
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the require-
ments for an advanced degree from Emory University, I hereby grant to Emory
University and its agents the non-exclusive license to archive, make accessible,
and display my thesis or dissertation in whole or in part in all forms of media,
now or hereafter known, including display on the world wide web. I under-
stand that I may select some access restrictions as part of the online submission
of this thesis or dissertation. I retain all ownership rights to the copyright of
the thesis or dissertation. I also retain the right to use in future works (such as
articles or books) all or part of this thesis or dissertation.

Signature:

Abulimiti Aji Date

High Performance Spatial Query Processing for Large Scale

Spatial Data Warehousing

By
Abulimiti Aji

Doctor of Philosophy
Computer Science and Informatics

Fusheng Wang, Ph.D.
Advisor

Joel H. Saltz, M.D., Ph.D.
Committee Member

James J. Lu, Ph.D.
Committee Member

Xiaodong Zhang, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

High Performance Spatial Query Processing for Large Scale

Spatial Data Warehousing

By

Abulimiti Aji
M.S., Emory University, 2010

Advisor : Fusheng Wang, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Informatics
2014

Abstract
High Performance Spatial Query Processing for Large Scale Spatial Data Warehousing

By Abulimiti Aji

Support of high performance queries on large volumes of spatial data have be-
come important in many domains, including geo-spatial problems in numerous
fields and emerging scientific applications that are increasingly data- and compute-
intensive. There are two major challenges for managing and querying massive spa-
tial data: the explosion of spatial data, and the high computational complexity of
spatial queries due to the multi-dimensional nature of spatial analytics.

MapReduce provides a highly effective, efficient and reliable tool for large scale
data analysis. While MapReduce model is amenable to a wide range of real-world
tasks, spatial queries and analytics are intrinsically complex to fit into the MapRe-
duce model. Meanwhile, hybrid systems combining CPUs and GPUs are becoming
widely available, but the computing capacity of such systems is often underutilized.
Providing new spatial querying methods on such architecture requires us to answer
several fundamental research questions that have practical implications.

The goal of this dissertation is to create a framework with new systematic
methods to support high performance spatial queries for massive spatial data on
MapReduce and CPU-GPU hybrid platforms, driven by real-world use cases. We
have researched multi-level parallelization approaches for spatial queries to run
on hybrid cluster environment. Specifically, we have conducted following studies:
1) create new spatial data processing methods and pipelines with spatial partition
level parallelism through MapReduce programming model, and multi-level index-
ing methods to accelerate spatial data processing; 2) develop two critical compo-
nents to enable query parallelization: effective and scalable spatial partitioning in
MapReduce (pre-processing), and query normalization methods for partition ef-
fect; 3) integrate GPU-based spatial operations into MapReduce query pipelines;
4) investigate optimization methods for data skew mitigation, and CPU/GPU re-
source coordination in MapReduce, and 5) support declarative spatial queries for
workload composition, and create a query translator to automatically translate the
queries into MapReduce programs.

Consequently, we have developed Hadoop-GIS — a MapReduce based high per-
formance spatial querying system for spatial data warehousing. The system sup-
ports multiple types of spatial queries on MapReduce through spatial partitioning,
implicit parallel spatial query execution on MapReduce, and effective methods for
amending query results through handling boundary objects. Hadoop-GIS utilizes
global partition indexing and customizable on demand local spatial indexing to
achieve efficient query processing. We have integrated Hadoop-GIS into Hive to
support declarative spatial queries, and released the system and developed ap-
proaches as an open source software package.

High Performance Spatial Query Processing for Large Scale

Spatial Data Warehousing

By

Abulimiti Aji
M.S., Emory University, 2010

Advisor : Fusheng Wang, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in
Computer Science and Informatics

2014

To my family

Acknowledgments
My deepest gratitude is to my adviser Dr. Fusheng Wang for his advice and

support. I am very fortunate to have an adviser who gave me the freedom to explore
on my own, yet patiently help me navigate through uncertainty when my steps
faltered. This thesis would not have been possible without him and encouragement
he has given me over the course of my Ph.D. study.

I would like to thank the members of my dissertation committee. Thanks Dr.
James Lu for encouraging me to pursue database research, and providing very
detailed comments on my dissertation. Thanks Dr. Joel Saltz for the valuable sug-
gestions which helped me identify important research problems. He showed me
how interdisciplinary research can have lasting impact, and how computer science
can help advance other fields. Thanks Dr. Xiaodong Zhang for his insightful com-
ments on GPU related topic. His research style, that putting real applicability and
reusable systems first, has strongly influenced me.

Over the course of my study, a number of people have contributed to my career
and personal growth in many ways. I am grateful to Dr. Eugene Agichtein who
convinced me to come to Emory and took me as his student before Fusheng has ar-
rived. I have spent amazing summers at Max-Planck Institute, Microsoft Research
and Yahoo!. Thanks Dr. Martin Theobald for mentoring me while I was at MPII,
and giving me career advice (Vielen Danke für deine Hilfe). Thanks Dr. Emre Kıcı-
man for mentoring me during my internship at MSR; thanks Dr. Hakan Ceylan for
introducing me to the great engineers at Yahoo!, and being a good friend.

I would like to thank my friends and colleagues at Emory University, for making
the Ph.D. study an unforgettable experience. Thanks to the IR folks Liu Yandong,
Guo Qi and Wang Yu with whom I have shared many insightful discussions and
fun times. Thanks to the faculty and students at BMI/CCI: Dr. Lee Cooper, Dr.
Jun Kong, Dr. George Teodoro, Tony Pan, Vo Hoang, Ameen Kazerouni, Michael
Nalisnik, Liang Yanhui, Zhang Wei, Chen Xin, Sanjay Agrawat and Stanly Xu.

I am eternally indebted to my parents and brothers for their endless love, sup-
port and encouragement throughout my life. Atam Haji Qadir manga chidam
hem gheyretni, anam Bahargül Yüsüf turmushni qandaq söyüshni ügetti. Ularn-
ing terbiyesi hem muhebbitisiz men bu künlerge kilelmes idim. Akam Tursun-
jan, ukam Yasinjan, Abletjan we Ablexetler mining qanatlirim bolup keldi. Eger
ular ata-anamgha hemra bolmighan bolsa, men bu xizmetnimu xatirjem qilalmas
idim. Mihriban qirindashlirimdin cheksiz razimen. Ayalim Zahide mining dok-
turluq sepirimde yaxshi hemra bolup keldi. Kichilep ishligen chaghlarda yinimda
bolghanliqidin tolimu xoshalmen. Dostlurum Batur, Nurmemetjan, Qadil hem bashqa
sawaqdashliriming ziyaretlirimde hemra bolghanliqigha hem körsetken iltipatigha
rehmet iytimen.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Data Intensive Spatial Applications . 3

1.2.1 Analysis of Derived Scientific Spatial Data 3
1.2.2 GIS and Social Media Applications 5

1.3 Spatial Queries . 7
1.3.1 Characteristics of Modern Spatial Analytics Applications 7

1.4 Dissertation Goals . 9
1.4.1 Exploring the Principles of Spatial Query Processing on MapReduce 9
1.4.2 Exploring the System Architecture 10
1.4.3 Improving the Query Processing Performance 11

1.5 Dissertation Contributions and Outline . 14
1.5.1 Contributions . 14
1.5.2 Outline . 16

2 Approaches to Large Scale Spatial Data Analytics 17
2.1 Spatially Extended Relational Database Systems 17
2.2 GIS systems . 21
2.3 MapReduce based Systems . 22
2.4 Summary . 23

3 HadoopGIS – A Framework for Spatial Query Processing with MapReduce 24
3.1 Overview of the Framework . 24
3.2 Data Partitioning and Storage . 26
3.3 MapReduce Based Parallel Query Execution 28
3.4 Boundary Object Processing . 29
3.5 Multi-Level Spatial Indexing . 30
3.6 Query Processing Cost Model . 31
3.7 Related Approaches . 33
3.8 Summary . 34

4 MapReduce based Spatial Query Processing 36
4.1 Real-time Spatial Query Engine . 36

4.1.1 Index Supported Spatial Queries . 37
4.1.2 Spatial Query Workflows in RESQUE 38

4.1.3 Query Engine Performance . 40
4.2 MapReduce Based Spatial Query Processing 42

4.2.1 Spatial Join . 42
4.2.2 Multiway Spatial Join . 46
4.2.3 Nearest Neighbor Query . 47
4.2.4 Spatial Selection and Aggregation 50

4.3 Boundary Handling . 50
4.4 Query Optimization Approaches . 53
4.5 Experiments . 55

4.5.1 Experimental Setup . 56
4.5.2 Performance of Hadoop-GIS . 58
4.5.3 Scalability of Hadoop-GIS . 62
4.5.4 Boundary Handling Overhead . 64
4.5.5 Effects of Query Optimization Approaches 66

4.6 Summary . 68

5 Effective Spatial Data Partitioning for Scalable Query Processing 69
5.1 Introduction and Related Approaches . 69

5.1.1 Challenges in Spatial Partitioning . 70
5.1.2 Related Approaches . 72

5.2 Classification of Spatial Partition Algorithms 74
5.2.1 Partition Boundary . 74
5.2.2 Search Strategy . 75
5.2.3 Partition Criterion . 76

5.3 Spatial Partition Algorithms . 77
5.3.1 Preliminaries . 77
5.3.2 Methods and Details . 78

5.4 Experiments . 82
5.4.1 Parameters and Metrics . 82
5.4.2 Comparison of Partition Quality . 84
5.4.3 Effects of Partitioning on Query Performance 87

5.5 Summary . 89

6 Efficiency Improvements for Spatial Data Partitioning 90
6.1 Runtime Cost of Spatial Partitioning Algorithms 90
6.2 Two Approaches for Improving Efficiency 93

6.2.1 Parallel Partitioning with MapReduce 93
6.2.2 Partitioning on Sampled Data . 94

6.3 Experiments . 95
6.3.1 MapReduce based Approach . 95
6.3.2 Sampling based Approach . 97

7 Haggis – Hardware Acceleration of Hadoop-GIS 100
7.1 Introduction and Related Approaches . 100
7.2 GPU Accelerated Spatial Query Processing 102

7.2.1 Spatial Queries on CPU . 102
7.2.2 Spatial Queries on GPU . 104

7.3 Implementation Details of Haggis . 105
7.3.1 Architectural Details . 106
7.3.2 Task Assignment . 107
7.3.3 Effects of Task Granularity . 107

7.4 Experiments . 108
7.4.1 Effects of CPU for co-processing . 108
7.4.2 Effects of MR Parallelization . 109

7.5 Summary . 110

8 HiveSP — An Implementation of Hadoop-GIS 111
8.1 System Architecture . 111
8.2 Query Language . 113
8.3 Storage Layer . 114
8.4 Query Processing . 115
8.5 Software Setup . 116

Bibliography 119

List of Figures

1.1 Derived spatial data in pathology image analysis 4
1.2 Examples spatial query cases in pathology imaging 5
1.3 Example spatial query cases in GIS and geosocial applications 6

2.1 A shared-nothing parallel database architecture 19
2.2 A SQL query for creating partitioned table on Greenplum parallel database 20
2.3 An ad-hoc grid partitioning of a pathology image 20
2.4 Overview of MapReduce execution . 22

3.1 Architectural overview of Hadoop-GIS . 26
3.2 An example of MapReduce based spatial query parallelization 28
3.3 Multi-Level region based spatial index . 30

4.1 Spatial join query workflow in RESQUE . 38
4.2 Performance of RESQUE . 41
4.3 A spatial join (cross-matching) query commonly used in analytical imag-

ing study . 43
4.4 Spatial join query types . 46
4.5 Nearest neighbor query workflow in RESQUE 49
4.6 A containment query commonly used in analytical imaging study 50
4.7 Boundary crossing objects . 50
4.8 Spatial skew in query processing . 54
4.9 Spatial join query performance . 59
4.10 Performance of containment and aggregation queries 60
4.11 Performance of HadoopGIS on OSM dataset 61
4.12 Scalability test with spatial join query on PI dataset 62
4.13 Multiway spatial join query performance . 63
4.14 Nearest neighbor query performance . 64
4.15 Boundary handling overhead in Hadoop-GIS 65
4.16 Spatial join query optimization through cost-based task partition 66
4.17 Performance of spatial containment query with multi-level indexing . . . 67

5.1 An example of fixed grid partition and spatial data-skew 70
5.2 Spatial partitions generated by different algorithms (the bigger rectan-

gles in colors represent partition boundaries, and the small rectangles
represent the spatial objects) . 83

5.3 Standard deviation of partition results . 85
5.4 Ratio of boundary objects . 86
5.5 Spatial join query performance . 87

6.1 Spatial partition performance . 91
6.2 Spatial partition performance variance . 92
6.3 Parallel partitioning performance . 96
6.4 Quality of partitions generated by sampling based approaches 98

7.1 Spatial join query cost breakdown on CPU 103
7.2 Spatial join query cost breakdown on GPU 105
7.3 Architecture of HadoopGIS . 106
7.4 Effects of available CPUs for query processing 108
7.5 Effects of MapReduce parallelization . 109

8.1 Architecture of HiveSP . 112
8.2 Two-way spatial join query plan in HiveSP 117
8.3 An example table schema . 117
8.4 Data loading command . 118
8.5 A spatial join query in HiveQL . 118

List of Tables

5.1 A general classification of spatial partition algorithms 74
5.2 Partition parameters: fraction (×10−2) . 84

1

Chapter 1

Introduction

1.1 Motivation

The advancement in the computer technology and the rapid growth of Internet have

brought many changes to society. In particular, the Big Data paradigm has disrupted

(almost) all aspects of our lives. The rise of big data can be attributed to two main

factors.

First, high volumes of data generated by the machines. The rapid improvement of

high resolution data acquisition technologies and sensor networks have enabled us to

capture large amounts of data at an unprecedented scale and rate. For example, the

GeoEye-1 satellite has the highest resolution of any commercial imaging system and

is able to collect images with a ground resolution of 0.41 meters in the panchromatic

or black and white mode [1]; the Sloan Digital Sky Survey (SDSS), with a rate of

about 200 GB per night, has amassed more than 140 terabytes of information [18];

the modern medial imaging scanners can capture the micro anatomic tissue details at

the billion pixel resolution [51].

Second, traces of human activity and massive collaboration facilitated by the Inter-

net. The proliferation of cost effective and ubiquitous positioning technologies, mobile

2

devices, sensors have enabled us to collect massive amounts of spatial information of

human activity and wildlife activity. For example, FourthSquare – a popular local search

and discovery service – allow users to “check-in” at more than 60 million venues, and

so far has more than 6 billion Check-ins [2]. Realising a huge business potential, more

and more businesses and Internet services are making their service location-aware. At

the same time, the Internet has made remote collaboration so easy that, now, crowd

can even generate a free mapping of the world autonomously. OpenStreetMap [3] is

a large collaborative mapping project that generated by users around the globe, and it

has reached 1 million registered users as of this writing.

The volume and velocity of the data only increase significantly as we shift towards

the Internet of Things paradigm in which devices have spatial awareness, and generate

voluminous amounts of data.

In many applications and scientific studies, there is a growing need to manage

spatial entities and their topological, geometric, or geographic properties. Analyzing

such large amounts of spatial data to derive values and guide decision making have

become essential to business success and scientific progress. For example, Location

Based Social Networks (LBSNs) are utilizing large amounts of user location information

to provide geo-marketing and recommendation services. Social scientists are relying

on such data to study dynamics of social systems and understand human behavior.

Epidemiologists are combining such spatial data with public health data to study the

patterns of disease outbreak and spread. In all those domains, the availability of big

spatial data analytics is a key enabler.

In the past, Geographic Information System (GIS) has been the primary software

tool that designed to capture, store, manipulate, analyze, manage, and present vari-

ous spatial or geographical data. However, as we are increasingly dealing with large

amounts of data, the conventional GIS and spatial data management systems, that de-

signed in an era of desktop servers and workstations, have been limited by their scala-

3

bility and performance. Modern data intensive spatial applications require a different

approach to face the big data challenges.

1.2 Data Intensive Spatial Applications

The rapid growth of spatial data is driven by not only industrial applications, but

also emerging scientific applications that have become data-intensive and compute-

intensive.

1.2.1 Analysis of Derived Scientific Spatial Data

With the rapid improvement of data acquisition technologies such as high-resolution

tissue slide scanners and remote sensing instruments, it has become more efficient to

capture extremely large spatial data to support scientific research. For example, digital

pathology imaging has become an emerging field in the past decade, where examina-

tion of high resolution images of tissue specimens enables novel, more effective ways

of screening for disease, classifying disease states, understanding its progression and

evaluating the efficacy of therapeutic strategies. In clinical environment, medical pro-

fessionals have been relying on the manual judgement from pathologists – a process

inherently subject to human bias – to diagnose, and understand the disease.

Today, in silico pathology image analysis offers a means of rapidly carrying out quan-

titative, reproducible measurements of micro-anatomical features in high-resolution

pathology images and large image datasets. Medical professionals and researchers can

use computer algorithms to calculate the distribution of certain cell types, and perform

associative analysis with other data such as patient genetic composition and clinical

treatment.

Figure 1.1 shows a protocol for in silico pathology image analysis pipeline. From

left to the right, the subfigures represent: glass slides, high resolution image scanning,

4

Figure 1.1: Derived spatial data in pathology image analysis

whole slide images, and automated image analysis. The first 3 steps are data acquisi-

tion process that mostly done in a pathology laboratory environment, and the final step

is where the computerized analysis is performed. In the image analysis step, regions

of micro-anatomic objects (millions per image) such as nuclei and cells are computed

through image segmentation algorithms, represented with their boundaries, and im-

age features are extracted from these objects. Exploring the results of such analysis

involves complex queries such as spatial cross-matching, overlay of multiple sets of

spatial objects, spatial proximity computations between objects, and queries for global

spatial pattern discovery. These queries often involve billions of spatial objects and

heavy geometric computations.

Besides the observational data, scientific simulation also generates large amounts

spatial data. Scientists often use models to simulate natural phenomena, and analyze

the simulation process and data. For example, earth science uses simulation models

to help predict the ground motion during earthquakes. Ground motion is modeled

with an octree based hexahedral mesh, using soil density as input. Simulation tools

calculates the propagation of seismic waves through the Earth by approximating the

solution to the wave equation at each mesh node. During each time step, for each

node in the mesh, simulator calculates node velocity in the spatial directions, and

records those information to the primary storage. The simulation result is a spatio-

temporal earthquake data set describing the ground velocity response [30]. As the

scale of the experiment increases, the resulting dataset also increases, and scientists

have been struggling to query and manage such large amounts of spatio-temporal data

in an efficient and cost-effective manner.

5

WINDOW

SPATIAL JOINCONTAINMENT

POINT

Figure 1.2: Examples spatial query cases in pathology imaging

1.2.2 GIS and Social Media Applications

Volunteered geographic information (VGI) further enriched GIS world with massive

amounts of user generated geographical and social data. VGI is a special case of the

larger Internet phenomenon — user-generated content — in the GIS domain. Every-

day Internet users can provide, modify, and share geographical data using interactive

online services such as OpenStreetMap [3], Wikimapia, GoogleMap, GoogleEarth, and

Microsofts Virtual Earth. The spatial information need to be constantly analyzed, and

corroborated to track changes, and understand the current status. Most often, a spa-

tial data management system is used to perform such analysis. Figure 1.3 shows an

6

(a) Point query (b) Window query

(c) Containment query (d) Join query

Figure 1.3: Example spatial query cases in GIS and geosocial applications

example of most common spatial queries in a typical GIS setting.

Recently, the explosive growth of social media applications contributed massive

amounts of user-generated geographic information in the form of tweets, status up-

dates, check-ins, Waze, and traffic reports. Furthermore, if such geo-spatial information

is not available, automated geo-tagging/coding tools can infer and assign an approxi-

mate location to those contents. Analysis of such large amounts of data has implications

for many applications — both commercial and academic. In [39] authors used such in-

formation to investigate the relationship between the geographic location of protestors

attending demonstrations in the 2013 Vinegar protests in Brazil and the geographic

location of users that tweeted the protests. Another example is location based targeted

advertisement [106] and recommendation [80]. Nowadays social media applications

are increasingly location-aware. Upon realizing a potential customer has walked into a

specific super market (cellphone geolocation information), the owner can market cer-

7

tain products or coupons to the user. Those online services and GIS systems are backed

by conventional spatial database systems that are were tailored to a different set of

applications.

1.3 Spatial Queries

There are five major categories of queries : i) feature aggregation queries (non-spatial

queries), for example, queries for finding mean values of attributes or distribution

of attributes; ii) fundamental spatial queries, including point based queries, contain-

ment queries and window queries; iii) complex spatial queries, including spatial cross-

matching or overlay (large scale spatial join) and nearest neighbor queries; iv) inte-

grated spatial and feature queries, for example, feature aggregation queries in certain

spatial regions; and v) global spatial pattern queries, for example, queries on finding

high density regions, or queries to find directional patterns of objects. Figure 1.2 illus-

trates several examples from medical imaging domain, and Figure 1.3 shows examples

from a geo-social application and a GIS application.

1.3.1 Characteristics of Modern Spatial Analytics Applications

The spatial analytics applications are different from conventional warehousing appli-

cations in several aspects. They involve:

• Large Volumes of Multidimensional Data Conventional warehousing applica-

tions deal with data generated from business transactions. As a result, the un-

derlying data (such as numbers and strings) tend to be relatively simple and

flat. However, this is not the case for the spatial applications which deals with

massive amounts of geometry shapes and spatial objects. For example, a typical

whole slide pathology contains more than 100 billion pixels, millions of objects

, and 100 million derived image features. A single study may involve thousands

8

of images analyzed with dozens of algorithms - with varying parameters - to gen-

erate many different result sets to be compared and consolidated, at the scale of

tens of terabytes. A moderate-size healthcare operation can routinely generate

thousands of whole slide images per day, leading to petabytes of analytical re-

sults per year. A single 3D pathology image could come from a thousand slices

and take 1TB storage, containing several millions to ten millions of derived 3D

surface objects.

• High Computation Complexity Most spatial queries involve geometric computa-

tions that are often compute-intensive. While spatial filtering through minimum

bounding boxes (MBBs) can be accelerated through spatial access methods, spa-

tial refinements such as polygon intersection verification are highly expensive

operations. For example, spatial join queries such as spatial cross-matching or

spatial overlay can be very expensive to process. This is mainly due to the poly-

nomial complexity of many geometric computation methods. Such compute-

intensive geometric computation, combined with the large volumes of big data

requires a high performance solution.

• Complex Spatial Queries Spatial queries are complex to express in current spa-

tial data analytics systems. Most scientific researchers and spatial application

developers often interested in running queries that involve complex spatial re-

lationships such as nearest neighbor query, and spatial pattern queries. Such

queries are not well supported in current spatial database systems. Frequently,

users are forced to write database user defined functions to be able to perform the

required operations. SQL — Structured Query Language — has gained tremen-

dous momentum in the relational database field and become the de facto stan-

dard for querying the data. While most spatial queries can be expressed in SQL,

due to the structural differences in the programming model, translating complex

9

spatial SQL queries into efficient MapReduce programs requires considerable op-

timization efforts.

