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Abstract 

PM2.5 exposure in early life and childhood asthma incidence in a retrospective birth cohort 

By Audrey Flak 

It is well established that urban air pollution exacerbates pre-existing asthma, and 
the literature suggests that it may also play a role in asthma development. This dissertation 
investigated the association between exposure to PM2.5 (particulate matter ≤2.5µm in 
diameter) in early life and childhood asthma incidence in the Kaiser Air Pollution and 
Pediatric Asthma Study (KAPPA). The KAPPA Study is a birth cohort of 24,608 children born 
between 2000 and 2010 enrolled in Kaiser Permanente Georgia. 

Asthma case definitions vary widely among studies using medical records to define 
disease. In Aim 1, we examined 15 case definitions of incident asthma in early life. Choice of 
case definition had a large impact on the estimate of asthma incidence by age 3 and the 
ability to predict asthma at school age. These results informed our decision to designate one 
asthma diagnosis plus one asthma-related medication dispensing as the primary outcome 
definition in subsequent aims.  

In Aims 2 and 3 we assessed the association between prenatal and first year of life 
exposure to PM2.5 and asthma incidence by ages 2 through 6. The impact of exposure to both 
primary PM2.5 from traffic emissions and total PM2.5 was explored. In adjusted models, an 
increase of 1 µg/m3 of traffic PM2.5 during the first year of life was associated with a 2.7% to 
a 5.8% absolute increase in risk of asthma, depending on the follow-up age (Risk 
Difference(95%CI) age 2=0.027(0.003,0.050); age 3=0.037(0.004,0.070); age 4=0.037(-
0.007,0.082); age 5=0.058(0.004,0.112); age 6=0.036(-0.029,0.101)). An increase of 1 
µg/m3 of total PM2.5 was associated with a 0.4% to 1.8% increase in risk of asthma 
(RD(95%CI) age 2=0.008(-0.002,0.017); age 3=0.007(-0.006,0.020); age 4=0.004(-
0.014,0.022); age 5=0.018(-0.005,0.041); age 6=0.018(-0.011,0.046)). Risk differences were 
smaller for the association of PM2.5 exposure during pregnancy. Across aims, we observed 
little evidence of additive interaction between PM2.5 and child race, child sex, maternal 
asthma, or city region of residence.  

This dissertation provides some evidence for an association between PM2.5 exposure 
in early life and childhood asthma incidence. Our results highlight the impact of case 
definition on estimates of asthma incidence in early childhood in a medical record setting.    
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CHAPTER 1 

Introduction 

 

 Asthma is a chronic disease characterized by a narrowing of the airways that causes 

shortness of breath, trouble breathing, coughing, and chest tightness. It greatly affects 

quality of life and can result in hospitalizations and, in severe cases, death. Asthma is the 

most common chronic disease among children and has had a consistently high prevalence 

in the United States and worldwide over the past several decades. Since the lungs develop 

over an extended period, beginning at six weeks after conception and continuing through 

childhood, both pre- and postnatal exposure may be of importance in asthma incidence. 

While it is well established that ambient air pollution exacerbates pre-existing asthma, a 

growing body of literature suggests it may also play a role in asthma development (Bråbäck 

et al. 2009, Bowatte et al. 2015). 

 This dissertation will explore the impact of exposure to particulate matter less than 

or equal to 2.5 micrometers (PM2.5) during pregnancy and the first year of life on childhood 

asthma incidence in the Kaiser Air Pollution and Pediatric Asthma (KAPPA) Study. The 

KAPPA Study is a retrospective birth cohort of children born between 2000 and 2010 

enrolled in Kaiser Permanente Georgia. The air pollution data for this work will come from 

the EPA-funded Southeastern Center for Air Pollution and Epidemiology which is one of 

four national Clean Air Research Centers in the United States (Southeastern Center for Air 

Pollution and Epidemiology (SCAPE) 2010). This dissertation is divided into 3 main aims 

which address the following objectives: 

1. Assess the impact of different approaches to using medical records to estimate the 

cumulative incidence of asthma by age 3. Determine the validity of these early-life 
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asthma case definitions, which exclusively use information available in medical 

records, in predicting asthma at school age.  

2. Examine the association between PM2.5 from traffic at the residential location during 

pregnancy and the first year of life and cumulative asthma incidence by ages 2 

through 6 

3. Examine the association between total PM2.5 at the residential location during 

pregnancy and the first year of life and cumulative asthma incidence by ages 2 

through 6 

Together, the findings of this dissertation will contribute to our knowledge of the use of 

medical records to define asthma in early life, and the associations between PM2.5 exposure, 

overall and specifically from traffic sources, in key developmental windows and childhood 

asthma incidence. 

 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

CHAPTER 2 

Literature Review 

 

CHILDHOOD ASTHMA 

 Asthma is a chronic inflammatory disease characterized by a reversible narrowing 

of the airways caused by airway edema, hyperresponsiveness, and bronchoconstriction 

(National Asthma Education and Prevention Program. Expert Panel Report 3 2007). This 

tightening causes recurrent shortness of breath, trouble breathing, coughing, and chest 

tightness. Asthma is a remarkably heterogeneous disease with phenotypes and response to 

therapies differing considerably between patients. Childhood asthma specifically not only 

effects current health, but can also impact lung development through mechanisms such as 

airway remodeling (Grol et al. 1999, Strunk et al. 2006, Durrani et al. 2011). While 

frequency of respiratory symptoms often change as a child gets older, the lungs of an 

individual who had childhood asthma may never recover from such remodeling and will 

always be susceptible to respiratory hyperresponsiveness (Yoshikawa et al. 2011, Gershwin 

et al. 2012). Treatment of asthma involves use of medications to prevent asthma symptoms, 

medications to target current symptoms, and avoidance and management of situations 

known to exacerbate the disease in the individual. Asthma greatly affects quality of life, and 

when uncontrolled can result in hospitalizations and death.  

Asthma is the most common chronic disease among children and has had a 

consistently high prevalence in the United States and worldwide over the past several 

decades (Anandan et al. 2010, Akinbami et al. 2012). Asthma rates are highest in the United 

States and other “Westernized” countries (Gold et al. 2005). In the United States in 2010, 

9.5% of children ages 0 – 17 years, approximately 7 million children, had asthma with this 

prevalence increasing at a rate of 1.4% per year (Moorman JE et al. 2012). 58.3% of these 
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children reported at least one asthma attack in the past year. Asthma is responsible for 

substantial stress on the healthcare system between physician visits, emergency 

department visits, asthma management programs, and hospitalizations. Combining direct 

and indirect costs of asthma, it is estimated that it costs $3.2 billion per year to treat 

children with asthma. This estimate includes both healthcare costs and indirect costs such 

as school and work absences (Selgrade et al. 2006). 

 

Asthma Diagnosis 

 Asthma is typically diagnosed based on recurrence of symptoms, exclusion of 

alternate diagnoses, response of symptoms to specific medications, physical examination, 

and spirometry testing if the patient is over the age of five (National Asthma Education and 

Prevention Program. Expert Panel Report 3 2007). Spirometry testing is crucial for 

diagnosis because it allows the physician to determine the reversibility of the airway 

obstruction. In children, conditions that must be ruled out before diagnosing the condition 

as asthma include upper respiratory disease, bronchitis, endobronchial disease, 

bronchial/tracheal compression, tracheomalacia, and cystic fibrosis (Bush 2007, National 

Asthma Education and Prevention Program. Expert Panel Report 3 2007, Hedlin et al. 

2012). Medication-wise, if a patient’s symptoms do not respond to a high dose of inhaled 

steroids it is likely that their condition is not asthma. However, syndromes besides asthma 

will also respond to this treatment so a response does not confirm that the condition is 

asthma (Bush 2007). The use of biomarkers to diagnose pediatric asthma is an area of 

active research and includes investigation of the use of exhaled NO, exhaled breath 

condensate, and biomarkers found in urine (Taylor 2011, Hedlin et al. 2012). 

 Diagnosis of asthma in children under the age of five is particularly difficult. Fifty to 

eighty percent of children who have asthma experience symptoms before the age of five 
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(National Asthma Education and Prevention Program. Expert Panel Report 3 2007). Asthma 

symptoms in children of these ages are variable and not specific (Global Initiative for 

Asthma (GINA) 2009). Cough and wheeze, trademark symptoms of asthma in this age 

group, are common in young children with and without asthma. To make asthma diagnosis 

more complicated, objective testing, such as spirometry, that is crucial for diagnosis in older 

individuals is not available for use in children under the age of five. In children of these ages 

it is important for the provider to determine whether the child’s symptoms include actual 

“wheeze,” symptom triggers and history, family history, and if there are any physical 

deformities that may be causing the symptoms (Bush 2007). The difficulty of diagnosing 

asthma in this age group often leads to underdiagnosis of the disease which can prevent a 

child with asthma from receiving proper treatment (National Asthma Education and 

Prevention Program. Expert Panel Report 3 2007, Eigen 2008). 

 Despite the difficulties in diagnosing asthma at young ages, it is not uncommon for 

children to be diagnosed before reaching the age of five. National Health Interview Survey 

data show that between 2004 and 2005 the prevalence of asthma in children ages 0 to 4 

years was 6.2% so diagnoses do occur in non-negligible amounts in this age group 

(Akinbami et al. 2009). In certain populations and subgroups the prevalence is higher, even 

when only considering children up until age 2 or 3 (Young et al. 1994, Reichman et al. 

2008). There is not complete consensus on the validity of making asthma diagnoses at such 

young ages. Most researchers and clinicians argue that these diagnoses are necessary in 

order for a child to have their condition managed and treated appropriately (Hovland et al. 

2012). Others disagree arguing that an official asthma diagnosis should be deferred until a 

child is old enough for objective testing (Brand et al. 2008). There is currently no widely 

accepted youngest age at which an asthma diagnosis is considered valid. Given respiratory 
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symptoms and patient history consistent with asthma some physicians will diagnose 

asthma in infants as young as a couple of months of age. 

 

Wheeze 

Wheeze is the most important indicator that a young child either currently has 

asthma or may go on to develop asthma. However, not all children with asthma experience 

this symptom and not all children with wheeze have or will ever have asthma. The 

European Respiratory Society (ERS) Task Force reviewed studies on early life symptoms in 

children with asthma and concluded that among children with persistent asthma, about 

25% wheeze by the age of 6 months and 75% wheeze by the age of 3 years. Among children 

with recurrent wheeze, it is thought that about half have asthma (Stewart 2008). Wheeze is 

defined as a high pitched whistling sound that occurs during exhalation that often has an 

almost musical quality (National Asthma Education and Prevention Program. Expert Panel 

Report 3 2007, Brand et al. 2008). It primarily occurs among young children and is not 

common after the age of 6. It is only one of several types of noisy breathing that can occur in 

infants and young children. A child wheezes when their airways narrow and as a result they 

have limited expiratory flow (Brand et al. 2008). There is currently no way to differentiate a 

child whose wheeze is an early sign of asthma from those whose wheeze will be short-lived 

and is not indicative of future respiratory problems (Hovland et al. 2012). 

The narrowing of the airways that can result in symptoms of wheeze can be caused 

by many different things. Wheeze frequently occurs among children with allergies and 

those with upper or lower respiratory tract illnesses such as bronchiolitis. In some children 

wheeze is caused by abnormalities in the structure of a child’s airways such as 

bronchomalacia or cystic fibrosis (Brand et al. 2008). The etiology of wheeze, particularly 

with respect to allergic pathways, may differ greatly between persistent and transient 
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wheezers and among children of different ages (Wright 2002). Wheeze is treated by many 

of the same medications used to treat asthma such as inhaled short-acting beta-agonists and 

oral corticosteroids. 

There are several classifications of wheeze. A report by the ERS Task Force divides 

wheeze into five categories based on occurrence (whether the wheeze is transient, 

persistent, or late-onset) and cause (whether it is episodic and associated with viral cold, or 

whether it is multiple-trigger) (Brand et al. 2008). Recurrent wheeze is a frequently used 

classification whose definition is variable. It usually describes at least two or three wheeze 

episodes during a specific time period such as within the first couple of years of life. 

 

Early Life Respiratory Symptoms and Future Disease 

A clinically important area of research is trying to determine which young children 

with respiratory symptoms such as wheeze will go on to develop asthma. The ability to 

make this prediction has the potential to improve quality of life among the individual and 

target them for interventions such as removal of exacerbating exposures (Fouzas et al. 

2013). Currently, four asthma prediction models exist that each use early life symptoms and 

child and family characteristics to predict asthma development: The Asthma Predictive 

Index (API) (Castro-Rodriguez et al. 2000), the Isle of Wright score (Kurukulaaratchy et al. 

2003), the ECA severity score (Devulapalli et al. 2008), and the PIAMA risk score (Caudri et 

al. 2009). As detailed in a 2013 critical review of these models by Fouzas and Brand, 

(Fouzas et al. 2013) these models all use symptoms before the age of five to predict asthma 

development by around age ten (exact ages of symptoms and prediction differ between 

models). While all of the models use some of the same underlying characteristics for their 

prediction, the specific inputs vary greatly between the models without even one 

characteristic that is shared by all four models. The most commonly included inputs 
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between models are frequency of wheezing episodes and parental history of asthma 

(Fouzas et al. 2013).   

Among these risk prediction models, the API is the oldest and also the most widely 

recognized and used. Developed using the Tucson Children’s Respiratory Study and 

published for the first time in 2000 (Castro-Rodriguez et al. 2000), this model includes both 

loose and stringent indices based on wheezing, physician diagnosis of eczema and allergic 

rhinitis, parental asthma, and blood test results. The blood test results are used to 

determine percent of white blood cells that are eosinophils. Eosinophils are white blood 

cells that become active during infections and allergic reactions and are common among 

individuals with asthma (Williams 2004, National Asthma Education and Prevention 

Program. Expert Panel Report 3 2007).  The clinical value of the API has recently been 

questioned by both an editorial in January 2011 and a review article from March 2013. A 

first criticism brought up by Brand in 2011 is the lack of independent validation studies of 

the scale (Brand 2011). In a response to this editorial, the authors of the scale 

acknowledged the lack of such studies and concluded that the scale should only be used in 

populations similar to that in which it was developed (Castro-Rodriguez et al. 2011). 

Beyond validation, the diagnostic capabilities of the scale have also been questioned. The 

loose index has been ruled out as a useful test based on its inability to predict future asthma 

or lack thereof as evidenced by its positive and negative likelihood ratios (Fouzas et al. 

2013). The stringent index fares better, but its utility is also questioned based on its high 

false negative rate (calculated by Fouzas and Brand as 73-85%) and high negative 

likelihood ratio (Fouzas et al. 2013). Additionally, the requirement of a blood test makes it 

difficult for this index to be used routinely (Fouzas et al. 2013).   

The criticisms of the API represent the criticisms Fouzas and Brand have brought up 

for all four existing models – mainly the lack of validation of these scales and insufficient 
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negative predictive power (proportion of individuals predicted not to develop asthma who 

actually do not develop asthma) (Fouzas et al. 2013). While these tools continue to be 

validated and used – most recently plans for an external validation of the PIAMA scale were 

published (Hafkamp-de Groen et al. 2012) – some in the field question the utility of current 

predictive models and even the ability to develop a better one in the future. In their 2013 

article Fouzas and Brand conclude that, “widespread use of the currently available asthma 

predictive models in clinical practice is not justified” and go on to question whether it is 

possible for a clinically useful prediction model to be developed (Fouzas et al. 2013). 

Previously, Roberts also questioned the potential for development of a model that is more 

accurate than current models while also being clinically useful (Roberts 2009). Roberts 

brings up the multifactorial nature of asthma in his argument and the number of variables 

that may potentially be needed in order to develop a more accurate predictive 

scale.(Roberts 2009) These sentiments have been echoed by the developers of the API 

(Castro-Rodriguez 2010). 

 

Asthma Phenotypes and Allergic Sensitization 

Asthma is a heterogeneous disease with several subphenotypes. Two ways to 

classify asthma cases are 1) into atopic asthma (also known as allergic or extrinsic asthma) 

and nonatopic asthma (aka instrinsic asthma) and 2) into eosinophilic asthma and 

noneosinophilic (or neutrophil) asthma. While these two categorizations are related, they 

use different characteristics for classification. 

Atopic and nonatopic asthma are the most commonly used asthma classifications. 

Atopic asthma is commonly defined as asthma occurring in an individual with signs of 

atopy, for example an individual who is sensitized to common inhaled allergens (e.g. birch, 

pollen, and mold). Allergic sensitization is one of the strongest predictors that an individual 
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will develop asthma. Atopic asthma is thought to be the result of gene-environment 

interactions which impact innate immune system development particularly during early life 

(Holt et al. 2005). Indoor and outdoor allergen exposure and subsequent atopic 

sensitization is strongly associated with asthma development in what is thought by some to 

be a causal way (Gaffin et al. 2009, Baxi et al. 2010). These allergens include animal dander, 

cockroach, rodent, and dust mite. Among young children who wheeze, presence of atopic 

sensitization can help predict who will go on to develop asthma (Sly et al. 2008). Gaffin and 

Phipatanakul posit that the allergen exposure leads to allergen sensitization which in turn 

leads to atopic asthma (Gaffin et al. 2009). It is possible that early life sensitization is simply 

a marker of an asthmatic phenotype and does not play a causal role in asthma development. 

Alternatively, the relationship may indeed be causal. If this is the case, one possible 

mechanistic explanation is that inflammation (caused by virus or allergens) during infancy, 

a period of lung growth and airway remodeling, can disrupt tissue differentiation programs 

which in turn impacts respiratory function and can result in asthma (Kusel et al. 2007).  

Much research has focused on distinguishing atopic and nonatopic asthma 

phenotypes and the prevalence of each. Allergic sensitization can be determined using the 

biomarker immunoglobulin E (IgE). Allergen-specific IgE antibodies are created upon 

contact to an allergen and play a crucial role in the allergic response. They are found in 

higher quantities in atopic individuals than in nonatopic individuals. Atopy status can be 

determined by examining blood IgE levels (using a multiallergen or specific IgE antibody 

screen) or by using an allergen-specific IgE skin prick test. Use of a multiallergen IgE test is 

currently the mostly widely accepted method to make this determination (Szefler et al. 

2012). While the proportion of asthma attributable to atopy differs depending on study 

population and methods, it is likely that it is somewhere close to half. A review by Pearce 

and colleagues in 1999 estimated that less than half of all asthma cases are attributable to 
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atopy (Pearce et al. 1999). In the ten studies on children included in the review prevalences 

ranged from 30 to 57 percent. From NHANES III skin prick data (from 1988 to 1994) on 

asthmatic children ages 6 to 19, it was calculated that 55.2% of cases are attributable to 

atopy (Arbes Jr et al. 2007). Two reports using more recent NHANES data (2005-2006) have 

found that 62.1% of all asthma cases are atopic (Gergen et al. 2009), and that 66% of 

children ages 2-12 with asthma also have atopy (Wells et al. 2013) where atopy was defined 

as at least one positive specific IgE result. 

 A second way to categorize asthma is via immune pathway into eosinophilic asthma 

and noneosinophilic asthma (also known as neutrophil asthma). Asthma resulting from 

these different inflammation pathways may have different responses to medication and 

may also be caused by different risk factors (Drews et al. 2009). This categorization 

classifies cases by the proportion of cells that are eosinophils in induced sputum (Pizzichini 

et al. 1996, Gibson et al. 2000). In 2002, a review of the literature by Douwes and others 

concluded that 46% of asthmatic children have an eosinophilic phenotype which is 

comparable, but slightly lower than the percentage in adult asthmatics (Douwes et al. 

2002). The authors also point out that it is possible that some asthmatic children have a 

phenotype resulting from a blend of the two inflammatory mechanisms (Douwes et al. 

2002). Eosinophilic asthma (in adults and children) is associated with more severe asthma 

phenotypes than noneosinophilic asthma. In children, eosinophilic asthma is associated 

with lower pulmonary function (Lee et al. 2013).  

Studies have come to different conclusions about the relation between eosinophilic 

asthma and atopic asthma. Some research has found that inflammation in nonatopic 

asthmatics is primarily neutrophilic (Drews et al. 2009). A study by Lee in 2012 found that 

the majority of individuals with both eosinophilic and noneosinophilic asthma were atopic – 
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reporting 87% atopy in the eosinophilic group and 77% atopy in the noneosinophilic  group 

(Lee et al. 2013). 

 

Hygiene Hypothesis and Asthma  

 While early life allergen exposure that results in allergic sensitization is associated 

with increased risk of asthma, exposure to microbial agents and sources of allergens such as 

pets early in life may be protective. The hygiene hypothesis states that lack of exposure to 

infection and microbial agents in early childhood is responsible for the increases in allergic 

disease, such as atopic asthma, in industrialized countries (Strachan 1989). This hypothesis 

speculates that avoidance of these exposures impacts the development of an individual’s 

immune system making them more susceptible to allergic diseases later in life. The specific 

immunologic mechanism through which this occurs has not fully been elucidated 

(Romagnani 2004). 

The consensus of recent research on these associations is that decreased exposures 

in childhood may explain some of the increases in asthma prevalence in industrialized 

countries, but that they are not solely responsible for the trend (Ramsey et al. 2005, Brooks 

et al. 2013). While the hygiene hypothesis specifically relates to allergic (atopic) asthma, 

some exposures of the hygiene hypothesis such as microbial exposure are also seen to have 

a protective effect against nonatopic asthma (Brooks et al. 2013). The findings on 

associations between hygiene hypothesis exposures as a whole and asthma development do 

not all show the same protective effect. In a 2004 article, Ramsey and Celedón reviewed the 

literature on asthma and several exposures relevant to the hygiene hypothesis (i.e. 

household size, crowding, mycobacterial infections, vaccinations, gastrointestinal and 

parasitic infections, farming and endotoxin exposure, antibiotics, probiotics, and intestinal 

flora) (Ramsey et al. 2005) and saw inconsistent findings between each exposure and 
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asthma. There are several potential explanations for these varying results. These 

associations may differ for atopic and nonatopic asthma, for individuals with high and low 

risk (specifically those with and without family history of asthma), and may be dependent 

on the specific timing of exposure (Ramsey et al. 2005, Brooks et al. 2013). 

 

Asthma Disparities 

There are striking disparities in childhood asthma prevalence with the highest rates 

occurring among African Americans and children living in poverty (McDaniel et al. 2006, 

Akinbami et al. 2012). Between 2008 and 2010 prevalence of current asthma among 

children ages 0 to 17 was almost twice as high among black children as among white 

children (16.0% vs. 8.2% respectively). In general, asthma prevalence is lower in Hispanic 

and Latino children than in white children with the exception of Puerto Rican children who 

between 2008 and 2010 had a prevalence of 16.9% (Moorman JE et al. 2012). Data from the 

same source show a higher asthma prevalence among children living below the federal 

poverty threshold than among children living at 450% or above the poverty level (12.4% 

and 8.1% respectively) (Moorman JE et al. 2012). 

Racial disparities appear to persist when accounting for socioeconomic status and 

socioeconomic disparities appear to persist when accounting for race. A study by McDaniel 

and others in 2006 analyzing National Health Interview Survey (NHIS) data from 1997 

through 2003 found that racial asthma disparities cannot be explained by child or family 

characteristics. In fact, at every income asthma prevalence was higher among non-Hispanic 

black children than among non-Hispanic white children (McDaniel et al. 2006). This 

relationship was also seen when examining NHIS data from 1997 alone (Smith et al. 2005), 

NHANES data (Roberts 2002), and in smaller studies in Rhode Island (Pearlman et al. 2006), 

Michigan (Nelson et al. 1997), and Los Angeles County (Simon et al. 2003), but not in NHIS 
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data from 1993 to 1996 (Akinbami et al. 2002). Data from the McDaniels study also 

demonstrate the strong inverse relationship between income and asthma prevalence. 

Among children with asthma, African American children and those from the lowest 

socioeconomic groups suffer the worst outcomes. Children from both of these groups are 

more likely to have experienced an asthma attack in the past 12 months (Moorman JE et al. 

2012), have activity limitations (Simon et al. 2003), have asthma-related emergency 

department visits and are less likely to have their disease managed through regular check-

ups and medication (Crocker et al. 2009, Kim et al. 2009). Emergency department visits 

among children with current asthma were three times as common among black children 

than among white children (Moorman JE et al. 2012). While health insurance status 

undoubtedly can explain some of the differences in morbidity, it does not account for all of 

the disparity. Differences in access to healthcare and use of care may also be causing some 

of this disparity (Akinbami et al. 2002, Pearlman 2012). Additionally, among individuals 

with equal access to care the quality of care received, which includes important components 

such as access to management medications, may be vastly different (Simon et al. 2003, Gold 

et al. 2005, Cabana et al. 2007). Beyond the healthcare system, factors such as housing 

quality, exposure to environmental toxins and allergens, stress, and segregation may all 

contribute to these differences (Williams et al. 2009, Lamb et al. 2011, Pearlman 2012).  

One of many pathways through which lower quality housing may be associated with asthma 

morbidity is exposure to cockroach allergen (Gold et al. 2005). This allergen is found at 

higher levels in housing that is in disrepair (Rauh et al. 2002) and a large body of research 

shows that exposure to it is strongly associated with asthma morbidity (Rosenstreich et al. 

1997, Gruchalla et al. 2005, Wang et al. 2009). 

 

Asthma Risk Factors  
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Beyond the previously discussed racial, socioeconomic, and allergic risk factors, 

there are many other known risk factors for childhood asthma. Childhood asthma occurs 

more frequently among males than females, with this sex ratio inverting by adolescence and 

adulthood (King et al. 2004, Almqvist et al. 2008). This phenomena is supported by the most 

recent U.S. surveillance data (2008-2010) where among individuals ages 0-17 years 

prevalence was higher in males than females (11.1% vs. 7.8% respectively) and among 

individuals 18 years and older the prevalence was higher in females than males (9.7% vs. 

5.7% respectively) (Moorman JE et al. 2012). Family history of asthma, and more 

specifically parental history, is a strong risk factor for childhood asthma (King et al. 2004) 

which explains its inclusion in guidelines on how to diagnose childhood asthma. Family 

history and racial risk factors for asthma have spurred research that has found several 

genetic risk factors for asthma development (Bracken et al. 2002). This field will continue to 

grow as genetic methods expand with the most recent advances being made by genome-

wide association studies (GWAS) (Tamari et al. 2013). As described in a review by Duijts in 

2012 there are thought to be several fetal origins of childhood asthma such as being born at 

low birth weight (Duijts 2012). Most research indicates that exclusive breast feeding and 

birth by vaginal delivery (in comparison to cesarean section) are both protective against 

asthma development potentially through influence on immune system development 

(Gdalevich et al. 2001, Simon et al. 2003, Cho et al. 2013). The role that diet during 

pregnancy and fetal nutrition play in asthma development remain to be elucidated (Global 

Initiative for Asthma (GINA) 2009, Duijts 2012). Childhood obesity/high body mass index is 

an additional risk factor for asthma development (Noal et al. 2011, Papoutsakis et al. 2013). 

The lungs develop over an extended period starting during gestation and continuing 

through childhood. This extended development means both pre- and postnatal exposures 

may be of importance in asthma incidence. Developing lungs are susceptible to harm by 
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many inhaled toxicants, the most well-known of which is environmental tobacco smoke 

(ETS) (Yost et al. 1989, Pinkerton et al. 2000, Wang et al. 2008). ETS exposure can be 

harmful both pre- and postnally, but research suggests that its greatest impact may be in 

utero (Wang et al. 2008). In utero smoke exposure is associated with decreased lung 

function and an increased risk of developing asthma. The effects of pre- and postnatal ETS 

highlight the importance of studying the impact of other toxicants in both of these 

developmental periods. Biological susceptibility and one such toxicant, air pollution, will be 

discussed in depth in a subsequent section of this proposal. 

In conclusion, here is a list of risk factors of childhood asthma: African American 

race, low socioeconomic status, allergic sensitization, male sex, family history, genetic 

factors, low birth weight, maternal smoking during pregnancy, delivery by cesarean section, 

absence of breast feeding, high body mass index, and environmental tobacco smoke. 

 

Asthma Diagnosis for Research 

Given the diversity of disorders which can fall under the umbrella term of “asthma,” 

asthma ascertainment for research is challenging. The most frequently used methods of 

asthma diagnosis for research are: self-report, use of ICD diagnosis codes from patients’ 

medical records, and classification based on medical record information such as ICD 

diagnoses, symptoms, and asthma-related medications. 

 

Self-report 

 Self-report is the most common method of determining whether an individual has 

(or has ever had) asthma and is used in diverse areas of the asthma research field (Litonjua 

et al. 1999, Castro-Rodriguez et al. 2000, Akinbami et al. 2002, Smith et al. 2005, Gordian et 

al. 2006, Pearlman et al. 2006, Jerrett et al. 2008). This information is ascertained via 
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interview or questionnaire either by a standardized asthma questionnaire which includes 

questions about symptoms and doctor diagnoses or by one question such as “Do you have 

asthma?” or “Has a doctor ever diagnosed you with asthma?” The logistical advantages of 

self-report are outweighed by the lack of reliability of the resulting disease classification. 

Low sensitivity has been found between self-report of asthma via questionnaire and doctor 

diagnosed asthma (Toren et al. 1993). For childhood asthma identification, there is poor 

agreement between maternal report of a child having asthma and doctor diagnosed asthma 

(Miller et al. 2001). This agreement varies based on race/ethnicity, family income, and 

educational attainment. In one population it was found that parents tended to under-report 

asthma in their children when comparing diagnosis to a diagnosis from the medical record 

using a combination of physician diagnosis and symptoms (Yoo et al. 2007). 

 

ICD Codes 

 Use of ICD codes is common. Asthma covers ICD-9 codes 493.XX, with 493.0X used 

specifically for extrinsic (atopic) asthma. Given differences between what different doctors 

will diagnose as “asthma” there is concern about the diversity of disorders which may be 

included under this code. A study by Juhn 2011 examined which children in a cohort would 

be classified as having asthma comparing classification by ICD-9 codes alone to 

classification using a method developed by Yunginger and colleagues in 1992 (Yunginger et 

al. 1992). The classification scheme by Yunginger uses information available in the medical 

record to categorize a child as either having no asthma, probable asthma, or definite 

asthma. It uses ICD-9 diagnosis codes in addition to information on type and history of 

symptoms such as cough and wheeze. While the classification has been used by other 

studies, it is not apparent whether it has been validated as a reliable method of identifying 

children with asthma. The study found that while ICD diagnosis alone identifies a child that 
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is likely to have asthma, lack of such a diagnosis does not preclude asthma indicated by 

symptoms in the medical record (Juhn et al. 2011). The authors accordingly concluded that 

use of ICD codes alone underestimates asthma prevalence.  

 

Medical Record Diagnosis Algorithm 

 Researchers using medical record data (typically from Health Maintenance 

Organizations (HMOs)) normally use an algorithm to classify patients as asthmatic or 

asthma-free based on inpatient asthma diagnoses (i.e. hospital admissions), outpatient 

asthma diagnoses (i.e. clinic, emergency department), and asthma management medication 

prescriptions. These algorithms vary considerably from study to study in the types of 

diagnoses (i.e. primary or secondary) that are considered for classification and the number 

and types of medications. Table 2.1 details algorithms used in a sample of literature on this 

topic. The criteria range from easy to difficult to satisfy. For example, in Lieu 1998, in the 

absence of an ICD diagnosis, a child must have one asthma–related medication (other than a 

beta-agonist) in the past 12 months to be classified as asthmatic (Lieu et al. 1998). In 

Verstraeten et al. 2003 and Maher et al. 2004, in the absence of an ICD diagnosis, a child 

must have 5 asthma-related medications to be classified as asthmatic (with the exception of 

specific medication combinations which necessitate fewer dispensings) (Verstraeten et al. 

2003, Maher et al. 2004). 

 Studies have been completed examining: 1) classification differences between 

prescription algorithms (Osborne et al. 1995) and 2) the percent of children diagnosed by 

prescription information who also report physician-diagnosed asthma (Peled et al. 2006). 

When researchers base their diagnoses on prescriptions alone they must take precautions 

not to classify children with well-controlled asthma as not having asthma (Cockcroft et al. 

1996). When asthma is well-controlled medications such as β-agonists, generally used to 
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treat asthma symptoms, may not have been prescribed recently. There should be other 

medications in the medical record to make it apparent a child has asthma, but only if 

researchers are looking for a wide enough range of medications when making their 

determinations. 

 The origins of classification schemes used by researchers are somewhat mysterious. 

It appears to be common for researchers to base their algorithms on the algorithms of one 

or two previous studies in their specific field or to use algorithms developed by HMOs for 

insurance purposes. Another common practice is to use the Healthcare Effectiveness Data 

and Information Set (HEDIS) guidelines for “persistent asthma” as an inspiration for 

algorithm development. The HEDIS guidelines are performance measures used in the 

managed care industry. According to the guidelines an individual needs one of the following 

to qualify for persistent asthma: 1) four asthma medications dispensings 2) one emergency 

department visit or hospitalization with principal diagnosis of asthma or 3) four asthma 

outpatient visits with two or more asthma medication dispensings (Schatz et al. 2006). 

Given these guidelines are for “persistent asthma” researchers relax them for a diagnosis of 

asthma that is not necessarily persistent (for example by requiring two medication 

dispensings instead of four). This conversion of the HEDIS guidelines to asthma algorithms 

for research seems arbitrary and not based on use of the final algorithm in any prior 

research.
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Table 2.1. Medical record asthma classification schemes 

Article Population 
Criteria 
Needed 

Criteria 

Inpatient 
Diagnosis 

Outpatient 
Diagnosis 

Any ICD-9 
Diagnosis 

Asthma Medications Other 

Caudri 2009  
(Caudri et al. 2009) 

Birth cohort 
Children 

1 at age 7 
and 1 at age 
8 

  Report of 
doctor 
diagnosed 
asthma 

Prescription for 
inhaled steroids 

≥1 wheezing 
episode 

Celedón 2004 
(Celedón et al. 2004) 

HMO in Boston 
Children 2-5 

1 1 
hospitalization 

2 ambulatory or 
1 emergency 
department 

 2 dispensings in past 
12 months 

 

Clark 2010  
(Clark et al. 2010) 

British 
Columbia 
Children 

1 1 
hospitalization 

2 primary care 
diagnoses in 12 
months 

   

Finkelstein 2000 
(Finkelstein et al. 
2000) 

HMO  
Children 2-18 

1  1 
hospitalization 

1 ambulatory 
visit or 1 
emergency 
department 
encounter 

 1 asthma dispensing  

Firoozi 2010 (Firoozi 
et al. 2010) 

Quebec  
Adults 

Both   493 (except 
493.2) 

1 in past 2 years  

Grana 1997  
(Grana et al. 1997) 

U.S. Healthcare 
HMO All ages 

1   493.00-493.99 2 Procedure 
(i.e. asthma 
care/control 
program, or 
theophylline) 

Lafata 2002  
(Lafata et al. 2002) 

HMO 
Children 5-14 

1 1 
hospitalization 

2 outpatient 
(ambulatory or 
emergency 
department) 

   

Lieu 1998  
(Lieu et al. 1998) 

Kaiser 
Northern 
California 
Children 

1 1 
hospitalization 

1 emergency 
department visit 

 1 (if β-agonist also 
needed diagnosis or 
other medication) 
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Table 2.1. Medical record asthma classification schemes (Continued) 

Maher 2004  
(Maher et al. 2004) 

HMO 
Children  
(0-18 months) 

1    Any of the following:  
(a) 1 diagnosis and 1 
medication dispensing 
(b) 1 dispensing 
inhaled β-agonist and  
1 dispensing 
cromolyn/ nedrocromil 
sodium or inhaled 
corticosteroids  
(c) 5 medication 
dispensings 

 

Milton 1998 
(Milton et al. 1998) 

HMO  
Adults (15-55) 

1 1 
hospitalization 
with primary 
diagnosis 

1 emergency 
department visit 
for asthma 

1 occupational 
asthma 
diagnosis 
(specific to 
research 
question) 

1 outpatient diagnosis 
and 1 of the following 
dispensings: 2 β-
agonist inhalers, 1 β-
agonist inhaler with 
theophylline, 1 steroid 
or cromolyn inhaler, 1 
steroid taper, 
outpatient IV 
theophylline or 
nebulized β-agonists 
treatment 

 

Peled 2006 
(Peled et al. 2006) 

HMO Children 1    2 dispensings in 1 year  

Schatz 2004 
(Schatz et al. 2004) 

Kaiser Southern 
California 
Children & 
Adults 

1 1 
hospitalization 

1 emergency 
department or 
clinic 

 2 dispensings in 1 year 
(some medications 
excluded e.g. oral 
corticosteroids)  

 

Schatz 2006 
(Schatz et al. 2006) 

Kaiser Southern 
California 
Persistent 
Asthma 
Adults (18-56) 

1 1 
hospitalization 
with primary 
diagnosis 

1 emergency 
department 
primary 
diagnosis or 4 
outpatient and 2 
dispensings 

 4 dispensings  
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Table 2.1. Medical record asthma classification schemes (Continued) 

Shields 2002 
(Shields et al. 2002) 

5 providers 
including 1 
HMO 
Children 2-18 

1 1 
hospitalization 

2 ambulatory 
primary 
diagnoses or 1 
emergency 
department 

 2 asthma medications 
with ≥1 asthma visit 
and 1 β-agonist  

 

Shields 2003 
(Shields et al. 2003) 

HMO and 
primary care 
clinician plan 
Children >2 
years 
  

2 total: 1 
diagnosis 
and 1 
additional 
criterion 

Any 2 visits 
with primary 
diagnosis in 1 
year 

1 hospitalization 
or emergency 
department visit 
with primary 
diagnosis 

ICD-9-CM 
493.00-493.99 

2 β-agonist or 1 β-
agonist and 1 asthma 
visit  

 

Sinclair 2006 
(Sinclair et al. 2006) 

Kaiser Atlanta 
Adults 

1 2 primary 
diagnosis 

2 primary or 
secondary 
diagnoses 

 3  

Siwik 2005 
(Siwik et al. 2005) 

Health Alliance 
Plan HMO 
Children 6-8 

1 1 
hospitalization 

2 outpatient or 1 
emergency 
department 

 2 bronchodilator or 1 
anti-inflammatory 
(prescription claim) 

 

Verstraeten 2003 
(Verstraeten et al. 
2003) 

HMO Children 1   1 ICD-9 code + 
1 medication 
prescription  

5 total or 
1 β-agonist and 1 
cromolyn prescription 

 

Vollmer 2005 
(Vollmer et al. 2005) 

Kaiser 
Northwest 
Adults 

2 total: 1 
utilization 
and 1 
medication 

1 inpatient with 
primary 
diagnosis 

1 emergency 
department or 1 
outpatient or 
urgent care visit 

 2 β-agonist inhaler 
dispensings or 1 other 
medication dispensing 

 

Zeiger 2008 
(Zeiger et al. 2008) 
Zeiger 2010 
(Zeiger et al. 2010) 

Adults 1 1 
hospitalization 

1 emergency 
department or 1 
outpatient 

 2 dispensings 
(excluding oral 
corticosteroids) 
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AIR POLLUTION 

 Air pollution is a mixture of gases and particles in the air originating from natural 

and anthropogenic sources. Natural pollutant sources include biogenic processes (e.g. plant 

decomposition), volcanoes, lightning, and forest fires. Anthropogenic pollutant sources 

include coal combustion (i.e. coal burning power plants, motor vehicles), pesticide 

applications, and industrial leaks. Pollutants can be either primary (emitted by a source), 

secondary (resulting from chemical reactions in the atmosphere), or both. Nitrogen dioxide 

(NO2) is an example of a pollutant that is both primary and secondary. It is emitted from 

combustion processes, but is also formed from the reaction of nitric oxide (NO) and ozone 

(O3). Ozone, on the other hand, is strictly a secondary pollutant.  

 The two main categories of air pollution are gas-phase and particulate. There are 

hundreds of different gas-phase substances in the atmosphere, very few of which threaten 

human health. Health effects are determined by compound toxicity, atmospheric residence 

time and concentration. Two important gas-phase pollutants are sulfur dioxide (SO2) and 

ozone (O3). SO2 is a gaseous pollutant produced from combustion of coal and other sulfur-

containing fuels. It also has natural sources such as volcanic eruptions and can be created by 

atmospheric reactions. SO2 is associated with a wide range of respiratory symptoms and 

outcomes in children and other populations (U.S. Environmental Protection Agency 2013). 

O3 is a secondary pollutant and is one of the most toxic components of air pollution. It is the 

main constituent of smog and reaches its highest concentrations on sunny days. Additional 

gas-phase pollutants (nitric oxide (NO), nitrogen dioxide (NO2), and carbon monoxide (CO)) 

will be discussed in subsequent sections. 

Particulate matter (PM) is matter suspended in air such as smoke, soot, sea salt, and 

pollen. The specific constituents of PM vary by region. For instance, in areas near the ocean 

sea salt leads to higher amounts of chloride in PM than in PM from other regions. Source 
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apportionment can be completed to determine source contributions to particulate matter 

samples. Particulate matter can be classified based on composition, for example PM2.5 

nitrate and PM2.5 elemental carbon. Classifications based on composition are important 

since the specific components can dictate what effect PM has on human health outcomes. 

Particulate matter can also be classified based on aerodynamic diameter. Such 

classifications are: ultrafine <100 nm, fine 0.1-2.5 µm, coarse >2.5 - 10 µm, PM2.5 ≤2.5 µm, 

and PM10 ≤10 µm. These classifications are also important when considering health 

outcomes. Particles of different sizes deposit in different parts of the respiratory tract which 

can dictate potential biological effect. Coarse particles cannot move past the upper airways, 

while smaller particles can end up in lung alveoli. Mouth breathing, in children and others, 

increases particulate matter exposure because air avoids the nasal passage whose mucus 

and hair act as barriers to prevent matter from ending up further into the respiratory 

system.  

Air pollution varies spatially and temporally. Spatial variation is determined by 

emission sources, pollutant chemistry, and transport of pollutants and precursors. 

Pollutants with considerable spatial heterogeneity include carbon monoxide (CO), nitrogen 

oxides (NOX) and PM elemental carbon (EC). More spatially homogenous pollutants which 

vary on a larger regional scale include PM2.5, sulfate (SO4), and ozone (O3). Temporal 

variation is driven by human activities and meteorology. For example, in most regions, 

ozone is highest during the summer months because it is a secondary pollutant and sunlight 

is necessary for its formation. Pollutant variations are not independent and many co-vary 

based on common sources and participation in the same chemical reactions.  

Air pollution has serious effects on human health and the environment. It has been 

linked to a broad range of negative health outcomes and impacts several biological systems 

including respiratory, cardiovascular, reproductive, and central nervous systems. 
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Anthropogenic pollutant sources are of the most concern for human health outcomes. In the 

United States, the National Air Quality Standards (NAAQS) set standards for six criteria 

pollutants which are known to be harmful to the environment and human health: CO, lead, 

NO2, O3, sulfur dioxide (SO2), and particulate matter 2.5 and 10 (PM2.5 and PM10). The 

Harvard Six Cities Study helped identify the health effects of particulate matter specifically. 

It was a landmark longitudinal study started in 1974 which found a strong linear 

association between particulate matter and all-cause mortality when adjusting for other 

risk factors (Dockery et al. 1993). The results were particularly surprising because an 

increase in mortality was seen with particulate matter concentrations that were not what 

we would consider to be high. 

 

Traffic-Related Pollutants  

Traffic-related air pollution refers to pollutants produced by vehicular traffic and 

includes both particulate and gaseous air pollution. Important traffic-related pollutants are 

carbon monoxide (CO), particulate matter (PM), nitric oxide (NO), nitrogen dioxide (NO2), 

and PM2.5 elemental carbon (EC). Primary traffic pollutants react and form secondary 

pollutants (e.g. ozone and nitrates). Vehicle emissions depend on many factors such as 

vehicle type and age, fuel type (i.e. diesel, gasoline, alternative fuel), maintenance, and 

driving conditions. While we normally focus on combustion emissions, vehicles also 

produce non-combustion emissions (e.g. tire wear and resuspended road dust) (HEI Panel 

on the Health Effects of Traffic-Related Air Pollution 2010). Pollutant concentrations near 

roadways depend on amount and type of traffic, wind patterns, and meteorology. Exhaust 

concentrations can decline substantially even within a couple of hundred meters of the 

roadway. Traffic-related air pollution can decrease concentrations of other pollutants near 
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roadways. For example, ozone is lowest near roadways because it is scavenged by NO to 

create NO2. 

 Strides have been made to reduce vehicle emissions and miles traveled, both which 

directly impact vehicle-related pollution. Such strides include regulation of certain emission 

components (e.g. CO, hydrocarbons (HC), NOX, and PM), vehicle inspection legislation, and 

production and use of cleaner fuels. Despite these advances, traffic continues to be a 

significant contributor to global air pollution and the size of the global motor vehicle fleet 

continues to increase with gross domestic product (HEI Panel on the Health Effects of 

Traffic-Related Air Pollution 2010). 

 

Nitrogen Oxides (NOX) 

 Transportation is the major producer of NOX now that there are emissions 

requirements on stationary coal combustion. NOX is the sum of NO and NO2 and is 

commonly used for reporting since NO and NO2 can rapidly interconvert due to changes in 

ozone and sunlight (Harrison 1999). NO2 is more toxic than NO and is one of the most 

important gas-phase emissions from a public health perspective. It has harmful health 

effects and is also a precursor to ozone. Research shows NO2 to be associated with 

respiratory infections, lung function, and potentially even increased death rates (Godish 

2004).  

 

Traffic-Related Particulate Matter 

 Traffic is a considerable contributor to particulate air pollution. This matter results 

from both vehicular combustion and non-combustion emissions. PM2.5 elemental carbon 

(EC) and PM2.5 organic carbon (OC) are carbonaceous aerosols and classes of traffic emitted 

particulate matter. EC is light absorbing while OC is light scattering (Szidat S et al. 2009). 
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Particles containing elemental carbon are on average fine and ultrafine mode particles 

enabling lung penetration. Consequently, EC is associated with negative respiratory 

outcomes such as decreased lung function in children and lung cancer (Barraza-Villarreal et 

al. 2011, Garshick et al. 2012). EC is primarily created from fuel combustion and makes up a 

small portion of PM2.5 mass in the United States, ranging from 5% to 14% (Godish 2004). In 

the United States, up to a third of PM2.5 mass consists of OC which is produced from traffic 

emissions as well as biogenic sources (Godish 2004). 

