgements

I would like to send my deepest appreciation to my parents in Korea, Sang Kyu Chun and Ji Eun Lee,
who have supported me during my 8 years at Emory University. In their unconditional support I found an
endless source of strength and inspiration, and I remain forever grateful for the opportunity to immerse
myself with all the valuable resources Emory had to offer. I am also thankful to my younger brother, Jae
Woo Chun, who grew up to be the dependable younger brother while I was away.

I also want to acknowledge my academic advisor Dr. Frank Gaertner, whom I was fortunate to have met
as part of a first generation of military returnees he mentored in 2014. His presence served as a constant
reminder of the liberal arts spirit, and without his guidance I would not have enjoyed such a colorful
undergraduate career at Emory University.

I am also greatly indebted to my thesis advisor Dr. Jinho Choi, who introduced me to the Natural
Language Processing and gave me an opportunity to conduct meaningful research in the field. Under his
mentorship I had the privilege of seeing first-hand the qualities required to be a researcher, and I inherit
his passion for the subject. I am grateful to his guidance that made this thesis possible.

My final acknowledgments go out to Dr. Valerie Summet, now at Rollins College, who encouraged me to
major in Computer Science; Dr. Daniel Weissman, my Physics advisor, who helped initiate my first
research project; Dr. Jeremy Jacobson, under whose leadership I was lucky to have served the Emory
Data Science Club; and Dr. Phillip Wolff, who took interest in my research and agreed to be on my
honors committee.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

2 Background 5

2.1 Natural Language Structures . 5

2.1.1 Parts of Speech . 5

2.1.2 Morphological Analysis . 6

2.1.3 Phrase Structure . 6

2.1.4 Dependency Structure . 8

2.1.4.1 Universal Dependencies 10

2.1.4.2 Deep Dependency Graph 10

2.1.5 Predicate Argument Structure . 11

2.1.5.1 PropBank . 12

2.2 Constituent-to-Dependency Conversion 13

2.3 Abstract Meaning Representation Parsing 14

3 Approach 16

3.1 Dependency Conversion in Korean . 16

3.1.1 Google UD Korean Treebank . 16

3.1.1.1 Morphological Analysis 17

3.1.1.2 Re-Tokenization . 17

3.1.1.3 POS Re-Labeling . 18

i

3.1.1.4 Head ID Re-Mapping 18

3.1.1.5 Dependency Re-Labeling 20

3.1.1.6 Lexical Correction . 20

3.1.2 Penn Korean Treebank . 20

3.1.2.1 Mapping Empty Categories 21

3.1.2.2 Coordination . 23

3.1.2.3 POS Tags . 23

3.1.2.4 Dependency Relations 23

3.1.3 Kaist Treebank . 24

3.1.3.1 Coordination . 24

3.1.3.2 POS Tags . 24

3.1.3.3 Dependency Relations 25

3.2 Dependency-AMR Parsing . 25

3.2.1 Transfer Learning . 25

3.2.2 PropBank Integration into OntoNotes DDG Corpus 26

3.2.2.1 Coordination . 28

3.2.2.2 Copulas . 28

4 Analysis 30

4.1 Dependency Treebanks in Korean . 30

4.1.1 Corpus Analytics . 30

4.1.1.1 POS Analysis . 30

4.1.1.2 Dependency Analysis . 32

4.1.2 Remaining Issues . 33

4.2 PropBank-Augmented OntoNotes DDG Corpus 35

4.2.1 Remaining Challenges . 36

5 Conclusion 39

ii

List of Figures

2.1 Example phrase structure tree annotation 6

2.2 Example Penn Korean Treebank style phrase structure tree with function

tags . 7

2.3 Example dependency annotation . 8

2.4 Tree visualization of example dependency annotation 9

2.5 Example AMR annotation . 14

3.1 Example dependency tree based on dev-s909 from the original GKT . . . 16

3.2 After morphological analysis . 17

3.3 After re-tokenization . 17

3.4 After head ID re-mapping . 18

3.5 Example dependency tree with a prenthetical expression 19

3.6 After dependency re-labeling . 20

3.7 Before trace movement . 21

3.8 After trace movement . 22

3.9 Example dependency tree with ellipsis 22

3.10 Example dependency tree with coordination 23

3.11 Sample PropBank entry . 26

3.12 Sample OntoNotes phrase structure tree 27

4.1 POS distribution for three Korean dependency treebanks 31

4.2 Dependency label distribution for three Korean dependency treebanks . . 32

4.3 Example of a gerund . 38

iii

List of Tables

2.1 Partial PropBank frameset for the predicate follow 12

3.1 Headrules for the Penn Korean Treebank 24

3.2 Headrules for the Kaist Treebank . 25

4.1 Treebank statistics for three Korean dependency treebanks 30

4.2 Frequencies of POS in the final resulting Korean dependency corpora . . 32

4.3 Frequencies of dependency labels in the final resulting Korean dependency

corpora . 34

4.4 Top 3 dependency label distribution of match and no-match cases for each

numbered argument in PropBank . 36

iv

Chapter 1

Introduction

1.1 Motivation

Recent advances in Natural Language Processing (NLP) have been tremendous. Facil-

itated by the advent of deep learning and computing power that supports heavy com-

putation, research to automatically process and understand language has become the

backbone of such systems as chat-bots and machine translations, many of which are

already commercially available.

One research area that benefits from the increased computing capacity to aid natural

language understanding is semantic parsing1, which discovers meaning representations

within a sentence. It is therefore not surprising that many NLP applications are preceded

by parsing in order to understand the meaning of the sentence2. Since the output of

the parser, known as a parse tree or a parse graph, can become an input to other NLP

applications like question answering, development of an accurate parser can have far-

reaching benefits.

In order to build an effective parsing model, one needs (1) a sufficiently large training

dataset where each source sentence is mapped to a representation of its meaning, known

as meaning representation, and (2) an optimized model to process training algorithm in a

realistic duration of time while learning the meaningful patterns of the natural language

1A closely related term is syntactic parsing, which discovers syntactic structures within a sentence.
2In this respect, parsing may be regarded as a machine equivalent of human language comprehension.

1

it encounters during training. While a generic learning algorithm continues to be refined

and improved on efficiency and accuracy of solving tasks in and outside NLP, it remains

to be seen how the availability of large annotated corpora and other lexical resources

may help develop an advanced representation of meanings that leads to a more accurate

parsing model.

Dependency Parsing in Korean Korean is an agglutinative language with a flexible

word order such that, although Korean generally follows the SOV (subject-object-verb)

sentence construction, any other orders are still acceptable with further possibilities for

omissions of any of the above constituents. For this reason, it has been suggested that

the dependency structure which is not inhibited by word-order may be more suitable

for capturing the semantics of languages like Korean [6]. Furthermore, the inspection of

morphemes (Section 2.1.2) can easily lead to inference of dependency relations, which

can help boost the parsing performance.

Despite these appeals, however, dependency parsing has not received its due atten-

tion in the Korean NLP community. This is largely due to the lack of large-scale de-

pendency corpora. While several treebanks have been introduced for Korean [22, 12, 13],

they all contain annotation of phrase structure trees. Previous dependency parsing ex-

periments therefore had to be preceded by constituent-to-dependency conversion using

head-percolation rules and linguistically motivated heuristics [6, 3] (See Section 2.2 for

details on the conversion methodology). The parsing results were promising [6]: yet, the

previous efforts produced a distinct set of dependency labels for each corpus, introducing

incompatibility among the resultant dependency trees. Thus, in order to create a single

large corpus of compatible dependency trees that is conducive to parsing experiments and

subsequent comparative analysis, it is necessary to convert phrase structure trees from

different treebanks into dependency trees with a consistent set of relations.

Semantic Parsing in English In the other research direction, growing interest in

semantic parsing has culminated in the creation of Abstract Meaning Representation

(AMR). AMR [2] is a semantic representation language that expresses what had tradi-

2

tionally existed as separate annotations, such as named entities and semantic relations,

in a single annotation as a directed acyclic graph. AMR inherits the core semantic role

labels from the Propposition Bank (PropBank) [19] and uses them as the label of the

relation between vertices of the graph. Furthermore, Deep Dependency Graph (DDG) [4]

is a dependency structure captures the complete predicate argument structure at the cost

of losing some of the tree properties defined in Section 2.1.4.2.