1.4 Dissertation Goals

The fundamental goals of this dissertation is to address the research challenges for de-

livering a high performance software system for spatial queries and analytics of spatial

big data, and provide an open source implementation for use. Surrounding this central

goal, there are three sub-goals that we intended to achieve in this dissertation.

1.4.1 Exploring the Principles of Spatial Query Processing on MapRe-

duce

MapReduce provides two simple programming API — map and reduce to run queries on

a large set of commodity clusters. While the simplicity of the programming model has

contributed its success and wider adoption, it is too simple and cumbersome to express

certain queries. Therefore, it has been criticized as “Assembly language of parallel

processing” [4].

Most currently available spatial query processing algorithms assume a single threaded

serial execution model. Although a number of parallel spatial algorithms were pro-

posed in the past, they were mostly designed for a shared memory parallel processing

architecture. Recently, there are few research efforts [124] that explores the possibility

of running spatial queries on MapReduce. However, they mostly ignore the architec-

tural design issues, and only provide ad-hoc solutions to specific use cases and queries.

The lack of principled query processing approaches has been a major obstacle for real-

izing a large scale spatial query system on MapReduce.

Consequently, in this dissertation we explore how to use MapReduce to express

variety of spatial queries, how to handle boundary objects and partitions, and how to

10

support basic spatial measurement functions and operators.

1.4.2 Exploring the System Architecture

Three are three approaches to build a MapReduce based spatial data warehousing sys-

tem. The first approach is to completely rewrite a MapReduce implementation [56]to

accommodate the complexities of spatial query processing. This includes customized

storage model for spatial data types, specialized processing model to perform efficient

spatial filtering and processing. In this approach, one have much freedom to arbitrarily

optimize an existing MapReduce implementation for the best query performance. How-

ever, there are two disadvantages of this approach. The first disadvantage is incom-

patibility. As all major cloud computing service providers offers standard MapReduce

framework for parallel processing, a code specifically written for spatially optimized

MapReduce framework may not run on standard cloud platforms. The second disad-

vantage is lack of expressive query language for workload specification. Specifically,

application developers have to understand the API for writing the spatial MapReduce

code, and implement every spatial queries as a set of MapReduce jobs. Clearly, such

“one code for one query” approach is not a optimal for developer productivity, and

decades of Database research suggests that simplified expressive query language can

greatly improve system usability and efficiency.

The second approach is to extend an existing MapReduce framework with a spatial

database at the engine level [27, 96]. Specifically, each parallel processing node is

equipped with an spatial database engine, and MapReduce worker. In such architec-

ture, MapReduce engine and database engines are tightly integrated, closely coordinate

with each other for query processing. MapReduce system mostly serves as task distrib-

utor and job coordinator, and database system serves as query processor and storage

engine. This approach can achieve good performance and also provides structured

query language for workload specification.

11

The third approach is to integrate the MapReduce framework with a spatial query

engine, and provide a translation mechanism for SQL queries to be translated to MapRe-

duce programs that run on such implementation. In particular, such system implements

a mapping mechanism that maps a HDFS partition to spatial data partition, and a trans-

lation mechanism that translates structured queries into MapReduce query operators.

Advantages of this approach are loose decoupling from the underlying MapReduce en-

gine, backward compatibility with existing MapReduce platforms, and structured query

language for workload specification.

The popularity of structured query languages such as Pig [59] and Hive [116], and

increasingly effective SQL-to-MapReduce translation techniques [78] have motivated

us to choose the third design approach. We explore how our design choice effects

later query processing efficiencies; how easy it is to extend the system with new query

operators; how such system can be integrated with hardware accelerators to co-process

queries.

1.4.3 Improving the Query Processing Performance

The second goal of this dissertation is to study major performance problems in MapRe-

duce based query processing system, and introduce novel approaches to further im-

prove the query performance. In a system, there are many components that can be

optimized, and connections between those components also present optimization op-

portunities. In this dissertation, we approach this problem from three different direc-

tions.

Query Optimization

Data skew is a major performance bottleneck in MapReduce based query systems

[60, 71, 75, 76, 81]. Spatial data skew could cause unbalanced tasks and long query

response time. Traditional approaches are static in nature that they use quantified

12

dataset characteristics , such as selectivity and cost estimation, to avoid the occurrence

of a skewed task assignment. A more adaptive approach is to recursively repartition the

“straggler” tasks [75] to mitigate the skew. However, such adaptive approach requires a

substantial modifications to the MapReduce scheduler framework. More recently, there

are proposals to mitigate the data skew problem by integrating such skew handling

mechanism into the declarative query language itself [5, 6]. However, such approach

effectively relegates the optimization responsibility to the application developer.

Our study shows that a simple linear cost model to re-partition tasks for spatial

join can reduction in response time[33]. We will approach the skew problem system-

atically at two levels. At the higher level, we will research an iterative feedback based

approach. The query optimizer tries to generate a sound execution plan, and during the

execution, the system monitors query performance and corroborates such information

with original estimation. Such feedback is fed into the query optimizer for correction

and knowledge update. At the lower level, we will provide balanced task schedul-

ing through optimized task balancing. The goal is to achieve roughly equal amount of

workload at each worker, assuming that we can estimate the cost of each subtask. Thus

there are two problems to solve: load-balancing and cost modeling. Optimal solutions

are NP-hard and we can approximate through a greedy approach. For the later, we

will investigate two possible approaches: speculative execution through Hadoop and

conventional cost estimation approaches.

Better Data Partitioning

Data partitioning is a powerful mechanism for improving efficiency of data manage-

ment systems. Data partitioning improves the overall manageability of large datasets,

and it improves query performance in two ways. First, partitioning the data into smaller

units enables processing of a query in parallel, and henceforth the improved through-

put. Second, with a proper partitioning schema, I/O can be significantly reduced by

13

only scanning a few partitions that contain relevant data to answer the query. There-

fore, a partitioning approach – that evenly distributes the data across nodes and facil-

itates parallel processing – is essential for achieving fast query response and optimal

system performance.

In large data warehousing systems, data tables are horizontally or vertically par-

titioned, and partitions are distributed across processing nodes. Range partition, list

partition and hash partition are well known approaches that are extensively studies in

both research community and industry.

However, several pitfalls of spatial data partitioning make this task particularly chal-

lenging. First, data skew is very common in spatial applications. To achieve best query

performance, data skew need to be reduced to the minimum. Second, spatial partition-

ing approaches generate boundary objects that cross multiple partitions, and add extra

query processing overhead. Therefore, boundary objects need to be minimized. In this

dissertation, we intend to study different approaches and provide a systematic evalu-

ation. Our main objective is to provide a comprehensive guidance for optimal spatial

data partitioning to support scalable and fast spatial data processing on MapReduce.

Hardware Accelerated Query Processing

We propose to use GPU based algorithms to accelerate spatial operations that can be

integrated into MapReduce based spatial data processing pipelines. Our effort in this

plan focuses on how to optimize spatial query execution by embedding GPU programs

in MapReduce programs.

We design an efficient bridge interface between the MapReduce program and the

GPU program. Since a GPU has a disconnected memory space from a CPU, input data

organization for GPU is needed to compensate the long latency of host-device commu-

nication. Many small tasks sent to GPU may incur much overhead on communication

and subdue the benefit of GPU. We will investigate a prediction model to decide the

14

granularity of tasks for GPU invocation, by considering both data communication cost

and execution cost for different types of spatial operations. Prior work [120] uses a

simple data batching technique to combine and batch process multiple tiles in a single

GPU program, which is not generalized. We will consider multiple factors such as tile

sizes, object counts, and average object sizes.

We will research solutions to achieve load balancing and data/operation aware task

assignment in the CPU/GPU hybrid environment. Most prior work on MapReduce for

CPU/GPU hybrid environments [67, 69] focuses on general programming models or

systems support. To divide load between GPUs and CPUs, these systems often use

the fixed relative GPU/CPU performance as a metric to estimate the percentage of

tasks that should be routed from execution with each device. We argue, however, that

the GPU/CPU relative performance in the execution of internal map and reduce tasks

created in spatial query.

1.5 Dissertation Contributions and Outline

1.5.1 Contributions

In summuray, we have developed Hadoop-GIS [7, 31, 32, 33, 34, 50, 117] – a spa-

tial data warehousing system over MapReduce. The goal of the system is to deliver a

scalable, efficient, expressive spatial querying system for efficiently supporting analyt-

ical queries on large scale spatial data, and to provide a feasible solution that can be

afforded for daily operations.

Hadoop-GIS provides a framework on parallelizing multiple types of spatial queries

and having the query pipelines mapped onto MapReduce. Hadoop-GIS provides space

partitioning to avoid skewed regions and achieve task parallelization, an indexing-

driven spatial query engine to process various types of spatial queries, implicit query

parallelization through MapReduce, and boundary handling to generate accurate re-

15

sults. By integrating the framework with Hive, Hadoop-GIS provides an expressive

spatial query language by extending HiveQL [116] with spatial constructs, and au-

tomates spatial query translation and execution. Hadoop-GIS supports fundamental

spatial queries such as point, containment, join, and complex queries such as spatial

cross-matching (large scale spatial join) and nearest neighbor queries. Structured fea-

ture queries are also supported through Hive and fully integrated with spatial queries.

The main intellectual contributions of this dissertation are :

• The first principled study of MapReduce based spatial query processing approaches.

• A comprehensive study of two-way, multi-way spatial join techniques on MapRe-

duce, and their evaluation on real datasets.

• A detailed bottom-up description of a MapReduce based spatial query system and

architecture.

• Study of query optimization techniques for spatial query processing on MapRe-

duce, and cost based task repartition.

• A systematic study of six spatial partition techniques, a general categorization of

those approaches, and a detailed evaluation.

• Study of sampling based spatial partitioning approaches and their performance.

• Study of parallel spatial partitioning techniques on MapReduce and their evalua-

tion.

• Study of hybrid system architecture that can utilize GPU for query co-processing,

and spatial query processing techniques on such hybrid system.

• An open source implementation of MapReduce based spatial query system.

• Introduction of the pathology analytical imaging application use case to the spa-

tial and data management community.

16

1.5.2 Outline

This dissertation has four components. Chapter 2 is the first component in which we

describe the of state-of-the-art approaches to spatial query processing, existing systems,

and related work. The second component, the core of this dissertation, is an overview

of the proposed spatial query processing framework, and corresponding system imple-

mentation. Chapter 3 and 4 are dedicated to this topic. The third component is the

study of spatial partitioning methods for spatial query processing, and their perfor-

mance consideration. Chapter 5 and chapter 6 are intend to address those problems.

Last component is the GPU extension of the system and the query engine, and chapter

7 provides a detailed study on this topic. In chapter 8, we describe the integration of

the system with a popular SQL-to-MapReduce solution — Hive, and this concludes the

dissertation.

17

Chapter 2

Approaches to Large Scale Spatial Data

Analytics

There are two mainstream approaches for large scale data analysis. Namely, parallel

database systems and MapReduce based systems. Practically, these systems share some

common design elements: they both employ a shared-nothing architecture[108], and

deployed on cluster of independent nodes via a high speed interconnecting network;

both achieve parallelism by partitioning the data and processing the query in parallel

based on such partitioning. However, neither one of them alone is the “silver bullet” to

the large scale data analysis. Both systems have their advantages and disadvantages,

and analysis tasks are increasingly complex such that “one size fits all” systems no

longer meet the efficiency requirement. Recent trends, that major parallel database

systems vendors tend to package MapReduce functionality into their existing flagship

warehousing products, may explain such market reality.

2.1 Spatially Extended Relational Database Systems

Parallel database systems [53] have been the primary choice for large scale data analy-

sis for nearly two decades. As of this writing, there are dozens commercial systems are

18

available in the marketplace, which claims to be a scalable and high performance enter-

prise data warehousing (EDW) solution. Theses systems include, Greenplum [13], Ter-

adata/Aster Data [20], Netezza [14], DB2 (via DPF) [11], Microsoft SQL Server [85],

Oracle Exadata, Vertica [22], MonetDB [15], and several others. Most of the mod-

ern parallel database systems are structured in a shared-nothing architecture [108] in

which a cluster of nodes independently work together to process a query. Each pro-

cessing unit has its own disk, CPU, and memory, and nodes are interconnected with a

high bandwidth network for communication. Figure 2.1 shows a simplified version of

such architecture.

In shared-nothing architecture, upon receiving a query, DBMS generates an execu-

tion plan based on the data distribution and locality information; then it notifies each

worker node to process parts of data which are local to that node. DBMS can use scat-

ter and gather operations to synchronize, aggregate or redistribute intermediate data.

Large scale data warehousing systems use a partition function to horizontally/verti-

cally partition data tables, and distributed those data chunks across processing nodes.

Range partition, list partition, and hash partition are well known approaches for table

partitioning that are extensively studies in both research community and industry.

Many applications use spatial database management systems (SDBMSs) for manag-

ing and querying spatial data. SDBMS is an extension of the relational database tech-

nology, and researchers have devoted much effort to better support spatial applications

in the early days of object-relational era. Rather than building a specialized system for

specific class of applications, those approaches [38, 40, 46, 63, 65, 101, 111] mostly

focused on constructing a generalized DBMS that can support diverse applications —

geographical, spatial, and CAD — very easily, using the the existing object-relational

model. Proponents of such approaches added new constructs [92, 110, 112], abstract

data types and indexes, to support the multidimensional nature of those applications.

For example, geometry data types such as point, line, polygon, multiline, multipolygon,

19

Figure 2.1: A shared-nothing parallel database architecture

and their 3D variations are available in major spatial database systems. Reference [70]

provides a comprehensive survey on this subject.

Due to their tight integration with the existing relational database systems, spatial

databases can benefit from advancement in the relational field. Specifically, using the

parallelization mechanism that the relational database provides, we can setup a parallel

spatial database system. Commercial examples of such parallel systems include Oracle

Spatial [17], IBM DB2 Spatial Extender [11], Microsoft SQL Server Spatial [85] and

Greenplum Database [13]. Therefore, it is natural to ask if we can provide a high

performance spatial data management solution for large scale spatial data analytics.

In the past, we have developed and deployed a parallel spatial database solution

named PAIS [25, 118, 119]. However, our experience indicates that there are several

problems with parallel database system based solutions.

For example, in a business data processing and warehousing scenario, parallel

database systems can easily partition data records by the date column, so that records

20

that belong to a specific date end up in the same partition, and each node has some

collections of such partitions to manage. There are many advantages of such data parti-

tioning, among which are improved storage manageability, increased data parallelism,

and more opportunities for query optimization. Specifically, for a query that only re-

quests data from a specific date, the DBMS can quickly identify the corresponding data

file, rather than performing a brute-force whole table scan operation. Figure 2.2 shows

an example for such case in which sales table is range partitioned by the date column.

1 CREATE TABLE sales (id int, date date, amt decimal(10,2))
2 DISTRIBUTED BY (id)
3 PARTITION BY RANGE (date)
4 (START (date ’2008−01−01’) INCLUSIVE
5 END (date ’2009−01−01’) EXCLUSIVE
6 EVERY (INTERVAL ’1 day’));

Figure 2.2: A SQL query for creating partitioned table on Greenplum parallel database

Figure 2.3: An ad-hoc grid partitioning of a pathology image

However, such partitioning operation is not available for the spatial data types.

While spatial indexes can certainly help reduce the amount of data need to be pro-

cessed for answering a query, absence of the spatial partitioning feature effectively

21

reduces the parallel database system performance to the one of a single node system.

One ad-hoc approach to go around such software limitation is to partition the spatial

data with a regular fixed grid approach, and associate each grid cell with a simple

numeric/string ID. Then use some kind of translation mechanism or pre-processing to

translate those IDs into actual grid partitions boundaries which in turn can be used for

region filtering. Figure 2.3 shows an example of such approach. Even after all those

trouble, the boundary object problem haunts back such ad-hoc approach, and we will

explain in more detail in Chapter 3.

Second, parallel database systems are not optimized for spatial analytics tasks. Par-

allel spatial data base systems have poor performance on complex analytical tasks, and

require sophisticated tuning and maintenance efforts [94]. The high overhead of data

loading is another major bottleneck for parallel SDBMS based solutions [94], and this

is not acceptable for certain high data volume applications. The specific reasons why

parallel database system vendors did not provide an efficient spatial analytics solution

is out of the scope of this dissertation. Our conjecture is that major commercial vendors

have targeted and optimized their flagship products to the larger OLTP/OLAP market,

and the niche spatial analytics market have not received much attention.

Third, database approach is highly expensive on software licensing and dedicated

hardware. Scalability of parallel database system comes at a high price. For example,

a major commercial vendor prices a parallel data warehousing system in the range of

34− 69K $ per Terabytes of data.

2.2 GIS systems

A geographic information system provides an end-to-end solution to capture, manage,

manipulate and visualize geographical data, and it often uses a SDBMS as the back-end

spatial engine [10]. Many GIS systems focus on specific applications and visualization,

22

and have limited query capabilities to support complex spatial data analytics at massive

scale.

2.3 MapReduce based Systems

MapReduce [52] is a very scalable parallel processing framework. Hadoop [26] —

an open source implementation of MapReduce — is widely used in many data analyt-

ics tasks to support the modern data intensive applications. MapReduce is based on

a highly scalable Shared Nothing parallel processing architecture which requires par-

titioning on the input data, and processes partitions in parallel. In each MapReduce

task, Mappers/Reducers work on different logical portions of an input file, called input

splits. Splits typically, but not always, correspond to physical data chunks.

Figure 2.4: Overview of MapReduce execution

Figure 2.4 shows an overview of dataflow in MapReduce based data processing. A

typical MapReduce job has three phases: Map, Shuffle-and-Sort, and Reduce. In the

Map phase, a set of Mappers run in parallel on different TaskTrackers over different

logical portions of an input file, called input splits. During the Map phase, Mappers

23

write the intermediate results to local disks. These local intermediate results would be

sorted and shuffled during the Shuffle phase, based on a partition key. Then Reduce

phase starts, and each reducer will work on a set of shuffled results, and write the final

output to the HDFS. MapReduce tasks run in parallel without any central orchestration

or coordination.

2.4 Summary

Parallel database approach has major limitations on managing and querying spatial

data at massive scale. Parallel DBMSs tend to reduce the I/O bottleneck through par-

titioning of data on multiple parallel disks and are not optimized for computational

intensive operations such as spatial and geometric computations. Partitioned parallel

DBMS architecture often lacks effective spatial partitioning to balance data and task

loads across database partitions. While it is possible to induce a spatial partitioning,

fixed grid tiling for example, and map such partitioning to one dimensional attribute

distribution key, such an approach fails to handle boundary objects for accurate query

processing. Scaling out spatial queries through a parallel database infrastructure is pos-

sible and we have explored this approach in our previous work [118, 119]. However,

it comes at a very high cost (millions of dollars) and the scalability is rather limited. As

the cloud based cluster computing technology gets mature and economically scalable,

the massive scalability of MapReduce based systems offer an alternative solution for

data-and-compute intensive spatial analytics at large scale.

24

Chapter 3

HadoopGIS – A Framework for Spatial

Query Processing with MapReduce

In this chapter, we present a general overview of the proposed research –Hadoop-GIS

– a system for scaling spatial queries on MapReduce.

3.1 Overview of the Framework

The main goal of Hadoop-GIS is to develop a highly scalable, cost-effective, efficient

and expressive spatial query processing system for data and compute intensive spatial

applications, that can take advantage of MapReduce on large number of commodity

clusters. One of our main objectives is to identify time consuming spatial querying

components, break them down into smaller tasks, and have them run in parallel.

An intuitive approach is to partition the data through partitioning the space, and

assigning spatial objects to partitioned regions (or tiles). The generated tiles would

form a parallelization unit for query processing. The query processing problem then

reduces to designing efficient querying methods, opaque to the space partitioning, that

can run on these tiles independently.

In MapReduce environment, we propose the following steps on running a typical

25

Algorithm 1: Typical workflow of spatial query processing on MapReduce

1 A. Data/space partitioning;
2 B. Data storage of partitioned data on HDFS;
3 C. Pre-processing queries (optional);
4 for t ile in input_col lec t ion do
5 Indexing building for objects in the tile;
6 Tile based spatial querying processing;

7 E. Boundary object handling;
8 F. Post-query processing;
9 G. Data aggregation;

10 H. Result storage on HDFS;

spatial query, as shown in Algorithm 1. In step A, we perform effective space parti-

tioning to generate tiles. In step B, spatial objects are assigned tile UIDs, merged and

stored into HDFS. Step C is for pre-processing queries, which could be queries that do

global index based filtering, queries that does not need to run in tiles as the queries

may not fit into the partitioning processing model, or queries that are fast enough and

no tile based processing is needed. Step D does tile based spatial query processing in-

dependently which will be parallelized through MapReduce. Step E provides handling

of boundary objects when needed, which can run as another MapReduce program.

Step F does post-query processing, for example, joining spatial query results with fea-

ture tables, and can also be another MapReduce application. Step G performs data

aggregation on final results if needed, and final results are written to HDFS in step H.

Figure 3.1 shows the architectural components of Hadoop-GIS. The system two sub-

components, data storage and query execution. The storage sub-component uses HDFS

for distributed data storage, and it is mainly responsible for retrieving data blocks

to support efficient query processing. The query execution component includes the

query interface for workload composition, the query translation module for translating

declarative queries into HadoopGIS query operators, and the spatial query engine that

executes query operators. HadoopGIS uses Hadoop as the MapReduce engine for query

processing.

26

Input Data Storage Querying System

RESQUE

Spatial
Query

Processor

Spatial
Index

Builder

QLSP Query Language

S
p
a
tia

l S
h
a
p
e
s

F
e
a
tu

re
s

HadoopHDFS

Tile Spatial
Indexes

Global Spatial
Indexes

Boundary
Handling

Web InterfaceCmd Line Interface

D
a

ta
 P

a
rt

iti
o

n
in

g

QLSP Parser/Query Translator/Query Optimizer

Query Translation

Query Engine

Figure 3.1: Architectural overview of Hadoop-GIS

In the following sections, rather than explaining each component in isolation, we

give an overview of fundamental research problems and techniques in building such

system. Those include data partitioning and storage, MapReduce based spatial query

parallelization, multi-level spatial indexing, and query processing cost model.

3.2 Data Partitioning and Storage

Spatial data partitioning is an essential initial step to define, generate and represent

partitioned data. Effective data partitioning is critical for task parallelization, load bal-

ancing, and directly affects system performance. Previously, Paradise [93] – a parallel

spatial database system, used a regular fixed grid partitioning for parallel join pro-

cessing. However, there are several problems with this approach as described in the

original work. i) As spatial objects (e.g. polygons and polylines) have extent, regular

27

grid based spatial partitioning would undesirably produce objects spanning multiple

cell grids, which need to be replicated and post processed. If such objects account for a

considerable fraction of the dataset, the overall query performance would suffer from

such boundary handling overhead. ii) Fixed grid partitioning is skew averse, whereas

data in most real world spatial applications are inherently highly skewed. For exam-

ple, in OpenStreetMap (OSM), certain regions have more data compared to others due

to enthusiastic data contributors. If OSM is partitioned with fixed grid approach with

1000x1000 grids, the average count of objects per tile is 993, but the tile with most

objects contains 794,429 objects. In such case, it is very likely that parallel process-

ing nodes assigned to process those dense regions will become the stragglers, and the

overall query processing efficiency will be severely affected [105].