 

Carbon Monoxide (CO) 

 Carbon monoxide is a gas-phase pollutant that is deadly at high concentrations well 

beyond what is observed in ambient air. It is a by-product of incomplete fossil fuel 

combustion. Due to transportation emissions, concentrations are highest in metropolitan 

areas and have a strong diurnal pattern peaking at rush hour. Concentrations are highest 

near major roadways and diminish rapidly with increased distance from roadways. CO also 

has yearly variation with the highest concentrations in the winter due to less efficient sink 

processes which function to remove CO from the atmosphere (Godish 2004). 

 

Pollution Data & Health Research 

 For research and regulation purposes, air quality data can either be measured or 

modeled. One source of measured air quality data in the United States is the network of 

local and state air pollution monitors. The U.S. Environmental Protection Agency Air Quality 

System aggregates and makes accessible data from pollution monitors across the country. 

Measured data can also be collected using personal exposure monitors to capture individual 

exposure. While this is a cumbersome process, its advantage is that it can fully capture 

exposure from the many environments with distinct pollution profiles that an individual 
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may spend time in throughout the day. An advantage of modeled data is that it can estimate 

pollution concentrations in locations where there are not existing pollution monitors while 

taking into account meteorology and other factors. One Eulerian air pollution model, 

Community Multiscale Air Quality (CMAQ), will be discussed in depth later on in this 

proposal (Chapter 3. Data Sources). 

Historically, air pollution health research has focused on the effects of individual 

pollutants. This approach is still the predominant one, for example, with studies looking at 

the effects of 12 different pollutants and pollutant categories: CO, NO2, SO2, O3, PM10, PM2.5, 

PM2.5-10 (PM with aerodynamic diameter from 2.5 to 10 μm), PM2.5 sulfate, PM2.5 nitrate, 

PM2.5 elemental carbon, PM2.5 organic carbon, PM2.5 water-soluble metals (chromium, 

copper, iron, manganese, nickel, and vanadium) (Darrow et al. 2011). The fact that we 

monitor individual pollutants rather than pollutant mixtures lends itself to this approach. 

Additionally, results from these studies are useful for the creation of regulations and single 

pollutant standards. More recently there has been an effort to characterize the effects of 

multi-pollutant mixtures rather than individual pollutants. A 2010 article by Dominici and 

colleagues describes this approach, its strengths and challenges (Dominici et al. 2010). The 

objective of this research is to identify multi-pollutant combinations which pose a threat to 

human health. The rationale behind this approach is that we are exposed to pollutant 

mixtures rather than individual pollutants in isolation. The health effects of such mixtures 

may be different than the sum of effects of individual pollutants (Dominici et al. 2010). 

There are many ways to implement this approach, for example by focusing on pollutants 

from specific sources or by grouping pollutants by hypothesized mechanism of effect. 

 

PRENATAL AND EARLY-LIFE AIR POLLUTION EXPOSURE AND ASTHMA INCIDENCE 

Biological Susceptibility and Potential Mechanisms 
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Environmental exposures during gestation and early life have the potential to 

impact the maturation of the respiratory and immune systems, both of which are important 

in asthma development. The respiratory system develops over an extended period, 

beginning six weeks after conception and continuing through adolescence. During this 

development, repair mechanisms are not as adept at responding to environmental insults as 

those in mature adult lungs (Kajekar 2007). The significance of the prenatal window in 

particular is supported by research which shows that children who develop asthma by the 

age of seven have 40% of their associated lung deficit at birth (Bisgaard et al. 2012). Lung 

development after birth is primarily composed of growth of additional bronchioles and 

alveoli and is critical for the lungs to meet the increasing metabolic demands of a growing 

child (Pinkerton et al. 2000, Moore et al. 2003, Wang et al. 2008). Environmental exposures 

during this time, particularly during gestation and the first 2 years of life, can also have an 

impact on the development of a child’s immune programming and response (Peden 2000). 

The development that occurs during these periods is paired with children’s greater 

exposure to air pollution relative to adults due to increased ventilation rates and more time 

spent outdoors (American Academy of Pediatrics 1999, Pinkerton et al. 2000).  

 There are several mechanisms by which air pollution may lead to asthma 

development which make the potential of a causal relationship biologically possible. The 

following two mechanisms are particularly compelling (Gowers et al. 2012): 1) Oxidative 

stress: Some components of air pollution are free radicals while others can participate in 

reactions that result in free radicals. Oxidative stress is the result of an imbalance of free 

radical production in the lungs and antioxidant defenses available to deal with the free 

radicals (Kelly 2003). This can result in inflammatory reactions and airway injury. The 

Health Effects Institute (HEI) Report concluded that oxidative stress is one mechanism 

through which air pollution impacts human health (HEI Panel on the Health Effects of 
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Traffic-Related Air Pollution 2010). 2) Airway remodeling: Airway remodeling is when 

structural changes in the airways occur caused by prolonged inflammation. Such changes in 

the lungs may lead to asthma development. Additional potential mechanisms of effect are 

through changing inflammatory mediators and immunological responses, and increasing 

allergen sensitization (Gowers et al. 2012). One hypothesis is that air pollution exposures 

trigger irritative inflammatory changes in the airways instead of allergic changes (Gruzieva 

et al. 2013). If this was the case we would expect to see a stronger association between air 

pollution and nonatopic asthma than among air pollution and atopic asthma. 

 A growing area of research is the exploration of the role of gene-environment 

interactions in asthma development. It is well established that some individuals are 

genetically pre-disposed to asthma. Recent research suggests that certain genetic factors 

may make an individual more susceptible to air pollution’s effects (McLeish et al. 2007, 

Melen et al. 2008).  In particular, genes related to antioxidative systems and inflammatory 

responses are of interest. Some research has indicated that polymorphisms in genes of both 

of these types modify the asthma risk resulting from ozone exposure (Yang et al. 2009).  

 

Conclusions of Key Review Articles 

While it is well established that air pollution exposures exacerbate pre-existing 

asthma, a growing body of literature suggests that this exposure may also play an important 

role in asthma development (Tzivian 2011, Gowers et al. 2012). A number of recent review 

articles and meta-analyses have examined the association between air pollution exposure 

and asthma incidence, the majority of which focus on the effects of traffic-related air 

pollution.  

Two formal reports that review published studies have been produced on the topic. 

The first report, published in 2010 by HEI, concluded from their review of the literature that 
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residential proximity to busy roads is a risk factor for childhood asthma development (HEI 

Panel on the Health Effects of Traffic-Related Air Pollution 2010). The authors concluded 

that the evidence for this relationship to be causal was borderline between “sufficient” and 

“suggestive but not sufficient.” A more recent report was published in 2012 by the UK 

Department of Public Health’s Advisory Committee on the Medical Effects of Air Pollutants 

(Gowers et al. 2012). It concluded that asthma induction is not associated with community-

level air pollution. The report did find evidence that residential proximity to traffic-related 

air pollution may play a role in asthma induction particularly for individuals living near 

busy roads with heavy goods vehicle traffic. The authors concluded that air pollution likely 

plays a small role in asthma induction when comparing it to other causal factors. Among 

other sources, this report relied on the results of a systematic review and meta-analysis by 

Anderson and colleagues to come to these conclusions (Anderson et al. 2013). The main 

meta-analysis in the Anderson article included assessed the outcome of incidence and 

prevalence of asthma and wheeze in children and adults. This analysis found a significant 

association between NO2 exposure and this heterogeneous outcome (OR (95% CI): 1.07 

(1.02, 1.13)). Meta-analyses looking at NO2 and more restricted outcomes (i.e. only children, 

only asthma, and only incidence) were also significant, but no one analysis included all 

three of these outcome restrictions. The article concluded that air pollution exposure 

impacts asthma incidence. 

To date, four review articles have examined the association between traffic-related 

air pollution and asthma occurrence, two of which included meta-analyses on the 

association. In 2008, a review by Salam and others examined publications between 2006 

and 2007 and concluded that residential proximity to busy roads is associated with asthma 

development and exacerbation (Salam et al. 2008). In 2009, a review by Bråbäck and 

Forsberg examined results from 15 papers on 10 cohort studies with the outcomes of 
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asthma and allergic sensitization (Bråbäck et al. 2009). They concluded that in children 

traffic exhaust is associated with the development of respiratory symptoms. While they 

made no formal conclusions regarding asthma incidence, the majority of included studies 

that examined this outcome saw increased incidence associated with pollution exposure. In 

2012 Gasana and colleagues conducted a review and meta-analysis which included 3 

articles examining traffic-related air pollution asthma incidence (Gasana et al. 2012). 

Separate meta-analyses found positive associations between NO2, PM10, and PM2.5 exposure 

and asthma incidence, but only the association with NO2 was statistically significant (OR 

(95% CI): 1.14 (1.06, 1.26)). Most recently, in 2015 Bowatte and colleagues conducted a 

systematic review and meta-analysis on the association between traffic-related air pollution 

and childhood asthma, using only results from birth cohorts (Bowatte et al. 2015). They 

identified five birth cohorts with results on the association between longitudinal childhood 

exposure to air pollution and asthma development. Their meta-analyses found some 

evidence of an association between nitrogen oxides and asthma, particulate matter and 

asthma, and black carbon and asthma. However, many of their meta-analyses showed 

evidence of heterogeneity. All five birth cohorts included in their meta-analyses are 

discussed in the next section of this chapter and included in Table 2.2. 

 While these reviews and reports are key to our understanding of air pollution and 

asthma, none of them focus specifically on air pollution exposure during prenatal and early 

life periods. 

 

Results of Key Studies 

 Table 2.2 summarizes nine key studies on prenatal and early life traffic-related air 

pollution exposure and childhood asthma incidence. The majority of these studies are either 

birth cohorts or studies nested within birth cohorts, such as nested case control studies. 
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Exposure estimation ranged from fairly basic to sophisticated. On the basic side, some 

studies defined exposure using distance of residence to roadway or area truck route 

density. This information was either calculated using residential address or obtained via 

self-report in the case of Zhou et al. 2013 where participants were asked questions such as 

“[Do] cars often or continuously pass by your house?” (Zhou et al. 2013). On the 

sophisticated side of exposure assessment, many studies used land-use regression models. 

When possible, studies broke down exposure into pollution components: NO2, NO, 

particulate matter, and black (elemental) carbon or soot. As with many asthma studies, the 

majority of these studies defined asthma incidence using parental report of asthma 

obtained via questionnaire. Two studies that used alternate asthma diagnosis methods were 

completed by Clark and colleagues in 2010 and Carlsten and colleauges in 2011. Clark et al. 

used physician billing records and hospital discharge records to determine asthma 

diagnosis (Clark et al. 2010). Carlsten et al. had a pediatric allergist blinded to child 

exposure examine each child at age seven and use a symptom-based algorithm to determine 

asthma status (Carlsten et al. 2011). 

 Out of the nine articles in Table 2.2, seven of them came to the conclusion that 

prenatal or early life traffic-related air pollution was associated with asthma development. 

Significant associations were found by at least one study for every pollutant examined 

(PM2.5, PM10, NO, NO2, NOx, and black carbon) as well as for exposure metrics such as 

distance from roadway. While some of the strongest associations were seen for particulate 

matter exposure (in particular by Carlsten et al. 2011 and Gruzieva et al. 2013), this was not 

consistent across all studies. The strongest effects from these nine studies were seen in 

Carlsten et al. 2011 which was completed in a population of children at high risk for asthma 

based on family history of asthma or allergic diseases such as atopic dermatitis, seasonal or 

food allergies. These results contribute to our knowledge that air pollution can be 
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particularly harmful to susceptible or vulnerable populations. Krämer et al. and Oftedal et 

al. were the two studies which found no association between traffic-related air pollution 

and asthma development (Krämer et al. 2009, Oftedal et al. 2009). Krämer et al. did not see 

an overall effect of pollution on asthma, but did see an effect when restricting analyses to 

residents of Munich, the area with the highest pollution in their study. The results in Oftedal 

et al. indicated a preventive effect of air pollution, but were not statistically significant. The 

authors speculated that their results could be explained by selection issues and diagnostic 

misclassification of asthma. 

 In addition to the nine studies in Table 2.2, there have been many additional studies 

on related associations. Several articles have examined the association between prenatal 

and early life traffic-related air pollution exposure and allergic and respiratory outcomes 

such as wheeze, respiratory symptoms, allergic sensitization, eczema and lung function. 

Others have looked at traffic-related air pollution exposure and asthma development, but 

focused on exposure outside of the prenatal and early life periods.  

 This literature review has focused on the long-term respiratory effects of chronic 

exposure to air pollution from traffic. Fewer studies have assessed whether chronic 

exposure to air pollution from all sources, not just traffic, is associated with asthma 

incidence. However, there is some evidence of an association between total air pollution 

exposure and asthma incidence. A 2002 study in Japan saw evidence of an association 

between annual-average NO2 concentrations and asthma development, but no association 

between PM10 concentrations and asthma development (Shima et al. 2002). A more recent 

study found that exposure to PM2.5 during pregnancy was associated with asthma incidence 

by age 6, but only among boys (Leon Hsu et al. 2015). 

 

Effect Modification by Atopy and Socioeconomic Status 
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 There is some indication in the literature that air pollution exposure has a stronger 

effect on asthma development among children without atopy than among children with 

atopy. These results align with results from research which has shown stronger 

associations of air pollution (indoor and outdoor) and secondhand smoke with respiratory 

symptoms, asthma prevalence and asthma symptom exacerbation in nonatopic children 

(Strachan et al. 1998, Hirsch et al. 1999, Kattan et al. 2007). The results suggesting the same 

trend with air pollution and asthma incidence are very preliminary and not entirely 

consistent. Gehring and colleagues in 2010 saw that the effect of air pollution on asthma 

incidence may be limited to nonatopic asthma where this phenotype was defined as asthma 

without evidence of sensitization (Gehring et al. 2010). However, this study had small 

numbers of children with each phenotype. The results of Gruzieva and colleagues in 2013 

also suggest that the effect may be strongest for nonallergic asthma particularly at older 

ages (where nonallergic asthma was defined the same way as in Gehring et al. 2010). At age 

eight, the association with both first year of life NOx and PM10 was much stronger for 

nonallergic asthma than for allergic asthma. They also saw a difference at four years of age, 

but the effect estimates were more similar (Gruzieva et al. 2013). An additional study by 

McConnell in 2006 saw larger effects of distance from current residence to major road on 

asthma prevalence and wheeze among children without a history of allergic symptoms 

(McConnell et al. 2006). Nevertheless, results on the topic as a whole are inconsistent. Other 

studies have found either no difference in effect between sensitized and non-sensitized 

children, or even a stronger association between pollution and atopic asthma than pollution 

and nonatopic asthma (Annesi-Maesano et al. 2007, Brauer et al. 2007). 

The small body of research that has examined whether the impact of air pollution 

exposure on asthma differs by socioeconomic status (SES) has come to disparate 

conclusions. SES is an important confounder of the relation between air pollution and 
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asthma. Air pollution is spatially heterogeneous with the highest pollution often occurring 

in low SES areas. As discussed previously, asthma occurs at higher rates among individuals 

from low SES backgrounds. A study by Shankardass and colleagues in 2009 looked at 

whether children from families with low SES and with high parental stress were more 

susceptible to the impact of traffic-related air pollution on asthma development 

(Shankardass et al. 2009). They found that children from families with these characteristics 

were more susceptible, as evidenced by larger hazard ratios of effect. The authors 

hypothesized that individuals with higher levels of stress may respond differently to 

oxidative burden and that this may explain both results as low SES environments typically 

have higher levels of stress. Two additional studies have found that the effect of air 

pollution on childhood asthma hospitalizations and ambulatory visits is greater for children 

of low SES (Neidell 2004, Burra et al. 2009). The authors of one study hypothesized that 

pollution could be a potential mechanism of the effect of SES on asthma (Neidell 2004). Two 

recent studies did not find effects to differ by SES, one looking at the impact of air pollution 

on asthma incidence, and the other looking at the impact of air pollution on asthma 

medication sales (sales of short-acting β-agonists specifically) (Zmirou et al. 2004, Laurent 

et al. 2009). While this is in no way an exhaustive look at all studies of effect modification by 

SES, these results indicate that this is a relationship worth studying. 

 

Limitations of Previous Research 

A major limitation of much of the previous research in this area is the absence of 

high-quality data on both air pollution and also asthma. There is a limited amount of 

research that focuses specifically on air pollution exposure during pregnancy and early life 

despite the importance of these windows developmentally. For exposure assessment, the 

reliance on residence at birth is problematic. Exposure estimation based solely on residence 
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(at any time point) ignores the fact that our daily movements mean our location is not 

always in close proximity to residence. This can lead to misclassification of exposure 

particularly if the places one spends time have substantially different pollution profiles than 

that at one’s residence. The use of residential address may be less of an issue when studying 

exposure during infancy, but more of an issue once a child is attending school and spending 

less time at home. The reliance solely on address at birth is also problematic since it is 

common for families to move during pregnancy and the first few years of a child’s life. 

Reasons for moving during this time include the need to accommodate a growing family, 

changing financial resources, and the desire to relocate to neighborhoods better suited for 

children (Saadeh et al. 2013).  

Asthma ascertainment in many studies suffer from the use of self-reported asthma 

and from the lack of information about timing of onset. Asthma is a heterogeneous outcome. 

Different studies classify asthma in different ways making it possible they are studying 

disparate biological outcomes. Many studies also lack adequate control for important 

potential confounders such as SES and family history of asthma. Varying asthma 

classification schemes and control for different potential confounders limit the ability to 

meaningfully compare results between studies. Future studies should examine whether 

some individuals are more susceptible to air pollution’s effects, for example based on 

gender, SES, or genetic background (Salam et al. 2008). 
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Table 2.2. Summary of key articles on prenatal and early life traffic-related air pollution and childhood asthma incidence 

Carlsten 2011 (Carlsten et al. 2011) – Vancouver, Canada  
 Study Details 

• Birth cohort of children born in 1995 at high 
risk for asthma development 
• Children randomized to study arms: control 
arm with usual care, intervention arm with care 
aimed at asthma prevention  
• 100 intervention children, 84 control 

Exposure 
• Estimated exposure during birth year to traffic-
related NO, NO2, black carbon, and PM2.5    
• Land use regression model. Estimated annual 
pollutant concentrations using samples from 
multiple sites in the study area in 2003, 
residential address at birth, and 55 descriptive 
variables 

Outcome 
• Asthma diagnosed at age 7 by a pediatric allergist 
blinded to child information 
• Asthma definition: ≥2 episodes of cough (each 
lasting ≥2 weeks), ≥2 distinct episodes of wheeze 
(each lasting ≥1 week), plus ≥1 of the following: 
nocturnal cough in the absence of a cold (at least 
once a week), hyperpnoea-induced cough or 
wheeze, or response to drug treatment 

Analysis 
• Logistic regression for IQR increase of exposure 
• Covariates: maternal education, maternal, 
paternal or sibling asthma, atopy at 1 year, 
intervention status, gender, ethnicity 

Main Findings for Asthma 
OR (95% CI) control arm 

PM2.5: 4.1 (1.2, 13.8) 
NO: 1.7 (1.0, 2.8) 
NO2: 1.9 (0.9, 4.0) 
Black carbon: 1.2 (0.6, 2.3) 

OR (95% CI) intervention arm 
PM2.5: 2.1 (0.6, 7.1) 
NO: 0.8 (0.4, 1.6) 
NO2: 1.3 (0.6, 2.9) 
Black carbon: 1.1 (0.5, 2.5) 

Clark 2010 (Clark et al. 2010) – British Columbia   
 Study Details 

• Population-based nested case control study. 5 
controls matched to each incident asthma case 
on sex, and month and year of birth 
• Cohort: births in 1999 and 2000. Inclusion: on 
provincial medical plan, live in area during 
pregnancy and first year of life. 3,482 cases; 
17,410 controls 

Exposure 
• Average prenatal and first year of life exposure 
• Exposures to NO, NO2, PM2.5, black carbon 
assigned from residential zip code using land use 
regression (LUR) models, monitoring data, 
distance to stationary sources [Separate analyses 
on point source exposure instead of LUR not in 
table] 

Outcome 
• Records-based asthma diagnosis using physician 
billing records from primary care visits and 
hospital discharge records 
• Asthma definition: ≥2 primary care diagnoses in 
12 month period, or 1 hospital admission for 
asthma  

Analysis 
• Conditional logistic regression. OR for IQR 
increase. Prenatal and first year of life exposure 
included in same model when not highly correlated. 
• Covariates: native status, breast feeding, maternal 
smoking and age, income, education, birth weight, 
gestational length 

Main Findings for Asthma 
OR (95% CI) in utero exposure 

NO: 1.05 (1.02, 1.09) 
NO2: 1.02 (0.97, 1.07) 
PM2.5: 1.02 (1.00, 1.03) 
Black carbon: 1.08 (1.02, 1.15) 
Road proximity: 0.97 (0.82, 
1.15) 

OR (95% CI) first year of life 
exposure  

NO: 1.03 (1.00, 1.07) 
NO2: 1.13 (1.04, 1.23) 
PM2.5: 1.01 (0.99, 1.03) 
Black carbon: 1.14 (1.01, 1.29) 
Road proximity: 1.01 (0.84, 
1.22) 
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Table 2.2. Summary of key articles on prenatal and early life traffic-related air pollution and childhood asthma incidence (Continued) 

Gehring 2010 (Gehring et al. 2010) – The Netherlands 
 Study Details 

• PIAMA Study Prospective Birth Cohort 
• Lifestyle intervention assessed for allergy 
and asthma prevention. Children followed 
from years 1 to 8 (n=3,863).  
• Natural history arm included allergic and 
nonallergic mothers. Intervention arm 
included only allergic mothers. 

Exposure 
• Estimated long term average ambient 
pollution concentration at birth address 
using land-use regression models (NO2, 
PM2.5, soot) 
• Used monitoring data from 40 study sites, 
and data on traffic, road, and population 
density near monitoring location for 
estimation 

Outcome 
• Parental report of asthma diagnosis at ages 1 to 8 
collected yearly via questionnaire 
• Atopic asthma = prevalent asthma in past 12 months 
and being sensitized. Nonatopic asthma = prevalent 
asthma in the past 12 months without sensitization. 

Analysis 
• Longitudinal logistic regression using GEE 
(correlation between yearly outcomes). OR per IQR 
increase. 
• Sensitivity analyses: potential confounding by region, 
impact of study design, interaction between air 
pollution and whether a child moved 
• Covariates: gender, study arm, parental allergies and 
education, maternal smoking during pregnancy, 
breastfeeding, siblings, home environment, day care, 
region, Dutch nationality, health characteristics 

Main Findings for Asthma 
OR (95% CI) for asthma in first 8 
years 

PM2.5: 1.26 (0.97, 1.63) 
NO2: 1.17 (0.96, 1.42) 
Soot: 1.17 (0.95, 1.42) 

Crude OR (95% CI) nonatopic 
asthma 

PM2.5: 1.85 (0.92, 3.73) 
NO2: 2.98 (1.21, 7.37) 
Soot: 2.06 (0.99, 4.30) 

Crude OR (95% CI) atopic asthma 
PM2.5: 0.95 (0.64, 1.40) 
NO2: 1.00 (0.63, 1.58) 
Soot: 0.97 (0.64, 1.46) 

Gruzieva 2013 (Gruzieva et al. 2013) – Sweden 
 Study Details 

• Swedish birth cohort BAMSE. Children 
born between 1994 and 1996 (n=3,633)  

Exposure 
• First year of life exposure, current 
exposure, average exposure since last 
follow-up. 
• Roadway PM10 and NOX during first year 
of life  
• Calculated time weighted outdoor air 
pollution exposure using residence, 
daycare, and school addresses, and 
emission data. Gaussian dispersion model 
used to calculate traffic-PM10 and traffic-
NOx. 

 

Outcome 
• Asthma ages 1, 2: 3+ episodes of wheeze and inhaled 
corticosteroids treatment or bronchial hyper-reactivity 
in absence of respiratory infection 
• Asthma ages 4, 8, 12: 4+ episodes of wheeze or 1+ 
episode and prescribed inhaled corticosteroids 
• Incident asthma = first questionnaire when fulfill 
asthma requirements  
• Allergic asthma = fulfill asthma requirements and 
evidence of allergen sensitization in blood IgE levels 

Analysis 
• Multinomial logistic regression, GEE. Modeled 
exposure as 5th to 95th percentile difference. 
• Results for asthma at ages 1, 2, 4, 8, and 12 
• Assessed time-exposure interaction and effect 
modification by sex and allergic heredity 
• Covariates: municipality, SES, heredity (parental 
asthma, asthma medication, hay fever, allergies), year 
house built 

Main Findings for Asthma 
OR (95% CI) first year of life NOX 

Overall effect: 1.21 (0.79, 1.84) 
1 year: 0.85 (0.44, 1.62) 
2 years: 0.96 (0.51, 1.80) 
4 years allergic: 1.5 (0.4, 5.1) 
4 years nonallergic: 2.4 (1.0, 5.6) 
8 years allergic: 0.8 (0.2, 2.4) 
8 years nonallergic: 2.6 (0.9, 8.1) 
12 years: 1.87 (1.01, 3.44) 

OR (95% CI) first year of life PM10 
Overall effect: 1.34 (0.80, 2.23) 
1 year: 0.79 (0.39, 1.62) 
2 years: 1.14 (0.57, 2.25) 
4 years allergic: 1.4 (0.3, 6.8) 
4 years nonallergic: 1.6 (0.5, 5.3) 
8 years allergic: 1.1 (0.3, 3.8) 
8 years nonallergic: 3.8 (0.9, 16.2) 
12 years: 2.39 (1.18, 4.86) 
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Table 2.2. Summary of key articles on prenatal and early life traffic-related air pollution and childhood asthma incidence (Continued) 

Krämer 2009 (Krämer et al. 2009) – Germany   
 Study Details 

• German birth cohorts: GINIplus, LISAplus. 
Children followed-up at ages 1, 2, 3, 4 and 6 
(n=2059) 

Exposure 
• Estimated traffic-related air pollution at birth 
address: soot (PM2.5 absorbance), NO2  
• Whether distance to major road <50 meters 
• Land-use regression models used residence 
at birth to model air pollution using 2002 
measurements 
 
 

 

Outcome 
• Parental report of physician-diagnosed asthma 

Analysis 
• Cox regression - exposure from birth address 
• Covariates: parental allergy and education, gender, 
maternal smoking in pregnancy, smoking in home, 
furry animal contact in first year of life, elder siblings, 
gas cooking, home dampness, indoor molds, living on 
a farm 

 

Main Findings for Asthma 
RR (95% CI) from Cox 
regression asthma by age 6 

Soot: 1.16 (0.87, 1.54) 
NO2: 1.17 (0.86, 1.58) 
<50m: 0.86 (0.66, 1.14) 

Oftedal 2009 (Oftedal et al. 2009) – Oslo, Norway   
 Study Details 

• Cross-sectional study of children from the 
Oslo Birth Cohort who resided in Oslo in the 
first year of life and during the year prior to 
the questionnaire 
• Cohort: children born 1992-1993. Followed 
up at ages 9 to 10 (n=2,871) 

Exposure 
• NO2 exposure during first year of life and 
before asthma onset calculated based on 
residence 
• EPISODE dispersion model (3D 
Eulerian/Lagrangian dispersion model) used 
to estimate NO2 exposure 
• Distance from birth residence to major 
roadway 

Outcome 
• Parental report of physician-diagnosed asthma via 
questionnaire 
• Onset categorized into: before age 4, before age 9-
10, between age 4 and 9-10 

Analysis 
• Modeled IQR increase of exposure with Cox 
proportional hazard model and logistic regression. 
Completed some models smoothing exposure with 
cubic splines.  
• Assessed interaction with: sex, parental atopy, skin 
prick test results, cohort indicator 
• Covariates: sex, parental education and atopy 
(maternal or paternal history of asthma, hay fever, or 
eczema), maternal smoking during pregnancy and 
marital status, cohort population 

Main Findings for Asthma 
RR (95% CI) from Cox PH 
regression 

NO2 1st year life: 0.82 (0.67, 
1.02) 
NO2 before onset: 0.82 (0.67, 
1.02) 
Distance to major road: 0.99 
(0.90, 1.08) 

OR (95% CI) from logistic 
regression 

NO2 1st year life: 0.81 (0.65, 
1.02) 
Distance to major road: 0.98 
(0.89, 1.08) 

[Also presented results for onset 
<4 years of age, ≥4 years of age] 
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Table 2.2. Summary of key articles on prenatal and early life traffic-related air pollution and childhood asthma incidence (Continued) 

Patel 2011 (Patel et al. 2011) – New York City, NY, USA 
 Study Details 

• Columbia University Birth Cohort. Enrollment 
1998-2006 (n=727)  
• Maternal inclusion: nonsmoking, Dominican or 
African American ethnicity, residence in 
Northern Manhattan or South Bronx 

 
Exposure 

• Exposure during prenatal period, ages 1, 2, 3, 
and 5 collected for 250 m around home at each 
age 
• Modeling variables: proximity to highway, 
roadway density, truck route density, four-way 
intersection density, number of city bus stops, 
stationary source proximity, percentage of 
commercial building area 

Outcome 
• Maternal report via questionnaire of 
physician-diagnosed asthma in the past 12 
months 
• Questionnaires completed every 3 months 
between birth and age 2 and every 6 months at 
ages 2-3, 4-5. 
 

Analysis 
• Generalized estimating equations 
• Covariates: sex, ethnicity, smoker in home, 
income, residential cockroach/mouse allergen, 
age, age by GIS variable interaction, wheeze in 
past 12 months, positive indoor allergen-
specific IgE, total IgE from birth to age 5 

Main Findings for Asthma 
OR (95% CI) prenatal exposure, 
outcome by age 5 

Highway proximity: 2.07 (1.28, 
3.34) 
Roadway density: 1.43 (1.01, 2.02) 
Truck route density: 1.11 (0.74, 
1.65) 

OR (95% CI) exposure year 1, 
outcome at age 5 

Highway proximity: 1.14 (0.76, 
1.70) 
Roadway density: 1.04 (0.73, 1.48) 
Truck route density: 0.92 (0.63, 
1.35) 

 [Also presented results for age 1, 2, 
and 3, and other exposure metrics] 

Zhou 2013 (Zhou et al. 2013) – France   
 Study Details 

• EDEN mother-child cohort study (n=1,765 
mother-child pairs) 

Exposure 
• In utero and first year of life traffic-related air 
pollution exposure assessed via questionnaire 
administered at time of outcome assessment.  
• Questions: “[Is] your house located near a bus 
stop or a passageway of trucks?” “Do…cars often 
or continuously pass by your house?” “Do you 
live less than 200 meters away from a road with 
heavy traffic?” 

Outcome 
• Maternal report via questionnaire at ages 4, 8, 
and 12 months. Analysis for asthma in the first 
year of life. 
• Doctor diagnosed asthma; Doctor diagnosed 
asthma with wheezing and/or history of 
bronchiolitis 

Analysis 
• Logistic regression, GEE, adjusted population 
attributable risk (aPAR) 
• Covariates: study centre, maternal factors 
(occupation, age, pre-pregnancy BMI), birth 
weight, cesarean delivery, preterm birth, breast 
feeding, siblings, gender, family history of 
asthma, eczema, allergic rhinitis, food allergy 

Main Findings for Asthma 
In utero exposure 

Trend (OR>1) between exposure 
and asthma at age 1. [Data not 
reported] 

OR (95% CI) first year of life 
exposure 

1.71 (1.08, 2.72) 
aPAR(%) (95% CI) 

13.52 (2.38, 20.53) 
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Table 2.2. Summary of key articles on prenatal and early life traffic-related air pollution and childhood asthma incidence (Continued) 

Zmirou 2004 (Zmirou et al. 2004) – France   
 Study Details 

• Vesta multi-center pair-matched case control 
study (n=195 matched pairs). Conducted 1998-
2000 
• Incident asthma cases (ages 4-14) matched at 
time of diagnosis with control without asthma or 
chronic respiratory symptoms on. Matched on: city, 
age, gender 

Exposure 
• Cumulative index of lifelong traffic exposure.  
• Traffic Density = (I/D). Where I= traffic density 
on index road (road within 300 m of location 
resulting in largest I/D ratio), D=distance to road.  
• Weighted value calculated using all residence, 
day care, and school locations for each child. 

Exposure (continued) 
• Cumulative index calculated using I/D values 
weighted according to age, gender, and city 
specific averages of time spent at home and 
school 

Outcome 
• Physician-diagnosed incident asthma 

Analysis 
• Conditional logistic regression. Lifelong 
exposures, exposures from ages 0-3 years 
• Covariates: social class, environmental 
tobacco smoke during pregnancy, exposure to 
maternal smoking at home, day care, gas 
cooking, months with pets and humidity at 
home, personal allergy 

Main Findings for Asthma 
OR (95% CI) lifelong exposure 

Tertile 1: reference 
Tertile 2: 0.95 (0.50, 1.82) 
Tertile 3: 0.82 (0.43, 1.59) 

OR (95% CI) exposure before age 
3 

Tertile 1: reference 
Tertile 2: 1.48 (0.73, 3.02) 
Tertile 3: 2.28 (1.14, 4.56) 

Exposure before age of 3: 
modeling log transformed 
exposure as a quantitative 
predictor 

1.30 (1.04, 1.62) 
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CHAPTER 3 

Methods 

 

DATA SOURCES 

Air Pollution Data  

The air pollution data for this work will come from the EPA-funded Southeastern 

Center for Air Pollution and Epidemiology (Southeastern Center for Air Pollution and 

Epidemiology (SCAPE) 2010) which is one of four national Clean Air Research Centers in 

the United States. Housed by Emory University and Georgia Institute of Technology, SCAPE 

is composed of renowned air pollution and environmental health experts. A major goal of 

SCAPE is to assess impacts of air pollution mixtures using a variety of approaches to 

mixture characterization, including approaches that group pollutants by source (e.g. source 

apportionment), and hypothesized biological mechanism of effect (i.e. oxidative potential). 

Two separate pollutant datasets created by researchers in SCAPE’s Air Quality Core and 

Biostatistics Core will be used in this dissertation, one estimates PM2.5 from traffic (RLINE), 

and one estimates total PM2.5 (CMAQ-RLINE Fusion). The creation of these datasets are 

described in the methods sections of Chapter 5 (RLINE) and Chapter 6 (CMAQ-RLINE 

Fusion) of this dissertation. The CMAQ-RLINE Fusion dataset uses inputs from the 

Community Multiscale Air Quality Model (CMAQ). A description of CMAQ is included here. 

 

Community Multiscale Air Quality Model (CMAQ) 

CMAQ is a multiple pollutant model developed by the U.S. Environmental Protection 

Agency that can be used for air quality research, regulation, and forecasting purposes. A 

very brief overview of the model is described here. For a more in depth explanation please 

refer to the EPA CMAQ documentation and a 2006 paper reviewing CMAQ updates (the 
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primary references for this summary) (Byun DW et al. 1999, Byun et al. 2006). CMAQ is an 

Eulerian emissions-based chemical transport model which uses a “one atmosphere” 

approach which takes into account multiple pollutants at multiple spatial scales. Eulerian 

models (like CMAQ) estimate air pollution using a grid system supplying each grid with 

pollution estimates for time points of interest. CMAQ contains separate modeling systems 

for meteorology, emissions, and chemical transport. It is in a continuous state of 

development with system changes occurring regularly. A concise explanation of CMAQ 

comes from Chapter 1 of the original EPA documentation (Byun DW et al. 1999): 

 

CMAQ is a multi-pollutant, multiscale air quality model that contains state-of-science 

techniques for simulating all atmospheric and land processes that affect the transport, 

transformation, and deposition of atmospheric pollutants and/or their precursors on 

both regional and urban scales. It is designed as a science-based modeling tool for 

handling all the major pollutant issues (including photochemical oxidants, particulate 

matter, acidic, and nutrient deposition) holistically. 

 

Several inputs are used by the CMAQ pollution simulation, the two main classes of 

which are meteorology and emissions. CMAQ is designed to use information from multiple 

meteorological models and can currently use information from the Fifth Generation Penn 

State/National Center for Atmospheric Research Mesoscale Model (MM5), the Regional 

Atmospheric Modeling System (RAMS) and the Weather Research and Forecast Model 

(WRF). MM5 has been used since the first release of CMAQ. Before it is run, initial and 

boundary conditions are specified. This process includes the determination of terrain 

height, land use specifications, meteorology background fields and lateral boundary 

conditions. The meteorology model itself uses observations on four state variables (wind, 
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pressure, humidity and temperature) along with equations on thermodynamics, moisture, 

and momentum. The model is flexible with different options available to researchers 

depending on what assumptions they want to make, simulation scales, and CPU and 

memory available for processing. Among other options, there are multiple schemes for 

radiation cooling, convective parameterization, and planetary boundary layers. After the 

meteorology data are simulated from MM5 or the other models, it enters the Meteorology-

Chemistry Interface Processor (MCIP) where it is converted into a form that can be used by 

the other CMAQ modules. 

In the initial release of CMAQ, the emissions inputs were supplied by the Models-3 

Emission Processing and Projection System based on the Emission Modeling System-95 

(MEPPS EMS-95). This system is highly user-driven with several opportunities for 

researchers to determine process specifics. MEPPS uses emission inventory data from point, 

area, biogenic, and mobile sources and meteorological information. The emissions data 

come from pollution control agencies, and the meteorological data come from MCIP. These 

data are imported into MEPPS and first allocated spatially and temporally into pollution 

grids and then speciated. The data are processed by the Emissions-Chemistry Interface 

Processor (ECIP) to create hourly emissions data that can be used by the chemical transport 

model. CMAQ can now also use information from the SMOKE (Sparse Matrix Operator 

Kernel Emission) modeling system. When run, SMOKE replaces both MEPPS and ECIP. 

 In addition to simulated meteorology and emissions information, CMAQ uses input 

data on land use, concentration fields (used as a base for the chemical transport model), 

temperature, aerosol number density, and vertical ozone profiles. These inputs involve 

several computations to be useful to the system such as calculation of plume rise, photolysis 

rates, and cloud parameters. 
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All data inputs are used by the CMAQ Chemistry Transport Model (CTM) to simulate 

pollutants at multiple scales. The modeling system is designed to provide good pollution 

estimates under a wide range of situations and to be adaptable to different user demands 

and experimentation. The “one atmosphere” approach simultaneously accounts for 

chemical interactions of multiple pollutants at dynamic temporal and spatial scales. The 

majority of CTM components can be classified into eight modules: advection, photolysis, 

cloud aqueous process, diffusion, process analysis, gas-phase chemistry, plume in grid, and 

aerosol. The gas phase chemistry and aerosol chemistry and dynamics modules are both 

particularly fundamental to the modeling of pollutant interactions. The aerosol chemistry 

module models both species from primary emissions as well as secondary species and 

considers PM2.5 and PM10. The impact on aerosol chemistry by clouds is taken into account 

by the cloud module. This component of CTM models cloud physics and chemistry and their 

impact on the reactions modeled in CTM and ultimately on pollutant concentrations. The 

plume-in-grid technique is used for the simulation of plume growth (horizontal and 

vertical), rise, and transport of plumes resulting from major point source pollutants. The 

governing equations used by CTM use a generalized coordinate system which allows 

specific processes to use the coordinate systems best fitted to their calculations while also 

allowing for adaption to coordinates used by meteorological models. This generalized 

coordinate system is also used by the transport algorithms that model advection and 

vertical and horizontal diffusion. The many components of CTM produce the final speciated 

spatial and temporally allocated air pollution estimates. 

 

Kaiser Permanente Georgia 

Health outcomes and covariate data for children and mothers will come from Kaiser 

Permanente Georgia (KPGA) Health Maintenance Organization (HMO) electronic medical 
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records. KPGA offers comprehensive medical services to 240,000 members in the 

metropolitan Atlanta area and has a database of electronically linked administrative and 

clinical records. Detailed member-level data include information on HMO enrollment 

history, residence, primary care visits, drug prescriptions, emergency department visits, 

and hospital admissions. A key advantage of this data source is that it includes information 

on all encounters with the medical system, not just emergency department visits and 

hospitalizations. For my analyses, data are available for 24,608 children born between 2000 

and 2010 who have been insured by Kaiser since birth through at least the first year of life.  

 Information on asthma diagnosis and asthma-related medication dispensings will be 

used for asthma classification. The list of medications we will consider as “asthma-related” 

is provided in Table A2 in Appendix A. This list was created by a team of physicians and 

researchers for the Medication Exposure in Pregnancy Risk Evaluation Program (MEPREP) 

on which researchers at KPGA collaborated. It should be comprehensive of all medications 

used to treat childhood asthma. All medications on this list have also been confirmed as 

used for asthma by a pediatric allergist at Emory University (Dr. Karen DeMuth). 

 

Georgia Birth Certificates 

Supplementary covariate data will come from Georgia birth certificates. Variables 

requested include infant birth characteristics (e.g., preterm delivery, reduced birth weight), 

maternal characteristics (e.g., age, smoking status), paternal characteristics, and 

sociodemographic variables (e.g., race, maternal education). Birth certificate data have 

already been linked to Kaiser Permanente data for previous projects. 

 

Data Preparation 
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 A number of data cleaning steps will be necessary in order to transform datasets 

received from KPGA and the state of Georgia into an analytic dataset that we can use for 

analyses. This section describes how we will complete two of the more complicated data 

cleaning steps, determining child race and ethnicity, and first year of life residence. 

 

Child race and ethnicity 

 Not all children enrolled in KPGA have race information available in their medical 

record. We will use information from the following sources to determine child race: child 

race from KPGA, maternal race from KPGA, maternal race from child birth certificates, and 

paternal race from child birth certificates. All children will have their race classified as 

black, white, other, or unknown. The other category will include Asian, American Indian, 

Alaska Native Hawaiian or other Pacific Islander, and children identifying with more than 

one racial group. We will use the following algorithm to assign child race.  

 

1. For children matched to birth certificates: if mother and father birth certificate race 

are the same it will be assigned as child race. If father race missing on  birth 

certificate, use mother’s race on birth certificate for child’s race 

2. If no birth certificate is available, or birth certificate race is missing for mother, or 

birth certificate mother and father race is not concordant: use child race information 

from KPGA 

3. If child has no race information in KPGA, and mother and father birth certificate race 

is not concordant: classify child’s race as ‘Other’ 

4. If child has no race information in KGPA, and mother birth certificate race missing, 

but have father birth certificate race: use father’s race from birth certificate for 

child’s race 
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5. If no birth certificate is available, or birth certificate race is missing for both mother 

and father, and no child KPGA race information is available: use mother KPGA race 

information 

6. For all remaining children: classify race as unknown 

 

Child ethnicity will be determined using the same data sources as used to determine 

child race. The KPGA ethnicity variable includes the categories ‘yes’ and ‘no or unknown.’ 

Subsequently, the child ethnicity variable used in our analyses will have the same 

categories. A child will be classified as Hispanic if they have any evidence of Hispanic 

ethnicity, i.e. Hispanic is listed in any of the following places: birth certificate mother 

ethnicity, birth certificate father ethnicity, child KPGA ethnicity, or mother KPGA ethnicity. 

 

First year of life residence 

 Residential information for the first year of life will be used to estimate first year of 

life PM2.5 exposure. These residences will first be geocoded to a 250 meter by 250 meter 

grid system of Atlanta for which air pollution data are available. The child residence dataset 

from KPGA has multiple observations per child, with each observation listing the 250 meter 

grid of the residence, and start and stop dates for that residence. For many children, 

residential history information from KPGA is incomplete; some children have no residential 

information available, while others are missing residential data for certain periods of time. 

We will assign PM2.5 exposure for all children with at least one residence with a start date 

between their date of birth (DOB) and their first birthday. In order to complete assignment, 

we need to determine child residence for every day in the first year of life period (DOB to 

the day before the first birthday). We will use the following algorithm to complete this 

assignment: 
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1. Combine any consecutive residences with the same 250 meter grid assignment. For 

example, if there are 2 consecutive residences with the same grid assignment, the 

clean dataset will have one residence listed, with the earliest start date, and latest 

stop date out of these two observations. 

2. Remove gaps between residences starting in the first year of life: calculate the 

median between the end date of the residence before the gap and the start date of 

the residence after the gap. The end date of the residence before the gap will be 

moved to 1 day before the median. The start date of the residence after the gap will 

be moved to the median. 

3. For children whose first residence in the first year of life starts after their DOB, the 

start date of their first residence will be moved up to their DOB. 

4. For children whose last residence starting in the first year of life ends before the day 

before their first birthday: 

a. If the child has no residences between their first and second birthdays, the 

end date of their last residence before the first birthday will be extended to 

the day before their first birthday 

b. For children with a residence between their first and second birthdays, the 

first residence after their first birthday will be considered in the assignment 

algorithm. The median between the end date of their last residence before 

their first birthday and the start date of the first residence after their first 

birthday will be calculated.  

i. If the median falls after the child’s first birthday, the end date of their 

last residence before their first birthday will be moved to the day 

before their first birthday. 
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ii. If the median falls before their first birthday, the end date of their 

last residence before the first birthday will be moved to the day 

before the median. The first residence after their first birthday will 

be set to the endpoints: start date = median between actual start 

date and the end date of the last residence before the first birthday; 

end date = day before their first birthday. 

 

Prenatal residence will be determined using the same algorithm, instead using 

maternal residential history during pregnancy (between the estimated day of conception 

and the day before the date of birth). 