These motivate a direct insertion of the PropBank labels into DDG converted from

phrase structure trees in the OntoNotes corpus [25], where the dependency labels between

a predicate and its arguments are completely replaced by the corresponding PropBank

labels. This produces a new corpus, which we title PropBank-Augmented OntoNotes

DDG corpus, that retains the DDG dependency structure and its rich syntactic features

with additional semantic role information provided by PropBank. It is our expectation

that a dependency parser trained on this new corpus will have learned the semantics of the

predicate argument structure, which is required for semantic role labeling. Then, transfer

learning can be applied by training the dependency parser on the AMR parsing task.

Since AMR inherits the semantic role labels from PropBank and displays resemblance to

the dependency structure, we conjecture that the initial training phase which exposes the

model to semantic role labeling and dependency structure will help the parser perform

the AMR parsing task. To this end, we believe that the new corpus will be an ideal

resource for sematic role labeling and, ultimately, AMR parsing.

1.2 Objectives

The objectives of this thesis are as follows:

• Re-tokenization of Google UD Korean Treebank and systematic assessment for er-

rors present in the original corpus

• Constituent-to-dependency conversion of the phrase structure trees in the Penn

Korean Treebank and the Kaist Treebank

• Analysis of the three converted Korean dependency treebanks and remaining issues

3

• Construction of new corpus by replacing dependencies that represent predicate

argument structure in DDG converted from the OntoNotes corpus with PropBank

labels

• Analysis of the new corpus in creation and remaining challenges

4

Chapter 2

Background

2.1 Natural Language Structures

2.1.1 Parts of Speech

One of the simplest methods of extracting information from each word in a sentence (also

known as a token) is by looking at its Parts-of-Speech (POS). POS refers to a category of

lexical units that share similar grammatical properties and communicates the syntactic

function of the token. We describe 5 common POS below.

• Adjective (ADJ): describes properties or attributes of noun.

• Punctuation (P): functions as a delimiter to facilitate understanding.

• Noun (NOUN): denotes a real or abstract thing or a group of it, such as people,

objects, and ideas.

• Verb (VERB): describes the actions performed at or by the subject.

• Adverb (ADV): modifies other POS such as adjectives, adverbs, nouns and verbs and

supplies information such as manner and time.

Additionally, linguistically meaningful combinations of tokens may be grouped into a

phrase, which receives a phrasal POS (Figure 2.1).

5

S

P

.

VP

ADVP

ADV

abruptly

VERB

left

NP

NOUN

girl

ADJ

tall

DET

the

Figure 2.1: Example phrase structure tree annotation of a sentence “The tall girl left
abruptly.”

S: Sentence, NP: Noun Phrase, VP: Verb Phrase, ADVP: Adverbial Phrase

2.1.2 Morphological Analysis

Just as tokens are constituents of a sentence, morphemes are constituents of a token.

Consider the Korean word 말했다, which can be broken down into 말하/say+었/past+

다/final, where a plus sign (+) separates each morpheme. 말하/say is the verb root that

establishes the primary meaning of the token, while 었/past denotes the past tense. Fi-

nally,다/final marks the end of the sentence. Such analysis of discovering the morphemes

that make up a token is known as morphological anlaysis, and it often sheds light on the

syntactic function as well as meaning of the token.

Many different languages feature different levels of morphology. Morphological analysis

is particularly relevant to a family of languages called morphologically rich languages

(MRLs), where dealing solely with surface forms inevitably leads to a data sparsity issue.

Unlike English, Korean belongs to this family. Therefore, any parser development for the

language must be preceded by either a corpus creation with morpheme-level annotation

or morphological analysis of the corpus obtained by an automatic morphological analyzer.

2.1.3 Phrase Structure

Phrase structure grammar, also known as constituency grammar, denotes a way of viewing

a sentence as a combination of its constituents. A constituent is a word or a phrase that

acts as a single unit and thus can be assigned the same POS. The phrase structure

6

representation of the sentence “The tall girl left abruptly.” is shown in Figure 2.1. In the

figure, the three constituents the, tall, and girl combine to form a noun phrase, which is

a constituent that constitutes a sentence along with a verb phrase and a period.

The Penn Treebank [16] is a phrase structure treebank that has influenced the anno-

tation style of many other treebanks, such as the OntoNotes corpus [25] and the Penn

Korean Treebank [12]. Below we describe two of the most prominent characteristics in

the Penn Treebank style constituency trees: function tags and empty categories.

Function Tags In its most basic form, such as the one shown in Figure 2.1, the an-

notated phrase structure tree features nothing more than a constituent structure of the

sentence and POS of individual nodes and phrases. However, the annotation can be aug-

mented with an addition of function tags, which supply additional information regarding

the semantic role played by a node. There exist various types of functions tags. For ex-

ample, -SBJ denotes a subject of a clause or a sentence, as seen with the leftmost child

of S in Figure 2.2. Although the function tagset defined for the Penn Korean Treebank

differs from the tagset for the OntoNotes corpus—likely as a result of langague-specific

extensions—the function tags serve as an extremely helpful guide during the constituent-

to-dependency conversion for identifying a dependency relation.

S

.

SFN

VP

VV

refused

거부+하+었+다

NNC+XSV+EPF+EFN

NP-OBJ

to comment

논평+을

NNC+PCA

NP-SBJ

Samsung

삼성+측+은

NPR+NNX+PAU

Figure 2.2: Example Penn Korean Treebank style phrase structure tree with function
tags of a sentence “삼성측은 논평을 거부했다.”

-SBJ: subject, -OBJ: object

Empty Categories Empty categories are nominal units that indicate the location of

their antecedent syntactic elements or dropped elements. In dependency structure, they

7

serve to capture long-distance dependencies at the cost of introducing non-projectivity

in the resultant tree (See Section 2.1.4 for a discussion on projectivity). Although the

OntoNotes corpus and the Penn Korean Treebank both feature empty categories, the

types of empty categories present in each corpus again differ. Below we list four empty

categories defined for the Penn Korean Treebank.

• Trace: An argument that precedes its subject leaves in its place a trace *T*.

• Ellipsis: A predicate that is dropped in a matrix clause or in a clausal coordination

of implicitly shared predicate is represented by *?*.

• Empty Assignment: Dropped arguments are represented by *pro*.

• Empty Operator: Relative clauses are represented by *op*.

Figure 3.7 in Section 3.1.2.1 shows an example phrase structure tree featuring all four

types of empty categories.

2.1.4 Dependency Structure

Figure 2.3: Example dependency annotation of a sentence “The tall girl left abruptly.”
See Table 4.3 for a description of the dependency labels used.

As opposed to the constituency grammar, dependency grammar establishes a directed arc

between two nodes in a sentence, where the link is known as a dependency. Because the

link is directed, a head-child relationship is recursively established until there remains

a single root that can traverse to any other node in the tree. It carries syntactic and

semantic information through a dependency label that defines how the nodes are related.

8

Figure 2.3 and 2.4 show the dependency representation of a sentence “The tall girl left

abruptly.”

Figure 2.4: Tree visualization of example dependency annotation of a sentence “The tall
girl left abruptly.”

However, the dependency representation needs not always yield a tree. In fact, a

dependency structure is often represented as a directed graph. For all possible graphs

represented through dependency structure, dependency trees correspond to a subset of

them which satisfy the following properties of well-formed dependency graphs.

• There exists a unique root, which is not dependent on any other node in the sentence.

• Each vertex is dependent on a single head, i.e. each vertex has a single incoming

arc.

• The graph is connected, i.e. there exists a path to traverse between any two nodes

in the graph.

• The graph is acyclic, i.e. no vertices introduce a cycle into the graph.

Often included in the list is the fifth property of projectivity, which enforces that

no arcs may cross each other when the graph is drawn in the manner shown in Figure

9

2.3, with the artifical root node taking the leftmost position. One of the biggest merits

of preserving projectivity is the reduction of parsing complexity to a linear time [18].

But non-projective dependencies are often required to adequately represent long-distance

dependencies. To this end, this thesis excludes projectivity from the properties that define

well-formed dependency graphs. Since the four properties above implicitly define a tree

structure, a well-formed dependency graph is called a dependency tree.

2.1.4.1 Universal Dependencies

There are various ways of representing dependency structure, such as the Stanford Typed

Dependencies [10] and CLEAR Dependencies [7], for which subtle inter-system discrep-

ancies exist. Universal Dependencies (UD) initiative seeks to resolve this issue by globally

integrating inconsistent annotation schemes utilized by different dependency representa-

tion systems into a coherent and universal format appropriate for multiple languages [27].

