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Abstract

Regression Models for a Continuous Outcome Subject to Pooling

By Emily Mitchell

The potential for research involving biospecimens can be hindered by the high cost
of laboratory assays. To reduce cost, strategies such as randomly selecting a portion of
specimens for analysis or randomly pooling specimens prior to performing laboratory assays
may be employed, yet are often accompanied by a considerable loss of statistical efficiency.
Intuitively, forming pools from specimens with similar covariate values will help maintain
high precision levels among regression coefficient estimates by preserving the relationship
between the outcome and predictor variables. To implement this strategy, we propose a
novel pooling method based on the k-means clustering algorithm. This method is tested in
a linear regression setting, then applied in subsequent studies to promote efficiency.

Linear regression provides a convenient avenue to test potential efficiency gains from
k-means pooling. Many biomarkers measured in epidemiological studies, however, exhibit
a positive, right-skewed distribution, for which linear regression may not be appropriate.
Regression models suitable to this type of outcome data are explored, including a modifi-
cation of multiple linear regression on a log-transformation of pool-wise data and a novel
parameterization of the gamma distribution.

If pools are formed from specimens with identical covariate values, regression analyses
on a right-skewed, pooled outcome are greatly simplified. When these x-homogeneous pools
cannot be formed, we propose a quasi-likelihood model for pooled specimens as well as a
Monte Carlo Expectation Maximization (MCEM) algorithm. We then develop an extension
of Akaike’s Information Criterion to help select the best model. Simulations demonstrate
that these analytical methods provide essentially unbiased estimates of coefficient parame-
ters as well as their standard errors when appropriate assumptions are met.

In conclusion, when the number of laboratory tests is limited by budget, pooling speci-
mens prior to performing lab assays can be an effective way to save money. High levels of
precision can be maintained by exploiting covariate information to form pools, as in k-means
pooling, then selecting the best-fitting model using an AIC-type criterion. When pools are
formed strategically and analyzed under the appropriate models, pooling can considerably
reduce costs with minimal information loss.
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Chapter 1

Background

1.1 Origins and Applications of Pooling

The introduction, or rather, popularization of pooling is often attributed to Robert Dorf-

man (1943), who applied the technique to blood samples when testing soldiers for syphilis.

The idea behind this type of pooling is that, when a disease has low prevalence, it is more

cost effective to test pooled groups of specimens, then retest each of the specimens from

any positive pools individually, rather than to simply perform lab tests on each individual

specimen. Since then, pooling has become a popular strategy for reducing cost, for instance,

in testing donated blood for HIV or determining regional prevalence of blood-bourne dis-

eases (Brookmeyer, 1999; Emmanuel et al., 1988; Lan, Hsieh, and Yen, 1993; Vansteelandt,

Goetghebeur, and Verstraeten, 2000).

Weinberg and Umbach (1999) note that pooling can help preserve irreplaceable speci-

mens, by requiring only a portion of the stored sample for analysis. Along the same lines,

pooling can make use of samples that may lack enough volume to be analyzed individu-

ally, thus extracting information from specimens that may otherwise have been presumed

unusable.

Pooling can also be helpful from the standpoint of reducing the number of assay non-

detects when a laboratory limit of detection is present. Schisterman and Vexler (2008)

discuss the advantages to pooling when estimating mean and variance of biospecimens

subject to a limit of detection, where the utility of pooling depends on the value of the
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detection threshold relative to the mean of the biomarker value.

While pooling may be performed for various reasons, in this paper we assume that the

primary motivating factor is to reduce laboratory costs. Study designs recommended in this

paper are made under this assumption, and additional consideration of alternate designs

may be necessary if pooling is done for a different reason, such as to reduce the number of

non-detects when a limit of detection is present.

Specifically, we focus our investigation on efficiently estimating regression coefficients

when a continuous outcome is subject to pooling. Let Yij denote the jth subject in the ith

pool, and let xij be the vector of covariates corresponding to this outcome. Furthermore,

suppose that we can model the relationship between the predictor and outcome with one

of the following models:

1. h(Yij) = α+ xijβ + εij

2. g(µij) = α+ xijβ

The first model is a linear regression model where h denotes a transformation on Yij (which

could be the identity) and εij is the error term such that E(εij) = 0 and V ar(εij) = σ2 for

all j = 1, . . . , ki, i = 1, . . . , n. The second model is a generalized linear regression model,

where the link function g represents a transformation of µij = E(Yij), the mean of Yij . Our

main objective in this study is to effectively and efficiently estimate the vector of regression

coefficients β, when the outcome is only known by its pooled measurements. In doing so,

we propose and evaluate regression models for pooled data, as well as pooling designs that

promote estimate efficiency.