 

Socioeconomic Data 

 Information on neighborhood-level socioeconomic status will come from Georgia 

Department of Public Health (DPH). Georgia DPH has created innovative SES 

characterizations at block group spatial resolution using data on 25 variables from the 2010 

Census. These characterizations classify block groups into four major categories and 

eighteen demographic clusters based on age, income, family structure, education, housing, 

and employment (Demographic Clusters of Georgia 2012). The characterizations were 

created using TwoStep Clustering and discriminant analysis in SPSS statistical software 

(Zhou 2012). SPSS TwoStep Clustering begins by creating pre-clusters using a sequential 

clustering approach and then groups the pre-clusters to form the final clusters (SPSS 2001). 

Discriminant analysis is a multivariate procedure which tests differences between groups 

and then determines which variables are necessary for classifying inter-group differences 

(UCLA Institute for Digital Research and Education 2013). First, the major clusters were 

created by using the TwoStep Clustering approach followed by discriminant analysis. The 
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demographic clusters were then created using the same approach, but within the already 

determined major clusters. Descriptions of all eighteen clusters are provided by DPH Office 

of Health Indicators for Planning (OHIP) and are included in Table A1 in Appendix A.   

 While a priori we plan to use Georgia Department of Public Health’s demographic 

clusters to characterize neighborhood socioeconomic status, we will also explore individual 

variables from the American Community Survey. American Community Survey 2010 data (5 

year estimates, averaging data from 2006-2010) on the following variables will be pulled 

via Social Explorer at census tract level (U.S. Census Bureau 2010): median household 

income, median year house built, median house value, percent less than high school 

education, percent unemployment, and percent of families in poverty. 

 

ANALYTIC METHODS 

 The majority of methods for this dissertation are not included in this section and 

instead are described in each of the main dissertation chapters (Chapter 4, Chapter 5, and 

Chapter 6). All dissertation components will be completed using a retrospective birth 

cohort. This cohort includes all Kaiser Permanente Georgia Health Plan members with a 

date of birth between January 1, 2000 and December 31, 2010 (inclusive of endpoint dates) 

who were born in Kaiser and enrolled the following 12 months after their date of birth. 

Gaps of enrollment of up to 45 days within this 12 month period are permitted. This cohort 

will be “closed” in that it will only contain members born into the cohort. Members will be 

lost to follow-up due to death (very rare) and the ending of Kaiser health insurance 

coverage (very common). The cohort study design will allow for the calculation of risks. All 

analyses will be performed using SAS 9.3 (SAS Institute, Cary, NC). 

 This dissertation section describes a couple of analytic methods used in the 

preparation of data for this dissertation, but that are not described elsewhere. 
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Spatial Data Linkage 

 This project has a substantial spatial component. All spatial data will be linked using 

a 250 meter by 250 meter grid network of Atlanta created by SCAPE researchers. Data from 

Kaiser Permanente Georgia, Georgia DPH, and SCAPE will be linked in order to complete 

spatial assignment of air pollution exposure and SES characterization retrospectively using 

residential history. This linkage will result in a grid assignment for each residence, a SES 

characterization for each grid, and pollution estimates for each grid. All mapping will be 

completed using an ellipsoid geodatum (base model of the earth) and the WGS84 

coordinate system (World Geodetic System 1984 revision). The linkage will be completed in 

the following ways:  

1) Mother and child residential addresses have already been geocoded to an ellipsoid 

geodatum by Kaiser Permanente using Yaddress (Yurisoft, Salano Beach, CA). For 

this project, researchers at Kaiser will use a point-in-polygon approach in ArcGIS 

(ESRI, Redlands, CA) to map each mother and child residence to a 250 meter grid.  

2) Georgia DPH SES characterizations are mapped at U.S. Census block group spatial 

resolution also using an ellipsoid geodatum. The 250 meter grids were created to 

nestle within Census tracts (multiple grids per tract) which will facilitate the 

assignment of a SES characterization for each grid using ArcGIS. 

3) CMAQ pollution estimates are created using a spherical geodatum. For the purposes 

of exposure assignment, CMAQ data coordinates were translated to an ellipsoid 

model and the WGS84 coordinate system using Python software. This 

computationally intensive conversion was completed by SCAPE researchers and led 

by Dr. Heather Holmes at Georgia Tech and Dr. John Pearce at Emory University. 

After the conversion of CMAQ to an ellipsoid model, CMAQ grids can be linked to our 
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250 meter grids which will allow us to complete exposure assignment using the 

CMAQ-RLINE fusion dataset. 

 

Power Calculations 

Power calculations were calculated for Cox proportional hazard models. Based on 

our initial calculations, we expected to have excellent power to detect modest hazard ratios. 

In this calculation, we anticipated that 17,000 children would remain enrolled in Kaiser 

Permanente Georgia through the age of three and 14% of these would be diagnosed with 

asthma. Based on that scenario, we would have had 80% power to detect a hazard ratio of 

1.08 per standard deviation increase in pollutant concentration. (Estimates were prepared 

using PASS statistical software(PASS Statistical Software. Version 8.0.7.) with α=0.05 and 

R2=0.5 for the other model covariates, and assuming a normal distribution of the annually 

averaged pollutant concentrations in the 250 meter grids).  

 

Directed Acyclic Graph 

 The directed acyclic graph (DAG) in Figure 3.1 was created when developing the 

study questions and analytic plan for this dissertation. It summarizes relationships that are 

relevant to our study questions and helped inform modeling decisions. Dotted lines 

represent relationships that are not as well established. 
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Figure 3.1. Directed acyclic graph of prenatal and first year of life air pollution exposure and 
childhood asthma incidence  
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ABSTRACT 

Background: Case definitions for asthma incidence in early life vary between studies using 

medical records to define disease. This study assessed the impact of different approaches to 

using medical records on estimates of asthma incidence by age 3 and determined the 

validity of early-life asthma case definitions in predicting school-age asthma. Methods: 

Asthma diagnoses and medications by age 3 were used to classify 7,103 children enrolled in 

Kaiser Permanente Georgia according to 15 different definitions of asthma. School-age 

asthma was defined as an asthma diagnosis between ages 5 and 8. Sensitivity (probability of 

asthma by 3 given school-age asthma), specificity (probability of no asthma by 3 given no 

school-age asthma), positive and negative predictive value (probability of (no) school-age 

asthma given (no) asthma by 3), and likelihood ratios (combining sensitivity and specificity) 

were used to determine predictive ability. Results: 9.0% to 35.2% of children were classified 

as asthmatic by age 3 depending on asthma case definition. Concordance of asthma 

classification by age 3 and school-age asthma status ranged from 71.4% to 79.9%. Early-life 

asthma classifications were more specific than sensitive and were better at identifying 

children who would not have school-age asthma (negative predictive values: 79.1% to 

86.6%) than at predicting children who would have school-age asthma (positive predictive 

values: 43.5% to 71.5%). Conclusions: Choice of case definition had a large impact on the 

estimate of asthma incidence. While ability to predict school-age asthma was limited, 

several of the case definitions performed similarly to clinical asthma prediction tools. 
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INTRODUCTION   

Asthma development often begins early in life with an estimated 50-80 percent of 

children who have asthma experiencing symptoms before age five (National Asthma 

Education and Prevention Program. Expert Panel Report 3 2007). It is difficult to diagnose 

asthma in young children due to variable and non-specific symptoms and lack of reliable 

objective testing. It is also challenging to distinguish children who will experience persistent 

asthma throughout childhood from those with transient wheeze. Despite these 

complications, extensive research focuses on asthma in early childhood, requiring 

investigators to develop case definitions for incident asthma in early life.  

There is both clinical and research interest in using early life respiratory symptoms 

to identify children who will experience persistent asthma in later childhood. Previous 

studies have created and evaluated the performance of clinical asthma prediction tools to 

identify children in early life who are at high risk of having persistent asthma or wheeze at 

school age. The Asthma Prediction Index (API), which consists of both loose and stringent 

indices, was developed in 2000 using the Tucson Children’s Respiratory Cohort and is a 

popular clinical prediction tool (Castro-Rodriguez et al. 2000). Additional prediction indices 

developed using birth cohorts include the Isle of Wright score and the PIAMA (Prevention 

and Incidence of Asthma and Mite Allergy) risk score (Kurukulaaratchy et al. 2003, Caudri 

et al. 2009). These predictive indices require information that can be prospectively 

collected by clinicians in the interest of patient care such as results of blood work and skin 

prick tests. The inclusion of detailed clinical parameters make these indices not well-suited 

for use in large retrospective studies that rarely have access to such information on all 

individuals. It is unknown whether retrospective studies that lack detailed clinical 

information can also predict who will experience persistent asthma at school age. This 
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ability would be valuable since large studies have the potential to shed light on causes of 

asthma that may be missed by smaller clinical studies with less statistical power. 

There is tremendous variability between case definitions for early-life incident 

asthma among studies using medical records or administrative claims data to define 

disease. Case definitions differ in the quantity and types of diagnoses and medications 

required to classify a child as asthmatic. In 2005, Dombkowski and colleagues used 

Medicaid data to assess differences between six prevalent asthma case definitions for use in 

surveillance among children ages 18 years and younger (Dombkowski et al. 2005). Similar 

to earlier research in a different Medicaid population (Buescher et al. 1999), they found that 

childhood asthma prevalence was highly dependent on the definition used. It is uncertain 

whether the same variability in estimated disease proportion would be observed for case 

definitions intended to classify incident asthma in non-Medicaid pediatric populations, such 

as among children enrolled in health maintenance organizations.  

The goals of the present study are to fill some of this knowledge gap by comparing 

different cumulative incident asthma case definitions in the first three years of life and 

assessing their ability to predict asthma at school-age. Specifically, this study addresses the 

following objectives in a birth cohort of children enrolled in Kaiser Permanente Georgia: 1) 

Assess the impact of different approaches to using medical records to estimate the 

cumulative incidence of asthma by age three. 2) Determine the validity of these early-life 

asthma case definitions, which exclusively use information available in medical records, in 

predicting school-age asthma.  This analysis seeks to identify a case definition for asthma in 

early life that minimizes disease misclassification when used as a proxy for asthma at school 

age.  

 

METHODS 
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The Kaiser Air Pollution and Pediatric Asthma (KAPPA) Study is a birth cohort of 

children born between 2000 and 2010 enrolled in Kaiser Permanente Georgia (KPGA) 

Health Maintenance Organization (HMO) for at least the first year of life. KPGA is an 

integrated health care system that provides medical care services to approximately 240,000 

members in the metropolitan Atlanta area. KAPPA was developed to assess the effects of air 

pollution exposure in infancy on childhood asthma incidence. Among the 18,488 children 

who were born between 2000 and 2007 and were age six or older at the time of the KAPPA 

study, this analysis was completed using the subgroup of 7,103 children enrolled in KPGA 

continuously from birth until at least age six (allowing up to 90 day enrollment gaps). We 

used information from KPGA electronic medical records and administrative databases to 

examine 15 different case definitions for early-life incident asthma. Table 4.2 includes the 

case definitions assessed (definitions of terms are provided in Table 4.1). Several of these 

case definitions are used either exactly or with slight variations (e.g. modified medication 

list, specific timing of events, different child ages) in previous studies (Getahun et al. 2010, 

Dawood et al. 2011, Goyal et al. 2011, Li et al. 2011, Quinto et al. 2011, Black et al. 2013, 

Gold et al. 2014).  

Incident asthma in early life was classified for each child using events from the 

medical record between birth and age three. We then individually assessed the ability of 

each of the 15 definitions of early-life incident asthma to predict school-age asthma status, 

defined as at least 1 asthma diagnosis (ICD-9 code 493.XX) between ages five and eight. 

Although asthma diagnoses at school age are subject to measurement error, they are more 

reliable than earlier diagnoses and indicate evidence of continued asthma morbidity 

(National Asthma Education and Prevention Program. Expert Panel Report 3 2007). 

Predictive ability was measured using sensitivity (probability of incident asthma by age 3 

given school-age asthma), specificity (probability of no incident asthma by age 3 given no 
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school-age asthma), positive predictive value (probability of school-age asthma given 

incident asthma by age 3), and negative predictive value (probability of no school-age 

asthma given no incident asthma by age 3). Likelihood ratio tests, which combine sensitivity 

and specificity to assess overall prediction accuracy, were also calculated: positive 

likelihood ratio (sensitivity divided by one minus specificity) and negative likelihood ratio 

(one minus sensitivity divided by specificity) (Gallagher 1998). All analyses were completed 

in SAS 9.3 (Cary, NC). 

 

RESULTS  

In this cohort of 7,103 children (Table 4.3), 1,705 children (24.0%) had an asthma 

diagnosis recorded between ages five and eight (“school-age”). Using diagnoses and 

medication dispensings in the first three years of life, 2,719 children (38.3%) were 

classified as asthmatic by at least one case definition. Cumulative asthma incidence by age 

three ranged from 9.0% (definition 4) to 35.2% (definition 7) depending on the case 

definition used (Table 4.4). The definitions which produced the lowest asthma incidence, 

which had the lowest sensitivity and highest specificity, were best able to predict who had 

and did not have school-age asthma. For example, definition four (≥3 asthma diagnoses), 

resulted in the lowest estimate of early-life asthma incidence (9.0%) and had the highest 

overall concordance between asthma incidence by age three and school-age asthma 

(79.9%). This predictive success of the most stringent definitions is attributable to the fact 

that the majority of children were not classified as asthmatic at school age.  

Concordance of asthma classification by age three and school-age asthma status was 

similar between different case definitions, ranging from 71.4% to 79.9%, but the extent to 

which the asthma cases or non-cases at school age were misclassified varied. Overall, the 

tests were more specific than sensitive. In this population, with a prevalence of school-age 
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asthma of 24%, the early-life asthma classifications were far superior at ruling out school-

age asthma (negative predictive values ranged from 79.1% to 86.6%) than they were at 

predicting school-age asthma (positive predictive values ranged from 43.5% to 71.5%). 

Across definitions, the positive and negative likelihood ratios would generally be 

considered as having poor to moderate predictive ability for a clinical test (Gallagher 1998). 

We saw no evidence that prediction ability was dependent on child characteristics (Table 

4.5). 

The impact of adding additional information to the case definition was mixed. 

Consider for example definition 8, at least 1 asthma diagnosis and 1 medication dispensing. 

Making the definition more complex by additionally classifying a child as asthmatic if they 

had 1 asthma-related ED visit or hospitalization or 3 asthma diagnoses (definition 15) 

resulted in little predictive benefit by any examined metric. However, changing definition 8 

by specifying that the medication had to be a controller (definition 13), sharply decreased 

the percent of children classified as asthmatic by age 3 and resulted in a marked increase in 

specificity and positive predictive value. Similar results were found specifying medication 

type in other definitions.  

 

DISCUSSION 

Using electronic medical records from a large HMO in the southeastern U.S., we 

systematically examined different ways to classify asthma in early life and evaluated which 

case definitions were best able to predict children who will have evidence of asthma at 

school-age. In this population, choice of case definition had a large impact on the estimate of 

asthma incidence in early life. Dombkowski and colleagues reached a similar conclusion 

when examining case definitions for prevalent asthma in a cohort of children enrolled in 

Medicaid (Dombkowski et al. 2005). For example, concordance estimated by kappa 
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statistics between asthma classifications using events before age five and an asthma 

diagnosis in the subsequent year ranged from 0.28 to 0.40. We examined different asthma 

classifications than the Dombkowski study and had more time between initial classification 

and later disease status, but observed similar kappa values ranging from 0.21 to 0.38 

(calculated from values in Table 4.4) (McHugh 2012).  

While none of the case definitions we examined consistently identified children who 

would be diagnosed with asthma at school age, their performance was comparable to that of 

clinical asthma prediction tools. When using events by age three to predict active asthma at 

age six, the loose Asthma Predictive Index (API) has a sensitivity of 56.6%, and a specificity 

of 80.8%, which are very similar to the sensitivity and specificity of our definitions 1, 10, 

and 12. When validated at the same age, the stringent API has an almost identical sensitivity 

and specificity as our case definition 4 (stringent API sensitivity 27.5%, specificity 96.3%) 

(Castro-Rodriguez et al. 2000). Similarities in performance also exist between our 

definitions and other clinical prediction tools. For example, when using a cut point of a 

severity score of 6, the Environmental and Childhood Asthma (ECA) severity index has 

almost identical prediction metrics to our case definition 14 (ECA sensitivity 51.5%, 

specificity 88.1%, positive predictive value 54.3%, negative predictive value 86.8%) 

(Devulapalli et al. 2008). The generally poor predictive ability of our case definitions and of 

clinical prediction tools reflects the complex and often transient nature of early life 

respiratory symptoms (Brand et al. 2008, Fouzas et al. 2013). 

There is a high prevalence of school-age asthma in this cohort, with almost a quarter 

of children receiving at least one asthma diagnosis between ages five and eight. This 

prevalence is higher than Georgia state estimates; in 2010 it was estimated that among 

children ages five to nine years in Georgia 13.7% had current asthma and 20.4% had ever 

been diagnosed with asthma (U.S. Centers for Disease Control and Prevention et al. 2011). 
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The higher prevalence in our population can likely be explained partially by the use of 

medical records for classification which in comparison to parental report yields higher 

prevalence estimates for childhood asthma (Yoo et al. 2007). Additionally, prevalence of 

asthma diagnoses has been found to be higher among insured than uninsured children 

(Coker et al. 2012).  

The 15 case definitions for early life asthma that we examined are a subset of the 

many potential definitions one could choose. We did not examine definitions that use only 

information on medications, and not diagnoses, to determine whether a child has asthma. 

These definitions were excluded because medications used to treat asthma are also used to 

treat other conditions. We also did not examine incident asthma case definitions that 

considered whether a diagnosis was classified as primary in the medical record, because in 

our dataset we were unable to determine primary status for 83.9% of asthma diagnoses 

given to children in our cohort. While we are referring to this outcome as early-life asthma 

given the use of asthma ICD-9 diagnoses, we are cognizant that respiratory conditions 

before age six are not typically called asthma and continued wheezing may be a more 

appropriate term for these outcomes. 

This analysis has several strengths and limitations. The KAPPA study is uniquely 

positioned to examine early-life asthma case definitions due to access to medical records on 

over 7,000 children insured by KPGA from birth until at least age six. The record-based 

classification used in this study, instead of the commonly used parental report, prevents 

recall bias from impacting study results. The use of medication dispensings, rather than 

medication prescriptions, is a strength of this analysis since dispensings are expected to 

align more closely with actual medication intake. Limitations of using medical record data 

are the inability to account for variations in provider practices and lack of information on 

indication for medications. There is undoubtedly some misclassification of asthma status 
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among children between ages five and eight. Even though reliability of asthma diagnoses 

increases as children age, this outcome is not perfect in determining asthma status at school 

age, particularly since it was determined using ICD-9 codes. Our analyses were restricted to 

children in the KAPPA cohort who were followed until age six. Results were comparable if 

we restricted the cohort to children enrolled through age eight. While prevalence of an early 

life asthma diagnosis was similar between children in our analysis and children lost to 

follow-up (22.5% vs. 21.2%), it is possible that loss to follow-up impacted our findings. 

Positive and negative predictive values are directly dependent on asthma prevalence; one 

would expect these values to differ when examining the performance of these case 

definitions in a population with a different school-age asthma prevalence. Other prediction 

metrics may also vary in different populations, particularly outside of an HMO setting.  

There is no perfect way to classify asthma status using medical records, particularly 

in early childhood. Given the challenges of asthma diagnosis in early life, misclassification in 

asthma research is unavoidable. Our analysis indicated that choice of case definition had a 

large impact on the estimate of asthma incidence in early life. This dependence has 

implications for the comparability of findings between studies that use different case 

definitions for childhood asthma. The results of this analysis emphasize the importance of 

completing sensitivity analyses to assess the impact of case definition choice on research 

results and to facilitate better comparisons across studies. Among the early-life asthma case 

definitions we examined, there was not an obvious choice as to which was best at predicting 

school-age asthma. Several of our case definitions performed similarly to clinical asthma 

prediction tools, showing that asthma diagnoses and medications in early life can be used to 

predict asthma at school age with as much accuracy as can be obtained with some detailed 

clinical tools. Despite their limitations, clinical asthma prediction tools have proved useful 

in asthma research, for example in studies to identify lung function biomarkers and develop 
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effective asthma therapies (Castro-Rodriguez 2011). The comparable predictive ability of 

our early-life asthma definitions combined with the unique advantages of large record 

based studies highlight the potential for record based studies to continue to advance our 

knowledge about asthma etiology.  
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Table 4.1. Diagnosis and medication definitions 
Outcome  Definition 

Asthma diagnosis ICD-9 code 493.XX 
Wheeze diagnosis ICD-9 code 786.07 
Acute asthma diagnosis a) emergency department or inpatient asthma 

diagnosis or b) asthma diagnosis with status 
asthmaticus or acute exacerbation (ICD-9 codes 493.01, 
493.02, 493.11, 493.12, 493.21, 493.22, 493.91, 493.92) 

Atopic dermatitis ICD-9 code 691.8 
Allergic rhinitis ICD-9 code 477.X 
Asthma controllera Aminophylline, beclomethasone diproprionate, budesonide, 

budesonide/formoterol fumarate, cromolyn sodium, 
fluticasone propionate, fluticasone/sameterol, mometasone 
furoate, montelukast sodium, salmeterol xinafoate, 
theophylline anhydrous, tiotropium bromide, triamcinolone 
acetonide 

Asthma reliever Albuterol, albuterol sulfate, ipratropium bromide, 
ipratropium/albuterol sulfate, levalbuterol, 
metaproterenol sulfate 

Asthma-related 
medication 

Dispensing of any asthma controller or reliever 

a Underlined medications contain a steroid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



68 
 

 

Table 4.2. Early-life asthma case definitions 

Case Definition 
Criteria 
Needed 

Asthma 
diagnosis (n) 

Other diagnoses 
Asthma-related 

medication dispensings 
required (n) 

1 Any 1 1 wheeze diagnosis  
2 All 1   
3 All 2   
4 All 3   

5 All 1 
1 atopic dermatitis or 1 
allergic rhinitis diagnosis 

 

6 Any 2 
1 acute asthma 

diagnosis 
 

7 Any 1  2 
8 All 1  1 
9 All 1  2 

10 Any 1  2 (at least 1 steroid) 
11 All 1  2 (at least 1 steroid) 
12 Any 1  1 controller 
13 All 1  1 controller 
14 All 1  2 reliever or 1 controller 

15 Any 3 
1 asthma-related ED 

visit or hospitalization 
1 if in same year as 1 

asthma diagnosis 
These are the minimum required events for each case definition using events by age 3. Only 1 
diagnosis per day counted. ED=emergency department. Definitions of all terms are included in Table 
4.1. 
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Table 4.3. Cohort characteristics (n=7,103) 
Characteristic N (%) 

Sex  

Female 3,474 (48.9) 
Male 3,629 (51.1) 

Race/Ethnicity  

Black 3,004 (42.3) 
White 2,847 (40.1) 

Other Racea 691 (9.7) 
Missing Race 561 (7.9) 

Hispanic Ethnicity 359 (5.1) 

Maternal Education  

<12th grade 91 (1.3) 
High School/GED 737 (10.4) 

Some College or more 4,330 (61.0) 
Missing Education 1,945 (27.4) 

Kaiser Permanente Enrollment Duration b 

Enrolled through age 6 7,103 (100.0) 
Enrolled through age 8 4,075 (57.4) 

Year of Birth 

2000 – 2001 2,273 (32.0) 
2002 – 2003 2,130 (30.0) 
2004 – 2005 1,482 (20.9) 
2006 – 2007 1,218 (17.1) 

a Includes the following racial groups: Asian, American Indian, Alaska Native, Native 
Hawaiian or other Pacific Islander, children identifying with more than one racial group 
b Enrollment through age 6 part of inclusion criteria. Children enrolled through age 8 are a 
subset of children enrolled through age 6. Reduction in sample size across follow-up reflects 
shorter follow-up time available for children born in later years of the study (e.g., a child 
born in 2005 could be at most 8 years old at the time of medical record data abstraction) as 
well as HMO enrollment attrition over time. 
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Table 4.4. Early asthma classifications (using events by age 3) and prediction of school-age asthma (at least 1 asthma diagnosis 
between ages 5 and 8) among children enrolled in Kaiser Permanente Georgia (n=7,103) 

Asthma definition applied to age 0-3 years 

% Meeting 
definition 
by age 3 

Sensitivity Specificity Positive 
Predictive 

Value 

Negative 
Predictive 

Value 

Positive 
Likelihood 

Ratio 

Negative 
Likelihood 

Ratio 

% Correctly 
predicted asthma 

status at school age 

1. 1 asthma or wheeze diagnosis 
 

29.4% 57.6% 79.5% 47.0% 85.6% 2.8 0.5 74.2% 

2. 1 asthma diagnosis 
 

22.5% 
 

49.9% 86.2% 53.2% 84.5% 3.6 0.6 77.5% 

3. 2 asthma diagnoses 
 

13.2% 
 

35.4% 93.7% 64.1% 82.1% 5.6 0.7 79.7% 

4. 3 asthma diagnoses 
 

9.0% 
 

26.8% 96.6% 71.5% 80.7% 7.9 0.8 79.9% 

5. Atopic Asthma: 1 asthma diagnosis AND 
(1 atopic dermatitis OR allergic rhinitis diagnosis) 

7.4% 19.5% 96.5% 63.5% 79.1% 5.5 0.8 78.0% 

6. 2 asthma diagnoses OR 1 acute asthma diagnosis 14.2% 36.8% 93.0% 62.3% 82.3% 5.2 0.7 79.5% 

7. 1 asthma diagnosis OR 2 medication dispensings  35.2% 63.8% 73.8% 43.5% 86.6% 2.4 0.5 71.4% 

8. 1 asthma diagnosis AND 1 medication dispensing 21.7% 49.2% 87.0% 54.4% 84.4% 3.8 0.6 77.9% 

9. 1 asthma diagnosis AND 2 medication dispensings 19.8% 46.7% 88.7% 56.7% 84.0% 4.1 0.6 78.6% 

10. 1 asthma diagnosis OR 2 medication dispensings 
1 of which must be a steroid 

24.0% 52.2% 84.8% 52.1% 84.9% 3.4 0.6 77.0% 

11. 1 asthma diagnosis AND 2 medication dispensings 
1 of which must be a steroid 

11.7% 31.8% 94.6% 65.1% 81.5% 5.9 0.7 79.5% 

12. 1 asthma diagnosis OR 1 controller dispensing 24.4% 52.8% 84.6% 52.0% 85.0% 3.4 0.6 77.0% 

13. 1 asthma diagnosis AND 1 controller dispensing 12.1% 32.8% 94.5% 65.2% 81.7% 5.9 0.7 79.7% 

14. 1 asthma diagnosis AND (2 reliever dispensings 
OR 1 controller dispensing) 

19.9% 47.0% 88.7% 56.8% 84.1% 4.2 0.6 78.7% 

15. Any of the following: a) 1 asthma diagnosis AND 1 
medication dispensing in the same year, b) 1 
asthma-related ED visit or hospitalization, c) 3 
asthma diagnoses 

21.6% 49.3% 87.1% 54.7% 84.5% 3.8 0.6 78.0% 

These are the minimum required events for each case definition. Only 1 diagnosis per day counted. ED=emergency department. 1,705 children in cohort (24%) 
have an asthma diagnosis between ages 5 and 8. Sensitivity: probability of incident asthma by age 3 given school-age asthma. Specificity: probability of no incident 
asthma by age 3 given no school-age asthma. Positive predictive value: probability of school-age asthma given incident asthma by age 3. Negative predictive value: 
probability of no school-age asthma given no incident asthma by age 3. Positive likelihood ratio: sensitivity divided by one minus specificity. Negative likelihood 
ratio: one minus sensitivity divided by specificity. Positive likelihood ratios >10 and negative likelihood ratios <0.1 are considered to be indicative of case 
definitions with high predictive value. Positive likelihood ratios between 2 and 10, and negative likelihood ratios between 0.5 and 0.1 indicate case definitions that 
may have some predictive value (Gallagher 1998). 
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Table 4.5. Positive and negative likelihood ratios for prediction of school-age asthma by 
individual characteristics 

 Positive Likelihood Ratio Negative Likelihood Ratio 

Case 
Definition 

Full 
Cohort 

White Black Male Female 
Full 
Cohort 

White Black Male Female 

1 2.8 2.7 2.8 2.5 3.1 0.5 0.6 0.5 0.5 0.6 
2 3.6 3.5 3.7 3.2 4.1 0.6 0.6 0.5 0.6 0.6 
3 5.6 5.1 6.6 4.8 6.9 0.7 0.7 0.7 0.7 0.7 
4 7.9 7.4 9.5 6.8 9.4 0.8 0.8 0.7 0.7 0.8 
5 5.5 5.5 5.4 5.1 5.9 0.8 0.9 0.8 0.8 0.8 
6 5.2 4.7 6.1 4.4 6.3 0.7 0.7 0.6 0.7 0.7 
7 2.4 2.4 2.3 2.2 2.6 0.5 0.5 0.4 0.5 0.5 
8 3.8 3.7 3.9 3.4 4.3 0.6 0.6 0.5 0.6 0.6 
9 4.1 4.1 4.2 3.7 3.7 0.6 0.6 0.6 0.6 0.6 

10 3.4 3.4 3.5 3.0 3.9 0.6 0.6 0.5 0.5 0.6 
11 5.9 5.4 7.0 5.4 6.4 0.7 0.7 0.7 0.7 0.7 
12 3.4 3.4 3.5 3.0 3.9 0.6 0.6 0.5 0.5 0.6 
13 5.9 5.4 6.8 5.5 6.3 0.7 0.7 0.7 0.7 0.7 
14 4.2 4.1 4.1 3.7 4.7 0.6 0.6 0.6 0.6 0.6 
15 3.8 3.7 3.9 3.4 4.3 0.6 0.6 0.5 0.6 0.6 

Case definitions included in Table 4.2. School-age asthma defined as at least 1 asthma diagnosis 
between ages 5 and 8. Positive likelihood ratio: sensitivity divided by one minus specificity. Negative 
likelihood ratio: one minus sensitivity divided by specificity. Positive likelihood ratios >10 and 
negative likelihood ratios <0.1 are considered to be indicative of case definitions with high predictive 
value. Positive likelihood ratios between 2 and 10, and negative likelihood ratios between 0.5 and 0.1 
indicate case definitions that may have some predictive value (Gallagher 1998). 
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CHAPTER 5 

Prenatal and first year of life exposure to primary PM2.5 from traffic and childhood 

asthma incidence in a birth cohort 

 

 

INTRODUCTION  

Air pollution exposure during pregnancy and early life may play an important role 

in the development of childhood asthma. Exposures during both of these critical windows 

can impact immune programming and response, and respiratory system development 

which begins six weeks after conception and continues through adolescence (Peden 2000). 

During this period of growth, repair mechanisms are not as adept at responding to 

environmental insults as those in mature adult lungs (Kajekar 2007). Previous research 

showing that children who develop asthma by the age of seven have 40% of their associated 

lung deficit at birth highlights the importance of the prenatal window in particular 

(Bisgaard et al. 2012). After birth, important structural changes in the lungs occur, such as 

the growth of additional bronchioles and alveoli, which are critical for meeting the 

increasing metabolic demands of a growing child (Pinkerton et al. 2000, Moore et al. 2003, 

Wang et al. 2008). The development that occurs during this period is paired with children’s 

greater exposure to ambient air pollution relative to adults due to increased ventilation 

rates and more time spent outdoors (American Academy of Pediatrics 1999, Pinkerton et al. 

2000). Exposure to particulate matter equal to or less than 2.5 micrometers in diameter 

(PM2.5) may be particularly detrimental to lung development because particles of this size 

are small enough to end up in lung alveoli. Among children, mouth breathing increases 

particulate matter exposure because air avoids the blocking mechanisms in the nasal 

passage and can subsequently end up further into the respiratory system. 
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It is well established that exposure to ambient air pollution exacerbates childhood 

asthma, and growing evidence suggests it may also play a role in asthma development 

(Tzivian 2011, Gowers et al. 2012). The impact of pollution from traffic is specifically of 

interest. Four review articles summarizing evidence from previous studies have suggested 

an association between traffic-related air pollution and residential proximity to busy roads 

with respiratory symptoms and asthma incidence (Salam et al. 2008, Bråbäck et al. 2009, 

Gasana et al. 2012, Bowatte et al. 2015). Results of individual studies on the association 

between prenatal and first year of life PM2.5 exposure from traffic and asthma incidence 

have ranged from null to suggestive of a positive association (Clark et al. 2010, Gehring et al. 

2010, Carlsten et al. 2011). A study completed by Clark and colleagues in 2010, attempted 

to determine the relative importance of PM2.5 exposure during the prenatal and first year of 

life periods by including estimates of PM2.5 exposure in each window in the same regression 

model (Clark et al. 2010). However, they were unsuccessful at teasing out these effects due 

to the high correlation between the exposures in their data. 

In this study, we examine the association between prenatal and first year of life 

exposure to primary PM2.5 from traffic emissions and childhood asthma incidence at ages 2 

through 6 in a birth cohort of children enrolled in Kaiser Permanente Georgia. We aim to 

determine the impact of exposure during these two separate periods, and also whether one 

is of relatively more importance (i.e. if exposure in one of these periods has a stronger 

association with childhood asthma).  

 

 

METHODS 

Data Sources/Study Population 
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The Kaiser Air Pollution and Pediatric Asthma (KAPPA) Study is a birth cohort of 

children born between January 1, 2000 and December 31, 2010 enrolled in Kaiser 

Permanente Georgia (KPGA) Health Maintenance Organization (HMO) for at least the first 

year of life (allowing up to 90 day gaps in enrollment). KAPPA members were followed from 

birth until September 2013 or until their enrollment in Kaiser ended if that occurred first. 

KPGA is an integrated health care system that provides medical care services to 

approximately 240,000 members in the metropolitan Atlanta area. KAPPA was developed to 

assess the effects of air pollution exposure in infancy on childhood asthma incidence. 

Detailed individual information on the 24,608 children in the KAPPA cohort is available 

from KPGA on demographic characteristics, residential history, HMO enrollment, diagnoses, 

and medication dispensings. KAPPA includes 21,791 children (88.6%) who are linked to 

mothers in the KPGA system. For these children, maternal information is also available. 

Among children linked to mothers, 85.3% are also linked to Georgia birth certificates from 

which information is available on pregnancy and parental characteristics. In the KAPPA 

cohort, maternal linkage allows determination of maternal asthma status and estimation of 

prenatal air pollution exposure. It also allows us to establish which children have siblings in 

the KAPPA cohort and account for this lack of independence in analyses. For the 2,817 

children not linked to mothers, we assumed they had no siblings in the cohort.  

 

Prenatal and First Year of life PM2.5 Exposure Estimates 

 PM2.5 data were modeled by colleagues at Georgia Institute of Technology using a 

research line-source dispersion model for near-surface releases (RLINE) (Zhai et al. 2015). 

RLINE was developed in 2013 by the U.S. Environmental Protection Agency’s Office of 

Research and Development specifically for health studies of traffic pollution. RLINE uses 

vehicle emissions data to model primary PM2.5 from traffic emissions and implements a 
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steady-state Gaussian plume model to create a smooth modeled exposure surface 

(Community Modeling and Analysis System 2015). Traffic emissions were estimated by 

Atlanta Regional Commission for 2011 for each section of the roadway in the Atlanta 

metropolitan area using information about traffic patterns and vehicle emissions. In 

addition to emissions data, RLINE incorporates meteorological data to predict pollutant 

dispersion patterns. For example, wind patterns and weather conditions are important in 

determining whether pollutants are blown away from the roadway, and in what direction, 

or whether they stay near the roadway after being emitted. AERMET, the pre-processor for 

meteorological data before they are used in AERMOD (a widely used pollution dispersion 

model), was used to generate the meteorological data for RLINE (U.S. Environmental 

Protection Agency 2015). Wind speed, wind direction, and atmospheric stability were the 

main meteorological factors that impacted RLINE estimates.  

 Due to its sharp spatial gradient RLINE often over-estimates pollution values around 

roadways. In order to compensate this tendency, the modeled pollutant concentrations 

from RLINE were scaled using estimates of traffic PM2.5 source impacts created by a 

chemical mass balance (CMB) approach and based on monitoring values. The estimated 

RLINE PM2.5 values were calibrated using the following regression equation: 

 

∆𝑃𝑀2.5 = 10[0.32 log(𝑅𝐿𝐼𝑁𝐸𝑃𝑀2.5)−0.05] 

 

where the regression coefficients were chosen based on the difference between the 

estimated PM2.5 values from RLINE and the estimated PM2.5 source impacts from CMB. The 

final calibrated RLINE estimates for 2011 are shown in Figure 5.1. Please note, the air 

quality data for this work are still being developed and may change before the publication 
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of results. One such potential change is the use of emissions data at different spatial and 

temporal resolution. 

We used these 2011 PM2.5 data at a 250 meter grid resolution to estimate pollution 

exposure in all years of the study (2000-2011 for first year of life exposure, 1999-2010 for 

prenatal exposure), based on the assumption that the spatial pattern of roadway impacts 

did not change substantially over our study period. The prenatal period was defined as the 

period between the estimated start of gestation and the day before a child’s birth. For the 

18,583 children linked to birth certificates the start of the gestation period was determined 

by first counting back the number of weeks gestation, using gestational age from the birth 

certificate, from the date of birth. Then, to account for the obstetric convention of starting 

the gestational week count on the day of the last menstrual period, the start date of the 

prenatal period was moved forward 2 weeks. For the remaining 6,025 children the start of 

the prenatal period was defined as 38 weeks before the date of birth (assuming a full term 

gestational age of 40 weeks, with conception occurring at day 14, per obstetric convention). 

The first year of life was defined as the period between the child’s birth date and the day 

before their first birthday. Maternal residential location during the prenatal period and 

child residential location during the first year of life was used to estimate pollution 

exposure during each of these windows. If a mother moved during pregnancy or a child 

moved during the first year of life their pollution exposure was calculated as a weighted 

average based on the amount of time spent at each residence.  

The spatial domain of available RLINE PM2.5 data does not cover the entire region in 

which KAPPA mothers and children live (see Figure B1 in Appendix B). Children residing 

outside the RLINE pollution region at any time during the first year of life were excluded. 

For analyses of prenatal exposure, children whose mothers resided outside the RLINE 

pollution region during pregnancy were excluded. 
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Asthma Classification 

In the KAPPA study, we define asthma as at least one asthma diagnosis (ICD-9 

493.XX) and one asthma-related medication dispensing (including both steroid and non-

steroid asthma controllers and relievers) after the first year of life. The following 

medications were considered asthma-related: aminophylline, albuterol, albuterol sulfate, 

beclomethasone diproprionate, budesonide, budesonide/formoterol fumarate, cromolyn 

sodium, fluticasone propionate, fluticasone/sameterol, ipratropium bromide, 

ipratropium/albuterol sulfate, levalbuterol, metaproterenol sulfate, mometasone furoate, 

montelukast sodium, salmeterol xinafoate, theophylline anhydrous, tiotropium bromide, and 

triamcinolone acetonide. Classifications of individual asthma medications are provided in 

Table A2 in Appendix A. We are assessing cumulative asthma incidence, so once a child is 

classified as having asthma, they are classified as asthmatic at every subsequent age. The 

time of asthma incidence is defined as the time at which a child has satisfied both criteria: 

received both an asthma diagnosis and asthma-related medication dispensing. 

Diagnoses and medications during the first year of life were ignored due to the 

overlap between these events and the first year of life exposure window, and also due to 

concerns about the reliability of asthma diagnoses this early in life. Among the 1,453 

children with an asthma diagnosis during the first year of life (5.9% of the cohort), 65.7% 

had at least one asthma diagnosis after the first year of life, and 61.0% had both an asthma 

diagnosis and an asthma-related medication dispensing after the first year of life. Among 

the 6,467 children with an asthma-related medication dispensing during the first year of life 

(26.3% of the cohort), 61.2% had at least one asthma-related medication dispensing after 

the first year of life, and 39.8% had both an asthma diagnosis and an asthma-related 

medication dispensing after the first year of life. Children with asthma diagnoses or asthma-
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related medication dispensings in the first year of life without both an asthma diagnosis and 

asthma-related medication dispensing after the first year of life were considered non-

asthmatic in all analyses. Among children included in our analyses of first year of life PM2.5 

exposure, follow-up was similar between children with diagnoses or medications in the first 

year of life and children without diagnoses or medications in the first year of life (32.1% vs. 

27.4% followed until at least age 6). 

 

Socioeconomic Status Characterization 

 Potential confounding by socioeconomic status (SES) is a major concern in studies 

of the respiratory effects of residential air pollution due to the spatial comparison in 

pollution values (as opposed to a temporal comparison). SES is an important factor in 

determining residence which often results in residential air pollution varying markedly by 

socioeconomic level. Additionally, asthma rates vary across socioeconomic groups with the 

highest rates occurring among children in poverty. Since SES frequently determines both 

residential pollution exposure and childhood asthma incidence, it can confound the 

association between pollution and asthma. We assessed potential confounding by SES by 

exploring the impact of four sets of relevant covariates: individual socioeconomic 

characteristics, novel demographic characterizations at block group spatial resolution, 

census tract characteristics from the American Community Survey, and distance from the 

Atlanta city center. 

 Among the variables available from Kaiser medical records and child birth 

certificates, the following individual characteristics may be markers of socioeconomic status 

and were assessed: child race and ethnicity, maternal education, paternal education, and 

maternal marital status.  
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 The impact of neighborhood-level SES was assessed using novel demographic 

clusters created by Georgia Department of Public Health from data on 25 variables from the 

2010 U.S. Census (Georgia Department of Public Health et al. 2013-2015). These innovative 

SES characterizations combine information on age, income, family structure, housing, 

education and employment to classify census block groups into eighteen minor 

demographic clusters (Demographic Clusters of Georgia 2012, Zhou 2012) (Figure 5.2; full 

descriptions of the clusters are provided in Table A1 in Appendix A). These minor 

demographic clusters can be grouped into four major categories ranging broadly from high 

to low SES: A – highest SES, B – second highest SES, suburban and urban, C – rural, average 

to lower than average SES, D – lowest SES. These clusters provide more nuanced 

descriptions of neighborhoods than can be achieved by any one variable from the U.S. 

Census. Demographic cluster assignments were completed using child residential location 

at birth. 

 While a priori we planned to use Georgia Department of Public Health’s 

demographic clusters to control for neighborhood SES, we also explored using individual 

variables from the American Community Survey to assess the sensitivity of results to 

alternative characterizations of neighborhood SES. American Community Survey 2010 data 

(5-year estimates, averaging data from 2006-2010) on the following variables were pulled 

via Social Explorer at census tract level (U.S. Census Bureau 2010): median household 

income, median year house built, median house value, percent less than high school 

education, percent unemployment, and percent of families in poverty. 

 After exploring maps of the demographic clusters and conducting descriptive 

analyses of the cohort, we added distance from the Atlanta city center to the list of variables 

aimed at controlling for SES. While the novel demographic clusters characterize block group 

level SES, we noted that in the same demographic cluster could include inner city areas as 
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well as areas far outside the urban core (Figure 5.2), and that there may be important 

differences between individuals living in the same demographic cluster in different areas of 

Atlanta. Factors that may differ between individuals inside and outside the city core include 

frequency of healthcare use and environmental exposures other than air pollution (e.g., 

cockroach allergen, agricultural activity) and may be risk factors for asthma diagnoses not 

already controlled for. For that reason, we also explored controlling for area of the city by 

dividing the metropolitan Atlanta area into four regions: inside the city core (referred to as 

“metro Atlanta” and defined as inside the I-285 highway perimeter of the metropolitan 

area), within five miles of the city core, five to ten miles from the city core, and more than 

ten miles from the city core (see Figure B2 in Appendix B). City region assignment was 

completed using 250 meter grid of child residence at birth. 

 

Analytic Approach 

We assessed the impact of first year of life and prenatal air pollution exposure on 

cumulative incidence of asthma in subsequently longer time periods: 1-2 year risk of 

asthma, 1-3 year risk, 1-4 year risk, 1-5 year risk, and 1-6 year risk. Each analysis only 

included children enrolled in KPGA for the entire risk period allowing 90 day gaps in 

enrollment (e.g., a child whose KPGA enrollment ends after age 2 was only included in the 1-

2 year analysis). The outcome in each analysis was defined as events by the age of interest 

among children enrolled until that age. For example, analyses in the age 5 cohort examine 

outcomes by the fifth birthday among children enrolled until at least their fifth birthday. 

This approach allowed us to calculate potentially differential effects by age of follow-up. The 

risk difference was used as the primary measure of association. This approach was 

completed using a binomial generalized linear regression model with an identity link 

function: 
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𝐸(𝑃(𝑌 = 1|𝑋)) =  𝛽0 + 𝛽1(𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟 𝑜𝑓 𝑙𝑖𝑓𝑒 𝑃𝑀2.5) + 𝛴𝑖=1
𝑖=𝑝

𝛿𝑖(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑖) 

 

where the dichotomous outcome Y represents asthma incidence in the time period of 

interest. These models were implemented using generalized estimating equations with an 

exchangeable correlation structure in order to account for correlation between siblings in 

the cohort. Since variance is dependent on probability in the binomial distribution it is 

expected that models of this type will not meet the homoscedasticity assumption necessary 

for linearly modeling probabilities. Robust variance estimation was used to account for this 

potential heteroscedasticity and potential misspecification of the working correlation 

matrix. We assessed potential for confounding by maternal asthma (defined as at least one 

maternal asthma diagnosis (ICD-9 493.XX) during a mother’s enrollment in KPGA), 

maternal age, birth year, and by the socioeconomic factors described previously. Potential 

effect measure modification was also of interest, particularly by child race, and was 

assessed on the additive scale by the addition of interaction terms into relevant models and 

also by running stratified models. 

