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Abstract 

Application and Interpretation of Dengue Fever Diagnostic and Prognostic Modeling in Yucatan, Mexico 

With Random Forest and Logistic Regression  

By Patrick Corbett 

 

 

Early identification of patients with dengue and patients at risk of progression into severe forms 

of disease is important in timely application of potentially life-saving therapies. The current WHO 2009 

clinical classification is highly sensitive for detecting dengue but is not very specific which could lead to 

oversaturation of hospitals in outbreak scenarios. Machine learning methods such as random forest have 

the potential to supplement clinical classification systems for detecting dengue. In this paper, we apply 

both random forest and logistic regression for diagnostic and prognostic modeling of dengue disease in 

Yucatan, Mexico. We also describe the study population with a short descriptive analysis of the 

demographic and geospatial characteristics within Yucatan, Mexico. Our results indicate that both models 

perform relatively well when modeling severe dengue versus non-severe dengue as well as severe dengue 

versus all other febrile illnesses, but they do not perform well when modeling dengue versus other febrile 

illnesses. We found that logistic regression performed slightly better than random forest for the severe 

model groups, but results were mixed for the dengue versus non-dengue models. Furthermore, we found 

that when applying our severe vs non-severe model to novel years and to other Mexican states, model 

performance decreases thus challenging the applicability of the model in external populations. We 

conclude with a discussion on the potential applications and interpretability of random forest models in 

the clinical setting.  
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Introduction 

Background on the Disease 

Dengue is an acute arthropod-borne disease caused by infection with Dengue virus (DENV), a 

positive-strand RNA virus with four different serotypes (DENV 1, DENV 2, DENV 3, DENV 4) that is 

part of the Flavivirus genus along with Yellow Fever, West Nile, and Zika (Fares, 2015; Simmons, 2012; 

Levi, 2015). Human infection results from the bite of an infected female Aedes aegypti or, less 

commonly, Aedes albopictus, mosquito with varied results from an asymptomatic infection to a flu-like 

febrile illness characterized by rapid onset of retro-orbital pain, myalgia, headache, and fatigue, to a more 

severe form with plasma leakage, shock, and hemorrhagic symptoms with a fatality rate of 4% (Fares, 

2015; Dick, 2015).  Two opposite albeit probably complementary theories explain dengue pathogenicity. 

One theory, based on the observance of relatively high severe case prevalence among populations with 

novel dengue exposure, states that differences in virus virulence are responsible for the broad spectrum of 

clinical outcomes. (Barnes, 1974; Gubler, 1978; Rosen, 1977,1986). The other theory explains severity as 

a result of sequential infection with a different serotype and an immunopathogenic role of the specific 

immune response to the first serotype which immune enhances the second infection (Halstead, 1970, 

1988.)   

There is currently no effective anti-viral therapy for dengue and existing vaccines are often not 

considered safe for populations with multiple dengue serotypes (Fares, 2015). However, dengue 

symptomatic treatment is highly effective in alleviating and preventing the progression to severe forms, 

which requires intensive care management and has a high mortality rate (Fares, 2015). As such, early 

detection of patients at risk for developing severe dengue is important for appropriate application of 

supportive therapies that curtail progression into severe disease (Deen, 2006; Cucunawangsih, 2015; Ho, 

2020).  

Epidemiology and Burden of Disease 

In 2012 the WHO declared that dengue was the most prevalent and fastest spreading mosquito-

transmitted disease in the world with annual incidence estimates ranging from 9 million (WHO, 2004), 
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50-100 million (WHO, 2012), and 96 million (Bhatt, 2013) across more than 100 endemic countries. One 

of the highest endemic regions for dengue is the Americas. The Pan American Health Organization 

(PAHO, 2020) reported that there were around 5.5 million cases from 2019-2020, 34,094 of which were 

severe and 2,785 of which resulted in death (PAHO, 2020). Of particular interest, Mexico was responsible 

for around 7% of these cases in 2019-2020, second only to Brazil in the Americas (PAHO, 2020). 

Moreover, Mexico accounted for around 13.5% of severe cases and 16% of deaths in the Americas in 

2019-2020 (PAHO, 2020). Moreover, the economic burden in Mexico from 2010-2011 was around $170 

million (95% CL: 151-292), equivalent to $1.56 per capita [95% CI 1.38, 2.68] (Undurraga, 2016). Table 

1 illustrates the number and severity of cases, the number of hospitalizations, the number of deaths and 

serotype samples among confirmed dengue patients in Mexico from 2017-2019 based on data provided by 

PAHO’s Plataforma de Información en Salud para las Américas -PLISA- (Health Information Platform 

for the Americas). The Mexican state of Yucatan is of specific interest in this study. PAHO’s PLISA data 

indicates that confirmed incidence in Yucatan, Mexico increased by more than 1,500% from 41 in 2018 to 

797 in 2019. The data also indicates a recent increase in severe cases compare to previous years.  

Table 1: Cases, Hospitalizations, and Deaths Across Years in Mexico 

Metrics 2017 2018 2019 2020 2021* 

NSD 11571 8675 28408 19014 165 

DWS 2562 3836 11116 4083 109 

SD 386 919 3506 1055 25 

Zika 125 192 318 74 2 

Chikungunya 53 61 115 14 0 

Mean Age 28.95 24.15 27.9 29.5 22.14 

Hospitalizations 3261 5074 15227 5596 147 

Deaths 217 77 396 142 1 

Dengue Serotypes 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3,4 
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Based on results from published literature, Table 2 illustrates findings regarding the sensitivity, 

specificity, and other related metrics with respect to the two WHO classification systems in detecting 

dengue and severe forms of dengue. The 2009 WHO classification shows a higher sensitivity than the 

1997 WHO classification in detecting patients at risk of severe outcome, though the specificity for both 

models was poor. Multiple researchers have expressed concern that the high sensitivity and overall lack of 

specificity within the revised WHO standard could and has led to a large influx of patients that can 

overwhelm healthcare system (Srikiatkhachorn, 2011; Tamibmaniam, 2016; Narvaez, 2011; Ho, 2020).  

While high sensitivity is mandatory to reduce morbidity and mortality rates, improving specificity would 

help prevent hospital overload during outbreaks, and would help preserve vital attention and resources 

(Srikiatkhachorn, 2011; Tamibmaniam, 2016; Narvaez; 2011; Ho, 2020).  

Background on WHO and Modeling Classification 

Given the high burden of disease and given how successful early application of supportive 

therapy is in preventing development of severe dengue in patients at risk, it is imperative to bolster our 

capacity for early detection of dengue disease (Ho, 2009). The dengue case classification proposed by the 

WHO in 1977 categorized dengue into dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue 

shock syndrome (DSS) (WHO, 1997, 2009; Deen, 2006). The 1997 classification further defined four 

grades (I-IV) of DSS based on the severity of hemodynamic fail (WHO, 1997). However, this 

classification did not relate well with disease severity which led to many instances where patients with 

severe forms of dengue, even some that died from dengue, did not meet the strict 1997 WHO criteria for 

DHF (Sumarmo, 1983; Deen, 2006). To meet the demands for improved prognostic capabilities and early 

treatment, the WHO proposed a new classification system in 2009 which included dengue without 

Data from overall Mexico dataset provided by PAHO’s PLISA. NSD=non-severe dengue, 

DWS=dengue with warning signs, SD=severe dengue. Serotype data derived from small 

PCR samples in patient data. DENV1 was more prevalent in 2007. DENV2 was 

predominant in 2020-2021. DENV1 and DENV2 were about equally present in 2018-2019. 

* 2021 refers to January 1st to April 25th
 when the data was last retrieved from PAHO’s site. 
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warning signs, dengue with warning signs, and severe dengue (WHO, 2009; Hadinegoro, 2012). Warning 

signs are used to triage patients at risk of severe outcomes before that event occurs (WHO, 2009). 

Table 2: WHO Classification Validation Study Results 

Comparison 
Metrics 

Dengue Versus Non-Dengue Illness 
Severe Dengue 

Versus Non-Severe 
Dengue 

Outcome 
Dengue: 

Old 
Class1 

Dengue: 
New 

Class1 

Dengue: 
Old 

Class2 

Dengue: 
New 

Class2 

Dengue: 
New 

Class3 

Dengue: 
Old 

Class3 

Severity-
Measure: 

Old 
Class4 

Severity-
Measure: 

New 
Class4 

Sensitivity(%) 
89.3 

(86.2–
91.9) 

86.6 
(83.2–
89.5) 

96.7 
(95.1–
97.9) 

99.3 
(99.2–
100.0) 

95.4 
(90.9–
98.2) 

79.9 
(72.7–
85.9) 

39 (31.8-
46.6) 

92.1 
(87.1–
95.6) 

Specificity(%) 
43.1 

(41.3–
44.9) 

55.2 
(53.4–
57.0) 

22.0 
(18.2–
26.1) 

8.5 
(6.0–
11.5) 

36.0 
(29.4–
43.1) 

57.0 
(49.8–
64.0) 

75.5 
(70.7–
79.8) 

78.5 
(73.9–
82.6) 

Positive 
Predictive 

Value (PPV) 
(%) 

20.3 
(18.6–
22.1) 

23.9 
(21.9–
26.0) 

67.2 
(64.3–
70.1) 

64.2 
(61.3–
67.0) 

-- -- 
43.4 

(35.6–
51.5) 

67.4 
(61.1–
73.2) 

Negative 
Predictive 

Value (NPV) 
(%) 

96.1 
(94.9–
97.1) 

96.2 
(95.2–
97.1) 

80.0 
(71.7–
86.7) 

88.1 
(74.4–
96.0) 

-- -- 
71.9 

(67.2–
76.4) 

95.4 
(92.3–
97.4) 

  

 

 

 

 

Researchers have sought to address the need for continued improvement over early dengue 

detection through applied modeling and machine learning techniques. Table 3 highlights results from a 

literature review on models regarding dengue versus other febrile illness (OFI) and severe dengue versus 

(1) Predicting dengue diagnosis for Children >=14 years old presenting to health centers within 6 days of onset 

for febrile illness or as suspected dengue cases using clinical and laboratory data (Gutiérrez, 2013) 

(2) Similar approach to 1. for predicting dengue diagnosis, but for children in hospitals in a hospital setting with 

febrile illness or suspect of dengue using clinical and laboratory data (Gutiérrez, 2013) 

(3) Predicting dengue diagnosis for adult (>=18 years old) patients presenting to clinics in Singapore within 72 

hours of febrile illness using clinical data (Shera, 2011) 

(4) Predicting dengue severity for Children >=14 years in Managua, Nicaragua in the hospital setting with febrile 

illness or suspected of dengue using clinical and laboratory data (Federico, 2011) 
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non-severe dengue (Cotterman, 2015). From our literature review, it appears that logistic regression and 

decision tree are common modeling techniques for clinical diagnostic and prognostic classification. These 

kinds of models can be appealing due to the relatively simple and interpretable nature of the algorithms 

(Ho, 2020).      

Table 3: WHO Classification Validation Study Results 

  Dengue Versus Not-Dengue Severe Versus Non-Severe Dengue 

Metrics 

LR: 
Dengue 
Vs OFI 

(Prior of 
0.388)1 

LR: 
Dengue 
Vs OFI 

(Prior of 
0.636)1 

DT: DF Vs 
OFI2 

DT: DF Vs 
OFI: 

Hospital 
A3 

DT: DF Vs 
OFI: 

Hospital 
B3 

DT: Severe 
Vs All 
Other: 

Hospital 
A4 

DT: Severe 
Vs All 
Other: 

Hospital 
B4 

DT: 
Severe Vs 

NSD6 

DT: 
Severe Vs 

NSD6 

Sensitivity(%) 90.1 66.3 71.2 81.6 89.2 83.3 83 78.2 81 

Specificity(%) 63.6 80.5 90.1 90.9 88.4 76.7 82.3 80.2 54 

Accuracy(%) 79.6 72 84.3 84.6 88.7 78.1 82.4 79.5 57 

NPV(%) 81 61.3 -- 70.4 90.1 94.4 96.6 -- 96 

PPV(%) 78.9 83.7 -- 94.9 87.1 49.2 44.3 -- 16 

ROC-AUC -- -- 0.88 0.93 0.96 0.86 0.92 0.83 -- 

 

When comparing literature of WHO classification validation studies, logistic regression and 

decision tree modeling have equal or lower sensitivity but have higher specificity. Results from modeling 

Terms: LR=Logistic Regression, DT=Decision Tree, DF=dengue fever, NSD=non-severe dengue, 

and OFI = other febrile illness. (1): Predicting DF Vs OFI for patients with dengue-like illnesses in an 

emergency room at a hospital in Taiwan with Logistic Regression with different probability 

thresholds: 0.388 and 0.636 (Ho, 2020). (2): Predicting DF Vs OFI for adult patients in Singapore that 

present within 72 hours of symptom onset using Decision Tree (C4.5) (Tanner, 2008). (3): Predicting 

DF Vs OFI for children in Thailand presenting with fever and no localizing symptoms at two different 

hospitals (A=KPPPH B=QSNICH, see reference) using Decision Tree (CART) (with mostly 

laboratory data (Potts, 2010). (4): Predicting Severe dengue versus all other illnesses (using 

independently created classification system) for children in Thailand in two different hospitals 

A=KPPPH B=QSNICH, see reference) using Decision Tree (CART) with mostly laboratory data 

(Potts, 2010). (5): Predicting form of severe dengue versus NSD for adults in Singapore with Decision 

Tree (C4.5) using laboratory values (Tanner, 2008). (6): Predicting severe dengue versus NSD for 

patients known to have dengue in a hospital in Malaysia with Decision Tree using personal history, 

clinical characteristics, and laboratory values (Tamibmaniam, 2016). 
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studies varied, even when performed the same by the same researchers in hospitals within the same 

country (Potts, 2010). Externally applying clinical models to other populations with different data 

collection processes can have varied outcomes (Pajouheshnia, 2018), often with worse results than when 

applied to the internal population that the model was built on (Siontis,2015; Ramspek, 2020). While there 

are multiple studies regarding machine learning clinical models for dengue in Southeast Asia and Brazil, 

not much has been done with regards to Mexico. Thus, there is a need for greater representation of dengue 

classification models among endemic regions such as Mexico to assess their internal application.  