In this dissertation we propose SATO — an effective and scalable partitioning frame-

work [117] that can partition a geospatial dataset into balanced regions while minimiz-

ing the number of boundary objects. The partitioning methods are designed for scala-

bility, which can be easily parallelized for high performance, for example, running on

MapReduce. SATO stands for four main steps in this framework for spatial data parti-

tioning: Sample, Aanalyze, Tear, and Optimize. First, we sample a small fraction of the

dataset to identify overall global data distribution with potential dense regions. Next

we analyze the sampled data with a partition analyzer that produces a coarse partition

scheme in which each partition region is expected to contain roughly equal amounts of

spatial objects. Then we pass these coarse partition regions into the partitioning com-

ponent that tears the regions into more granular partitions that are data skew aware

and meet partition requirements. Finally, we analyze the generated partitions to pro-

duce multi-level partition indexes and additional partition statistics which can be used

to optimize queries. SATO is also implemented for parallelization. We developed SATO

as a standalone program for partitioning spatial datasets, and we also integrated the it

with the Hadoop-GIS.

28

3.3 MapReduce Based Parallel Query Execution

Figure 3.2: An example of MapReduce based spatial query parallelization

Instead of using explicit spatial query parallelization as summarized in [45], we

take an implicit parallelization approach by leveraging MapReduce. This will much

simplify the development and management of query jobs on clusters. As data is spa-

tially partitioned, the tile name or UID forms the key for MapReduce, and identifying

spatial objects of tiles can be performed through mapping phase. Figure 3.2 shows

a simple example where the dataset is partitioned into four tiles (dotted lines depict

partition boundary). To process a spatial query such as find object pairs that intersect

with each other from two datasets, a single MapReduce job can be started where each

tile is processed by a single mapper (T1, T2, T3, T4).

Depending on the query complexity, spatial queries can be implemented as map

functions, reduce functions or combination of both. Based on the query type, differ-

ent query pipelines are executed in MapReduce. As many spatial queries involve high

complexity geometric computations, query parallelization through MapReduce can sig-

nificantly reduce query response time. We devote the entire chapter 4 to this subject.

29

3.4 Boundary Object Processing

There is one specific problem that is endemic to spatial partitioning – boundary objects.

Due to their multidimensional nature, some spatial objects may span more than one

partition. For example, in Fig. 3.2 the big round object in the middle crosses all tile

boundaries. As a result, Ri∩Rj ̸= ∅ for i ̸= j, and it requires the spatial query processing

framework to be able to handle such cases.

Parallel spatial query processing algorithms remedy the boundary object problem in

two ways. Namely multi-assignment, single-join (MASJ) and single-assignment, multi-

join (SAMJ) [83, 126]. In MASJ approach, each boundary object is replicated to each

tile that overlaps with the object. During the query processing phase, each partition is

processed only once without considering the boundary objects. Then a de-duplication

step is initiated to remove the redundancies that resulted from the replication. How-

ever, in SAMJ approach, each boundary object is only assigned to one tile. Therefore,

during the query processing phase, each tile is processed multiple times to account for

the boundary objects.

Both approaches introduce extra query processing overhead. In MASJ, the repli-

cation of boundary objects incurs extra storage cost and computation cost. In SAMJ,

however, only extra computation cost is incurred by processing the same partition mul-

tiple times. Hadoop-GIS takes the MASJ approach [34] and the original work pointed

out that: (a) In practice, the MASJ approach is proven to be significantly efficient than

the SAMJ approach [126] (b) MASJ approach allows higher degree of parallelization

such that, for large datasets, the query processing efficiency can be greatly improved,

and de-duplication cost can be very small.

30

!"#$%
&'()*%+%
&'()*%,%

Figure 3.3: Multi-Level region based spatial index

3.5 Multi-Level Spatial Indexing

DBMS systems support both scan and index based query processing. Indeed utilizing

indices (when such indices exist) for query processing are proven to improve query

processing speed and efficiency. However MapReduce is a scan based data processing

framework which does not utilize any form of disk based index. How to support DBMS

like general data index on MapReduce is a hot topic in the database research commu-

nity, and we explore how multidimensional spatial indices can be utilized for query

processing in Hadoop-GIS. The main idea is to use a region based hierarchical space

partitioning and MBB based region filtering. Figure 3.3 illustrates an example of such

design.

On the top left is the spatial universe which contains large number of spatial objects.

31

The universe can be partitioned into independent regions and the level of partition can

be very coarse. Here, for the sake of simplicity, the spatial universe is partitioned into 4

square regions. Region extent can be regular (rectangular) or irregular polygons which

also may depend on the application requirement. In Figure 3.3, the region size are

decided such that each region would fit into a single HDFS file chunk. Recursively,

each region can be further partitioned into even smaller regions – tiles, as show on the

bottom of the figure. In Figure 3.3, a single region is partitioned into 3 tiles (green,

yellow, blue). Such multilevel indexing schema could save large I/O cost, improve

query performance, and energy efficient. For example, image a containment query

which asks for the spatial objects contained with a query window which totally fits

into a partition region. In such scenario, a naive MapReduce solution would scan all

the partitions, i.e. 4 HDFS file chunks, to answer the query. On the other hand, an

index aware MapReduce solution – Hadoop-GIS, would only need to scan one HDFS

file chunks. If the query window is about the size of a tile, the query processing system

can take advantage of the fact that only single tile need to be processed and can skip

other tiles.

3.6 Query Processing Cost Model

In HadoopGIS framework, the cost of processing a query involves non-boundary objects

processing cost, duplicated boundary objects processing cost, and object de-duplication

cost. A simple modeling approach can help us better understand overall query process-

ing overhead and provide theoretical guidelines for optimizing spatial partitioning for

improved query performance. Next, we use a simple example to illustrate the cost

model.

Given two datasets R and S, a spatial join query finds all the pairs ri ∈ R, s j ∈ S that

satisfies a spatial topology relationship F(ri, s j) = 1. Selection of the spatial topology

32

function can be arbitrary and without loss of generality, we use st_intersects as an

example throughout the paper. This query simply finds all the intersecting object pairs

from the datasets. Let us assume that, datasets are merged and co-partitioned with a

partition schema which results partitions R = ∪k
i=1Ri and S = ∪k

i=1Si. Following the

MapReduce based query processing framework , we have:

R
F
◃▹ S =

N⋃

i=1

Ri
F
◃▹ Si (3.1)

Now, let us make few assumptions to simplify the analysis. First, let us assume that

in each dataset data is uniformly distributed. Therefore, without considering boundary

objects, each partition of the datasets contains roughly |R|/k and |S|/k objects. Second,

the ratio of boundary objects due to the multiple assignment is α. Hence, each partition

contains (1 + α) ∗ |R|/k objects. Third, overall query processing cost is the sum of

partitioned query cost C1 and duplicate elimination cost C2 that depends on the query

output and dataset size. Following the equation (3.1), cost if processing the spatial join

query is:

C(R
F
◃▹ S) =

k∑

i=1

C1(Ri
F
◃▹ Si) + C2

=
k∑

i=1

(1+α)|R|
k

(1+α)|S|
k

+ β(|R|+ |S|)

=
(1+α)2|R||S|

k
+ β(|R|+ |S|) (3.2)

It is clear from the above simple cost model that, partition granularity is a double-

edged sword. On one hand, a finer level of partition (larger k) is favorable as it im-

proves the query performance. On the other hand, intuitively, a finer level of partition

would generate many boundary objects (larger α); consequently it is detrimental to the

query performance. Clearly, there is a sweet spot for the partitioning granularity such

33

that it yields the best query performance. Finding the optimal partition granularity is

non-trivial as it depends on the dataset characteristics and query type.

3.7 Related Approaches

Partitioning based approach for parallelizing spatial joins is discussed in [126], which

uses the multiple assignment, single join approach with partitioning-based spatial join

algorithm. The authors also provide re-balancing of tasks to achieve better paralleliza-

tion. We take the same multiple assignment approach for partitioning, but use index

based spatial join algorithm, and rely on MapReduce for load balancing. R-Tree based

parallel spatial join is also proposed in early work [45] with a combined shared virtual

memory and shared nothing architecture.

Spatial support has been extended to NoSQL based solutions, such as neo4j/spatial

[16] and GeoCouch [12]. These approaches build spatial data structures and access

methods on top of key-value stores, thus take advantage of the scalability. However,

these approaches support limited queries, for example, GeoCouch supports only bound-

ing box queries, and there is no support of the analytical spatial queries for spatial data

warehousing applications.

In [47], authors propose an approach for bulk-construction of R-Trees through

MapReduce. In [124], a spatial join method on MapReduce is proposed for skewed

spatial data, using an in-memory based strip plane sweeping algorithm. It uses a du-

plication avoidance technique which could be difficult to generalize for different query

types. Hadoop-GIS takes a hybrid approach on combining partitioning with indexes

and generalizes the approach to support multiple query types. Besides, our approach

is not limited to memory size. VegaGiStore [125] tries to provide a Quadtree based

global partitioning and indexing, and a spatial object placement structures through

Hibert-ordering with local index header and real data. The global index links to HDFS

34

blocks where the structures are stored. It is not clear how boundary objects are han-

dled in partitioning, and how parallel spatial join algorithm is implemented. Work in

[19] takes a fixed grid partitioning based approach and uses sweep line algorithm for

processing distributed joins on MapReduce. It is unclear how the boundary objects are

handled, and no performance study is available at the time of evaluation. The work

in [62] presents an approach for multi-way spatial join for rectangle based objects,

with a focus on minimizing communication cost. A MapReduce based Voronoi diagram

generation algorithm is presented in [35]. Closest to our work is SpatialHadoop [56],

Niharika [96], and Parallel SECONDO [84].

Comparisons of MapReduce and parallel databases for structured data are dis-

cussed in [52, 94, 109]. Tight integration of DBMS and MapReduce is discussed in

[27, 121]. MapReduce systems with high-level declarative languages include Pig Lat-

in/Pig [59, 90], SCOPE [49], and HiveQL/Hive [116]. YSmart provides an optimized

SQL to MapReduce job translation and is recently patched to Hive. Hadoop-GIS takes

an approach that integrates DBMS’s spatial indexing and declarative query language

capabilities into MapReduce.

3.8 Summary

Our work was initially motivated by the use case of pathology imaging. We started

from a parallel SDBMS based solution [119] and experienced major problems such as

the data loading bottleneck, limited support of complex spatial queries, and the high

cost of software and hardware.

Hadoop-GIS provides a generic framework for supporting multiple types of spatial

applications, and a systematic approach for data partitioning and boundary handling.

HadoopGIS combines the benefit of scalable and cost-effective data processing with

MapReduce, and the benefit of efficient spatial query processing with spatial access

35

methods. Hadoop-GIS achieves the goal through spatial partitioning, partition based

parallel processing overMapReduce, effective handling of boundary objects to generate

correct query results, and multi-level spatial indexing supported customizable spatial

query engine

36

Chapter 4

MapReduce based Spatial Query

Processing

In this chapter, we present our work on scaling spatial queries with MapReduce frame-

work, and we experimentally evaluate our approaches on large datasets.

4.1 Real-time Spatial Query Engine

To support high performance spatial queries, a standalone spatial querying engine is

needed. RESQUE is developed for such purpose and it supports: i) effective spatial

access methods to support diverse spatial query types; ii) efficient spatial operators

and measurement functions to provide geometric computations; iii) query pipelines

to support diverse spatial queries with optimal access methods; and iv) the ability to

run with decoupled spatial processing in a distributed computing environment. We

have adopted a set of open source spatial and geometric computation libraries to sup-

port diverse access methods and geometric computations, including SpatialIndex [8],

Computational Geometry Algorithms Library (CGAL) [21], GEOS [24], Boost [23],

and build additional ones such as Hibert R-Tree [73]. Diverse spatial query pipelines

are developed to support different types of queries based on the query type and data

37

characteristics.

4.1.1 Index Supported Spatial Queries

One essential requirement for spatial queries here is fast response. This is important

for both exploratory studies on massive amount spatial data with a large space of pa-

rameters, and algorithms, and decision making in enterprise or healthcare applications.

Using spatial indexing to support spatial queries is a common practice for most SDBMS

systems. However, the mismatch between the large data blocks in HDFS for batching

processing and the page based storage and retrieval of spatial indexes makes it difficult

to pre-store spatial indexes on HDFS and retrieve it later for queries. While some effort

has been made on this [125], the approaches are not flexible and the pre-generated

indexes might not be suitable to support dynamic spatial query types. To support in-

dexing based spatial queries, we combine two approaches: i) global spatial indexes for

regions and tiles; and ii) on demand indexing for objects in tiles.

For global spatial indexes, we manage the indexes through Hadoop distributed

cache thus the indexes are easily shared across all cluster nodes. Given that the in-

dex granularity is very coarse, resulting index file size is generally very small. Global

spatial indexing will facilitate region level data filtering. For an example, a point or

window query can quickly lookup the global index to identify the tiles that are relevant

for the query region.

We propose an approach on building indexes on-demand combined with data par-

titioning to process spatial queries. Our extensive profiling of spatial queries shows

that index building on modern hardware is not a major bottleneck in large scale spa-

tial query processing. Using dynamically built local indexes for objects in tiles could

efficiently support spatial queries. To provide page based spatial index search, the

built indexes can be stored in a local file system, for example, the local file system in

Hadoop, or cached in memory depending on the availability of such resource during

38

the query processing stage. Our tests show the indexing building time using RESQUE

with R*-Tree based join takes a very small fraction of the overall response time (Section

4.1.3).

As indexes are read-only and no further update is needed, bulk-loading based in-

dex building techniques [42] are used. To minimize the number of pages, the page

utilization ratio is also set to 100%. We also provide alternative indexing methods

such as Hibert R-Tree, as it provides high efficient bulk loading (with slightly slower in-

dex searching performance). In addition, we provide compression to reduce leaf node

shape sizes through compact chain code based representation: instead of representing

the full coordinates for each x,y coordinate, we use offset from neighboring point to

represent the coordinates. The simple chain code compression approach can save 40%

space for the pathology imaging use case.

4.1.2 Spatial Query Workflows in RESQUE

Based on the query type, RESQUE can generate a query workflow which is optimized

for that query type. Next we briefly describe various query workflows.

Objects in
dataset 1 of tile T

Objects in
dataset 2 of tile T

Spatial
Filtering with

Indexes

Geometry
Refinement

Spatial
Measurement

R*-Tree File 1

R*-Tree File 2

Result File

Bulk R*-Tree
Building

Bulk R*-Tree
Building

Figure 4.1: Spatial join query workflow in RESQUE

39

Spatial Join Query Workflow

Figure 4.1 illustrates workflow of a spatial join, where two datasets from a tile T are

joined to find cross-matching of polygon objects. The SQL expression for this query

is shown in Figure 4.3. Bulk spatial index building is performed on each dataset to

generate index files – here we use R*-Trees [41]. (We also use Hilbert R-Tree when

the objects are in regular shapes and relatively homogenous distribution.) The R*-Tree

files are stored as local files and contain MBRs in their interior nodes and polygons

in their leaf nodes, and will be used for further query processing. The spatial filtering

component performs MBR based spatial join filtering with the two R*-Trees, and refine-

ment on the spatial join condition is further performed on the polygon pairs through

geometric computations. The spatial measurement step is performed on intersected

polygon pairs to calculate results required, such as overlap area ratio for each pair of

intersecting markups. Other spatial join operators such as overlaps and touches can be

run in a similar way.

For each pair of markup polygons whose MBRs intersect, they are decoded from the

representation, and geometry computation algorithm is used to check whether the two

markup polygons actually intersect. If so, the spatial measurements are computed and

returned. We rely on an open source libraries Boost [23] and Computational Geome-

try Algorithms Library (CGAL) [21] for computing the refinement and measurements.

Spatial refinement based on geometric computation often dominates the query execu-

tion cost in data-intensive spatial queries, and could be accelerated through GPU based

approach [32, 120].

Spatial Containment Query Workflow

Spatial containment queries have a slightly different workflow. The containing spatial

object (e.g., a polygon) of a spatial containment query may span only a single tile or

multiple tiles. Thus, an initial step will be to identify the list of intersecting tiles by

40

looking up the global tile index, which could filter a large number of tiles. The MBR

intersecting tiles will then participate the spatial join through the approach above,

where only a single index is used in the spatial filtering phase. For an extreme case

where the containing shape is small and lies within a tile, only a single tile is identified

for creating the index. For a point query – given a point, find the containing objects,

only a singe tile is needed thus it has similar workflow as the small containment query.

Nearest Neighbor Query Workflow

Nearest neighbor queries are complex to process and requires a different workflow.

Specifically, the local nearest neighbors found within a spatial partition can be differ-

ent from the ones found by searching whole spatial space. Therefore the partitioned

parallelization approach need to be modified. In practice, however, we found that the

number of the source objects – objects for which nearest neighbors need to be found,

are significantly larger than the target objects – objects which constitute the nearest

neighbors. For example, in a query setting such as “for each cell, return nearest blood

vessels and the distances”, there are far more cells than blood vessels. Therefore, we

simplified nearest neighbor query in following way. We replicate the target objects

(blood vessels) to each partition, and each partition is processed independently. Then

a spatial index, for example R-Tree or Voronoi, is built to facilitate the search. This

generates a local nearest neighbor query results set within each partition. Union of the

local nearest neighbors from all partitions are consolidated as the final result.

4.1.3 Query Engine Performance

RESQUE

An efficient query engine is a critical building block for a large scale system. To test

the standalone performance of RESQUE, we run it on a single node as a single thread

41

(a) Single tile (b) Single image

Figure 4.2: Performance of RESQUE

application. We use a spatial join query which finds all the intersecting polygons from

two sets of spatial objects. We first test the effect of spatial indexing, by taking a single

tile with two result sets (5506 polygons vs 5609 polygons), and the results are shown

in Figure 4.2(a).

A brute-force approach compares all possible pairs of boundaries in a nested loop

manner without using any index, and takes 673 minutes. Such slow performance is due

to polynomial complexity on pair-wise comparisons and high complexity on geometric

intersection testing. An optimized brute-force approach will first eliminate all the non-

intersecting markup pairs by using a MBR based filtering. Then it applies the geometry

intersection testing algorithm on the candidate markup pairs. This approach takes

4 minutes 41 seconds, a big saving with minimized geometric computations. Using

RESQUE with indexing based spatial join, the number of computations is significantly

reduced, and it only takes 16 seconds. When profiling the cost for RESQUE, we observe

that reading and parsing cost is 30%, R*-Tree construction cost is 0.2%, MBR filtering

cost is 0.67%, and spatial refinement and measurement cost is 69.13%. With fast

development of CPU speed, spatial index construction takes very little time during the

query process, which motivates us to develop an index-on-demand approach to support

spatial queries. We can also see that geometric computation dominates the cost, which

42

could be accelerated through parallel computation on a cluster environment.

Data Loading Performance

Another advantage of RESQUE is the light data loading cost compared to SDBMS ap-

proach. We run three steps to get the overall response time (data loading, indexing and

querying) on three systems: RESQUE on a single slot MapReduce with HDFS, PostGIS

and SDBMS-X with a single partition. The data used for the testing is two results from

a single image (106 tiles, 528,058 and 551,920 markups respectively). As shown in

Figure 4.2(b), data loading time for REQUE is minimal compared to others. Such light

weight loading overhead is very important for certain spatial applications, as it greatly

reduces the data-to-query time. NoDB [36] is one such example in which authors are

mainly focused on reducing such data loading overhead.

4.2 MapReduce Based Spatial Query Processing

RESQUE provides a core query engine to support spatial queries, which enables us to

develop high performance large scale spatial query processing based on MapReduce

framework. Our approach is based spatial data partitioning, tile based spatial query

processing with MapReduce, and result normalization for tile boundary objects.

4.2.1 Spatial Join

Spatial joins play an important role in various spatial applications, and it is a high

cost query. A pairwise spatial join or two-way spatial join combines two datasets with

respect to some spatial predicates. Next we discuss how to map spatial join queries into

MapReduce computing model. We first show an example spatial join query for spatial

cross-matching in SQL, as shown in Figure 4.3.

43

1 SELECT
2 ST_AREA(ST_INTERSECTION(ta.polygon,tb.polygon))/
3 ST_AREA(ST_UNION(ta.polygon,tb.polygon)) AS ratio,
4 ST_DISTANCE(ST_CENTROID(tb.polygon),
5 ST_CENTROID(ta.polygon)) AS distance,
6 FROM markup_polygon ta JOIN markup_polygon ON
7 ST_INTERSECTS(ta.polygon, tb.polygon) = TRUE
8 WHERE ta.algrithm_uid=’A1’ AND tb.algrithm_uid=’A2’ ;

Figure 4.3: A spatial join (cross-matching) query commonly used in analytical imaging
study

This query finds all intersected polygon pairs between two result sets generated

from an image by two different methods, and compute the overlap ratios (intersection-

to-union ratios) and centroid distances of the pairs. The table markup_polygon rep-

resents the boundary as polygon, algorithm UID as algrithm_uid, and image UID as

pais_uid. There is also an attribute tile_uid to represent the tile an object belongs to.

The SQL syntax comes with spatial extensions such as spatial relationship operator

ST_INTERSECTS, spatial object operators ST_INTERSECTION, ST_UNION, and spatial

measurement functions ST_CENTROID, ST_DISTANCE, and ST_AREA.

In this example, table (markup_polygon) is a spatial table that represents markups.

This table has three major columns, namely pais_uid, tile_uid, and polygon, respectively.

In each record, algorithm_uid represents algorithm UID, pais_uid represents image UID,

and tile_uid is the UID of a tile the polygon is contained. This is a self join of the same

table markup_polygon by selecting polygons generated from the same image ‘IMG1’

and produced by different algorithms ‘A1’ or ‘A2’. In the SELECT clause of this query,

we calculate intersection-to-union ratios and centroid distances of the polygon pairs

with a few computational geometry functions.

For simplicity, we first present how to process the spatial join above with MapRe-

duce, by ignoring boundary objects, and then we come back to the boundary handling

in Section 4.3. A MapReduce program for spatial join query (Figure 4.3) will have

44

similar structure as a regular relational join operation, but with all the spatial part ex-

ecuted by invoking RESQUE engine within the program. According to the equal-join

condition, the program uses the Standard Repartition Algorithm [43] to execute the

query. Based on the MapReduce structure, the program has three main steps: i) In the

map phase, the input table is scanned, and the WHERE condition is evaluated on each

record. Only those records that can satisfy the WHERE condition will proceed to the

next step; ii) In the shuffle phase, all records with the same tile_uid would be shuf-

fled to be the input of the same reduce function, since the join condition is based on

tile_uid. iii) In the reduce phase, the join operation is finished by the execution of the

reduce function. The spatial component is executed by invoking the RESQUE engine

in the reduce function.