We first completed model building, assessing all potential confounding variables 

and interaction of interest, examining only PM2.5 exposure during the first year of life. We 

then assessed the impact of prenatal exposure by using the final adjusted first year of life 

exposure model and substituting the prenatal exposure estimate for the first year of life 

exposure estimate. Lastly, we ran a single model containing both prenatal and first year of 

life exposure estimates in order to determine the relative importance of exposure during 

each of the developmental periods (contingent on enough variation between the two 

estimates). 
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Due to the known convergence issues of binomial generalized linear regression 

models, several modeling decisions were made with the goal of minimizing problems with 

convergence by maximizing sample size and limiting the number of model parameters. All 

minor demographic clusters with less than 150 individuals were combined with the closest 

demographic cluster within its major demographic category. In order to include individuals 

with missing covariate data we used an indicator variable for missing covariates (race, 

ethnicity, maternal asthma, and maternal education) in analyses rather than excluding 

children with missing data. Since this practice can result in bias, we completed a sensitivity 

analysis using only complete cases (Greenland et al. 1995, Glymour et al. 2008). We did not 

impute missing data because we had limited covariates that could be used to guide the 

imputation. Maternal age was included in analyses using a linear spline with cut-points at 

the tertiles of the age distribution, in order to maximize the sample size in each category 

and allow for potential non-linear effects. Additionally, all covariates that did not impact the 

association between air pollution and asthma were dropped from analyses. 

 

Additional Analyses and Sensitivity Analyses 

Since asthma in early life is often transient, we completed two analyses aimed at 

assessing whether PM2.5 is associated with more lasting asthma phenotypes. In the first 

analysis, we classified children as having “persistent asthma,” if they had incident asthma 

(at least 1 asthma diagnosis and 1 asthma-related medication dispensing) and also had 

evidence of asthma in the past year (at least 1 asthma diagnosis or 1 asthma-related 

medication dispensing) at each follow-up age. We took two different approaches to 

handling children with prior incident asthma, but no persistent asthma at a given follow-up 

age: (1) we included these children in the reference (i.e., non-diseased) group and (2) we 

excluded these children from the analysis. In the second analysis to assess the outcome of 
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continued asthma symptoms, we assessed cumulative incidence of asthma by age 2 

restricted to the cohort of children enrolled until their fifth birthday. In this analysis, the 

outcome of interest was children who were classified as having incident asthma by their 

second birthday, and also had at least one asthma diagnosis or asthma-related medication 

dispensing between their second and fifth birthdays. The comparison non-disease group 

included children without incident asthma by age 5 and children with incident asthma at 

age 2 without any asthma medications or diagnoses between ages 2 and 5. 

There is immense variability between case definitions for early-life incident asthma 

among studies using medical records or administrative claims data to define disease. In 

Chapter 4 of this dissertation we examined 15 ways to define asthma in early-life and 

concluded that choice of asthma case definition impacted estimates of asthma incidence and 

that different case definitions had varying success in predicting asthma at school age. We 

are interested in whether the asthma definition selected also impacts our estimate of the 

association between PM2.5 and asthma. To assess this potential, we estimated the 

association between PM2.5 and asthma incidence by age 5 using 14 of the case definitions 

from Chapter 4 to see if associations differ when changing case definitions. We did not 

assess the association with case definition 5, atopic asthma, since more detailed clinical data 

than we have access to are necessary to reliably separate atopic and non-atopic asthma 

phenotypes. 

Sensitivity analyses were completed to determine whether excluding certain 

children from the cohort impacted model results. We completed analyses excluding children 

missing race information or missing at least 90 days of residence data during exposure 

windows. We also completed analyses excluding children who were not linked to mothers 

or for whom their maternal match was deemed less reliable. Linkage of children to mothers 

was completed by KPGA using birth certificates and Kaiser medical records. Maternal 
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matches were considered unreliable if they were completed using incomplete medical 

record information and not confirmed by a birth certificate, or if birth certificates and 

medical records included discrepant maternal information. In order to assess whether 

associations were different among children linked to birth certificates and not linked to 

birth certificates, we completed an analysis restricted to children for whom birth 

certificates were available. To assess the potential for selection bias, we completed analyses 

assessing the association between PM2.5 and asthma at earlier follow-up ages restricted to 

children followed until at least age 6. 

The risk difference is our primary measure of association of interest. Given data on a 

full cohort (i.e. denominator data), we wanted to take advantage of the opportunity to 

estimate risk. Some advocate additive models as more appropriate to assess biologic 

interaction, leading us to choose the risk difference over the risk ratio (Greenland S et al. 

2008, Vanderweele et al. 2014). Additionally, no previous studies on air pollution and 

pediatric asthma incidence have assessed risk differences. However, for secondary analyses 

we were interested in multiplicative effects so we completed sensitivity analyses using 

hazard ratios, risk ratios, and odds ratios which are more commonly used measures of 

association. These analyses provided some results that were more comparable to those 

from previous studies. The risk ratios and odds ratios were computed using log binomial 

linear regression and logistic regression, respectively, both implemented using generalized 

estimating equations and an exchangeable correlation matrix to account for correlation 

between siblings in the cohort. The hazard ratios were calculated with Cox proportional 

hazards regression, after first checking the proportional hazards assumption, using the 

robust sandwich estimator to adjust standard errors for the lack of independence between 

siblings. 
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RESULTS  

Descriptive Results 

Among the 24,608 children in the KAPPA cohort, 23,865 (97.0%) have information 

on residential location during the first year of life. Among these children, 23,100 resided in 

the region for which we have RLINE PM2.5 estimates for the entire first year of life. A 

subgroup of 19,951 of these children also have information on maternal residential location 

during the prenatal period with all prenatal residences located within the pollution data 

region. The number of children followed to each age decreased with each year of follow-up 

(Table 5.1). This was partially due to the fact that children born in later years of the study 

were not yet old enough for the older follow-up ages. For example, a child born in 2010 

could be at most 3 years old at the time the KAPPA cohort was defined in 2013. Among 

children who could be potentially followed until each age, losses due to HMO enrollment 

attrition increased over time ranging from 22.3% of children lost to follow-up by age 2 to 

61.6% of children lost to follow-up by age 6 (see Table B1 in Appendix B). There is no 

evidence that PM2.5 exposure differed between children who remained insured by KPGA and 

children whose HMO enrollment ended, but there is some evidence that children with 

asthma were more likely to continue KPGA enrollment than children without asthma (see 

Table B2 in Appendix B). 

This is a racially diverse cohort with 34.6% of children classified as of African 

American race, and 12.0% of children identifying with other, non-white racial groups (Table 

5.1). As expected from an HMO cohort, this is a cohort with relatively high socioeconomic 

status. More than half of children are born to mothers who attended at least some college 

and 62.3% of children are born in census block groups of the highest (out of four levels) 

socioeconomic status (Georgia Department of Public Health major demographic cluster A) 

(Table 5.1, Table 5.2).  
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In the KAPPA cohort, proximity to the city center is the strongest determinant of 

ambient PM2.5 levels at the residence. Since RLINE estimates primary PM2.5 from traffic 

emissions, the highest pollution estimates in this region are along highways and inside the 

city core (Figure 5.1). Consequently, there is a strong pollution gradient among children in 

the KAPPA cohort with the highest estimates among children who live inside the city center 

(“metro Atlanta”), the second highest estimates among children with live within 10 miles of 

the city core, and the lowest estimates among children living more than 10 miles from the 

city core (Table 5.2). The spatial pattern of demographic clusters in metro Atlanta 

determine the pattern of PM2.5 exposure among children in each cluster (Figure 5.2, Table 

5.2). Because demographic clusters belonging to major category B (classified as average to 

high SES) are predominately located inside the city core and track along the major highways 

of Atlanta, there is the highest pollution exposure among children in this group. The lowest 

pollution estimates are seen among children in demographic clusters belonging to major 

category C which are rural clusters; 90.4% of children at residences in major category C live 

outside metropolitan Atlanta.  

Relationships between PM2.5 and individual and census tract characteristics are 

different when averaging over all city regions compared to stratifying by city region. In the 

KAPPA cohort, children of white race have the lowest PM2.5 estimates because the majority 

of these children live more than 10 miles from the city center (Table 5.1, Figure B3 in 

Appendix B, Table 5.3). However, when stratifying by city region, white children have 

higher PM2.5 estimates than black children in every city region. The correlation between 

census tract characteristics (i.e., median household income, and percent of families living in 

poverty) and first year of life PM2.5 exposure also varies in different parts of the city (Table 

5.3). Among all children, as census tract level income increases and poverty decreases, first 

year of life PM2.5 exposure decreases. However, among children born in metro Atlanta and 
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children born more than 10 miles from the city center, the opposite is true with a positive 

correlation between income and PM2.5 and a negative correlation between poverty and 

PM2.5. 

 This cohort has a high burden of asthma diagnoses and asthma-related medication 

dispensings, with 32.4% of children receiving both a diagnosis and medication by the age of 

6 (Table 5.4). Consistent with other U.S. populations, the highest asthma rates are among 

male children, children of black race, and children whose mothers have asthma (Table 5.5). 

By age 6, 45.4% of children whose mothers have asthma are classified as having asthma 

compared to 29.7% of children whose mothers do not have asthma. There were no 

consistent trends in asthma by birth year or maternal education. At every follow-up age, 

there is the least asthma observed in children whose residence at birth is classified as 

demographic cluster B (the cluster with the highest PM2.5 estimates) and the most asthma 

among children whose residence at birth is classified as demographic cluster C (the cluster 

with the lowest PM2.5 estimates). Geographically, asthma incidence at every follow-up age 

increases when moving away from the city center, with the lowest asthma incidence among 

children living inside the city center and the highest asthma incidence among children living 

more than 10 miles from the city center (Table 5.5). 

   

Association between first year of life PM2.5 and asthma incidence 

 Table 5.6 and Figure 5.4 contain results from statistical models assessing the 

association between first year of life traffic PM2.5 and asthma incidence, each model 

adjusting for a different set of covariates. All risk differences were calculated for a change of 

1 µg/m3 of primary PM2.5 from traffic which is equivalent to moving from the 3rd to the 97th 

percentile of the exposure distribution in the cohort (Figure 5.3). When unadjusted for 

covariates, an increase in PM2.5 is associated with a decrease in childhood asthma incidence 
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at all follow-up ages (Model 0). For example, an increase of 1 µg/m3 of primary PM2.5 from 

traffic is associated with a 3.7% decrease in absolute risk of asthma by age 4 (RD (95% CI): -

0.037 (-0.067, -0.007)). Results changed little when adjusting for individual-level covariates 

(Model 1). Maternal age, maternal education, and child ethnicity were not significant 

predictors of childhood asthma, and did not appear to be confounding the association 

between PM2.5 and asthma so were dropped from the model (Model 2). The additional 

individual-level variables of paternal education and maternal marital status were also not 

found to be confounders of the association of interest (Model A1 includes these variables, 

shown in Table B3 in Appendix B). 

Moving to models with both individual-level and demographic control (Table 5.6, 

Figure 5.4, Models 3-5), adding any form of demographic control to the model moved risk 

differences between PM2.5 and asthma in the positive direction. Out of the demographic 

variables assessed (major demographic cluster, minor demographic cluster, and American 

Community Survey variables), minor demographic cluster had the largest impact on the 

association between traffic PM2.5 and asthma incidence and was retained in final models. 

Adding city region to models already adjusted for individual characteristics and minor 

demographic cluster had a big impact on the estimated association between PM2.5 and 

childhood asthma (Table 5.6, Figure 5.4, Models 6-8). Results were fairly similar when 

dividing the Atlanta region into 4 areas (Model 6) compared to diving the metropolitan 

Atlanta area into 3 regions (Model 7), so dividing the city into 3 regions was used in the final 

model in order to limit model parameters. In the final adjusted model (Model 7) an increase 

of 1 µg/m3 of PM2.5 is associated with a 2.7% to a 5.8% increase in risk of childhood asthma 

depending on follow-up age with confidence intervals at ages 2, 3, and 5 excluding the null. 

These final adjusted models control for child sex, child race, maternal asthma, birth year, 

minor demographic cluster, and city region.  
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In our final adjusted models, the strongest predictor of childhood asthma was 

maternal asthma. When controlling for all other covariates, at age 6, the absolute risk of 

asthma is 15.2% higher among children whose mothers have asthma compared to children 

whose mothers do not have asthma or for whom we were unable to determine maternal 

asthma status (Table 5.7, RD (95% CI): 0.152 (0.117, 0.187)). Other strong risk factors for 

asthma were male sex and black race. At age 6, the risk of asthma was 8.6% higher in male 

children than female children and 6.0% higher in black children than white children, when 

controlling for all other covariates (RD (95% CI): 0.086 (0.064, 0.108); 0.060 (0.030, 

0.089)). Correlation between siblings increased with follow-up age from 0.16 in the age 2 

analysis to 0.24 in the age 6 analysis.  

A priori, we were interested in whether there was effect measure modification using 

the risk difference of the association between PM2.5 and asthma incidence by race and 

maternal asthma. Stratifying crude model results showed different associations between 

PM2.5 and asthma for white and black children, but adjusted associations were similar and 

there was no evidence of statistical interaction (see Tables B4 and B5 in Appendix B). For 

child sex, the associations between PM2.5 and asthma were stronger among males than 

among females in adjusted models at ages 2 through 5. However, there was no evidence of 

statistical interaction by sex (see Tables B6 and B7 in Appendix B). For maternal asthma, 

both unadjusted and adjusted associations were stronger among children whose mothers 

do not have asthma than among children whose mothers have asthma, but there was no 

evidence of statistical interaction (see Tables B8 and B9 in Appendix B). Given the different 

descriptive patterns by city region, we also assessed whether the association between PM2.5 

and asthma differed by city region. Stratified results showed different associations between 

PM2.5 and asthma in both unadjusted and adjusted models. However, there was no evidence 

of statistical interaction and the small sample sizes in the individual regions makes it 
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probable that differences may be due to random error (see Tables B10 and B11 in Appendix 

B).  

 

Association between prenatal PM2.5 and asthma incidence 

The distributions of prenatal and first year of life PM2.5 exposure in the KAPPA 

cohort are visually identical (Figure 5.3). There is a moderate amount of residential mobility 

in the KAPPA cohort, with 18.2% of children moving during the first year of life and 18.6% 

of mothers moving during the prenatal period. Among children with both first year of life 

residence data and prenatal residence data, 36.0% changed residence at least once during 

the period from conception to the first birthday. Despite this mobility, prenatal and first 

year of life pollution estimates are highly correlated (Spearman correlation coefficient = 

0.93) and 64.0% of children have identical PM2.5 estimates for the two periods. The high 

correlation between these estimates is partially due to the lack of temporal variability in the 

RLINE PM2.5 data used to estimate exposure.  

Both unadjusted and adjusted risk differences for the association between prenatal 

PM2.5 and childhood asthma are very similar to the estimates of the association between 

first year of life PM2.5 and childhood asthma (Table 5.8, Figure 5.5). In the adjusted models, 

with the exception of the age 2 analysis, effect estimates are slightly closer to the null value 

in the prenatal models than in the first year of life models. For example, in the final adjusted 

model an increase of 1 µg/m3 of primary PM2.5 from traffic emissions in the prenatal period 

is associated with a 2.5% increase in asthma risk by age 4, and the same change in PM2.5 in 

the first year of life is associated with a 3.7% increase in asthma risk by age 4, with 

confidence intervals for both estimates including the null (RD (95% CI): prenatal 0.025 (-

0.020, 0.070); first year of life 0.037 (-0.007, 0.082)). 
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Because of the high correlation between prenatal and first year of life pollution 

estimates in this cohort, these data are not well-suited to tease out the separate effects of 

PM2.5 in each of these periods or to decide which exposure window is more important. 

Including both exposure estimates in the same statistical model results in instability which 

precludes meaningful interpretation of effects. 

 

Additional analyses and sensitivity analyses 

 In general, analyses using more detailed case definitions that take into account 

continued asthma morbidity resulted in stronger associations between first year of life 

PM2.5 and childhood asthma. When examining persistent asthma, defined as a child with 

incident asthma who also has evidence of asthma morbidity in the past year, results were 

fairly similar to the incident asthma results. Most results using the persistent asthma 

definition showed a stronger association between PM2.5 and asthma particularly when 

excluding children with incident but without persistent asthma from analyses (Table 5.9). 

For example, at age 4 an increase of 1 µg/m3 of PM2.5 is associated with a 3.7% increase in 

absolute risk of incident asthma (RD (95% CI): 0.037 (-0.007, 0.082)). When using the 

definition of persistent asthma the increased risk is larger at 4.9%, and increases to 5.1% 

when excluding children with incident but not persistent asthma from the reference group 

(RD (95% CI): 0.049 (0.010, 0.088), 0.051 (0.010, 0.092)).  

Stronger associations were also seen in analyses using events later in childhood to 

re-define asthma outcomes at age 2 completed among the cohort of 8,592 children enrolled 

until age 5. The risk difference between first year of life PM2.5 and asthma was larger when 

defining an asthma case as a child with incident asthma at age 2 and at least one asthma 

diagnosis or medication between ages 2 and 5 than when defining the outcome as just 

incident asthma at age 2 (RD (95% CI): 0.029 (-0.011, 0.069) vs. 0.004 (-0.0319, 0.0404)). 
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These models were controlled for covariates in the final adjusted models, but controlled for 

neighborhood SES using major demographic cluster instead of minor demographic cluster 

due to model convergence difficulties. The minor demographic clusters break the region 

into finer categories subsequently providing tighter control for neighborhood SES than the 

major demographic clusters. Consequently, there may be more residual confounding by SES 

in these models than in other statistical models. In previous models, the use of major 

demographic cluster resulted in smaller, but fairly similar, risk differences to those from 

models with minor demographic cluster (Table 5.6 Model 3 vs. Model 4). 

We completed analyses at age 5 using alternative case definitions of asthma (Table 

5.10). Conclusions about the association between traffic PM2.5 and childhood asthma at age 

5 were consistent across case definitions with all risk differences above zero and all 

confidence intervals excluding the null. Exact estimates of the association varied from the 

lowest estimate using case definition 3 (2 asthma diagnoses RD(95% CI) 0.050 (0.002, 

0.097)) to the highest estimate using case definition 10 (1 asthma diagnosis or 2 medication 

dispensings 1 of which must be a steroid RD(95% CI) 0.079 (0.023, 0.135). The estimate of 

the association using case definition 8 (the case definition used in all other analyses) fell in 

the middle of the estimates from other case definitions (RD (95% CI) 0.058 (0.004, 0.112)). 

 Results of sensitivity analyses excluding children with missing race information, 

missing 90 or more days of residence data during the first year of life, with no maternal 

match or an unreliable maternal match, or for whom birth certificates were unavailable 

were very similar to results from models including the entire cohort (see Table B12 in 

Appendix B). The frequency of each of these events was relatively rare and each analysis 

excluded less than 15% of the cohort (with the exception of the birth certificate analyses 

which excluded closer to 25% of the cohort). The analyses excluding children with missing 

race information and without maternal matches used a complete case approach to missing 
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data in these variables. The similarity of these results to the results of main analyses suggest 

that the use of an indicator for missing data did not bias results.  

 We completed some analyses examining asthma at earlier follow-up ages among 

children followed until at least age 6. Among the 6,628 children enrolled until age 6, the risk 

difference for the association between first year of life PM2.5 and asthma by age 2 was 0.006 

(95% CI -0.039, 0.051), asthma by age 3 was 0.017 (-0.035, 0.069), asthma by age 4 was 

0.033 (-0.025, 0.091), and asthma by age 5 was 0.048 (-0.014, 0.110). These estimates show 

smaller increases in risk associated with PM2.5 and have less precision due the smaller 

sample size than our main model results, but all estimates are in the same direction as those 

from the main models. 

 

Alternative measures of association 

 Unadjusted models and adjusted models with all covariates from the final adjusted 

risk difference model (child sex, race, maternal asthma, birth year, minor demographic 

clusters and city region) were completed using log binomial linear regression, logistic 

regression, and Cox proportional hazards regression. The log binomial linear regression and 

logistic regression models were completed using the same cohorts of children as the risk 

difference models. The only difference in the modeling was the use of different link 

functions (i.e. log and logit instead of identity). Cox proportional hazards models were 

completed using the 22,987 children in the KAPPA cohort with information on first year of 

life PM2.5 exposure data and who were enrolled in Kaiser until at least their first birthday. 

Cox models were completed for each follow-up age taking into account the timing of asthma 

incidence defining failure time by age in days. For example, at age 3 the outcome of interest 

was asthma incidence between the first and third birthdays. Children who had not been 

classified as asthmatic by their third birthday were censored on their third birthday (or at 
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the time their enrollment in Kaiser ended if that occurred before their third birthday). This 

same approach was used at each follow-up age. Figure B4 in Appendix B shows a survival 

curve for the age 6 analysis which examined outcomes between the first and sixth 

birthdays. 

 The proportional hazards assumption was assessed using the age 6 analysis for all 

variables in the final adjusted first year of life model: first year of life PM2.5, sex, race, 

maternal asthma, birth year, minor demographic clusters, and city region. The assumption 

was first tested graphically by plotting survival curves (see Figure B5 in Appendix B). Plots 

for race, sex, and minor demographic cluster suggested that these variables may not meet 

the proportional hazards assumption, so time dependent variables were included for each 

of these variables in separate Cox proportional hazards models adjusting for other model 

covariates. Likelihood ratio tests of these extended Cox models indicated that it may be 

important to include interaction terms between sex and time, and race and time, in the 

model, but that the other time-dependent variables were unnecessary (see Table B13 in 

Appendix B). The final Cox proportional hazards model was run including the following sets 

of time dependent variables: (1) none, (2) time dependent variables with race, (3) time 

dependent variables with sex, and (4) time dependent variables with both sex and race (see 

Table B13 in Appendix B). The results for the association between first year of life PM2.5 and 

childhood asthma incidence were almost identical from the four models, so the reduced 

model without any time dependent variables was chosen as the final model. 

 Table 5.11 includes the unadjusted and adjusted risk difference, risk ratio, odds 

ratio, and hazard ratio results for the association between first year of life PM2.5 from traffic 

and childhood asthma incidence. At all follow-up ages, crude estimates using all measures of 

association indicate an inverse association between PM2.5 and asthma and adjusted 

estimates using all measure of association indicate a positive association between PM2.5 and 
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asthma. For example, in adjusted models, at age 4 for an increase of 1 µg/m3 of PM2.5, the 

risk difference model indicates a 3.7% increase in absolute asthma risk, the risk ratio model 

indicates a 1.18 times higher asthma risk, and the odds ratio model indicates a 1.25 times 

higher odds of asthma (RD(95% CI) 0.037 (-0.007, 0.082); RR(95% CI) 1.18 (0.98, 1.42); 

OR(95% CI) 1.25 (0.97, 1.62)) with p-values for the estimates almost identical between the 

different models. As anticipated given the lack of a rare outcome, at every follow-up age the 

risk ratios are closer to the null value of 1 than the odds ratios (Greenland S et al. 2008). At 

age 4 the Cox proportional hazards model results indicate higher asthma hazard associated 

with an increase of 1 µg/m3 of PM2.5 from traffic (HR (95% CI): 1.31 (1.10, 1.57)), but has a 

much smaller p-value than the other models. This is likely due to the increased power 

resulting from including all children enrolled until the first birthday in the model, rather 

than only including children enrolled until their fourth birthday as in the age 4 other 

analyses. 

 

DISCUSSION 

 In this study we assessed the association between primary PM2.5 from traffic 

emissions at the residential location in early life and childhood asthma incidence in a cohort 

of children enrolled in Kaiser Permanente Georgia. Results from this study provide some 

evidence of an association between PM2.5 exposure from traffic and asthma incidence. 

However, results were dependent on which variables are included in our models with 

results of some models providing little evidence of an association between traffic PM2.5 and 

asthma. Similar to the difficulties in previous studies, the high correlation between 

estimates of prenatal and first year of life exposure prevented us from determining the 

relative importance of exposure during each of these periods. Future work in this cohort 
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that incorporates temporal variation in pollution levels at each residence will be better 

suited to tease out the independent effects of these exposure windows. 

Major strengths of the KAPPA study include the availability of comprehensive 

medical record data for outcome classification and the availability of estimates of pollution 

exposure for both prenatal and early life periods calculated using high quality residential 

history data and fine scale PM2.5 estimates. Access to data on a full cohort (i.e. denominator 

data) allows for estimation of risk. The use of information on both individual and 

neighborhood characteristics allowed us to explore possible confounding by a variety of 

socioeconomic factors operationalized in different ways. We investigated study hypotheses 

in the KPGA population, a primarily urban population in the southeastern U.S. with high 

rates of asthma and access to healthcare. It is possible results may not generalize well to 

markedly different populations. Nonetheless, relationships observed in our population have 

public health importance given the large number of people in the U.S. represented by our 

study population.  

A limitation of the KAPPA study is incomplete information on race and familial 

asthma history, both important predictors of childhood asthma. We conducted sensitivity 

analyses restricted to subjects with race information and information on maternal asthma 

status, which yielded results consistent with the main analyses (see Table B12 in Appendix 

B). The study could also have benefited from supplementary information not available in 

Kaiser medical records or from birth certificates. For example, information on individual 

socioeconomic attributes such as income would have allowed for more control of 

confounding by individual-level SES. However, the use of maternal education provided 

some control. Also, given that this is an insured population with high levels of education, we 

anticipate that individuals are more exchangeable on individual-level factors than in other 

populations, making us less concerned about confounding by individual-level SES. 
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Information on early life environment, such as exposure to secondhand smoke exposure, 

would have also been useful since these exposures may be related to both asthma and SES 

raising concerns about potential confounding.  Additionally, maternal matches were 

determined using family units within the KPGA system, so they do not necessarily represent 

biologic relationships (i.e. they could represent adoptive parents or step-parents). Prenatal 

pollution exposure estimates and determination of maternal asthma status are only 

accurate for children whose maternal match is their biological mother. However, maternal 

asthma was the strongest risk factor for childhood asthma in our data and it seems unlikely 

we would see this association if a large proportion of mothers were not biologic links.  

The KAPPA study has high loss to follow-up rates particularly at later ages which 

impacted study power and exacerbated model convergence issues. We completed a number 

of analyses to address whether the association between PM2.5 and asthma was different 

among children lost to follow-up and retained in the cohort. Loss to follow up was not 

associated with PM2.5 exposure and the crude relationship between PM2.5 and asthma was 

similar between children lost to follow-up and children retained in the cohort (see Table B2 

in Appendix B). In addition to this crude analysis, we completed an analysis examining the 

association between traffic PM2.5 and childhood asthma at earlier follow-up ages among the 

children followed until at least age 6 (presented in results section). Effect estimates were 

smaller and less precise in this analysis, but showed positive associations between PM2.5 

and asthma as in our main models. These results lessened our concerns about the impact 

selection bias may have had on our study results. 

The use of fine scale PM2.5 data from RLINE for this project allowed us to create 

highly resolved estimates of pollution exposure from traffic at the residential location. 

Compared to other dispersion models, RLINE is relatively new, and still in development. 

Advantages of RLINE include the use of new formulations for plume spread of near surface 
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releases and the use of a wind meander algorithm (Snyder et al. 2013). One limitation of 

RLINE is that it was developed for flat roadways and does not adjust for hills or take into 

account barriers that can impact small scale meteorology (e.g., roadside vegetation, 

buildings). The biggest shortcoming of our exposure assignment is the application of 2011 

RLINE data to all years of our study. These data fail to account for temporal trends in 

pollution and potential changes in the spatial distribution of the road network. While we 

would expect that a high pollution area in 2011 would also be a high pollution area in other 

years of our study, for example a residence near a major highway, this may not be true for 

all parts of the metropolitan Atlanta area due to possible changes in traffic patterns. 

Moreover, the use of one year of pollution data limited the variability between prenatal and 

first year of life pollution estimates because the exposure contrasts were strictly spatial, and 

many mothers lived at the same location during pregnancy that their children lived at 

during the first year of life. This lack of variability prevented us from determining the 

relative impact of exposure in each of these developmental periods. While the RLINE model 

used information about PM2.5 dispersion and there are biological reasons why PM2.5 

specifically may cause asthma, we cannot rule out the possibility that PM2.5 is acting as a 

surrogate of another unmeasured pollutant from traffic that impact asthma incidence. Since 

we are not controlling for the effect of other pollutants, and there is a high correlation 

between pollutants produced by vehicles, our effect estimates may be picking up the impact 

of these other pollutants on asthma incidence. Future work in the KAPPA cohort will 

examine effects of NOX and CO and attempt to separate the impacts of individual pollutants. 

 For exposure estimation, our use of residential data with information on changes in 

residence is an improvement over previous studies that have used residence at birth as a 

proxy for residence during the entire prenatal and first year of life periods. This residential 

mobility can be substantial, as 36% of our cohort changed residence at least once during the 
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period from conception to the first birthday. Although our research question concerns 

ambient particulate matter exposure, if it is causally associated with our outcome it would 

be through the pathway of personal exposure. Personal exposure to pollution is determined 

by ambient pollution levels as well as factors such as housing air exchange rate and time-

activity patterns (i.e. time spent outdoors and in different locations). For the prenatal 

period, there is some evidence from the literature indicating high correlations between 

estimates of pollutant exposures based on maternal residence alone and those 

incorporating information on maternal time-activity patterns (Iniguez et al. 2009). Two 

separate studies have found that, on average, pregnant women spend over 65% of their day 

at home helping to limit misclassification due to time-activity patterns in comparison to 

other populations (Iniguez et al. 2009, Nethery et al. 2009). We would also expect infants to 

spend more time at home during the first year of life than they would later in adolescence. 

Furthermore, the question, “Do traffic emissions near the maternal residence during 

pregnancy or near the infant residence during the first year of life cause asthma?” is a 

relevant causal question and has clear implications for behavioral modification; a small 

change of residential location has the potential to dramatically decrease exposure (e.g., 

moving away from a busy road). 

The percent of children in this cohort with asthma is much higher than in other 

populations with 32.4% of children being classified as asthmatic by age 6. For example, in 

2010 in the state of Georgia it was estimated that among children ages five to nine years 

13.7% had current asthma and 20.4% had ever been diagnosed with asthma (U.S. Centers 

for Disease Control and Prevention et al. 2011). These high asthma rates are likely due to a 

number of factors. It has been found previously that, in comparison to use of parental 

report, use of medical records for classification results in a higher prevalence estimate for 

childhood asthma and that prevalence of an asthma diagnosis is higher among insured than 
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uninsured children (Yoo et al. 2007, Coker et al. 2012). A high proportion of our cohort is of 

African American race which is a known risk factor for asthma (Moorman JE et al. 2012). 

Additionally, we focused on cumulative incidence and our outcome group likely included 

children with transient wheeze diagnosed as asthma who did not go on to have asthma 

symptoms later in childhood.  

Measurement error in the outcome of interest stemming from inherent difficulty in 

early-life asthma diagnosis is a limitation of our study. We conducted extensive analyses to 

explore the sensitivity of the results to decisions about outcome classification. The choice to 

define asthma incidence as at least one asthma diagnosis and one asthma-related 

medication dispensing was made after a thorough investigation of different ways to define 

asthma in our cohort with counsel from a pediatric allergist (see dissertation chapter 4). 

This definition insures that a child classified as asthmatic has had a doctor diagnose their 

respiratory condition as asthma, and also has some evidence of respiratory symptoms 

requiring treatment for which they filled a medication prescription. In supplementary 

analyses we saw that conclusions about the association between traffic PM2.5 and asthma 

incidence by age 5 were consistent if we used any of the other case definitions of asthma 

from dissertation chapter 4 (Table 5.10, excluding the case definition for atopic asthma). 

The use of medical records for disease determination, instead of the frequently used 

method of maternal report, prevents some types of bias such as recall bias from impacting 

disease classification (Miller et al. 2001). However, asthma is particularly difficult to 

diagnose in early life due to transient and non-specific symptoms and the lack of 

reproducible objective testing. Asthma-related medications we used for disease 

classification are also used to treat other respiratory conditions and can be used for 

diagnostic rather than treatment purposes (e.g., a child’s response to steroids or 

bronchodilators can help determine whether or not their condition is asthma). Our outcome 
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is cumulative incidence of asthma, so the outcome group at all ages includes children with 

asthma diagnoses made early in life which are the least accurate. However, at later follow-

up ages our outcome group is expected to contain a greater proportion of definitive asthma 

cases and have less misclassification. In analyses using an outcome of persistent asthma we 

saw stronger associations at follow-up ages 4 and 5 consistent with better disease 

classification (Table 5.9). 

The KAPPA study was not designed to differentiate between the effects of PM2.5 on 

atopic and non-atopic asthma phenotypes and subsequently our data are not well-suited for 

this endeavor. In order to reliably separate these phenotypes, information on skin prick 

testing and blood IgE levels is necessary. In the absence of these data, we did not attempt to 

determine whether the association between PM2.5 and childhood asthma is different for 

atopic and non-atopic phenotypes.   

The risk difference, an absolute measure of effect, was chosen as the main measure 

of association for this study after careful consideration. Risk differences lend themselves 

well to the investigation of additive interaction which is thought to be more relevant to 

public health than multiplicative interaction (Greenland S et al. 2008, Vanderweele et al. 

2014). The risk difference has grown in popularity recently, but is often not used due to the 

need for denominator data in order to estimate risk and the known model convergence 

issues of this measure. The best solution for model convergence in our analyses was to limit 

model parameters either by dropping unnecessary variables, or combining categories. Birth 

year was included in our final adjusted models in order to have some time control due to 

the temporal patterns of both asthma and pollution. However, given the lack of a trend in 

either PM2.5 exposure or asthma incidence in our cohort, birth year did not appear to be a 

strong confounder (Table 5.1, Table 5.5). Since dropping birth year had little impact on 

model results, it was frequently dropped to aid in convergence for models that would not 
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converge otherwise (see Table B3 in Appendix B). The use of a robust Poisson model, which 

is thought to help risk difference models converge, was tried as an alternative, but did not 

aid in model convergence and in fact made convergence problems worse in some models 

(Spiegelman et al. 2005). Sensitivity analyses showed our results were not sensitive to 

modeling and data cleaning decisions, such as including children with gaps in residence 

data and using an indicator group for missing values in analyses (see Table B12 in Appendix 

B). 

Confounding by SES-related factors acted in the opposite direction from what we 

expected a priori in this study population. We anticipated our unadjusted models would be 

biased in the positive direction since children from the lowest SES groups often have the 

most asthma and also live in the most polluted areas. Surprisingly, our unadjusted results 

showed a negative association between PM2.5 and asthma. Descriptive analyses revealed a 

strong spatial pattern in our data; increasing distance from the city center was associated 

with increasing asthma rates and decreasing PM2.5. Looking at demographic clusters, 

children living in the cluster with the highest PM2.5 had the least asthma (cluster B), and 

children living in the cluster with the lowest PM2.5 had the most asthma (cluster C). It seems 

likely to us that our crude results are confounded by SES and also by factors other than air 

pollution that change as distance from the city center increases (e.g., health care utilization). 

When we control for SES and city region our risk differences move in a positive direction. 

Out of all of the variables we assessed, city region had the largest impact on our results and 

may be an important factor to consider in other studies of traffic PM2.5 and asthma in large 

metropolitan areas with a similar pattern of pollution and urban sprawl. 

 The results of this study suggest that in the KAPPA cohort, the risk of asthma 

increases an absolute 2.7% to 5.8% (depending on follow-up age) with every increase of 1 

µg/m3 of primary PM2.5 from traffic emissions. However, we note that our effect estimates 
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are greatly impacted by which covariates are included in our models. For comparison, here 

are the results of three previous studies assessing the association between PM2.5 from traffic 

and childhood asthma incidence, all using the odds ratio as a measure of association [OR 

(95% CI)]: Carlsten et al. 3.1 (1.3, 7.4) calculated for an IQR increase (IQR = 4.1 µg/m3), 

Clark et al. 1.01 (0.99, 1.03) for 1 µg/m3, Gehring et al. 1.28 (1.10, 1.49) for an IQR increase 

(IQR = 3.2 µg/m3)(Clark et al. 2010, Gehring et al. 2010, Carlsten et al. 2011). These results 

range from null to suggestive of a positive association. For a more direct comparison, using 

the odds ratio as a measure of association to examine asthma incidence by age 6, in the 

KAPPA study we observed an odds ratio (95% CI) of 1.06 (0.94, 1.18) calculated for an IQR 

increase (IQR = 0.37 µg/m3). While these odds ratios are calculated for different changes in 

PM2.5 and are adjusted for different factors, many of them are suggestive of a positive 

association between PM2.5 and childhood asthma incidence. Our study, one of the largest to 

date to examine these associations, and one of the few to use medical records for disease 

classification, adds to the growing body of results providing some evidence that exposure to 

traffic in early life may have lasting impacts on respiratory health. In future work with the 

KAPPA study using time resolved PM2.5 data and examining the impact of other pollutants, 

we hope to better elucidate the association between residential air pollution and asthma in 

this cohort of children and to tease out the differential impacts of exposure during 

pregnancy and the first year of life. 
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Table 5.1. KAPPA cohort characteristics 

 Children with first year of life  
PM2.5 data 

Children with prenatal  
PM2.5 data a 

Characteristic 
n (%) 

Mean first year 
of life traffic PM2.5 

n (%) 
Mean prenatal 

traffic PM2.5 

Cohort 23,100 1.17 19,951 1.18 

Children with siblings in cohort 7,313 (31.7) 1.15 7,123 (35.7) 1.17 

Sex     

Female 11,330 (49.1) 1.17 9,748 (48.9) 1.18 
Male 11,770 (51.0) 1.17 10,203 (51.1) 1.18 

Race/Ethnicity     

Black 7,995 (34.6) 1.17 7,220 (36.2) 1.19 
White 9,034 (39.1) 1.12 8,467 (42.4) 1.13 

Other b 2,771 (12.0) 1.27 2,643 (13.3) 1.29 
Unknown Race  3,300 (14.3) 1.20 1,621 (8.1) 1.24 

Hispanic Ethnicity 1,839 (8.0) 1.19 1,759 (8.8) 1.21 

Maternal Education     

<12th grade 285 (1.2) 1.20 280 (1.4) 1.23 
High School/GED 2,605 (11.3) 1.10 2,524 (12.7) 1.12 

Some College or more 13,442 (58.2) 1.16 13,113 (65.7) 1.18 
Missing 6,768 (29.3) 1.20 4,034 (20.2) 1.23 

Maternal Asthma     

Yes 2,488 (10.8) 1.16 2,419 (12.1) 1.18 
No 17,998 (77.9) 1.17 17,532 (87.9) 1.18 

Missing 2,614 (11.3) 1.20 0 -- 

Kaiser Permanente Enrollment Duration c    

Enrolled until age 2 17,960 (77.8) 1.17 15,631 (78.4) 1.18 
Enrolled until age 3 14,251 (61.7) 1.17 12,434 (62.3) 1.18 
Enrolled until age 4 10,999 (47.6) 1.17 9,620 (48.2) 1.19 
Enrolled until age 5 8,592 (37.2) 1.17 7,521 (37.7) 1.19 
Enrolled until age 6 6,629 (28.7) 1.17 5,806 (29.1) 1.19 

Birth Year     

2000 2,456 (10.6) 1.20 2,054 (10.3) 1.22 
2001 2,369 (10.3) 1.18 1,977 (9.9) 1.20 
2002 2,266 (9.8) 1.17 1,946 (9.8) 1.19 
2003 2,185 (9.5) 1.16 1,929 (9.7) 1.18 
2004 2,138 (9.3) 1.15 1,871 (9.4) 1.17 
2005 2,023 (8.8) 1.15 1,741 (8.7) 1.17 
2006 2,198 (9.5) 1.15 1,935 (9.7) 1.16 
2007 2,216 (9.6) 1.16 1,919 (9.6) 1.17 
2008 2,101 (9.1) 1.16 1,835 (9.2) 1.17 
2009 1,585 (6.9) 1.18 1,403 (7.0) 1.19 
2010 1,563 (6.8) 1.19 1,341 (6.7) 1.19 

a A subset of children with first year of life PM2.5 data b Includes Asian, American Indian, Alaska 
Native, Native Hawaiian or other Pacific Islander, and children identifying with more than one racial 
group c Reduction in sample size across follow-up reflects the shorter follow-up time available for 
children born in later years of the study (e.g., a child born in 2010 could be at most 3 years old at the 
time KAPPA follow-up ended in September 2013) as well as HMO enrollment attrition over time. 
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Table 5.2. Distribution of prenatal and first year of life traffic PM2.5 by demographic clusters 
and city region 

Children with first year of life PM2.5 data Children with prenatal PM2.5 data 

Characteristic 
n (%) 

Mean first year 
of life traffic PM2.5 

n (%) 
Mean prenatal 

traffic PM2.5 

Major Demographic Cluster     

A 14,401 (62.3) 1.08 12,626 (63.3) 1.10 
B 2,293 (9.9) 1.53 1,925 (9.7) 1.55 
C 1,130 (4.9) 0.98 974 (4.9) 1.00 
D 5,272 (22.8) 1.28 4,423 (22.2) 1.30 

Minor Demographic Cluster     

A.1 3,065 (13.3) 1.22 2,747 (13.8) 1.23 
A.2 2,243 (9.7) 1.19 1,976 (9.9) 1.20 
A.3 9,093 (39.4) 1.01 7,903 (39.6) 1.03 
B.1 1,080 (4.7) 1.58 896 (4.5) 1.59 

B.3/B.4 1,213 (5.3) 1.49 1,029 (5.2) 1.51 
C.1/C.2 856 (3.7) 0.89 735 (3.7) 0.92 
C.3/C.4 274 (1.2) 1.26 239 (1.2) 1.27 

D.1 2,453 (10.6) 1.16 2,083 (10.4) 1.18 
D.3 631 (2.7) 1.37 520 (2.6) 1.38 
D.4 1,436 (6.2) 1.37 1,204 (6.0) 1.39 
D.5 450 (2.0) 1.41 378 (1.9) 1.43 

D.6/D.7 302 (1.3) 1.40 238 (1.2) 1.40 

City Region     

Metro Atlanta a 2,425 (10.5) 1.51 2,030 (10.2) 1.52 
≤10 miles from metro Atlanta 9,894 (42.8) 1.27 8,449 (42.4) 1.29 
>10 miles from metro Atlanta 10,781 (46.7) 1.00 9,472 (47.5) 1.02 

a Metro Atlanta defined as inside the I-285 perimeter of Atlanta (Figure B2). Minor demographic 
clusters with less than 150 individuals were combined with the closest demographic cluster within 
its major category for analyses (reflected in table). 
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Table 5.3 Traffic PM2.5 exposure and census tract household income and poverty by city 
region 

 
All Regions 

Metro 
Atlanta 

≤10 miles from 
metro Atlanta 

>10 miles from 
metro Atlanta 

n (row %) 

All Races 23,100 2,425 (10.5) 9,894 (42.8) 10,781 (46.7) 
Black  7,995 884 (11.1) 4,901 (61.3) 2,210 (27.6) 

White 9,034 851 (9.4) 2,204 (24.4) 5,979 (66.2) 
Other Race a  2,771 275 (9.9) 1,221 (44.1) 1,275 (46.0) 

Unknown Race  3,300 415 (12.6) 1,568 (47.5) 1,317 (39.9) 

Mean first year of life traffic PM2.5 

All Children  1.17 1.51 1.27 1.00 
Black  1.17 1.46 1.21 0.96 

White  1.12 1.55 1.33 0.98 
Other Race a  1.27 1.57 1.37 1.11 

Unknown  1.20 1.53 1.29 1.00 

Spearman Correlation with first year of life PM2.5 

Median household income b ρ = -0.183 ρ = 0.259 ρ = -0.125 ρ = 0.268 
Percent families poverty b ρ = 0.175 ρ = -0.257 ρ = 0.106 ρ = -0.100 

a Includes Asian, American Indian, Alaska Native, Native Hawaiian or other Pacific Islander, and 
children identifying with more than one racial group. b American Community Survey 2010 data (5 
year estimates) at census tract level, prepared by Social Explorer 

 
 
 
Table 5.4. Asthma incidence and prenatal and first year of life traffic PM2.5 exposure by each 
follow-up age 

 Children with first year of life PM2.5 data; 
First year of life traffic PM2.5 

Children with prenatal PM2.5 data;  
Prenatal traffic PM2.5 

Cohort 
Asthma 

n (%) 

Mean PM2.5 
among 
cases 

Mean PM2.5 
among 

non-cases 

Asthma 
n (%) 

Mean PM2.5 
among 
cases 

Mean PM2.5 
among 

non-cases 

Age 2 1,994 (11.1) 1.15 1.17 1,731 (11.1) 1.17 1.19 
Age 3 2,627 (18.4) 1.15 1.17 2,316 (18.6) 1.17 1.19 
Age 4 2,650 (24.1) 1.16 1.17 2,309 (24.0) 1.17 1.19 
Age 5 2,465 (28.7) 1.16 1.17 2,132 (28.4) 1.18 1.19 
Age 6 2,149 (32.4) 1.17 1.17 1,854 (31.9) 1.18 1.19 

Asthma incidence (at least one asthma diagnosis (ICD-9 493.XX) and one asthma-related medication 
dispensing after the first year of life) calculated among children enrolled until each follow-up age 
(see Table 5.1 for number enrolled until each age). For example, the age 5 cohort examines asthma 
incidence by the 5th birthday among children enrolled until at least their 5th birthday. 
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Table 5.5. Percent of children with incident asthma at each follow-up age by covariates 

 Incident asthma by follow-up age (%) 

Characteristic Age 2 Age 3 Age 4 Age 5 Age 6 

Cohort 11.1 18.4 24.1 28.7 32.4 

Sex      

Female 8.8 14.9 20.0 24.2 27.9 
Male 13.3 21.8 28.0 33.1 36.8 

Race/Ethnicity      

Black 12.5 20.2 26.1 31.2 34.8 
White 10.7 17.9 23.1 26.6 29.8 

Other a 8.0 15.4 20.6 26.9 31.8 
Unknown  11.4 17.3 23.9 28.1 33.4 

Hispanic Ethnicity 12.1 18.3 21.9 28.1 31.7 

Maternal Education 

<12th grade 11.9 18.1 27.1 31.0 31.3 
High School/GED 10.4 17.9 22.2 27.1 31.1 

Some College or more 11.2 18.8 24.0 28.4 31.8 
Missing 11.2 17.9 25.0 29.9 34.2 

Maternal Asthma      

Yes 16.8 26.1 33.1 40.4 45.4 
No 10.3 17.4 22.5 26.4 29.7 

Missing 10.8 17.0 24.7 31.1 36.3 

Birth Year      
2000 12.7 19.7 25.8 32.3 36.7 
2001 10.4 18.8 23.8 27.3 30.0 
2002 11.7 19.6 26.2 29.0 33.0 
2003 10.2 18.5 24.1 28.4 32.5 
2004 11.6 17.8 22.0 25.6 28.9 
2005 11.8 19.6 24.8 29.2 31.9 
2006 11.1 18.0 25.5 29.1 32.3 
2007 10.5 17.0 22.3 27.9 33.5 
2008 10.7 17.3 23.0 29.9 — 
2009 9.9 17.9 21.7 — — 
2010 11.0 17.0 — — — 