This paper will address this disparity by evaluating the potential use of prognostic and diagnostic 

models in the Mexican state of Yucatan. Specifically, we will conduct a descriptive analysis of the 

clinical and epidemiological characteristic of dengue cases in Yucatan over a 10-year period to help 

characterize the patient population. Then we will perform prognostic and diagnostic modeling across 

different years and patient groups within Yucatan, Mexico to evaluate the potential use of such models in 

clinical settings as well as to identify variables most important for prediction. Subsequently, we will 

validate our model against a large dataset with similar clinical variables for all other Mexican states to 

assess the generalizability of our model. Lastly, we will demonstrate how our models could potentially be 

used and interpreted in the clinical setting.  

While complex machine learning models such as artificial neural network and support vector 

machine may be able to achieve better accuracy metrics than simpler models such as logistic regression 

and decision tree, they are not as easy to interpret (Ho, 2020). We believe that the random forest 

algorithm strikes a useful balance between comprehension and accuracy. See the Basic Review of Models 

in the Supplemental Section for more information on logistic regression, decision tree, and random forest. 

Some researchers such as Christodoulou et al. have found standard logistic regression to outperform 

random forest, but many other studies have found random forest to be more accurate than other 

considered classification models (Christodoulou, 2919; Couronné,2018). Additionally, while random 

forest is often considered a “black box” model, recent techniques such as the Local Interpretable Model-
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Agnostic Explanations (LIME) method developed by researchers at the University of Washington may be 

able to help better explain the application of random forest in the clinical setting (Ribeiro, 2016).  

In our analysis we seek to answer five related questions. What are the variables most important to 

correctly classifying dengue and severe dengue? What are the general odds ratio associations for having 

dengue or severe dengue among the most important predictors? How do our models perform and are they 

potentially useful in the clinical setting? Specifically, how does logistic regression compare to random 

forest? How does our severe versus non-severe model perform when validating it against new time 

periods and different populations? Lastly, how do localized model interpretations seem to corroborate or 

contradict variable importance analysis from the global models? We hypothesize that variables associated 

with warning signs and severe symptoms will be the most important variables for identifying dengue and 

severe dengue due to their importance in the 2009 WHO classification system. We also hypothesize, 

based on findings in other classification studies, that random forest will be more accurate than logistic 

regression across our different modeling groups. We also theorize that our models will best differentiate 

patients with and without severe disease due to the distinctive nature of severe illness in dengue patients.  

Methods 

Data Source  

We utilized data from patients with febrile acute syndrome “suspected” (cases with fever of 2-7 

days of duration, residing or proceeding from an area with dengue transmission) of having dengue that 

were notified to the Sistema Nacional de Vigilancia Epidemiológica -SINAVE- (National System of 

Epidemiologic Surveillance) from 2008-2019. Health services in Mexico are required to report suspected 

dengue cases to SINAVE (Murillo-Zamora, 2017). Clinical and epidemiological data were obtained from 

the case report format used by the SINAVE. Dengue diagnosis was stated as “probable” (based on clinical 

and epidemiological features evaluated by a physician at a health care service) and “final” (based on 

laboratory testing with IgG, IgM, Ns1, and PCR ). Predictive model analysis was restricted to patients 

with a non-missing final diagnosis pertaining to dengue or “other” disease. Patients without a final 

diagnosis were not included in our models.    
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Dengue classification followed WHO 1997 guidelines for years 2008-2015 and WHO 2009 

guidelines for 2016-2019. Common Variables among both datasets include demographic information 

such as age and sex, and ethnicity as well as clinical information such as time of symptom onset, patient 

outcomes, and hospitalization status. Clinical variables for the 2008-2019 and 2016-2019 datasets used in 

models are listed in Supplemental Table 2 and Supplemental Table 3, respectively. Data collected from 

the latter years was more detailed with a greater number of relevant variables.  

We additionally obtained data from PAHO’s PLISA Health Information Platform for the 

Americas regarding similar demographic, clinical, diagnosis, and serotype information for all Mexican 

states. Only final diagnoses for non-severe dengue, dengue with warning signs, severe dengue, Zika, and 

Chikungunya were provided. We used this dataset to compare descriptive information from our Yucatan-

specific data to the rest of Mexico. We then filtered the dataset to only include patients with laboratory 

confirmed dengue in order to perform temporal and external model validation.  

The 2010 population data was obtained from the Instituto Nacional De Estadística y Geografía -

INEGI- (National Institute of Statistics and Geography).  

Descriptive Statistics 

The distribution of dengue prognosis, other febrile illnesses (OFI) diagnosis, deaths, 

hospitalizations, dengue serotype samples, mean age, and median time from symptom onset to receiving 

care across years and months for Yucatan, Mexico was calculated and illustrated in plots and a table.  

QGIS mapping software was used to map dengue per 100K population as well as the Poisson and 

Bernoulli clustering for each municipality in Yucatan, Mexico across biannual intervals. SATScan was 

used to calculate the significant clusters and the centroids form the municipalities were used for Bernoulli 

clustering. Furthermore, Tables were created for covariates of interest stratified by relevant diagnostic and 

prognostic outcomes.  

Data Preparation and Statistical Analysis 

Figure 1 demonstrates the general processing and modeling steps. Two aggregated datasets were 

constructed for modeling purposes pertaining to the years 2008-2019 and 2016-2019 with a total of 24 
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and 69 variables considered, respectively. 37 of the 69 variables considered in the latter years were 

aggregated into 7 grouped variables (based on the underlying pathophysiological mechanisms), see 

footnotes in Table 5.  

Specifically, patients were determined to have “bleeding” if they had bloody mucus, melena, 

ecchymosis, hematomas, epistaxis, gingivorrhagia, hematemesis, metrorrhagia, subarachnoid hemorrhage, 

and or mottled skin. Patients were noted as having “neurological” symptoms if they had an altered state of 

consciousness, photophobia, stupor, and or disorientation. Similarly, the group “hemodynamic” was 

assigned to those with either cold extremities, capillary filling, convergent pressure, arterial hypotension, 

and or lipothymia. “Atypical manifestations” was assigned to those with dyspnea, respiratory failure, and 

or myocarditis. “Plasma leakage” was determined by ascites, pleural effusion, plasma leakage, swelling, 

and or increased hematocrit. Patients with nausea, emesis, diarrhea, and or abdominal pain were reported 

as having “nausea plus”, and patients with splenomegaly and or hepatomegaly were noted as having 

“Visceromegaly”.  
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Figure 1: Data Processing and Modeling Structure 

 

Both the 2008-2019 and 2016-2019 datasets were used to model confirmed dengue versus other 

febrile illness, but the dataset from 2016-2019 was also used to model severe dengue (confirmed “severe 

dengue” or “dengue with warning signs”) versus non-severe dengue (confirmed dengue without warning 

signs) as well as model severe dengue (confirmed severe dengue and dengue with warning signs) versus 

all other kinds of febrile illness (confirmed dengue without warning signs and OFI).  

Based on expert recommendation, we assumed that all positive comorbidity and symptomatic 

data were properly recorded and that all missing or 0 values were negative. We transformed all negative 
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values to 0 and all positive values to 1 for modeling purposes. Around 470 duplicated rows were 

identified by patient ID and date of first symptoms. One row for each unique ID and symptom onset date 

was selected based on completeness of information or was otherwise randomly picked. The datasets based 

on these assumptions and edits were used for all relevant tables, descriptive analyses, and models.  

For each modeling group, we filtered to all rows with non-missing outcome values based on the 

recorded final diagnosis. We then shuffled the data to resolve any intrinsic ordering, and then randomly 

partitioned the data into 60/20/20 test, validate, and test splits around the outcome variable. Single 

random forest-based imputation using the R package “missForest”, shown to be accurate when compared 

to other popular methods like knn, was then performed independently for each set if any lab variables 

were included (Stekhoven, 2012). We decided not to include any lab values with more than 60% missing 

rows and ultimately did not include models with labs in our paper as the lowest lab variable missing rates 

were still around 40%.  

The severe vs all and the dengue versus OFI models experienced significant unbalancing in favor 

of the controls which is something known to affect random forest accuracy (More, 2020; Lunardon, 

2014). To address the imbalance, we employed R package ROSE, which uses smoothed bootstrapping to 

generate new classes and balance the data, on the training set for these model groups (Lunardon, 2014). 

We did not balance the test or validation sets as we sought to overcome the random forest’s weakness to 

imbalanced data but still predict on this imbalance since it most reflects reality.  

The aggregated databases were created using software python, QGIS and SATScan were used for 

spatial analysis, and R statistical software was used for the descriptive and modeling analyses. A set 

random seed was used in all stochastic settings to maintain reproducibility.  

Model Framework 

Through clinical expertise and literature review, we created a proposed global model regarding 

variables that are relevant when differentiating between dengue, severe dengue, and other common febrile 

illnesses. We then used the training sets for each modeling group to subset the global model into a final 

model though variable selection with the R package Boruta to minimize number of predictor variables 
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and improve the signal to noise ratio efficiency of our model (Speiser, 2019; Sanchez-Pinto, 2018). 

Sanchez-Pinto, et al. found that the R package “Boruta”, which employs progressive elimination random 

forest variable selection, performs especially well when compared to other forest and regression-based 

methods (Sanchez-Pinto; Kursa, 2010). Boruta estimates each variable’s importance (mean decrease in 

accuracy of overall random forest model) compared to the expected importance achieved with 

randomized permutated copies (Kursa, 2010). For each model group the top 10 most important variables 

were chosen for analysis.  

An initial random forest model was created on the training set for each group, hyperparameter 

tuning was performed on the validation set, and the final model was created on the training set with 

relevant tuned hyperparameters. Two different tuning grids for the random forest “mtry” hyperparameter, 

the number of samples randomly selected for each node, and the “nodesize” hyperparameter, the minimal 

final node size, were created based on the validation using the R package caret to maximize Kappa and 

randomforestSRC to minimize the out of bag error (OOBE) (Breiman, 2018). All random forest models 

were created with 1000 trees, caret hyperparameter tuning was performed with 2 repeated 5-fold cross 

validation, and final tuned models were created using 5 repeat 10-fold cross validation. The final tuned 

models were then used to predict diagnosis or prognosis classification against the test set and final 

evaluation metrics such as sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV), Accuracy, AUC, kappa, and F2 score were calculated. See Supplemental Table 1 for 

interpretations of these metrics.  

Binomial logistic regression models were constructed from the training sets using 5 repeat 10-

fold cross validation. Four decision thresholds were defined using the R package “PresenceAbscence” 

based on the model’s performance against the validation set: the default of 0.5, Youden’s J statistic which 

maximizes sensitivity and specificity, an index utilizing a cost function where false negative cost twice as 

much as false positives, and the threshold at which the validation set reached 90% sensitivity (Freeman, 

2007). See Figure 6 for more information about these threshold indexes. These tuned thresholds were 

used as probability cut-off points for classifying the outcome when predicting against the test set. The 



Page 13 of 63 

 

same evaluation metrics as with random forest were then evaluated for each threshold index based on the 

same underlying logistic regression model.  