Algorithm 2: MapReduce Program for Spatial Join

1 function Map(k,v):
2 _t ile_id = projectKey(v);
3 join_seq = projectJoinSequence(v);
4 record = projectRecord(v);
5 v = concat(join_seq,record);
6 emit(_t ile_id , v);

7 function JoinReduce(k,v):
/* arraylist holds join objects */

8 join_set = [] ;
9 for vi in v do

10 join_seq = projectJoinSequence(vi);
11 record = projectRecord(vi);
12 if join_seq == 0 then
13 join_set[0].append(record);

14 if join_seq == 1 then
15 join_set[1].append(record);

/* library call to RESQUE */
16 plan = RESQUE.genLocalPlan(join_set);
17 resul t = RESQUE.processQuery(plan);
18 for i tem in resul t do
19 emit(i tem);

45

The workflow of the map function is shown in the map function in Algorithm 2.

Each record in the table is converted into the map function input key/value pair (ki,

vi), where ki is not used by the program and vi is the record itself. Inside the map

function, if the record can satisfy the select condition, then an intermediate (km,vm)

is generated. The key km is the value of tile_uid of this record, and the value vm is

the values of required columns of this record. There are two remarkable points. First,

since (km,vm) will participate a two-table join, a tag must be attached to vm in order to

indicate which table the record belongs to. Second, since the query for this case is a

self-join, we use a shared scan in the map function to execute the data filter operations

on both instances of the same table. Therefore, a single map input key/value could

generate 0, 1 or 2 intermediate key/value pairs, according to the SELECT condition

and the values of the record.

The shuffle phase is controlled by Hadoop itself, and groups data by tile UIDs.

The workflow of the reduce function is shown in the reduce function in Algorithm 2.

According to the main structure of the program, the input key of the reduce function

is the join key (tile_uid), and the input values of the reduce function are all records

with the same tile_uid. In the reduce function, we first initialize two temporary files,

then we dispatch records into corresponding files. Then, we invoke RESQUE engine

to build R*-tree indexes and execute the query. The execution result data sets are

stored in a temporary file. Finally we parse that file, and output the result to HDFS.

Note that the function RESQUE.execute_query here performs multiple spatial functions

together, including evaluation of WHERE condition, projection, and computation (e.g.,

ST_intersection and ST_area), which could be customized.

Other join algorithms such as Improved Repartition Join [43] will not help on im-

proving the query performance due to the characteristics of spatial join, where geome-

try computation is computational intensive and dominates the query execution time.

46

4.2.2 Multiway Spatial Join

(a) star join (b) clique join

Figure 4.4: Spatial join query types

Spatial joins play an important role in effective spatial query processing for analyt-

ical pathology imaging. A pairwise spatial join or two-way spatial join combines two

datasets with respect to some spatial predicates. Multiway spatial joins involve more

than two spatial inputs and an arbitrary number of join predicates. For example, in

Figure 4.4, the spatial relation R0 is joined with three other relations with a predicate

of intersects.

Depending on the actual join condition, the query graph may take different shapes,

such as: i) chain ii) star iii) clique and iv) combination of the above. The shape of

the query graph dictates the complexity of join processing. Queries with complex topo-

logical relationships are more expensive to evaluate. Here, we mainly focus on star

and clique joins as shown in Figure 4.4. The reason is twofold. First, our experience

indicates that star and clique queries are very common in spatial cross-matching and

other spatial analytical tasks. Secondly, a complex query graph can be decomposed

into a combination of several star and clique query graphs. Thus developing effective

query evaluation techniques for these two types of queries can serve as a building block

towards more complex query evaluation. The query pipeline and algorithm for process-

ing multiway spatial joins are very similar to the two-way spatial join algorithm, and

algorithm described in 4.2.1 can be extended to process multiway spatial join queries.

47

4.2.3 Nearest Neighbor Query

Spatial access methods are widely used to support point NN queries and a number of

algorithms have been developed. Generally, these algorithms rely on the clustering

properties of neighboring points and try to prune search space to quickly arrive at

the neighborhood of the query point. In HadoopGIS, we provide two algorithms for

efficient nearest neighbor query support.

NN Search with R∗-Tree

In R-Tree, two metrics are defined to speed up the nearest neighbor search process,

namely mindist and maxmindist. These metrics are used to prune as much of the R-

Tree nodes as possible during both the downward searching process and the upward

refining process. Details of the algorithm can be found in [99].

An approach similar to the R∗-Tree join processing can be used to support nearest

neighbor queries in MapReduce. However, tile based partitioning is not applicable in

this scenario. Specifically, after such a partition, nearest neighbor of one object may

reside in another tile. Thus if the nearest neighbors are processed independently we

may not get the correct result. There are multiple ways to remedy this problem. One

approach is to process the query in multiple passes such that in the first pass, only the

index building process is initiated. In the second pass, partial indexes from the first

pass are merged and replicated to other nodes. Thus, after several passes, each node

would gather enough information to answer the query.

In the analytical pathology imaging setting, generally there are fewer target objects

which are returned as the nearest neighbors, than the source objects. Consider the

example of querying nearest neighbor blood vessel for each cell. The number of blood

vessels (hundreds or thousands) is much smaller compared to the number of cells

(millions). In this case, locating the target nearest neighbor is very fast whereas most

of the query time is spent on iterating over millions of source objects. Therefore, we

48

Algorithm 3: Reduce Function
Input: ki, vi

1 t ile = extract_source_objects(vi);
2 k = get_K(vi);
3 tar = read target objects from HDFS;
// build R*-Tree index on target objetcs

4 id x = RESQUE.build_index(tar);
// execute queries using spatial indexes

5 resul t = RESQUE.execute_kNN_query(id x ,t ile,k);
// final output

6 output resul t to HDFS;

take a simple approach in which only the source object set is partitioned, and the

target object set is replicated and distributed to cluster nodes. Thus, each partition has

a “global view” of the target search space and can carry on the nearest neighbor search

without any communication overhead between nodes. In the Map phase, source objects

are partitioned and target objects are replicated. The reduce phase of the algorithm is

described in Algorithm 3.

Voronoi Diagram

Voronoi diagram [89] has been extensively studied in computational geometry and

spatio-temporal database settings to support nearest neighbor queries. Given a set of

input sites, typically points on the plane, Voronoi diagram divides the space into disjoint

polygons where the nearest neighbor of any point inside a polygon is the site which

has generated this polygon. These polygons are called Voronoi polygons and edges

on adjacent Voronoi polygons define equidistance regions between two polygons. A

number of algorithms are proposed to compute Voronoi diagrams and the best known

algorithm has a lower bound complexity of O(n log n), where n is the number of input

line segments needed for computing the Voronoi diagram.

To answer the example nearest neighbor query, target objects (blood vessels) are

replicated among cluster nodes for index construction. Source objects (cells) are par-

49

Search

Search

Search

Aggregation

Partitioning

Voronoi
Generation

Figure 4.5: Nearest neighbor query workflow in RESQUE

titioned with tiling and distributed among the nodes participating the computation.

Similar to the R∗-Tree nearest neighbor query processing, a reducer first builds the

Voronoi diagram for blood vessels which are represented as a set of line segments.

Then for each cell in a given partition, the reducer queries the nearest blood vessel seg-

ments and computes the distance. To efficiently locate the Voronoi polygons, Voronoi

diagrams are clipped to the size of a tile on each reducer. Figure 4.5 illustrates the

workflow we described above.

The replication of target objects and computation of Voronoi diagram for the same

set of objects may seem to cause extra overhead. There are two reasons why we do not

also partition the target objects to achieve higher level parallelism. First, construction

of Voronoi diagram is fairly fast due to the fact that the number of target objects is

much less than the number of source objects. In our current dataset, target objects –

blood vessels – roughly account for 0.1% of all spatial objects. In this case, the extra

effort to parallelize the Voronoi diagram construction process may not justify itself.

Even if the Voronoi diagrams are built in parallel, extra post-processing is needed to

50

merge the partial Voronoi diagrams. Second, it complicates the SQL-to-MapReduce

translator. Given these considerations, we do not parallelize the index building process

in our current system.

4.2.4 Spatial Selection and Aggregation

Spatial selection/containment is a simple query type in which objects geometrically

contained in selection region are returned. For example, in a medical imaging sce-

nario, users may be interested in the cell features which are contained in a cancerous

tissue region. Thus, a user can issue a simple query as shown in Figure 4.6, to retrieve

cancerous cells. Since data is partitioned into tiles, containment queries can be pro-

cessed in a filter-and-refine fashion. In the filter step, tiles which are disjoined from the

query region can be filtered with MBR based testing. In the refinement step, the can-

didate objects are checked with precise geometry test. The query would be translated

into a map only MapReduce program shown in Algorithm 4.

1 SELECT ∗ FROM markup_polygon m, human_markup h
2 WHERE h.name=’cancer’ AND ST_CONTAINS(h.region, m.polygon) = TRUE;

Figure 4.6: A containment query commonly used in analytical imaging study

4.3 Boundary Handling

S T S
ps

T
pt

qq
p

+
Figure 4.7: Boundary crossing objects

51

Algorithm 4: MapReduce Program for Containment Query

1 function Map(k,v):
/* a arraylist holds spatial objects */

2 candidate_set = [] ;
3 _t ile_id = projectKey(v);
4 for vi in v do
5 record = projectRecord(vi);
6 candidate_set.append(record);

7 t ile_boundar y =getTileBoundary(_t ile_id);
8 if queryRegion.contains(t ile_boundar y) then
9 emitAll(candidate_set);

10 else
11 if queryRegion.intersects(t ile_boundar y) then
12 for record in candidate_set do
13 if queryRegion.contains(record) then
14 emit(record);

Tile is the basic parallelization unit in Hadoop-GIS. Space partitioning can be a sim-

ple fixed grid based partitioning where the data distribution is relatively balanced. A

recursive partitioning can be applied to high density tiles to achieve a balanced par-

tition. However, in such tile based partitioning, inevitably some objects would lie on

the tile boundary. We define such a object as boundary object of which spatial extent

crosses multiple tile boundaries. For example, in Figure 4.7 (left), the object p is a

boundary object which crosses the tile boundaries of tiles S and T. In general, the frac-

tion of boundary objects is inversely proportional to the size of the tile. As tile size gets

smaller, the percentage of boundary objects increases.

There are several heuristics for the boundary object problem which may depend on

the application requirements. One solution is to discard any boundary objects which

arises from the tile based partitioning. While simple, this approach partially remedies

the boundary problem and is suitable for certain application scenarios. For example,

in pathology imaging, there are millions of spatial objects and the boundary objects

only accounts for a very small fraction the data (generally less than 1%). Moreover, in

52

Algorithm 5: Boundary Aware Spatial Join

1 function Map(k,v):
2 _t ile_id = projectKey(v);
3 record = projectRecord(v);
4 if isBoundaryObject(record, _t ile_id) then
5 t iles = getCrossingTiles(record) ;

/* replicate to multiple tiles */
6 for t ile_id in t iles do
7 emit(t ile_id , v);

8 function JoinReduce(k,v):
/* arraylist holds join objects */

9 join_set = [] ;
10 for vi in v do
11 join_seq = projectJoinSequence(vi);
12 record = projectRecord(vi);
13 if join_seq == 0 then
14 join_set[0].append(record);

15 if join_seq == 1 then
16 join_set[1].append(record);

/* library call to RESQUE */
17 plan = RESQUE.genLocalPlan(join_set);
18 resul t = RESQUE.processQuery(plan);
19 for i tem in resul t do
20 emit(i tem);

21 function Map(k,v):
22 uid1 = projectUID(v,1);
23 uid2 = projectUID(v,2);
24 ke y = concat(uid1,uid2);
25 emit(ke y ,v);

/* Hadoop sorts records by key and shuffles them */
26 function Reduce(k,v):
27 for records in v do
28 if isUniq(record) then
29 emit(v);

most warehousing applications, users are interested in statistical or aggregate results

which are derived from large number of records. Therefore, the missing boundary

53

objects would not pose any challenge to the correctness of the query results. Whereas

in many other applications, query accuracy is critical and the boundary objects need to

be handled correctly.

Hadoop-GIS remedies the boundary problem in a simple but effective way. If a

query requires to return complete query result, Hadoop-GIS generates a boundary-

aware query plan which has a pre- and post-processing task. In the pre-processing task,

the boundary objects are duplicated and assigned to multiple intersecting tiles (multi-

ple assignment). When each tile is processed independently during query execution,

the results are not yet correct due to the duplicates. In the postprocessing step, results

from multiple tile based query processing will be normalized, e.g., to eliminate du-

plicate records by checking the object uids, which are assigned internally and globally

unique during partitioning phase. For example, when processing the spatial join query,

the object p is duplicated to tiles S and T as ps and pt (Figure 4.7 right). Then the same

process of join processing follows as if there are no boundary objects. In the postpro-

cessing step, objects will go through a filtering process in which duplicate records are

eliminate in a sort-merge fashion.

One may argue that such approach would incur extra query processing cost due

to the preprocessing and postprocessing steps. However, this extra cost is very small

compared to the query processing time, which we will justify in Section 4.5.

4.4 Query Optimization Approaches

To show the adverse effects of spatial data skew, we run a join performance test where

a set of images are partitioned into 40 reduce tasks and the completion time for each

individual task is measured. As shown in Figure 4.8 (binned for visualization purpose),

the actual completion time for each partition (brown bars) differs significantly and

the overall system performance is largely affected by the longest running tasks. To

54

 400

 450

 500

 550

 600

 650

 700

 750

 800

R
un

tim
e

(s
ec

)

Reduce tasks ordered by runtime

w/o optimization
w optimization

Figure 4.8: Spatial skew in query processing

remedy the skew problem, we take a cost-based greedy task partition approach in

which each reducer is assigned roughly equal amount of work to balance the load for

all the reducers. Consider a simplified version of the query 4.3 where two datasets are

join with a predicate intersects, i.e., Q = R
intersects
◃▹ S. To process this query Q, our

system partitions each image into N tiles indexed by I = {1,2, ..i..N} and each pair of

tiles would be assigned to a reducer node for join processing. When all tile pairs are

processed, a final aggregation step will be performed.

Q = R
intersects
◃▹ S =

N⋃

i=1

Ri
intersects
◃▹ Si (4.1)

Each reducer node will process a set P of tiles indexed by
⋃

i∈P i which we call the

workload of a reducer node. Therefore, the query optimizer should generate a query

plan that partitions the tiles indexed by I into k workloads such that I =
⋃k

i=1 Pi and

the maximum workload is minimized. There are two problems need to be solved here.

First, how to estimate the runtime of each workload ? Second, assuming that we know

the completion time Wi for each workload, how to solve the partition problem?

55

Set partition problem is NP-Hard and an approximate solution would suffice in our

case. Therefore, we take a simple approach in which tiles are greedily assigned to k

partitions. However, the question of how to estimating completion time of each tile

remains. Following the table statistics based cost estimation philosophy in modern

database systems, we use following formula to estimate cost of processing each indi-

vidual workload.

Wj =
∑

i∈Pj

Cost(Ri ◃▹ Si) (4.2)

Cost(Ri ◃▹ Si) = α|Ri|+ β |Si|+ γ (4.3)

The coefficients α,β are introduced to reflect individual dataset characteristics. If

we make no assumption about the dataset involved in query processing, we can set

them to a constant value. The constant cost γ is introduced to take the cost of trans-

ferring the tile contents from other nodes across the network. While it can be set to an

educated value, we simply set it to zero here, as in the join processing, the predicate

cost dominates overall computation time and the I/O cost can simply be ignored.

4.5 Experiments

Next we describe the system performance in detail. We study the performance of

Hadoop-GIS versus parallel SDBMS, scalability of Hadoop-GIS in terms of number of

reducers and data size, and query performance with boundary handling. The tests are

based on two real world datasets, with a set of representative benchmark queries.

56

4.5.1 Experimental Setup

Compared Systems

Hadoop-GIS: We use a cluster with 8 nodes and 192 cores. Each of these 8 nodes

comes with 24 cores (AMD 6172 at 2.1GHz), 2.7TB hard drive at 7200rpm and 128GB

memory. A 1Gb interconnecting network is used for node communication. The OS is

CentOS 5.6 (64 bit). We use the Cloudera Hadoop 2.0.0-cdh4.0.0 as our MapReduce

platform, and Apache Hive 0.7.1 for HiveSP . Most of the configuration parameters are

set to their default value, except the JVM maximum heap size which is set to 1024MB.

The system is configured to run a maximum of 24 map or reduce instances on each

node. Datasets are uploaded to the HDFS and the replication factor is set to 3 on each

datanode.

DBMS-X: To have a comparison between Hadoop-GIS and parallel SDBMS, we installed

a commercial DBMS (DBMS-X) with spatial extensions and partitioning capabilities

on two database nodes. Each DB node comes with 32 cores, 128GB memory, and

8TB RAID-5 drives at 7200rpm. The OS for the nodes is CentOS 5.6 (64 bit). There

are a total of 30 database partitions, 15 logical partitions on each node. With the

technical support from the DBMS-X vendor, the parallel SDBMS has been tuned with

many optimizations, such as co-location of common joined datasets, replicated spatial

reference tables, proper spatial indexing, and query hints. For RESQUE query engine

comparison, we also install PostGIS (V1.5.2, single partition) on a cluster node.

Dataset Description

We use two real world datasets: pathology imaging, and OpenStreetMap.

Pathology Imaging (PI). This dataset comes from image analysis of pathology images,

57

by segmenting boundaries of micro-anatomic objects such as nuclei and tumor regions.

The images are provided by Emory University Hospital. Spatial boundaries have been

validated, normalized, and represented in WKT format. We have dataset sizes at 1X

(18 images, 44GB), 3X (54 images, 132GB), 5X (90 images, 220GB), 10X (180 images,

440GB), and 30X (540 images, 1,320GB) for different testings. The average number

of nuclei per image is 0.5 million, and 74 features are derived for each nucleus. For

nearest neighbor query performance test, we use 50 images (42 GB) from TCGA. Both

datasets have similar characteristics. The first dataset comes with polygons of nuclei

and spatial features. The second dataset comes with polygons of nuclei and other spa-

tial objects such as blood vessels.

OpenStreetMap (OSM). OSM [3] is a large scale map project through extensive col-

laborative contribution from a large number of community users. It contains spatial

representation of geometric features such as lakes, forests, buildings and roads. Spa-

tial objects are represented by a specific type such as points, lines and polygons. We

download the dataset from the official website, and parse it into a spatial database.

The table schema is simple and it has roughly 70 columns. We use the polygonal rep-

resentation table with more than 87 million records. To be able to run our queries,

we construct two versions of the OSM dataset, one from a latest version, and another

smaller one from an earlier version released in 2010. The dataset is also dumped into

text format for Hadoop-GIS.

Query Benchmarks

We take three typical queries for the benchmark: spatial join (spatial cross-matching),

spatial selection (containment query), and aggregation. Many other complex queries

can be decomposed into these queries, for example, a spatial aggregation can be run in

two steps: first step for spatial object filtering with a containment query, followed by

58

an aggregation on filtered spatial objects.

The spatial join query on PI dataset is demonstrated in Figure 4.3 for joining two

datasets with an intersects predicate. Similar spatial join query on OSM dataset is also

constructed to find changes in spatial objects between two snapshots. We constructed a

spatial containment query, illustrated in Figure 4.6 for PI use case, to retrieve all objects

within a region, where the containment region covers a large area in the space. A

similar containment query is also constructed for OSM dataset in which spatial objects

within a large query region are retrieved. For aggregation query, we compute the

average area and perimeter of polygons of different categories, with 100 distinct group

labels.

4.5.2 Performance of Hadoop-GIS

Hadoop-GIS v.s. Parallel SDBMS

For the purpose of comparison, we run the benchmark queries on both Hadoop-GIS

and DBMS-X on the PI dataset. The data is partitioned based on tile UIDs – bound-

ary objects are ignored in the testing as handling boundary objects in SDBMS is not

supported directly. Figures 4.9 and Figure 4.10 show the performance results. The

horizontal axis represents the number of parallel processing units (PPU), and the verti-

cal axis represents query execution time. For the parallel SDBMS, the number of PPUs

corresponds to the number of database partitions. For Hadoop-GIS, the number of

PPUs corresponds to the number of mapper and reducer tasks.

Figure 4.9 shows the benchmark results for the spatial join query. Both systems

exhibit good scalability, but overall Hadoop-GIS performs much better compared to

DBMS-X, which has already been well tuned by the vendor. Across different number of

PPUs, Hadoop-GIS is more than a factor of two faster than DBMS-X. Given that DBMS

can intelligently place the data in storage and can reduce IO overhead by using in-

59

Figure 4.9: Spatial join query performance

dex based record fetching, its expected to have performed better on IO heavy tasks.

However, spatial join involves expensive geometric computation, and the query plan

generated database is suboptimal for such tasks. Another reason for the performance

of DBMS-X is because of its limited capability on handling computational skew, even

though the built-in partitioning function generates a reasonably balanced data distribu-

tion. Hadoop has an on-demand task scheduling mechanism which can help alleviate

such computational skew.

For containment queries, shown in Figure 4.10(a), Hadoop-GIS outperforms DBMS-

X on a smaller scale and has a flat performance across different number of parallel pro-

cessing unit. However, DBMS-X exhibits better scalability when scaled out with larger

number of partitions. Recall that, in Hadoop-GIS, a containment query is implemented

as a Map only MapReduce job, and the query itself is less computationally intensive

compared to the join query. Therefore, the time is actually being spent on reading in a

file split, parsing the objects, and checking if the object is contained in the containing

region. On the other hand, DBMS-X can take advantage of a spatial index and can

quickly filter out irrelevant records. Therefore it is not surprising that DBMS-X has

60

(a) Containment query (b) Aggregation query

Figure 4.10: Performance of containment and aggregation queries

slightly better performance for containment queries.

Figure 4.10(b) demonstrates that DBMS-X performs better than HadoopGIS on ag-

gregation task. One obvious reason for this is that Hadoop-GIS has the record parsing

overhead. Both systems have similar query plans - whole table scan followed by ag-

gregation operation, which have similar I/O overhead. In Hadoop-GIS, however, the

records need to be parsed in real-time, whereas in DBMS-X records are pre-parsed and

stored in binary format.

In a summary, Hadoop-GIS performs better in compute-intensive analytical tasks

and exhibits nice scalability - a highly desirable feature for data warehousing applica-

tions. Moreover, it needs much less tuning effort compared to the database approach.

However, MapReduce based approach may not be the best choice if the query task is

small, e.g., queries to retrieve a small number of objects.

Performance on OpenStreetMap

We also tested performance and scalability of Hadoop-GIS on a geospatial dataset –

OSM. To test the systems scalability, we run the same types of queries as on the PI

dataset. For the join query, the query returns objects which have been changed in

the newer version of the dataset. Therefore, the join predicate becomes ST_EQUAL =

61

(a) Spatial join query (b) Containment query (c) Aggregation query

Figure 4.11: Performance of HadoopGIS on OSM dataset

FALSE. Figure 4.11 shows the performance results for Hadoop-GIS on OSM the dataset.