Major Demographic Cluster 

A 11.4 18.9 24.2 29.0 32.6 
B 8.6 13.9 19.5 23.8 27.6 
C 12.0 19.8 28.0 29.6 35.0 
D 11.1 18.7 24.7 29.6 33.2 

City Region 

Metro Atlanta b 7.8 14.1 20.2 25.2 28.2 
≤10 miles from metro Atlanta 11.1 18.5 24.1 28.7 32.8 
>10 miles from metro Atlanta 11.9 19.3 25.0 29.5 33.1 

a Includes Asian, American Indian, Alaska Native, Native Hawaiian or other Pacific Islander, and 
children identifying with more than one racial group. b Metro Atlanta defined as inside the I-285 
perimeter of Atlanta (Figure B2). “—“ = children born in this year not eligible for follow-up age. For 
example, a child born in 2010 could be at most 3 years old at the time KAPPA follow-up ended in 
September 2013.
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Table 5.6. Risk differences for first year of life traffic PM2.5 and childhood asthma incidence in models adjusting for different sets of 
covariates 
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Cohort 
MODEL 0 MODEL 1 MODEL 2 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 -0.0221 (-0.0390, -0.0053) 0.01 -0.0222 (-0.0399, -0.0044) 0.01 -0.0194 (-0.0359, -0.0029) 0.02 

Age 3 -0.0316 (-0.0552, -0.0080) <0.01 -0.0290 (-0.0544, -0.0036) 0.03 -0.0277 (-0.0511, -0.0043) 0.02 

Age 4 -0.0370 (-0.0673, -0.0066) 0.02 -0.0326 (-0.0651, -0.0001) 0.05 -0.0326 (-0.0629, -0.0024) 0.03 

Age 5 -0.0184 (-0.0553, 0.0186) 0.33 -0.0195 (-0.0586, 0.0195) 0.33 -0.0175 (-0.0539, 0.0190) 0.35 

Age 6 -0.0287 (-0.0725, 0.0150) 0.20 -0.0297 (-0.0757, 0.0163) 0.21 -0.0305 (-0.0735, 0.0126) 0.17 
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Cohort 
MODEL 3 MODEL 4 MODEL 5 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 -0.0074 (-0.0271, 0.0123) 0.46 0.0076 (-0.0136, 0.0287) 0.48 0.0026 (-0.0189, 0.0241) 0.81 

Age 3 -0.0020 (-0.0302, 0.0263) 0.89 0.0099 (-0.0201, 0.0400) 0.52 0.0064 (-0.0237, 0.0366) 0.68 

Age 4 -0.0137 (-0.0496, 0.0223) 0.46 0.0065 (-0.0332, 0.0462) 0.75 0.0058 (-0.0330, 0.0447) 0.77 

Age 5 0.0094 (-0.0338, 0.0525) 0.67 0.0148 (-0.0329, 0.0626) 0.54 0.0217 (-0.0246, 0.0680) 0.36 

Age 6 -0.0051 (-0.0558, 0.0456) 0.84 -0.0062 (-0.0625, 0.0502) 0.83 0.0134 (-0.0402, 0.0671) 0.62 
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MODEL 6 MODEL 7: FINAL MODEL MODEL 8 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0278 (0.0034, 0.0522) 0.03 0.0265 (0.0027, 0.0503) 0.03 0.0208 (-0.0026, 0.0441) 0.08 

Age 3 0.0389 (0.0053, 0.0726)a 0.02 0.0369 (0.0040, 0.0698)a 0.03 0.0260 (-0.0077, 0.0597) 0.13 

Age 4 0.0411 (-0.0048, 0.0871) 0.08 0.0373 (-0.0073, 0.0819) 0.10 0.0226 (-0.0202, 0.0654) 0.30 

Age 5 0.0630 (0.0074, 0.1187) 0.03 0.0578 (0.0035, 0.1122) 0.04 0.0519 (0.0003, 0.1035) 0.05 

Age 6 0.0440 (-0.0224, 0.1105) 0.19 0.0359 (-0.0289, 0.1008) 0.28 0.0393 (-0.0225, 0.1011) 0.21 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a birth year dropped in order for model to converge 

List of Model Covariates 
Model 0: unadjusted model 

Model 1: child sex, child race, child ethnicity, maternal asthma, birth year, maternal age, maternal education 

Model 2: child sex, child race, maternal asthma, birth year 

Model 3: child sex, child race, maternal asthma, birth year, major demographic cluster 
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Model 4: child sex, child race, maternal asthma, birth year, minor demographic cluster 

Model 5: child sex, child race, maternal asthma, birth year, median household income, median year structure built, median house value, percent less 
than high school, percent families in poverty  

Model 6: child sex, child race, maternal asthma, birth year, minor demographic cluster, city region (metro Atlanta, ≤5 miles from metro Atlanta, >5–10 
miles from metro Atlanta, >10 miles from metro Atlanta) 

Model 7 (FINAL MODEL): child sex, child race, maternal asthma, birth year, minor demographic cluster, city region (metro Atlanta, ≤10 miles from 
metro Atlanta, >10 miles from metro Atlanta)  

Model 8: child sex, child race, maternal asthma, birth year, median household income, median year structure built, median house value, percent less 
than high school, percent families in poverty, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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Table 5.7. Full adjusted model results for first year of life traffic PM2.5 and asthma incidence at ages 2, 4, and 6 

 Age 2 
n = 17,958 Correlation = 0.16 

Age 4  
n = 10,998 Correlation = 0.20 

Age 6  
n = 6,628 Correlation = 0.24 

Parameter RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Intercept 0.0538 (0.0215, 0.0862) <0.01 0.1304 (0.0710, 0.1898) <0.01 0.2488 (0.1639, 0.3336) <0.01 
Traffic PM2.5 0.0265 (0.0027, 0.0503) 0.03 0.0373 (-0.0073, 0.0819) 0.10 0.0359 (-0.0289, 0.1008) 0.28 
Male sex 0.0433 (0.0346, 0.0521) <0.01 0.0782 (0.0626, 0.0938) <0.01 0.0859 (0.0639, 0.1079) <0.01 
Black race 0.0236 (0.0115, 0.0357) <0.01 0.0299 (0.0091, 0.0508) <0.01 0.0595 (0.0300, 0.0890) <0.01 
Unknown/other race 0.0024 (-0.0091, 0.0140) 0.68 0.0011 (-0.0207, 0.0229) 0.92 0.0409 (0.0077, 0.0740) 0.02 
Maternal asthma 0.0609 (0.0444, 0.0774) <0.01 0.1041 (0.0780, 0.1302) <0.01 0.1519 (0.1165, 0.1873) <0.01 
Birth year: 2001 -0.0164 (-0.0362, 0.0035) 0.11 -0.0145 (-0.0462, 0.0171) 0.37 -0.0636 (-0.1032, -0.0240) <0.01 
Birth year: 2002 -0.0087 (-0.0288, 0.0113) 0.39 0.0077 (-0.0242, 0.0396) 0.64 -0.0339 (-0.0737, 0.0059) 0.10 
Birth year: 2003 -0.0208 (-0.0401, -0.0016) 0.03 -0.0149 (-0.0464, 0.0166) 0.35 -0.0430 (-0.0832, -0.0027) 0.04 
Birth year: 2004 -0.0109 (-0.0308, 0.0090) 0.28 -0.0334 (-0.0645, -0.0022) 0.04 -0.0693 (-0.1125, -0.0262) <0.01 
Birth year: 2005 -0.0065 (-0.0272, 0.0141) 0.53 -0.0044 (-0.0382, 0.0294) 0.80 -0.0446 (-0.0902, 0.0011) 0.06 
Birth year: 2006 -0.0165 (-0.0359, 0.0029) 0.10 -0.0015 (-0.0368, 0.0338) 0.93 -0.0519 (-0.0958, -0.0081) 0.02 
Birth year: 2007 -0.0181 (-0.0380, 0.0019) 0.08 -0.0339 (-0.0675, -0.0002) 0.05 -0.0321 (-0.0829, 0.0186) 0.21 
Birth year: 2008 -0.0197 (-0.0400, 0.0006) 0.06 -0.0246 (-0.0584, 0.0092) 0.15 - - 
Birth year: 2009 -0.0286 (-0.0486, -0.0087) <0.01 -0.0435 (-0.0839, -0.0030) 0.04 - - 
Birth year: 2010 -0.0142 (-0.0362, 0.0079) 0.21 - - - - 
Metro Atlanta -0.0379 (-0.0581, -0.0177) <0.01 -0.0593 (-0.0961, -0.0225) <0.01 -0.0808 (-0.1363, -0.0253) <0.01 
≤10 mi from metro Atlanta -0.0173 (-0.0299, -0.0047) <0.01 -0.0250 (-0.0468, -0.0032) 0.02 -0.0301 (-0.0619, 0.0017) 0.06 
Demographic cluster A.2 0.0131 (-0.0055, 0.0316) 0.17 0.0323 (-0.0009, 0.0655) 0.06 -0.0073 (-0.0549, 0.0402) 0.76 
Cluster A.3 0.0201 (0.0051, 0.0351) <0.01 0.0430 (0.0160, 0.0699) <0.01 0.0052 (-0.0342, 0.0445) 0.80 
Cluster B.1 -0.0189 (-0.0406, 0.0028) 0.09 -0.0476 (-0.0886, -0.0067) 0.02 -0.0631 (-0.1282, 0.0020) 0.06 
Cluster B.3/B.4 0.0199 (-0.0053, 0.0450) 0.12 0.0556 (0.0097, 0.1015) 0.02 0.0204 (-0.0445, 0.0853) 0.54 
Cluster C.1/C.2 0.0214 (-0.0068, 0.0497) 0.14 0.0569 (0.0029, 0.1109) 0.04 -0.0217 (-0.0936, 0.0502) 0.55 
Cluster C.3/C.4 0.0209 (-0.0211, 0.0628) 0.33 0.1240 (0.0447, 0.2034) <0.01 0.1449 (0.0328, 0.2570) 0.01 
Cluster D.1 0.0138 (-0.0057, 0.0333) 0.17 0.0430 (0.0086, 0.0774) 0.01 0.0002 (-0.0493, 0.0498) 0.99 
Cluster D.3 0.0121 (-0.0178, 0.0420) 0.43 0.0493 (-0.0053, 0.1039) 0.08 0.0326 (-0.0465, 0.1116) 0.42 
Cluster D.4 0.0047 (-0.0173, 0.0267) 0.68 0.0322 (-0.0085, 0.0729) 0.12 -0.0102 (-0.0688, 0.0484) 0.73 
Cluster D.5 0.0333 (-0.0062, 0.0729) 0.10 0.0236 (-0.0415, 0.0886) 0.48 -0.0139 (-0.0997, 0.0718) 0.75 
Cluster D.6/D.7 0.0051 (-0.0373, 0.0476) 0.81 0.0450 (-0.0257, 0.1156) 0.21 0.0814 (-0.0202, 0.1829) 0.12 

RD = Risk Difference, CI = Confidence Interval, p = p-value, - = variable not included in model, mi = miles 
Reference group: female sex, white race, no or unknown maternal asthma, birth year 2000, >10 miles from metro Atlanta, demographic cluster A.1
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Table 5.8. Risk differences for prenatal and first year of life traffic PM2.5 and asthma 
incidence, unadjusted and final adjusted models 

Cohort 
(adjusted model n) 

First Year of Life PM2.5 
Unadjusted Model 

First Year of Life PM2.5 
Final Adjusted Model 

RD (95% CI) p RD (95% CI) p 

Age 2 (n=17,958) -0.0221 (-0.0390, -0.0053) 0.01 0.0265 (0.0027, 0.0503) 0.03 
Age 3 (n=14,249) -0.0316 (-0.0552, -0.0080) <0.01 0.0369 (0.0040, 0.0698)a 0.03 
Age 4 (n=10,998) -0.0370 (-0.0673, -0.0066) 0.02 0.0373 (-0.0073, 0.0819) 0.10 
Age 5 (n=8,591) -0.0184 (-0.0553, 0.0186) 0.33 0.0578 (0.0035, 0.1122) 0.04 
Age 6 (n=6,628) -0.0287 (-0.0725, 0.0150) 0.20 0.0359 (-0.0289, 0.1008) 0.28 

Cohort 
(adjusted model n) 

Prenatal PM2.5 
Unadjusted Model 

Prenatal PM2.5 
Final Adjusted Model 

RD (95% CI) p RD (95% CI) p 

Age 2 (n=15,629) -0.0239 (-0.0420, -0.0058) <0.01 0.0298 (0.0051, 0.0544) 0.02 
Age 3 (n=12,432) -0.0365 (-0.0617, -0.0113) <0.01 0.0250 (-0.0087, 0.0587) 0.15 
Age 4 (n=9,619) -0.0377 (-0.0700, -0.0054) 0.02 0.0252 (-0.0199, 0.0703) 0.27 
Age 5 (n=7,520) -0.0266 (-0.0656, 0.0124) 0.18 0.0307 (-0.0240, 0.0854) 0.27 
Age 6 (n=5,805) -0.0308 (-0.0773, 0.0157) 0.19 0.0216 (-0.0432, 0.0864) 0.51 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a birth year dropped in order 
for model to converge 

Final adjusted models control for child sex, child race, maternal asthma, birth year, minor 
demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from 
metro Atlanta) 

 
 

 

 

Table 5.9. Risk differences for first year of life traffic PM2.5 and persistent asthma 

Cohort 
Children with 

persistent 
asthma [n (%)] 

Including children with incident, 
but not persistent asthma as 

non-cases 

Excluding children with incident, 
but not persistent asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 1,994 (11.1) 0.0265 (0.0027, 0.0503)b 0.03 0.0265 (0.0027, 0.0503)b 0.03 
Age 3 2,196 (15.4) — — — — 
Age 4 1,965 (17.9) 0.0490 (0.0098, 0.0882) 0.01 0.0507 (0.0095, 0.0920) 0.02 
Age 5 1,629 (19.0) 0.0538 (0.0068, 0.1008) 0.02 0.0589 (0.0082, 0.1096) 0.02 
Age 6 1,350 (20.4) 0.0284 (-0.0274, 0.0843) 0.32 0.0343 (-0.0275, 0.0962) 0.28 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge even 
if dropped birth year from the model, b Identical analysis to incident asthma at age 2 

Persistent asthma defined as a child meeting the incident asthma classification (at least 1 asthma 
diagnosis (ICD-9 493.XX) and 1 asthma-related medication dispensing) with evidence of asthma in 
the past year (at least 1 asthma diagnosis or 1 asthma-related medication dispensing) 

Models adjust for child sex, child race, maternal asthma, birth year, minor demographic cluster, and 
city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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Table 5.10. First year of life traffic PM2.5 and incident asthma by age 5 among children enrolled 
through age 5 (n=8,592), comparing different outcome definitions 

Outcome Definition 
n(%) meeting 

definition 
UNADJUSTED ADJUSTED 

RD (95% CI) p RD (95% CI) p 

1. 1 asthma or wheeze 
diagnosis 

3,082 (35.9) -0.0121 (-0.0517, 0.0275) 0.55 0.0671 (0.0090, 0.1252) 0.02 

2. 1 asthma diagnosis 2,570 (29.9) -0.0124 (-0.0501, 0.0253) 0.52 0.0740 (0.0186, 0.1294) <0.01 

3. 2 asthma diagnoses 1,757 (20.5) -0.0081 (-0.0409, 0.0247) 0.63 0.0495 (0.0019, 0.0971) 0.04 

4. 3 asthma diagnoses 1,311 (15.3) 0.0117 (-0.0174, 0.0408) 0.43 0.0527 (0.0101, 0.0954) 0.02 

6. 2 asthma diagnoses OR 1 
acute asthma diagnosis 

1,856 (21.6) -0.0130 (-0.0465, 0.0206) 0.45 0.0539 (0.0050, 0.1028) 0.03 

7. 1 asthma diagnosis OR 2 
medication dispensings  

3,322 (38.7) -0.0336 (-0.0739, 0.0067) 0.10 0.0593 (0.0004, 0.1181) 0.05 

8. 1 asthma diagnosis AND 1 
medication dispensing 
(KAPPA study definition) 

2,465 (28.7) -0.0184 (-0.0553, 0.0186) 0.33 0.0578 (0.0035, 0.1122) 0.04 

9. 1 asthma diagnosis AND 2 
medication dispensings 

2,168 (25.2) -0.0167 (-0.0522, 0.0189) 0.36 0.0655 (0.0139, 0.1172) 0.01 

10. 1 asthma diagnosis OR 2 
medication dispensings 1 of 
which must be a steroid 

2,685 (31.3) -0.0212 (-0.0594, 0.0170) 0.28 0.0790 (0.0231, 0.1349) <0.01 

11. 1 asthma diagnosis AND 2 
medication dispensings 1 of 
which must be a steroid 

1,388 (16.2) 0.0064 (-0.0239, 0.0367) 0.68 0.0579 (0.0144, 0.1013)a <0.01 

12. 1 asthma diagnosis OR 1 
controller dispensing 

2,715 (31.6) -0.0229 (-0.0612, 0.0155) 0.24 0.0742 (0.0180, 0.1303) <0.01 

13. 1 asthma diagnosis AND 1 
controller dispensing 

1,434 (16.7) -0.0003 (-0.0311, 0.0305) 0.98 0.0526 (0.0085, 0.0967)a 0.02 

14. 1 asthma diagnosis AND (2 
reliever dispensings OR 1 
controller dispensing) 

2,181 (25.4) -0.0196 (-0.0552, 0.0161) 0.28 0.0617 (0.0098, 0.1135) 0.02 

15. Any of the following: a) 1 
asthma diagnosis AND 1 
medication dispensing in 
the same year, b) 1 asthma-
related ED visit or 
hospitalization, c) 3 asthma 
diagnoses 

2,450 (28.5) -0.0124 (-0.0496, 0.0248) 0.51 0.0655 (0.0108, 0.1202) 0.02 

aBirth year dropped in order for model to converge. These are the minimum required events for each case definition. 
Definition numbers align with numbers from Dissertation Chapter 4 (excluded definition 5 (atopic asthma)). Only 1 
diagnosis per day counted. ED = emergency department; Asthma diagnosis = ICD-9 code 493.XX; Wheeze diagnosis = 
ICD-9 code 786.07; Acute asthma diagnosis = a) emergency department or inpatient asthma diagnosis or b) asthma 
diagnosis with status asthmaticus or acute exacerbation (ICD-9 codes 493.01, 493.02, 493.11, 493.12, 493.21, 493.22, 
493.91, 493.92); Asthma controller (underlined medications contain a steroid) = Aminophylline, beclomethasone 
diproprionate, budesonide, budesonide/formoterol fumarate, cromolyn sodium, fluticasone propionate, 
fluticasone/sameterol, mometasone furoate, montelukast sodium, salmeterol xinafoate, theophylline anhydrous, 
tiotropium bromide, triamcinolone acetonide; Asthma reliever = Albuterol, albuterol sulfate, ipratropium bromide, 
ipratropium/albuterol sulfate, levalbuterol, metaproterenol sulfate; Medication dispensing = dispensing of any asthma 
controller or reliever. Adjusted models control for child sex, child race, maternal asthma, cubic splines on date of birth 
with 1 knot per year, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 
miles from metro Atlanta) 
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Table 5.11. First year of life traffic PM2.5 and incident asthma, comparing different measures 
of association 

 UNADJUSTED ADJUSTED 

Cohort 
RISK DIFFERENCES 

RD (95% CI) p RD (95% CI) p 

Age 2 -0.0221 (-0.0390, -0.0053) 0.01 0.0265 (0.0027, 0.0503) 0.03 
Age 3 -0.0316 (-0.0552, -0.0080) <0.01 0.0369 (0.0040, 0.0698)a 0.03 
Age 4 -0.0370 (-0.0673, -0.0066) 0.02 0.0373 (-0.0073, 0.0819) 0.10 
Age 5 -0.0184 (-0.0553, 0.0186) 0.33 0.0578 (0.0035, 0.1122) 0.04 
Age 6 -0.0287 (-0.0725, 0.0150) 0.20 0.0359 (-0.0289, 0.1008) 0.28 

Cohort 
RISK RATIOS 

RR (95% CI) p RR (95% CI) p 

Age 2 0.83 (0.71, 0.97) 0.02 1.37 (1.09, 1.72) <0.01 
Age 3 0.86 (0.75, 0.97) 0.02 1.27 (1.04, 1.54) 0.02 
Age 4 0.87 (0.76, 0.98) 0.03 1.18 (0.98, 1.42) 0.09 
Age 5 0.94 (0.83, 1.07) 0.37 1.20 (0.99, 1.46) 0.06 
Age 6 0.92 (0.81, 1.06) 0.24 1.09 (0.90, 1.33) 0.39 

Cohort 
ODDS RATIOS 

OR (95% CI) p OR (95% CI) p 

Age 2 0.81 (0.68, 0.96) 0.02 1.42 (1.09, 1.85) <0.01 
Age 3 0.82 (0.70, 0.96) 0.02 1.35 (1.06, 1.73) 0.02 
Age 4 0.82 (0.70, 0.97) 0.02 1.25 (0.97, 1.62) 0.08 
Age 5 0.92 (0.77, 1.10) 0.36 1.33 (1.00, 1.75) 0.05 
Age 6 0.88 (0.72, 1.08) 0.22 1.16 (0.85, 1.58) 0.35 

Cohort 
HAZARD RATIOS b 

HR (95% CI) p HR (95% CI) p 

Age 2 0.79 (0.68, 0.92) <0.01 1.33 (1.06, 1.67) 0.01 
Age 3 0.81 (0.71, 0.91) <0.01 1.29 (1.07, 1.56) <0.01 
Age 4 0.82 (0.73, 0.92) <0.01 1.31 (1.10, 1.57) <0.01 
Age 5 0.83 (0.75, 0.93) <0.01 1.30 (1.10, 1.54) <0.01 
Age 6 0.83 (0.75, 0.93) <0.01 1.28 (1.08, 1.51) <0.01 

RD = Risk Difference, RR = Risk Ratio, OR = Odds Ratio, HR = Hazard Ratio, all calculated for 1 µg/m3 
CI = Confidence Interval, p = p-value, a birth year dropped in order for model to converge, b Hazard 
ratios calculated using the 22,987 children in the KAPPA cohort with first year of life PM2.5 estimates 
enrolled in Kaiser Permanente Georgia until at least their first birthday. The outcome of interest was 
asthma incidence between the first birthday and the birthday of each age cohort. For example, in the 
age 4 analysis the outcome of interest is asthma between the first and fourth birthdays.  

Adjusted models control for child sex, child race, maternal asthma, birth year, minor demographic 
cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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Figure 5.1. 2011 RLINE-modeled primary PM2.5 from traffic emissions (µg/m3)
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Figure 5.2. Minor demographic clusters in the 29 county metropolitan Atlanta area 
 

  
Minor demographic cluster descriptions are included in Table A1 located in Appendix A. 

Reference: Demographic Clusters of Georgia. Georgia Department of Public Health: Office of Health 
Indicators for Planning: September 2012. 
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Figure 5.3. Distribution of prenatal (n=19,951) and first year of life (n=23,100) traffic PM2.5 
assigned exposure in the KAPPA cohort 
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Figure 5.4. Risk differences for first year of life traffic PM2.5 and asthma incidence in models adjusting for different sets of covariates 

 

RD = Risk Difference, CI = Confidence Interval 
 

List of Model Covariates 
Model 0: unadjusted model 
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Model 1: child sex, child race, child ethnicity, maternal asthma, birth year, maternal age, maternal education 

Model 2: child sex, child race, maternal asthma, birth year 

Model 3: child sex, child race, maternal asthma, birth year, major demographic cluster 

Model 4: child sex, child race, maternal asthma, birth year, minor demographic cluster 

Model 5: child sex, child race, maternal asthma, birth year, median household income, median year structure built, median house value, percent less 
than high school, percent families in poverty  

Model 6: child sex, child race, maternal asthma, birth year, minor demographic cluster, city region (metro Atlanta, ≤5 miles from metro Atlanta, >5–10 
miles from metro Atlanta, >10 miles from metro Atlanta) 

Model 7 (FINAL MODEL): child sex, child race, maternal asthma, birth year, minor demographic cluster, city region (metro Atlanta, ≤10 miles from 
metro Atlanta, >10 miles from metro Atlanta)  

Model 8: child sex, child race, maternal asthma, birth year, median household income, median year structure built, median house value, percent less 
than high school, percent families in poverty, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta)  
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Figure 5.5. Adjusted risk differences for prenatal and first year of life traffic PM2.5 and 
asthma incidence from final models 

 

RD = Risk Difference, CI = Confidence Interval. Models control for child sex, child race, maternal 
asthma, birth year, minor demographic cluster, city region (metro Atlanta, ≤10 miles from metro 
Atlanta, >10 miles from metro Atlanta)  
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CHAPTER 6 

Prenatal and first year of life exposure to total PM2.5 and childhood asthma incidence 

in a birth cohort 

 

INTRODUCTION 

Particulate matter (PM) is a heterogeneous mixture of matter suspended in air 

created by a variety of sources including motor vehicles, power plants, and naturally 

occurring processes. The chemical composition of PM varies regionally; fine particulate 

matter (particulate matter equal to or less than 2.5 micrometers in diameter (PM2.5)) in the 

Southeastern United States is composed of more sulfate and less nitrates than in other parts 

of the country (Godish 2004, Bell 2012). In the metropolitan area of Atlanta, PM2.5 is 

primarily composed of organic carbon and sulfates, with smaller contributions from 

elemental carbon, metals, nitrate and ammonium. There is some epidemiologic evidence 

that the health effects of PM2.5 vary depending on source, suggesting that PM toxicity may be 

determined by composition (Bell et al. 2009, Ito et al. 2011, Gass et al. 2015). 

 A large body of literature has assessed the acute respiratory effects of exposure to 

PM2.5 from all sources in children (Villeneuve et al. 2007, Silverman et al. 2010, Alhanti et al. 

2015, Fan et al. 2015). Several of these studies have found positive associations between 

PM2.5 and asthma-related emergency department visits and hospital admissions. The 

majority of studies looking instead at long-term respiratory effects of chronic exposure to 

PM2.5 focus only on pollution from traffic and don’t capture exposure to total PM2.5 from all 

sources (Clark et al. 2010, Gehring et al. 2010, Carlsten et al. 2011). Results of many of these 

studies are suggestive of a positive association between traffic-related PM2.5 and childhood 

asthma incidence. While fewer studies have focused on its effects on asthma development, 

exposure to total PM2.5 may be biologically relevant for the development of asthma, and 
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recent study results show an association between prenatal PM2.5 and asthma incidence by 

age 6 among boys (Leon Hsu et al. 2015).  

 This study addresses current knowledge gaps by assessing the association between 

prenatal and first year of life exposure to total PM2.5 and development of childhood asthma. 

This work was completed in a birth cohort of children enrolled in Kaiser Permanente 

Georgia using daily PM2.5 data created by an innovative new method that integrates 

modeled PM2.5 data from all sources and spatially resolved estimates of primary PM2.5 from 

traffic. 

 

METHODS 

 The Kaiser Air Pollution and Pediatric Asthma study (KAPPA) is a birth cohort of 

24,608 children born between 2000 and 2010, residing in metropolitan Atlanta, and 

enrolled in Kaiser Permanente Georgia. This study has been previously described in Chapter 

5.  

 

Prenatal and First Year of life PM2.5 Exposure Estimates 

 Colleagues at Georgia Institute of Technology modeled daily total PM2.5 

concentrations for 2002 through 2010 at 250 meter grid resolution for the Atlanta 

metropolitan area. These data were created using a downscaling approach that integrates 

estimates of PM2.5 from all sources at 12 kilometer grid resolution and estimates of primary 

PM2.5 from traffic, which is more spatially heterogeneous, at 250 meter grid resolution to 

produce estimates of total PM2.5 at 250 meter resolution (Bates et al. 2016). Data from three 

sources were used to obtain these estimates: 2011 RLINE (a research line-source dispersion 

model for near-surface releases) annual estimates of primary PM2.5 from vehicle emissions, 

2002-2010 CMAQ (community multiscale air quality model) daily estimates of total PM2.5, 
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and observations from stationary air pollution monitors. RLINE estimates (described in 

detail in Chapter 5) were provided by Atlanta Regional Commission and calibrated by the 

methods described in Chapter 5 (Zhai et al. 2015).  

The starting dataset for this downscaling process was a 12-km by 12-km fused-

CMAQ dataset. CMAQ is an Eulerian emissions-based chemical transport model developed 

by the U.S. Environmental Protection Agency described in detail in Chapter 3 (Byun DW et 

al. 1999, Byun et al. 2006). While CMAQ has impressive spatial and temporal coverage, it 

tends to under-estimate daily variability in PM2.5 and the data it creates are impacted by the 

accuracy of data inputs and model specifications. Estimates from stationary air pollution 

monitors better estimate day-to-day variability, but are spatially sparse. Observations from 

42 ambient PM2.5 monitors in Georgia and surrounding states were used to improve the 

accuracy of daily 12-km CMAQ estimates. This data fusion process was completed by first 

creating two sets of spatial fields using both the CMAQ data and monitoring data, with 

temporal variability in one spatial field driven by monitoring observations, and temporal 

variability in the other field driven by CMAQ. These datasets were then averaged, 

optimizing temporal variance prediction, using a weighting process based on daily error 

estimates. This novel fusion approach is described in more detail by two manuscripts (one 

published in 2015 and one currently submitted for publication) (Friberg et al. 2015, Hao et 

al. 2015). 

This fused-CMAQ dataset was downscaled from 12 km resolution to 250 m 

resolution using the calibrated RLINE data for the metropolitan Atlanta area. In order to 

avoid double counting primary PM2.5 from traffic (since RLINE estimates PM2.5 from traffic, 

and CMAQ captures PM2.5 from all sources including traffic), fused-CMAQ estimates were 

first adjusted to remove PM2.5 from traffic impacts. This was achieved by subtracting the 

average of RLINE estimates over each 12 km CMAQ grid from each 12 km CMAQ estimate. 
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Next, the adjusted 12 km CMAQ estimates were downscaled using bilinear interpolation to 

create spatially smooth PM2.5 estimates at 250 meter grid resolution. This downscaling 

process made the assumption that the 12 km grid estimate applied to the 12 km grid 

centroid. It then used a weighted average approach to calculate an estimate for each 250 

meter grid taking into account the centroid estimates of all surrounding 12 km grids. Lastly, 

the 2011 RLINE estimates were added to these downscaled CMAQ estimates in order to add 

back in PM2.5 from traffic impacts. The resulting daily PM2.5 estimates attempt to capture 

both spatial and temporal variability from all sources over this time period. Please note, the 

air quality data for this work are still being developed and may change before the 

publication of results. 

PM2.5 exposure during pregnancy and the first year of life was estimated using these 

daily PM2.5 concentrations and mother and child residential history captured in the 

administrative data from Kaiser Permanente Georgia. The first year of life period was 

defined as the date of birth to the day before the first birthday. The start of the gestational 

period was determined by first counting back the number of weeks gestation (using 

gestational age at birth from the birth certificate) from the date of birth. Then, to account for 

the obstetric convention of starting the gestational week count on the day of the last 

menstrual period, the start date of the prenatal period was moved forward 2 weeks to the 

estimated date of conception. In the absence of a birth certificate (for 24.5% of the cohort), 

38 weeks of gestation were assumed. Residential PM2.5 was calculated for each day in the 

exposure windows, the resulting estimates were averages of all daily estimates in each 

exposure window of interest. Daily PM2.5 estimates were available for 2002 to 2010, but 

prenatal exposure windows for children in the cohort ranged from 1999 to 2010 and first 

year of life exposure windows ranged from 2000 to 2011. For estimating PM2.5 exposure, 

2002 data were used for 1999-2001, and 2010 data were used for 2011. Children residing 



124 
 

 

outside the pollution region at any time during the first year of life period were excluded 

from analyses on first year of life exposure. Children whose mothers resided outside the 

pollution region at any time during the prenatal period were excluded from analyses on 

prenatal exposure. A secondary analysis was completed excluding children with any dates 

of their exposure windows falling in years for which air pollution data was unavailable. 

 

Analytic Approach 

 Binomial linear regression was used to estimate the association between prenatal 

and first year of life PM2.5 and cumulative asthma incidence at follow-up ages two through 

six. These models were implemented using generalized estimating equations with an 

exchangeable correlation structure to account for correlation between siblings. Robust 

variance estimation was used to account for potential variance heteroscedasticity and 

misspecification of the working correlation matrix. Asthma was defined as at least one 

asthma diagnosis (ICD-9 code 493.XX) and one asthma-related medication dispensing after 

the first year of life. A list of medications considered asthma-related is provided in Table A2 

in Appendix A. Cumulative asthma incidence was assessed so once a child was classified as 

having asthma they were classified as asthmatic at every subsequent follow-up age. Each 

model assessed the association between PM2.5 and cumulative asthma incidence by each 

follow-up age among children enrolled in Kaiser Permanente Georgia until that follow-up 

age (e.g., cumulative asthma incidence by the fifth birthday among children enrolled until 

their fifth birthday). The following factors were considered as potential confounders: race, 

sex, ethnicity, maternal age, maternal asthma, maternal education, paternal education, 

maternal marital status, neighborhood socioeconomic status (SES) and city region. 

Neighborhood SES was defined using demographic clusters from Georgia Department of 

Public Health that integrate data from the U.S. Census to characterize census block groups 
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into 4 major demographic clusters and 18 minor demographic clusters (Figure 5.2) 

(Demographic Clusters of Georgia 2012, Zhou 2012, Georgia Department of Public Health et 

al. 2013-2015). The use of variables from the American Community Survey at census tract 

level to control for neighborhood SES was also investigated (e.g. median household income, 

median home value) (U.S. Census Bureau 2010). Due to concerns about potential 

confounding by factors that vary with distance to city center not already controlled for (e.g., 

healthcare access, agricultural exposures, cockroach allergen exposure), the impact of 

adjusting for city region was explored. All models were constructed to estimate the 

association between first year of life PM2.5 and childhood asthma incidence including 

assessments of potential confounding and interaction. The final adjusted model was then 

used to examine the association between prenatal PM2.5 and childhood asthma incidence in 

order to produce adjusted results comparable to those of first year of life PM2.5 exposure. A 

secondary adjusted analysis of the association of prenatal PM2.5 exposure was completed 

excluding covariates that would not be expected to be related to prenatal exposure, and 

hence are not confounders of the association between prenatal PM2.5 exposure and asthma 

incidence. Lastly, both exposures were included in the same model to tease out the relative 

contributions of exposure in each of these developmental windows. More details about this 

modeling approach and the selection and definition of potential confounders is included in 

the methods section of Chapter 5. 

 There are temporal trends in both PM2.5 and asthma incidence. PM2.5 varies 

seasonally and annually due to changes in meteorology, emissions, regulation, and 

population size among other factors. Asthma incidence varies seasonally due to pollen, 

illness, and weather, and also over time due to changes in doctors’ diagnosing habits and 

potential changes in the true underlying burden of asthma in the population. Temporal 

trends in both our exposure and outcome necessitate control for these trends to prevent a 
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spurious association between PM2.5 and asthma. In models assessing exposure during the 

first year of life, we explored the use of both month and year of birth categories, and 

transformed cubic splines on date of birth to control for these trends. The cubic splines we 

used were linearly transformed in order to reduce correlation between spline variables. For 

prenatal exposure models we took a similar approach, but instead used month and year of 

conception categories and date of conception for the time splines. This adjustment aimed to 

control for confounding by any factor, known or unknown, which exhibits seasonal or 

longer-term trends.  

It is not uncommon for binomial risk difference models not to converge. A frequent 

cause of convergence difficulties is that at least one individual in the model has a predicted 

probability outside of, or very close to, the probability bounds of zero to one. When this 

occurs, the variance covariance structure does not converge leading to model output that 

only includes regression coefficients with no variance estimation. In this situation, we used 

the model to output the predicted probability of the outcome for each child to identify the 

children with problematic values. If a small number of children were preventing 

convergence, these children were deleted from the cohort and the model was re-run. In the 

event that new individuals had the same issue in the new model, the approach was used 

iteratively until a cohort of children was determined for whom the model converged or until 

it appeared that this approach will not resolve the convergence issues. 

 

Additional Analyses and Sensitivity Analyses 

 We completed all additional analyses and sensitivity analyses discussed in the 

methods section of Chapter 5. These included analyses using asthma case definitions 

restricted to less-transient asthma phenotypes (i.e. using persistent asthma as an outcome 

and using events between age 2 and 5 to inform disease classification at age 2), analyses 
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assessing the impact of data cleaning decisions by excluding certain groups of children (i.e. 

children with any of the following characteristics: children missing race information, 

children missing 90 days or more of residence data during exposure windows, children not 

linked to mothers or for whom their maternal match was deemed less reliable, and children 

not linked to birth certificates), analyses investigating potential selection bias (e.g., 

restricting analyses to children followed until age 6), analyses using different case 

definitions for asthma, and analyses using alternative measures of association (i.e. risk 

ratios, odds ratios, and hazard ratios).  

There is both spatial and temporal variability in our exposure data. In order to 

achieve purely spatial contrasts of exposure, we completed a sensitivity analysis assigning 

exposure with 2010 annual averages instead of the daily data from 2002-2010. For this 

analysis, we first calculated the average of the daily estimates in 2010 for each 250 meter 

grid. We then calculated first year of life PM2.5 exposure for each child using these annual 

averages for each grid, rather than using the daily pollution data as was done for our main 

exposure estimates. Unadjusted and adjusted models were completed assessing the 

association between this exposure estimate and asthma incidence by ages two through six.  

Lastly, since our exposure periods extend beyond the years for which we have PM2.5 

data, we applied data from 2002 to 1999-2001 and data from 2010 to 2011. As an 

additional sensitivity analysis, we excluded children with exposure periods including years 

for which pollution data were unavailable to see if this substitution of pollution data from 

different years impacted estimates of association. 

 

RESULTS 

Descriptive Results 
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Estimated PM2.5 exposure in the first year of life was available for 23,100 children. 

Of these children, 19,951 also had information on prenatal PM2.5 exposure. This is a racially 

diverse cohort, with 34.6% of children identifying with African American race and 12% of 

children identifying with other non-white racial groups (Table 6.1). As may be expected 

from an HMO cohort, there is high socioeconomic status in this population; 58.2% of 

children are born to mothers who attended at least some college, and 62.3% of children 

have their residence at birth located in major demographic cluster A, the demographic 

cluster with the highest SES (Table 6.1, Table 6.2). Only 10.5% of children in the cohort live 

inside metropolitan Atlanta as defined by living inside the I-285 perimeter highway that 

encircles Atlanta and (on average) these children have the highest prenatal and first year of 

life PM2.5 exposure (Table 6.2). Average PM2.5 exposure estimates are lowest among children 

who live more than 10 miles from the city center (Table 6.2). Overall, children of black race 

have higher PM2.5 exposure than children of white race or children identifying with other 

racial groups, but this pattern does not hold in all regions of the city (Table 6.3). Cumulative 

asthma incidence, defined as at least one asthma diagnosis and one asthma-related 

medication dispensing after the first year of life, increased from 11.1% at age 2 to 32.4% at 

age 6 (Table 6.4). Risk factors for asthma in this population have been previously described 

(Chapter 5 text, Table 5.5). PM2.5 exposure was fairly similar between children with and 

without asthma (Table 6.4). 

There was a dramatic decrease in PM2.5 in this region starting in 2008 and lasting 

until 2010 (Figure 6.1). This drop largely reflects the implementation of flue gas 

desulphurization (“scrubbers”) at power plants near the metropolitan Atlanta area in 2008 

and 2009 which dramatically reduced sulfur dioxide (SO2) emissions, subsequently 

reducing secondary sulfate (SO4) production. Other potential causes of this drop in pollution 

include the economic recession, which impacted energy use, and meteorology (the summer 
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of 2009 had more rain and cooler temperatures than usual). This change in PM2.5 is 

reflected in the PM2.5 exposure among children in this cohort with children born between 

2008 and 2010 having the lowest exposure estimates (Table 6.1, Figure 6.2, Figure 6.3). 

Estimates of PM2.5 exposure during the prenatal period exhibit patterns consistent with 

PM2.5 seasonality; children born in the winter months have the highest estimates and 

children born in the summer months have the lowest estimates (Figure 6.3). As expected, 

first year of life PM2.5 estimates show no seasonality because they are averaged over a full 

year (Figure 6.3). The Spearman correlation coefficient between prenatal and first year of 

life PM2.5 exposure is 0.59, which declines to 0.22 when controlling for birth year. 

Compared to children lost to follow-up, children retained in the cohort have slightly 

higher first year of life PM2.5 exposure estimates and somewhat higher percentages of 

asthma at every follow-up age (see Table C1 in Appendix C). However, the difference 

between PM2.5 exposure among children with and without asthma is similar between 

children retained in the cohort and lost to follow-up.  

 

Association between first year of life PM2.5 and asthma incidence  

Results from unadjusted and adjusted models are presented in Table 6.5 and plotted 

in Figure 6.4 and show little evidence for an association between first year of life PM2.5 and 

childhood asthma incidence at ages 2 through 6. All risk differences were calculated for a 

change of 1 µg/m3 of PM2.5 which is equivalent to moving from the 30th to the 58th percentile 

of the exposure distribution. In unadjusted models, and models adjusted for factors other 

than city region, risk differences for an increase of 1 µg/m3 of PM2.5 range from -0.0162 to 

0.0105 (Table 6.5 Models 0-5). When adding individual-level covariates and temporal 

control to an unadjusted model, risk differences move in the negative direction, with 

confidence intervals around some negative risk differences excluding the null value of 0. For 
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example, an increase of 1 µg/m3 of PM2.5 is associated with a 1.6% decrease in the absolute 

risk of asthma by the fourth birthday (Model 1 RD (95% CI): -0.016 (-0.031, 0.001)) when 

controlling for sex, race, ethnicity, maternal asthma, cubic splines on date of birth, maternal 

age, and maternal education. Adding control for neighborhood SES either with major 

demographic clusters, minor demographic clusters, or census tract variables from the 

American Community Survey, moves risk differences in the positive direction with minor 

clusters having the biggest impact on risk difference estimates. Models controlling for 

individual-level factors, time trends, neighborhood SES, and city region produced positive 

risk differences for the association between first year of life PM2.5 and childhood asthma 

with all confidence intervals around these estimates including the null value of zero (Table 

6.5 Models 6-8). Model results were similar when controlling for city region by dividing 

Atlanta into three or four regions. A model with three regions was chosen as our final model 

for simplicity, and to be consistent with models in Chapter 5. This final adjusted model 

(Model 7) controls for child sex, child race, maternal asthma, cubic splines on date of birth, 

minor demographic cluster, and city region and shows little evidence for an association 

between PM2.5 exposure in the first year of life and childhood asthma incidence at ages 2 

through 6. The inclusion of product terms between city region and race, and metro Atlanta 

and demographic cluster in the adjusted model did not affect estimates of the association 

between PM2.5 and childhood asthma (see Table C2 in Appendix C). 

Final adjusted models show that the strongest risk factors for childhood asthma in 

this cohort are male sex, black race, and maternal asthma (Table 6.7). A male child of black 

race whose mother has asthma is at almost a 30% greater absolute risk of developing 

asthma by age 6 than a female child of white race whose mother does not have asthma 

(estimated as 8.6% increase from male sex, 5.9% increase from black race, and 15.2% 

increase from maternal asthma history assuming no interaction between these factors). 
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There are temporal trends in asthma incidence and PM2.5 exposure in our cohort 

making consideration of temporal confounding important (Figure 6.3, Figure C1 in 

Appendix C). All of the adjusted models in Table 6.5 control for time trends using cubic 

splines with one knot per year. This control was used because it yielded the degree of 

temporal control desired and resulted in less convergence issues for models of first year of 

life and prenatal exposure than other time control explored (Table 6.6). Figure C2 in 

Appendix C shows the impact on trend smoothing from models using cubic splines with one 

and two knots per year. While compared to models including year of birth instead of the 

cubic splines on date, results were not meaningfully different (Table 6.6), we retained the 

splines in the final model because we believe they are the most methodologically 

appropriate way to control for temporal trends in our exposure and outcome.  

Results of stratified models and models containing interaction terms with PM2.5 

show no indication that the association of first year of life PM2.5 exposure with childhood 

asthma varies by child race, sex, maternal asthma status, or the region of metropolitan 

Atlanta in which a child was born (see Tables C3-C10 in Appendix C). Confidence intervals 

around almost all adjusted stratified risk differences include the null value of zero. An 

exception is the strong association observed between PM2.5 and childhood asthma at almost 

every follow-up age among children born more than 10 miles from the I-285 perimeter 

around metropolitan Atlanta. Among children born in this area, an increase of 1 µg/m3 of 

PM2.5 is associated with a 4 percent increase in risk of asthma at follow-up ages 5 and 6 (see 

Table C9 in Appendix C, RD (95% CI) age 5 0.038 (0.005, 0.071), age 6 0.044 (0.003, 0.084)). 