Furthermore, we used the overall Mexico data from PAHO pertaining to the years 2017-2021 to 

perform basic validation of our severe versus non-severe dengue model. We recreated our severe vs non-

severe models on variables common both to the Yucatan-specific and overall Mexican datasets. We 

followed the same steps as above except that we chose the 7 most important variables instead of 10. 

Please refer to PAHO at https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-

subnacional/521-mex-egi-cuadro-clinico-es.html to see variables shared by both datasets. Grouped 

variables such as “bleeding” and “neurological” were constructed in the same manner as the Yucatan-

specific models, but some of the variables that made up these groups in the Yucatan data were absent 

from the PAHO Mexico data.   

We then temporally validated our model by using it to predict severe versus non-severe dengue 

on the overall Mexican data filtered to just Yucatan for the years 2020-2021. Of note, the Mexico data 

was most recently obtained from PAHO on April 25th
, 2021. Lastly, we used the same trained model to 

predict severe versus non-severe dengue for all states other than Yucatan using the Mexico data from 

2017-2019.  

Aside from predictive models, we also performed a 5 repeated 10-fold cross-validated logistic 

regression on the entire pre-split dataset filtered down to the 10 most important variables for each model 

group to investigate the general conditional odds of having the outcome. The conditional odds ratios and 

confidence intervals for the most important variables of each modeling group are provided down below.  

Modeling Groups 

We modeled severity in accordance with the 2009 WHO classification system such that patients 

with either the final diagnosis of severe dengue or dengue with warning signs were considered as being in 

the spectrum of severe forms of dengue. We did this because of our assumption that patients with warning 

signs will develop severe dengue without proper intervention (WHO, 2009). Furthermore, we modeled 

severity from two different perspectives: predicting severe versus non-severe dengue and predicting 

https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-subnacional/521-mex-egi-cuadro-clinico-es.html
https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-subnacional/521-mex-egi-cuadro-clinico-es.html
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severe versus all other febrile illnesses. We also modeled dengue versus other febrile illness (OFI) during 

both 2016-2019 and 2008-2019 as the former period has more variables and the latter has a much larger 

sample size.   

Model Agnostic Explanations 

Local Interpretable Model-agnostic Explanations (LIME) is a widely used framework that seeks 

to provide local individual level explanations about the relative effect of features on the classification 

decision made by black box model (Ribeiro, 2016). LIME estimates the relative weights for relevant 

features for contributing to or against the outcome of interest for each individual (Ribeiro, 2016). The 

LIME framework works by simulating a dataset from the training data used to fit the model and 

transforming the simulation data and predicted case (Goode, 2021). The trained random forest model is 

then applied to the simulated data and a distance between the simulated data points and prediction of 

interest is calculated (Goode, 2021). An explainable model is subsequently employed with selected 

features from the simulated data serving as predictors and the prediction results from the simulated data 

serving as the outcome (Goode, 2021). Ribeiro created a python package for LIME which was adapted 

into a R package by Pederson and Betsy; both packages utilize ridge regression as the explainable model 

(Goode, 2021; Ribeiro, 2021). LIME analysis is accompanied by a deviance ratio, R2, that explains the 

linear fit of the explainer model (Goode, 2021).  

We utilized the R package implementation of LIME to estimate relative feature weights across 8 

different features for a particular patient as part of a case study analysis. We then performed a similar 

analysis across 13 randomly selected patients in the target groups to see if estimate feature weights 

matched our previous global feature importance results. Using the LIME package options, we used a lasso 

model to choose 8 features, a kernel width of 3, a Manhattan distance function, and we created 5000 

permutations for each explanation. By default, the continuous age variable is separated into 4 quantile 

bins for LIME analysis.  
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Results 

Descriptive Statistics 

Table 4 illustrates the distribution of final diagnoses, deaths, hospitalizations, median days 

between symptom onset and presenting to the clinic or hospital, and median duration of hospitalization 

across all years. 2011 and 2012 had relatively high number of dengue cases, hospitalizations, and deaths. 

There was a relatively low number of cases from 2014 through 2019, though with a high number of 

deaths and hospitalizations in 2019. Deaths were mostly recorded in patients with confirmed dengue 

except for the later years in 2016-2019 where most deaths occurred in patients with OFI or without a final 

diagnosis. The median days from symptomatic onset to receiving care was 4 from 2008-2012 and 3 from 

2013-2019. The median days of hospitalization was 3 throughout the study. The mean age of febrile 

patients ranged from 23.3-29 years old across the years. Table 4 shows circulation of dengue serotypes in 

Yucatan by year of study. The number of samples with serotype detection was small, but DENV1 was 

more prevalent from 2012-2015 and DENV2 was more prevalent from 2009-2010.  

Figure 2 shows the occurrence of cases in Yucatan, Mexico throughout the entire study period. 

The incidence shows a seasonal increase that coincides with the mid and late summer, reaching its peak in 

the fall. The number of cases varies per year, with periods of high incidence (2009-2012) and others of 

more moderate incidence (2016-2017-2018). Figure 3 shows the distribution of cases based on the 2007 

WHO classification for the period 2016-2019. From this plot, we can observe an intraepidemic increase in 

the occurrence of severe cases, with a higher proportion of severe forms as the outbreak progresses 

especially in 2016 and 2019. 
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Table 4: Cases, Hospitalizations, and Deaths Across Years in Yucatan, Mexico 

Metrics 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

DF (N) 425 1662 1394 4108 1874 1399 561 804 -- -- -- -- 

DHF (N) 110 879 651 2108 1838 771 390 254 -- -- -- -- 

NSD (N) -- -- -- -- -- -- -- -- 264 74 13 264 

DWS (N) -- -- -- -- -- -- -- -- 103 31 7 357 

SD (N) -- -- -- -- -- -- -- -- 17 3 0 34 

OFI (N) 745 1782 2105 4216 2801 3044 1651 2686 995 343 715 1164 

Mean Age 25.86 26.00 25.72 25.94 27 24.86 25.07 29.47 26.83 26.36 26.54 23.29 

Hospitalizations 
(N) 

286 1229 1173 4409 3236 1529 897 1206 374 249 190 1063 

Dengue Pts 

Deaths (N) 
1 2 2 24 15 9 0 0 9 4 1 15 

OFI Pts Deaths 

(N) 
1 0 0 0 0 0 0 2 12 13 14 24 

Deaths: No 

Final Diag. (N) 
0 0 0 1 0 0 0 0 1 6 1 13 

Days From Sxs 
to Care: Median 

(Q1,Q3) 

4 
(2,5) 

4 (3,5) 
4 

(2,5) 
4 

(3,5) 
4 

(3,5) 
3 

(2,5) 
3 

(2,5) 
2 

(1,4) 
3 

(1,5) 
3 

(1,5) 
3 

(2,4) 
3 

(2,4) 

Days 

Hospitalized: 

Median (Q1,Q3) 

3 

(1,4) 
3 (2,5) 

3 

(2,5) 

3 

(2,5) 

3 

(2,5) 

3 

(2,4) 

3 

(2,5) 

3 

(2,5) 

3 

(2,5) 

3 

(2,6) 

3 

(2,5) 

3 

(2,5) 

Dengue 

Serotypes 
-- 1,2 1,2 1,2 1,2,4 1,2,4 1,2,4 1,2,4 -- -- -- -- 

 

 

 

 

 

Terms: DF=Dengue Fever, DHF=Dengue Hemorrhagic Fever, NSD=Non-Severe Dengue, DWS= 

Dengue with Warning Signs, SD=Severe Dengue, OFI=Other Febrile Illness. Data comes from 

SINAVE Yucatan Dataset. Dengue diagnosis based on laboratory confirmation and classification 

based on the 1997 WHO Classification (DF, DHF) and 2009 WHO Classification (NSD, DWS, SD). 

Serotype data derived from small PCR samples in patient data. DENV1 was more prevalent in years 

2012-2015. DENV2 was predominant in 2011. DENV1 and DENV2 were about equally present in 

2009-2010.  
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Figure 2: Confirmed Dengue Diagnosis Across All Months (2008-2019) 

 

 

 

 

Figure 3: Confirmed Dengue From 2016-2019 Disease According to 2009 WHO 

Classification 

 

 

Figure 4 additionally reveals the spatial distribution and clustering of dengue cases in Yucatan. 

Kuldorff’s Poisson clustering indicates high concentration of dengue given municipality population while 

Bernoulli clustering indicates high aggregation of dengue cases compared to other febrile illnesses. 

Significantly high Poisson clustering is predominantly centered in Mérida and Oxkutzcab municipalities 

from 2008-2013 whereas this clustering appears to gradually shift to the East around Valladolid from 

Terms: OFI= other febrile illness. Plot depicts the total number of confirmed dengue and 

non-dengue cases for each month from 2008-2019. Incidence peaks appear to occur form 

Summer-Fall. Especially large peaks occurred in 2009, 2011, and 2013. Cases without a 

final diagnosis were not included.  

Terms: SD= severe dengue, DWS = dengue with warning signs, and NSD= non-severe 

dengue. Plot depicts the total number of patients with confirmed dengue separated by their 

final prognosis according to the 2009 WHO classification system. There is a large increase 

in dengue incidence in 2019, especially for patients with severe dengue and dengue with 

warning signs.  
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2014-2019. Bernoulli clustering of dengue compared to non-dengue cases occurred West of Mérida circa 

2008-2010, in North-central Yucatan circa 2012-2013, East of Oxkutzcab and in North-East Yucatan 

circa 2014-2015, around Mérida and in the North-East circa 2016-2017, and across most of the West circa 

2018-2019.  
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Figure 4: Space-Time Spatial Distribution and Clustering of Dengue in Yucatan Mexico 

(2008-2019) 

 

 

 

 

 

  

Regarding the 2016-2019 dataset (see Supplemental Table 3), the dengue versus OFI univariate 

risk ratios were non-significant for all comorbidities and common acute findings, significantly protective 

for 1 common respiratory symptom (cough) and non-significant for the rest, and significantly harmful for 

Dengue/OFI (other febrile illness) cases are randomized 

using NRandK method with GeoPrivacy in QGIS to 

preserve spatial patterns and protect privacy. Population 

based on 2010 national census. Clustering determined 

though Kuldrof Test with SatScan. Bernoulli clustering 

indicates high clusters of dengue cases compared to OFI. 

Poisson clusters indicate high clustering of dengue given 

municipality population. Point locations were not recorded 

for years 2018-2019. 
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8 general symptoms (positive-torniquet, arthritis, petechia, exanthema, headache, pruritus, polyarthralgia, 

and conjunctivitis), 4 warning signs (intense abdominal pain, persistent vomiting, epistaxis, 

gingivorrhagia), and 6 severe symptoms (cold extremities, abdominal pain, tachycardias, hematemesis, 

arterial hypotension, and metrorrhagia). Univariate relative risk for severe dengue (SD or DWS) vs non-

severe dengue was not significant for all common acute findings and was significantly harmful for 4 

comorbidities (hypertension, bleeding disorder, diabetes, and pregnant), 4 general symptoms (positive 

torniquet, diaphoresis, chills, and petechia), 2 common respiratory symptoms (dyspnea and cough), all but 

one warning sign (see Supplemental Table 3), and all but 4 severe symptoms. 

Severe Versus Non-Severe Dengue 

All 1,167, patients that met the criteria for confirmed dengue from 2016-2019 were included in 

the analysis. As seen in Figure 7, variable importance was assessed in two different ways. The left figures 

illustrate the importance, estimated mean decrease in accuracy upon removal, for each variable selected 

by Boruta’s progressive elimination random forest algorithm. The right figures depict the variable 

importance and mean decrease in gini entropy upon removal for selected variables based in the final tuned 

random forest models. In both the Boruta plot and final model plot, intense abdominal pain appears to be 

the most important predictor to accurately predicting severity followed by bleeding, plasma leakage, 

petechiae, and persistent vomiting.  

Based on the pre-split data logistic regression on the 10 most important variables, we found that 

intense abdominal pain, bleeding, plasma leakage, and petechiae had large odds ratios and wide 

confidence intervals of 71.25 (25.2,201.43), 48.41 (20.29, 115.52), 36.75, (13.99, 96.54), 4.86 (2.74, 

8.61), respectively. The high variances of our estimates are likely due to problems with separability since 

very few of these predictor variables were evident in patients without severe dengue. While we addressed 

multicollinearity when choosing our final variables, some of the predictors are still highly correlated with 

one another which can affect the magnitude of the odds ratios.  