The benefit of such a uniform syntactic representation points to the support for cross-

lingual learning experiments and the ability to perform comparative analysis, which has

already begun to yield meaningful results in parsing and POS tagging for both resource-

poor and resource-rich languages [1, 20].

2.1.4.2 Deep Dependency Graph

Choi [4] introduced a dependency graph structure known as Deep Dependency Graph

(DDG) that preserves only two of the tree properties, single-root and connected. In con-

trast to previous efforts to represent dependency graphs, DDG features primary and sec-

ondary dependency arcs, where the primary dependencies correspond to the dependencies

found in a conventional dependency tree. Additionally, the secondary dependencies are

introduced to capture relations missed by a dependency tree due to the constraints of

single-head and acyclic properties. While increasing the complexity of the dataset, the

secondary dependencies greatly enrich the amount of information found in the converted

dependency graphs. Finally, semantic roles available in the original phrase structure cor-

pora in the form of function tags are stored on the head nodes of the corresponding

10

dependency relation.

DDG is an effort to represent deep structures [8], and therefore seeks to construct

the same dependency graph for phrases or sentences that carry similar meaning but have

different surface forms. This involves a complete representation of predicate argument

structures (Section 2.1.5) from which the primary meaning of the sentence originates,

making DDG a great resource for semantic role labeling discussed in the next section.

2.1.5 Predicate Argument Structure

A predicate describes something about a subject, such as its state or an action performed

at or by the subject. Hence, English grammar often associates a predicate with a verb.

Consider the following two sentences:

1. Michael played the guitar.

2. Sam was awake by 9 a.m.

In Sentence (1), the predicate corresponds to the verb, played. However, Sentence (2)

features a non-verbal predicate with copula, was, that signals that what follows, the

adjective awake, will describe the state of the subject. Since the verb was adds little

meaning to the sentence, different views exist on whether the copula should be recognized

as a predicate or not. Unlike UD, DDG considers the adjective awake to be the predicate.

In fact, a preposition phrase (whose head may be an adjective, adverb or other POS)

may also become a predicate in DDG.

But a predicate requires arguments to complete its meaning. The predicate played in

Sentence (1) is helped by two argument: Michael is the agent of the action, while the

guitar is the patient of the action1. The predicate awake in Sentence (2) is also helped by

two arguments: Sam is the agent whose state is defined by the predicate, while by 9 a.m.

provides a temporal setting. In fact, the analysis of locating the predicate, identifying

its arguments and specifying the predicate argument relation is known as semantic role

labeling, also called shallow semantic parsing.

1Consider the passive construction: The guitar is played by Michael.

11

follow.03:be subsequent ARG0:causal agent ARG1:thing followed up on
follow.05:logical conclusion ARG1:conclusion ARG2:thesis
follow.07:fulfill ARG0:fulfiller ARG1:promise

Table 2.1: Partial PropBank frameset for the predicate follow.
First column specifies the meaning of the predicate through a sense ID and its

definition. Second and third columns describe the corresponding rolesets for each sense.

2.1.5.1 PropBank

This thesis adopts semantic role relations established in the Proposition Bank (PropBank)

[19], a corpus that annotates semantic roles of arguments that accompany predicates

found in phrase structure treebanks such as the Penn Treebank and the OntoNotes corpus.

The annotation guideline for each predicate is provided through the predicate’s PropBank

frameset, which defines a set of sense IDs as well as the argument rolesets for each sense.

Table 2.1 shows an example of a partial frameset for the predicate follow.

We show the core list of the semantic roles below, along with their prototypical de-

scriptions.

• ARG0: agent

• ARG1: patient

• ARG2: instrument, benefactive, attribute

• ARG3: starting point, benefactive, attribute

• ARG4: ending point

• ARGM: modifier

ARGM can be further modified by a thematic role labels, whose complete list can be

found in [25].

12

2.2 Constituent-to-Dependency Conversion

In the domain of syntactic parsing, two types are primarily used for practical applica-

tions: constituency and dependency parsing. Historically, constituency parsing has been

the dominant approach due to the availability of large annotated phrase structure cor-

pora [16, 25]. In fact, the construction of parsed text in English during the 1990s was

what encouraged researchers to experiment with various statistical learning approaches

in building efficient and effective parsers.

As for the dependency treebanks, only a few manually annotated corpora are available

in English [21]. To build a dependency parser that exploits the statistical learning or the

recent neural network approaches, then, one has to manually annotate raw text. However,

such labor is not only costly but also time-consuming. A realistic alternative is to convert

the existing phrase structure trees into dependency trees through a procedure known as

constituent-to-dependency conversion.

Because the constituent-to-dependency conversion is a necessary step for supplying a

dependency parser with sufficient training data, it is a well-studied topic in NLP [15, 5].

The conversion requires head-percolation rules, originally introduced by Magerman [15],

to establish the head-child dependency relation. It specifies for each phrasal POS (1) the

search direction of left or right and (2) a sequence of POS tags (See Table 3.1 for an

example of head-percolation rules). For each node encountered, the algorithm searches

through the node’s immediate children in the direction specified in (1) and compare the

POS of each child with the leftmost POS among the sequence provided in (2) that has

not been checked already. When a match is found, the chosen child becomes the head of

the siblings, while the rest are made dependent of the head.

Once the dependency structure is established, the POS and dependency relations

have to be inferred. This is done through linguistic heuristics, relying on morphological

analysis, POS and word forms of the head and the dependent, as well as function tags

if they are available. Our source code used for both the Penn Korean Treebank and the

Kaist Treebank is available at: https://github.com/emorynlp/ud-korean.

13

(l / like-01

:arg0 (p / professor)

:arg1 (d / drink-01

:arg0 p

:arg1 (c / coffee)))

(a) PENMAN-based AMR notation (b) Graph notation

Figure 2.5: Example AMR annotation of a sentence “The professor likes to drink coffee.”

In the domain of Korean NLP, Choi and Palmer [6] has carried out dependency corpus

generation in Korean which was subsequently used to train and test a statistical parser.

Choi [3] went on to prepare Korean data for SPMRL (Statistical Parsing of Morphlogically

Rich Languages) 2013 shared task, for which the Kaist Treebank [22] was converted into

dependency trees. Chun et al. [9] presented three dependency treebanks in Korean derived

from existing treebanks to follow the latest UD annotation guidelines, whose conversion

methodology constitutes the first part of this thesis.

Finally, it is worth mentioning that there has been a separate effort to compile a UD

style dependency treebank in Korean, known as Hani corpora. However, the corresponding

published exposition is not available at this time.

2.3 Abstract Meaning Representation Parsing

Abstract Meaning Representation (AMR) [2] is a semantic representation language

that expresses the meaning of the sentence as a rooted, directed, labeled graph, as shown

in Figure 2.5. A culmination of previous efforts on creating a semantic treebank (sembank)

that features what had previously existed as separate annotations, such as named entities

14

and co-reference, AMR is expected to spur further semantic parsing research as the Penn

Treebank had done for constituency parsing.

Nodes in AMR feature semantic concepts, variables and/or relations. For instance,

consider the following snippet extracted from the first two nodes in Figure 2.5a: (l /

like-01: arg0 (p / professor)). (p / professor) uses a variable p to denote an

instance from the concept professor. An immediate benefit of introducing variables

becomes clear when handling coreference; the variable previously defined can re-enter

into the graph at a later point. The relation arg0 is a familiar notion from PropBank; it

describes the semantic role played by the variable p in its relation to the predicate like.

Note that the predicate is followed by an integer, (l / like-1), where the integer refers

to the word’s sense ID found in PropBank frameset. Since AMR seeks to abstract away

from syntactic idiosyncrasies, sentences or phrases with similar meaning will feature the

same AMR.

The AMR parsing, then, is the task of discovering AMR structure within raw text.

Two approaches have proven to be effective so far. The first approach first maps a span of

words to a concept. Then, given a sequence of span of words and a sequence of concepts,

the model learns a scoring function for all possible relations between identified concepts.

The model outputs the final AMR by finding a maximum spanning graph, i.e. a graph

that maximizes the sum of the scores [11, 26].

The second approach exploits the apparent similarity between dependency structure

and AMR: the head-child dependency. It first runs a dependency parser to obtain a

dependency tree of the source text. Then, a transition-based framework transforms the

input dependency tree into its corresponding AMR [24]. An extension of the work further

enriched the model training procedure by adding additional linguistic features such as

coreference as input to the mapping framework, obtaining better results [23].