From the Figure 4.11(a), we can see that Hadoop-GIS exhibits very nice scalability on

the join task. When the number of available processing units is increased to 40 from

20, the query time nearly reduced into half, which is almost a linear speed-up. With

increase of the number of PPUs, there is a continuous drop on the query time. However,

we can see a long tail in which there is no obvious speed, even the number of processing

unit increases. This is mainly due to the heavy data skew in the OSM dataset. Recall

that we induced a grid partition on the dataset, it is unavoidable that certain grids have

significantly larger number of objects. While the on-demand scheduling mechanism

of Hadoop may help to alleviate such skew, it can not provide a complete remedy.

There some processing units become straggelers and reduces effective scalability of

the system. How to effectively remedy such a skew problem is essential for query

performance, and we will discuss several solutions to this problem in chapter 5.

For containment query, we randomly select a large region which contains several

city boundaries, and query spatial objects contained in that region. Figure 4.11(b)

illustrates the containment query performance on OSM dataset, with running time less

than 100 seconds. The variance of query performance across different number of PPUs

is flat, due to the nature of the query that containment queries are I/O intensive, and

the query performance is bound by the number file blocks scanned by the system. The

aggregation query performance on the OSM dataset is shown in 4.11(c). Similar to the

62

containment query, even with the increased number of processing power (PPUs), the

query performance is not increased at all. This is due to the nature of the aggregation

query that the query is translated into a whole table scan operator followed by an

aggregation operator. Therefore, the query has constant cost which is not affected by

the number of processing units.

4.5.3 Scalability of Hadoop-GIS

Figure 4.12: Scalability test with spatial join query on PI dataset

Figure 4.12 shows the scalability of the system on large dataset. Data sizes used

include: 1X, 3X, 5X, and 10X data sets, with varying number of PPUs. We can see a

continuous drop of time when the number of reducers increases. It achieves a near

linear speed-up, e.g., time is reduced to by half when the number of reducers is in-

creased from 20 to 40. The average querying time per image is about 9 seconds for the

1X dataset with all cores, comparing with 22 minutes 12 seconds in a single partition

PostGIS. The system has a very good scale up feature. As the figure shows, query pro-

cessing time increases linearly with dataset size. The time for processing the join query

63

on 10X dataset is roughly 10 times of the time for processing a 1X dataset.

Multiway Join Query

(a) Star shaped join query (b) Clique shaped join query

Figure 4.13: Multiway spatial join query performance

Figure 4.13 shows the query performance for star-shaped multiway spatial join with

different join cardinality. The horizontal axis represents the number of reducers and the

vertical axis represents query runtime. As the figure shows, the system exhibits good

scalability. For both figures, it is noticeable that the query runtime drops linearly as the

number of reducers increases. This effect is more pronounced in the region where the

number of reducers ranges between 20 and 80. Interestingly, when the join cardinality

increases, the linear relationship between runtime and the number of processing units

becomes more apparent and it saturates as the number of reducers approaches to the

maximal number of available cluster cores.

Nearest Neighbor Query

To test nearest neighbor query performance, we run the example query “return the

distance to the nearest blood vessel from each cell” for each image in the TCGA dataset.

This query can be parallelized at image level or at tile level. We report results for both

64

(a) R∗-Tree (b) Voronoi

Figure 4.14: Nearest neighbor query performance

levels of parallelism in Figure 4.14. Since the number of images used for this test is 50,

more than 50 reducers would not help to increase the system performance. As it can be

seen from both figures, it is clear that finer level of partition granularity offers higher

level of parallelism which translates into better performance. The system also exhibits

good scalability for tile level partitioning. In both figures, the execution time is reduced

roughly by half when the number of processing nodes is doubled (from 10 to 20 and

from 20 to 40). The experiments also show that Voronoi based nearest neighbor search

is much faster than R∗-Tree based approach.

4.5.4 Boundary Handling Overhead

We run the join query on PI dataset to measure the overhead in boundary handling

step. Figure 4.15(a) shows the performance of two way spatial join query with bound-

ary handling. The blue bars represent the cost of processing the query, and the green

bars represents the cost of amending the results. As the figure shows, the cost of

boundary handling is very small. Boundary handling overhead depends on two factors

– the number of boundary objects and the size of the query output. If the number of

objects on the tile boundary accounts for a considerable fraction of the dataset, the

65

(a) Boundary-aware spatial join processing (b) Performance variation

Figure 4.15: Boundary handling overhead in Hadoop-GIS

overhead should not dominate the query processing time. Therefore, we test the join

query on the same dataset in which the number of boundary objects is deliberately

increased. Figure 4.15(b) shows the spatial join query performance with different frac-

tion of boundary objects. The lines represent query performance with varying per-

centage of boundary objects as shown in the legend. It is clear from the figure that,

the boundary handling overheard increases linearly with the percentage of boundary

objects.

While in Figure 4.15(b) we show that the percentage of boundary objects can be as

high as 11.7%, in reality, the fraction of boundary objects are much smaller. We did an

experiment with the OSM dataset in which we partitioned the dataset into 1 million

tiles (103×103 grid), and counted the number of boundary objects. Even at such a fine

granular level of partitioning, the number of objects lying on the tile boundary is less

than 2%.

66

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

R
un

tim
e

(s
ec

)

number of reducersjoin cardinality-->

w/ optimization
extra w/o optimization

10080604020

(a) Query optimization for a star shaped spa-
tial join query

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

R
un

tim
e

(s
ec

)

number of reducersjoin cardinality-->

w/ optimization
extra w/o optimization

10080604020

(b) Query optimization for a clique shaped
spatial join query

Figure 4.16: Spatial join query optimization through cost-based task partition

4.5.5 Effects of Query Optimization Approaches

Skew Mitigation

As Figure 4.8 shows, partition-optimized system not only performs better, it suffers

less from the “straggler” problem. Each partition (indicated by the purple bars) fin-

ishes roughly at the same time. Figure 4.16(a) and Figure 4.16(b) show a comparison

between optimized partition and original partition for different query types. Here,

the first horizontal axis represents join cardinality, and the second horizontal axis rep-

resents number of reducers for that run. Generally, such optimization considerably

reduces job completion time and increases query performance. Interestingly, when the

job partitioned into smaller number of partitions, 20 for example, the performance im-

provements are not as significant as larger number of partitions. It seems the skew

effects are less severe in smaller level of partitions, or the original hash partition is

happen to be good enough for that particular number.

67

Partition Filtering with Multilevel Spatial Index

For containment and aggregation queries, the I/O is the main bottleneck. Therefore,

number of HDFS blocks scanned by the system effectively determines the cost of the

query. Hadoop-GIS uses a multilevel spatial index (section 3.5) structure to reduce the

number of file blocks scanned by the system.

Figure 4.17: Performance of spatial containment query with multi-level indexing

Figure 4.17 shows the performance of a containment query that aided by such mul-

tilevel index. Here, the horizontal axis indicates containment query size; the vertical

axis indicates number of scanned partitions to process a query; and column labels de-

note the query processing time. As the figure shows, Hadoop-GIS can effectively reduce

the number of partitions scanned by using the multi-level spatial index. This is very

helpful for small containment queries, such as point queries, as the number of records

involved with the query is significantly small. However, for larger containment queries,

performance gain from using the multi-level index is not as significant as for small

containment queries.

68

4.6 Summary

The Hadoop-GIS framework provides a basic blueprint for implementing a MapReduce

based spatial query system. Through the development and deployment of MapRe-

duce based query processing, we are able to provide scalable query support with cost-

effective architecture. Hadoop-GIS is based on a decoupled architecture in which the

spatial query engine — RESQUE — provides essential spatial query processing capabil-

ity, and MapReduce engine enables running partition based spatial queries on a massive

scale.

In Hadoop-GIS, we address several fundamental problems for MapReduce based

spatial query — spatial data partition, boundary object handling, index supported

query processing, and query optimization. Experiments show that Hadoop-GIS is sig-

nificantly faster than the parallel database approach for compute-intensive complex

queries, and on par with parallel database approach for I/O intensive queries. Hadoop-

GIS uses a replicate-and-filter strategy for handling boundary objects, and experimental

results indicate that such approach incurs very small query processing overhead. Skew

mitigation plays an important role in improving the query performance, and Hadoop-

GIS employs a cost based tasks partition approach to mitigate the skew.

69

Chapter 5

Effective Spatial Data Partitioning for

Scalable Query Processing

5.1 Introduction and Related Approaches

Data partitioning is a powerful mechanism for improving efficiency of data manage-

ment systems, and it is a standard feature in modern database systems. In fact, state-

of-the-art systems employ a shared-nothing architecture [108], and both MapReduce

and parallel DBMS are examples of such architecture. Aside from the fact that data

partitioning improves the overall manageability of large datasets, it improves query

performance in two ways. First, partitioning the data into smaller units enables pro-

cessing of a query in parallel, and henceforth the improved throughput. Second, with

a proper partitioning schema, I/O can be significantly reduced by only scanning a few

partitions that contain relevant data to answer the query. Therefore, a partitioning ap-

proach – that evenly distributes the data across nodes and facilitates parallel processing

– is essential for achieving fast query response and optimal system performance.

70

5.1.1 Challenges in Spatial Partitioning

Spatial data partitioning, however, is particularly challenging due to several pitfalls

that are endemic to spatial data and query processing.

(a) Fixed grid partition

Bin width = 20K

25000

50000

75000

0e+00 2e+05 4e+05 6e+05 8e+05
Bin Center

C
ou

nt
(b) Spatial data skew

Figure 5.1: An example of fixed grid partition and spatial data-skew

Spatial Data Skew

Data skew is very common and severe in spatial applications. For example, in micro-

scopic pathology imaging scenario, tumorous tissues contain far more spatial objects

(segmented cells), whereas cells are more evenly distributed in healthy tissues. In

geospatial applications (e.g., OpenStreetMap) some countries and regions have more

detailed mapping information due to the enthusiastic data contributors. Figure 5.1

shows a simple fixed grid partitioning of a pathology image (a), and binned histogram

of partition size from a fixed grid partitioning of OpenStreetMap data (b). Needless

to say, data skew is detrimental to the query performance [105] and curtails system

scalability [93]. Therefore, to achieve the best query performance, a spatial partition

approach should try to avoid a skewed partitioning whenever it is possible.

71

Boundary Objects

Spatial partitioning approaches generate boundary objects that cross multiple par-

titions, thus violating the partition independence. As spatial objects have complex

boundary and extent, imposing a rectangular region based partitioning on sufficiently

large dataset would most certainly produce objects that cross multiple partition bound-

ary. Spatial query processing algorithms get around the boundary problem by using

a replicate-and-filter approach [93, 126] in which boundary objects are replicated to

multiple spatial partitions, and side effects of such replication is remedied by filter-

ing the duplicates at the end of the query processing phase. This process adds extra

query processing overhead which increases along with the volume of boundary objects.

Therefore, a good spatial partitioning approach should aim to minimize the number of

boundary objects.

Performance

Spatial partitioning algorithms are expensive to compute compared to the conventional

one dimensional table partitioning algorithms, such as hash and range partitioning,

that can be done quickly on the fly. The multidimensional nature of spatial data entails

that most spatial operators are of linear time complexity. The high computational com-

plexity combined with massive amounts of data require an efficient approach for spatial

partitioning to achieve overall fast query response. This is in particularly important for

spatial-temporal data where new spatial data has to be partitioned and processed in a

timely fashion.

To the best of our knowledge, no spatial database system provides a graceful ap-

proach to spatial partitioning. Previously, Paradise [93] – a parallel spatial database

system – used a regular fixed grid partitioning for parallel join processing. Fixed grid

partitioning is the basis of many spatial algorithms and it is easy to compute. However,

as mentioned in the original work, fixed grid approach suffers from both data skew

72

problem and boundary object problem.

5.1.2 Related Approaches

Data partition problem is discussed extensively in the context of database systems in the

last few decades [48, 102]. FixedGrid spatial partition and its variations are used for

spatial join processing in [93, 126]. Le et al. [77] studied the problem finding optimal

splitters for large interval data. More recently, MapReduce based systems emerged as

an effective solution to Spatial Big Data challenges [57]. HadoopGIS [34] is a high

performance spatial data warehousing system that is based on a general spatial query

processing framework. The system uses SQL as the query language and integrated into

Hive[116]. SpatialHadoop [56] is an extension of Hadoop for spatial query processing

and it also extends Pig [55] at the query language layer. Ray et al. [96] proposed a

spatial data analysis infrastructure that uses a combination of cloud environment and

relational database systems. Authors also briefly discussed their hybrid approach that

uses Hilbert Curve and space partitioning for spatial join processing.

Spatial histogram construction is extensively studied in database settings, and it is

widely used for approximate query processing. The main goal of spatial histogram con-

struction is to partition the multi-dimensional data into buckets (most often a bucket

represents a rectangular region), where data within buckets is uniformly distributed.

In that sense, spatial histogram generation is relevant to spatial partitioning, but not

the same. In [88], authors have showed that computing the non-overlapping rectan-

gular partitioning with near-uniform data distribution within buckets is NP-hard. One

of the pioneering works is [87], in which authors proposed to extend the concept of

equi-depth histogram to multidimensional data. An in-memory data structure hTree

is designed for storing the histograms. It constructs non-overlapping partitioning of

multidimensional space based on object frequencies. However location of objects are

not considered for histogram construction, which may result in skewed histograms.

73

MinSkew histogram [29] is proposed to remedy some of the disadvantages of hTree.

GenHist [61] is a recent approach which can identify high density regions for real

valued attributes. However, in GenHist bucket rectangles may overlap, and the buckets

can be contained in other buckets. It uses a fixed-size grid as the basis of histogram

construction. More recently, an approach called STHist [97] is proposed to generate

density aware histograms. In the basic STHist algorithm, decision about whether the

region is dense is made by applying a sliding window over all dimensions, by approxi-

mating the frequency distribution by a marginal distribution. The dense regions called

Hot-Spots, and the constructed histogram is represented as an unbalanced R- tree. In

the advanced variant called STForest, the algorithm first computes coarse partitions

according to the object skew, and then applies a sliding window algorithm to them.

The idea behind this is that, if the region is already uniformly distributed, further par-

titioning is unnecessary. Moreover, the coarse regions are merged together if the skew

of merged buckets decreases. While STHist is better than proposed methods, STHist

has a time complexity of ((n2) for 2-dimensional and ((n3) for 3-dimensional data.

A convenient approach to obtain a spatial histogram is to generate it using a spatial

index structure like R-Tree [64], R∗-Tree [41], R+−Tree [103] etc. RK-Hist [54] is

an example of such approach which is based on R-tree bulk-loading procedure. The

data is presorted according the Hilbert space-filling-curve. After the leaf nodes are

generated, a histogram can be generated by packing nodes according to the sorting

order in equi-sized histogram buckets. However, this may not necessarily generate a

good partitioning. Specifically, for approximately uniformly distributed data equi-sized

partitioning wastes buckets for regions with a high object density and produces high

overlap between buckets. Therefore, the authors proposed a greedy algorithm utilizing

a sliding window of pages along the Hilbert order. The algorithm is parametrized with

a number of buckets that should be considered for a split. A bucket-split is applied if

it leads to an improvement according to the proposed cost function. More recently, a

74

new approach R-V [28] is proposed to overcome skewed-data distribution problem.

5.2 Classification of Spatial Partition Algorithms

In this dissertation we study six spatial partition algorithms that are representative of

different classes of approaches. Before we delve into the technical details, it would

be more interesting to give a high-level view to help readers understand how these

algorithms are related, and what their major differences are. Here, we attempt to

categorize those algorithms along three dimensions, and Table 5.1 summarizes such

classification. The algorithmic details will be discussed next, in section 5.3.

Dimension Category BSP FG SLC BOS STR HC

Partition Boundary
overlapping " "

non-overlapping " " " "
Search Strategy

top-down " NA
bottom-up NA " " " "

Split Criterion
space-oriented " "
data-oriented " " " "

Table 5.1: A general classification of spatial partition algorithms

5.2.1 Partition Boundary

We start with whether the spatial partition boundaries overlap with each other.

Non-overlapping Partitions

Algorithms in this category generate spatial partitions of which boundaries do not over-

lap with each other. Non-overlapping partitioning is ideal for most query processing

tasks as it does not incur any extra storage or computation overhead other than repli-

cated boundary objects. Due to the same reason, in this paper we mostly focus on this

class of algorithms which includes FG, BSP, SLC, and BOS.

75

Overlapping Partitions

Algorithms in this category relax the non-overlapping boundary condition, and allow

generated partitions to overlap with each other. Most spatial index construction algo-

rithms [100] are based on the similar idea, and the packing algorithms such as STR

[79] and Hilbert Curve [73] belong to this class. Since the partitions may overlap with

each other, some fraction of objects would be present in multiple partitions. Those

multi-partition objects would be replicated and assigned to each of the overlapping

partitions. As a result, in this class of approaches the replication factor α can be high

which consequently increases the deduplication cost factor β . However, if a good par-

titioning can be quickly obtained by allowing the partitions to overlap, then the extra

cost can be compensated by the improved query performance.

5.2.2 Search Strategy

The second dimension we consider is the search strategy which focuses on how the

partitions are generated.

Top-down

This class of algorithms generate partitions in top-down manner. Specifically, given

a dataset and an expected partition payload b (number of objects assigned to that

partition), a top-down approach recursively splits the dataset into k sub-partitions, and

examines if any sub-partitions has more than b objects. If a sub-partition has more

than b objects, then it will be further partitioned, until the payload requirement is

met. Most spatial indexes are constructed using similar procedure. While the value of

the parameter k can be chosen arbitrarily, some specific values, such as k = 2 (BSP)

and k = 4 (Quad-Tree), are used more frequently in practice. Depending on the split

criterion, this class of algorithms can be implemented as either data-oriented or space-

76

oriented, and we describe these categories in the next subsection.

Bottom-up

Rather than generating partitions in a recursive manner, this class of algorithms at-

tempt to construct the final partitions as early as possible. Such approach bears some

resemblance to the spatial packing algorithms. The general idea is to use proximity

information of spatial objects to group them into partitions. Since there is no spatial

proximity preserving total ordering for multi-dimensional objects, Space Filling Curves

are used to generate approximate one dimensional ordering. Then, objects are packed

into partitions by grouping them based on such ordering.

5.2.3 Partition Criterion

Finally, splitting an oversized partition into smaller ones is a core subroutine in spatial

partitioning, and algorithms may have different criterion for this task. For example,

consider a simple case where a partition with payload w need to be partitioned into

two sub-partitions. There will be two strategies: space oriented, and data oriented.

Space Oriented

This class of algorithms generate sub-partitions by spatially decomposing the current

partition boundary into two equal sub-spaces. As the split decision is made solely

based on the space, this approach suffers from data skew. If the data distribution is

uniform, we would expect to get two sub-partitions where each of them has a payload

of roughly
w
2

. However, if the data distribution is skewed, it is possible that one of the

subpartitions still contains large fraction of objects in the original partitions, while the

other contains only few objects.

77

Data Oriented

This class of algorithms generate sub-partitions by finding a cut such that each result-

ing sub-partitions contains roughly equal amounts of data (
w
2
). The cut position is

derived based on the distribution of data objects rather than splitting the space. How-

ever, finding an optimal cut which generates an even partitioning requires significant

computational effort. Furthermore, the algorithms also need to be judicious about the

split position so that the number of boundary objects induced by such split is not very

large.

5.3 Spatial Partition Algorithms

5.3.1 Preliminaries

We study the following partition problem: given a set of d-dimensional spatial objects

R = {r1, r2, ..ri..rn} (|R| = N), a partition algorithm partitions R into k partitions P =

{p1, p2, ..pj..pk}, where each partition is size bounded |pj| ≤ b, and the number of

partitions k is minimized. Without loss of generality, we consider the case where d = 2

and a spatial object is approximated by its MBR (Minimum Bounding Rectangle), and

each rectangle is represented by ri = (xi, yi,ui, wi).

Partitioning of one dimensional data (d = 1) has been extensively studied in the

past, and it is shown that the optimal solution can be obtained in polynomial time

[72]. However, for higher dimensions, even for a simple case d = 2, the problem

becomes intractable. Previously, a simpler version of the problem, known as rectangle

tiling, was studied. The main objective of rectangle tiling is to partition a matrix of

integers into tiles, and it was proven to be NP-Hard [58, 74] for cases d ≥ 2.

78

5.3.2 Methods and Details

Next we discuss each of the six algorithms in detail. While some of these algorithms

have been partially studied in the earlier research, others are rarely utilized for parallel

spatial query processing.

Fixed Grid Partitioning (FG)

Fixed grid partitioning is a simple space-oriented, non-overlapping partitioning ap-

proach in which the spatial universe is partitioned into k equal sized grids. A major

assumption behind this approach is that data follows a uniform distribution. There-

fore, if the data distribution is close to a uniform distribution, FixedGrid is expected to

generate a reasonably good partitioning. While the partition process is very simple, for

the sake of clarity, details of this approach are described in Algorithm 6.

Algorithm 6: Fixed grid partition (FG)
Input: a set of spatial objects R
Input: partition payload b

1 m = ⌈
$
|R|/b ⌉;

2 U = spatialUniverse(R);
3 G = split U into m by m grid;
4 for ri in R do
5 g = grids intersects with ri;
6 assign ri to each grid in g;
7 end

Binary Split Partitioning (BSP)

Binary split partitioning is a top-down approach that generates partitions by recursively

dividing a given spatial partition into two non-overlapping subpartitions until the pay-

load requirement is met. Given a expected partition payload b, BSP recursively creates

subpartitions if the number of objects inside a partition exceeds the specified payload

(Algorithm 7). The split point is chosen to be the median of object centroids in that

79

Algorithm 7: Binary split partition (BSP)
Input: a set of spatial objects R
Input: partition payload b

1 U = spatialUniverse(R);
2 while r in Rdo
3 n = node(U);
4 addObject(n, r);
5 end
6 function addObject(n,r):
7 if n is leafNodethen
8 n.objectList.add(r);
9 end

10 if size(n.objectList) ≤ cthen
11 compute median_x and median_y split ;
12 spl i t = argmax(Product of children areas);
13 child1, child2 = children(n, spl i t);
14 if child1 intersects with rthen
15 addObject(child1, r);
16 end
17 if child2 intersects with rthen
18 addObject(child2, r);
19 end
20 end

partition. The direction of the split (horizontal or vertical) is dependent on the relative

ratio of areas of subpartitions. The split direction is chosen so that the relative area

difference between children nodes are minimized based on a probabilistic expectation.

Strip Partitioning (SLC)

Strip partitioning is a non-overlapping, data oriented partitioning approach that has

some resemblance to slicing a cake. In this approach, rather than defining a fixed

space, we slice off a rectangular region from the spatial universe where each region

contains approximately b objects. Then similar process is continued on the rest of the

data and repeated until we generate all the partitions. Details of this approach are

described in Algorithm 8.