However, there is no evidence of statistical interaction between PM2.5 and city region (see 

Table C10 in Appendix C). There is a suggestion from adjusted estimates that the effect is 

higher among white children than black children, but there is no evidence of statistical 

interaction (see Table C3 and Table C4 in Appendix C).  
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Association between prenatal PM2.5 and asthma incidence  

 Neither unadjusted nor adjusted models show evidence of an association between 

prenatal PM2.5 and childhood asthma (Table 6.8, Figure 6.5). Risk differences of the 

association indicate less than a 1% change in asthma risk associated with an increase of 1 

µg/m3 of PM2.5, with all confidence intervals including the null value of zero. The adjusted 

model included all covariates from the final adjusted model examining the impact of first 

year of life PM2.5 exposure: child sex, child race, maternal asthma, minor demographic 

cluster, city region, and temporal control using cubic splines. For a secondary adjusted 

analysis of the association between prenatal PM2.5 and childhood asthma incidence, we 

excluded covariates that would not be expected to be related to PM2.5 exposure during the 

prenatal window and subsequently could not be confounders. Specifically, we excluded 

child sex, and controlled for maternal race instead of child race. While both child sex and 

child race are strong predictors of the outcome, it is not conceivable that either of these 

variables could be causing prenatal PM2.5 exposure. The results of this analysis were 

comparable to the results of the main analysis presented in Table 6.8. At every follow-up 

age the risk difference for the association between prenatal PM2.5 and childhood asthma 

were an absolute 0.07% to 0.2% larger than the risk differences from the main adjusted 

model, with all confidence intervals still including the null value of zero.  

To estimate the separate contributions of exposure during the prenatal and first 

year of life periods, unadjusted and adjusted models containing both exposures were run 

(Table 6.9). Compared to estimates from adjusted models with prenatal exposure alone 

(Table 6.8), all estimates of prenatal exposure are smaller when adjusted for first year of life 

exposure, with confidence intervals from both types of models containing the null. 

Compared to estimates from adjusted models with first year of life exposure alone (Table 
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6.8), estimates of first year of life exposure move in the positive direction at ages 2 through 

5, with estimates at ages 2 and 5 no longer including the null (RD (95% CI): 0.012 (0.002, 

0.023) and 0.027 (0.004, 0.051) respectively).  

 

Additional analyses and sensitivity analyses 

 In most analyses using an outcome classification of persistent asthma, there is a 

stronger association between first year of life PM2.5 and childhood asthma than from 

analyses using other outcome definitions (Table 6.10). For example, from our main models 

there is an estimated 1.8% increase in the absolute risk of asthma by age 6 associated with 

an increase of 1 µg/m3 of PM2.5, but using an outcome of persistent asthma, there is a 2.5% 

increase in absolute risk of persistent asthma (RD (95% CI): 0.018 (-0.011, 0.046), 0.025 (-

0.001, 0.051) respectively). Effect sizes were larger when using events at later ages to 

inform disease classifications at an earlier age. In an analysis restricted to children enrolled 

until age 5 (n=8,592), the risk difference for the association between first year of life PM2.5 

and childhood asthma is 0.003 when classifying a case as a child with at least one asthma 

diagnosis or asthma-related medication dispensing by age 2 (RD (95% CI): 0.003 (-0.013, 

0.018)). When completing the same analysis, but further restricting the case group to 

children with at least one asthma medication or medication dispensing between ages 2 and 

5 the risk difference is 0.011 (RD (95% CI): 0.011 (-0.006, 0.028)). These analyses 

controlled for all covariates in the final model, but used major demographic cluster to 

control for SES (instead of minor demographic cluster) in order to ameliorate convergence 

issues. 

 The estimate of the association between PM2.5 and childhood asthma is dependent 

on the asthma case definition used in analyses. Table 6.11 shows this variation for the 

association between first year of life PM2.5 and cumulative asthma incidence by age 5. Risk 
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differences from adjusted analyses range from 0.004 to 0.030 with 6 of the 15 estimated 

confidence intervals excluding the null value of zero. The strongest effect estimates tend to 

be from less stringent outcome classifications (e.g., 1 asthma or wheeze diagnosis RD (95% 

CI): 0.026 (0.002, 0.051)), and many of the weakest effect estimates are from the stricter 

outcome classifications (e.g., 1 asthma diagnosis and 2 asthma-related medication 

dispensings 1 of which must be a steroid RD (95% CI): 0.007 (-0.010, 0.024)). The effect 

estimate from the outcome definition used by KAPPA (1 asthma diagnosis and 1 asthma-

related medication dispensing) fell in the middle of the estimated risk differences (RD (95% 

CI): 0.018 (-0.005, 0.041).   

 For a purely spatial comparison, we completed an analysis using the 2010 250 

meter grid annual averages to assign first year of life PM2.5 exposure (Table 6.12). The 

Spearman correlation coefficient between this first year of life PM2.5 estimate, and the first 

year of life exposure estimate from the daily data was 0.28. At ages 2 and 3, results from this 

adjusted analysis estimate a greater increase in risk than in the main analysis where daily 

PM2.5 data is used to determine PM2.5 exposure. For example, by age 3 this analysis shows a 

1.5% increase in absolute risk of asthma associated with an increase of 1 µg/m3 of PM2.5, 

compared with a 0.7% increase risk in the main analysis (RD (95% CI): 0.015 (0.002, 0.028) 

compared to 0.007 (-0.006, 0.020)). Associations at ages 4 to 6 are comparable to those 

from main analyses.  

 Five of the completed sensitivity analyses excluded different groups of children, in 

order to assess the impact of using data from different years for exposure assignment, data 

cleaning decisions, and the impact of missing data (see Table C11 in Appendix C). All 

analyses reached the same conclusion as main analyses that overall there is little evidence 

of an association between first year of life total PM2.5 exposure and childhood asthma 
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incidence in these data. These analyses also indicate that the decisions examined did not 

have a large impact on the estimated risk differences. 

To assess whether the association between PM2.5 and asthma is different among 

children enrolled until the later follow-up ages and those who were lost to follow-up or not 

born early enough to be followed until the later ages, we completed sensitivity analyses of 

asthma at earlier ages among the cohort of children enrolled Kaiser Permanente Georgia 

until age 6. Among the 6,628 children enrolled until age 6, the risk difference for the 

association between first year of life PM2.5 and asthma by age 3 was -0.0083 and the risk 

difference for the association between first year of life PM2.5 and asthma by age 4 was 

0.0004 (RD (95% CI): -0.0083 (-0.0310, 0.0144) and 0.0004 (-0.0248, 0.0256) respectively). 

The age 2 analysis would not converge when limiting the sample to children enrolled until 

age 6. The sensitivity analyses at ages 3 and 4 both yielded smaller risk differences than 

from our main models, but both confidence intervals included the null value of 0 as in the 

results from our main analyses. 

 

Alternative measures of association 

 Results from analyses using the risk ratio, odds ratio, and hazard ratio as the 

measure of association of interest are presented in Table 6.13. All estimated risk ratios and 

odds ratios from adjusted models are greater than one but provide no strong evidence for 

an association between first year of life PM2.5 and childhood asthma incidence. From a 

graphical assessment and extended Cox models we concluded that all variables met the 

proportional hazards assumption and that no time-dependent variables were necessary in 

our final Cox proportional hazards models (see Figure B5 in Appendix B and Figure C3 and 

Table C12 in Appendix C). Estimated hazard ratios are greater than one in adjusted models. 

Due to the larger sample size in the Cox proportional hazards models (by including all 
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children in each analysis regardless of the time at which a child was lost to follow-up), the 

hazard ratio effect estimates are more precise than the estimates from other analyses, with 

almost all confidence intervals excluding the null value of one. 

 

DISCUSSION 

The results of this study provide little evidence for an association between exposure 

to total PM2.5 in the prenatal and first year of life periods and childhood asthma incidence. 

This conclusion is from results of models separately examining the prenatal and first year of 

life PM2.5 exposure, and also from models containing exposure in both of these 

developmental periods. Given the high correlation between these exposures (Spearman 

correlation coefficient = 0.59), there may not be enough exposure variability to reliably 

estimate each separate association. Results from models with both exposures (Table 6.9) 

should therefore be interpreted cautiously. Nevertheless, from models containing both 

exposures the conclusion is the same as from models with only one exposure that there is 

little support for an association between total PM2.5 and childhood asthma in this cohort. 

Many of the considerations discussed in Chapter 5 are also relevant to this study. 

These include the following strengths of this study: use of comprehensive medical record 

data, residential history data that include information on residential mobility, data on both 

individual and neighborhood-level socioeconomic status, and estimates of PM2.5 exposure in 

important developmental windows. Limitations of the study discussed previously include 

potential limited generalizability, incomplete race and familial linkage data, high loss to 

follow-up rates, no assurance that maternal matches are biologic, no access to information 

on some potential confounders (e.g. income, early life environment), not capturing daily 

movement which may impact PM2.5 exposure, measurement error in the outcome, and not 

being able to control for the effects of other pollutants. There is great interest in whether 
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the association of PM2.5 with childhood asthma differs by atopic and non-atopic asthma 

phenotypes. We were unable to assess this question in our data because we did not have the 

detailed clinical information (i.e. data on blood IgE levels and skin prick testing) needed to 

reliably distinguish these two phenotypes. 

The RLINE data used for exposure assignment in Chapter 5 were one of the inputs 

used to create the daily downscaled CMAQ data used for exposure assignment in this 

chapter. This means that the limitations of RLINE discussed in Chapter 5, such as the 

inability to account for changes in the roadway structure, hills, and barriers that may impact 

small scale meteorology, may also impact the PM2.5 data used in these analyses. This is the 

first epidemiologic study to use daily CMAQ data downscaled to a 250 meter spatial 

resolution. The methods used to create these data are novel and integrated data from 

multiple sources to best estimate PM2.5 at every point in the metropolitan Atlanta area. 

These data allowed us to estimate PM2.5 exposure during key developmental windows 

taking into account both spatial and temporal variability in exposure. Nevertheless, since 

this is the first study to use air pollution data created by this method, there may be 

limitations of our PM2.5 exposure estimates of which we are not yet aware. Since PM2.5 

estimates were not available for all years of our study, we applied data from neighboring 

years in order to maximize the sample size in our main analyses. Sensitivity analyses 

excluding children for whom data from different years were used to calculate PM2.5 

exposure produced similar risk difference estimates as in our main analyses (see Table C11 

in Appendix C).  

We chose our final model, adjusting for individual-level factors, demographic 

factors, city region, and temporal trends aiming to error on the side of over-control for 

potential confounding. When first adding individual-level factors to the model our risk 

differences moved in the negative direction from our unadjusted results (Table 6.5, Model 1 
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vs. Model 0). Maternal age, maternal education, and child ethnicity were dropped from the 

model because their inclusion had minimal impact on the estimate of the association 

between first year of life PM2.5 and childhood asthma incidence (Table 6.5, Model 2 vs. 

Model 1). Next, we added demographic control in the form of major demographic clusters, 

minor demographic clusters, or variables from the American Community Survey, each of 

which moved risk differences in the positive direction (Table 6.5, Models 3-5). The addition 

of city region had a large impact on risk differences; estimated associations were larger 

when including this variable (Table 6.5, Models 6-8). We added this regional control due to 

concerns that children in the same demographic cluster are not exchangeable since the 

same demographic cluster could include individuals in the most urban and most rural areas 

of the study region. There may be key differences between a child living in the lowest SES 

demographic cluster inside the city center and a child living in the same demographic 

cluster furthest away from the city center. While we consider Model 7 the most appropriate 

model for our data, since it is conservative in its confounding control, our conclusions 

would not change if we had used any of the other models in Table 6.5 as our final model. 

Confidence intervals around almost all effect estimates from these models contain the null 

value of zero. Our conclusions would also have been the same had we used the risk ratio or 

odds ratio as our primary measure of association (Table 6.13). The use of hazard ratios 

resulted in more precise estimates of effect, likely due to the increased power from 

including more children in each analysis, with many of the confidence intervals around the 

hazard ratios excluding the null. While Cox proportional hazards models are a natural fit for 

our data, and benefited from increased power in this analysis, one limitation of them is the 

use of exact time of asthma diagnosis which is unlikely to be reliable. In our other analyses, 

less emphasis is placed on the timing of diagnoses by looking at the outcome of asthma by 

different birthdays. 



139 
 

 

We considered it important to control for temporal trends in our analyses, due to 

the patterns of PM2.5 in the region during this time period and the changes in asthma 

incidence by birth year and season in our data (Figure 6.1, Table 5.5, Figure C1 in Appendix 

C). We chose the risk difference as our primary measure of association because of an 

inherent interest in additive effects and because it lends itself well to the assessment of 

additive interaction which many think is more relevant to public health than multiplicative 

interaction (Greenland S et al. 2008, Vanderweele et al. 2014). However, risk difference 

models are prone to convergence difficulties and the addition of temporal control to these 

models resulted in substantial convergence issues that were not easily resolved. These 

issues resulted in the inability to estimate particular risk differences of interest. For 

example, we were unable to estimate the association between PM2.5 and childhood asthma 

among white children by age 2 while controlling for all covariates in other adjusted 

stratified models. In some analyses we were able to estimate a risk difference, but only with 

less confounding control than desired. For example, in our analysis of asthma by age 2 

restricted to children enrolled until age 5, we controlled for neighborhood SES using major 

demographic cluster instead of minor demographic cluster in order for the model to 

converge. Our results in Table 6.5 (comparing Model 4 to Model 3) indicate that had we 

been able to instead include minor demographic cluster in this model, our risk difference 

may have been larger than the one produced by our analysis. We ran some of our sensitivity 

analyses using log binomial models (which estimate risk ratios), and while they were more 

likely to converge in some scenarios, they did not solve all convergence issues. Our method 

of dropping individual children from certain models in order to achieve model convergence 

is unconventional, but helped several models converge. We dropped between one and fifty 

children from certain models making the assumption that a handful of individuals were not 

driving overall associations between PM2.5 and asthma incidence.  
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In the literature, there are some available methods to aid in convergence for 

binomial and log binomial models. The use of a robust Poisson model is an easy to 

implement method that has helped others (Spiegelman et al. 2005), but it did help our 

models to converge. The COPY method, which involves creating an expanded dataset with 

copies of observations from the original dataset, was developed for log binomial models and 

we are unaware of any use of this method in binomial models with an identity link 

(Deddens et al. 2008). It is possible to obtain risk difference and risk ratio estimates from 

logistic models, however, only in the case of a dichotomous outcome and exposure (Austin 

2010). This is an active area of current research, with recent work proposing that fitting a 

marginal structural binomial regression model can circumvent current convergence issues 

in SAS even when the exposure of interest is continuous (Richardson et al. 2015). This 

dissertation emphasizes the importance of these avenues of research by highlighting the 

convergence limitations of traditional approaches even with sample sizes greater than 

15,000 individuals and a high disease prevalence. 

 Analyses using the asthma case definitions from Chapter 4 revealed that the 

estimated measure of association between first year of life PM2.5 exposure and asthma 

incidence by age 5 differed depending on case definition used (Table 6.11). Use of more 

sensitive asthma case definitions, that are easier to satisfy, generally resulted in larger effect 

estimates than the more specific asthma case definitions. It is possible that misclassification 

of asthma cases as non-cases diluted the effect estimate when using the stricter asthma case 

definitions. Alternatively, the association between first year of life PM2.5 and asthma may 

differ depending asthma phenotype. The stricter asthma case definitions likely identify 

children with the more severe asthma phenotypes as having asthma, and classify children 

with milder phenotypes as non-diseased. Perhaps air pollution has no causal effect on the 

most severe asthma cases and these cases are caused solely by non-environmental factors. 
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The results of using different asthma case definitions can be combined with the results of 

using a more persistent asthma case definition (Table 6.10). When using a definition of 

persistent asthma, aimed at removing children with transient asthma from the outcome 

group, effect estimates are larger. If there is a truly an association between PM2.5 in the first 

year of life and asthma incidence it would make sense that risk differences increased when 

reducing misclassification of non-diseased as diseased (persistent asthma analysis) and risk 

differences decreased when increasing misclassification of diseased as non-diseased (using 

an outcome definition focusing on severe asthma). The results of these analyses highlight 

the importance of choosing an outcome definition a priori. Completing sensitivity analyses 

using alternative disease classifications is useful before making conclusions from any study 

classifying asthma using medical records, and is not currently a common practice in this 

field. 

 There are many places at which selection bias could have impacted our results. A 

large percentage of children were lost to follow-up and not all children were linked to birth 

certificates or mothers. We completed sensitivity analyses to assess whether loss to follow-

up biased our results and whether there was any difference in results when restricting our 

cohort to children linked to both mothers or birth certificates (see Table C1 and Table C11 

in Appendix C). While there were slight differences in children retained in the cohort and 

lost to follow-up (children retained in the cohort had more asthma and higher PM2.5 

exposure during the first year of life than children lost to follow-up), our analyses provided 

no evidence that the association between PM2.5 and childhood asthma would have been 

different had all children been retained in the cohort. Crude differences in first year of life 

PM2.5 exposure by asthma status were comparable between children retained in the cohort 

and children lost to follow-up, and effect estimates changed little when excluding children 

not linked to mothers or children not linked to birth certificates from analyses (see Table C1 
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and Table C11 in Appendix C). Results from analyses examining asthma by ages 3 and 4 only 

among children enrolled until age 6 reached similar conclusions as our main analyses. 

Taken together, these analyses provide no evidence that selection bias altered our study 

conclusions. 

Results of this study provide little evidence for an association between total PM2.5 

and childhood asthma incidence. While it is possible that there is no true association 

between PM2.5 in early life and asthma incidence, there are other potential explanations for 

our results. Biologically, particulate matter from different sources may have different 

impacts on the respiratory and immune systems. It is possible that there is a strong 

association between PM2.5 from one source, for example traffic, and childhood asthma, but 

that the effect is washed out in this study by examining total PM2.5. If future source 

apportionment work determines that the impact of PM2.5 is heterogeneous depending on 

source, it may not be appropriate to combine PM2.5 from different sources in a single 

analysis. Another consideration is that the relevant exposure window may be shorter than 

an entire pregnancy or the entire first year of life. Different stages of respiratory and 

immune system development occur during these periods meaning vulnerability to the effect 

of environmental insults may vary throughout these windows. A recent study by Leon Hsu 

and colleagues assessed week-specific effects of PM2.5 during pregnancy and saw an 

association between PM2.5 exposure during weeks 16-25 and asthma incidence among boys, 

but saw no associations with PM2.5 exposure in other weeks (Leon Hsu et al. 2015). While 

the relevant exposure window could be shorter than the windows we examined, it could 

also be longer. Perhaps, it is cumulative exposure to PM2.5 throughout pregnancy and early 

childhood that is important rather than exposure in any one smaller window. This study 

moves us closer to understanding whether exposure to total PM2.5 during pregnancy and the 



143 
 

 

first year of life is associated with development of asthma in childhood by describing these 

relationships in a well-defined cohort of children enrolled in Kaiser Permanente Georgia. 
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Table 6.1. KAPPA cohort characteristics 

 Children with first year of life  
PM2.5 data 

Children with prenatal  
PM2.5 data a 

Characteristic 
n (%) 

Mean first year 
of life PM2.5 

n (%) 
Mean prenatal 

PM2.5 

Cohort 23,100 14.63 19,951 14.89 

Children with siblings in cohort 7,313 (31.7) 14.77 7,123 (35.7) 15.04 

Sex     

Female 11,330 (49.1) 14.63 9,748 (48.9) 14.87 
Male 11,770 (51.0) 14.63 10,203 (51.1) 14.92 

Race/Ethnicity     

Black 7,995 (34.6) 14.71 7,220 (36.2) 14.98 
White 9,034 (39.1) 14.48 8,467 (42.4) 14.76 

Other b 2,771 (12.0) 14.43 2,643 (13.3) 14.84 
Unknown Race  3,300 (14.3) 15.05 1,621 (8.1) 15.29 

Hispanic Ethnicity 1,839 (8.0) 13.49 1,759 (8.8) 14.05 

Maternal Education     

<12th grade 285 (1.2) 14.84 280 (1.4) 15.24 
High School/GED 2,605 (11.3) 14.45 2,524 (12.7) 14.72 

Some College or more 13,442 (58.2) 14.64 13,113 (65.7) 14.91 
Missing 6,768 (29.3) 14.68 4,034 (20.2) 14.93 

Maternal Asthma     

Yes 2,488 (10.8) 14.59 2,419 (12.1) 14.88 
No 17,998 (77.9) 14.64 17,532 (87.9) 14.90 

Missing 2,614 (11.3) 14.65 0 -- 

Kaiser Permanente Enrollment Duration c    

Enrolled until age 2 17,960 (77.8) 14.70 15,631 (78.4) 14.93 
Enrolled until age 3 14,251 (61.7) 14.79 12,434 (62.3) 14.98 
Enrolled until age 4 10,999 (47.6) 15.00 9,620 (48.2) 15.27 
Enrolled until age 5 8,592 (37.2) 15.34 7,521 (37.7) 15.50 
Enrolled until age 6 6,629 (28.7) 15.59 5,806 (29.1) 15.47 

Birth Year     

2000 2,456 (10.6) 15.03 2,054 (10.3) 15.04 
2001 2,369 (10.3) 15.01 1,977 (9.9) 15.00 
2002 2,266 (9.8) 15.21 1,946 (9.8) 15.00 
2003 2,185 (9.5) 15.92 1,929 (9.7) 15.33 
2004 2,138 (9.3) 16.11 1,871 (9.4) 15.94 
2005 2,023 (8.8) 16.25 1,741 (8.7) 16.18 
2006 2,198 (9.5) 16.14 1,935 (9.7) 16.28 
2007 2,216 (9.6) 14.76 1,919 (9.6) 16.21 
2008 2,101 (9.1) 11.68 1,835 (9.2) 14.21 
2009 1,585 (6.9) 11.14 1,403 (7.0) 11.30 
2010 1,563 (6.8) 11.93 1,341 (6.7) 11.41 

a A subset of children with first year of life PM2.5 data b Includes Asian, American Indian, Alaska 
Native, Native Hawaiian or other Pacific Islander, and children identifying with more than one racial 
group c Reduction in sample size across follow-up reflects the shorter follow-up time available for 
children born in later years of the study (e.g., a child born in 2010 could be at most 3 years old at the 
time KAPPA follow-up ended in September 2013) as well as HMO enrollment attrition over time. 
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Table 6.2. Distribution of prenatal and first year of life PM2.5 by demographic clusters and 
city region 

Children with first year of life PM2.5 data Children with prenatal PM2.5 data 

Characteristic 
n (%) 

Mean first year 
of life PM2.5 

n (%) 
Mean prenatal 

PM2.5 

Major Demographic Cluster     

A 14,401 (62.3) 14.50 12,626 (63.3) 14.77 
B 2,293 (9.9) 15.06 1,925 (9.7) 15.37 
C 1,130 (4.9) 14.36 974 (4.9) 14.66 
D 5,272 (22.8) 14.87 4,423 (22.2) 15.09 

Minor Demographic Cluster     

A.1 3,065 (13.3) 14.54 2,747 (13.8) 14.79 
A.2 2,243 (9.7) 14.75 1,976 (9.9) 15.00 
A.3 9,093 (39.4) 14.42 7,903 (39.6) 14.71 
B.1 1,080 (4.7) 15.07 896 (4.5) 15.37 

B.3/B.4 1,213 (5.3) 15.06 1,029 (5.2) 15.37 
C.1/C.2 856 (3.7) 14.15 735 (3.7) 14.47 
C.3/C.4 274 (1.2) 15.02 239 (1.2) 15.25 

D.1 2,453 (10.6) 14.69 2,083 (10.4) 14.95 
D.3 631 (2.7) 15.14 520 (2.6) 15.34 
D.4 1,436 (6.2) 14.96 1,204 (6.0) 15.13 
D.5 450 (2.0) 15.00 378 (1.9) 15.23 

D.6/D.7 302 (1.3) 15.23 238 (1.2) 15.26 

City Region     

Metro Atlanta a 2,425 (10.5) 15.20 2,030 (10.2) 15.48 
≤10 miles from metro Atlanta 9,894 (42.8) 14.91 8,449 (42.4) 15.13 
>10 miles from metro Atlanta 10,781 (46.7) 14.25 9,472 (47.5) 14.56 

a Metro Atlanta defined as inside the I-285 perimeter of Atlanta (Figure B2). Minor demographic 
clusters with less than 150 individuals were combined with the closest demographic cluster within 
its major category for analyses (reflected in table). 
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Table 6.3. PM2.5 exposure and census tract household income and poverty by city region 

 
All Regions 

Metro 
Atlanta 

≤10 miles from 
metro Atlanta 

>10 miles from 
metro Atlanta 

n (row %) 

All Races 23,100 2,425 (10.5) 9,894 (42.8) 10,781 (46.7) 
Black  7,995 884 (11.1) 4,901 (61.3) 2,210 (27.6) 

White 9,034 851 (9.4) 2,204 (24.4) 5,979 (66.2) 
Other Race a  2,771 275 (9.9) 1,221 (44.1) 1,275 (46.0) 

Unknown Race  3,300 415 (12.6) 1,568 (47.5) 1,317 (39.9) 

Mean first year of life PM2.5 

All Children  14.63 15.20 14.91 14.25 
Black  14.71 15.18 14.85 14.22 

White  14.48 15.06 14.95 14.22 
Other Race a  14.43 15.11 14.72 14.00 

Unknown  15.05 15.59 15.21 14.69 

Spearman Correlation with first year of life PM2.5 

Median household income b ρ = -0.075 ρ = 0.018 ρ = -0.019 ρ = 0.032 
Percent families poverty b ρ = 0.057 ρ = -0.041 ρ = 0.023 ρ = -0.029 

a Includes Asian, American Indian, Alaska Native, Native Hawaiian or other Pacific Islander, and 
children identifying with more than one racial group. b American Community Survey 2010 data (5 
year estimates) at census tract level, prepared by Social Explorer 

 
 
 
Table 6.4. Asthma incidence and prenatal and first year of life PM2.5 exposure by each 
follow-up age 

 Children with first year of life PM2.5 data; 
First year of life PM2.5 

Children with prenatal PM2.5 data;  
Prenatal PM2.5 

Cohort 
Asthma 

n (%) 

Mean PM2.5 
among 
cases 

Mean PM2.5 
among 

non-cases 

Asthma 
n (%) 

Mean PM2.5 
among 
cases 

Mean PM2.5 
among 

non-cases 

Age 2 1,994 (11.1) 14.74 14.70 1,731 (11.1) 14.95 14.92 
Age 3 2,627 (18.4) 14.82 14.79 2,316 (18.6) 14.98 14.98 
Age 4 2,650 (24.1) 15.03 14.99 2,309 (24.0) 15.27 15.27 
Age 5 2,465 (28.7) 15.33 15.35 2,132 (28.4) 15.45 15.51 
Age 6 2,149 (32.4) 15.57 15.60 1,854 (31.9) 15.45 15.48 

Asthma incidence (at least one asthma diagnosis (ICD-9 493.XX) and one asthma-related medication 
dispensing after the first year of life) calculated among children enrolled until each follow-up age 
(see Table 6.1 for number enrolled until each age). For example, the age 5 cohort examines asthma 
incidence by the 5th birthday among children enrolled until at least their 5th birthday. 
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Table 6.5. Risk differences for first year of life PM2.5 and childhood asthma incidence in models adjusting for different sets of covariates 
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Cohort 
MODEL 0 MODEL 1 MODEL 2 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0015 (-0.0010, 0.0039) 0.24 -0.0058 (-0.0135, 0.0020) 0.14 -0.0069 (-0.0142, 0.0004) 0.06 

Age 3 0.0015 (-0.0019, 0.0050) 0.38 -0.0124 (-0.0237, -0.0011) 0.03 -0.0126 (-0.0231, -0.0020) 0.02 

Age 4 0.0031 (-0.0016, 0.0078) 0.20 -0.0162 (-0.0314, -0.0010) 0.04 -0.0159 (-0.0302, -0.0017) 0.03 

Age 5 -0.0034 (-0.0118, 0.0050) 0.43 -0.0056 (-0.0243, 0.0131) 0.56 -0.0065 (-0.0241, 0.0112) 0.47 

Age 6 -0.0106 (-0.0258, 0.0047) 0.18 -0.0071 (-0.0307, 0.0165) 0.55 -0.0087 (-0.0309, 0.0135) 0.44 
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Cohort 
MODEL 3 MODEL 4 MODEL 5 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 -0.0018 (-0.0099, 0.0063) 0.66 0.0012 (-0.0071, 0.0095) 0.78 0.0004 (-0.0086, 0.0094)a 0.93 

Age 3 -0.0035 (-0.0154, 0.0084) 0.57 -0.0019 (-0.0137, 0.0100) 0.76 -0.0017 (-0.0144, 0.0109) 0.79 

Age 4 -0.0087 (-0.0245, 0.0072) 0.28 -0.0054 (-0.0218, 0.0111) 0.52 -0.0026 (-0.0196, 0.0143) 0.76 

Age 5 0.0032 (-0.0164, 0.0228) 0.75 0.0035 (-0.0170, 0.0239) 0.74 0.0076 (-0.0132, 0.0283) 0.47 

Age 6 0.0022 (-0.0221, 0.0266) 0.86 0.0018 (-0.0236, 0.0272) 0.89 0.0105 (-0.0145, 0.0355) 0.41 
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MODEL 6 MODEL 7: FINAL MODEL MODEL 8 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0081 (-0.0016, 0.0178) 0.10 0.0076 (-0.0019, 0.0170) 0.12 0.0073 (-0.0023, 0.0169) 0.13 

Age 3 0.0073 (-0.0059, 0.0205) 0.28 0.0066 (-0.0064, 0.0196) 0.32 0.0056 (-0.0081, 0.0193) 0.42 

Age 4 0.0049 (-0.0138, 0.0236) 0.61 0.0040 (-0.0143, 0.0223) 0.67 0.0033 (-0.0149, 0.0215) 0.73 

Age 5 0.0194 (-0.0037, 0.0425) 0.10 0.0178 (-0.0049, 0.0405) 0.12 0.0175 (-0.0049, 0.0398) 0.13 

Age 6 0.0205 (-0.0081, 0.0491) 0.16 0.0176 (-0.0106, 0.0457) 0.22 0.0197 (-0.0078, 0.0472) 0.16 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a deleted 1 child in order for model to converge 

List of Model Covariates 
Model 0: unadjusted model 

Model 1: child sex, child race, child ethnicity, maternal asthma, cubic splines on date of birth (1 knot per year in May), maternal age, maternal education 

Model 2: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May) 

Model 3: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), major demographic cluster 

Model 4: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster 
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Model 5: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), median household income, median year structure 
built, median house value, percent less than high school, percent families in poverty  

Model 6: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster, city region (metro 
Atlanta, ≤5 miles from metro Atlanta, >5–10 miles from metro Atlanta, >10 miles from metro Atlanta) 

Model 7 (FINAL MODEL): child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster, city 
region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta)  

Model 8: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), median household income, median year structure 
built, median house value, percent less than high school, percent families in poverty, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta) 
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Table 6.6. Risk differences for prenatal and first year of life PM2.5 and childhood asthma incidence, assessing impact of temporal control 

First year of life PM2.5 

Cohort 
MODEL A MODEL B MODEL C 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0069 (0.0005, 0.0133) 0.03 0.0076 (-0.0019, 0.0170) 0.12 0.0061 (-0.0039, 0.0160) 0.23 

Age 3 0.0053 (-0.0029, 0.0135) 0.21 0.0066 (-0.0064, 0.0196) 0.32 0.0041 (-0.0089, 0.0171) 0.53 

Age 4 0.0101 (-0.0022, 0.0223) 0.11 0.0040 (-0.0143, 0.0223) 0.67 0.0007 (-0.0186, 0.0200) 0.94 

Age 5 0.0153 (-0.0010, 0.0316) 0.07 0.0178 (-0.0049, 0.0405) 0.12 0.0185 (-0.0046, 0.0416) 0.12 

Age 6 0.0181 (-0.0069, 0.0432) 0.16 0.0176 (-0.0106, 0.0457) 0.22 0.0181 (-0.0101, 0.0464) 0.21 

Prenatal PM2.5 

Cohort 
MODEL Aa MODEL B MODEL C 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0015 (-0.0021, 0.0052) 0.41 0.0006 (-0.0036, 0.0047)b 0.78 0.0031 (-0.0048, 0.0110)b 0.44 

Age 3 0.0011 (-0.0041, 0.0062) 0.69 0.0002 (-0.0056, 0.0060) 0.94 — — 

Age 4 0.0001 (-0.0065, 0.0068) 0.97 -0.0011 (-0.0085, 0.0062) 0.76 0.0010 (-0.0136, 0.0156) 0.89 

Age 5 -0.0029 (-0.0112, 0.0053) 0.49 -0.0029 (-0.0117, 0.0059) 0.52 — — 

Age 6 0.0028 (-0.0081, 0.0136) 0.62 0.0036 (-0.0072, 0.0144) 0.51 0.0163 (-0.0061, 0.0387)b 0.15 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, a Combined conception year categories for years with 
less than 5 children in order for models to converge b <10 children deleted in order for model to converge 
 

Model A: child sex, child race, maternal asthma, minor demographic cluster, city region, year [birth year for first year of life exposure, conception year for 
prenatal exposure] 

Model B: child sex, child race, maternal asthma, minor demographic cluster, city region, cubic splines on date with 1 knot per year in May [date of birth 
for first year of life exposure, date of conception for prenatal exposure] 

Model C: child sex, child race, maternal asthma, minor demographic cluster, city region, cubic splines on date with 2 knots per year in April and October 
[date of birth for first year of life exposure, date of conception for prenatal exposure]  
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Table 6.7. Full adjusted model results for the association between first year of life PM2.5 and asthma incidence at ages 2, 4, and 6 

 Age 2 
n = 17,958 Correlation = 0.16 

Age 4  
n = 10,998 Correlation = 0.20 

Age 6  
n = 6,628 Correlation = 0.24 

Parameter RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Intercept -0.0486 (-0.2069, 0.1098) 0.55 0.2266 (-0.0735, 0.5267) 0.14 0.2079 (-0.2338, 0.6497) 0.36 
PM2.5 0.0076 (-0.0019, 0.0170) 0.12 0.0040 (-0.0143, 0.0223) 0.67 0.0176 (-0.0106, 0.0457) 0.22 
Male sex 0.0437 (0.0350, 0.0525) <0.01 0.0781 (0.0625, 0.0937) <0.01 0.0862 (0.0641, 0.1082) <0.01 
Black race  0.0228 (0.0106, 0.0350)  <0.01 0.0283 (0.0075, 0.0492) <0.01 0.0594 (0.0300, 0.0888) <0.01 
Unknown/other race 0.0028 (-0.0086, 0.0143) 0.63 0.0014 (-0.0202, 0.0229) 0.90 0.0432 (0.0103, 0.0762) 0.01 
Maternal asthma 0.0615 (0.0449, 0.0780) <0.01 0.1040 (0.0780, 0.1300) <0.01 0.1521 (0.1168, 0.1874) <0.01 
Metro Atlanta -0.0358 (-0.0556, -0.0160) <0.01 -0.0492 (-0.0861, -0.0122) <0.01 -0.0799 (-0.1347, -0.0251) <0.01 
≤10 mi from metro Atlanta -0.0156 (-0.0279, -0.0032) 0.01 -0.0179 (-0.0393, 0.0034) 0.10 -0.0276 (-0.0581, 0.0028) 0.08 
Demographic cluster A.2 0.0095 (-0.0089, 0.0280) 0.31 0.0301 (-0.0029, 0.0631) 0.07 -0.0091 (-0.0565, 0.0384) 0.71 
Cluster A.3 0.0157 (0.0012, 0.0301) 0.03 0.0373 (0.0117, 0.0628) <0.01 0.0000 (-0.0376, 0.0376) 1.00 
Cluster B.1 -0.0182 (-0.0389, 0.0026) 0.09 -0.0422 (-0.0829, -0.0015) 0.04 -0.0624 (-0.1268, 0.0020) 0.06 
Cluster B.3/B.4 0.0203 (-0.0044, 0.0450) 0.11 0.0588 (0.0132, 0.1044) 0.01 0.0204 (-0.0441, 0.0849) 0.54 
Cluster C.1/C.2 0.0164 (-0.0113, 0.0442) 0.25 0.0518 (-0.0016, 0.1053) 0.06 -0.0256 (-0.0965, 0.0454) 0.48 
Cluster C.3/C.4 0.0165 (-0.0245, 0.0575) 0.43 0.1220 (0.0427, 0.2013) <0.01 0.1418 (0.0293, 0.2544) 0.01 
Cluster D.1 0.0110 (-0.0082, 0.0302) 0.26 0.0402 (0.0064, 0.0739) 0.02 -0.0027 (-0.0516, 0.0463) 0.92 
Cluster D.3 0.0110 (-0.0184, 0.0405) 0.46 0.0503 (-0.0044, 0.1050) 0.07 0.0308 (-0.0482, 0.1098) 0.44 
Cluster D.4 0.0046 (-0.0173, 0.0265) 0.68 0.0315 (-0.0091, 0.0721) 0.13 -0.0128 (-0.0714, 0.0458) 0.67 
Cluster D.5 0.0333 (-0.0061, 0.0727) 0.10 0.0244 (-0.0406, 0.0894) 0.46 -0.0172 (-0.1017, 0.0673) 0.69 
Cluster D.6/D.7 0.0051 (-0.0381, 0.0484) 0.82 0.0451 (-0.0256, 0.1158) 0.21 0.0794 (-0.0226, 0.1813) 0.13 

RD = Risk Difference, CI = Confidence Interval, p = p-value, mi = miles. Models also include cubic splines on date of birth with 1 knot per year in May 
(results not included in table). Reference group: female sex, white race, no or unknown maternal asthma, >10 miles from metro Atlanta, demographic 
cluster A.1
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Table 6.8. Risk differences for prenatal and first year of life PM2.5 and asthma incidence, 
unadjusted and final adjusted models 

Cohort 
(adjusted model n) 

First Year of Life PM2.5 
Unadjusted Model 

First Year of Life PM2.5 
Final Adjusted Model 

RD (95% CI) p RD (95% CI) p 

Age 2 (n=17,958) 0.0015 (-0.0010, 0.0039) 0.24 0.0076 (-0.0019, 0.0170) 0.12 
Age 3 (n=14,249) 0.0015 (-0.0019, 0.0050) 0.38 0.0066 (-0.0064, 0.0196) 0.32 
Age 4 (n=10,998) 0.0031 (-0.0016, 0.0078) 0.20 0.0040 (-0.0143, 0.0223) 0.67 
Age 5 (n=8,591) -0.0034 (-0.0118, 0.0050) 0.43 0.0178 (-0.0049, 0.0405) 0.12 
Age 6 (n=6,628) -0.0106 (-0.0258, 0.0047) 0.18 0.0176 (-0.0106, 0.0457) 0.22 

Cohort 
(adjusted model n) 

Prenatal PM2.5 
Unadjusted Model 

Prenatal PM2.5 
Final Adjusted Model 

RD (95% CI) p RD (95% CI) p 

Age 2 (n=15,622) 0.0006 (-0.0018, 0.0031) 0.62 0.0006 (-0.0036, 0.0047)a 0.78 
Age 3 (n=12,432) -0.0000 (-0.0036, 0.0035) 0.98 0.0002 (-0.0056, 0.0060) 0.94 
Age 4 (n=9,619) 0.0006 (-0.0047, 0.0059) 0.82 -0.0011 (-0.0085, 0.0062) 0.76 
Age 5 (n=7,520) -0.0059 (-0.0134, 0.0016) 0.12 -0.0029 (-0.0117, 0.0059) 0.52 
Age 6 (n=5,805) -0.0041 (-0.0137, 0.0054) 0.40 0.0036 (-0.0072, 0.0144) 0.51 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a 7 children deleted in order 
for model to converge 

Final adjusted models control for child sex, child race, maternal asthma, minor demographic cluster, 
city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta), and date of 
birth/conception (using cubic splines with 1 knot per year; date of birth used in first year of life 
exposure model and date of conception used in prenatal exposure model) 
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Table 6.9. Risk differences for prenatal and first year of life PM2.5 and asthma incidence, 

from unadjusted and adjusted models containing both exposure windows 

Cohort 

UNADJUSTED 

Prenatal PM2.5 First year of life PM2.5 

RD (95% CI) P RD (95% CI) p 

Age 2 0.0001 (-0.0032, 0.0034) 0.94 0.0008 (-0.0027, 0.0043) 0.64 
Age 3 -0.0004 (-0.0051, 0.0043) 0.86 0.0006 (-0.0044, 0.0056) 0.80 
Age 4  -0.0008 (-0.0071, 0.0056) 0.81 0.0025 (-0.0036, 0.0086) 0.42 
Age 5  -0.0053 (-0.0132, 0.0026) 0.19 -0.0023 (-0.0118, 0.0072) 0.64 
Age 6  -0.0016 (-0.0124, 0.0092) 0.77 -0.0096 (-0.0280, 0.0087) 0.30 

Cohort 

ADJUSTED 

Prenatal PM2.5 First year of life PM2.5 

RD (95% CI) P RD (95% CI) p 

Age 2 0.0002 (-0.0040, 0.0044)a 0.92 0.0124 (0.0021, 0.0227)a 0.02 
Age 3 -0.0001 (-0.0059, 0.0057) 0.97 0.0099 (-0.0045, 0.0244) 0.18 
Age 4  -0.0013 (-0.0086, 0.0061) 0.73 0.0055 (-0.0142, 0.0252) 0.59 
Age 5  -0.0041 (-0.0129, 0.0048) 0.37 0.0273 (0.0035, 0.0512) 0.02 
Age 6  0.0024 (-0.0087, 0.0134) 0.68 0.0173 (-0.0125, 0.0472) 0.26 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a10 children deleted in order 
for model to converge 

Adjusted models control for child sex, child race, maternal asthma, cubic splines on date of 
conception with 1 knot per year, minor demographic cluster, and city region (metro Atlanta, ≤10 
miles from metro Atlanta, >10 miles from metro Atlanta) 
 
 

Table 6.10. Risk differences for first year of life PM2.5 and persistent asthma 

Cohort 
Children with 

persistent 
asthma [n (%)] 

Including children with incident, but 
not persistent asthma as non-cases 

Excluding children with incident, but 
not persistent asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 1,994 (11.1) 0.0076 (-0.0019, 0.0170)a 0.12 0.0076 (-0.0019, 0.0170)a 0.12 
Age 3 2,196 (15.4) 0.0072 (-0.0045, 0.0189)b 0.23 0.0076 (-0.0038, 0.0191)b 0.19 
Age 4 1,965 (17.9) 0.0020 (-0.0139, 0.0179) 0.81 0.0030 (-0.0138, 0.0198) 0.73 
Age 5 1,629 (19.0) 0.0184 (-0.0008, 0.0375) 0.06 0.0206 (-0.0002, 0.0414) 0.05 
Age 6 1,350 (20.4) 0.0232 (-0.0004, 0.0469) 0.05 0.0248 (-0.0014, 0.0510) 0.06 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a Identical analysis to incident 
asthma at age 2, b≤20 children deleted in order for model to converge 

Persistent asthma defined as a child meeting the incident asthma classification (at least 1 asthma 
diagnosis (ICD-9 493.XX) and 1 asthma-related medication dispensing) with evidence of asthma in 
the past year (at least 1 asthma diagnosis or 1 asthma-related medication dispensing) 

Models adjust for child sex, child race, maternal asthma, cubic splines on date of birth with 1 knot per 
year, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 
miles from metro Atlanta) 
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Table 6.11. First year of life PM2.5 and incident asthma by age 5 among children enrolled 
through age 5 (n=8,592), comparing different outcome definitions 

Outcome Definition 
n(%) 

meeting 
definition 

UNADJUSTED ADJUSTED 

RD (95% CI) p RD (95% CI) p 

1. 1 asthma or wheeze 
diagnosis 

3,082 (35.9) -0.0023 (-0.0113, 0.0068) 0.62 0.0261 (0.0016, 0.0505) 0.04 

2. 1 asthma diagnosis 2,570 (29.9) -0.0043 (-0.0129, 0.0043) 0.33 0.0235 (0.0004, 0.0466) 0.05 

3. 2 asthma diagnoses 1,757 (20.5) -0.0060 (-0.0137, 0.0017) 0.12 0.0070 (-0.0124, 0.0264) 0.48 

4. 3 asthma diagnoses 1,311 (15.3) -0.0032 (-0.0101, 0.0038) 0.37 0.0044 (-0.0132, 0.0220) 0.63 

6. 2 asthma diagnoses OR 1 
acute asthma diagnosis 

1,856 (21.6) -0.0063 (-0.0142, 0.0015) 0.11 0.0092 (-0.0108, 0.0292) 0.37 

7. 1 asthma diagnosis OR 2 
medication dispensings  

3,322 (38.7) -0.0059 (-0.0150, 0.0032) 0.20 0.0301 (0.0054, 0.0548) 0.02 

8. 1 asthma diagnosis AND 1 
medication dispensing 
(KAPPA study definition) 

2,465 (28.7) -0.0034 (-0.0118, 0.0050) 0.43 0.0178 (-0.0049, 0.0405) 0.12 

9. 1 asthma diagnosis AND 2 
medication dispensings 

2,168 (25.2) -0.0043 (-0.0124, 0.0038) 0.30 0.0223 (0.0013, 0.0433) 0.04 

10. 1 asthma diagnosis OR 2 
medication dispensings 1 
of which must be a steroid 

2,685 (31.3) -0.0041 (-0.0127, 0.0046) 0.36 0.0279 (0.0045, 0.0512) 0.02 

11. 1 asthma diagnosis AND 2 
medication dispensings 1 
of which must be a steroid 

1,388 (16.2) 0.0099 (0.0038, 0.0161) <0.01 0.0073 (-0.0096, 0.0242)a 0.40 

12. 1 asthma diagnosis OR 1 
controller dispensing 

2,715 (31.6) -0.0046 (-0.0132, 0.0041) 0.30 0.0234 (-0.0001, 0.0469) 0.05 

13. 1 asthma diagnosis AND 1 
controller dispensing 

1,434 (16.7) 0.0080 (0.0017, 0.0143) 0.01 0.0073 (-0.0098, 0.0244)a 0.40 

14. 1 asthma diagnosis AND (2 
reliever dispensings OR 1 
controller dispensing) 

2,181 (25.4) -0.0044 (-0.0125, 0.0037) 0.28 0.0222 (0.0012, 0.0433) 0.04 

15. Any of the following: a) 1 
asthma diagnosis AND 1 
medication dispensing in 
the same year, b) 1 
asthma-related ED visit or 
hospitalization, c) 3 
asthma diagnoses 

2,450 (28.5) -0.0030 (-0.0115, 0.0054) 0.48 0.0184 (-0.0044, 0.0412) 0.11 

a<15 children deleted in order for model to converge. These are the minimum required events for each case 
definition. Definition numbers align with numbers from Dissertation Chapter 4 (excluded definition 5 (atopic 
asthma)). Only 1 diagnosis per day counted. ED = emergency department; Asthma diagnosis = ICD-9 code 
493.XX; Wheeze diagnosis = ICD-9 code 786.07; Acute asthma diagnosis = a) emergency department or inpatient 
asthma diagnosis or b) asthma diagnosis with status asthmaticus or acute exacerbation (ICD-9 codes 493.01, 
493.02, 493.11, 493.12, 493.21, 493.22, 493.91, 493.92); Asthma controller (underlined medications contain a 
steroid) = Aminophylline, beclomethasone diproprionate, budesonide, budesonide/formoterol fumarate, 
cromolyn sodium, fluticasone propionate, fluticasone/sameterol, mometasone furoate, montelukast sodium, 
salmeterol xinafoate, theophylline anhydrous, tiotropium bromide, triamcinolone acetonide; Asthma reliever = 
Albuterol, albuterol sulfate, ipratropium bromide, ipratropium/albuterol sulfate, levalbuterol, metaproterenol 
sulfate; Medication dispensing = dispensing of any asthma controller or reliever. Adjusted models control for 
child sex, child race, maternal asthma, cubic splines on date of birth with 1 knot per year, minor demographic 
cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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Table 6.12. Risk differences for first year of life PM2.5 and childhood asthma 
incidence, assigning first year of life PM2.5 using 2010 annual averages 

 
Unadjusted Model Adjusted Model 

RD (95% CI) p RD (95% CI) p 

Age 2 -0.0057 (-0.0113, -0.0001) 0.05 0.0115 (0.0024, 0.0207)a 0.01 
Age 3 -0.0068 (-0.0147, 0.0011) 0.09 0.0152 (0.0022, 0.0282)a 0.02 
Age 4 -0.0071 (-0.0172, 0.0030) 0.17 0.0072 (-0.0098, 0.0242) 0.41 
Age 5 -0.0011 (-0.0134, 0.0112) 0.86 0.0174 (-0.0034, 0.0383) 0.10 
Age 6 -0.0042 (-0.0187, 0.0104) 0.57 0.0105 (-0.0145, 0.0356) 0.41 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a deleted 1 child from cohort 
in order for model to converge 

Adjusted models control for child sex, child race, maternal asthma, birth year, minor demographic 
cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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Table 6.13. First year of life PM2.5 and incident asthma, comparing different measures of 
association 

 UNADJUSTED ADJUSTED 

Cohort 
RISK DIFFERENCES 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0015 (-0.0010, 0.0039) 0.24 0.0076 (-0.0019, 0.0170) 0.12 
Age 3 0.0015 (-0.0019, 0.0050) 0.38 0.0066 (-0.0064, 0.0196) 0.32 
Age 4 0.0031 (-0.0016, 0.0078) 0.20 0.0040 (-0.0143, 0.0223) 0.67 
Age 5 -0.0034 (-0.0118, 0.0050) 0.43 0.0178 (-0.0049, 0.0405) 0.12 
Age 6 -0.0106 (-0.0258, 0.0047) 0.18 0.0176 (-0.0106, 0.0457) 0.22 

Cohort 
RISK RATIOS 

RR (95% CI) p RR (95% CI) p 

Age 2 1.01 (0.99, 1.04) 0.26 1.12 (1.02, 1.23) 0.02 
Age 3 1.01 (0.99, 1.03) 0.40 1.06 (0.98, 1.14) 0.16 
Age 4 1.01 (0.99, 1.03) 0.23 1.04 (0.96, 1.12) 0.32 
Age 5 0.99 (0.96, 1.02) 0.44 1.06 (0.98, 1.15) 0.13 
Age 6 0.97 (0.93, 1.02) 0.19 1.03 (0.94, 1.12) 0.50 

Cohort 
ODDS RATIOS 

OR (95% CI) p OR (95% CI) p 

Age 2 1.01 (0.99, 1.04) 0.25 1.13 (1.02, 1.26) 0.02 
Age 3 1.01 (0.99, 1.03) 0.40 1.07 (0.97, 1.18) 0.17 
Age 4 1.02 (0.99, 1.04) 0.22 1.05 (0.94, 1.17) 0.37 
Age 5 0.98 (0.94, 1.02) 0.43 1.10 (0.98, 1.23) 0.12 
Age 6 0.95 (0.89, 1.02) 0.18 1.07 (0.93, 1.22) 0.33 

Cohort 
HAZARD RATIOS a 

HR (95% CI) p HR (95% CI) p 

Age 2 1.02 (0.99, 1.04) 0.15 1.11 (1.01, 1.21) 0.03 
Age 3 1.01 (0.99, 1.03) 0.19 1.07 (0.99, 1.16) 0.07 
Age 4 1.02 (1.00, 1.03) 0.09 1.07 (1.00, 1.15) 0.05 
Age 5 1.02 (1.00, 1.03) 0.07 1.09 (1.02, 1.17) 0.01 
Age 6 1.02 (1.00, 1.04) 0.04 1.09 (1.02, 1.17) 0.01 

RD = Risk Difference, RR = Risk Ratio, OR = Odds Ratio, HR = Hazard Ratio, all calculated for 1 µg/m3 
CI = Confidence Interval, p = p-value, a Hazard ratios calculated using the 22,987 children in the 
KAPPA cohort with first year of life PM2.5 estimates enrolled in Kaiser Permanente Georgia until at 
least their first birthday. The outcome of interest was asthma incidence between the first birthday 
and the birthday of each age cohort. For example, in the age 4 analysis the outcome of interest is 
asthma between the first and fourth birthdays.  