Table 4 depicts the results from our predictive logistic regression model and random forest 

models pertaining to the selected variables for all model groups. The logistic regression model results are 
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presented from the same model using different decision thresholds tuned on the validation set. The 

random forest results are from three different models, one with default setting and two that were tuned on 

the validation.  When comparing the default versions for both logistic regression and random forest, the 

latter has slightly higher sensitivity, NPV, accuracy, Cohen’s Kappa, and F-2 Score. The default logistic 

regression meanwhile has higher specificity, PPV, and AUC. The differences between the two default 

models, however, is relatively minute. Using the cost-sensitive threshold increases logistic regression 

sensitivity to 85.5% (78.8-92.0) with a slight cost to the specificity. Likewise, F-2 Score, Choen’s Kappa, 

accuracy, and negative predictive value all increase using the cost function threshold. In contrast, 

hyperparameter tuning “mtry” and “nodesize” for the the random forest model does not seem to make 

much of a difference.  Figure 6 depicts the resulting Kappa and OOBE values for random forest trained 

on the validation set across the different mtry-nodesize combinations. Figure 6 also illustrates the 

different sensitivity and specificity values obtained using the 4 pre-determined decision thresholds when 

testing the trained logistic regression against the validation set.    

Severe Dengue Versus All Else 

4,384 patients that had a final diagnosis from 2016-2019 were included in the analysis. The 10 

most important variables were highly similar, and the 5 most important variables were the exact same as 

in the previous model, albeit with slightly different ordering. Pre-split data odds ratio estimates for intense 

abdominal pain, plasma leakage, bleeding, persistent vomiting, and petechia were significant at 4.50 

(3.42, 5.91), 3.69 (2.75,4.95), 3.25 (2.45,4.31), 2.66 (1.84,3.46), 2.40 (1.84,3.15), respectively. Odds ratio 

estimates were much stable, likely due to a larger sample size reducing the likelihood of non-separability.  

When comparing the default models, the logistic regression slightly outperformed the random forest in all 

metrics that we considered. The threshold derived using Youden’s Index was similar to that of the default 

at 0.48 while the cost function threshold was much lower at 0.295. The latter resulted in a noticeable 

increase in sensitivity, 86.4% (80.0,92.8), but a large reduction in specificity and accuracy. Both random 

forest-tuned models showed slightly higher sensitivity, 79.1% (71.5,86.7) and 80.9% (73.6,88.3) and 

marginally lower accuracy and positive predictive value when compared to the default model.  
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Figure 6: Decision Threshold and Hyperparameter Tuning Against Validation Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Severe Versus All Else 

Dengue Versus Other Febrile Illness (2008-2019) 

Severe Versus Non-Severe Dengue 

Dengue Versus Other Febrile Illness (2016-2019) 
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Dengue Versus OFI (2016-2019) 

4,384 patients with a final diagnosis that were included in the model. As shown in Figure 7, 

intense abdominal pain, age, persistent vomiting, petechia, and plasma leakage bleeding were the five 

most important variables according to the Boruta analysis. However, the final random forest results 

contradict that of the Boruta selection, indicating that age was the most important predictor, not persistent 

vomiting, and that exanthema was the third most important. The presplit data logistic regression resulted 

in significant odds ratios for intense abdominal pain, petechia, exanthema, and persistent vomiting as 1.95 

(1.53, 2.49), 1.44 (1.15, 1.81), 1.59 (1.35, 1.87), and 1.81 (1.30, 2.52), respectively. Chills appeared 

protective with an odds ratio of 0.61 (0.5,0.73). When categorizing age, odds ratios for 15-28 years, 29-42 

years, 43-57 years, and >58 years compared to ages <14 years old were 1.03 (0.87-1.23), 0.65 (0.52-

0.81), 0.49 (0.37-0.66), and 0.8 (0.57-1.13), respectively.  

When comparing predictive model results, the logistic regression with the default threshold 

slightly outperformed random forest in all considered metrics aside from specificity. In both cases 

sensitivity is only slightly larger than 50% while accuracy, Cohen’s Kappa, and AUC are considerably 

low. The alternate decision thresholds improve the logistic regression’s sensitivity though at increasing 

cost to accuracy, Kappa, and specificity. Likewise, the tuned random forest models improve sensitivity 

while decreasing specificity and accuracy.  

 

 

Left: Hyperparameter tuning grid of mtry and nodesize values that achieves the highest lowest OOBE 

(out of bag error) on the validation set for “alternate tuned random forest” model using R package 

randomforestSRC. Middle: Hyperparameter tuning grid of mtry and nodesize to maximize Kappa for 

the “tuned random forest” models with R package caret. This tuning was not performed on the Dengue 

Vs Other (2008-2019) model group due to computational constraints. Right: Decision threshold cut 

offs based on the validation set according to predefined criteria for logistic regression model 
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Figure 7: Feature Importance Using Boruta Analysis and Final Tuned Random Forest 

 

Severe Versus All Else 

Dengue Versus Other Febrile Illness (2016-2019) 

Dengue Versus Other Febrile Illness (2008-2019) 

Severe Versus Non-Severe Dengue 

Boruta Importance Plot Multi-Way Importance Plot 

Importance Mean Decrease in Accuracy 
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Dengue Versus OFI (2008-2019) 

From the 39 variables that were measured across all years for 42,624 patients with final 

diagnoses, the most significant factors for modeling dengue appeared to be petechia, exanthema, 

gingivorrhagia, age, and ascites. These variables had pre-split data conditional odds ratios of 2.6 

(2.41,2.80) for petechia, 1.66 (1.59,1.73) for exanthema, 1.59 (1.42,1.79) for gingivorrhagia, and 2.95 

(2.16-4.03) for ascites when considering the other 6 most important variables. With respect to those < 14 

years old, the odds ratios for 15-28 year old, 29-42 year old, 43-57 year old, and > 58 year old patients 

was 1.37 (1.30-1.44), 0.94 (0.88,0.99), 0.95 (0.89,1.02), and 0.79 (0.72,0.87) when controlling for the 

other 9 important variables.    

The default random forest slightly outperformed the base logistic regression in all metrics except 

sensitivity for which they were both equally low at 44.3%. The threshold derived from Youden’s Index 

was approximately the same as the default. The cost function index led to a dramatic increase in 

sensitivity to around 99% but decreased specificity down to just 1.6%. In contrast, there is essentially no 

change between the default and tuned random forest models.  

Table 4: Final Assessment Metrics Among Model Groups 

Model 
Group 

Metric 
Logistic 

Regressio
n 

Logistic 
Regressio

n: 
Youden's 

Index 

Logistic 
Regressio

n: Cost 
Function 

Minimum 
Sensitivity 
Threshold 

(0.9) 

Random 
Forest 

Tuned 
Random 
Forest 

Alternate 
Tune 

Random 
Forest 

Severe 
(SD or 
DWS) 

Threshold 
and 

Hyperpara
meters 

DT= 0.5 DT= 0.69 DT= 0.256 DT= 0.14 
Mtry= 
3.16, 
NS=1 

Mtry=2, 
NS=23 

Mtry=8, 
NS=68 

Left: Boruta importance output on final variables selected to go into model. Blue boxplots indicate the 

minimum, mean, and max importance expected by Boruta. Right: Final importance metrics derived 

from the final trained random forest model including decrease in Gini impurity and mean decrease in 

accuracy. Size of indicators relates to the number of times the particular variables was present in a tree 

out of the 1,000 trees used to create the random forest model. “IDE_EDA_ANO” stands for patient’s 

age. 
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Versus 
NSD Sensitivity 

79.1 
(71.5,86.7

) 

74.5 
(66.4,82.7

) 

85.5 
(78.9,92) 

91.8 
(86.7,96.9

) 

81.8 
(74.6,89) 

81.8 
(74.6,89) 

81.8 
(74.6,89) 

Specificity 
95.9 

(92.4,99.4
) 

98.4 
(96.1,100) 

91.9 
(87,96.7) 

71.5 
(63.6,79.5

) 

94.3 
(90.2,98.4

) 

94.3 
(90.2,98.4

) 

94.3 
(90.2,98.4

) 

PPV 
94.6 

(89.9,  
99.2) 

97.6 
(94.4,  
100.9) 

90.4 
(84.7,  
96.1) 

74.3 
(66.9,  
81.6) 

92.8 
(87.6, 
97.9) 

92.8 
(87.6,  
97.9) 

92.8 
(87.6,  
97.9) 

NPV 
83.7 

(77.6, 
89.8) 

81.2 
(74.9, 
87.5) 

87.6 
(81.9, 
93.3) 

90.7 
(84.9, 
96.5) 

85.3 
(79.3, 
91.2) 

85.3 
(79.3, 
91.2) 

85.3 
(79.3, 
91.2) 

Accuracy 
88 (83.1, 

91.9) 
87.1 (82.1, 

91.1) 
88.8 (84.1, 

92.6) 
81.1 (75.5, 

85.9) 
88.4 (83.6, 

92.2) 
88.4 (83.6, 

92.2) 
88.4 (83.6, 

92.2) 

AUC 0.93 0.93 0.93 0.93 0.92 0.92 0.91 

Kappa 0.757 0.738 0.775 0.626 0.766 0.766 0.766 

F-2 Score 0.82 0.78 0.86 0.88 0.84 0.84 0.84 

Severe 
(SD or 
DWS) 

Versus All 
Else (NSD 

or OFI) 

Threshold 
and 

Hyperpara
meters 

DT= 0.5 DT= 0.48 DT= 0.295 DT= 0.285 
Mtry= 
3.16 , 
NS=1 

Mtry=4, 
NS=51 

Mtry=4, 
NS=36 

Sensitivity 
80 

(72.5, 
87.5) 

80.9 
(73.6, 
88.3) 

86.4 
(80,92.8) 

90 
(84.4, 
95.6) 

76.4 
(68.4, 
84.3) 

79.1 
(71.5, 
86.7) 

80.9 
(73.6, 
88.3) 

Specificity 
88.8 

(86.5, 91) 

88.4 
(86.1, 
90.7) 

76.4 
(73.4, 
79.4) 

67.1 
(63.8, 
70.4) 

87.9 
(85.5, 
90.2) 

86.7 
(84.3, 
89.1) 

85.9 
(83.4, 
88.4) 

PPV 
50.6 

(43.1, 58) 

50 
(42.7, 
57.3) 

34.4 
(28.8, 40) 

28.2 
(23.5, 
32.9) 

47.5 
(40.1, 
54.8) 

46 
(38.9, 
53.1) 

45.2 
(38.2, 
52.1) 

NPV 
96.9 

(95.6, 
98.2) 

97 
(95.7, 
98.3) 

97.5 
(96.3, 
98.7) 

97.9 
(96.7, 
99.1) 

96.3 
(94.9, 
97.7) 

96.7 
(95.3, 98) 

96.9 
(95.6, 
98.2) 

Accuracy 
87.7 (85.3, 

89.8) 
87.4 (85.1, 

89.6) 
77.6 (74.7, 

80.3) 
70 

(66.8, 73) 
86.4 

(84, 88.6) 
85.7 (83.2, 

88) 
85.3 (82.8, 

87.6) 

AUC 0.89 0.89 0.89 0.89 0.88 0.88 0.89 

Kappa 0.551 0.548 0.381 0.295 0.509 0.503 0.499 

F-2 Score 0.72 0.72 0.66 0.63 0.68 0.69 0.7 
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Dengue 
Versus OFI 

(2016-
2019) 

Threshold 
and 

Hyperpara
meters 

DT= 0.5 DT= 0.47 DT= 0.289 DT= 0.377 
Mtry= 
3.16 , 
NS=1 

Mtry=9, 
NS=95 

Mtry=6, 
NS=98 

Sensitivy 
54.1 
(47.7 
,60.5) 

57.5 
(51.2 
,63.9) 

95.3 
(92.6 ,98) 

90.1 
(86.3 ,94) 

51.1 
(44.7 
,57.5) 

60.1 
(53.8 
,66.4) 

60.1 
(53.8 
,66.4) 

Specificity 
73.1 
(69.7 
,76.5) 

69.4 
(65.8 
,72.9) 

18.5 
(15.5 
,21.5) 

25.8 
(22.4 
,29.2) 

73.9 
(70.5 
,77.3) 

65.3 
(61.6 ,69) 

67 
(63.4 
,70.7) 

PPV 
42.1 
(36.5 
,47.7) 

40.5 
(35.2 
,45.8) 

29.8 
(26.5 ,33) 

30.6 
(27.1 ,34) 

41.5 
(35.8 
,47.2) 

38.6 
(33.6 
,43.6) 

39.8 
(34.7 
,44.9) 

NPV 
81.5 
(78.3 
,84.6) 

81.8 
(78.6 
,85.1) 