80

Algorithm 8: Strip partition (SLC)
Input: a set of spatial objects R
Input: partition payload b
Input: partition dimension d
/* sort objects by mbr center in dimension d */

1 sort (R,d);
2 U = spatialUniverse(R);
3 while R is not empty do
4 s = cutStrip(U , R, b);
5 for ri in R do
6 if not ri intersects with sthen
7 break;
8 end
9 assign ri to partition s ;

10 if s contains rithen
11 remove ri from R;
12 end
13 end
14 end

Boundary Optimized Strip Partitioning (BOS)

Algorithms described above do not explicitly consider the boundary object problem,

although the partition payload is guarenteed to be balanced. As a result, we may

still get a partitioning that are balanced but has a higher deduplication cost. BOS is

a boundary object aware extension of SLC that minimizes the number of boundary

objects while still generating a balanced partitioning. While performing the strip based

partitioning, BOS has two dimensions (d dimensions in general) to choose at each

step. BOS calculates the partitioning in both dimensions, and selects the one which

induces smaller number of boundary objects. Algorithm 9 describes the details of this

approach.

Hilbert Curve Partitioning (HC)

Space filling curves used in many application to obtain a locality preserving approxi-

mate total ordering for multidimensional data. Commonly used space filling curves in-

81

Algorithm 9: Boundary optimized strip partition (BOS)
Input: a set of spatial objects R
Input: partition payload b

1 U = spatialUniverse(R);
2 while R is not empty do

// cost in dimension x
3 cx = getCost(U , R, b, x);

// cost in dimension y
4 c y = getCost(U , R, b, y);
5 if cx ≤ c ythen
6 strip partition in x dimension;
7 end
8 else
9 strip partition in y dimension;

10 end
11 end

clude Z-curve, Gary-coded curve, and Hilbert curve. Among those approaches, Hilbert

curve is shown [86] to have better clustering property for two dimensional objects. In

our implementation, we use Hilbert curve to map the centroid of the spatial objects to

obtain the curve value, and sort the dataset based on the curve value. Then, we group

each consecutive b objects together to form a spatial partition, and the union of their

extent is the final partition boundary. However, as the final partition boundaries may

overlap with each other, we rescan the dataset to perform the replication process.

Algorithm 10: Sort-Tile-Recursive partition (STR)
Input: a set of spatial objects R
Input: partition payload b

1 m = ⌈
$
|R|/b ⌉;

// m strips in dimension x
2 S = stripPartition (R, x);
3 for i← 1 to m do

// m strips in dimension y
4 t = stripPartition (S[i], y);
5 end

82

Sort-Tile-Recursive Partition (STR)

Packing spatial objects for bulk loading spatial index can be regarded as a “mini-

partition” step. Most often the leaf nodes are pre-packed in order to generate low

level nodes of the index, and higher level index nodes are constructed from the leaf

nodes. Similarly, we can use packing algorithms to generated spatial partitions such

that we only generate the lowest level index nodes, and the node boundary serves as

partition boundary. STR [79] first partitions the spatial universe into large vertical

strips, then each strip is further partitioned in the horizontal direction. Algorithm 10

illustrates the partition process.

Figure 5.2 shows a simple example in which a set of 32 randomly distributed spatial

objects are partitioned with different spatial partition algorithms we described above.

5.4 Experiments

We use Amazon EMR for our benchmarking tasks. For single thread benchmarking of

partition algorithms, we use a large memory physical machine that comes with 128

GB memory. For spatial join query scalability tests, we use general purpose extra-large

instance as our core and task nodes. Each extra-large instance is equipped with 15 GB

memory, 4 virtual cores and 4 disks with 1680 GB storage (4× 420 GB). The Amazon

Machine Images (AMI) version we used for the cluster nodes is 3.0.2. Amazon S3 is

used as the primary data storage for data serving.

5.4.1 Parameters and Metrics

Partition Payload

The two datasets, OSM and PI, are from different application domains, and they have

different characteristics. Therefore, using the same parameter to partition both datasets

83

(a) FixedGrid (b) BSP

(c) HC (d) SLC

(e) BOS (f) STR

Figure 5.2: Spatial partitions generated by different algorithms (the bigger rectangles
in colors represent partition boundaries, and the small rectangles represent the spatial
objects)

may be problematic. For example, if we partition the smaller dataset with an expected

payload of c – a perfect parameter for this dataset that yields best query performance,

it might be a too fine granular partitioning for the larger dataset. To be able to make

84

the results comparable, we define the partition payload relative to the dataset size. We

use a wide range of fractions that will be multiplied with the dataset size to obtain the

actual partition payload. Table 5.2 shows those numbers.

f 0.001 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 5.0

Table 5.2: Partition parameters: fraction (×10−2)

Boundary Object Ratio

We define a simple metric to study the relationship between partition granularity and

partition quality in terms of boundary objects. For a dataset R that partitioned into k

partitions P = {p1, p2, ..pi..pk}, we define the boundary object ratio as:

λ =

∑k
i=1 |pi|
|R| − 1 (5.1)

λ is a real value that lies in the interval [0,∞). If a spatial partitioning does not induce

any boundary objects, the value of λ would be 0.

5.4.2 Comparison of Partition Quality

Before we evaluate the partition results with real queries, we present some statistical

properties of the generated partitions which can provide us insights on the partition

algorithm behavior and quality.

Partition Balance

Figure 5.3 shows standard deviation of generated partitions for different partition al-

gorithms on two datasets. Here, we use standard deviation as a measure of partition

skewness. The horizontal axis represents the expected partition payload — a granular-

ity value that we use to partition the datasets. The vertical axis represents the standard

85

deviation of generated partition payloads. Two conclusions can be made from the fig-

ure. First, as the partition granularity increases, the skew tends to increase very quickly

for all methods. Therefore, a very coarse level spatial partitioning should be avoided

for parallel processing tasks that suffer from data skew. Second, not surprisingly, FG

generates significantly skewed partitions compared to other approaches.

FG BSP BOS HC STR SLC

102
103
104
105
106
107
108

102 103 104 105 106 107

St
an

da
rd

 D
ev

ia
tio

n

Partition Payload
(a) osm

100
101
102
103
104
105

101 102 103 104 105
St

an
da

rd
 D

ev
ia

tio
n

Partition Payload
(b) pi

Figure 5.3: Standard deviation of partition results

If we compare the same approach across two datasets with the same parameter set-

ting, we will find that the partitions generated from the OSM dataset is more skewed

than the partitions generated from the PI dataset. That means that, overall, the inher-

ent skew in OSM is much severe than the PI dataset. Furthermore, the FG partitioning

for PI dataset is considerably better than the FG partitioning of OSM dataset. Therefore,

we can conclude that, for a evenly distributed dataset, the FG approach can generate

a reasonably well partitioning. However, if the dataset is highly skewed, FG approach

may generate a very low quality partitioning.

Adaptive approaches, such as STR, BOS and SLC, should be able to handle certain

level of data skew as they can make smarter data oriented partition decision. We can

see from the figures that corresponding lines for those approaches are relatively flat

until the partition granularity gets large. However, as the partitions get larger, the

86

adaptability of those algorithms also approaches their limitations.

One interesting result we did not expect to see is that partitions generated by HC

approach are also as skewed as FG partitions, and for the PI dataset HC is not even

as good as FG. As HC approach is a data oriented approach that traditionally used for

bulk loading spatial indexes, it is surprising that the partitioning from HC has such high

imbalance.

FG BSP BOS HC STR SLC

10-5
10-4
10-3
10-2
10-1
100
101

102 103 104 105 106 107

λ

Partition Payload
(a) osm

10-3
10-2
10-1
100
101
102

101 102 103 104 105

λ

Partition Payload
(b) pi

Figure 5.4: Ratio of boundary objects

Boundary Objects

Figure 5.4 shows the ratio of boundary objects generated by different algorithms. We

can see the overall trend that, for both datasets, as the partition granularity increases

the ratio of boundary objects decreases. FG seems to be a good algorithm if our main

objective is to have less boundary objects. However, as both figures show, a very fine

granular partitioning is problematic as it significantly increases the dataset size, and

in certain cases such increase can be dramatic. For example, if we look at the λ value

for the first horizontal axis data point in Figure 5.4(a), for Strip partitioning (SLC)

the boundary object ratio is 1.86, whereas the same data point value is 16.1 in Figure

5.4(b). Such a large increase in data size is certainly not acceptable, and we can

87

conclude that a very fine granular partitioning is not a practical approach for large

scale query processing.

Interestingly, in both figures, the lines for the slicing approaches, SLC and BOS, have

higher slopes than other approaches. This indicates that, for those partitioning algo-

rithms, even a slight increase in the partition payload can contribute to significantly less

number of boundary objects. Therefore, in practice, those partition methods should be

configured to generate a relatively larger size partitions so that the number of boundary

objects are reasonably small.

5.4.3 Effects of Partitioning on Query Performance

In this section, we empirically evaluate partition algorithms on different configurations

to study how a specific partitioning affects the query performance, and investigate the

relationship between partition granularity and query performance. The experiments

are performed on a 50 node Amazon AWS MapReduce cluster, and general purpose

AWS instances are used as compute nodes and storage nodes. Each experiment is con-

ducted three times, and average of those three runs is used to account for performance

variations in cloud environment.

FG BSP BOS HC STR SLC

 0

 100

 200

 300

103 104 105

Ti
m

e
(m

in
)

Bucket size

 600
 1000
 1400

(a) osm

 0
 20
 40
 60
 80

 100
 120
 140
 160

101 102 103 104 105

Ti
m

e
(m

in
)

Bucket size
(b) pi

Figure 5.5: Spatial join query performance

88

Figure 5.5 shows the performance of the spatial join query on two datasets. The hor-

izontal axis represents the partition granularity, and vertical axis represents the query

performance. Clearly, neither a very fine or very coarse partitioning yields the optimal

query performance. For a fine granular partitioning, the main cause can be attributed

to the high boundary object ratio which not only increases the I/O overhead, but also

the extra computation overhead. For a very coarse granular partitioning, however, the

root cause is the data skew between partitions.

Recall that, earlier in section 3.6, our cost analysis framework suggests that there

is a point of optimal partition granularity that yields best query performance. The per-

formance numbers on both datasets support such case. As the figures show, overall,

query performance is close to the optimal in mid-range of horizontal axis, and perfor-

mance starts to degrade as the partition granularity increases. However, if we compare

different algorithms over a wide range of partition granularities, it is difficult to gener-

alize such statement. Specifically, BSP and STR have relatively better performance on

a wider range of partition granularities, and the performance starts to suffer only after

the partition granularity becomes too large. This can be attributed to the properties of

these algorithms that they can adaptively handle data skew and boundary objects.

Performance variance between datasets. In Figure 5.5(a), the performance of dif-

ferent approaches are tiered. FG and HC have similar performance, and their perfor-

mance are almost orders of magnitude worse than other approaches (due to the long

query runtime, we only report one data point for FG). While performance of HC is

still the worst on PI dataset as shown in Figure 5.5(b), performance of FG, however,

is almost optimal for most cases. Clearly, specific characteristics of a dataset are con-

tributing to such difference. Our observation indicates that PI dataset consists of large

number of small objects that are fairly evenly distributed across space, whereas OSM

dataset consists of variety of objects of all sizes that are clustered around a number of

hotspots. If we simply consult to the statistical properties from the previous subsection

89

5.4.2, we can also see that FG partitioning of PI dataset is less skewed compared to the

OSM dataset. Moreover, the number of boundary objects from FG partitioning is very

small on all partition granularity. Due to those reasons, on PI dataset, FG partitioning

achieves a balanced partitioning for “free”, and has an unfair advantage over other

approaches.

5.5 Summary

A good spatial partitioning schema is essential for optimal query performance and sys-

tem efficiency. In this paper, we formally introduced the spatial partition problem, and

presented a comprehensive study of six different partitioning algorithms. We catego-

rized the algorithms along three dimensions, and provide a systematic evaluation of

the algorithms on two real world datasets from different domains. Our study reveals

several insights on how partitioning effects query performance and what factors should

be considered for effective spatial partitioning. The results provide practical guidelines

for designing spatial partitioning for large scale parallel spatial query processing.

90

Chapter 6

Efficiency Improvements for Spatial

Data Partitioning

In this chapter we study the partition efficiency of different algorithms, characterize the

spatial partition algorithms in terms of runtime performance. We provide a paralleliza-

tion approach on MapReduce to improve spatial partition performance, and discuss a

sampling based approach that is inexpensive to compute.

6.1 Runtime Cost of Spatial Partitioning Algorithms

Computational complexity of finding an optimal spatial partitioning is NP-hard. For

spatial query processing tasks, performance of a query on an optimal partition layout

may not be so different than the one on a suboptimal partitioning. Therefore, finding

a reasonably well partitioning in an efficient manner has practical implications for

many real world applications. In modern database systems, partitioning can be easily

achieved by simply computing a hash function on some data fields. However, spatial

partitioning can be expensive to compute.

Figure 6.1 shows the runtime cost of partition algorithms on two datasets. To per-

form a fair comparison, the time for reading the dataset from the disk, and writing the

91

FG BSP BOS HC STR SLC

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

FG BSP HC SLC BOS STR

Ti
m

e
(s

ec
)

0.001 66.1

(a) osm

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

FG BSP HC SLC BOS STR

Ti
m

e
(s

ec
)

0.006 5.63

(b) pi

Figure 6.1: Spatial partition performance

partition results to the disk is not included in the performance measurement. The per-

formance time only includes the time for deriving the actual partition boundaries after

the dataset is loaded into the main memory of a single machine. Depending on the ac-

tual runtime performance, algorithms can be roughly categorized into three categories

– fast (FG, BSP), medium (HC, STR), and slow (SLC, BOS). For both datasets, FG par-

tition has the lowest runtime cost which is only in the range of milliseconds, and BSP

has the second best performance. However, other four algorithms require considerable

amounts of time to generate partitions. Specifically, the space slicing approaches – SLC

and BOS, require more than an hour to derive a partitioning on OSM. This is mainly

due to the nature of the algorithms that SLC and BOS not only sort the dataset on one

dimension, they also perform lots of boundary object examination. The main cost of

HC is the Hilbert Curve calculation and sorting based on the curve value. The perfor-

mance of the algorithms on different datasets are roughly similar, with the exception

of HC that has a slightly slower performance on the PI dataset compared to the OSM.

Figure 6.2 shows the runtime performance of the algorithms over different parti-

tion granularity. While the performance of the algorithms do not depend too much on

the partition granularity, there are noticiable differences. Intuitively, a finer granular-

92

FG BSP BOS HC STR SLC

 0.01
 0.03

103 104 105 106
Bucket size

 65
 90

Ti
m

e
(s

ec
) 800

 1000

 4400
 4800

(a) osm

 0.05
 0.15

101 102 103 104 105
Bucket size

 15
 30

Ti
m

e
(s

ec
) 62 64

 200
 300

(b) pi

Figure 6.2: Spatial partition performance variance

ity partitioning entails more cpu cycles, and therefore it is expected that algorithms

run slower for small payload values. Performance numbers of FG and BSP show such

tendency. However, depending on the algorithm and dataset characteristics such hy-

pothesis may not hold true. For example, the main cost in HC partitioning comes from

calculating and sorting the spatial objects based on the Hilbert curve value. Regardless

of partition granularity, such cost is constant. Therefore, as the figure shows, per-

formance of HC does change with partition granularity. Interestingly, STR has lightly

degraded performance on a larger partition granularity on OSM dataset. The specific

reasons are not completely clear to us, and we are planning to investigate such problem

in future work.

If we compare relative performance of the algorithms across the two datasets, the

lines for PI dataset is more smooth and predictable. For example, on OSM dataset,

SLC and BOS have an irregular runtime performance over different partition payloads.

However, those algorithms do not exhibit the same behavior in the PI dataset. Given the

dataset characteristics we discussed earlier, we can conclude that dataset characteristics

have implications for the algorithm performance.

In a spatial data warehousing scenario, the underlying dataset is large and relatively

93

stable, and queries run on the same dataset many times. In such case, an approach

that produces a balanced partitioning but requires significant computational resources

may be acceptable as it improves the query performance in the long run. However,

in some other application scenarios such as scientific data exploration and simulation,

queries consume large amounts of intermediate data that are generated quickly, and

most queries run only once as the data being generated. In such cases, a fast parti-

tioning algorithm is critical for achieving overall fast query response. Here, we explore

two different approaches towards improving spatial data partitioning efficiency, namely

parallel spatial partitioning and partitioning with sampling.

6.2 Two Approaches for Improving Efficiency

6.2.1 Parallel Partitioning with MapReduce

Spatial partitioning is a time consuming process. As the performance numbers in pre-

vious section show, spatial partitioning on a moderately big dataset may take hours.

We developed MapReduce based spatial partitioning to improve the performance of

spatial query and spatial ETL process. Our parallelization approach is based on follow-

ing two insights. First, spatial partition algorithms involve some kind of sorting based

on a derived spatial value, and MapReduce can perform such task very efficiently. We

can tweak the shuffle-and-sort phase of MapReduce to perform such task for (almost)

free. Second, as different regions of a spatial dataset can be partitioned independently,

rather than changing the algorithms for parallelization, we can run the partition algo-

rithms on different regions of the dataset in parallel. Although the generated partition

layout may be different from the one generated by a single thread partitioning pro-

gram, it is acceptable as long as the partitioning is reasonably well.

We propose following approach for MapReduce-based parallelization of spatial par-

tition algorithms. First, similar to Hadoop Terasort [91], we sample the dataset to gen-

94

Algorithm 11: MapReduce based spatial partition
Input: a set of spatial objects R
Input: partition payload b

1 S = sample_for_partitioning(R);
2 function Map(k,v):
3 anchor = getAnchor(v);
4 ke y = calculateKey(anchor,S);
5 emit(ke y , v);

/* shuffle and sort by MapReduce */
6 function Reduce(k,v):

/* partition the bucket with algorithm X */
7 P = genPartitionX(v);
8 emit(P);

erate an anchor point list which will be utilized in the partition function of MapReduce

for partition assignment. In the Map phase we calculate a spatial ordering anchor, such

as geometrical center or Hilbert Curve value, and generate a key based on the sample

points generated previously. Next, the MapReduce framework will partition the objects

into groups based on their anchor location and sorts them on the anchor value. At this

point, dataset is roughly partitioned into large spatial partitions. Later in section 7.4,

we will discuss issues related to this coarse level partitioning. In the reduce phase, each

reducer will work on a single large partition, and further partitions them into smaller

partitions. Algorithm 11 gives a sketch of this approach.

6.2.2 Partitioning on Sampled Data

Efficiency of a partition algorithm is subject to a number of factors such as algorithm

runtime complexity, dataset characteristics and size. In relational database systems,

sampling is used in various tasks to avoid full dataset processing. For example, typi-

cal histogram construction algorithms work on a small fraction of sampled data, thus

avoiding the expensive full dataset statistics. Such approach is shown to be practical

and efficient for query processing and dataset approximation. Therefore it is natural

95

to ask that if we can generate a spatial partition schema on a sampled dataset, which

reasonably approximates a full dataset partitioning.

Specifically, given a sampling ratio γ, we uniformly sample the dataset to get a re-

duced dataset of size γ|R|, and run a partition algorithm on the this reduced dataset.

Then, we map the generated partition layout onto the original dataset for final partition

assignment and boundary object replication. Sampling ratio is the main control vari-

able in the sampling based approaches. If the sampling ratio is too low, the resulting

partition quality may suffer. On the other hand, if the sampling ratio is unnecessarily

high, the partition efficiency may suffer while the partition quality is only marginally

improved.

One problem with sampling based partitioning is that some approaches fail to gen-

erate an effective spatial partitioning on sampled dataset. For example, HC and STR

generates the partition regions that may not cover the entire spatial universe (Fig.

5.2(c) and 5.2(f)) and the partition region MBRs are tight. In such case, the result-

ing partitions from the sampled dataset can not be used without further fix. How to

adapt those approaches for spatial partitioning on sampled dataset is a problem we are

planning to explore in our future work.

6.3 Experiments

6.3.1 MapReduce based Approach

To test efficiency and scalability of our MapReduce based parallel partitioning ap-

proach, we modified and tested selected set of four partitioning algorithms, namely

BSP, SLC, BOS and STR. The rationale in such selection is that, 1) parallelization of

FG and HC is straightforward, and 2) they generate suboptimal partitioning in most

cases. Here, we select a set of three expensive spatial partitioning approaches (SLC,

BOS, STR) to experiment. While BSP is reasonably fast, we also include it in our ex-

96

periments to compare its performance with other approaches. Experiments are also

performed on the Amazon EMR, and unlike the performance measurement in previ-

ous subsection, here the runtime performance includes both I/O cost and computation

cost.

 0

 500

 1000

 1500

 2000

 2500

 6 12 25 50

Ti
m

e
(s

ec
)

Cluster size (# of nodes)

SLC
BOS
STR
BSP

(a) scalability

 250
 350
 450
 550
 650
 750

 50 200 500 860

Ti
m

e
(s

ec
)

Bucket size (x103)

SLC
BOS
STR
BSP

(b) performance

Figure 6.3: Parallel partitioning performance

Figure 6.3(a) shows a scalability chart for the three MapReduce based parallel par-

titioning approaches on OSM dataset. The horizontal axis represents the number of

nodes used for parallelization, and the vertical axis represents the partition runtime.

The performance is measured with a top level coarse partition granularity of 500000.

While this number seems to be arbitrary, our experiments show that the scalability is

not affected by the coarse partitioning granularity. As the figure shows, the MapReduce

based partitioning approach is very scalable and efficient. With the increased cluster

capacity, the runtime performance improves almost linearly. With parallelization, the

partition efficiency of the algorithms increased by an order of magnitude. For example,

the runtime of BOS decreased from 4000 seconds to merely 300 seconds. Although

the algorithms have very different runtime performance on a single thread implemen-

tation, the performance after parallelization seems to be homogeneous.

Recall that our parallelization algorithm performs partitioning in two steps. The

top level coarse partitioning for parallel partitioning, and bottom level partitioning in

97

which the coarse partitions are re-partitioned with specific spatial partition algorithms.

Each step involves a partitioning granularity parameter which controls partition size.

To study the effects of those parameters on parallel partitioning performance, we per-

form two seperate experiments. In the first experiment, we fix the coarse top level

partitioning granularity and test the runtime performance with different bottom level

partitioning granularity. Not surprisingly, the performance difference between different

parameters are too little to be significant, and consequently we can conclude that the

bottom level partitioning granularity has no noticeable effect on parallel partitioning

performance.

In the second experiment, we fix the bottom level partitioning, and change the

top level partition granularity. Figure 6.3(b) shows performance variations of parallel

partitioning for different partition granularity. We can see that as the top level par-

titioning granularity gets coarser, the performance gets better. Our profiling of the

parallel algorithms provides following explanation. Like Terasort [91], the paralleliza-

tion algorithms use a sampled data file for assigning the spatial objects into separate

partition groups which has a global total ordering. In a finer granularity top level spa-

tial partitioning, the total order based partition group assignment becomes the major

bottleneck. Interestingly, the visualization of the partition boundaries show that spa-

tial partition results from a larger top level partitioning has more resemblance to the

partition results from a single threaded approach.