1.2 Efficient Pooling Designs

A common aversion to pooling is the fear of losing information as a consequence of reducing

the total sample size. For this reason, many efforts have been made to identify efficient

pooling designs, in order to maintain a high level of statistical precision while reducing

costs. The power of pooling as a potential cost-saving tool is particularly compelling when

strategically pooled samples outperform analyses on the same number of randomly sampled
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individual specimens.

Vexler, Liu, and Schisterman (2006) demonstrate the advantage of pooling under a two-

stage sampling design when a limit of detection is present. They consider this scenario

and discuss methods to optimize efficiency when a biomarker is distributed under a normal

or gamma distribution. Schisterman et al. (2010) also consider optimal pooling strategies

when estimating marginal means and variances under normally-distributed data, paying

special attention to proper estimation of pooling and measurement error. They recommend

a hybrid pooled-unpooled design, where the unpooled specimens permit effective estimation

of these error components. Malinovsky, Albert, and Schisterman (2012) extend this hybrid

design to a Gaussian random effects model, with an emphasis on using strategic pooling

designs to efficiently estimate the intraclass correlation coefficient.

In a linear regression setting, an optimal pooling strategy for estimate precision is based

on a D-optimal design, which seeks to maximize |XTX|, where X is the design matrix.

Ma et al. (2011) propose the use of this D-optimal design using information on a known

or inexpensively-assessed biomarker to optimize pools on a correlated biomarker with an

expensive laboratory assay.

1.2.1 Clustering

In Chapter 2, we propose applying a k-means clustering algorithm as an efficient pooling

design and use simulations to assess this strategy under linear regression. In later sections,

we apply this clustering method to generalized regression models to promote estimate pre-

cision.

A wide variety of clustering algorithms are available, the growth of which has been

promoted by increasingly powerful computing capacity. Hartigan (1975) gives a nice intro-

duction to various clustering procedures, although the methods he discusses may now be

somewhat outdated. For a more recent summary, Jain, Murty, and Flynn (1999) and Ab-

bas (2008) provide an overview of clustering techniques, the former containing some helpful

illustrations comparing the various procedures.

While the objective of most clustering strategies is for classification purposes, our use of

clustering, specifically the k-means clustering algorithm, has a slightly different motivation.
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Instead of correct identification of membership to underlying groups, our goal is to exploit

existing clustering techniques that exhibit the secondary effect of producing efficient esti-

mates in a regression setting. The k-means clustering algorithm is particularly suited to our

purposes since it seeks to maximize the between-cluster sum of squares, which corresponds

directly with minimizing the variance of the regression coefficient estimate in simple linear

regression (SLR). This connection to SLR will be discussed in more detail in Chapter 2.

For now, we will focus on implementation and optimization of this algorithm.

Both SAS and R have built-in functions that perform k-means clustering. Both functions

accept arguments specifying the data to be clustered (e.g. the fully-known set of covariate

values), and the desired number of clusters, k. If our goal were for classification purposes,

it would be beneficial to identify an optimal value for k. For our purposes, however, we can

choose k to be the maximum allowable number of lab tests commensurate with available

funds.

The kmeans function in R seeks to minimize the within-cluster sum of squares. By

default, this function applies the k-means algorithm described in Hartigan and Wong (1979).

Due to the complexity of the clustering algorithm, a local minimum is identified. Thus, it

may be desirable to run the algorithm multiple times and choose the clustering that is

optimal based on a predetermined criterion (e.g. maximizing |XTX|) in order to improve

efficiency.

Efforts have been made to provide a more globally optimal k-means algorithm. One

strategy is to apply a leader algorithm that forces a minimum distance between initial

cluster centers. Doing this creates separation between clusters at the start of the algorithm,

especially when compared with randomly choosing initial cluster seeds (the default in R’s

kmeans function). The FASTCLUS procedure in SAS applies Hartigan’s leader algorithm

(Hartigan, 1975), and performs the k-means algorithm detailed by MacQueen (1967).

Another attempt at improving the k-means algorithm is to use a stepwise approach.