91.5 
(86.8 
,96.3) 

87.8 
(83.2 
,92.5) 

80.6 
(77.5 
,83.8) 

81.9 
(78.5 
,85.2) 

82.3 
(79 ,85.5) 

Accuracy 
68 (64.8, 

71.1) 
66.2 (63, 

69.3) 
38.9 (35.7, 

42.2) 
42.9 (39.6, 

46.3) 
67.8 (64.6, 

70.9) 
63.9 (60.6, 

67.1) 
65.2 (61.9, 

68.3) 

AUC 0.68 0.68 0.68 0.68 0.67 0.67 0.67 

Kappa 0.249 0.237 0.081 0.098 0.232 0.216 0.233 

F-2 Score 0.51 0.53 0.66 0.65 0.49 0.54 0.55 

Dengue 
Versus OFI 

(2008-
2019) 

Threshold 
and 

Hyperpara
meters 

DT= 0.5 DT= 0.51 DT= 0.339 DT= 0.391 
Mtry= 
3.16 , 
NS=1 

-- 
Mtry=4, 
NS=36 

Sensitivity 
44.3 
(42.7 
,45.8) 

42.6 
(41.1 
,44.2) 

99.1 
(98.8 
,99.4) 

89.7 
(88.8 
,90.6) 

44.3 
(42.7 
,45.8) 

-- 

44.4 
(42.9 
,45.9) 

Specificity 
73.6 
(72.3 
,74.9) 

74.7 
(73.4 
,75.9) 

1.6 
(1.2 ,2) 

17 
(15.9 
,18.1) 

75.3 
(74 ,76.5) 

-- 

75.2 
(73.9 
,76.5) 

PPV 
60.6 
(58.8 
,62.3) 

60.7 
(58.9 
,62.5) 

48 
(46.9 
,49.1) 

49.8 
(48.6 
,50.9) 

62.1 
(60.4 
,63.9) 

-- 

62.1 
(60.4 
,63.9) 

NPV 
59 

(57.7 
,60.3) 

58.7 
(57.4 ,60) 

65.1 
(56.2 
,74.1) 

64.3 
(61.5 ,67) 

59.6 
(58.3 
,60.8) 

-- 

59.6 
(58.3 
,60.9) 

Accuracy 
59.6 (58.5, 

60.6) 
59.3 (58.3, 

60.4) 
48.2 (47.2, 

49.3) 
51.8 (50.7, 

52.8) 
60.4 (59.4, 

61.5) 
-- 

60.5 (59.4, 
61.5) 
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AUC 0.62 0.62 0.62 0.62 0.64 -- 0.64 

Kappa 0.18 0.175 0.006 0.065 0.198 -- 0.198 

F-2 Score 0.47 0.45 0.82 0.77 0.47 -- 0.47 

 

Severe Versus Non-Severe Validation  

The severe versus non-severe model was reconstructed using variables common to the PAHO 

Mexico and the SINAVE 2016-2019 Yucatan datasets. The seven most important variables in order were 

plasma leakage, bleeding, petechia, persistent vomiting, neurological, hemodynamic, and age. This is the 

same order of importance as the original severe versus not-severe dengue model save for “intense 

abdominal pain” which was not included in the overall Mexico dataset. This reconstructed model is 

referred to as the “Internal” model group in Table 5. As depicted in Table 5, the internal model had 

slightly lower specificity, sensitivity, AUC, and accuracy than the original severe vs non-severe model. 

Furthermore, when performing temporal validation by predicting against the PAHO Mexico data that was 

filtered to just Yucatan for the years 2020-2021, the model performance decreased such that the base 

logistic regression and random forest both had accuracies of 76.6 and as AUC of 0.85 and 0.84, 

respectively. When performing external validation by using the internal model to predict against all other 

Mexican states from 2017-2019, the accuracy decreased slightly less compared to the temporal validation, 

but the AUC score decreased further to 0.83 for both random forest and logistic regression. Both 

validation steps led to a decrease in specificity and sensitivity, but the external validation to all other 

states had the lowest sensitivities across models.  
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Table 5: Assessment Metrics for Severe Vs Non-Severe Temporal and External 

Validation 

Group Metric 
Logistic 

Regression 

Logistic 
Regression: 

Youden's 
Index 

Logistic 
Regression: 

Cost 
Function 

Random 
Forest 

Alternate 
Tune 

Random 
Forest 

Internal 
Model 

Threshold and 
Hyperparameters 

DT=0.5 DT=0.38 DT=0.202 
Mtry= 
2.83 
NS=1 

Mtry= 2 
NS=9 

Sensitivy 
73.6  

(65.4, 
81.9) 

80.9  
(73.6, 
88.3) 

86.4  
(80, 

92.8) 

77.3  
(69.4, 
85.1) 

76.4  
(68.4, 
84.3) 

Specificity 
94.3  

(90.2, 
98.4) 

89.4  
(84, 

94.9) 

74.8  
(67.1, 
82.5) 

91.9  
(87, 

96.7) 

93.5  
(89.1, 
97.9) 

PPV 
92 

(86.4,  
97.7) 

87.3  
(80.8,  
93.7) 

75.4 
(67.9,   
82.9) 

89.5 
(83.3,  
95.6) 

91.3 
(85.5, 
97.1) 

NPV 
80  

(73.5,  
86.5) 

84  
(77.7,   
90.3) 

86  
(79.4,  
92.6) 

81.9  
(75.5,  
88.3) 

81.6  
(75.2,  

88) 

Accuracy 
84.5  

(79.3,  
88.9) 

85.4  
(80.2,  
89.7) 

80.3  
(74.6,  
85.2) 

85  
(79.7, 
89.3) 

85.4  
(80.2, 
89.7) 

AUC 0.91 0.91 0.91 0.88 0.88 

Kappa 0.687 0.706 0.607 0.696 0.705 

F-2 Score 0.77 0.82 0.84 0.79 0.79 

Temporal 
Validation 

Sensitivy 
70.1  
(61, 

79.2) 

71.1  
(62.1, 
80.2) 

81.4  
(73.7, 
89.2) 

70.1  
(61, 

79.2) 

70.1 ( 
61, 

79.2) 
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Specificity 
89.6  

(80.9, 
98.2) 

89.6  
(80.9, 
98.2) 

64.6  
(51.1, 
78.1) 

89.6  
(80.9, 
98.2) 

89.6  
(80.9, 
98.2) 

PPV 
93.2 

(87.4, 
98.9) 

93.2 
(87.5, 
99.0) 

82.3 
(74.7, 
89.9) 

93.2 
(87.4 
,98.9) 

93.2 
(87.4 
,98.9) 

NPV 
59.7 

(48.4, 
71.1) 

60.6 
(49.2, 
71.9) 

63.3 
(49.8, 
76.8) 

59.7 
(48.4, 
71.1) 

59.7 
(48.4, 
71.1) 

Accuracy 
76.6  

(68.8,  
83.2) 

77.2  
(69.5,  
83.8) 

75.9  
(68.1,  
82.6) 

76.6  
(68.8, 
83.2) 

76.6  
(68.8, 
83.2) 

AUC 0.85 0.85 0.85 0.84 0.85 

Kappa 0.53 0.542 0.458 0.53 0.53 

F-2 Score 0.74 0.75 0.82 0.74 0.74 

External 
Validation 

Sensitivy 
65.5  

(64.9, 
66.1) 

69.2  
(68.6, 
69.9) 

76.4  
(75.8, 
76.9) 

66.3  
(65.7, 
67.0) 

66.1  
(65.4, 
66.7) 

Specificity 
90.7  

(90.5, 
91) 

89.6  
(89.3, 
89.9) 

79.2  
(78.8, 
79.5) 

90.5 
(90.2, 
90.7) 

90.5  
(90.3, 
90.8) 

PPV 
76.1 

(75.5,  
76.7) 

75   
(74.4, 
75.6) 

62.3 
(61.7,  
62.9) 

75.8  
(75.2,  
76.4) 

75.8  
(75.2,  
76.5) 

NPV 
85.4  

(85.1,  
85.7) 

86.6  
(86.3, 
86.9) 

88.1  
(87.8, 
88.4) 

85.6   
(85.3, 
85.9) 

85.5   
(85.2,  
85.8) 

Accuracy 
82.9  

(82.6,  
83.2) 

83.3  
(83,  

83.6) 

78.3  
(78.0,  
78.6) 

83  
(82.7, 
83.2) 

82.9  
(82.6, 
83.2) 
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AUC 0.83 0.83 0.83 0.83 0.83 

Kappa 0.585 0.601 0.523 0.588 0.587 

F-2 Score 0.67 0.7 0.73 0.68 0.68 

 

LIME Analysis 
At the end of the discussion section, we provide a case study example for “Patient A” to show 

how random forest operates at the individual level. Figure 8 illustrates the estimated feature weights from 

LIME analysis for this patient across all four model groups. The probability indicates proportion of the 

1000 trees that voted for the particular outcome in each model and the explanation fit is the R2 for the 

explainable ridge regression model. The severe versus non-severe model incorrectly classifies “Patient A” 

as not having severe dengue with the only feature with a weight towards having the outcome being 

neurology=1. The severe versus all model has similar results. The patient is correctly classified as having 

dengue in both dengue models. Having a headache, having exanthema, not having chills, and being 

between 13-22.3 years old were features with positive weights for the outcome in the 2016-2019 dengue 

model. Being 14-23 years old, not being pregnant, and especially having exanthema are features 

estimated to contribute to the dengue diagnosis of the 2008-2019 dengue model. The explanation fits are 

around 0.7 for most of the LIME models but is only 0.58 for the 2016-2019 dengue model.   

Figure 9 depicts the relative weights of features for having or not having the outcome across 13 

randomly selected patients from the test sets of the Severe vs non-severe and dengue vs OFI (2016-2019) 

models. Feature values that seem to indicate having severe disease across the 13 patients are bleeding 

(=1), intense abdominal pain (=1), plasma leakage (=1), and persistent vomiting (=1). Feature values that 

Internal: results based on the train/validate/test split from the 2016-2019 SINAVE Yucatan dataset 
using the top 7 most important variables that are also in the overall Mexico dataset. Temporal: using 
the same trained model from the internal model to predict on Yucatan patients from the PAHO 
Mexico dataset for the years 2020-2021. External: using the same trained model from the internal 
model to predict patients across all Mexican states other than Yucatan from the PAHO dataset in 
2017-2019. 
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appear to indicate having dengue are chills (=0), Exanthema (=1), Headache (=1), Intense abdominal pain 

(=1), persistent vomiting (=1), petechia (=1), age (13-22.3 years old), and plasma leakage (=1). 

 

Figure 8: LIME Estimation of Variable Feature Weights for Prediction of “Patient A” 
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Probability=0.12 
Explanation Fit=0.75 

Severe versus non-severe 

Dengue Versus OFI (2016-2019) Probability=0.88 
Explanation Fit=0.58 
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Dengue Versus OFI (2008-2019) 

-0.4                                                    -0.2                                                      0.0                                                        0.2 

-0.5                        -0.4                       -0.3                         -0.2                        -0.1                           0.0 

Probability=0.46 
Explanation Fit=0.70 

Intense Abdominal 
Pain =0 

Plasma Leakage=0 
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Severe versus all 
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Red (negative) feature weights are estimated to influence the model to vote against the outcome for 

“Patient A” whereas the blue (positive) feature weights support classification of the outcome. 

Probability stands for the proportion of votes among the 1000 trees that classified “Patient A” as 

having the outcome. Explanation Fit refers the R2 value of the explainable ridge regression in its 

assessments of feature weights—a higher number indicates a better fit.  
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Figure 9: LIME Feature Weights Across 13 randomly Selected Patients in the Target 

Population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dengue Versus OFI (2016-2019) 

Severe Versus Non-severe  

Estimated weights of features calculated by the R package LIME across random samples of 13 

different patients from the test sets in the severe versus non-severe (top) and dengue versus 

OFI 2016-2019 (bottom) modeling groups. Red is an indicator for a feature that contributes 

towards a negative outcome whereas blue indicates contribution towards a positive outcome. 