Adjusted models control for child sex, child race, maternal asthma, cubic splines on date of birth with 
1 knot per year, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro 
Atlanta, >10 miles from metro Atlanta)
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Figure 6.1. Modeled PM2.5 (µg/m3) from all sources for 2002-2010 

2002    2003     2004 

 

2005    2006     2007 

   

2008    2009     2010  

   

 

 

 

8 µg/m3      10 µg/m3     12 µg/m3    14 µg/m3                   16 µg/m3             18 µg/m3 
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Figure 6.2. A) PM2.5 grid annual averages by year B) Estimated first year of life PM2.5 by birth 
year C) Estimated prenatal PM2.5 by birth year D) Estimated prenatal PM2.5 by year of 
conception 

A.  B.  

C.  D.  
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Figure 6.3. Prenatal and first year of life PM2.5 exposure by month and year of birth 
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Figure 6.4. Risk differences for first year of life PM2.5 and childhood asthma incidence in models adjusting for different sets of covariates 

 

RD = Risk Difference, CI = Confidence Interval 
 
List of Model Covariates 
Model 0: unadjusted model 

Model 1: child sex, child race, child ethnicity, maternal asthma, cubic splines on date of birth (1 knot per year in May), maternal age, maternal education 
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Model 2: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May) 

 

Model 3: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), major demographic cluster 

Model 4: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster 

Model 5: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), median household income, median year structure 
built, median house value, percent less than high school, percent families in poverty  

Model 6: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster, city region (metro 
Atlanta, ≤5 miles from metro Atlanta, >5–10 miles from metro Atlanta, >10 miles from metro Atlanta) 

Model 7 (FINAL MODEL): child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), minor demographic cluster, city 
region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta)  

Model 8: child sex, child race, maternal asthma, cubic splines on date of birth (1 knot per year in May), median household income, median year structure 
built, median house value, percent less than high school, percent families in poverty, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta) 
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Figure 6.5. Adjusted risk differences for prenatal and first year of life PM2.5 and asthma 
incidence from final models 

 

RD = Risk Difference, CI = Confidence Interval. Models control for child sex, child race, maternal 
asthma, cubic splines on date of conception with 1 knot per year, minor demographic cluster, and city 
region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) 
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CHAPTER 7 

Conclusion 

 

In this dissertation, the impact of prenatal and first year of life exposure to PM2.5 

(particulate matter equal to or less than 2.5 micrometers in diameter) on childhood asthma 

incidence was explored in the Kaiser Air Pollution and Pediatric Asthma (KAPPA) Study, a 

historical birth cohort of 24,608 children enrolled in Kaiser Permanente Georgia. The 

KAPPA study is a well-defined cohort which allowed us to examine the risk of asthma 

development. A challenge in many epidemiologic studies is deciding how to define the 

outcome of interest. Asthma is particularly hard to define so we completed a systematic 

evaluation of case definitions for incident asthma in early life to decide how to define 

asthma using medical records in this study (Aim 1). We then estimated the effects of 

exposure to primary PM2.5 from traffic emissions and total PM2.5, which includes PM2.5 from 

traffic, during pregnancy and the first year of life on cumulative asthma incidence by ages 

two through six (Aims 2 and 3). In Aim 2 we made a spatial comparison of pollution, 

estimating exposure using child residence during the first year of life and maternal 

residence during pregnancy. In Aim 3 we made both a spatial and temporal comparison of 

pollution. 

In Aims 2 and 3 we used air pollution data created by colleagues at Georgia Institute 

of Technology. In Aim 2, we used 2011 annual average primary PM2.5 from traffic emissions 

at 250 meter grid resolution created by RLINE, a line-source dispersion model (Community 

Modeling and Analysis System 2015, Zhai et al. 2015). These data vary spatially over the 

Atlanta region, but have no temporal variation. In Aim 3, we used daily PM2.5 data created by 

a novel downscaling approach that integrates data from CMAQ, RLINE, and stationary air 

pollution monitors (Bates et al. 2016). These data differ from those used in Aim 3 in that 
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they capture total PM2.5 and have both spatial and temporal variation. As noted in Chapters 

5 and 6, the air quality data for this work are still being developed and may change before 

the publication of results. One such potential change is the use of emissions data at a 

different spatial and temporal resolution. 

Moving to the results of this dissertation, in Aim 1 (Chapter 4), we evaluated 15 case 

definitions for asthma and found that choice of case definition had a substantial impact on 

the estimate of asthma incidence in early life; cumulative incidence of asthma by age 3 

ranged from 9.0% to 35.2% depending on which definition was used. We also assessed the 

ability of asthma case definitions in the first three years of life to predict school-age asthma, 

defined as at least one asthma diagnosis between ages five and eight. In this population, 

with a prevalence of school-age asthma of 24%, the early-life asthma case definitions were 

far superior at ruling out school-age asthma (negative predictive values ranged from 79.1% 

to 86.6%) than they were at predicting school-age asthma (positive predictive values 

ranged from 43.5% to 71.5%). While positive and negative likelihood ratios indicate that 

overall predictive ability was limited, several of the case definitions examined performed 

similarly to clinical asthma prediction tools such as the Asthma Predictive Index and the 

Environmental and Childhood Asthma severity index (Castro-Rodriguez et al. 2000, 

Devulapalli et al. 2008). 

Before conducting this analysis, we had planned to classify a child as asthmatic if 

they have one asthma diagnosis or two asthma-related medication dispensings (case 

definition seven). However, in Aim 1 we saw that compared to other case definitions, 

definition seven yielded the highest asthma incidence (35.2% by age 3) and correctly 

predicted asthma status at school age for the smallest percentage of children (71.4%) 

(Table 4.4). While these results convinced us not to use this case definition, there was not a 

clear best case definition out of the other 14 examined. We decided to use case definition 
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eight (one asthma diagnosis and one asthma-related medication dispensing) in our air 

pollution analyses because a child is classified as asthmatic if a doctor diagnosed their 

condition as asthma and they have some evidence of respiratory morbidity requiring 

medication. The inconsistencies between different asthma case definitions highlighted in 

Aim 1 motivated sensitivity analyses in Aims 2 and 3 which found that choice of case 

definition can also impact the estimate of the association between PM2.5 exposure and 

asthma incidence (Table 5.10 and Table 6.11). 

 Aim 2 (Chapter 5) of this dissertation assessed whether exposure to primary PM2.5 

from traffic during pregnancy and the first year of life was associated with childhood 

asthma incidence in the KAPPA cohort. In fully adjusted models, an increase of 1 µg/m3 of 

traffic PM2.5 in the first year of life was associated with a 2.7% to 5.8% increase in the 

absolute risk of asthma by ages two through six with some 95% confidence intervals 

excluding the null (Table 5.8). Effect estimates were smaller for the association between 

traffic PM2.5 exposure during pregnancy and asthma incidence, ranging from a 2.2% to 3.0% 

increase in the absolute risk of asthma. Estimated associations were greatly impacted by 

including city region in the model; risk differences from models including this variable were 

larger than risk differences from unadjusted models and adjusted models not including this 

variable (Table 5.6). Controlling for city region was motivated by concerns about lack of 

exchangeability between children living in the most urban and rural parts of the 

metropolitan Atlanta area, even after controlling for neighborhood socioeconomic status. 

Including it in the model allows us to compare children living in the same city region and 

aims to control for unmeasured potential confounders that vary spatially such as 

agricultural exposures and health care utilization. In our opinion, this addition to the model 

is important because we are making a spatial comparison of pollution exposure. 
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In Aim 2, we could not tease apart the effects of traffic PM2.5 during pregnancy and 

the first year of life due to the high correlation between exposure estimates during these 

two time windows (Spearman correlation coefficient = 0.80). This correlation was higher 

than expected based on substantial residential mobility observed in this cohort, with 36% 

of children changing residence at least once during the period from conception to the first 

birthday, but is partially due to the lack of temporal variability in the PM2.5 data used for 

exposure assignment. Overall, results from Aim 2 provide some evidence of a positive 

association between exposure to primary PM2.5 from traffic during early life and childhood 

asthma incidence. However, our conclusions are somewhat tempered due to the 

dependence of results on which variables are included in the model. Including city region in 

our models, the rationale for which is described above, had a substantial impact on model 

results shifting all risk differences in the positive direction and resulting in confidence 

intervals that exclude the null. These results give the suggestion of negative bias if we don’t 

control for city region. While we believe the models containing this variable most 

appropriately control for confounding, we note that our results are highly dependent on the 

inclusion of one variable. 

In Aim 3 (Chapter 6) we assessed whether exposure to total PM2.5 during pregnancy 

and the first year of life was associated with childhood asthma incidence in the KAPPA 

cohort. Results show little evidence of an association between exposure to total PM2.5 and 

asthma incidence by ages 2 through 6. In fully adjusted models, an increase of 1 µg/m3 total 

PM2.5 during the first year of life was associated with an absolute increase in risk of asthma, 

with estimates of that increase ranging from 0.4% at age four (RD (95% CI) 0.004 (-0.014, 

0.022)) to 1.8% at age five (RD (95% CI) 0.018 (-0.005, 0.041)). Risk differences for an 

increase of 1 µg/m3 total PM2.5 during the prenatal period were smaller and ranged from a 

0.1% decrease in risk at age four ((RD (95% CI) -0.001 (-0.009, 0.006)) to a 0.4% increase in 
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risk at age six (RD (95% CI) 0.004 (-0.007, 0.014)). Confidence intervals around all adjusted 

estimates of both prenatal and first year of life exposure include the null. Due to the spatial 

and temporal variability in the PM2.5 data used in Aim 3, there was a smaller correlation 

between prenatal and first year of life PM2.5 estimates than in Aim 2 (Spearman correlation 

coefficient in Aim 3 = 0.59). This greater variability better enabled estimation of the 

independent effects of exposure in each of these periods by including both exposures in the 

same model. Effect estimates from this model are similar to those from models containing 

each exposure separately and provide little evidence of an effect of exposure during either 

of these periods on asthma incidence in childhood (Table 6.9).  

There are some key differences between the air pollution data used in Aim 2 

(RLINE) and Aim 3 (CMAQ-RLINE fusion). The RLINE data capture only primary PM2.5 from 

traffic emissions and all variation in assigned pollution is spatial (i.e. one PM2.5 estimate per 

grid cell over the study period). The CMAQ-RLINE fusion data capture total PM2.5, which 

includes PM2.5 from traffic as well as from other sources (e.g., power plants, biomass 

burning), and variation in the assigned pollution is both spatial and temporal (i.e. 3,287 

daily PM2.5 estimates per grid cell over the study period). Additionally, in the CMAQ-RLINE 

fusion data the spatial structure can change over time, although change was somewhat 

limited due to the spatial structure of the traffic impacts remaining the same. We completed 

an analysis to compare spatial and temporal variation in these datasets. To calculate spatial 

variability in the CMAQ-RLINE fusion data, we averaged estimates over space resulting in an 

estimate of mean and variance for the entire region for each of the 3,287 days for which 

data were available. To calculate temporal variability in the data, we took a similar 

approach, but instead averaged over time, resulting in an estimate of mean and variance for 

the entire time period for each of the 25,212 grids in the region in which KAPPA children 
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and mothers lived. For the RLINE data there is no temporal variability, and the spatial 

variability was examined by calculating the mean and variance of estimates across grids. 

These analyses revealed that in the CMAQ-RLINE fusion data there is more temporal 

variability in PM2.5 concentration than spatial variability; the mean of the variance is 2.9 for 

spatial variation and 50.3 for temporal variation. There was a large drop in PM2.5 

concentrations in 2008 so we were further interested in whether this shift was driving our 

estimate of temporal variation. We completed an analysis controlling for seasonality (by 

calculating 365 day moving averages) for years 2002-2007 and 2009-2010. Using this 

approach, the mean of the variance for years 2002-2007 is 0.23 and the mean of the 

variance for years 2009-2010 is 0.69. This drop in variation from the previous analysis, to a 

level lower than our estimate of spatial variation, implies that the estimate of temporal 

variability in PM2.5 concentrations is largely driven by the decrease in PM2.5 in 2008. To 

compare the RLINE and CMAQ-RLINE fusion data, we used the coefficient of variation as a 

measure due to the difference in the magnitude of PM2.5 concentrations. One caveat to this 

approach is that if the mean and variance do not vary multiplicatively, it may not capture 

the true contrast of the variability. For example, if mean and variance vary additively, this 

approach may not accurately identify the data with more variability. Using this measure, it 

appears that the RLINE data has more spatial variation than the CMAQ-RLINE fusion data. 

The coefficient of variation of the 2011 annual average RLINE estimates is 24.7. The 

coefficient of variation of the annual averages of the CMAQ-RLINE fusion data range from 

2.7 to 7.3. This result is consistent with our knowledge that secondary PM is fairly spatially 

homogenous and that the majority of PM is secondary, for example sulfate that is produced 

in secondary reactions of emissions from power plants. In comparison, primary PM from 

traffic emissions has more spatial heterogeneity which is determined by local roadway 
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emissions. Subsequently, it makes sense that the RLINE data would have more spatial 

heterogeneity than the CMAQ-RLINE fusion data. 

 Comparing the results from Aims 2 and 3, we see evidence of a stronger association 

between primary PM2.5 from traffic and childhood asthma (Aim 2) than between total PM2.5 

and childhood asthma (Aim 3). The correlation between our estimate of first year of life 

exposure to total PM2.5 and traffic PM2.5 is low (Spearman correlation coefficient = 0.26). 

However, the correlation increases to 0.57 when removing some of the temporal variability 

by controlling for birth year. Correlation between prenatal estimates using the two types of 

pollution data is much lower (overall correlation = 0.20, correlation controlling for year of 

conception = 0.29). This low correlation is partially due to seasonality in prenatal estimates 

of total PM2.5 (Figure 6.3) and lack of seasonality in prenatal estimates of traffic PM2.5 which 

are always averaged over a full year. In Aim 2 the variation in exposure is purely spatial 

while in Aim 3 the variation in exposure has both spatial and temporal components. In 

order to facilitate a better comparison between results from these two aims, we completed 

an analysis in Aim 3 that made a purely spatial comparison by using only 2010 PM2.5 annual 

averages for exposure assignment (Table 6.12). We found that an increase of 1 µg/m3 of 

total PM2.5 is associated with a 0.7% to 1.7% increase in the absolute risk of asthma, with 

most confidence intervals including the null. Similar to the main results from Aim 3, these 

estimates show less evidence of an association than those from Aim 2. 

Considering the primary sources of bias of confounding, misclassification, and 

selection bias, I believe that confounding is of the most concern in this dissertation. We 

completed extensive analyses in Chapters 4, 5 and 6 to assess potential selection bias and 

observed no convincing evidence that it impacted our results. To help mitigate concerns 

about the impact of disease misclassification, in Chapter 4 we examined different ways to 

define asthma in our cohort. In Chapters 5 and 6 we completed sensitivity analyses to assess 
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whether the estimate of the association between PM2.5 and asthma changed if we used 

different asthma case definitions. There is no indication that misclassification of this 

dichotomous outcome would be dependent on exposure status or other factors so any 

misclassification would be expected to bias our results toward the null. We believe that our 

exposure of interest, residential ambient PM2.5, is fairly well estimated with the available air 

pollution data. Since our exposure, PM2.5, is continuous we cannot assume that 

nondifferential misclassification would bias results toward the null. However, it is difficult 

to conceptualize a scenario in which this type of misclassification would bias our estimates 

away from the null. If personal exposure was our primary exposure of interest, which it is 

not, we would be more concerned about the potential influence of exposure 

misclassification on our results. 

In comparison, we have less ability to determine how uncontrolled potential 

confounding may be impacting our results. We are able to control for key variables that 

could be potential confounders and our control for some variables is superior to that in 

previous studies. For example, we assessed the impact of both individual-level SES and 

neighborhood-level (contextual) SES, each of which may be important and are not always 

both considered in epidemiologic studies of air pollution and asthma. Our concern about 

potential confounding stems from analyses in Chapter 5 where including city region in 

models of the association between traffic PM2.5 and asthma incidence has a large impact on 

results (Table 5.6). The fact that our results are sensitive to control for this variable is 

noteworthy particularly since this is a variable that has not been adjusted for in similar 

analyses from previous cohort studies. While we believe that conditioning on city region, 

making comparisons between children of the same city region, results in the most valid 

estimates of the association between PM2.5 and asthma, there is no way to confirm this. The 

large impact of controlling for city region on model results tempers our conclusions 
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somewhat and raises concerns about other possible unmeasured confounders that could 

have similarly large impacts on estimated associations. In Chapter 6 control for city region 

also impacts results, but results are similar enough between models that inclusion does not 

meaningfully impact conclusions.  

While the primary measure of association for this dissertation is the risk difference, 

we also assessed associations using the risk ratio, odds ratio, and hazard ratio. I will briefly 

discuss some differences between the risk difference, risk ratio, and hazard ratio. The risk 

difference and risk ratio both estimate changes in risk and can only be calculated with 

denominator data, like those available from the KAPPA study. The hazard ratio estimates 

changes in hazard which is arguably a less intuitive measure than risk. Out of these 

measures, only the risk difference assesses additive effects (all other measures assess 

multiplicative effects). Subsequently, the risk difference is well suited to assess additive 

interaction which is thought to be more relevant to public health than multiplicative 

interaction (Greenland S et al. 2008, Vanderweele et al. 2014). The interpretation of risk 

differences is arguably the most straightforward out of any of these measures since risk 

differences represent absolute change in the probability of disease, rather than relative 

change expressed in ratio measures. A limitation of the risk difference is that the binomial 

models which are used to calculate risk differences often encounter convergence problems. 

Convergence problems can sometimes be easily solved, for example by changing category 

groupings of a covariate or changing iteration limits in SAS. However, they can also be more 

serious and in some cases can prevent an analysis from producing results. From using the 

risk difference as our primary measure, we encountered both easily solvable and 

unresolvable convergence issues in this dissertation. 

Risk ratios are calculated from log binomial models which, like the risk difference, 

are also prone to convergence difficulties, but perhaps less frequently. One nuance of the 
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risk ratio is that it decreases as baseline prevalence of an outcome increases. For example, if 

the risk of an outcome among unexposed individuals is 20%, a risk ratio of 2.0 would occur 

if the risk of the outcome among exposed individuals is 40%. On the other hand, if the risk 

of the outcome among the unexposed is 60%, it is not possible to have a risk ratio of 2.0 

while keeping risk in the exposed group within the bounds of 0 to 1. The highest possible 

risk ratio in the population would be 1.7 and would arise from the exposed group having a 

risk of the outcome of 100%. This attribute of the risk ratio is apparent when comparing the 

risk ratio results between different follow-up ages in this dissertation. In general, as age 

increases and the baseline prevalence of asthma increases, the risk ratio for the association 

between PM2.5 and asthma gets closer to the null. In all analyses using the risk ratio as the 

measure of association the risk ratio at age 2 is further away from the null than the risk 

ratio at age 6 (Table 5.11, Table 6.13). One strength of the risk ratio is that in a scenario 

with independent and nondifferential disease misclassification with perfect specificity, 

there is no bias of the risk ratio (Greenland S et al. 2008). This is unique to the risk ratio; in 

the same scenario the risk difference would be biased downward. 

Our analyses using the hazard ratio as the measure of association of interest were 

completed using Cox proportional hazards models. These analyses had more power than 

our binomial and log binomial models due to the use of censoring to include children who 

were lost to follow-up in analyses (rather than excluding these children). As mentioned in 

Chapter 6, a limitation of Cox proportional hazards models is that unlike our other analyses 

they use the exact time of asthma diagnosis which is unlikely to be reliable. There was more 

consistency in hazard ratios between different follow-up ages than there was in risk 

differences or risk ratios at different follow-up ages. This is partially due to the fact that the 

exact same children are in each analysis, unlike in other analyses where some children are 

lost to follow-up. So for example, most of the data contributing to the age 6 analysis are 
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identical to the data in the age 5 analysis, leading to very similar results. The implicit 

proportional hazards assumption, that a single hazard ratio is valid for the entire time 

period in each analysis, likely also plays a role in the consistency between hazard ratios 

across follow-up ages. 

This dissertation contributes to our knowledge of the use of medical records to 

define asthma in early life, and the associations between PM2.5 exposure, overall and 

specifically from traffic sources, in key developmental windows and childhood asthma 

incidence. The KAPPA study is different from previous studies in its use of the risk 

difference as a measure of association, the use of RLINE data, and the use of CMAQ data 

downscaled to a 250 meter grid resolution. This study leverages work by colleagues at 

Georgia Institute of Technology to create innovative spatially and temporally resolved 

estimates of ambient PM2.5. Our results indicate that discrepant results between studies 

could be due to the use of different asthma case definitions and that future studies may 

want to explore controlling for city region as a way to increase exchangeability between 

children if making a spatial comparison in a city with a similar pattern of pollution and 

urban sprawl. The high correlation between prenatal and first year of life PM2.5 exposure, 

despite the residential mobility of our cohort and the use of temporally varying pollution 

data, suggests that the results of studies looking at exposure in only one of these windows 

may be driven by the effect of exposure during another period. This body of work adds to a 

growing body of research showing some evidence for a positive association between PM2.5 

exposure, particularly from traffic sources, in early life and childhood asthma. Future 

research will help us better understand these relationships; the knowledge of which could 

ultimately lead to cleaner air and reduced risk of asthma. 
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APPENDIX A 

Additional detail on data sources 

 
 

Table A1. Demographic Cluster Descriptions Provided by Georgia Department of Public 
Health, Office of Health Indicators for Planning (OHIP) 

Citation: (Millard et al. 2012) 

A.1 Georgia’s wealthiest cluster is primarily populated by “new money” executives and 
professionals living in tract mansions of metropolitan suburbs and exurbs. Predominantly White 
with an above average index for Asians, this highly educated cluster is composed of married 
couples in their middle adulthood ages (45-64) with young and adolescent children. 
A.2 This well-educated, suburban cluster, dominated by professionals and managers, has the 
second highest level of affluence in the state. Mostly White with a high percentage in their middle 
or late adulthood (55+), they have adolescent and grown children. 
A.3 Found in the metro suburbs, this mixed-ethnicity with majority of Whites and high index for 
African-Americans, more youthful cluster is populated by married couples in their late 20’s 
through early 40’s with young children. The majority has some college degree or are college 
graduates. Most are employed in sales and other white-collar jobs, while some are high-earning 
blue-collar families. This cluster has a median household income well above the state average. 
B.1 This cluster is characterized by its high concentration of White and Asian non-family 
households renting in upscale apartments. With easy access to major highways, this cluster is the 
home for young managers and professionals in their late 20’s through early 40’s, predominately 
with college degrees and beyond. They live a modern urban lifestyle in the most densely 
populated urban neighborhoods before they establish families and move to suburban areas. 
B.2 This small cluster is populated by military personnel in their early and young adulthood ages 
(18-34) with some college degrees. Majority of the population are White. They live in rented 
apartments and condos in urban areas. Their median income is around the state average. 
B.3 This is a mixed-ethnicity cluster with a high index of Asian and Multiracial non-family 
households living in middle-range value apartments in urban/suburban areas. Although many 
have some college degrees or are college graduates, their median income is below the state 
average due to their recent entry into the workforce. 
B.4 This mixed-ethnicity cluster mainly represents the college populations in Georgia 
(populations living in group quarters). They are mostly between 18-24 years of age and have 
incomes lower than the state average. 
C.1 This is a White, middle-class rural cluster dominated by married families of people aged 55 
years and over. They are mainly home owners, but the value of their housing is lower than in 
some of the urban and suburban clusters. Many in this cluster are high school graduates. Found 
predominantly in N/NE rural counties of Georgia, this cluster is highly represented in farming, 
production, and construction. 
C.2 This rural cluster is dominated by married families of people in their middle adulthood ages 
with young and adolescent children. Found widespread in rural counties of Georgia, the cluster is 
White with some African-American population. Many people are in construction and production 
jobs; their incomes are average compared to the state. 
C.3 Found in relatively populated areas in rural counties, this mixed-ethnicity cluster with high 
index of African-Americans is populated by older people living in old houses. With mixed levels of 
education, people in this cluster mainly work in lower paying service, sales and managerial jobs 
earning below state average incomes. 
C.4 This rural cluster is composed of married and single parent families of predominantly White 
population with or without children. Most have high school diploma or less; they mainly work in 
farming, production, and construction earning well below the state average income. 
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Table A1. Demographic Cluster Descriptions Provided by Georgia Department of Public 
Health, Office of Health Indicators for Planning (OHIP) (Continued) 

D.1 An urban cluster, this mixed-race group has a high representation of single-parent families 
with or without children. Most have a high school diploma or less; this group mainly works in the 
service industry earning lower than state average income. They live in rented apartments or old 
houses of low housing values. 
D.2 This is a small cluster composed of military personnel in their early and young adulthood ages 
(18-34) with some college degrees. A mixed-ethnicity group with majority of Whites, this cluster 
is populated by married and single families with young children. The percentage of population 18 
years of age and younger is higher than any other cluster in the state. 
D.3 This is the oldest urban cluster with high proportion of 55 years of age and older. Primarily 
African-American with a high index for non-Hispanic Whites, this cluster is characterized by 
single family or non-family households living in their own old houses in urban/suburban areas. 
They work in low-paying service and sales jobs earning incomes lower than the state average. 
D.4 This cluster is composed predominantly of African-Americans with a high percentage of 
single family households with or without children. It is relatively young among urban clusters 
with a high percentage of population between 18-34 years of age. They are primarily renters, have 
high school or less than high school educations and work in service industry--making 30% below 
the state average in income. 
D.5 This is a mixed-ethnicity cluster with a high index of Hispanics and Multiracial groups. Most 
have high school diploma or less; they mainly work in low-paying blue collar jobs in production 
and construction industries. The cluster’s housing is half owner-occupied and half renter- 
occupied with a high percentage of vacant housing. 
D.6 This cluster is predominantly populated by African-Americans with high percentage of 
population in their 60’s and over. Most have a high school diploma or less; they mainly work in 
service industries. Their median income is second lowest in the state. 
D.7 This cluster is predominantly composed of very young African-Americans with more females 
than males. The cluster has the highest percentage of population less than 18 years of age in 
nonmilitary clusters in the state, of whom most live in female-headed households. Most have a 
high school diploma or less; they work in low-paying jobs and live in rental units. The median 
household income in this cluster is the lowest in the state. 
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Table A2. Asthma-related medications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List and classifications of asthma medications 

Maintenance Medications 
Combinations (ICS and LABA) 
 Budesonide/Formoterol  
 Fluticasone/Salmeterol 
Inhaled corticosteroids (ICS) 
 Beclomethasone  
 Budesonide 
 Flunisolide 
 Flunisolide/Menthol 
 Fluticasone  
 Mometasone  
 Triamcinolone  
Methylxanthines 
 Aerolate 
 Aminophyllin/ephed/potiod/pb 
 Aminophylline 
 Aminophylline/ephed/amobarb 
 Aminophylline/ephed/phenobarb 

Aminophylline/Ephedrine 
 Aminophylline/Phenobarb  
 Aminophylline/Quinine  
 Dyphylline 
Mast cell stabilizers 
 Cromolyn  
 Nedocromil 
Long acting beta-agonists (LABA) 
 Arformotherol  
 Formoterol  
 Salmeterol  
Leukotriene antagonist (LRA) 
 Montelukast  
 Zafirlukast 
 Zileuton 
 Theop/Isoproterenol/epd/ki/pb 
 Theophyll/caff/aa13/cinn/hc135 
 Theophyll/ephed hcl/phenobarb 
 Theophyll/ephed/potiodide/pb  
 Theophylline 
 Theophylline-ephed-butaba 
 Theophylline-ephed-phenob 
 Theophylline-ephedrine 
 Dyphylline-ephedrein-phen  
 Guaifen/Dyphyllin/ephed/pb  
 Guaifen/theop anhyd/pephed  
 Guaifenesin/Dyphylline 
 Guaifenesin/Oxtriphylline 
 Guaifenesin/Theophylline 
 Oxtriphylline 
 Oxtriphylline-Guaifenesin 

Rescue Medications 
Combinations 

Ipratropium/Albuterol  
Anticholinergics 
 Ipratropium  
 Tiotropium  
Short acting beta-agonists 
 Albuterol  

Albuterol Sulfate 
 Bitolterol  
 Isoetharine  
 Isoproterenol  
 Levalbuterol  
 Metaproterenol  
 Pirbuterol  
 Terbutaline 
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Table A2. Asthma-related medications (Continued) 

 
 

List of medications used to search Kaiser electronic medical records (Includes 
combinations and specifics which may be omitted list of asthma medications above) 

GENERIC_NM_GROUP GNN_GENERIC_NM 
AEROLATE AEROLATE 
ALBUTEROL ALBUTEROL 
ALBUTEROL ALBUTEROL SULFATE 
AMINOPHYLLIN/EPHED/POT IOD/PB AMINOPHYLLIN/EPHED/POT IOD/PB 
AMINOPHYLLINE AMINOPHYLLINE 
AMINOPHYLLINE/EPHED/AMOBARB AMINOPHYLLINE/EPHED/AMOBARB 
AMINOPHYLLINE/EPHED/PHENOBARB AMINOPHYLLINE/EPHED/PHENOBARB 
AMINOPHYLLINE/EPHEDRINE AMINOPHYLLINE-EPHEDRINE-A 
AMINOPHYLLINE/EPHEDRINE AMINOPHYLLINE-EPHEDRINE-P 
AMINOPHYLLINE/EPHEDRINE AMINOPHYLLINE-GG 
AMINOPHYLLINE/PHENOBARB AMINOPHYLLINE WITH PHENOBARBITAL 
AMINOPHYLLINE/QUININE AMINOPHYLLINE/QUININE SULFATE 
ARFORMOTEROL ARFORMOTEROL TARTRATE 
BECLOMETHASONE BECLOMETHASONE DIPROPIONATE 
BITOLTEROL BITOLTEROL MESYLATE 
BUDESONIDE BUDESONIDE 
BUDESONIDE/FORMOTEROL BUDESONIDE/FORMOTEROL FUMARATE 
CROMOLYN CROMOLYN SODIUM 
DYPHYLLINE DYPHYLLINE 
DYPHYLLINE-EPHEDRINE-PHEN DYPHYLLINE-EPHEDRINE-PHEN 
FLUNISOLIDE FLUNISOLIDE 
FLUNISOLIDE/MENTHOL FLUNISOLIDE/MENTHOL 
FLUTICASONE FLUTICASONE PROPIONATE 
FLUTICASONE/SALMETEROL FLUTICASONE/SALMETEROL 
FORMOTEROL FORMOTEROL FUMARATE 
GUAIFEN/DYPHYLLIN/EPHED/PB GUAIFEN/DYPHYLLIN/EPHED/PB 
GUAIFEN/THEOP ANHYD/P-EPHED GUAIFEN/THEOP ANHYD/P-EPHED 
GUAIFENESIN/DYPHYLLINE GUAIFENESIN/DYPHYLLINE 
GUAIFENESIN/OXTRIPHYLLINE GUAIFENESIN/OXTRIPHYLLINE 
GUAIFENESIN/THEOPHYLLINE GUAIFENESIN/THEOPHYLLINE 
IPRATROPIUM IPRATROPIUM BROMIDE 
IPRATROPIUM/ALBUTEROL IPRATROPIUM/ALBUTEROL SULFATE 
ISOETHARINE ISOETHARINE HCL 
ISOPROTERENOL ISOPROTERENOL HCL 
ISOPROTERENOL ISOPROTERENOL SULFATE 
LEVALBUTEROL LEVALBUTEROL HCL 
LEVALBUTEROL LEVALBUTEROL TARTRATE 
METAPROTERENOL METAPROTERENOL SULFATE 
MOMETASONE MOMETASONE FUROATE 
MONTELUKAST MONTELUKAST SODIUM 
NEDOCROMIL NEDOCROMIL SODIUM 
OXTRIPHYLLINE OXTRIPHYLLINE 
OXTRIPHYLLINE-GUAIFENESIN OXTRIPHYLLINE-GUAIFENESIN 
PIRBUTEROL PIRBUTEROL ACETATE 
SALMETEROL SALMETEROL XINAFOATE 
TERBUTALINE TERBUTALINE SULFATE 
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Table A2. Asthma-related medications (Continued) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THEOP/ISOPROTERENOL/EPD/KI/PB THEOP/ISOPROTERENOL/EPD/KI/PB 
THEOPHYLL/CAFF/AA13/CINN/HC135 THEOPHYLL/CAFF/AA13/CINN/HC135 
THEOPHYLL/EPHED HCL/PHENOBARB THEOPHYLL/EPHED HCL/PHENOBARB 
THEOPHYLL/EPHED/BUTABARBITAL THEOPHYLL/EPHED/BUTABARBITAL 
THEOPHYLL/EPHED/POT IODIDE/PB THEOPHYLL/EPHED/POT IODIDE/PB 
THEOPHYLLINE THEOPHYLLINE 
THEOPHYLLINE THEOPHYLLINE ANHYDROUS 
THEOPHYLLINE THEOPHYLLINE SODIUM GLYCI 
THEOPHYLLINE THEOPHYLLINE SODIUM GLYCINATE-GG 
THEOPHYLLINE THEOPHYLLINE TIMED RELEASE 
THEOPHYLLINE THEOPHYLLINE-ALCOHOL,SUGAR,DYE 

FREE 
THEOPHYLLINE-EPHED-BUTABA THEOPHYLLINE-EPHED-BUTABA 
THEOPHYLLINE-EPHED-PHENOB THEOPHYLLINE-EPHED-PHENOB 
THEOPHYLLINE-EPHEDRINE THEOPHYLLINE-EPHEDRINE 
THEOPHYLLINE-EPHEDRINE-GG THEOPHYLLINE-EPHEDRINE-GG 
THEOPHYLLINE-EPHEDRINE-PB THEOPHYLLINE-EPHEDRINE-PB 
THEOPHYLLINE-GUAIFENESIN THEOPHYLLINE-GUAIFENESIN 
THEOPHYLLINE-IODINATED GL THEOPHYLLINE-IODINATED GL 
THEOPHYLLINE-KI THEOPHYLLINE-KI 
THEOPHYLLINE-PSE-GG THEOPHYLLINE-PSE-GG 
THEOPHYLLINE/DIETARY SUP.CMB9 THEOPHYLLINE/DIETARY SUP.CMB9 
THEOPHYLLINE/EPHED/HYDROXYZINE THEOPHYLLINE/EPHED/HYDROXYZINE 
THEOPHYLLINE/POTASSIUM IODIDE THEOPHYLLINE/POTASSIUM IODIDE 
TIOTROPIUM TIOTROPIUM BROMIDE 
TRIAMCINOLONE TRIAMCINOLONE ACETONIDE 
ZAFIRLUKAST ZAFIRLUKAST 
ZILEUTON ZILEUTON 
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APPENDIX B 

Additional analyses of prenatal and first year of life exposure to primary PM2.5 from 

traffic and childhood asthma incidence in a birth cohort 

 
 

 

Table B1. Loss to follow-up in the KAPPA cohort 

Age at 
follow-up 

KAPPA children eligible for  
each follow-up age [n] 

Children followed to each age 
[n (% of eligible children)] 

Age 2 23,100 17,960 (77.8%) 
Age 3 22,627 14,251 (63.0%) 
Age 4 21,117 10,999 (52.1%) 
Age 5 19,362 8,592 (44.4%) 
Age 6 17,251 6,629 (38.4%) 

To be eligible for each follow-up age, a child has to be born early enough to be that age in September 
2013 when the KAPPA cohort was defined. For example, a child born in 2010 could be at most 3 
years old at the time KAPPA follow-up ended in September 2013. 
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Table B2. Comparison of covariates for children retained in cohort and lost to follow-up 

Cohort 
Children retained in cohort  

until follow-up age 
Children eligible for follow-up age,  

but lost to follow-up before age 

Mean traffic first year of life PM2.5 [µg/m3] 

Age 2 1.17 1.17 
Age 3 1.17 1.17 
Age 4 1.17 1.16 
Age 5 1.17 1.16 
Age 6 1.17 1.16 

Incident asthma at previous follow-up age a [%] 
Age 3 11.5 9.4 
Age 4 18.8 16.9 
Age 5 24.7 23.0 
Age 6 28.8 28.1 

Mean traffic PM2.5 stratified by asthma at previous age a [µg/m3] 

 Asthma No Asthma Asthma No Asthma 

Age 3 1.15 1.17 1.16 1.17 
Age 4 1.16 1.17 1.15 1.16 
Age 5 1.16 1.17 1.13 1.16 
Age 6 1.17 1.17 1.15 1.15 

Child race [%] 

 Black White Other Unknown Black White Other Unknown 

Age 2 36.9 39.7 11.5 11.9 26.6 37.0 13.7 22.8 
Age 3 38.7 39.6 11.2 10.6 27.7 38.0 13.4 20.9 
Age 4 40.1 39.7 10.9 9.4 28.2 37.8 12.7 21.4 
Age 5 41.8 39.2 10.4 8.6 28.3 38.2 12.0 21.5 
Age 6 43.2 39.0 10.0 7.9 28.8 38.6 11.0 21.6 

Major demographic cluster [%] 

 A B C D A B C D 

Age 2 62.7 9.6 4.7 23.0 61.2 10.9 5.6 22.4 
Age 3 63.0 9.2 4.7 23.2 61.4 10.9 5.3 22.3 
Age 4 62.9 9.0 4.6 23.5 62.1 10.3 5.1 22.5 
Age 5 62.7 8.9 4.7 23.7 62.4 9.7 5.2 22.7 
Age 6 62.7 8.9 4.4 24.0 62.3 9.3 5.4 23.0 

City region [%] 

 Metro 
Atlanta 

≤10 mi from 
metro Atlanta 

>10 mi from 
metro Atlanta 

Metro 
Atlanta 

≤10 mi from 
metro Atlanta 

>10 mi from 
metro Atlanta 

Age 2 10.5 43.3 46.2 10.4 41.2 48.5 
Age 3 10.4 43.9 45.7 10.4 41.2 48.3 
Age 4 10.3 45.1 44.6 10.2 41.2 48.6 
Age 5 10.3 46.1 43.6 9.8 41.4 48.8 
Age 6 10.4 47.3 42.3 9.6 42.1 48.3 

To be eligible for each follow-up age a child has to be born early enough to be that age in September 
2013 when the KAPPA cohort was defined. For example, a child born in 2010 could be at most 3 
years old at the time KAPPA follow-up ended in September 2013. a Incident asthma at previous 
follow-up age only calculated among children in previous cohort (can’t calculate for age 2 since no 
asthma classifications at age 1).
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Table B3. Additional model results for the association between first year of life traffic PM2.5 exposure and asthma incidence 

Cohort 
MODEL A1 MODEL A2 MODEL A3 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 -0.0234 (-0.0380, -0.0087)a <0.01 0.0278 (0.0038, 0.0518) 0.02 0.0251 (0.0014, 0.0488) 0.04 
Age 3 -0.0299 (-0.0553, -0.0045) 0.02 0.0369 (0.0040, 0.0698) 0.03 0.0334 (0.0007, 0.0661)a 0.05 
Age 4 -0.0331 (-0.0657, -0.0004) 0.05 0.0355 (-0.0091, 0.0801) 0.12 0.0363 (-0.0071, 0.0797) 0.10 
Age 5 -0.0194 (-0.0586, 0.0199) 0.33 0.0586 (0.0045, 0.1128) 0.04 0.0560 (0.0030, 0.1090) 0.04 
Age 6 -0.0313 (-0.0774, 0.0149) 0.18 0.0349 (-0.0299, 0.0997) 0.29 0.0361 (-0.0275, 0.0996) 0.27 

Cohort 
MODEL A4 MODEL A5   

RD (95% CI) p RD (95% CI) p   

Age 2 0.0295 (0.0050, 0.0540)a 0.02 0.0267 (0.0025, 0.0510) 0.03   
Age 3 0.0380 (0.0047, 0.0712)a 0.03 0.0363 (0.0032, 0.0693)a 0.03   
Age 4 0.0398 (-0.0048, 0.0843) 0.08 0.0369 (-0.0079, 0.0817) 0.11   
Age 5 0.0600 (0.0057, 0.1143) 0.03 0.0570 (0.0025, 0.1115) 0.04   
Age 6 0.0376 (-0.0272, 0.1023) 0.26 — —   