Likas, Vlassis, and Verbeek (2003) propose this global version, which, instead of randomly

selecting k initial cluster centers, “proceeds in an incremental way attempting to optimally

add one new cluster center at each stage”. To do this, Likas et al. recommend beginning by

performing k-means with k = 1. Then, the resulting cluster center is combined with each of
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the N observations as a candidate pair of initial seeds for k = 2. The pair that maximizes

the algorithm is then chosen for the next iteration, and again combined and tested with

each of the N observations at k = 3. This process is repeated until the desired number of

clusters has been achieved.

1.3 Pooling in Logistic Regression

Much of the research concerning pooling has focused on the logistic regression setting,

perhaps as a natural extension of pooling’s origins in identifying disease presence or absence.

In the following sections, we briefly summarize regression models for logistic regression; first,

when pooling is performed on a binary outcome, then when the binary outcome is known

for each individual, and pooling is performed on an exposure of interest.

1.3.1 When a Binary Outcome is Pooled

Consider the scenario explored by Vansteelandt et al. (2000), where logistic regression is

performed on a binary outcome that is subject to pooling. In their paper, Vansteelandt

et al. define a case pool as a pool that tests positive, indicating that at least one of the

specimens in that pool is a case. A control pool is then a pool that tests negative, meaning

that all specimens comprising that pool are controls. They propose direct maximization of

the observed likelihood, where the log-likelihood of the pooled measurements is:

l(β) =

n∑
i=1

Y p
i log f(ki,xi) + (1− Y p

i ) log[1− f(ki,xi)] (1.1)

where ki represents the pool size, xi and Y p
i the covariate vector and measured outcome,

respectively, for pool i, and f(ki,xi) = Pr(Y p
i = 1|xi). Depending on the desired regression

model, f(ki,xi) could have various forms. In logistic regression, for instance,

Pr(Y p
i = 0|xi) =

ki∏
j=1

Pr(Yij = 0|xij) =

ki∏
j=1

[1 + exp(xijβ)]−1
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since the probability that pool i is a control pool is equal to the product of the probabilities

that each of the specimens is a control, assuming that all specimens are independent. Then

Pr(Y p
i = 1|xi) = 1− Pr(Y p

i = 0|xi) = 1−
ki∏
j=1

[1 + exp(xijβ)]−1.

Vansteelandt et al. also consider the effect of test sensitivity and specificity on the result-

ing estimates, but this topic is beyond the scope of this paper, so for our purposes, we

assume a sensitivity and specificity of 1 for all tests. Vansteelandt et al. demonstrate that

optimal pooling strategies can reduce cost up to 44% with virtually no precision loss in

the calculation of disease prevalence, when a binary outcome is subject to pooling. Specif-

ically, they recommend an x-homogeneous pooling design to maximize precision. When

x-homogeneous pools cannot be formed, we recommend k-means clustering as a means to

preserve the relationship between the outcome and covariates. In Section 2.6 we use simu-

lations to demonstrate the benefit of k-means clustering in this logistic regression setting.

1.3.2 When an Exposure is Pooled

Weinberg and Umbach (1999) also consider pooling in a logistic regression setting, but focus

on the situation when each individual’s case status is known, and pooling is performed on a

continuous exposure. To improve estimate precision, they recommend pooling conditional

on case status. Using a known outcome to inform pools may induce bias in the resulting

estimates if appropriate measures are not taken.

Let E represent the continuous exposure that is subject to pooling, and let S =
∑g

j=1Ej

denote the sum of the exposures in a pool (i.e. pool size × measured value of pool), where

g is the pool size. To develop appropriate, consistent regression estimates, Weinberg and

Umbach take advantage of the multiplicative structure of the risk model in order to propose

a set based logistic regression model:

Pr(case set|S)

Pr(control set|S)
= exp(µ∗g + βS + log rg),

where β is the regression coefficient of interest and log rg represents “the number of case
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sets of size g divided by the number of control sets of size g” (Weinberg and Umbach,

1999). Note that this last component necessitates a bit more attention to pooling design,

since it forces at least one case pool of size g if there are any control pools of size g, and

vice versa. This model permits valid estimation of the coefficient of interest, β, using only

pooled values, and suffers a surprisingly small loss of efficiency relative to the individual-

level logistic model. The model is also flexible in accommodating additional covariates in

the same manner, as well as interaction terms involving the exposure.

Zhang and Albert (2011), Zhang et al. (2012), and Lyles et al. (2012) also consider

pooling on an exposure in a logistic regression setting. Zhang and Albert (2011) apply a

regression calibration approach when a continuous exposure is pooled, while Zhang et al.