15

Chapter 3

Approach

3.1 Dependency Conversion in Korean

3.1.1 Google UD Korean Treebank

McDonald et al. [17] prepared the first version of Korean UD Treebank, one of six tree-

banks released in the work, by scraping approximately 6K sentences from newswire and

weblogs. The sentences were subsequently tokenized, POS-tagged and annotated with

dependency relations. However, the UD annotation guidelines at the time differed signif-

icantly from the current version of the universal guidelines, the Universal Dependencies

version 2 (UDv2). In this section we describe our approach in automatically converting

the original trees to meet the current guidelines. Each step of conversion other than POS-

relabeing is accompanied by a figure demonstrating the result of conversion on a sample

tree given in Figure 3.1. The Google UD Korean Treebank (GKT) was distributed as a

Figure 3.1: Example dependency tree based on dev-s909 from the original GKT

16

part of the CoNLL’17 shared task datasets.

3.1.1.1 Morphological Analysis

Figure 3.2: After morphological analysis

The authors of the original GKT consider the automatic tokenization carried out for

the corpus to be generally too coarse-grained; the suffixes, particles, punctuation marks

and/or other symbols were left in with the tokens [17]. While the authors call for a manual

correction by the annotators, the corpus had remained unchanged.

To help remedy this issue, we first augment the corpus with the morphological analysis

obtained by an automatic morphological analyzer, the KOMA tagger [14], which uses a

morpheme tagset found in the Sejong Treebank [13]. Figure 3.2 shows the morpholgical

analysis obtained for the original tree in Figure 3.1. The morphological analysis is included

in the last column of the data.

3.1.1.2 Re-Tokenization

Figure 3.3: After re-tokenization

Based on the morphological analysis thus obtained, we proceed to address the coarse

tokenization issue. Specifically, we address the the re-tokenization of punctuation marks

17

and symbols to correctly configure the dependency relations1. Figure 3.3 shows the 1st

and 3rd tokens in Figure 3.2 are re-tokenized, as they originally contained a double quote.

Over 9K tokens with embedded punctuation are revised, resulting in 3K additional tokens

after re-tokenization.

3.1.1.3 POS Re-Labeling

Given the re-tokenized corpus, we update the original POS to match the current POS

tagset endorsed in UDv2. Additionally, measures are taken to assign appropriate POS

to separated tokens in the previous section based on the morpheme tags. Note that the

original GKT provides two POS tags for each token (columns 4 and 5). Our relabeling

focuses on replacing the first set of POS tags in column 4, and for the sake of consistency

with other corpora, the second POS column is removed from the corpus.

3.1.1.4 Head ID Re-Mapping

Figure 3.4: After head ID re-mapping

As a consquence of re-tokenization, the head IDs of the separated tokens must be redi-

rected. In general, the word inherits the original head ID, while the punctuation points to

the previous token, i.e. token from which the punctuation was split, as seen with the 8th

token in Figure 3.4. An exception is made for quotations or parenthetical phrases. Based

on the observation that in general a quotation forms a sentence, a quotation (marked by

quotation marks (“ ”), as seen with the 1st and 3rd tokens in Figure 3.2) will feature

its own sub-dependency tree where only its root will link to an element outside of the

1A complete re-tokenization of particles is beyond the scope of this study.

18

quotation. Therefore, the root of the sub-dependency tree is located by finding the link

from within the quotation to an outside element. Punctuation points to the head of the

quotation, as seen with the 1st and 5th tokens in the Figure 3.4.

Figure 3.5: Example dependency tree with a prenthetical expression of a sentence
“어린왕자(Little Prince)가 물었다.”

In the case of parenthetical expressions involving (), <>, [], ‘’ and��, we found that

in the vast majority of cases, the elements within the parenthetical symbols are supple-

mentary phrases describing a preceding token. This being so, the head of the parenthetical

phrase is assigned to the rightmost element2. When the parenthetical expression origi-

nally forms a single token with the preceding word, as seen with the example sentence in

Figure 3.5, the token preceding the parenthetical expression inherits the original head ID

and becomes the head of the root of the parenthetical expression. If there are any case

particles attached to the right of the parenthetical (the 6th token in the same figure),

then the case markings are also made dependent on the token preceding the parenthetical

expression.

2Note that Korean is a head-final language, i.e. the heads of all phrase types typically occur at the
rightmost node.

19

3.1.1.5 Dependency Re-Labeling

Figure 3.6: After dependency re-labeling

Similar to the POS re-labeling, we update the dependency relations to reflect the lat-

est updates in UDv2. For instance, Olympics+in is annotated as an adverbial modifier

(advmod) of participate prior to UDv2, as seen in Figure 3.4. We relabel this as an oblique

(obl) relation in our corpus, as specified in UDv2. Additionally, we infer dependency rela-

tions for the tokens that were tokenized during the re-tokenization step through linguistic

heuristics using morpheme tags, POS and word forms of the head and the dependent.

3.1.1.6 Lexical Correction

Since a portion of the original GKT was gathered from weblogs, we perform a manual

check for spelling errors. We report a total of 146 tokens whose spelling errors are detected

and fixed. Finally, HTML entity symbols are replaced with corresponding lexical symbols.

3.1.2 Penn Korean Treebank

The Penn Korean Treebank (PKT) is the first large-scale bracketed corpus in Korean us-

ing a phrase structure annotation, drawing on military-domain documents and newswire

[12]. At 15K sentences, the corpus is the only treebank in Korean that features empty

categories, which enable to represent long-distance dependencies. We exclude the military-

domain texts from the corpus due to its lack of generality, reducing the size of the corpus

to around 5K sentences.

20

S

?ADJP

VJ

?

NP-COMP

어디에

where

NP-SBJ

NP

이어폰은

earphone

S

S

VP

VP

산

bought

NP-OBJ

T-1

NP-ADV

어제

yesterday

NP-SBJ

pro

WHNP-1

op

Figure 3.7: Before trace movement
Example of 4 types of empty categories: *op*, *pro*, *T*, *?*

3.1.2.1 Mapping Empty Categories

As discussed in Section 2.1.3, PKT features four empty categories. Below we describe our

empty category mapping procedure.

• Trace (*T*): Given a terminal node that represents a trace like (NP-OBJ *T*-1) in

Figure 3.7, we locate its antecedent, (WHNP-1*op*) which shares the same integer

index 1. Then we reorder the tree in such a manner that the subtree with the

antecedent’s non-terminal node as a root is extracted out of its position and inserted

in place of the trace node, resulting in Figure 3.8.

• Ellipsis (*?*): While the annotation in PKT does not provide sufficient contextual

information to resolve the dropped predicate in a matrix clause, it is possible to map

elided elements that share a predicate intra-sententially. First, we locate the shared

predicate, then redirect what would have been a dependency between an elided

element and its child to a dependency between the child and the node immediately

to the left of the shared predicate. Since PKT does not provide an index that links

the ellipsis token to its antecedent, we perform simple heuristics of matching POS

tags and morpheme tags, as well as function tags if they exist, for dependency

21

S

?ADJP

VJ

?

NP-COMP

어디에

where

NP-SBJ

NP

이어폰은

earphone

S

S

VP

VP

산

bought

NP-OBJ

WHNP-1

op

NP-ADV

어제

yesterday

NP-SBJ

pro

Figure 3.8: After trace movement

Figure 3.9: Example dependency tree with ellipsis

redirection. We represent this relationship as a fixed conjunct, as shown with the

dependency between the 3rd and 7th token in Figure 3.9.

• Empty Assignment (*pro*) & Empty Operator (*op*):

No explicit steps are taken to reorder sentence structures with these empty cate-

gories; these do not require a sentence reorder for correct interpretation.

22

3.1.2.2 Coordination

Figure 3.10: Example dependency tree with coordination

Following the guideline of [6], each conjunct points to its right sibling as its head so

that the rightmost conjunct becomes the head of the phrase. This aligns with the notion

that Korean is a head-final language. Our conversion discovers coordination structure

by applying a set of heuristics [9]. An example of the coordination structure is shown in

Figure 3.10, where호박 (pumpkin) is the head of its left sibling양파+와 (Onion+tpc), and

오이+이 (Cucumber+tpc) is made the head of the entire noun phrase with coordination.

3.1.2.3 POS Tags

We infer POS tags based on the morphological analysis of each token. The mapping is

mostly categorical, where the last morpheme often plays a pivotal role in the inference.