6.3.2 Sampling based Approach

Figure 6.4 shows a statistical evaluation of three sampling based partitioning approaches

on the OSM dataset. The figures on the left column show the standard deviation – mea-

sure of skewness – of generated partitions, and the figures on the right column show

boundary object ratio. The full dataset is sampled with different sampling rate (shown

in the legend of the figures), the resulting partitions from the sampled dataset are com-

98

102

103

104

105

106

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(a) BSP standard deviation

102

103

104

105

106

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(b) BSP ratio of boundary objects

103

104

105

106

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(c) SLC standard deviation

10-4
10-3
10-2
10-1
100
101

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(d) SLC ratio of boundary objects

103

104

105

106

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(e) BOS standard deviation

10-4
10-3
10-2
10-1
100
101

102 103 104 105 106 107

Bucket size

10-4

10-3

10-2
1.0

(f) BOS ratio of boundary objects

Figure 6.4: Quality of partitions generated by sampling based approaches

pared against the the partitioning generated from the full dataset. The sampling rate

of 1.0 represents full dataset partitioning. From the figures we can see that sampling

can be a very effective approach for spatial partitioning.

Intuitively, higher the sampling rate, the better we can preserve data distribution,

and consequently the partitioning on the sampled dataset is of higher quality. If we

look at the figures on the left column, we can see that partitions generated with higher

sampling rate are less skewed compared to lower sampling rate partitioning. However,

99

depending on the algorithm, partition skew can be different. For example, as BSP

implicitly try to avoid a skewed partitioning, the impact of higher sampling rate is

not significant. Whereas in SLC and BOS, higher sampling rate seems to be always

beneficial. There is a minor exception to this case. Specifically, in SLC and BOS, if the

partition payload is reasonably large, sampling based approaches can generate a less

skewed partitioning than the full dataset partitioning. This is particularly interesting,

and it has important implications for certain application scenarios. First, by using a

sampling based approach we can significantly reduce the partition time. Second, aside

from the improved performance, we can actually obtain a less skewed partitioning with

the minor limitation of large partition size. Interestingly, the ratio of boundary objects

generated by sampling based partition approaches is not completely dependent on the

samping ratio. Overall, the sampling based partitioning approaches generate more

boundary objects compared to the full dataset partitioning, although the variation is

not significant.

100

Chapter 7

Haggis – Hardware Acceleration of

Hadoop-GIS

GPUs have been successfully utilized in numerous applications that require high per-

formance computation. Both approaches, GPU and MapReduce, have their own limi-

tations and advantages, and have been separately utilized in spatial query processing

tasks to boost application performance. However, it is unclear that how MapReduce

and GPU, while being two vastly different parallelization strategies, can be fused to-

gether to effectively deal with the spatial big data challenges. In this chapter, we

explore a such synergy of parallelization techniques for large scale spatial query pro-

cessing.

7.1 Introduction and Related Approaches

Previous research on spatial query workload characterization [104] shows that spatial

queries are a lot more compute-intensive compared to the conventional non-spatial

query workloads. While MapReduce, with massive scalability, can effectively address

data-intensive aspect of large scale spatial queries, it is not well suited to handle

compute-intensive aspect of spatial queries. The multidimensional nature of spatial

101

data analytics and the complexity of spatial queries requires a high performance ap-

proach that can leverage multiple parallelism mechanism for query processing. In re-

cent years, GPGPU has become mainstream as multi-core computer architecture and

programming techniques become mature. Now, a single machine can contain different

parallel processors like multi-core CPUs or GPUs, and such hardware configurations

is readily available on major cloud computing platforms. In the coming years, such

heterogeneous parallel architecture will become dominant, and software systems must

fully exploit such heterogeneity to deliver performance growth [44].

In this chapter, we explore opportunities for such synergy between two different

parallelization techniques, MapReduce and GPU, for large scale spatial query process-

ing. We develop Haggis – HadoopGIS accelerated with a GPU engine. Due to the differ-

ence in the parallelization model, there are several problems that need to be addressed

and that is the focus of this work. First, integration of two programing models is not

trivial. Previous research efforts [67] propose to modify the MapReduce programming

model to bring those two parallelization frameworks together in a unified framework.

In Haggis, we take a decoupled approach in which we use GPU as an engine acceler-

ator without modifying underlying MapReduce programming model. Second, as GPU

computation requires the data to be moved to the device memory which incurs off-chip

memory movement cost. Such data movement need to be well orchestrated to reduce

the I/O cost and fully exploit the computation power of GPU. Third, to achieve best

system performance, the task scheduler need to judiciously place tasks on CPU or GPU,

so that the system resource is fully utilized. There are several design decisions towards

building an integrated system, and we explore various issues in detail.

Previously, in [47], an approach is proposed on bulk-construction of R-Trees through

MapReduce. In [124], a spatial join method on MapReduce is proposed for skewed

spatial data, using an in-memory based strip plane sweeping algorithm. It uses a du-

plication avoidance technique which could be difficult to generalize for different query

102

types. Hadoop-GIS takes a hybrid approach on combining partitioning with indexes

and generalizes the approach to support multiple query types. Besides, our approach is

not limited to memory size. VegaGiStore [125] tries to provide a Quadtree based global

partitioning and indexing, and a spatial object placement structures through Hilbert-

ordering with local index header and real data. The global index links to HDFS blocks

where the structures are stored. Work in [19] takes a fixed grid partitioning based ap-

proach and uses sweep line algorithm for processing distributed joins on MapReduce.

The work in [62] presents an approach for multi-way spatial join for rectangle based

objects, with a focus on minimizing communication cost. A MapReduce based Voronoi

diagram generation algorithm is presented in [35]. In our work [33], we present re-

sults on supporting multi-way spatial join queries and nearest neighbor queries for

pathology image based applications. Previously, we proposed Pixelbox [120] for ac-

celerating cross-comparison queries for pathology image analysis. In [95, 122, 123],

authors discuss a GPU accelerated approach for spatial query processing. However,

none of those approaches are concerned with an integrated approach which combines

both MapReduce and GPU.

There are several recent efforts on task scheduling for hybrid machines [37, 66,

68, 82, 98, 113, 114, 115]. Most of the previous works deal with task mapping for

applications in which operations attain similar speedups when executed on a GPU vs

a CPU. On the other hand, we are exploiting performance variability to better use

heterogeneous processors.

7.2 GPU Accelerated Spatial Query Processing

7.2.1 Spatial Queries on CPU

Most spatial queries are compute-intensive [104] as they involve geometric compu-

tations on complex multi-dimensional spatial objects. Spatial objects have complex

103

extent which generally described with multi-dimensional data points. For example,

typical spatial objects such as lines and polygons are need to represented with several

two dimensional points (in a 2D Euclidean coordinate system), and those data points

are stored and processed together. Therefore, even simple operations on those objects

become expensive. Geometric computation is not only used for computing measure-

ments or generating new spatial objects, but also as logical operations for topology

relationships.

To avoid the high cost of the geometry computation and reduce unnecessary disk

I/O, spatial queries employ a filter-and-refine strategy in which queries are processed

in two phase. During the filter phase, spatial objects are approximate with minimum

bounding rectangles (MBRs), and objects that do not satisfy the query predicate even

on the MBRs are eliminated. During the refinement step, candidate objects from the

filter step are processed with real geometry operations, and the objects that satisfy

the query predicate are reported as final query results. While spatial filtering through

MBRs can be accelerated through spatial access methods, spatial refinements such as

polygon intersection verification are highly expensive operations. For example, spatial

join queries such as spatial cross-matching or overlaying multiple sets of spatial objects

on an image or map can be very expensive to process.

0 200 400 600
Runtime (ms)

io parse index filter refine

Figure 7.1: Spatial join query cost breakdown on CPU

104

To illustrate the high computational cost of spatial queries, we run a single threaded

spatial join query on a small dataset. The join query here simply reads in the data from

a file which resides on the secondary storage, builds an RTree index on the data, and

performs an indexed spatial join operation, then calculates the area of intersection for

intersecting polygons in the dataset. Figure 7.1 shows the cost of each query com-

ponents. In the figure, the refinement operator includes both geometry based refine-

ment operation for checking polygon intersection, and the measurement of intersecting

area. Clearly, the computation component cost shadows other query components, and

becomes the main performance bottleneck in large scale spatial query processing.

7.2.2 Spatial Queries on GPU

Graphics processing units (GPUs) have been successfully utilized in numerous appli-

cations that require high performance computation. Mainstream GPGPUs come with

hundreds of cores, and can run thousands of threads in parallel. Compared to the multi-

core computer systems (dozens of cores), GPUs can scale to large number of threads

in a cost effective manner. Therefore, GPUs have the great potential to improve the

performance of spatial queries by eliminating the computation bottleneck.

Most spatial algorithms are designed for executing on the CPUs, and the branch in-

tensive nature of CPU based algorithms require the algorithm to be rewritten for GPUs

for satisfactory performance. For such need, PixelBox is proposed in [120]. PixelBox is

an algorithm specifically designed for accelerating cross-matching queries on the GPUs.

It first transforms the vector based geometry representation into raster representation

using a pixelization method, the performs operations on such representation in par-

allel. The pixelization method reduces the geometry calculation problem into simple

pixel position checking problem, and it is very suitable for execution on GPUs. Since

testing the position of one pixel is totally independent of another, it can parallelize the

computation by having multiple threads process the pixels in parallel. Furthermore,

105

since the position of different pixels are computed against the same pair of polygons,

the operations performed by different threads follow the SIMD fashion, a parallel com-

putation model that GPUs are designed for.

0 20 40 60 80
Runtime (ms)

io parse index filter refine

Figure 7.2: Spatial join query cost breakdown on GPU

Figure 7.2 shows the performance and query cost breakdown for the same spatial

join query in Figure 7.1. As the figure shows, PixelBox achieves almost an orders of

magnitude speedup compared to the CPU implementation, and significantly reduces

the cost of computation. Note that, here we also utilize GPU for parsing the input

data.

7.3 Implementation Details of Haggis

Haggis is an extension of HadoopGIS using GPUs. Haggis utilizes MapReduce for multi-

node query parallelization, and accelerates queries using GPU within single node, thus

elegantly employing two different parallelization paradigms for performance.

106

7.3.1 Architectural Details

Within a Mapper/Reducer task, HadoopGIS relies on RESQUE for spatial processing.

Therefore, the MapReduce parallelization is decoupled from the actual spatial query

operations, and we can easily extend the query engine for query performance.

Figure 7.3: Architecture of HadoopGIS

Figure 7.3 shows an architecture overview of Haggis. Other than the query engine,

the systems are identical. In Haggis extension, we implemented a number of GPU

based spatial query operators, and integrated into the RESQUE engine. During the

query processing phase, the RESQUE engine can arbitrarily choose CPU or GPU for

executing the query, and such decision is transparent to the user. Query optimizer is

responsible for making such decision to achieve optimal query performance. One major

advantage of Haggis is flexibility. In a computer system equipped with GPUs, Haggis

can utilize the extra computation power for performance, and if such resource is not

available Haggis can simply rely on the CPU and move on.

107

7.3.2 Task Assignment

One critical issue for GPU based parallelization is task assignment. As Haggis uses

MapReduce based parallelization at the higher level, tasks arrive in the form of data

partitions along with spatial query operation on the data. Given a partition, the query

optimizer has to decide which device should be assigned to execute the task. Such

decision is not simple, and it depends on how much speedup we can get by assigning

it to CPU/GPU. If we schedule a small task on GPU, we may not only get very little

speedup, the opportunity cost of executing some other high speedup task on GPU can

be high.

In Haggis, we use a predictive modeling approach for making such decision. Similar

to the speculative execution model in Hadoop, we sample certain amounts of data (10%

in our experiment) for performance profiling. We execute those data on both GPU and

CPU, and measure the speedup. Then we use a simple polynomial line fitting algorithm

to derive the performance model, and corresponding parameters on the sampled data.

The for upcoming tasks, this model is used to predict to calculate the potential speedup

factor. If the speedup factor is higher than certain threshold, we assign the task to GPU,

otherwise to the CPU.

7.3.3 Effects of Task Granularity

Data need to be shipped to the device memory to be executed on the GPU device.

Such data transfer incurs certain I/O cost. While the memory bandwidth between GPU

and CPU is much higher compared to the bandwidth between memory and the disk,

it should be minimized to achieve optimal performance. To achieve optimal speedup,

the compute to transfer ratio needs to high for GPU applications. Therefore, Haggis

need to adjust the partition granularity to fully utilize system resources. While larger

partitioning is ideal for achieving higher speedup on GPU, it causes data skew which

108

is detrimental for MapReduce system performance. At the same time, a very small

partition is not a good candidate for hardware acceleration.

7.4 Experiments

7.4.1 Effects of CPU for co-processing

In the first experiment we study if the number of CPUs has an effect on the query

performance. Specifically, the haggis scheduler only utilizes the given number of CPUs

for co-processing. Ideally, if there are extra compute resources, the system should

utilize such resource and try to improve the query performance. However, due to the

scheduling issues, such objective is hard to achieve.

0

300

600

900

2 3 4 5 6 7
Reducer count

R
un

tim
e

(s
ec

)

gpu
cpu
cpu+gpu

(a) Single CPU for co-processing

0

250

500

750

2 3 4 5 6 7
Reducer count

R
un

tim
e

(s
ec

)

gpu
cpu
cpu+gpu

(b) Eight CPUs for co-processing

Figure 7.4: Effects of available CPUs for query processing

Figures 7.4 shows the performance of spatial join query on two different config-

urations. The horizontal axis represents MapReduce level parallelization, and conse-

quently the number of reducers participated for query processing. The vertical axis

represents the query runtime. In Figure 7.4(a), only single CPU is used for query co-

processing as if the node is a single core machine, whereas in Figure 7.4(b), 8 CPU

cores are used for query co-processing. As Figure 7.4(a) shows, GPU can be helpful for

improving query performance, and we can see that with different MR parallelization

109

granularity the GPU accelerated system outperforms the CPU only system. However,

the speedup is not very high. We were expecting to see same speedup as we show

earlier in section 7.2. While partly this can be attributed to the data skew, data transfer

overhead, the result is not satisfactory for a GPU accelerated system. Furthermore, to

our dismay, given that there are enough CPU cores for query processing, GPU seems to

be less helpful as shown in Figure 7.4(b).

7.4.2 Effects of MR Parallelization

0

300

600

900

1 2 4 8
CPU count

R
un

tim
e

(s
ec

)

gpu
cpu
cpu+gpu

(a) Two reducer node

0

100

200

300

400

1 2 4 8
CPU count

R
un

tim
e

(s
ec

)
gpu

cpu
cpu+gpu

(b) Six reducer node

Figure 7.5: Effects of MapReduce parallelization

Next, we study how number of available reducer nodes effects query performance.

Figure 7.5 shows the performance of spatial join query on different cluster settings.

The horizontal axis represents the number of available cores for co-processing, and the

vertical axis represents the query runtime. As the figures show, with higher number of

parallel MapReduce nodes the query performance can be improved significantly. For

example, with single CPU core for co-processing, the query performance reduced from

1211 to 424 seconds. This also illustrates the advantage of such hybrid system which

can benefit from the scalability of MapReduce. With the help of GPU, this number

further reduced to 309 seconds. However, as the number of CPU cores increases, the

advantage of GPU is not so obvious.

110

7.5 Summary

Haggis – a hybrid system that combines the benefit of scalable and cost-effective data

processing with MapReduce, and the benefit of efficient spatial query processing with

GPU. Our preliminary experimental results demonstrate that Haggis provides a scalable

and effective solution for analytical spatial queries over large scale spatial datasets.

However, there are many challenges such as effective task scheduling and assignment,

and mitigating suboptimal partition granularity for achieving better speedup.

111

Chapter 8

HiveSP — An Implementation of

Hadoop-GIS

We integrate the Hadoop-GIS framework into Hive for public release. Hive provides a

declarative query interface – HiveQL, for running large scale MapReduce tasks. Cur-

rently we have a subset of spatial operators that we have integrated into Hive, and

our development team is working towards implementing the complete spatial opera-

tors defined in SQL/MM [107] standard, and their corresponding SQL-to-MapReduce

translators for Hive. HiveSP , is fully compatible with Hive and it provides an easy way

for querying massive spatial data. Given the large codebase, and difficulty of translat-

ing spatial SQL queries into efficient MapReduce operators, it may also lead to other

interesting research questions on spatial query optimization and translation.

8.1 System Architecture

The core of Hadoop-GIS is a partition based spatial query engine [33, 34] that supports

diverse spatial queries with optimal access methods in the MapReduce framework.

Spatial queries are translated into series of MapReduce code, and can be run in parallel

on a large number of cluster nodes.

112

Figure 8.1: Architecture of HiveSP

Figure 8.1 shows an architectural overview of Hadoop-GIS. Users interact with the

system by submitting SQL queries either from a command line or web interface; the

queries are parsed and translated into an operator tree by the spatial query translator,

and the query optimizer applies heuristics optimization rules to generate an optimized

query plan. For a query with spatial query operator, corresponding MapReduce code

are generated, which call an appropriate spatial query pipeline supported by the spatial

query engine. Generated MapReduce code are submitted to the execution engine for

execution. Spatial data is partitioned based on the spatial attribute which specified

in the table definition, and staged to the HDFS system for parallel access. There are

several key components in Hadoop-GIS that are developed to provide spatial query

processing capability.

• Spatial Query Translator parses and translates SQL queries into an abstract syn-

tax tree. We extended the HiveQL translator to support a set of spatial query

operators, spatial functions, and spatial data types.

113

• Spatial Query Optimizer takes an operator tree as an input and applies rule based

optimizations such as predicate push down or index-only query processing.

• Spatial Query Engine is a stand-alone spatial query engine which supports follow-

ing infrastructure operations: i) spatial relationship comparison, such as inter-

sects, touches, overlaps, contains, within, disjoint, ii) spatial measurements, such

as intersection, union, convexHull, distance, centroid, area, etc; iii) creating and

querying spatial access methods, such as R∗-Tree, for efficient query processing.

8.2 Query Language

Declarative query language interfaces to MapReduce, such as Hive, Pig and Scope, have

gained much momentum in recent years. Data scientists and applications developers

are also more comfortable with SQL queries compared to pure programming interfaces.

Moreover, most spatial applications are backed by spatial database systems which use

SQL as the primary query interface. Therefore, we extended HiveQL, a SQL-like query

language to Hive, to provide a high level and easy to use query interface to Hadoop-

GIS.

The query language inherits major operators and functions from ISO SQL/MM

Spatial, and extends it for more complex pattern queries and data partitioning con-

structs to support parallel query processing in MapReduce. Major spatial operations

include spatial query operators, spatial functions, and spatial data types. The spatial

query operators include topology based spatial relationships, such as ST_INTERSECTS,

ST_CONTAINS, ST_TOUCHES, and nearest neighbor operator ST_KNN. They can be cat-

egorized into two main types: binary operators to find spatial topology relationship

between two spatial objects, and aggregate operators to find spatial patterns among

a group of spatial objects. The spatial functions include unary functions, for example

ST_AREA; binary functions such as ST_DISTANCE, and aggregate functions. Currently

114

supported spatial data types include Point, Polygon, Box, and LineString.

We also developed query constructs which facilitate the parallel query processing

by partitioning the input data on spatial attribute. The query language provides a

PARTITION BY clause, which specifies a partition attribute on which the data is par-

titioned, and a partitioning method by which the input data is partitioned. So far,

the systems only supports regular fixed grid based tile partitioning. In future, we are

planning to implement other optimal partitioning approaches.

Example queries include: i) Spatial feature aggregation: aggregation or summary

statistics on computed features or spatial attributes. ii) Spatial range query: find spatial

object(s) which contained in a specified space (possibly followed by an aggregation

query). iii) Spatial join and spatial cross-matching: find correlations between multiple

sets based on topology relationships of the spatial objects. In a typical spatial data

warehousing scenario, user may also need to work with other business data sources

that are warehoused in the same system with spatial data. In such case, users can

write a mixture of spatial query and non-spatial query without switching to a different

system. Hadoop-GIS supports nested and mixed queries in a streamlined fashion.

8.3 Storage Layer

At the storage layer, the original HDFS is kept intact to insure backward compatibility

with existing Hadoop platforms. However, the internal organization of the spatial data

is optimized to insure better performance. Specifically, after tile based partitioning,

each record is assigned a internal tile id which indicates which tile this record belongs

to. There are two advantages of such tile based storage organization. First, it servers

as a logical parallelization unit for task creation and assignment. Second, similar to the

range partitioning in parallel database systems, it works as a “filtering” mechanism to

avoid redundant processing.

115

We also extend Hive index utility for creating persistent spatial index on the spatial

columns. This index data is stored in separate internal table which later used by the

query planner for query optimization. Since certain queries, such as window query, can

be processed more efficiently with the help of a spatial index, this would increase the

spatial query performance. Moreover, for queries that can be answered only using an

index, the I/O overhead can be significantly reduced by only scanning the index data

which has much smaller storage footprint compared to the whole table scan.

8.4 Query Processing

HiveSP uses the traditional plan-first, execute-next approach for query processing. There

are three key steps: query translation, logical plan generation, and physical plan gen-

eration. To process a query expressed in SQL, the system first parses the query and

generates an equivalent abstract syntax tree representation of the query. Preliminary

query analysis is performed in this step to ensure that the query is syntactically and

grammatically correct, and table metadata information is valid. Next, the abstract syn-

tax tree is translated into a logical plan which is expressed as an operator tree, and

simple query optimization techniques such as predicate push down, and column prun-

ing are applied in this step. Currently, system has a simple rule based query optimizer

which has limited capability. How to incorporate a cost based query optimizer is an on-

going research effort. Then, a physical plan is generated from the operator tree which

eventually consists of series of MapReduce jobs. Finally, the generated MapReduce jobs

are submitted to the Hive runtime for execution.

Major differences between Hive and Hadoop-GIS are in the logical plan generation

step. If a query does not contain any spatial operations, the resulting logical query

plan is exactly the same as the one generated from Hive. However, if the query con-

tains spatial operations, the logical plan is regenerated with special handling of spatial

116

operators. Specifically, two additional steps are performed to rewrite the query. First,

operators involving spatial operations are replaced with internal spatial query engine

operators. Second, serialization/deserialization operations are added before and after

the spatial operators to prepare Hive for communicating with spatial query engine.

An example query plan is given in Figure 8.2, which is generated by translating the

SQL query in Figure 8.5. As the query plan shows, the query translator generates the

table scan operators in the first step; during this process, query predicates are applied

to filter the input data; then, upon determining this is a spatial join operator, the query

translator generates a tile based join processing workflow, where each tile forms a

simple join task; each such task is marked for executing in the spatial query engine,

and appropriate input/output data formats are specified; each task is scheduled for

execution on Hadoop; after the spatial query engine finishes processing a tile, the

result is returned, and the execution privilege is returned to the Hive execution engine

which continues the processing task. As the workflow shows, the interaction between

spatial query engine and Hive execution engine is transparent to the user.

8.5 Software Setup

Hadoop-GIS is designed to be completely hot-swappable with Hive. Hive users only

need to deploy the spatial query engine on Hadoop cluster nodes, and turn the spa-

tial query processing switch on. To use the system, users can follow the same user

guidelines of using Hive. Any query that runs on Hive, runs on Hadoop-GIS without

any modification. Current version of Hadoop-GIS utilizes a set of UDFs from ESRI

GIS-tools-for-hadoop [9] library.