(2012) and Lyles et al. (2012) develop maximum likelihood methods to estimate regression

coefficients when a pooled exposure is binary.

1.4 Pooling on a Right-Skewed, Continuous Variable

Pooled measurements are often assumed to represent the arithmetic mean of the individuals

comprising that pool. This property facilitates analysis of pooled data under certain distri-

butions, such as Gaussian or gamma, due to summation properties of these distributions,

so that pools retain the assumed distribution of the individual specimens. For distributions

that do not share this summation property, such as the lognormal, alternate methods must

be taken to analyze pooled values.

1.4.1 Convolution

A sum of random variables can be characterized exactly by a convolution formula. Let

Y1, . . . , Yn be independent random variables and let fi(yi) denote the density of Yi for

i = 1, . . . , n. Then for S =
∑n

i=1 Yi, the density of S can be written as the convolution:

fS(S) =

∫
Y2

. . .

∫
Yn

[
f1

(
S −

n∑
i=2

Yi

)
f2(Y2) . . . fn(Yn)

]
dY2 . . . dYn. (1.2)
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Vexler, Liu, and Schisterman (2010) apply a deconvolution method to estimate empirical

characteristic functions of a sum of random variables without applying any distributional

assumptions on the individual specimens. When pool size is small (e.g. 2 or 3), (1.2) can

be evaluated for each pool using numerical integration. These values can then be inserted

into an observed likelihood function to obtain MLEs of the desired regression coefficients

β. When pool size exceeds 3, however, this technique tends to become computationally

intractable, and initial efforts even for pools with only two specimens revealed some con-

vergence issues.

1.4.2 Approximating the Density of a Sum of Random Variables

A natural inclination when approximating the sum of random variables may be to apply

the Central Limit Theorem (CLT), which states that, if Y1, . . . , Yn are independent and

identically-distributed with mean µ and finite variance σ2, then

1√
nσ

(
n∑
i=1

Yi − nµ

)
→ N(0, 1)

as n → ∞ (Bain and Engelhardt, 1992). Caudill (2010, 2011) has dedicated several pa-

pers to producing estimates of the mean of pooled, lognormally distributed data based on

an extension of the CLT. He explores a moment matching technique with bias-correction

methods based on characteristics of the lognormal distribution, as well as an application of

the CLT for larger pool sizes (Caudill, Turner, and Patterson, 2007; Caudill, 2010, 2011).

However, since the CLT requires large pool sizes in order to accurately approximate the

distribution of a sum (or mean) of right-skewed random variables, we seek other methods

that can also accommodate moderate to small pool sizes.

The field of engineering has produced an abundance of literature concerning the approx-

imation of the density of a sum of lognormal random variables. In electrical engineering, the

sum of lognormal variables is often used to characterize applications in wireless communi-

cations, such as co-channel interference and large-scale signal fading (Beaulieu, Abu-Dayya,

and McLane, 1995; Beaulieu and Xie, 2004; Santos Filho, Yacoub, and Cardieri, 2006; Li,

2007; Li et al., 2011; Liu et al., 2007; Szyszkowicz and Yanikomeroglu, 2009; Tellambura
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and Senaratne, 2010; Zhang and Song, 2006). Initially, we considered these methods as a

potential solution to the problem of estimating regression coefficients for a pooled, lognor-

mal outcome. In particular, we focused on the modified-power-lognormal (MPLN) function

proposed by Szyszkowicz and Yanikomeroglu (2009). Let f(yi;µi, σi) denote the lognormal

density, such that

f(yi;µi, σi) =
1√

2πyiσi
e
− 1

2

(
ln yi−µi

σi

)2
,

and let X =
∑n

i=1 Yi denote the sum of n lognormally distributed random variables.

Szyszkowicz and Yanikomeroglu propose that the distribution of X can be approximated

by the MPLN function:

fMPLN (x) =
t√

2πxs
e−

1
2( ln x−m

s )
2

Φt−1
(

lnx−m
s

)
,

where m, s, and t are functions of σi and µi, i = 1, . . . , n. While they demonstrate the

success of this proposed function to approximate the density of a sum of lognormal variables,

we were unable to effectively apply this strategy to estimate the regression coefficients of

interest.