One exception is DAN (determiner-adnominal) which is a superset of (1) demonstrative

prenominals (e.g. 이(this), 그(that)) and (2) attribute adjectives (e.g. 헌(old), 새(new)).

We map the former to DET (determiner) and the latter to ADJ (adjective).

3.1.2.4 Dependency Relations

The re-labeling of dependency relations starts with handling empty categories, discussed

in Section 3.1.2.1. Then each node is assigned its head with head-percolation rules based

on Table 3.1. The dependency relationship between the node and its head is inferred by

investigating the morphological analysis, POS, word forms of the head and the dependent,

as well as function tags if they exist.

23

Phrase D Headrules

S r VP;ADJP;S;NP;ADVP;*
VP r VP;ADJP;VV|VJ;CV;LV;V*;NP;S;*
NP r N*;S;N*;VP;ADJP|ADVP;*
DANP r DANP|DAN;VP;*
ADVP r ADVP;ADV;-ADV;VP;NP;S;*
ADJP r ADJP;VJ;LV;*
ADCP r ADC;VP;NP|S;*
ADV r VJ;NNC;*
VX r V*; NNX;*
VV r VV;NNC;VJ;*
VJ r VJ;NNC;*
PRN r NPR;N*|NP|VP|S|ADJP|ADVP;*
CV r VV;*
LV r VV;J;*
INTJ r INTJ;IJ;VP;*
LST r NNU;*
X r *

Table 3.1: Headrules for PKT. Phrase lists all phrasal tags in PKT. D denotes the
search direction, and r denotes searching for the drightmost constituent. In the

Headrules column, * denotes any tag headed by its precedent alphabet, and | denotes
logical or. Each Headrule gives higher precedence to the left tag on the list.

3.1.3 Kaist Treebank

The Kaist Treebank (KTB) [22] contains approximately 31K phrase structure trees anno-

tated with different bracketing guidelines from PKT. Unlike PKT, KTB does not include

empty categories and function tags, but features a more fine-grained morpheme tagset.

3.1.3.1 Coordination

Coordination in KTB is handled in much the same way as described in Section 3.1.2.2 for

PKT. Additionally, the lack of empty categories in KTB implies the lack of verb ellipsis

annotation. As was the case for PKT, the rightmost conjunct becomes the head of the

coordination phrase.

3.1.3.2 POS Tags

The Kaist POS inference is again mostly categorical based on the morphological analysis,

with added emphasis placed on the rightmost morpheme.

24

3.1.3.3 Dependency Relations

KTB dependency conversion follows the procedure outlined for PKT, although the ab-

sence of empty categories has made the empty category handling unnecessary. Once the

head of nodes is located with head-percolation rules based on Table 3.2, we infer the

dependency relations. Unlike PKT, however, the absence of function tags and the small

number of phrasal POS pose an additional challenge for the dependency inference task.

While the rich morpheme tagset is certainly helpful, it often fails to provide the sufficient

contextual information necessary for robust inference. For instance, consider the particle

morphemes jcs, jcc, and jxt, which help identify a subject node. In PKT, a function tag

-SBJ will ensure that the dependency is either nsubj or csubj, depending on whether the

subject is nominative or clausal. However, while jcs and jcc roughly correspond to nsubj

or csubj, jxt only suggests that the node is the topic of the phrase or the clause (which

may be nsubj, csubj or other relation). This suggests that KTB offers no systematic

way of distinguishing one dependency relation from another in certain situations.

Phrase D Headrules

S r VP;ADJP;S;NP;ADVP;*

VP r pv*|pa*|n*|VP|NP;ADJP;S;*

NP r n*|f|NP|S|pv*|VP|pa*|ADJP;ADVP|MODP;*

ADJP r ADJP|pa*|n*;ADVP;VP;NP;S;*

ADVP r ADVP;VP;ma*;NP;S;*

AUXP r AUXP;NP;p*;n*;px;*

MODP r mm*;VP;ADJP;NP;*

IP r ii;p*;n*;ADVP;m*;*

X r *

Table 3.2: Headrules for KTB (see Table 3.1 for tabular details)

3.2 Dependency-AMR Parsing

3.2.1 Transfer Learning

As noted by Wang et al. [24], there is a resemblance between dependency structure and

AMR: the head-child dependency. Consider Figure 2.4 and Figure 2.5b. With a predicate

25

in the root position, its immediate children serve to fulfill the meaning of the predicate

in both figures. For instance, professor is arg0 to the predicate like in Figure 2.5b as girl

is nsubj to the predicate left in Figure 2.4.

This similarity motivates a direct integration of the PropBank labels into DDG, where

the dependency labels between a predicate and its arguments can be completely replaced

by the corresponding semantic roles. In the above example, this step would replace the

nsubj in Figure 2.4 with arg0, since girl is an agent that performs the action left. The

product of such integration for all predicates in OntoNotes will yield a new corpus of

dependency graphs, each of which represents a dependency structure whose predicate

argument relations are labeled with PropBank labels.

The greatest merit of this new corpus is as an additional resource in semantic role la-

beling. Since AMR inherits the semantic role relations from PropBank, any AMR parsers

will benefit from an effective semantic role labeler. To this end, we propose a novel method

of AMR parsing by using this dataset to train a dependency parser on dependency pars-

ing and semantic role labeling, which is subsequently trained again—through transfer

learning—on the AMR parsing task.

This is not the first time that a dependency parser is used in developing an AMR

parser. Recall that in the transition-based framework for AMR parsing [24], the depen-

dency trees produced by a dependency parser are mapped to their corresponding AMRs.

Since the mapping procedure requires a separate framework from a parsing model, how-

ever, the role of the dependency parser is rather limited.

Our approach differs from this in that, instead of designing an additional model for

mapping the output of the dependency parser into AMR, the dependency parser is trained

again on the AMR parsing task. It is our expectation that the initial training that exposes

the parser to semantic role labeling task will help the model perform AMR parsing.

3.2.2 PropBank Integration into OntoNotes DDG Corpus

nw/wsj/17/wsj_1705.parse 19 1 gold be be.01 ----- 0:1-ARG1 1:0-rel 2:1-ARG2

Figure 3.11: Sample PropBank entry

26

Integration of PropBank labels during the constituent-to-dependency conversion of

the OntoNotes corpus is generally a straight-forward process. Each tree in the OntoNotes

is assigned one or more PropBank entries depending on the number of predicates in the

source sentence3. By reading each entry, we locate the predicate as well as its arguments

specified in the entry. Then, once the conversion algorithm produces a DDG of the phrase

structure tree, we find the corresponding dependency in DDG and replace the it with the

appropriate PropBank label.

Consider a sample PropBank entry, shown in Figure 3.11. The first column denotes

the filename where the corresponding phrase structure tree resides. The second column

denotes the index of the tree from the top of the file, starting at 0. The third column

denotes the index of the predicate in the tree, starting at 0. These point to the exact

location of the predicate, and the sixth column provides the word’s sense ID found in the

predicate’s PropBank frameset.

The right side of the entry shows the locations of arguments. In the sample entry

above, the predicate has a total of 2 arguments4: ARG1 and ARG2. Each of these PropBank

labels are preceded by two integers, delimited by a colon. The first integer corresponds

to the index of the argument in the tree. The second integer refers to the ‘height’ of the

argument node. To see the purpose of the height, consider the following phrase structure

tree in the OntoNotes corpus, found in the nw/wsj/17/wsj 1705.parse file. Note that

this is the tree whose predicate argument structure is annotated in the sample PropBank

entry above.

(TOP (S (NP-SBJ (DT This))

(VP (VBZ is)

(NP-PRD (NN football)

(NN country)))

(. .)))

Figure 3.12: Sample OntoNotes phrase structure tree (tree index 19 in
nw/wsj/17/wsj 1705.parse)

3There are files in the OntoNotes corpus that does not have a corresponding PropBank data. We skip
these during our conversion.

4rel refers to the predicate itself, and is therefore not an argument.

27

The PropBank entry in Figure 3.11 tells us that the tree index of ARG1 is 0, which

points to the (TOP (S (NP-SBJ (DT This)) in the Figure 3.12. However, it is difficult to

tell whether the argument is the determiner (DT This), the noun phrase (NP-SBJ (DT

This)), or even the entire subtree rooted by S. Height enables for an easy disambiguation

in such a case; starting at the terminal node with a value of 0, it increases every time

one moves up one node in the phrase structure tree. Hence, (DT This) has a height of 0,

(NP-SBJ (DT This)) has 1, and so on.