Schema Creation: Users create all the necessary table schema depending on their

warehousing need. The schema information is stored in the metastore. Spatial columns

need to be specified with corresponding data types defined in ISO SQL/MM Spatial.

117

Map

Reduce

TableScanOperator

table: ta

TableScanOperator

table: tb

FilterOperator

predicate: provenance=’A1’

FilterOperator

predicate: provenance=’A2’

ReduceSinkOperator

partition col: tile id

ReduceSinkOperator

partition col: tile id

SpatialJoinOperator

predicate:

ST Intersects(col[0.0],col[0.1])

SelectOperator

expressions: col[0],col[2] ...

FileOutputOperator

table: temp tb

Figure 8.2: Two-way spatial join query plan in HiveSP

Optionally users can specify spatial partition column to speed up query processing. An

example SQL query for creating the example table schema is given in Figure 8.3.

1 CREATE TABLE tcga_markups (markup_id BIGINT,
2 provenance STRING, hand_marked BOOLEAN,
3 center ST_POINT, polygon ST_POLYGON)
4 PARTITIONED BY TILE(polygon, 4096, 4096)
5 ROW FORMAT DELIMITED FIELDS TERMINATED BY ’\t’
6 STORED AS TEXTFILE ;

Figure 8.3: An example table schema

Data Loading: Then users can upload data which will be used to populate the schema.

Figure 8.4 shows an example. Data can be read either from a local path or a HDFS

118

path.

1 LOAD DATA [LOCAL] INPATH ’/data/tcga.wkt’ [OVERWRITE]
2 INTO TABLE tcga_markups ;

Figure 8.4: Data loading command

Querying: Users can submit SQL queries from the terminal within Hive Shell, or from

a web interface which designed for interactively viewing and analyzing data. Here,

Figure 8.5 illustrates a spatial join query for evaluating to two image segmentation

results.

1 SELECT
2 ST_AREA(ST_INTERSECTION(ta.polygon,tb.polygon))/
3 ST_AREA(ST_UNION(ta.polygon,tb.polygon)) AS ratio,
4 ST_DISTANCE(ST_CENTROID(tb.polygon),
5 ST_CENTROID(ta.polygon)) AS distance,
6 FROM tcga_markups ta JOIN tcga_markups tb
7 ON (ST_INTERSECTS(ta.polygon, tb.polygon) = TRUE)
8 WHERE ta.provenance=’A1’ AND tb.provenance=’A2’ ;

Figure 8.5: A spatial join query in HiveQL

119

Bibliography

[1] https://en.wikipedia.org/wiki/Satellite_imagery.

[2] https://foursquare.com/about.

[3] http://www.openstreetmap.org.

[4] http://craig-henderson.blogspot.com/2009/11/
dewitt-and-stonebrakers-mapreduce-major.html.

[5] https://cwiki.apache.org/confluence/display/Hive/
Configuratio+Properties.

[6] https://wiki.apache.org/pig/PigSkewedJoinSpec.

[7] https://web.cci.emory.edu/confluence/display/hadoopgis.

[8] http://libspatialindex.github.com.

[9] http://esri.github.io/gis-tools-for-hadoop.

[10] Arcgis. http://www.esri.com/software/arcgis.

[11] Db2 spatial. www.ibm.com/software/data/spatial/db2spatial.

[12] Geocouch. https://github.com/couchbase/geocouch.

[13] Greenplum database. http://www.greenplum.com/products/
greenplum-database.

[14] Ibm netezza. http://www-01.ibm.com/software/data/netezza.

[15] Monetdb. https://www.monetdb.org.

[16] neo4j/spatial. https://github.com/neo4j/spatial.

[17] Oracle spatial and graph. http://www.oracle.com/us/products/
database/options/spatial/overview/index.html.

[18] The sloan digital sky survey project (sdss). http://www.sdss.org.

[19] Spatialhadoop. http://spatialhadoop.cs.umn.edu.

https://en.wikipedia.org/wiki/Satellite_imagery
https://foursquare.com/about
http://www.openstreetmap.org
https://cwiki.apache.org/confluence/display/Hive/Configuratio+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuratio+Properties
https://wiki.apache.org/pig/PigSkewedJoinSpec
https://web.cci.emory.edu/confluence/display/hadoopgis
http://libspatialindex.github.com
http://esri.github.io/gis-tools-for-hadoop
http://www.esri.com/software/arcgis
www.ibm.com/software/data/spatial/db2spatial
https://github.com/couchbase/geocouch
http://www.greenplum.com/products/greenplum-database
http://www.greenplum.com/products/greenplum-database
http://www-01.ibm.com/software/data/netezza
https://www.monetdb.org
https://github.com/neo4j/spatial
http://www.oracle.com/us/products/database/options/spatial/overview/index.html
http://www.oracle.com/us/products/database/options/spatial/overview/index.html
http://www.sdss.org
http://spatialhadoop.cs.umn.edu

120

[20] Teradata. www.teradata.com/products-and-services/
teradata-geospatial.

[21] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.

[22] Vertica. http://www.vertica.com.

[23] Boost c++ libraries. http://www.boost.org/, 2013.

[24] Geos. http://trac.osgeo.org/geos, 2013.

[25] Pathology analytical imaging standards. https://web.cci.emory.edu/
confluence/display/PAIS, 2013.

[26] Apache hadoop. http://hadoop.apache.org.

[27] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.
Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for
analytical workloads. Proc. VLDB Endow., 2(1):922–933, Aug. 2009.

[28] D. Achakeev and B. Seeger. A class of r-tree histograms for spatial databases. In
SIGSPATIAL/GIS, pages 450–453. ACM, 2012.

[29] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In ACM SIGMOD Record, volume 28, pages 13–24, 1999.

[30] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data. Commun. ACM,
53, June 2010.

[31] A. Aji. High performance spatial query processing for large scale scientific data.
In Proceedings of the on SIGMOD/PODS 2012 PhD Symposium, pages 9–14. ACM,
2012.

[32] A. Aji, T. George, and F. Wang. Haggis: Turbocharge a mapreduce based spatial
data warehousing system with gpu engine. In ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data, BigSpatial ’14, 2014.

[33] A. Aji, F. Wang, and J. H. Saltz. Towards Building A High Performance Spatial
Query System for Large Scale Medical Imaging Data. In SIGSPATIAL/GIS, pages
309–318. ACM, 2012.

[34] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop-GIS: A
High Performance Spatial Data Warehousing System over MapReduce. Proc.
VLDB Endow., 6(11):1009–1020, Aug. 2013.

[35] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi. Voronoi-based
geospatial query processing with mapreduce. In CLOUDCOM, pages 9–16, 2010.

[36] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: effi-
cient query execution on raw data files. In Proceedings of the 2012 international
conference on Management of Data, pages 241–252. ACM, 2012.

www.teradata.com/products-and-services/teradata-geospatial
www.teradata.com/products-and-services/teradata-geospatial
http://www.vertica.com
http://www.boost.org/
http://trac.osgeo.org/geos
https://web.cci.emory.edu/confluence/display/PAIS
https://web.cci.emory.edu/confluence/display/PAIS
http://hadoop.apache.org

121

[37] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault. StarPU-
MPI: Task Programming over Clusters of Machines Enhanced with Accelerators.
In S. B. Jesper Larsson Träff and J. Dongarra, editors, The 19th European MPI
Users’ Group Meeting (EuroMPI 2012), volume 7490 of LNCS, Vienna, Autriche,
2012. Springer.

[38] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an object-oriented database
system: the story of O2. Morgan Kaufmann Publishers Inc., 1992.

[39] M. Bastos, R. Recuero, and G. Zago. Taking tweets to the streets: A spatial
analysis of the vinegar protests in brazil. First Monday, 19(3), 2014.

[40] D. S. Batory, T. Leung, and T. Wise. Implementation concepts for an extensible
data model and data language. ACM Transactions on Database Systems (TODS),
13(3):231–262, 1988.

[41] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An efficient
and robust access method for points and rectangles. In SIGMOD, 1990.

[42] J. V. d. Bercken and B. Seeger. An evaluation of generic bulk loading techniques.
In VLDB, pages 461–470, 2001.

[43] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A compar-
ison of join algorithms for log processing in mapreduce. In SIGMOD, 2010.

[44] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM,
54(5):67–77, 2011.

[45] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel processing of spatial joins
using r-trees. In ICDE, 1996.

[46] M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E. Richardson, D. T. Schuh,
E. J. Shekita, and S. L. Vandenberg. The exodus extensible dbms project: An
overview. Readings in object-oriented database systems, pages 474–499, 1990.

[47] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial
data with mapreduce. In SSDBM, pages 302–319, 2009.

[48] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database
design. In Proceedings of the 1982 ACM SIGMOD international conference on
Management of data, pages 128–136. ACM, 1982.

[49] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou.
SCOPE: easy and efficient parallel processing of massive data sets. PVLDB,
1(2):1265–1276, 2008.

[50] X. Chen, H. Vo, A. Aji, and F. Wang. High performance integrated spatial big
data analytics. In ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data, BigSpatial ’14, 2014.

122

[51] L. A. Cooper, A. B. Carter, A. B. Farris, F.Wang, J. Kong, D. A. Gutman, P.Widener,
T. C. Pan, S. R. Cholleti, A. Sharma, et al. Digital pathology: Data-intensive
frontier in medical imaging. Proceedings of the IEEE, 100(4):991–1003, 2012.

[52] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[53] D. DeWitt and J. Gray. Parallel database systems: the future of high performance
database systems. Communications of the ACM, 35(6):85–98, 1992.

[54] T. Eavis and A. Lopez. Rk-hist: an r-tree based histogram for multi-dimensional
selectivity estimation. In CIKM, pages 475–484. ACM, 2007.

[55] A. Eldawy and M. Mokbel. Pigeon: A spatial mapreduce language. In ICDE,
2014.

[56] A. Eldawy and M. F. Mokbel. A demonstration of spatialhadoop: an efficient
mapreduce framework for spatial data. Proceedings of the VLDB Endowment,
6(12):1230–1233, 2013.

[57] M. R. Evans, D. Oliver, X. Zhou, and S. Shekhar. Spatial big data. Big Data:
Techniques and Technologies in Geoinformatics, page 149, 2014.

[58] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering
in the plane are np-complete. Information processing letters, 12(3):133–137,
1981.

[59] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a high level dataflow system on top
of MapReduce: The Pig experience. PVLDB, 2(2):1414–1425, 2009.

[60] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in mapreduce
based on scalable cardinality estimates. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on, pages 522–533. IEEE, 2012.

[61] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating
multi-dimensional aggregate range queries over real attributes. In ACM SIG-
MOD Record, volume 29, pages 463–474, 2000.

[62] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. Moha-
nia. Processing multi-way spatial joins on map-reduce. In EDBT, pages 113–124,
2013.

[63] R. H. Güting et al. Gral: An extensible relational database system for geometric
applications. In VLDB, volume 89, pages 33–44, 1989.

[64] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-
MOD, pages 47–57, 1984.

123

[65] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F.Wilms, G. Lapis, B. Lind-
say, H. Pirahesh, M. J. Carey, and E. Shekita. Starburst mid-flight: as the dust
clears [database project]. Knowledge and Data Engineering, IEEE Transactions
on, 2(1):143–160, 1990.

[66] T. D. R. Hartley, E. Saule, and Ü. V. Çatalyürek. Automatic dataflow application
tuning for heterogeneous systems. In International Conference on High Perfor-
mance Computing (HiPC), pages 1–10, 2010.

[67] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a mapre-
duce framework on graphics processors. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, pages 260–269.
ACM, 2008.

[68] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A MapReduce
Framework on Graphics Processors. In Parallel Architectures and Compilation
Techniques, 2008.

[69] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. Mapcg: writing parallel
program portable between cpu and gpu. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, pages 217–226.
ACM, 2010.

[70] R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys (CSUR), 19(3):201–260, 1987.

[71] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. Leen: Locality/fairness-aware
key partitioning for mapreduce in the cloud. In Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on, pages
17–24. IEEE, 2010.

[72] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and
T. Suel. Optimal histograms with quality guarantees. In VLDB, pages 275–286,
1998.

[73] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. In
VLDB, pages 500–509, 1994.

[74] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle
tiling and packing. In ACM-SIAM symposium on Discrete algorithms, pages 384–
393, 1998.

[75] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating skew in
mapreduce applications. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 25–36. ACM, 2012.

[76] Y. Kwon, K. Ren, M. Balazinska, and B. Howe. Managing skew in hadoop. IEEE
Data Eng. Bull., 36(1):24–33, 2013.

124

[77] W. Le, F. Li, Y. Tao, and R. Christensen. Optimal splitters for temporal and
multi-version databases. In Proceedings of the 2013 international conference on
Management of data, pages 109–120. ACM, 2013.

[78] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang. Ysmart: Yet another
sql-to-mapreduce translator. In ICDCS, 2011.

[79] S. T. Leutenegger, M. A. Lopez, and J. Edgington. Str: A simple and efficient
algorithm for r-tree packing. In ICDE, pages 497–506. IEEE, 1997.

[80] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware
recommender system. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 450–461. IEEE, 2012.

[81] J. Lin et al. The curse of zipf and limits to parallelization: A look at the stragglers
problem in mapreduce. In 7th Workshop on Large-Scale Distributed Systems for
Information Retrieval, volume 1, 2009.

[82] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a program-
ming model for heterogeneous multi-core systems. SIGPLAN Not., 43(3):287–
296, 2008.

[83] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In SIGMOD, pages 247–258,
1996.

[84] J. Lu and R. H. Guting. Parallel secondo: Practical and efficient mobility data
processing in the cloud. In Big Data, pages 107–25. IEEE, 2013.

[85] R. Mistry and S. Misner. Introducing Microsoft SQL Server 2014. Microsoft Press,
Redmond, WA, USA, 2014.

[86] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering
properties of the hilbert space-filling curve. IEEE Transactions on Knowledge and
Data Engineering, 13(1):124–141, 2001.

[87] M. Muralikrishna and D. J. DeWitt. Equi-depth multidimensional histograms.
ACM SIGMOD Record, 17(3):28–36, 1988.

[88] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and applications. In ICDT, pages 236–256,
1999.

[89] A. Okabe, B. Boots, and K. Sugihara. Spatial tessellations: concepts and applica-
tions of Voronoi diagrams. Wiley & Sons, 1992.

[90] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-
foreign language for data processing. In SIGMOD, 2008.

[91] O. OMalley. Terabyte sort on apache hadoop. http://sortbenchmark.org/
Yahoo-Hadoop, 2008.

http://sortbenchmark.org/Yahoo-Hadoop
http://sortbenchmark.org/Yahoo-Hadoop

125

[92] S. L. Osborn and T. Heaven. The design of a relational database system with
abstract data types for domains. ACM Transactions on Database Systems (TODS),
11(3):357–373, 1986.

[93] J. Patel et al. Building a scaleable geo-spatial dbms: technology, implementa-
tion, and evaluation. In SIGMOD, pages 336–347, 1997.

[94] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker. A comparison of approaches to large-scale data analysis. In
SIGMOD, pages 165–178, 2009.

[95] S. Puri and S. K. Prasad. Mpi-gis: New parallel overlay algorithm and system
prototype. 2014.

[96] S. Ray, B. Simion, A. D. Brown, and R. Johnson. A parallel spatial data analysis
infrastructure for the cloud. In SIGSPATIAL, pages 274–283. ACM, 2013.

[97] Y. J. Roh, J. H. Kim, Y. D. Chung, J. H. Son, and M. H. Kim. Hierarchically
organized skew-tolerant histograms for geographic data objects. In SIGMOD,
pages 627–638. ACM, 2010.

[98] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: operating
system abstractions to manage GPUs as compute devices. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
233–248, 2011.

[99] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIG-
MOD, pages 71–79, New York, NY, USA, 1995. ACM.

[100] H. Samet. Foundations of multidimensional and metric data structures. Morgan
Kaufmann, 2006.

[101] H.-J. Schek and W. Waterfeld. A database kernel system for geoscientific appli-
cations. In Proc. 2nd Int. Symp. on Spatial Data Handling, Seattle, Washington,
pages 273–288, 1986.

[102] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and load balanc-
ing in parallel disk systems. the VLDB Journal, 7(1):48–66, 1998.

[103] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for
multi-dimensional objects. In VLDB endowments, 1987.

[104] B. Simion, S. Ray, and A. D. Brown. Surveying the landscape: an in-depth
analysis of spatial database workloads. In SIGSPATIAL, pages 376–385. ACM,
2012.

[105] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An experimental anal-
ysis of iterated spatial joins in main memory. Proc. VLDB Endow., 6(14):1882–
1893, 2013.

126

[106] J. Steenstra, A. Gantman, K. Taylor, and L. Chen. Location based service (lbs)
system and method for targeted advertising, Mar. 23 2006. US Patent App.
10/931,309.

[107] K. Stolze. Sql/mm spatial: The standard to manage spatial data in relational
database systems. In Proceedings of the BTW, 2003.

[108] M. Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4–9,
1986.

[109] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. Mapreduce and parallel dbmss: friends or foes? Commun. ACM,
53(1):64–71, 2010.

[110] M. Stonebraker et al. Inclusion of new types in relational data base systems. In
ICDE, volume 262, page 269. Citeseer, 1986.

[111] M. Stonebraker and L. A. Rowe. The design of Postgres, volume 15. ACM, 1986.

[112] M. Stonebraker, B. Rubenstein, and A. Guttman. The ingres papers: Anatomy
of a relational database system. chapter Application of Abstract Data Types
and Abstract Indices to CAD Data, pages 317–333. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[113] G. Teodoro, T. Hartley, U. Catalyurek, and R. Ferreira. Optimizing dataflow
applications on heterogeneous environments. Cluster Computing, 15:125–144,
2012.

[114] G. Teodoro, R. Sachetto, O. Sertel, M. Gurcan, W. M. Jr., U. Catalyurek, and
R. Ferreira. Coordinating the Use of GPU and CPU for Improving Performance
of Compute Intensive Applications. In IEEE Cluster, pages 1–10, 2009.

[115] G. Teodoro, E. Valle, N. Mariano, R. Torres, J. Meira, Wagner, and J. Saltz. Ap-
proximate similarity search for online multimedia services on distributed CPU-
GPU platforms. The VLDB Journal, pages 1–22, 2013.

[116] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy. Hive: a warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, Aug. 2009.

[117] H. Vo, A. Aji, and F. Wang. Sato: A spatial data partitioning framework for
scalable query processing. In SIGSPATIAL/GIS. ACM, 2014.

[118] F. Wang, J. Kong, L. Cooper, T. Pan, K. Tahsin, W. Chen, A. Sharma, C. Nieder-
mayr, T. W. Oh, D. Brat, A. B. Farris, D. Foran, and J. Saltz. A data model and
database for high-resolution pathology analytical image informatics. J Pathol
Inform, 2(1):32, 2011.

127

[119] F. Wang, J. Kong, J. Gao, D. Adler, L. Cooper, C. Vergara-Niedermayr, Z. Zhou,
B. Katigbak, T. Kurc, D. Brat, and J. Saltz. A high-performance spatial database
based approach for pathology imaging algorithm evaluation. Journal of Pathol-
ogy Informatics, 4(5), 2013.

[120] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang, and J. H. Saltz. Accelerating
pathology image data cross-comparison on cpu-gpu hybrid systems. Proc. VLDB
Endow., 5(11):1543–1554, 2012.

[121] Y. Xu, P. Kostamaa, and L. Gao. Integrating hadoop and parallel dbms. In
SIGMOD, pages 969–974, 2010.

[122] S. You, J. Zhang, and L. Gruenwald. Parallel spatial query processing on gpus
using r-trees. In ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data, BigSpatial ’13, pages 23–31, 2013.

[123] J. Zhang and S. You. Speeding up large-scale point-in-polygon test based spatial
join on gpus. In Proceedings of the 1st ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data, pages 23–32. ACM, 2012.

[124] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr: Parallelizing spatial join
with mapreduce on clusters. In CLUSTER, 2009.

[125] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. Towards parallel spatial
query processing for big spatial data. In IPDPSW, pages 2085–2094, 2012.

[126] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for parallel spatial join
processing. GeoInformatica, 2(2):175–204, 1998.

	Distribution Agreement
	Approval Sheet
	Abstract Cover Page
	Abstract
	Cover Page
	Dedication
	Acknowledgments
	Table of Contents
	Introduction
	Motivation
	Data Intensive Spatial Applications
	Analysis of Derived Scientific Spatial Data
	GIS and Social Media Applications

	Spatial Queries
	Characteristics of Modern Spatial Analytics Applications

	Dissertation Goals
	Exploring the Principles of Spatial Query Processing on MapReduce
	Exploring the System Architecture
	Improving the Query Processing Performance

	Dissertation Contributions and Outline
	Contributions
	Outline

	Approaches to Large Scale Spatial Data Analytics
	Spatially Extended Relational Database Systems
	GIS systems
	MapReduce based Systems
	Summary

	HadoopGIS – A Framework for Spatial Query Processing with MapReduce
	Overview of the Framework
	Data Partitioning and Storage
	MapReduce Based Parallel Query Execution
	Boundary Object Processing
	Multi-Level Spatial Indexing
	Query Processing Cost Model
	Related Approaches
	Summary

	MapReduce based Spatial Query Processing
	Real-time Spatial Query Engine
	Index Supported Spatial Queries
	Spatial Query Workflows in RESQUE
	Query Engine Performance

	MapReduce Based Spatial Query Processing
	Spatial Join
	Multiway Spatial Join
	Nearest Neighbor Query
	Spatial Selection and Aggregation

	Boundary Handling
	Query Optimization Approaches
	Experiments
	Experimental Setup
	Performance of Hadoop-GIS
	Scalability of Hadoop-GIS
	Boundary Handling Overhead
	Effects of Query Optimization Approaches

	Summary

	Effective Spatial Data Partitioning for Scalable Query Processing
	Introduction and Related Approaches
	Challenges in Spatial Partitioning
	Related Approaches

	Classification of Spatial Partition Algorithms
	Partition Boundary
	Search Strategy
	Partition Criterion

	Spatial Partition Algorithms
	Preliminaries
	Methods and Details

	Experiments
	Parameters and Metrics
	Comparison of Partition Quality
	Effects of Partitioning on Query Performance

	Summary

	Efficiency Improvements for Spatial Data Partitioning
	Runtime Cost of Spatial Partitioning Algorithms
	Two Approaches for Improving Efficiency
	Parallel Partitioning with MapReduce
	Partitioning on Sampled Data

	Experiments
	MapReduce based Approach
	Sampling based Approach

	Haggis – Hardware Acceleration of Hadoop-GIS
	Introduction and Related Approaches
	GPU Accelerated Spatial Query Processing
	Spatial Queries on CPU
	Spatial Queries on GPU

	Implementation Details of Haggis
	Architectural Details
	Task Assignment
	Effects of Task Granularity

	Experiments
	Effects of CPU for co-processing
	Effects of MR Parallelization

	Summary

	HiveSP — An Implementation of Hadoop-GIS
	System Architecture
	Query Language
	Storage Layer
	Query Processing
	Software Setup

	Bibliography