Darkness of color reflects the magnitude of the relative weight.  
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Discussion 

Epidemiolocal and clinical features 

The occurrence of dengue outbreaks shows a seasonal pattern, related to the rainy seasons that 

begin in summer. There is an important variation in the interannual incidence with peaks of occurrence 

maintained between the years 2009 to 2015, followed by an interval of low occurrence, which increases 

again towards 2019. Many factors influence the occurrence of outbreaks, and this pattern of intervals with 

peaks of different magnitude has been described in other endemic regions. It is worth mentioning the 

introduction of Zika in 2016 has been linked by some authors with the lowest occurrence of dengue cases 

(Mugabe, 2021) Furthermore, when evaluating the biannual space-time Poisson clustering of dengue 

cases, there is an evident shift from Western Yucatan from 2008-2013 to Eastern Yucatan from 2014-

2019. Further analysis regarding potential environmental factors behind this spatial shift in cases rate is 

needed to help explain the phenomenon. Additionally, an increase in the proportion of severe forms 

within an outbreak may be observed towards the end of the epidemic period. This has been reported by 

other authors who postulate the temporary selection of viral variants of greater virulence that could 

explain the increase in clinical severity (Rodriguez-Roche, 2016).  

When compared to data pertaining to all of Mexico, our Yucatan dataset demonstrates similar 

trends with respect to serotype, sample prevalence, and severity of outcome for 2018-2019. However, the 

difference in mean age of those presenting to clinic with suspected dengue across the datasets indicates 

that there are some differences between the overall Mexico population and that specific to Yucatan, 

Mexico.   

Most of the variables found to be important in predicting dengue and severe dengue, aside from 

age, petechia, and exanthema, are warning signs according to the 2009 WHO classification. We expected 

this result given that the WHO’s list of warning signs and severe symptoms were formulated to help 

clinicians identify patients with severe dengue or at risk of developing severe dengue. The age categories 

more affected by dengue and also by severe forms of the disease in our study population were children 
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and younger. This finding is in agreement with reports from other countries in America and Southeast 

Asia (Teixeira, 2008; Halstead, 2006). Diabetes and hypertension were the most frequent comorbidities, 

and associated with severe forms of dengue, as described in other studies (Pang, 2012). Symptoms 

secondary to plasma extravasation, such as severe abdominal pain and persistent vomiting, were the most 

frequent warning signs, followed by hemorrhagic manifestations and hepatomegaly. The most frequent 

manifestations in seriously ill patients were hemodynamic instability and digestive bleeding. 

Modeling Results 

Logistic regression proved to generally outperform random forest with respect to prognostic 

modeling and had mixed results for diagnostic modeling. For both severe model groups, logistic 

regression using a cost index or Youden’s index had higher accuracy and AUC, and had higher 

sensitivity. When predicting dengue versus OFI, the random forest models had higher AUC, accuracy, 

and Kappa scores for the years 2008-2019, but the default logistic regression performed better for the 

years 2016-2019. Both of the latter two models had low sensitivity and specificity. We hypothesized that 

random forest would perform better than logistic regression based on literature review, but there are 

possible explanations as to why this did not occur. See limitations for further discussion.   

Random forest models with tuned mtry and nodesize hyperparameters were largely similar to the 

default model. The logistic regression results were relatively similar when using the default or Youden’s 

index as a decision threshold. Using a cost index and minimum sensitivity, based on the validation 

dataset, led to higher sensitivities at the cost of specificity.  The choice of which decision threshold to use 

depends on the particular question. When higher sensitivity at the cost of specificity is desired, the cost 

index may be of interest. When balancing specificity and sensitivity, the Youden’s index may a better 

choice.  

Compared to the new WHO classification validation studies in Table 1, our prognostic and 

diagnostic model results generally had lower sensitivity and negative predictive values with higher 

specificities and positive predictive values. When comparing our diagnostic models against those found in 

literature review in Table 2, our diagnostic models underperform in all areas whereas our prognostic 
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models appeared to outperform in all areas. However, comparing models from different studies is difficult 

and should be taken lightly without proper validation due to potentially significant differences in patient 

population, hospital protocol, and variables considered.  

Moreover, only our severe modeling groups had results where both sensitivity and specificity 

were greater than 80%. It would thus appear that all of our models are potentially useful for modeling 

severe dengue, especially the logistic regression models. However, our diagnostic models performed 

poorly and would not be of much use in the clinical setting.   

Model performance for predicting severe versus non-severe dengue among those with confirmed 

dengue further decreased when performing temporal and external population validation. While logistic 

regression with Youden’s decision threshold led to an accuracy around 80% for the temporal and external 

validation steps, respectively, the sensitivity for both was below 80%. A decrease in performance may be 

expected given that we are testing against populations external to that of our main study. Additionally, the 

internal model was based on the SIANVE Yucatan dataset which had far more variables for consideration 

than PAHO’s Mexico validation data. Notably, the overall Mexico dataset did not have a variable for 

intense abdominal pain which was our most important variables for predicting severity in the Yucatan 

dataset. Rebuilding the severe vs non-severe model to match the variables in the PAHO Mexico dataset 

may have affected the ability to apply of our model to predict external populations. Obtaining data with 

the same structure and variety as our SINAVE Yucatan dataset for other regions within Mexico would 

help further assess the ability to generalize our severity models as well as dengue vs OFI models to other 

populations within Mexico.  

Apart from central fit measurements such as AUC and accuracy, it is important to consider the 

relative cost of false negatives and false positives. In clinical medicine, falsely identifying a case as a 

control can have drastic consequences for the patient. In this context of our study, diagnosing a patient as 

having the flu when they in fact have dengue with warning signs hinders the clinician’s capacity to 

administer potentially lifesaving preventative treatment. As such, clinical models are most beneficial 

when emphasizing higher sensitivity at the cost of sensitivity. We were able to address this cost-sensitive 
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problem by tuning decision thresholds in our logistic regressions according to a cost function that doubles 

the impact of false negatives in relation to false positive. While there are some studies investigating the 

potential of calibrating random forest probabilities and, or performing threshold tuning, it is not 

appropriate in regular random forest models as the “probability” output is actually the proportion of all 

trees that ended up with the outcome (Dankowski, 2016; Kull, 2017; Boström, 2008; Reis, 2018). There 

are other ways to address this problem by employing modified cost sensitive or weighted random forest 

(Yang, 2009; Devi, 2019; Gajowniczek, 2020). Applying one of these methods to our above random 

forest models might help improve sensitivity to a more acceptable level, but likely at the cost of 

specificity.  

Interpretation of Random Forest in The Clinical Setting 

Regardless of the performance we obtained in this study, it is important for clinicians and policy 

makers to better understand and interpret random forest models in the context of the individual. To that 

end, we also seek to end our discussion by explaining the application and potential interpretation of 

applying random forest models on the individual level. The following details pertains to a single 

individual, “Patient A”, isolated from the test set of the severe versus non-severe model group. 

Specifically, we examined each row in the test set in order of appearance until we found a row that was 

unique and traceable to the original data frame. Some attributes have been altered for privacy reasons. In 

2019, a 13-year-old male in Yucatan, Mexico, presented the sudden onset of fever (39⁰C). The illness 

escalated and the patient was admitted to a hospital three days post-onset as a dengue suspect. “Patient A” 

was found to be experiencing headaches, exanthema, neurological symptoms, and nausea related 

symptoms at some point throughout his follow up and he was found to be negative for all other important 

binary predictors. The diagnosis was confirmed with PCR 7 days after initial onset and the patient was 

classified as having dengue with warning signs. 

As random forest’s final verdict is based on majority vote, the patient was incorrectly classified as 

not having severe dengue with only 12% and 46% of the 1000 trees voting for the outcome in the severe 

versus non-severe and severe vs all else models, respectively. The patient was correctly identified as 
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having dengue with 88.3% and 99.8% of the trees voting for dengue in the 2016-2019 and 2008-2019 

dengue models, respectively. Figure 10 is an example of one such tree for the severe versus non-severe 

model group. We can follow the dendrogram in the following order: the patient does not have bleeding, is 

greater than 8.7 years old, does have neurological symptoms, and does not have hemodynamic changes. 

Hence, this tree is 1 out of only 120 trees that correctly labeled the patient as having severe dengue. Note 

that the performance of the models for singular individuals does not provide any meaningful information 

about the overall accuracy and reliability of the models.  

LIME analysis is a way of potentially gaining further insight with regards to what features within 

the patient data led to the final verdict of the model. LIME has been used in previous clinical research to 

help provide individual interpretation. Tajgardoon et al. found that a panel of physicians had high levels 

of agreement when LIME was used in real patients but had poor agreement when LIME was used on fake 

data (Visani , Tajgardoon, Katuwal). However, other studies have found LIME lacks consistency and 

does not always meet Ribeiro et al.’s claims of faithfulness, linearity, and interpretability (Goode, 2021). 

Thus, LIME results should not be taken as complete truth, but may still be useful as supplemental 

information for clinicians and health experts.  

The feature weights in Figure 8 pertaining to the LIME analysis of “Patient A” are non-

surprising. All features considered important in Boruta analysis with harmful odds ratios on pre-split 

logistic regression contribute towards having the outcome when present in “Patient A” such as 

Neurological, headache, and exanthema. The feature weights for the patient’s age contributing to having 

dengue also mirrors the relatively harmful odds ratios for patients in younger age categories. The 

explanation fit of the dengue versus non-dengue 2016-2019 is poor, but the fitness for the other modeling 

groups is relatively higher with R2 around 0.7-0.75. When applying LIME analysis across 13 randomly 

selected test patients, we see that the general trend of what features contribute to and against the relevant 

outcome reflects what we would expect based on the global feature importance and odds ratios.  
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Figure 10: Individual Severe Versus Non-Severe Random Forest Tree For “Patient A” 

 

 

 

Conclusion 
Timely clinical management is critical to ensure the health of patients progressing into severe 

forms of dengue disease. Thus, there is a need for early detection of patients with dengue and early 

prognosis of those likely to progress into severe dengue. After performing diagnostic and prognostic 

modeling with both logistic regression and random forest, we conclude that both random forest and 

logistic regression may be useful for predicting severe dengue (confirmed severe dengue and or dengue 

Structure of one tree from the “Alternate Tuned” random forest model regarding severe (SD) 

versus non-severe dengue (SD). Left side is either negative (N) for binary variable or is less 

than continuous variable. Arrows show the course of “Patient A” on this particular tree 

(number 346 out of 1000) leading to the vote for severe dengue. The OOB Error, the error of 

the out of bag training set from this tree across all iterations, was 0.1. 
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with warning signs) versus non-severe dengue. However, our models were not effective in detecting 

dengue versus other febrile illnesses in our patient population. The performance of our severe versus non-

severe models lowered when validating against novel years and locations, thus potentially questioning its 

ability to be utilized in external populations.  

We additionally evaluated model performance using hyperparameters and threshold values. We 

found that ransom forest hyperparameter led to fairly similar results as the default settings. We also found 

that using a cost function that penalized false negatives with logistic regression penalized les to an 

increase in the sensitivity at the expense of specificity, which may be more relevant in the clinical setting.  

Furthermore, we identified a set of variables that were most important in the models such as 

bleeding and intense abdominal pain. We then estimated the odds ratio of exposure among the diseased to 

approximate the global association between the features. These global associations seemed to corroborate 

our model agnostic explanation analysis at the individual level, but further study is needed to properly 

assess the actual reliability of LIME for our models.  

Limitations 

We made several educated assumptions throughout this study that have the potential to impact 

our results. Based on input from a physician with dengue expertise in the region, we assumed that all 

positive clinical symptoms, comorbidities, and signs were correctly recorded and that all other values 

were indicative as negative for that particular covariate. This assumption affected the data fed into the 

models as well as all relevant tables and figures. We also performed ROSE balancing on the training set 

for the severe versus all and dengue versus OFI (2016-2019) modeling groups due to drastically 

imbalanced dataset. Though the stratified distributions of the training datasets before and after balancing 

were similar, ROSE balancing led to some nonsensical negative age values in the training set which may 

have had an effect on modeling results.  

One particular shortcoming in the data that may help explain the performance of our models is the 

lack of laboratory testing that was available to include in the model. Clinical labs are fundamental to the 

diagnosis of dengue and were used as central predictor variables in most of the models we encountered 
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during literature review.  We used hematocrit and leucocyte lab values in some of our models with 

noticeable improvement, especially in the random forest models. However, with missing rates around 40-

50% for each lab variable, it would be difficult to defend using these models in real life scenarios and thus 

we did not include them in this paper.  

Additionally, the relative superior performance of the logistic regression models in modeling 

severity may have been due to small sample sizes. While many studies have documented better 

performance of random forest models for classification, some of these studies have also noted the 

importance of using enough variables and having a large events per variable (EPV) ratio when performing 

random forest modeling (Christodoulou, 2019; Heinze, 2018; Sanchez-Pinto, 2018). Notably, van der 

Ploeg et al found that logistic regression AUC stabilized when the EPV is around 20-50 whereas random 

forest models demonstrate instability even when EPV is greater than 200 (van der Ploeg, 2014). 