Once we locate the predicate as well as its arguments, we can proceed to identifying

the dependency between these nodes and replace the label with the semantic role played

by the argument. However, this approach is not always successful. First, there may not be

a corresponding DDG dependency. Second, even if there does exist a DDG dependency,

naive replacement of labels may not be sufficient. Below we outline two such representative

cases that require special handling.

3.2.2.1 Coordination

DDG captures coordination through a combination of a primary dependency and one or

more secondary dependencies. Specifically, the primary dependency connects the head of

the coordination to the predicate. Then for every sibling of the head, DDG introduces

a secondary dependency as a conjunct relation between the shared predicate and each

sibling.

However, PropBank entries only give an index to the head of the coordination phrase,

making it necessary to infer additional arguments hidden in a coordination sentence or a

phrase. We tackle this problem by checking whether the siblings of the indexed argument

with a height bigger than 0 has a secondary conjunction dependency to the predicate.

3.2.2.2 Copulas

Generally known as be verbs, copulas receive different treatments in PropBank and DDG

when it comes to establishing predicate argument structure. Consider again the example

sentence “Sam was awake by 9 a.m.” Whereas DDG assigns the predicate role to awake,

28

PropBank does so to was, as seen in Section 2.1.5. This situation is not limited to just

an adjectival predicate; DDG allows any preposition phrase preceded by a copula to

become a predicate. Due therefore to this different interpretation of copula constructions,

the conversion algorithm may simply skip a PropBank entry whose predicate cannot be

located.

Our approach triggers a different handling mechanism for copulas. Once we detect

a PropBank entry with a be verb as a predicate, we iterate through the arguments in

the PropBank entry. For each argument node, we check if the node’s dependency head

is also an argument to the predicate be, which in theory cannot be because a meaningful

dependency between arguments can only be established through the shared predicate. If

the condition is true, however, we recognize the dependency head of the argument node

as the true predicate and reformulate the dependencies for other arguments to originate

from the new predicate.

29

Chapter 4

Analysis

4.1 Dependency Treebanks in Korean

4.1.1 Corpus Analytics

GKT PKT KTB Total

Sentences 6,339 5,010 27,363 38,712

Nodes 80,392 132,041 350,090 562,523

Table 4.1: Treebank statistics for three Korean dependency treebanks

The overall statistics of the phrase structure treebanks used for dependency conversion

are shown in Table 4.1. While GKT features a larger number of sentences than PKT,

PKT’s higher number of nodes per sentence likely reflects the newswire domain of PKT.

KTB, with the largest number of sentences, draws on diverse domains ranging from

news editorials to academic textbooks and has the sentence complexity of 12 nodes per

sentence, which is comparable to that of GKT.

4.1.1.1 POS Analysis

The distribution of POS in the three Korean dependency treebanks are shown in Figure

4.1. The figure shows a relatively consistent proportion for each POS, with the top three

30

0

0.1

0.2

0.3

0.4

ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB X

GOOGLE
PENN
KAIST

Figure 4.1: POS distribution for three Korean dependency treebanks

most frequent being NOUN, VERB, and ADV, closely followed by the fourth PUNCT. Table

4.2 displays the number of occurrences for all POS tags in the three treebanks. Below

we consider several representative cases in which there appears to be a mismatch in

proportion among the three corpora.

NOUN and VERB One of the characteristics of Korean newswire articles that com-

prise PKT is a frequent occurence of nouns to produce a tone that is objective and

factual. We suspect that this is the primary cause of PKT’s higher proportion of NOUN

and lower proportion of VERB relative to other two corpora. Since more nouns appear in

PKT than usual, it leads to a high proportion of NOUN. Additionally, since verbs are often

neutralized into noun forms in the news domain, it may account for the low proportion

of VERB, among other possible reasons.

AUX The initial annotation of GKT chooses to label all verbs, primary or auxiliary,

as VERB. This is rather a puzzling annotation guideline, as AUX is a well-established POS

in the Korean grammar. While we introduce AUX for some of the tokens affected by re-

tokenization, its proportion relative to other POS remains noticeably lower than other

corpora.

PART The absence of PART is a remnant of coarse tokenization, where particles remain

embedded to its morpheme root in the original GKT. We partially introduce PART for

particles attached before or after a punctuation, and therefore split from the morpheme

root after re-tokenization of punctuation marks and symbols.

31

Tag Description GKT PKT KTB

ADJ Adjective 2,760 3,431 14,223
ADP Adposition 1,791 1,251 1,498
ADV Adverb 11,361 15,174 49,204
AUX Auxiliary 74 2,263 12,906

CCONJ Coordinating Conjunction 223 2,453 19,368
DET Determiner 573 685 4,824
INTJ Interjection 3 0 56
NOUN Noun 32,345 46,866 105,193
NUM Numeral 847 7,931 4,848
PART Particle 31 464 268
PRON Pronoun 682 857 7,712
PROPN Proper Noun 490 12,257 12,366
PUNCT Punctuation 10,440 13,428 38,925
SCONJ Subordinating Conjunction 0 9,780 18,466
SYM Symbol 328 376 260
VERB Verb 18,431 13,855 59,273
X Other 13 970 700

Total 80,392 132,041 350,090

Table 4.2: Frequencies of POS in the final resulting Korean dependency corpora

4.1.1.2 Dependency Analysis

0

0.04

0.08

0.12

0.16

ac
l

ad
vc
l

ad
vm

od
am

od
ap
po
s

au
x

ca
se cc

cc
om

p cl
f

co
m
po
un
d

co
nj

co
p

cs
ub
j

de
p

de
t

di
sc
ou
rs
e

di
sl
oc
at
ed

ex
pl

fix
ed fla
t

go
es
w
ith io
bj lis
t

m
ar
k

nm
od

ns
ub
j

nu
m
m
od ob
j

ob
l

or
ph
an

pa
ra
ta
xi
s

pu
nc
t

re
pa
ra
nd
um ro
ot

vo
ca
tiv
e

xc
om

p

GOOGLE
PENN
KAIST

Figure 4.2: Dependency label distribution for three Korean dependency treebanks

Figure 4.2 displays a relative dependency label distribution for the three Korean

dependency treebanks. In contrast to POS, there appears to be some inconsistency in the

proportion of dependency labels among the three corpora. We pay special attention to

some of the representative mismatch cases, listed below.

32

flat Another by-product of coarse tokenization, flat was used by the annotators of

GKT during the initial annotation phase to cover cases in which no appropriate depen-

dency label could be identified. Consider the example dependency tree in Figure 3.1, where

flat describes the dependency between 나가고 (participate cc) and 싶다”고 (want ” cc).

Since the second node is a combination of what should have been three different tokens,

the dependency of flat is assigned between the two nodes. While we address this issue

as it arises during re-tokenization, GKT’s abundant annoation of flat implies that many

other tokens require additional dependency re-labeling which is beyond the scope of this

work.

compound For a similar reason stated for flat, GKT’s lack of compound can be traced

to coarse tokenization; where there should have been a compound to represent a multi-

word expression, flat was instead assigned. The noticeably high proportion of compound

in PKT likely reflects the news domain, as described in NOUN and VERB paragraph

in Section 4.1.1.1.

csubj, nsubj and dislocated As noted in Section 3.1.3.3, the many-to-many map-

ping from subject-related morpheme tagset (jcs, jcc, jxt) to subject-related dependencies

(csubj, nsubj, dislocated) in KTB explains the particularly odd label proportion of

the labels for KTB.

4.1.2 Remaining Issues

GKT While we address a number of problems in GKT through our re-tokenization

and subsequent handling of the revised tokens, there remains some issues that need to

be fixed in future updates. Most of the remaining errors again originate from the coarse

tokenization, leading to problems such as an incorrect dependency relation. In addition,

the head-first analysis of coordination does not align well with Korean that is a head-final

language, where the rightmost node—not the leftmost node—is most suited to become

the head of the coordination.