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year, a birth year dropped 
in order for model to converge 

List of Model Covariates 
Model A1: child sex, child race, child ethnicity, maternal asthma, birth year, maternal age, maternal education, paternal education, maternal marital status 
[Model 1 with paternal education, maternal marital status] 

Model A2: child sex, child race, maternal asthma, minor demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro 
Atlanta) [Model 7 (final model) without birth year] 

Model A3: child sex, child race, maternal asthma, minor demographic cluster, birth year, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta) [Model 7 (final model) without accounting for correlation between siblings, correlation structure (necessary to implement robust variance 
estimation) determined using child study id instead of family id] 

Model A4: child sex, child race, maternal asthma, minor demographic cluster, birth year, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta), interaction between city region and race [Model 7 (final model) with interaction term between city region and race] [Score statistic p-values 
for interaction terms: age 2 – did not converge, age 3 – 0.77, age 4 – 0.40, age 5 – 0.21, age 6 – 0.49]  

Model A5: child sex, child race, maternal asthma, minor demographic cluster, birth year, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta), interaction between metro Atlanta and minor demographic cluster [Model 7 (final model) with interaction term between metro Atlanta and 
minor demographic cluster. Did not include interaction terms with all city regions because of model convergence issues] [Score statistic p-values for interaction 
terms: age 2 – did not converge, age 3 – 0.98, age 4 – 0.83, age 5 – 0.81] 
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Table B4. First year of life traffic PM2.5 exposure and asthma incidence, stratified by race 

Cohort 

Unadjusted models stratified by race 

Black White 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0004 (-0.0311, 0.0319) 0.98 -0.0262 (-0.0516, -0.0007) 0.04 
Age 3 0.0031 (-0.0395, 0.0456) 0.89 -0.0381 (-0.0738, -0.0024) 0.04 
Age 4 0.0070 (-0.0465, 0.0605) 0.80 -0.0652 (-0.1102, -0.0202) <0.01 
Age 5 0.0367 (-0.0275, 0.1009) 0.26 -0.0594 (-0.1137, -0.0052) 0.03 
Age 6 0.0110 (-0.0638, 0.0858) 0.77 -0.0735 (-0.1373, -0.0098) 0.02 

Cohort 

Adjusted models stratified by race 

Black White 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0481 (0.0076, 0.0886) 0.02 — — 
Age 3 0.0277 (-0.0302, 0.0856) 0.35 — — 
Age 4 0.0361 (-0.0364, 0.1085) 0.33 0.0728 (0.0036, 0.1419)a 0.04 
Age 5 0.0695 (-0.0182, 0.1572) 0.12 0.0880 (0.0066, 0.1694) 0.03 
Age 6 0.0329 (-0.0696, 0.1353) 0.53 0.0545 (-0.0440, 0.1529) 0.28 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year, a birth year 
dropped in order for model to converge  

Adjusted models include all covariates in the final adjusted model: child sex, maternal asthma, birth year, minor demographic cluster, city 
region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). The following minor demographic clusters were 
combined in order to aid in model convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table B5. First year of life traffic PM2.5 exposure and asthma incidence, assessing interaction between traffic PM2.5 and race 

Parameter 
AGE 2 AGE 3 a AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0288 (-0.0026, 0.0601) 0.07 0.0403 (-0.0038, 0.0844) 0.07 0.0275 (-0.0302, 0.0853) 0.35 
Black race 0.0118 (-0.0361, 0.0596) 0.63 0.0105 (-0.0545, 0.0755) 0.75 0.0000 (-0.0839, 0.0840) 1.00 
Unknown/other race 0.0291 (-0.0195, 0.0776) 0.24 0.0391 (-0.0255, 0.1037) 0.24 0.0004 (-0.0964, 0.0971) 0.99 
Traffic PM2.5*black race 0.0102 (-0.0304, 0.0508) 0.62 0.0146 (-0.0400, 0.0693) 0.60 0.0259 (-0.0451, 0.0968) 0.48 
Traffic PM2.5*unknown/other race -0.0214 (-0.0596, 0.0168) 0.27 -0.0348 (-0.0837, 0.0142) 0.16 0.0014 (-0.0753, 0.0780) 0.97 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0412 (-0.0285, 0.1108) 0.25 0.0214 (-0.0627, 0.1056) 0.62 

Black race 0.0002 (-0.0994, 0.0997) 1.00 0.0255 (-0.0936, 0.1446) 0.67 

Unknown/other race 0.0313 (-0.0894, 0.1520) 0.61 0.0261 (-0.1193, 0.1716) 0.72 

Traffic PM2.5*black race 0.0469 (-0.0382, 0.1319) 0.28 0.0294 (-0.0718, 0.1306) 0.57 

Traffic PM2.5*unknown/other race -0.0082 (-0.1043, 0.0878) 0.87 0.0129 (-0.1030, 0.1288) 0.83 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a Birth year dropped in order for model to converge 

Table only includes model output relevant to interaction of interest. Models also control for child sex, birth year, maternal asthma, minor demographic 
cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). Reference group: white race. Score statistic p-
values for interaction terms: age 2 – did not converge, age 3 – 0.32, age 4 – 0.77, age 5 – 0.50, age 6 – 0.86 
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Table B6. First year of life traffic PM2.5 exposure and asthma incidence, stratified by sex 

Cohort 

Unadjusted models stratified by sex 

Male Female 

RD (95% CI) p RD (95% CI) p 

Age 2 -0.0355 (-0.0615, -0.0094) <0.01 -0.0094 (-0.0300, 0.0111) 0.37 
Age 3 -0.0341 (-0.0701, 0.0020) 0.06 -0.0326 (-0.0619, -0.0032) 0.03 
Age 4 -0.0471 (-0.0927, -0.0014) 0.04 -0.0304 (-0.0693, 0.0085) 0.13 
Age 5 -0.0199 (-0.0763, 0.0364) 0.49 -0.0170 (-0.0634, 0.0294) 0.47 
Age 6 -0.0546 (-0.1199, 0.0107) 0.10 0.0002 (-0.0560, 0.0564) 0.99 

Cohort 

Adjusted models stratified by sex 

Male Female 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0410 (0.0029, 0.0791) 0.04 0.0159 (-0.0132, 0.0450) 0.28 
Age 3 0.0544 (0.0016, 0.1073) 0.04 0.0202 (-0.0194, 0.0598)a 0.32 
Age 4 0.0375 (-0.0301, 0.1051) 0.28 0.0269 (-0.0280, 0.0817) 0.34 
Age 5 0.0678 (-0.0139, 0.1494) 0.10 0.0390 (-0.0295, 0.1075) 0.27 
Age 6 -0.0148 (-0.1100, 0.0804) 0.76 0.0631 (-0.0208, 0.1471) 0.14 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year, a birth year dropped in order 
for model to converge  

Adjusted models include all covariates in the final adjusted model: child race, maternal asthma, birth year, minor demographic cluster, city region 
(metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). The following minor demographic clusters were combined in order to aid 
in model convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table B7. First year of life traffic PM2.5 exposure and asthma incidence, assessing interaction between traffic PM2.5 and sex 

Parameter 
AGE 2 a AGE 3 a AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0393 (0.0141, 0.0645) <0.01 0.0374 (0.0012, 0.0736) 0.04 0.0449 (-0.0052, 0.0951) 0.08 
Male sex 0.0756 (0.0374, 0.1138) <0.01 0.0702 (0.0178, 0.1225) <0.01 0.0982 (0.0285, 0.1679) <0.01 
Traffic PM2.5*male sex -0.0271 (-0.0586, 0.0043) 0.09 -0.0011 (-0.0440, 0.0419) 0.96 -0.0169 (-0.0743, 0.0404) 0.56 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0654 (0.0048, 0.1259) 0.03 0.0727 (-0.0003, 0.1457) 0.05 

Male sex 0.1066 (0.0229, 0.1902) 0.01 0.1775 (0.0788, 0.2762) <0.01 

Traffic PM2.5*male sex -0.0166 (-0.0864, 0.0531) 0.64 -0.0780 (-0.1599, 0.0040) 0.06 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a Birth year dropped in order for model to converge 

Table only includes model output relevant to interaction of interest. Models also control for child race, birth year, maternal asthma, minor 
demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). Reference group: female sex. 
Score statistic p-values for interaction terms: age 2 –did not converge, age 3 –0.96 , age 4 –0.58 , age 5 –0.66 , age 6 –0.08  
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Table B8. First year of life traffic PM2.5 exposure and asthma incidence, stratified by maternal asthma 

Cohort 

Unadjusted models stratified by maternal asthma 

Maternal Asthma No Maternal Asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 -0.0174 (-0.0758, 0.0410) 0.56 -0.0225 (-0.0415, -0.0035) 0.02 
Age 3 -0.0498 (-0.1282, 0.0286) 0.21 -0.0266 (-0.0534, 0.0002) 0.05 
Age 4 -0.0821 (-0.1792, 0.0149) 0.10 -0.0271 (-0.0615, 0.0072) 0.12 
Age 5 -0.1032 (-0.2215, 0.0151) 0.09 -0.0019 (-0.0432, 0.0395) 0.93 
Age 6 -0.0490 (-0.1849, 0.0869) 0.48 -0.0207 (-0.0699, 0.0284) 0.41 

Cohort 

Adjusted models stratified by maternal asthma 

Maternal Asthma No Maternal Asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 — — 0.0270 (0.0021, 0.0519) 0.03 

Age 3 0.0181 (-0.0906, 0.1267) 0.74 0.0405 (0.0038, 0.0772) 0.03 

Age 4 0.0005 (-0.1319, 0.1329) 0.99 0.0380 (-0.0134, 0.0893) 0.15 

Age 5 -0.0118 (-0.1777, 0.1541) 0.89 0.0552 (-0.0067, 0.1171) 0.08 

Age 6 -0.0016 (-0.1932, 0.1900) 0.99 0.0331 (-0.0404, 0.1067) 0.38 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year  

Adjusted models include all covariates in the final adjusted model: child sex, child race, birth year, minor demographic cluster, city region (metro 
Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta).  
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Table B9. First year of life traffic PM2.5 exposure and asthma incidence, assessing interaction between traffic PM2.5 and maternal asthma 

Parameter 
AGE 2 AGE 3 a AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0271 (0.0030, 0.0512) 0.03 0.0393 (0.0061, 0.0724) 0.02 0.0436 (-0.0020, 0.0891) 0.06 
Maternal asthma 0.0711 (0.0007, 0.1415) 0.05 0.1201 (0.0229, 0.2173) 0.02 0.1822 (0.0622, 0.3022) <0.01 
Traffic PM2.5*maternal asthma -0.0088 (-0.0671, 0.0495) 0.77 -0.0292 (-0.1098, 0.0514) 0.48 -0.0672 (-0.1668, 0.0323) 0.19 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0684 (0.0130, 0.1238) 0.02 0.0401 (-0.0262, 0.1064) 0.24 

Maternal asthma 0.2622 (0.1158, 0.4086) <0.01 0.1947 (0.0263, 0.3632) 0.02 

Traffic PM2.5*maternal asthma -0.1072 (-0.2302, 0.0158) 0.09 -0.0368 (-0.1783, 0.1047) 0.61 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value a Birth year dropped in order for model to converge 

Table only includes model output relevant to interaction of interest. Models also control for child sex, child race, birth year, minor demographic cluster, 
and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). Reference group: no maternal asthma or unknown 
maternal asthma status. Score statistic p-values for interaction terms: age 2 –did not converge, age 3 –0.52, age 4 –0.22, age 5 –0.09, age 6 –0.62 
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Table B10. First year of life traffic PM2.5 exposure and asthma incidence, stratified by city region 

Cohort 

Unadjusted models stratified by city region 

Metro Atlanta ≤10 miles from metro Atlanta >10 miles from metro Atlanta 

RD (95% CI) p RD (95% CI) p RD (95% CI) P 

Age 2 -0.0257 (-0.0892, 0.0379) 0.43 -0.0013 (-0.0341, 0.0315) 0.94 0.0267 (-0.0076, 0.0610) 0.13 
Age 3 -0.1208 (-0.2020, -0.0396) <0.01 -0.0020 (-0.0478, 0.0437) 0.93 0.0343 (-0.0127, 0.0814) 0.15 
Age 4 -0.1247 (-0.2424, -0.0070) 0.04 -0.0020 (-0.0598, 0.0559) 0.95 0.0055 (-0.0543, 0.0652) 0.86 
Age 5 -0.1568 (-0.2964, -0.0172) 0.03 0.0014 (-0.0696, 0.0724) 0.97 0.0726 (-0.0001, 0.1452) 0.05 
Age 6 -0.2260 (-0.4113, -0.0406) 0.02 -0.0198 (-0.1048, 0.0653) 0.65 0.0850 (-0.0010, 0.1710) 0.05 

Cohort 

Final model stratified by city region 

Metro Atlanta ≤10 miles from metro Atlanta >10 miles from metro Atlanta 

RD (95% CI) p RD (95% CI) p RD (95% CI) P 

Age 2 0.0004 (-0.0629, 0.0636)a 0.99 0.0103 (-0.0267, 0.0473) 0.59 — — 
Age 3 — — 0.0513 (-0.0005, 0.1031) 0.05 0.0469 (-0.0069, 0.1007) 0.09 
Age 4 -0.0160 (-0.1228, 0.0908)a 0.77 0.0462 (-0.0211, 0.1136) 0.18 0.0286 (-0.0410, 0.0982) 0.42 
Age 5 0.0193 (-0.1181, 0.1566) 0.78 0.0309 (-0.0521, 0.1138) 0.47 0.0828 (-0.0010, 0.1667) 0.05 
Age 6 -0.1166 (-0.2591, 0.0260) 0.11 -0.0082 (-0.1067, 0.0903) 0.87 0.1014 (0.0034, 0.1993) 0.04 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year, a birth year dropped in order 
for model to converge 

Adjusted models include all covariates in the final adjusted model: child sex, child race, maternal asthma, birth year, and minor demographic cluster. 
The following minor demographic clusters were combined in order to aid in convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table B11. First year of life traffic PM2.5 exposure and childhood asthma incidence, assessing interaction between traffic PM2.5 and city 
region 

Parameter 
AGE 2 AGE 3 AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0451 (0.0091, 0.0811) 0.01 

Did not converge, even after 
dropping birth year 

0.0435 (-0.0211, 0.1080) 0.19 
Metro Atlanta 0.0135 (-0.0855, 0.1124) 0.79 0.0304 (-0.1434, 0.2042) 0.73 
≤10 mi from metro Atlanta 0.0156 (-0.0397, 0.0709) 0.58 -0.0269 (-0.1257, 0.0719) 0.59 
Traffic PM2.5*metro Atlanta -0.0412 (-0.1097, 0.0272) 0.24 -0.0607 (-0.1812, 0.0598) 0.32 
Traffic PM2.5*≤10 mi from metro -0.0300 (-0.0780, 0.0181) 0.22 0.0006 (-0.0852, 0.0864) 0.99 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

Traffic PM2.5 0.0866 (0.0097, 0.1635) 0.03 0.0875 (-0.0035, 0.1784) 0.06 

Metro Atlanta 0.0688 (-0.1447, 0.2824) 0.53 0.1826 (-0.0860, 0.4512) 0.18 

≤10 mi from metro Atlanta 0.0072 (-0.1134, 0.1279) 0.91 0.0454 (-0.0981, 0.1888) 0.54 

Traffic PM2.5*metro Atlanta -0.1067 (-0.2553, 0.0419) 0.16 -0.1929 (-0.3786, -0.0072) 0.04 

Traffic PM2.5*≤10 mi from metro -0.0399 (-0.1448, 0.0651) 0.46 -0.0702 (-0.1952, 0.0548) 0.27 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value.  

Table only includes model output relevant to interaction of interest. Models also control for child sex, child race, birth year, maternal asthma, and 
minor demographic cluster. Reference group: >10 miles from metro Atlanta. Score statistic p-values for interaction terms: age 2 – did not converge, 
age 4 – 0.68, age 5 – 0.48, age 6 – 0.16 
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Table B12. Sensitivity analyses of the association between first year of life traffic PM2.5 exposure and asthma incidence 

Cohort 
Final adjusted model 

(for comparison) 
Excluding children 
with unknown race 

Excluding children missing ≥90 
days of first year residence data 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0265 (0.0027, 0.0503) 0.03 — — 0.0270 (0.0031, 0.0510)a 0.03 
Age 3 0.0369 (0.0040, 0.0698)a 0.03 0.0350 (-0.0013, 0.0713)a 0.06 0.0334 (-0.0013, 0.0680)a 0.06 
Age 4 0.0373 (-0.0073, 0.0819) 0.10 0.0370 (-0.0112, 0.0852) 0.13 0.0341 (-0.0120, 0.0803) 0.15 
Age 5 0.0578 (0.0035, 0.1122) 0.04 0.0606 (0.0024, 0.1188) 0.04 0.0586 (0.0027, 0.1146) 0.04 
Age 6 0.0359 (-0.0289, 0.1008) 0.28 0.0231 (-0.0457, 0.0918) 0.51 0.0296 (-0.0372, 0.0963) 0.39 

Cohort 

Excluding children with no 
maternal matches and 

unreliable maternal matches b 

Excluding children not linked to 
birth certificates 

 

RD (95% CI) p RD (95% CI) p 

Age 2 — — 0.0297 (0.0024, 0.0569)a 0.03 

Age 3 0.0359 (-0.0002, 0.0720) 0.05 0.0277 (-0.0114, 0.0668)a 0.17 

Age 4 0.0338 (-0.0146, 0.0823) 0.17 0.0325 (-0.0200, 0.0850) 0.22 

Age 5 0.0476 (-0.0110, 0.1062) 0.11 0.0474 (-0.0167, 0.1115) 0.15 

Age 6 0.0214 (-0.0479, 0.0906) 0.55 0.0220 (-0.0540, 0.0980) 0.58 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, even if dropped birth year, a birth year dropped in 
order for model to converge, b Maternal matches were considered unreliable if they were completed using incomplete medical record information 
and not confirmed by a birth certificate, or if birth certificates and medical records included discrepant maternal information 

Models adjust for all covariates in the final adjusted model: child sex, maternal asthma, birth year, minor demographic cluster, city region (metro 
Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). 
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Table B13. Extended Cox proportional hazards regression model results 

Likelihood ratio tests 

Time dependent variables 
included in model 

-2 log likelihood 
(with covariates) 

χ2 
degrees of 
freedom 

p 

None (reduced model) 88102.453 — — — 
1 sex*time variable 88094.387 8.066 1 <0.01 
2 race*time variables 88087.208 15.245 2 <0.01 
11 minor cluster*time variables 88089.154 13.299 11 0.27 
10 birth year*time variables 88087.901 14.552 10 0.15 

Hazard ratios for association between traffic PM2.5 and asthma 

Model Hazard Ratio (95% CI) p 

Adjusted 1.277 (1.081, 1.508) <0.01 
Adjusted + sex*time 1.276 (1.081, 1.507) <0.01 
Adjusted + race*time 1.274 (1.079, 1.505) <0.01 
Adjusted + sex*time + race*time 1.274 (1.079, 1.504) <0.01 

CI = Confidence Interval, p = p-value.  Models adjust for child sex, child race, maternal asthma, 
birth year, minor demographic clusters, and city region (metro Atlanta, ≤10 miles from metro 
Atlanta, >10 miles from metro Atlanta).  Completed for the outcome of asthma incidence between 
the first and sixth birthdays (age 6 analysis).
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Figure B1. Overlap between KAPPA residences during pregnancy and the first year of life and 
the RLINE PM2.5 data region 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Legend 

State of Georgia 

29 county metropolitan Atlanta area 

RLINE PM2.5 data region 
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Figure B2. 29 county metropolitan Atlanta area divided into regions 
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Figure B3. KAPPA residences at birth by race, restricted to the RLINE PM2.5 data region 
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Figure B4. Asthma incidence survival curve for the KAPPA cohort 

 

 

 

Figure B5 (Part 1 of 3). Graphical assessment of the proportional hazards assumption 
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Figure B5 (Part 2 of 3). Graphical assessment of the proportional hazards assumption 
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Figure B5 (Part 3 of 3). Graphical assessment of the proportional hazards assumption 
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APPENDIX C 

Additional analyses of prenatal and first year of life exposure to total PM2.5 and 

childhood asthma incidence in a birth cohort 
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Table C1. Comparison of covariates for children retained in cohort and lost to follow-up 

Cohort 
Children retained in cohort  

until follow-up age 
Children eligible for follow-up age,  

but lost to follow-up before age 

Mean first year of life PM2.5 [µg/m3] 

Age 2 14.70 14.40 
Age 3 14.79 14.52 
Age 4 15.00 14.78 
Age 5 15.34 15.20 
Age 6 15.59 15.62 

Incident asthma at previous follow-up age a [%] 

Age 3 11.5 9.4 
Age 4 18.8 16.9 
Age 5 24.7 23.0 
Age 6 28.8 28.1 

Mean PM2.5 stratified by asthma at previous age a [µg/m3] 
 Asthma No Asthma Asthma No Asthma 

Age 3 14.83 14.79 14.65 14.59 
Age 4 15.02 14.99 14.91 14.94 
Age 5 15.33 15.35 15.21 15.29 
Age 6 15.57 15.60 15.59 15.60 

Child race [%] 

 Black White Other Unknown Black White Other Unknown 

Age 2 36.9 39.7 11.5 11.9 26.6 37.0 13.7 22.8 
Age 3 38.7 39.6 11.2 10.6 27.7 38.0 13.4 20.9 
Age 4 40.1 39.7 10.9 9.4 28.2 37.8 12.7 21.4 
Age 5 41.8 39.2 10.4 8.6 28.3 38.2 12.0 21.5 
Age 6 43.2 39.0 10.0 7.9 28.8 38.6 11.0 21.6 

Major demographic cluster [%] 

 A B C D A B C D 

Age 2 62.7 9.6 4.7 23.0 61.2 10.9 5.6 22.4 
Age 3 63.0 9.2 4.7 23.2 61.4 10.9 5.3 22.3 
Age 4 62.9 9.0 4.6 23.5 62.1 10.3 5.1 22.5 
Age 5 62.7 8.9 4.7 23.7 62.4 9.7 5.2 22.7 
Age 6 62.7 8.9 4.4 24.0 62.3 9.3 5.4 23.0 

City region [%] 

 
Metro 
Atlanta 

≤10 mi from 
metro 

Atlanta 

>10 mi from 
metro 

Atlanta 

Metro 
Atlanta 

≤10 mi from 
metro 

Atlanta 

>10 mi from 
metro 

Atlanta 

Age 2 10.5 43.3 46.2 10.4 41.2 48.5 
Age 3 10.4 43.9 45.7 10.4 41.2 48.3 
Age 4 10.3 45.1 44.6 10.2 41.2 48.6 
Age 5 10.3 46.1 43.6 9.8 41.4 48.8 
Age 6 10.4 47.3 42.3 9.6 42.1 48.3 

To be eligible for each follow-up age a child has to be born early enough to be that age in September 
2013 when the KAPPA cohort was defined. For example, a child born in 2010 could be at most 3 years 
old at the time KAPPA follow-up ended in September 2013. a Incident asthma at previous follow-up age 
only calculated among children in previous cohort (can’t calculate for age 2 since no asthma 
classifications at age 1)
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Table C2. Additional model results for the association between first year of life PM2.5 exposure and asthma incidence 

Cohort 
MODEL A1 MODEL A2 MODEL A3 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 -0.0074 (-0.0155, 0.0008)a 0.08 0.0026 (0.0003, 0.0049) 0.02 0.0077 (-0.0017, 0.0171) 0.11 
Age 3 -0.0123 (-0.0245, -0.0000) 0.05 0.0031 (-0.0001, 0.0062) 0.06 0.0072 (-0.0056, 0.0200) 0.27 
Age 4 -0.0207 (-0.0370, -0.0044) 0.01 0.0050 (0.0005, 0.0096) 0.03 0.0044 (-0.0135, 0.0222) 0.63 
Age 5 -0.0077 (-0.0280, 0.0125) 0.45 -0.0008 (-0.0092, 0.0075) 0.85 0.0176 (-0.0046, 0.0397) 0.12 
Age 6 -0.0097 (-0.0356, 0.0162) 0.46 -0.0041 (-0.0203, 0.0120) 0.62 0.0185 (-0.0090, 0.0461) 0.19 

Cohort 
MODEL A4 MODEL A5   

RD (95% CI) p RD (95% CI) p   

Age 2 0.0083 (-0.0012, 0.0179)a 0.09 0.0079 (-0.0015, 0.0174) 0.10   
Age 3 0.0067 (-0.0063, 0.0196)a 0.31 0.0061 (-0.0068, 0.0190) 0.36   
Age 4 0.0048 (-0.0136, 0.0231) 0.61 0.0030 (-0.0153, 0.0214) 0.75   
Age 5 0.0187 (-0.0041, 0.0415) 0.11 0.0174 (-0.0054, 0.0402) 0.13   
Age 6 0.0183 (-0.0098, 0.0465) 0.20 — —   

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, a≤17 children deleted in order for model to converge 

List of Model Covariates 
Model A1: child sex, child race, child ethnicity, maternal asthma, cubic splines on date of birth with 1 knot per year, maternal age, maternal 
education, paternal education, maternal marital status [Model 1 with paternal education, maternal marital status] 

Model A2: child sex, child race, maternal asthma, minor demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles 
from metro Atlanta) [Model 7 (final model) without cubic splines on date of birth, no temporal control] 

Model A3: child sex, child race, maternal asthma, minor demographic cluster, cubic splines on date of birth with 1 knot per year, city region (metro 
Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta) [Model 7 (final model) without accounting for correlation between siblings, 
correlation structure (necessary to implement robust variance estimation) determined using child study id instead of family id] 

Model A4: child sex, child race, maternal asthma, minor demographic cluster, cubic splines on date of birth with 1 knot per year, city region (metro 
Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta), interaction between city region and race [Model 7 (final model) with 
interaction term between city region and race] [Most Wald test p-values for interaction terms >0.05, score statistics did not converge]  

Model A5: child sex, child race, maternal asthma, minor demographic cluster, cubic splines on date of birth with 1 knot per year, city region (metro 
Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta), interaction between metro Atlanta and minor demographic cluster [Model 7 
(final model) with interaction term between metro Atlanta and minor demographic cluster. Did not include interaction terms with all city regions 
because of model convergence issues] [All Wald test p-values for interaction terms >0.05, score statistics did not converge] 
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Table C3. First year of life PM2.5 exposure and asthma incidence, stratified by race 

Cohort 

Unadjusted models stratified by race 

Black White 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0003 (-0.0040, 0.0046) 0.89 0.0020 (-0.0016, 0.0057) 0.27 
Age 3 0.0030 (-0.0027, 0.0088) 0.30 0.0021 (-0.0032, 0.0074) 0.44 
Age 4 0.0041 (-0.0036, 0.0118) 0.29 0.0021 (-0.0052, 0.0094) 0.57 
Age 5 -0.0091 (-0.0225, 0.0044) 0.19 -0.0050 (-0.0181, 0.0081) 0.45 
Age 6 0.0005 (-0.0236, 0.0245) 0.97 -0.0206 (-0.0441, 0.0028) 0.09 

Cohort 

Adjusted models stratified by race 

Black White 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0173 (0.0004, 0.0343) 0.05 — — 
Age 3 0.0028 (-0.0212, 0.0269) 0.82 0.0120 (-0.0066, 0.0306)a 0.21 

Age 4 0.0001 (-0.0307, 0.0309) 1.00 0.0118 (-0.0139, 0.0374) 0.37 
Age 5 0.0017 (-0.0360, 0.0394) 0.93 0.0224 (-0.0101, 0.0549) 0.18 

Age 6 -0.0154 (-0.0598, 0.0291) 0.50 0.0418 (-0.0000, 0.0835)a 0.05 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, a<50 children deleted in order for model to converge 

Adjusted models include all covariates in the final adjusted model: child sex, maternal asthma, cubic splines on date of birth with 1 knot per year, 
minor demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). The following minor 
demographic clusters were combined in order to aid in convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table C4. First year of life PM2.5 exposure and asthma incidence, assessing interaction between PM2.5 and race 

Parameter 
AGE 2a AGE 3 AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

PM2.5 0.0078 (-0.0015, 0.0172) 0.10 0.0073 (-0.0058, 0.0205) 0.27 0.0038 (-0.0149, 0.0226) 0.69 
Black race 0.0409 (-0.0380, 0.1199) 0.31 0.0223 (-0.0834, 0.1280) 0.68 0.0092 (-0.1408, 0.1593) 0.90 
Unknown/other race -0.0010 (-0.0790, 0.0770) 0.98 0.0725 (-0.0454, 0.1903) 0.23 0.0354 (-0.1479, 0.2187) 0.70 
PM2.5*black race -0.0012 (-0.0066, 0.0041) 0.65 0.0003 (-0.0068, 0.0074) 0.93 0.0013 (-0.0087, 0.0112) 0.80 
PM2.5*unknown/other race 0.0002 (-0.0051, 0.0056) 0.93 -0.0051 (-0.0129, 0.0026) 0.19 -0.0023 (-0.0144, 0.0099) 0.71 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

PM2.5 0.0192 (-0.0053, 0.0436) 0.13 0.0153 (-0.0187, 0.0494) 0.38 

Black race 0.1658 (-0.1153, 0.4470) 0.25 -0.0878 (-0.6086, 0.4330) 0.74 

Unknown/other race -0.1552 (-0.4765, 0.1660) 0.34 0.2820 (-0.3761, 0.9401) 0.40 

PM2.5*black race -0.0073 (-0.0256, 0.0110) 0.43 0.0094 (-0.0240, 0.0428) 0.58 

PM2.5*unknown/other race 0.0115 (-0.0095, 0.0324) 0.28 -0.0153 (-0.0574, 0.0268) 0.48 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a 1 child deleted from cohort in order for model to converge 

Table only includes model output relevant to interaction of interest. Models also control for child sex, cubic splines on date of birth with 1 knot per 
year, maternal asthma, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). 
Reference group: white race. Score statistics did not converge for any of the models. 
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Table C5. First year of life PM2.5 exposure and asthma incidence, stratified by sex 

Cohort 

Unadjusted models stratified by sex 

Male Female 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0017 (-0.0019, 0.0054) 0.35 0.0010 (-0.0021, 0.0041) 0.53 

Age 3 0.0034 (-0.0018, 0.0085) 0.20 -0.0007 (-0.0053, 0.0039) 0.77 

Age 4 0.0045 (-0.0024, 0.0114) 0.20 0.0011 (-0.0052, 0.0074) 0.73 

Age 5 -0.0068 (-0.0192, 0.0056) 0.28 -0.0017 (-0.0127, 0.0093) 0.76 

Age 6 -0.0121 (-0.0348, 0.0106) 0.30 -0.0095 (-0.0297, 0.0106) 0.36 

Cohort 

Adjusted models stratified by sex 

Male Female 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0192 (0.0040, 0.0344) 0.01 0.0003 (-0.0109, 0.0115)a 0.96 

Age 3 0.0193 (-0.0021, 0.0407) 0.08 -0.0010 (-0.0145, 0.0124)a 0.88 

Age 4 0.0163 (-0.0111, 0.0438) 0.24 -0.0067 (-0.0299, 0.0165) 0.57 

Age 5 0.0219 (-0.0124, 0.0562) 0.21 0.0097 (-0.0195, 0.0389) 0.52 

Age 6 -0.0098 (-0.0518, 0.0321) 0.65 0.0402 (0.0040, 0.0765) 0.03 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a<40 children deleted in order for model to converge 

Adjusted models include all covariates in the final adjusted model: child race, maternal asthma, cubic splines on date of birth with 1 knot per 
year, minor demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). The following minor 
demographic clusters were combined in order to aid in convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table C6. First year of life PM2.5 exposure and asthma incidence, assessing interaction between PM2.5 and sex 

Parameter 
AGE 2 AGE 3 AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

PM2.5 0.0078 (-0.0015, 0.0172) 0.10 0.0058 (-0.0076, 0.0192) 0.39 0.0037 (-0.0150, 0.0225) 0.70 
Male sex 0.0542 (-0.0118, 0.1203) 0.11 0.0460 (-0.0487, 0.1407) 0.34 0.0702 (-0.0644, 0.2047) 0.31 
PM2.5*male sex -0.0007 (-0.0052, 0.0038) 0.75 0.0016 (-0.0047, 0.0080) 0.62 0.0005 (-0.0084, 0.0095) 0.91 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

PM2.5 0.0207 (-0.0029, 0.0442) 0.09 0.0202 (-0.0104, 0.0508) 0.20 

Male sex 0.1841 (-0.0626, 0.4307) 0.14 0.1730 (-0.2869, 0.6330) 0.46 

PM2.5*male sex -0.0063 (-0.0223, 0.0097) 0.44 -0.0056 (-0.0350, 0.0239) 0.71 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value 

Table only includes model output relevant to interaction of interest. Models also control for child race, cubic splines on date of birth with 1 
knot per year, maternal asthma, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from 
metro Atlanta). Reference group: female sex. Score statistics did not converge for any of the models. 
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Table C7. First year of life PM2.5 exposure and asthma incidence, stratified by maternal asthma 

Cohort 

Unadjusted models stratified by maternal asthma 

Maternal Asthma No Maternal Asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0079 (0.0001, 0.0157) 0.05 0.0002 (-0.0025, 0.0029) 0.89 
Age 3 0.0050 (-0.0061, 0.0160) 0.38 -0.0003 (-0.0042, 0.0036) 0.87 
Age 4 0.0051 (-0.0092, 0.0194) 0.48 0.0023 (-0.0030, 0.0076) 0.39 
Age 5 -0.0078 (-0.0347, 0.0192) 0.57 -0.0039 (-0.0133, 0.0054) 0.41 
Age 6 -0.0216 (-0.0687, 0.0254) 0.37 -0.0086 (-0.0256, 0.0084) 0.32 

Cohort 

Adjusted models stratified by maternal asthma 

Maternal Asthma No Maternal Asthma 

RD (95% CI) p RD (95% CI) p 

Age 2 0.0352 (0.0074, 0.0629)a 0.01 0.0082 (-0.0022, 0.0187) 0.12 
Age 3 0.0058 (-0.0401, 0.0517)a 0.80 0.0069 (-0.0079, 0.0217) 0.36 
Age 4 0.0143 (-0.0412, 0.0697) 0.61 0.0009 (-0.0199, 0.0217) 0.93 
Age 5 0.0266 (-0.0426, 0.0957)a 0.45 0.0161 (-0.0093, 0.0415) 0.22 
Age 6 0.0093 (-0.0762, 0.0948)a 0.83 0.0162 (-0.0155, 0.0478) 0.32 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a<10 children deleted in order for model to converge 

Adjusted models include all covariates in the final adjusted model: child sex, child race, cubic splines on date of birth with 1 knot per year, minor 
demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). The following minor demographic 
clusters were combined in order to aid in convergence: A.2 and A.3; D.1 and D.3; D.5, D.6 and D.7. 
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Table C8. First year of life PM2.5 exposure and asthma incidence, assessing interaction between PM2.5 and maternal asthma 

Parameter 
AGE 2 AGE 3 AGE 4 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

PM2.5 0.0072 (-0.0023, 0.0168) 0.14 0.0063 (-0.0067, 0.0194) 0.34 0.0040 (-0.0143, 0.0224)  0.67 
Maternal asthma -0.0330 (-0.1511, 0.0852) 0.58 0.0474 (-0.1239, 0.2188) 0.59 0.1065 (-0.1218, 0.3347) 0.36 
PM2.5*maternal asthma 0.0065 (-0.0016, 0.0145) 0.11 0.0027 (-0.0088, 0.0141) 0.65 -0.0002 (-0.0153, 0.0150) 0.98 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

PM2.5 0.0182 (-0.0046, 0.0410) 0.12 0.0188 (-0.0097, 0.0473) 0.20 

Maternal asthma 0.2042 (-0.2252, 0.6336) 0.35 0.3455 (-0.4285, 1.1195) 0.38 

PM2.5*maternal asthma -0.0044 (-0.0322, 0.0235) 0.76 -0.0124 (-0.0620, 0.0372) 0.62 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value 

Table only includes model output relevant to interaction of interest. Models also control for child sex, child race, cubic splines on date of birth 
with 1 knot per year, minor demographic cluster, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). 
Reference group: no maternal asthma or unknown maternal asthma status. Score statistics did not converge for any of the models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



206 
 

 

2
0

6
 

 
 
 

Table C9. First year of life PM2.5 exposure and asthma incidence, stratified by city region 

Cohort 

Unadjusted models stratified by city region 

Metro Atlanta ≤10 miles from metro Atlanta >10 miles from metro Atlanta 

RD (95% CI) p RD (95% CI) p RD (95% CI) P 

Age 2 0.0090 (0.0029, 0.0151) <0.01 0.0011 (-0.0029, 0.0051) 0.58 0.0022 (-0.0013, 0.0057) 0.22 
Age 3 0.0105 (0.0009, 0.0200) 0.03 0.0044 (-0.0012, 0.0100) 0.12 0.0003 (-0.0048, 0.0053) 0.92 
Age 4 0.0143 (0.0016, 0.0269) 0.03 0.0054 (-0.0022, 0.0130) 0.17 0.0014 (-0.0056, 0.0083) 0.70 
Age 5 0.0034 (-0.0230, 0.0297) 0.80 0.0003 (-0.0133, 0.0139) 0.97 -0.0028 (-0.0153, 0.0097) 0.66 
Age 6 -0.0150 (-0.0595, 0.0296) 0.51 -0.0042 (-0.0285, 0.0202) 0.74 -0.0022 (-0.0276, 0.0232) 0.86 

Cohort 

Final model stratified by city region 

Metro Atlanta ≤10 miles from metro Atlanta >10 miles from metro Atlanta 

RD (95% CI) p RD (95% CI) p RD (95% CI) P 

Age 2 — — 0.0059 (-0.0098, 0.0216) 0.46 0.0183 (0.0039, 0.0328)a 0.01 
Age 3 — — 0.0051 (-0.0180, 0.0281) 0.67 0.0258 (0.0054, 0.0462) 0.01 
Age 4 -0.0261 (-0.0753, 0.0230)a 0.30 -0.0033 (-0.0336, 0.0270) 0.83 0.0199 (-0.0077, 0.0474) 0.16 
Age 5 0.0181 (-0.0424, 0.0786)a 0.56 -0.0054 (-0.0430, 0.0321) 0.78 0.0380 (0.0046, 0.0713) 0.03 
Age 6 -0.0041 (-0.0841, 0.0759)a 0.92 -0.0160 (-0.0616, 0.0296) 0.49 0.0437 (0.0031, 0.0843) 0.03 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, “—" = did not converge, a<50 children deleted in order for model to converge 

Adjusted models include all covariates in the final adjusted model: child sex, child race, maternal asthma, cubic splines on date of birth with 1 knot 
per year, and minor demographic cluster. The following minor demographic clusters were combined in order to aid in convergence: A.2 and A.3; 
D.1 and D.3; D.5, D.6 and D.7. 
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Table C10. First year of life PM2.5 exposure and childhood asthma incidence, assessing interaction between PM2.5 and city region 

Parameter 
AGE 2 a AGE 3 a AGE 4 a 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

PM2.5 0.0080 (-0.0017, 0.0177) 0.10 0.0057 (-0.0079, 0.0193) 0.41 0.0023 (-0.0161, 0.0207) 0.81 
Metro Atlanta -0.1374 (-0.2396, -0.0353) <0.01 -0.1491 (-0.2604, -0.0378) <0.01 -0.1945 (-0.3436, -0.0454) 0.01 
≤10 mi from metro Atlanta -0.0149 (-0.0920, 0.0622) 0.71 -0.0773 (-0.1881, 0.0335) 0.17 -0.0662 (-0.2187, 0.0862) 0.39 
PM2.5*metro Atlanta 0.0067 (-0.0001, 0.0134) 0.05 0.0067 (-0.0006, 0.0139) 0.07 0.0096 (-0.0003, 0.0194) 0.06 
PM2.5*≤10 mi from metro -0.0000 (-0.0052, 0.0051) 0.99 0.0041 (-0.0033, 0.0114) 0.28 0.0033 (-0.0068, 0.0133) 0.52 

Parameter 
AGE 5 AGE 6  

RD (95% CI) p RD (95% CI) p 

PM2.5 0.0141 (-0.0096, 0.0378) 0.24 0.0112 (-0.0221, 0.0446) 0.51 

Metro Atlanta -0.3315 (-0.7149, 0.0519) 0.09 -0.3059 (-1.0987, 0.4870) 0.45 

≤10 mi from metro Atlanta -0.1470 (-0.4235, 0.1296) 0.30 -0.1911 (-0.7332, 0.3510) 0.49 

PM2.5*metro Atlanta 0.0167 (-0.0076, 0.0409) 0.18 0.0143 (-0.0352, 0.0639) 0.57 

PM2.5*≤10 mi from metro 0.0077 (-0.0103, 0.0256) 0.40 0.0106 (-0.0243, 0.0454) 0.55 
RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a ≤36 children deleted in order for model to converge 

Table only includes model output relevant to interaction of interest. Models also control for child sex, child race, cubic splines on date of birth with 
1 knot per year, maternal asthma, and minor demographic cluster. Reference group: >10 miles from metro Atlanta. Score statistics did not converge 
for any of the models. 
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Table C11. Sensitivity analyses of the association between first year of life PM2.5 exposure and asthma incidence 

Cohort 
Final adjusted model 

(for comparison) 
Excluding children 
with unknown race 

Excluding children missing ≥90 
days of first year residence data 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0076 (-0.0019, 0.0170) 0.12 0.0118 (0.0020, 0.0216)b 0.02 0.0057 (-0.0037, 0.0151)b 0.24 
Age 3 0.0066 (-0.0064, 0.0196) 0.32 0.0068 (-0.0070, 0.0207)b 0.33 0.0039 (-0.0095, 0.0174) 0.57 
Age 4 0.0040 (-0.0143, 0.0223) 0.67 0.0041 (-0.0153, 0.0235) 0.68 -0.0001 (-0.0189, 0.0188) 1.00 
Age 5 0.0178 (-0.0049, 0.0405) 0.12 0.0189 (-0.0051, 0.0430) 0.12 0.0146 (-0.0088, 0.0379) 0.22 
Age 6 0.0176 (-0.0106, 0.0457) 0.22 0.0142 (-0.0155, 0.0439) 0.35 0.0104 (-0.0187, 0.0395) 0.48 

Cohort 

Excluding children with no 
maternal matches and 

unreliable maternal matches a 

Excluding children with pollution 
data assigned from a different 

year 

Excluding children not linked to 
birth certificates 

RD (95% CI) p RD (95% CI) p RD (95% CI) p 

Age 2 0.0118 (0.0019, 0.0217)b 0.02 0.0095 (-0.0014, 0.0205) 0.09 0.0117 (0.0011, 0.0223)b 0.03 
Age 3 0.0069 (-0.0064, 0.0202) 0.31 0.0086 (-0.0055, 0.0227)b 0.23 0.0069 (-0.0075, 0.0213)b 0.35 
Age 4 0.0027 (-0.0170, 0.0225) 0.79 0.0022 (-0.0181, 0.0225) 0.83 0.0006 (-0.0204, 0.0215) 0.96 
Age 5 0.0186 (-0.0056, 0.0428) 0.13 0.0105 (-0.0157, 0.0367) 0.43 0.0180 (-0.0079, 0.0440) 0.17 
Age 6 0.0158 (-0.0140, 0.0457) 0.30 0.0041 (-0.0297, 0.0378) 0.81 0.0159 (-0.0164, 0.0482) 0.34 

RD = Risk Difference for 1 µg/m3, CI = Confidence Interval, p = p-value, a Maternal matches were considered unreliable if they were completed 
using incomplete medical record information and not confirmed by a birth certificate, or if birth certificates and medical records included 
discrepant maternal information, b≤26 children deleted in order for model to converge 

Models adjust for all covariates in the final adjusted model: child sex, maternal asthma, cubic splines on date of birth with 1 knot per year, minor 
demographic cluster, city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta). 
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Table C12. Extended Cox proportional hazards regression model results 

Likelihood ratio tests 

Time dependent variables 
included in model 

-2 log likelihood 
(with covariates) 

χ2 
degrees of 
freedom 

p 

None (reduced model) 88102.102 — — — 
1 sex*time variable 88093.990 8.112 1 <0.01 
2 race*time variables 88086.661 15.441 2 <0.01 
11 minor cluster*time variables 88088.771 13.331 11 0.27 

Hazard ratios for association between PM2.5 and asthma 

Model Hazard Ratio (95% CI) p 

Adjusted 1.090 (1.020, 1.165) 0.01 
Adjusted + sex*time 1.091 (1.021, 1.166) 0.01 
Adjusted + race*time 1.090 (1.020, 1.165) 0.01 
Adjusted + sex*time + race*time 1.091 (1.021, 1.166) 0.01 

CI = Confidence Interval, p = p-value.  Models adjust for child sex, child race, maternal asthma, cubic splines on date of birth with 1 knot per 
year, minor demographic clusters, and city region (metro Atlanta, ≤10 miles from metro Atlanta, >10 miles from metro Atlanta).  Completed 
for the outcome of asthma incidence between the first and sixth birthdays (age 6 analysis). 
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Figure C1. Percent of children classified as asthmatic by A) birth year B) conception year  

Four points per year plotted one for each season. Order within each year: winter, spring, 
summer, fall 

A.  

B.  
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Figure C2. Plots of predicted probability of asthma incidence by time, modeled using 
different types of time control with cubic splines: A) splines on date of birth with 2 knots 
per year in April and October B) splines on date of birth with 1 knot per year in May C) 
splines on date of conception with 2 knots per year in April and October D) splines on 
date of conception with 1 knot per year in May 
 

A.  B.  
           

C.  D.   
 
Vertical lines indicate knot locations. Age 3 and 5 models did not converge when using cubic splines for 
date of conception with knots in April and October.  
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Figure C3. Graphical assessment of the proportional hazards assumption for first year of life 
PM2.5 exposure quartile 
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