Considering that the training data contains only 60% of the observations, the dengue model for years 

2008-2019 is the only one with an EPV significantly higher than 200. With this in mind, we plan on 

investigating the potential impact that restricting our analysis to fewer variables in order of importance. 

While this might lose predictive information from variables dropped, it would increase our EPV and may 

produce more statistically efficient results.  

The LIME package in R has many different options. Goode et al. found that these 

hyperparameters can affect the results for feature weights (Goode, 2021). Furthermore, the instability of 

LIME poses some problems for use in the clinical setting (Goode, 2021; Visani, 2020). Further steps to 

improve the local explanations include tuning the hyperparameter options or employing alternative 

versions of LIME such as Visani et al.’s OptiLIM (Visani, 2020).  
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Supplemental Section 

 

Basic Review of Models 

Logistic regression is performed on the training set where the Beta coefficients in the 

following equation below are estimated according to the maximum likelihood method (Peng, 

2002). Then, new data, x predictor values, are provided from the test set and the probability that 

Y=1 given the predictors is estimated. A decision threshold, set by default to be 50%, is used to 

determine if the final classification for each observation of the test set is the outcome of interest 

or not based on the derived probability.  

Supplemental Equation One 

𝐿𝑜𝑔 (
𝑃

1 − 𝑃
) =  𝐵0 + 𝐵𝑥1 + 𝐵𝑥2 + ⋯ 𝐵𝑛 

 
 

 

 

 

Decision trees generally operate by using the entire train dataset to construct a tree that is 

used to determine the classification of each observation in the test set (Patel, 2018).  The 

variables that are assigned at each split location, called a node, is determined by an assigned 

splitting criterion such as information gain, gain ratio, or gini index (Patel, 2018). The root node, 

the first one in the tree, is determined by the variable found to have the lowest gin impurity, or 

highest information gain (Kingsford, 2008). Nodes after the root node are called the branch 

nodes and the nodes with the final classification are called the leaf nodes (Patel, 2018). Pruning 

is often performed to limit the growth of the tree by some minimal difference in the splitting 

criteria to prevent overfitting (Kingsford, 2008). Each leaf node contains a probability 

distribution of the possible outcomes; this probability is then used to determine the final 

classification for each observation (Kingsford, 2008). There are numerous types of decision tree 

algorithms such as C4.5 and CART that operate in slightly different ways (Patel, 2018). 

x’s=predictors. n= total number of predictors .  

P=probability(Y=outcome | 𝐵0 + 𝐵𝑥1 + 𝐵𝑥2 + ⋯ 𝐵𝑛)=
𝑒𝐵0+𝐵𝑥1+𝐵𝑥2+⋯𝐵𝑛

1+𝑒𝐵0+𝐵𝑥1+𝐵𝑥2+⋯𝐵𝑛
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Ensemble tree methods, such as random forest, are often more accurate than decision tree 

because they employ multiple trees (Kingsford, 2008). Random forest utilizes bagging, a process 

in which the training data is sampled with replacement to derive an in-bag training dataset 

(Breiman, 2001). The in-bag training data is used to construct the tree and the out of bag dataset, 

roughly 1/3 of the original training data, is used to calculate the out of bag error (OOBE) 

(Breiman, 2001). This process is repeated for as many trees created by the algorithm (Breiman, 

2001). Unlike decision tree, only a certain number of features are randomly selected for 

consideration at each node using the determined selection criteria. Additionally, the trees are not 

pruned, but the minimum node size determines the smallest size of a leaf node allowed in the tree 

(Breiman, 2001). Once all the trees are constructed, the aggregated OOBE gives an estimate of 

the accuracy based on the out of bag datasets (Braiman, 2001). Then, each observation from the 

test set is run through all the trees created by the trained random forest and the outcome with the 

majority vote, the highest proportion of trees, is the final classified outcome for that observation 

(Breiman, 2001).  

Supplemental Tables 
 

Supplemental Table 1: Model Comparison Metrics 

Metrics Formula Description 

Sensitivity 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

Proportion of positive outcome correctly 

identified (also known as recall) 

Specificity 𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

Proportion of negative outcome 

correctly identified 

Positive 

Predictive 

Value (PPV) 

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

The number of true positives divided by 

the number of positive calls (also known 

as precision) 

Negative 

Predictive 

Value (NPV) 

𝑡𝑛

𝑡𝑛 + 𝑓𝑛
 

The number of true negatives divided by 

the number of negative calls. 
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Supplemental Table 2: Distribution and Univariate Risk for Dengue Across Variables 

From 2008-2019 

Category Variable 
Dengue 

N (%) 
Other 
N (%) 

Risk Ratio Dengue Vs OFI: 
RR (CI) 

Fischer Exact: 
P-value 

Demographics 

Age <14 
5454 

(26.7%) 
6220 

(28.0%) 
1 -- 

Age 15-28 
8023 

(39.3%) 
7049 

(31.7%) 
1.14 (1.11, 1.17) ** <0.001 

Age 29-42 
3609 

(17.7%) 
4579 

(20.6%) 
0.94 (0.92, 0.97) ** <0.001 

Age 43-57 
2285 

(11.2%) 
2850 

(12.8%) 
0.95 (0.92, 0.99) ** 0.008 

Age >58 
1024 

(5.0%) 
1549 

(7.0%) 
0.85 (0.81, 0.90) ** <0.001 

Sex (Male) 
9948 

(48.8%) 
10497 

(47.2%) 
1.03 (1.01, 1.05) ** 0.001 

Comorbidities Hypertension 
183 

(0.9%) 
160 

(0.7%) 
1.12 (1.01, 1.23) ** 0.045 

Accuracy 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Proportion of total calls correctly 

classified 

ROC-AUC -- Area under the ROC curve 

Kappa 𝑃0 − 𝑃𝐶

1 − 𝑃𝐶
 

P0=observed 

agreement (accuracy) 

Pc=chance 

agreement. 

Value indicating strength of agreement. 

Landis and Koch proposed that a kappa 

coefficient ≤0 is poor, between 0.1-0.2 

is slight, between 0.21-0.4 is fair, 

between 0.41-0.60 is moderate, between 

0.61-0.80 is substantial, and between 

0.81-1 is almost perfect (Landis, 1977; 

Sim, 2019). However, the interpretation 

is arbitrary and can vary. 

F-2 F-measure= 
(𝐵2+1)∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝐵2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

F-2 = F-Measure 

where B=2 

The F-score is a balance between the 

recall (sensitivity) and precision (PPV). 

The F-2 Score puts greater weight on 

sensitivity which is typically used when 

false negatives are of concern.  Formulas and descriptions obtained from Sokolova, 2006 and Sim, 1977 
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Peptic Ulcer 
26 

(0.1%) 
25 

(0.1%) 
1.07 (0.81, 1.40) 0.676 

Diabetes 
171 

(0.8%) 
225 

(1.0%) 
0.90 (0.81, 1.01) 0.069 

Bleeding Disorder 
27 

(0.1%) 
37 

(0.2%) 
0.88 (0.66, 1.18) 0.383 

Pregnant 
365 

(1.8%) 
611 

(2.7%) 
0.78 (0.72, 0.84) ** <0.001 

Immunosuppression 
26 

(0.1%) 
79 

(0.4%) 
0.52 (0.37, 0.72) ** <0.001 

Liver cirrhosis 
18 

(0.1%) 
56 

(0.3%) 
0.51 (0.34, 0.76) ** <0.001 

Common 
Acute Findings 

Fever 
20393 

(100.0%) 
22244 

(100.0%) 
1.20 (0.41, 3.50) 1 

General 
Symptoms 

Positive tourniquet 
2028 

(9.9%) 
862 

(3.9%) 
1.52 (1.48, 1.56) ** <0.001 

Retroorbital pain 
13674 

(67.0%) 
14191 

(63.8%) 
1.08 (1.06, 1.10) ** <0.001 

Arthralgia 
17279 

(84.7%) 
18453 

(82.9%) 
1.07 (1.04, 1.10) ** <0.001 

Myalgia 
18569 

(91.0%) 
20158 

(90.6%) 
1.03 (0.99, 1.06) 0.122 

Common 
Respiratory 
Symptoms 

Petechia 
3208 

(15.7%) 
1201 

(5.4%) 
1.62 (1.58, 1.65) ** <0.001 

Exanthema 
6852 

(33.6%) 
4755 

(21.4%) 
1.35 (1.33, 1.38) ** <0.001 

Headache 
19153 

(93.9%) 
20523 

(92.3%) 
1.15 (1.10, 1.20) ** <0.001 

Warning Signs 

Ascites 
230 

(1.1%) 
53 

(0.2%) 
1.71 (1.61, 1.81) ** <0.001 

Pleural effusion 
140 

(0.7%) 
56 

(0.3%) 
1.50 (1.37, 1.64) ** <0.001 
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Ecchymosis 
483 

(2.4%) 
220 

(1.0%) 
1.45 (1.38, 1.52) ** <0.001 

Gingivorrhagia 
1030 

(5.1%) 
480 

(2.2%) 
1.45 (1.40, 1.50) ** <0.001 

Persistent vomiting 
1657 

(8.1%) 
1022 

(4.6%) 
1.32 (1.28, 1.36) ** <0.001 

Hematomas 
206 

(1.0%) 
124 

(0.6%) 
1.31 (1.20, 1.42) ** <0.001 

Epistaxis 
674 

(3.3%) 
430 

(1.9%) 
1.29 (1.23, 1.35) ** <0.001 

Intense Abdominal 
Pain 

2050 
(10.1%) 

1380 
(6.2%) 

1.28 (1.24, 1.32) ** <0.001 

Severe 
Symptoms 

Hematemesis 
220 

(1.1%) 
118 

(0.5%) 
1.36 (1.26, 1.48) ** <0.001 

Melena 
140 

(0.7%) 
118 

(0.5%) 
1.14 (1.01, 1.27) ** 0.039 

 

 

Supplemental Table 3: Distribution of Dengue Across Dengue Prognosis Outcomes From 

2016-2019 

Category Variable 

Non-
Severe 
Dengue 

N (%) 

Dengue 
with 

Warning 
Signs 
N (%) 

Severe 
Dengue 

N (%) 

Other 
Febrile 
Illness 
N (%) 

Risk 
Ratio 

Dengue 
Vs OFI: 
RR (CI) 

Risk 
Ratio 

SD/DSW 
Vs NSD 
RR (CI) 

Demographics 

Age <14 
158 

(25.7%) 
194 

(39%) 
20 

(37%) 
837 

(26%) 
1 1 

Age 15-28 
282 

(45.9%) 
207 

(41.6%) 
11 

(20.4%) 
1149 

(35.7%) 

0.98 
(0.88, 
1.10) 

0.76 
(0.66, 

0.86) ** 

Age 29-42 
95 

(15.4%) 
55 

(11%) 
14 

(25.9%) 
661 

(20.5%) 

0.65 
(0.55, 
0.76) 

** 

0.73 
(0.60, 

0.89) ** 

** Indicates significant univariate risk ratio compared to reference.  Risk ratio references for sex and 

age were female patients and those ≤ 14 years old, respectively. 
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Age 43-57 
54 

(8.8%) 
20 (4%) 

2 
(3.7%) 

410 
(12.7%) 

0.51 
(0.41, 
0.64) 

** 

0.50 
(0.35, 

0.72) ** 

Age 58-100 
26 

(4.2%) 
22 

(4.4%) 
7 (13%) 

160 
(5%) 

0.83 
(0.65, 
1.06) 

0.92 
(0.70, 
1.19) 

Sex 
283 

(46%) 
256 

(51.4%) 
26 

(48.1%) 
1477 

(45.9%) 

1.08 
(0.98, 
1.19) 

1.11 
(0.99, 
1.26) 

Age: Mean (SD) 
24.53 

(15.38) 
20.55 

(15.05) 
26.81 

(20.24) 
26.3 

(16.81) 
-- -- 

Comorbidities 

Hypertension 
1 

(0.2%) 
6 (1.2%) 

3 
(5.6%) 

31 (1%) 
0.92 

(0.53, 
1.57) 

1.92 
(1.55, 

2.38) ** 

Bleeding Disorder 
2 

(0.3%) 
7 (1.4%) 

2 
(3.7%) 

31 (1%) 
0.98 

(0.59, 
1.64) 

1.74 
(1.31, 

2.32) ** 

Diabetes 
5 

(0.8%) 
13 

(2.6%) 
6 

(11.1%) 
63 (2%) 

1.04 
(0.74, 
1.46) 

1.70 
(1.37, 

2.10) ** 

Pregnant 
67 

(10.9%) 
24 

(4.8%) 
3 

(5.6%) 
235 

(7.3%) 

1.08 
(0.90, 
1.29) 