33

Tag Description GKT PKT KTB

acl Clausal Modifier of Noun 3,198 1,488 21,468
advcl Adverbial Clause Modifier 4,515 11,636 20,487
advmod Adverbial Modifier 8,810 2,964 19,102
amod Adjectival Modifier 1,566 1,595 16,584
appos Appositional Modifier 1,544 1,182 1,059
aux Auxiliary 64 4,807 18,935
case Case Marking 1,624 1,548 1,343
cc Coordinating Conjunction 223 785 5,234

ccomp Clausal Complement 651 9,858 15,655
clf Classifier 0 0 1

compound Compound 0 28,908 24,696
conj Conjunct 3,863 9,960 20,774
cop Copula 102 418 303

csubj Clausal Subject 21 8,014 1,202
dep Unspecified Dependency 2,437 609 3,019
det Determiner 3,077 685 4,824

discourse Discourse Element 0 0 47
dislocated Dislocated Elements 0 0 20,964

expl Expletive 0 0 0
fixed Fixed Multiword Expression 13 528 3,186
flat Flat Multiword Expression 12,252 18 803

goeswith Goes With 0 0 0
iobj Indirect Object 108 222 967
list List 0 0 0
mark Marker 372 1,003 799
nmod Nominal Modifier 1,761 5,555 22,045
nsubj Nominal Subject 8,290 4,012 17,444
nummod Numeric Modifier 489 154 3,295
obj Object 5,801 9,823 23,605
obl Oblique Nominal 2,784 3,357 11,577

orphan Orphan 0 0 0
parataxis Parataxis 0 0 0

punct Punctuation 10,494 13,073 39,016
reparandum Overridden Disfluency 0 0 0

root Root 6,332 5,036 27,363
vocative Vocative 0 0 15
xcomp Open Clausal Complement 1 4,803 4,278

Total 80,392 132,041 350,090

Table 4.3: Frequencies of dependency labels in the final resulting Korean dependency
corpora

34

PKT and KTB While PKT, known for its strong annotation consistency, offers func-

tion tags and well-publicized documentation which has led to an efficient development of

a conversion algorithm, this is not the case for KTB. As discussed in Section 3.1.3.3, the

lack of function tags and a small phrasal POS tagset provides an additional challenge in

inferring a dependency relation, in some cases offering no systemaic way of distinguishing

one dependency relation from another.

4.2 PropBank-Augmented OntoNotes DDG Corpus

Analysis of the current version of the PropBank-Augmented OntoNotes DDG corpus be-

gins by analyzing whether the predicate argument relation specified in a PropBank entry

has a corresponding dependency in DDG. We consider the following two possibilities:

1. There exists a corresponding dependency. We call this a match case.

2. There does not exist a corresponding dependency. We call this a no-match case.

Match Case When there is a match case, we replace the dependency label with its

corresponding PropBank label. However, caution is necessary as it is possible that the

targeted dependency may have been mis-identified due to a different interpretation of

some linguistic constructions such as copula (Section 3.2.2.2). For instance, ARG0 should

generally describe a subject relation of the argument to the predicate, which corresponds

to subject-related dependencies such as nsbj in DDG. However, when the identified DDG

dependency of ARG0 has, for example, det (determiner) label, it would require analysis

of annotations in both the DDG and the PropBank entry for the validity of the match

case. To help identify these pitfalls, we record the dependency labels for all match cases

before replacement.

No-Match Case When no corresponding dependency can be identified, we record the

count of no-match cases for a given PropBank label and store the DDG for future anal-

ysis. We suspect that the primary cause of the no-match case is similar to what was

35

described above: different methods of handling certain linguistic constructions by DDG

and PropBank.

Label Top 1 Top 2 Top 3 Total No-Match %

ARG0
nsubj no-match r-nsubj

206,087 12.5%
159,474 25,721 8,472

ARG1
obj nsubj no-match

318,132 16.2%
120,130 66,403 51,553

ARG2
no-match ppmod obj

97,910 48.0%
47,000 23,428 7,507

ARG3
ppmod no-match obj

6,916 13.2%
3,897 914 563

ARG4
ppmod adv no-match

5,302 3.4%
4,037 747 182

ARG5
adv ppmod prt

132 0.0%
66 35 23

Total
no-match

634,479 19.8%
125,370

Table 4.4: Top 3 dependency label distribution of match and no-match cases for each
numbered argument in PropBank

Table 4.4 displays the statistics of match and no-match cases for the numbered ar-

guments. Compared to other labels, ARG2 shows a disportionately large percentage of

no-match cases, at around 50%. Overall, we report the overall percentage of the no-match

case at 19.8%, an improvement on the initial percentage at 26.8%. In the next section we

describe remaining challenges that we hope will further reduce the no-match proportion

in the corpus.

4.2.1 Remaining Challenges

Below we describe two representative challenges whose solutions are yet to be imple-

mented.

Non-Verbal Predicates Two primary constructions are usually responsible for non-

verbal predicates: copulas and light verbs. While our method of handling copulas is de-

scribed in Section 3.2.2.2, we speculate that there exists a generalized solution of our

36

method that can be applied to handle all non-verbal predicates, including copulas, semi-

copulas (e.g. become, get, etc) and light verbs.

A light verb adds little semantic contribution to the meaning of the predicate. Instead,

light verbs are followed by a noun which acts as a verb and describes the subject of the

predicate, such as grading and call in do the grading and give a call. In PropBank, a

small portion of entries with a noun as a predicate signals a light verb construction.

It has been suggested that there exists a noticeable discrepancy between how DDG

and PropBank recognize light verbs. While DDG admits various light verb constructions

which contain a verb from a set of light verbs make, take, have, do, give, keep and a

noun from a set of 2,474 eventive nouns, PropBank is more prudent in making such a

decision and often assigns the predicate role to the verb in the multi-word expression.

This discrepancy can lead to a mismatch between PropBank that identifies the verb as a

predicate and DDG that identifies the eventive noun as a predicate.

We perform a simple check in order to detect inconsistency between DDG and Prop-

Bank for both cases of non-verbal predicates, copulas and light verbs. For every PropBank

entry, before attempting to replace any dependency labels, we iterate through every ar-

gument listed in the PropBank entry and test whether there exists a dependency between

the argument and other arguments of the predicate. Theoretically this is impossible, as a

meaningful semantic and dependency relation between arguments can only be established

through the predicate. However, as seen with cases like light verbs, PropBank often as-

signs a predicate role to what is considered either a copula or one of the arguments of the

predicate in DDG’s interpretation, which would satisfy the above condition. In this case

we identify the head of the PropBank’s predicate as the true predicate, and this aligns

with the DDG interpretation of the non-verbal predicates. Afterwards we redirect other

arguments to originate from the new predicate. Note that this is a generalized version of

our approach in handling copulas in Section 3.2.2.2, where we adopt a similar procedure

for handling PropBank entries with be verb as a predicate.

Gerunds A gerund, characterized by the -ing form attached to the end of the verb

root, functions as a noun in a compound noun phrase. For example, supporting banks is a

37

NP

NNS

banks

VBG

supporting

Figure 4.3: Example of a gerund in a phrase “supporting banks”

noun phrase in which the verb support modifies the noun banks as a gerund (Figure 4.3).

PropBank handles gerunds by identifying support as the predicate and banks as ARG0.

However, banks is the head of the entire noun phrase in dependency representation.

Therefore, the corresponding dependency in DDG is not between the two terminal nodes

(VBG supporting) and (NNS banks), as is specified in PropBank, but rather between (VBG

supporting) and (NP (VBG supporting) (NNS banks)).

38

Chapter 5

Conclusion

In this work, we outline the conversion procedure for constructing (1) three dependency

treebanks in Korean and (2) a PropBank-Augmented OntoNotes DDG corpus. Each of

the three Korean dependency treebanks is derived from its original structure to follow

the latest UD guidelines, UDv2. The Google Korean Treebank is the only corpus that

originally contained dependency trees, albeit with coarse tokenization and outdated an-

notations, which are systematically revised and updated. The Penn Korean Treebank and

the Kaist Treebank are converted from phrase structure to dependency. A total of 38K+

dependency trees are generated. To the best of our knowledge, this is the first time that

the three Korean treebanks are converted into dependency treebanks under the latest UD

annotation guidelines, resulting in a large and consistent dependency treebank.

The public release of this data has an immediate impact on facilitating further re-

search in dependency parsing in Korean, where the lack of training data has remained

an obstacle. Furthermore, researchers analyzing other morphologically rich languages can

benefit from an additional resource for a comparative analysis of their parsing systems.

Finally, we expect that the conversion methodologies from phrase structure to depen-

dency will serve as a helpful reference to those wishing to carry out the same conversion

for other corpora.

Future directions include further enhancements to the quality of the treebanks and

the development of Korean dependency parser trained on this dataset. It will be inter-

39

esting to see the impact of the trained dependency parser on other Korean NLP appli-

cations. We make our automatic conversion source code available at: https://github.

com/emorynlp/ud-korean.

In the second part of the thesis, we introduce an on-going project for creating a

new corpus of DDG converted from the OntoNotes phrase structure trees with semantic

features found in PropBank and AMR. Since AMR originates from PropBank, AMR

parsers will benefit from any work that improves on the performance of a semantic role

labeler. To this end, this work leverages the dependency graph structure of DDG that

captures the full predicate argument structure by integrating PropBank labels during

the constituent-to-dependency conversion of the OntoNotes corpus. This is a preliminary

step before a full integration with additional semantic features in AMR.

Moving forward, we will continue to analyze the no-match cases to identify and ad-

dress the inconsistency in annotation between DDG and PropBank. It is our expectation

that the final version of this large-scale corpus derived from OntoNotes will represent

the complete predicate argument structure with dependency arcs labeled with PropBank

semantic roles, along with rich syntactic information stored in primary and secondary

dependencies of DDG. We hope that this new corpus will serve as a helpful resource for

dependency parsing as well as semantic role labeling.

Once this preliminary step is complete, we plan to experiment with transfer learning

of a dependency parser trained on the dataset for the AMR parsing. The initial results of

this parsing model can serve as a meaningful baseline for future experiments. Additionally,

we will move on to the next phase of the research, where we carry out a full integration

of AMR features into the corpus.

40

Bibliography

[1] Alonso, H. M., Agic, Z., Plank, B., and Søgaard, A. Parsing universal

dependencies without training. CoRR abs/1701.03163 (2017).

[2] Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Herm-

jakob, U., Knight, K., Koehn, P., Palmer, M., and Schneider, N. Abstract

meaning representation for sembanking, 2013.

[3] Choi, J. D. Preparing Korean Data for the Shared Task on Parsing Morphologically

Rich Languages. Tech. Rep. 1309.1649, ArXiv, 2013.

[4] Choi, J. D. Deep Dependency Graph Conversion in English. In Proceedings of the

15th International Workshop on Treebanks and Linguistic Theories (Bloomington,

IN, 2017), TLT’17, pp. 35–62.

[5] Choi, J. D., and Palmer, M. Robust Constituent-to-Dependency Conversion

for English. In Proceedings of the 9th International Workshop on Treebanks and

Linguistic Theories (Tartu, Estonia, 2010), TLT’10, pp. 55–66.

[6] Choi, J. D., and Palmer, M. Statistical Dependency Parsing in Korean: From

Corpus Generation To Automatic Parsing. In Proceedings of the IWPT Workshop

on Statistical Parsing of Morphologically Rich Languages (Dublin, Ireland, 2011),

SPMRL’11, pp. 1–11.

[7] Choi, J. D., and Palmer, M. Guidelines for the Clear Style Constituent to

Dependency Conversion. Tech. Rep. 01-12, University of Colorado Boulder, 2012.

[8] Chomsky, N. Lectures in Government and Binding. Dordrecht, Foris, 1981.

41

[9] Chun, J., Han, N.-R., Hwang, J. D., and Choi, J. D. Building Universal De-

pendency Treebanks in Korean. In Proceedings of the 11th International Conference

on Language Resources and Evaluation (Miyazaki, Japan, 2018), LREC’18.

[10] de Marneffe, M.-C., and Manning, C. D. Stanford typed dependencies man-

ual, sep 2008.

[11] Flanigan, J., Thomson, S., Carbonell, J., Dyer, C., and Smith, N. A. A

discriminative graph-based parser for the abstract meaning representation.

[12] Han, C., Han, N., Ko, E., and Palmer, M. Development and evaluation of a

korean treebank and its application to NLP. In Proceedings of the Third International

Conference on Language Resources and Evaluation, LREC 2002, May 29-31, 2002,

Las Palmas, Canary Islands, Spain (2002).

[13] Hong, Y. 21st Century Sejong Project Results and Tasks (21세기 세종 계획 사

업 성과 및 과제). In New Korean Life (새국어생활). National Institute of Korean

Language, 2009.

[14] Lee, D.-G., Rim, H.-C., and Lim, H.-S. A syllable based word recognition model

for korean noun extraction. In Proceedings of the 41st Annual Meeting on Association

for Computational Linguistics - Volume 1 (Stroudsburg, PA, USA, 2003), ACL ’03,

Association for Computational Linguistics, pp. 471–478.

[15] Magerman, D. M. Natural language parsing as statistical pattern recognition.

CoRR abs/cmp-lg/9405009 (1994).

[16] Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A.,

Ferguson, M., Katz, K., and Schasberger, B. The penn treebank: An-

notating predicate argument structure. In Proceedings of the Workshop on Human

Language Technology (Stroudsburg, PA, USA, 1994), HLT ’94, Association for Com-

putational Linguistics, pp. 114–119.

42

[17] Mcdonald, R., Nivre, J., Quirmbach-brundage, Y., Goldberg, Y., Das,

D., Ganchev, K., Hall, K., Petrov, S., Zhang, H., Täckström, O., Be-

dini, C., Bertomeu, N., and Lee, C. J. Universal dependency annotation for

multilingual parsing. In In Proc. of ACL ’13 (2013).

[18] Nivre, J., and Scholz, M. Deterministic dependency parsing of english text.

In Proceedings of the 20th International Conference on Computational Linguistics

(Stroudsburg, PA, USA, 2004), COLING ’04, Association for Computational Lin-

guistics.

[19] Palmer, M., Gildea, D., and Kingsbury, P. The Proposition Bank: An an-

notated corpus of semantic roles. Computational Linguistics 31, 1 (2005), 71–106.

[20] Plank, B., Søgaard, A., and Goldberg, Y. Multilingual part-of-speech tag-

ging with bidirectional long short-term memory models and auxiliary loss. CoRR

abs/1604.05529 (2016).

[21] Rambow, O., Creswell, R., Szekely, R., Taber, H., and Walker, M. A

dependency treebank for english. In In Proceedings of the 3rd International Confer-

ence on Language Resources and Evaluation, Las Palmas, Gran Canaria (2002).

[22] sun Choi, K., Han, Y. S., Han, Y. G., and Kwon, O. W. Kaist tree bank

project for korean: Present and future development. In In Proceedings of the Inter-

national Workshop on Sharable Natural Language Resources (1994), pp. 7–14.

[23] Wang, C., Xue, N., and Pradhan, S. Boosting transition-based amr parsing

with refined actions and auxiliary analyzers. In ACL (2015).

[24] Wang, C., Xue, N., and Pradhan, S. A transition-based algorithm for amr

parsing. In Proceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (2015),

Association for Computational Linguistics, pp. 366–375.

43

[25] Weischedel, R., Hovy, E., Marcus, M., Palmer, M., Belvin, R., Prad-

han, S., Ramshaw, L., and Xue, N. Ontonotes: A large training corpus for

enhanced processing, 01 2011.

[26] Werling, K., Angeli, G., and Manning, C. D. Robust subgraph generation

improves abstract meaning representation parsing. CoRR abs/1506.03139 (2015).

[27] Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Ginter, F., Lu-

otolahti, J., Pyysalo, S., Petrov, S., Potthast, M., Tyers, F., Bad-

maeva, E., Gokirmak, M., Nedoluzhko, A., Cinkova, S., Hajic jr., J.,

Hlavacova, J., Kettnerová, V., Uresova, Z., Kanerva, J., Ojala, S., Mis-

silä, A., Manning, C. D., Schuster, S., Reddy, S., Taji, D., Habash, N.,

Leung, H., de Marneffe, M.-C., Sanguinetti, M., Simi, M., Kanayama,

H., dePaiva, V., Droganova, K., Mart́ınez Alonso, H., Çöltekin, c., Su-

lubacak, U., Uszkoreit, H., Macketanz, V., Burchardt, A., Harris, K.,

Marheinecke, K., Rehm, G., Kayadelen, T., Attia, M., Elkahky, A.,

Yu, Z., Pitler, E., Lertpradit, S., Mandl, M., Kirchner, J., Alcalde,

H. F., Strnadová, J., Banerjee, E., Manurung, R., Stella, A., Shimada,

A., Kwak, S., Mendonca, G., Lando, T., Nitisaroj, R., and Li, J. Conll

2017 shared task: Multilingual parsing from raw text to universal dependencies. In

Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to

Universal Dependencies (Vancouver, Canada, August 2017), Association for Com-

putational Linguistics, pp. 1–19.

44