0.59 
(0.42, 

0.81) ** 

Immunosuppression 
13 

(2.1%) 
2 (0.4%) 0 (0%) 

38 
(1.2%) 

1.06 
(0.69, 
1.64) 

0.28 
(0.08, 
1.02) 

Liver cirrhosis 
1 

(0.2%) 
0 (0%) 0 (0%) 

14 
(0.4%) 

0.25 
(0.04, 
1.66) 

0 

Peptic Ulcer 
1 

(0.2%) 
0 (0%) 0 (0%) 

4 
(0.1%) 

0.75 
(0.13, 
4.34) 

0 

Common Acute 
Findings 

Fever 
614 

(99.8%) 
497 

(99.8%) 
54 

(100%) 
3214 

(99.9%) 

0.67 
(0.23, 
1.95) 

0.95 
(0.24, 
3.79) 

Nasal Congestion 
20 

(3.3%) 
12 

(2.4%) 
2 

(3.7%) 
116 

(3.6%) 

0.85 
(0.63, 
1.14) 

0.87 
(0.58, 
1.30) 
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Taste changes 
33 

(5.4%) 
13 

(2.6%) 
5 

(9.3%) 
185 

(5.8%) 

0.80 
(0.63, 
1.03) 

0.74 
(0.51, 
1.07) 

General 
Symptoms 

Positive tourniquet 
11 

(1.8%) 
128 

(25.7%) 
12 

(22.2%) 
173 

(5.4%) 

1.86 
(1.64, 
2.12) 

** 

2.29 
(2.10, 

2.49) ** 

AST ALT 
1 

(0.2%) 
0 (0%) 

3 
(5.6%) 

13 
(0.4%) 

0.88 
(0.37, 
2.08) 

1.59 
(0.90, 
2.81) 

Diaphoresis 31 (5%) 
44 

(8.8%) 
4 

(7.4%) 
223 

(6.9%) 

0.98 
(0.81, 
1.19) 

1.31 
(1.09, 

1.58) ** 

Chills 
114 

(18.5%) 
120 

(24.1%) 
11 

(20.4%) 
709 

(22%) 

0.96 
(0.85, 
1.08) 

1.17 
(1.02, 

1.34) ** 

Arthritis 
27 

(4.4%) 
25 (5%) 

6 
(11.1%) 

116 
(3.6%) 

1.27 
(1.02, 
1.57) 

** 

1.14 
(0.89, 
1.46) 

Back ache 
152 

(24.7%) 
142 

(28.5%) 
12 

(22.2%) 
757 

(23.5%) 

1.11 
(0.99, 
1.24) 

1.09 
(0.95, 
1.24) 

Arthralgia 
505 

(82.1%) 
421 

(84.5%) 
43 

(79.6%) 
2620 

(81.4%) 

1.08 
(0.95, 
1.24) 

1.08 
(0.91, 
1.28) 

Myalgia 
582 

(94.6%) 
474 

(95.2%) 
50 

(92.6%) 
2994 

(93.1%) 

1.26 
(1.00, 
1.58) 

1.03 
(0.78, 
1.36) 

Petechia 
28 

(4.6%) 
152 

(30.5%) 
25 

(46.3%) 
253 

(7.9%) 

1.83 
(1.63, 
2.05) 

** 

2.21 
(2.01, 

2.44) ** 

Exanthema 
224 

(36.4%) 
201 

(40.4%) 
19 

(35.2%) 
755 

(23.5%) 

1.63 
(1.48, 
1.80) 

** 

1.08 
(0.95, 
1.22) 

Headache 
577 

(93.8%) 
471 

(94.6%) 
51 

(94.4%) 
2771 

(86.1%) 

2.15 
(1.71, 
2.69) 

** 

1.08 
(0.82, 
1.42) 
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Pruritus 
102 

(16.6%) 
94 

(18.9%) 
10 

(18.5%) 
312 

(9.7%) 

1.60 
(1.42, 
1.80) 

** 

1.08 
(0.93, 
1.26) 

Polyarthralgia 
29 

(4.7%) 
17 

(3.4%) 
6 

(11.1%) 
99 

(3.1%) 

1.31 
(1.04, 
1.64) 

** 

0.93 
(0.68, 
1.27) 

Conjunctivitis 49 (8%) 
26 

(5.2%) 
6 

(11.1%) 
137 

(4.3%) 

1.43 
(1.19, 
1.71) 

** 

0.83 
(0.63, 
1.09) 

Retroorbital pain 
444 

(72.2%) 
357 

(71.7%) 
31 

(57.4%) 
2214 

(68.8%) 

1.09 
(0.98, 
1.22) 

0.95 
(0.84, 
1.09) 

Common 
Respiratory 
Symptoms 

Dyspnea7 
1 

(0.2%) 
4 (0.8%) 

3 
(5.6%) 

27 
(0.8%) 

0.86 
(0.47, 
1.58) 

1.86 
(1.42, 

2.43) ** 

Cough 
21 

(3.4%) 
29 

(5.8%) 
4 

(7.4%) 
211 

(6.6%) 

0.75 
(0.59, 
0.96) 

** 

1.31 
(1.05, 

1.64) ** 

Pharyngitis 
25 

(4.1%) 
23 

(4.6%) 
3 

(5.6%) 
169 

(5.3%) 

0.86 
(0.68, 
1.11) 

1.08 
(0.82, 
1.43) 

Adenomegaly 
7 

(1.1%) 
5 (1%) 

1 
(1.9%) 

45 
(1.4%) 

0.84 
(0.52, 
1.36) 

0.98 
(0.54, 
1.76) 

Warning Signs 

Intense Abdominal 
Pain 

4 
(0.7%) 

222 
(44.6%) 

21 
(38.9%) 

216 
(6.7%) 

2.27 
(2.05, 
2.52) 

** 

2.93 
(2.67, 

3.21) ** 

Persistent vomiting 
1 

(0.2%) 
108 

(21.7%) 
9 

(16.7%) 
89 

(2.8%) 

2.27 
(1.99, 
2.58) 

** 

2.39 
(2.22, 

2.57) ** 

Epistaxis1 0 (0%) 25 (5%) 
8 

(14.8%) 
51 

(1.6%) 

1.49 
(1.14, 
1.95) 

** 

2.18 
(2.05, 

2.33) ** 

Gingivorrhagia1 
1 

(0.2%) 
30 (6%) 

10 
(18.5%) 

73 
(2.3%) 

1.36 
(1.06, 
1.75) 

** 

2.15 
(1.98, 

2.32) ** 
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Ecchymosis1 0 (0%) 6 (1.2%) 
4 

(7.4%) 
19 

(0.6%) 

1.30 
(0.78, 
2.15) 

2.13 
(2.01, 

2.27) ** 

Ascites4 0 (0%) 2 (0.4%) 
1 

(1.9%) 
11 

(0.3%) 

0.80 
(0.29, 
2.20) 

2.12 
(2.00, 

2.25) ** 

Hematomas1 0 (0%) 2 (0.4%) 0 (0%) 
13 

(0.4%) 

0.50 
(0.14, 
1.82) 

2.12 
(1.99, 

2.25) ** 

Pleural effusion4 0 (0%) 1 (0.2%) 
1 

(1.9%) 
13 

(0.4%) 

0.50 
(0.14, 
1.82) 

2.12 
(1.99, 

2.25) ** 

Hepatomegaly6 
1 

(0.2%) 
24 

(4.8%) 
4 

(7.4%) 
53 

(1.6%) 

1.34 
(0.99, 
1.80) 

2.10 
(1.91, 

2.30) ** 

Plasma leakage4 
1 

(0.2%) 
2 (0.4%) 

1 
(1.9%) 

8 
(0.2%) 

1.25 
(0.56, 
2.79) 

1.59 
(0.90, 
2.81) 

Photophobia2 
40 

(6.5%) 
51 

(10.2%) 
5 

(9.3%) 
279 

(8.7%) 

0.96 
(0.80, 
1.15) 

1.26 
(1.05, 

1.51) ** 

Severe 
Symptoms 

Disorientation2 0 (0%) 2 (0.4%) 
5 

(9.3%) 
13 

(0.4%) 

1.32 
(0.72, 
2.40) 

2.13 
(2.00, 

2.26) ** 

Jaundice 0 (0%) 1 (0.2%) 
1 

(1.9%) 
23 

(0.7%) 

0.30 
(0.08, 
1.13) 

2.12 
(1.99, 

2.25) ** 

Shock3 0 (0%) 0 (0%) 
2 

(3.7%) 
15 

(0.5%) 

0.44 
(0.12, 
1.62) 

2.12 
(1.99, 

2.25) ** 

Stupor2 0 (0%) 0 (0%) 
2 

(3.7%) 
11 

(0.3%) 

0.58 
(0.16, 
2.07) 

2.12 
(1.99, 

2.25) ** 

Cold Extremities3 
1 

(0.2%) 
1 (0.2%) 

13 
(24.1%) 

20 
(0.6%) 

1.62 
(1.10, 
2.38) 

** 

2.00 
(1.72, 

2.32) ** 

Mottled skin1 
1 

(0.2%) 
7 (1.4%) 

4 
(7.4%) 

20 
(0.6%) 

1.41 
(0.90, 
2.22) 

1.96 
(1.63, 

2.35) ** 
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Abdominal pain5 
38 

(6.2%) 
135 

(27.1%) 
15 

(27.8%) 
350 

(10.9%) 

1.37 
(1.21, 
1.56) 

** 

1.94 
(1.75, 

2.16) ** 

Capillary filling3 
1 

(0.2%) 
3 (0.6%) 

4 
(7.4%) 

17 
(0.5%) 

1.20 
(0.68, 
2.14) 

1.86 
(1.42, 

2.43) ** 

Tachycardia 
3 

(0.5%) 
6 (1.2%) 

13 
(24.1%) 

37 
(1.2%) 

1.41 
(1.01, 
1.97) 

** 

1.86 
(1.55, 

2.22) ** 

Melena1 
1 

(0.2%) 
4 (0.8%) 

2 
(3.7%) 

13 
(0.4%) 

1.32 
(0.72, 
2.40) 

1.82 
(1.34, 

2.48) ** 

Respiratory failure7 
1 

(0.2%) 
1 (0.2%) 

5 
(9.3%) 

14 
(0.4%) 

1.25 
(0.68, 
2.30) 

1.82 
(1.34, 

2.48) ** 

Hematemesis1 
2 

(0.3%) 
2 (0.4%) 7 (13%) 

13 
(0.4%) 

1.73 
(1.12, 
2.68) 

** 

1.74 
(1.31, 

2.32) ** 

Altered State of 
Consciousness2 

1 
(0.2%) 

0 (0%) 
4 

(7.4%) 
19 

(0.6%) 

0.78 
(0.36, 
1.71) 

1.70 
(1.09, 

2.64) ** 

Arterial 
hypotension3 

1 
(0.2%) 

1 (0.2%) 
3 

(5.6%) 
5 

(0.2%) 

1.88 
(1.01, 
3.50) 

** 

1.70 
(1.09, 

2.64) ** 

Metrorrhagia1 
1 

(0.2%) 
2 (0.4%) 

2 
(3.7%) 

4 
(0.1%) 

2.09 
(1.16, 
3.76) 

** 

1.70 
(1.09, 

2.64) ** 

Lipothymia3 
1 

(0.2%) 
2 (0.4%) 

1 
(1.9%) 

25 
(0.8%) 

0.52 
(0.21, 
1.28) 

1.59 
(0.90, 
2.81) 

Convergent 
pressure3 

1 
(0.2%) 

0 (0%) 
1 

(1.9%) 
5 

(0.2%) 

1.07 
(0.33, 
3.47) 

1.06 
(0.26, 
4.23) 
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Myocarditis7 
1 

(0.2%) 
0 (0%) 

1 
(1.9%) 

2 
(0.1%) 

1.88 
(0.70, 
5.01) 

1.06 
(0.26, 
4.23) 

Subarachnoid 
hemorrhage1 

1 
(0.2%) 

0 (0%) 0 (0%) 
2 

(0.1%) 

1.25 
(0.25, 
6.21) 

0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Ratio NSD Vs OFI in terms of dengue compared to Other. Risk Ratio SD/DSW Vs NSD in terms 

of severe (severe dengue or dengue with warning sings) compared to non-severe dengue. ** Indicates 

significant univariate risk ratio compared to reference. Risk ratio references for sex and age were 

female patients and those ≤  14 years old, respectively. Superscripts (1-7) indicate groups made for 

model processing: 1=Bleeding, 2=Neurological, 3=Hemodynamic, 4=Plasma Leakage, 5=Nausea plus, 

6=Visceromegaly, 7=Atypical Manifestation. 
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