1.4.3 Monte Carlo Expectation Maximization (MCEM) Algorithm

Since the sum of lognormal random variables is not so easily approximated in a manner

that also permits proper estimation of the regression coefficients of interest, we turn instead

to missing data mechanisms to calculate MLEs.

The Expectation Maximization algorithm was popularized by Dempster, Laird, and

Rubin (1977). The algorithm maximizes the observed data log-likelihood by exploiting the

more convenient structure of the complete data log-likelihood. This concept works well with

pooled data, since the mean of each group of specimens is observed, while the individual

measurements are the unknown (i.e., missing) data.

The EM algorithm is composed of two steps. In the Expectation (E) Step, the con-

ditional expectation is evaluated at the current iteration of the parameter estimates. Let

Yp = (Y p
1 , . . . , Y

p
n ) denote the vector of observed, pooled outcomes, and let Yij denote the
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value of the unknown, individual outcome for subject j in pool i. Then the E step evaluates:

Q(θ|θ(t)) = E
[
logLc(θ)|Yp,X,θ(t)

]
=

n∑
i=1

E

 ki∑
j=1

log f(Yij |X,θ)|Y p
i ,θ

(t)

 (1.3)

in terms of the parameter vector θ, where Lc denotes the complete likelihood, X is the

fully-known individual-level covariate data, and θ(t) is the estimate of the parameter vector

at the tth (i.e. current) iteration.

The Maximization (M) step then maximizes (1.3) with respect to θ to get a new esti-

mate, θ(t+1). This step is often straightforward, particularly when the Yij ’s are assumed

to follow a distribution from the exponential family. The E step, on the other hand, can

be quite difficult to evaluate, such as when a lognormal distribution is assumed. Due to

this complexity, we apply Monte Carlo methods, which are founded on the Law of Large

Numbers, to approximate (1.3). For any function of the complete data h,

E
[
h(Yi)|Y p

i ,θ
(t)
]
≈ 1

M

M∑
m=1

h(Yi,m),

where Yi = (Yi1, . . . , Yiki), and Yi,m = (Yi1,m, . . . , Yiki,m) is generated from the conditional

distribution g(Yi|Y p
i ,θ

(t)). The Monte Carlo size M is chosen to be large enough so that the

properties of the Law of Large Numbers holds. Several papers provide good descriptions

of the MCEM algorithm (Levine and Casella, 2001; Wei and Tanner, 1990; Booth and

Hobert, 1999). In particular, Levine and Casella (2001) propose a dynamic updating formula

for determining the optimal Monte Carlo size based on the proximity of the estimated

parameters to the MLEs at each iteration. Although this computationally streamlined

strategy was deemed unnecessary for the simulations in this paper, it may prove quite

helpful for more complex situations when the conservation of computing time is imperative.

In some situations, g(Yij |Y p
i ,θ

(t)) may not be a known distribution or have closed form.

In such cases, generating Monte Carlo samples from this conditional distribution may re-

quire additional techniques. In this paper, we consider rejection sampling and importance

sampling to overcome this obstacle (Levine and Casella, 2001). Additional details con-

cerning the application of these sampling methods and the MCEM algorithm to pooled,
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right-skewed data are outlined in Section 3.7.

One of the disadvantages of the EM algorithm is that standard errors (SE) are not

directly produced. Several methods have been proposed to calculate these SEs, some of

which can be found in Jamshidian and Jennrich (2000), Oakes (1999), and Louis (1982).

For this study, we found Louis’s method to be theoretically defensible, compatible with

MC methods, and successful in practice. Thus, we apply an extension of this method to

calculate SE’s when the MCEM algorithm is employed, details of which can be found in

Section 3.7.4.

1.5 Quasi-Likelihood

When dealing with skewed data, whether pooled or individual, it may be helpful to fit

a quasi-likelihood (QL) model. The concept of quasi-likelihood was introduced by Wed-

derburn (1974) as an alternative to maximum likelihood estimation when the underlying

distribution is unknown. Quasi-likelihood requires specification of only the first and sec-

ond moments; instead of maximizing a fully-specified log-likelihood, the quasi-likelihood is

maximized, where the contribution of observation zi is:

K(zi, µi) =

∫ µi

zi

zi − t
φV (t)

dt+ c(zi),

where µi = E(zi;β) is a known function of some parameters β = (β1, . . . , βp), often assumed

to be the coefficients in a regression setting. V (•) is a known function of the mean, φ is

a dispersion parameter, and c(•) is some function of zi not dependent on µi. Wedderburn

argues that K has properties similar to a log-likelihood, namely:

1. E

(
dK

dµi

)
= E

(
dK

dβj

)
= 0

2. E

(
dK

dβj

dK

dβj′

)
= −E

(
d2K

dβjdβj′

)
=

1

V (µ)

dµi
dβj

dµi
dβj′
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Maximum quasi-likelihood estimates are then found by solving the estimating equations

with respect to β:
n∑
i=1

dK(zi, µi)

dβ
=

n∑
i=1

zi − µi
φV (µi)

dµi
dβ

= 0

The inclusion of the dispersion parameter φ in the QL formulation permits specification of

the mean-variance relationship only up to a constant. Note that inclusion of this param-

eter does not affect estimation of the quasi-likelihood estimates β̂QL. Wedderburn (1974)

recommends estimating φ with the method of moments:

φ̃ =
1

n− p

n∑
i=1

(zi − µ̂i)2

V (µ̂i)

where µ̂i is evaluated at β̂QL. Furthermore, the standard errors of β̂QL can be approximated

by:

V ar(β̂QL) ≈

[
E

(
n∑
i=1

d2Ki

dβdβT

)]−1
,

evaluated at β = β̂QL. Additional details and examples on the use of the quasi-likelihood

method can be found in Heyde (1997), Huber (1964), McCullagh (1983), and Wedderburn

(1974). In Chapter 4, we apply QL models as an alternative to maximum likelihood methods

when performing regression on a pooled outcome. These methods are closely associated with

gamma regression models and provide a convenient outlet for analyzing x-heterogeneous

pools.
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Chapter 2

Linear Regression on a Pooled

Outcome

2.1 Introduction

In this chapter, we explore some of the challenges and concerns that arise when pooling is

considered, specifically when pooling is used to assess a continuous outcome variable that

is to be modeled via linear regression. First, we consider the statistical theory underlying

several scenarios that a researcher might encounter when working with data from pooled

specimens. We then use this theory to determine efficient strategies for assigning pools, with

an emphasis on maintaining high precision levels when estimating regression coefficients,

while saving resources by reducing the required number of lab assays. Specifically, we

propose a novel pooling strategy based on the k-means clustering algorithm as a means to

reduce laboratory costs while maintaining a high level of statistical efficiency when predictor

variables are measured on all subjects, but the outcome of interest is assessed in pools. We

perform simulation studies to compare k-means pooling with existing pooling and selection

strategies under simple and multiple linear regression models.

The linear regression scenario is particularly instructive, as it permits both a natural

framework for analysis (via weighted least squares) and a clear roadmap for efficient pool-

ing design considerations. Simulation results suggest that while all of the pooling methods
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considered maintain unbiased estimates and appropriate confidence interval coverage of the

coefficient parameters, pooling under k-means clustering provides the most precise esti-

mates, closely approximating the results from the full data and losing minimal precision as

the total number of pools decreases. We then apply these methods to a regression analysis

of 2005 – 2007 data on HDL cholesterol, serum estradiol, and other variables examined in

the BioCycle Study (Schliep et al., 2012). In conclusion, when the number of lab tests is

limited by budget, pooling specimens based on k-means clustering prior to performing lab

assays can be an effective way to save money with minimal information loss in a regression

setting.

2.2 Regression Formulation

For this study, we assume that the number of feasible lab assays (n) is limited by budget, so

that physically combining individual biological specimens into pools is an attractive option.

We first discuss the statistical theory underlying several scenarios that may be encountered

when working with data from pooled specimens.

2.2.1 Equal Aliquot Volumes

Consider the MLR model:

Yij = xijβ + εij , j = 1 . . . ki, i = 1 . . . n,

where Yij is the outcome and xij = (1, xij1, . . . , xijP ) the row vector of covariates for the jth

subject in the ith pool, β is the column vector of coefficients, ki is the number of specimens

in pool i (i.e. pool size), and εij is the error term with mean 0 and variance σ2. Furthermore,

let N =
∑n

i=1 ki denote the total sample size.

In practice, each specimen might have a different volume, depending on the amount

initially collected, or the remaining volume after portions were taken for use in other studies.

These differing aliquot volumes form a pooled measurement that is a weighted average of the

value of each specimen included in the pool, requiring a slight variation in the regression
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formulation. We will first describe the simpler situation, when all aliquot volumes are

assumed to be equal. Except where otherwise noted, we assume that the same aliquot

volume is contributed by each member of a pool for the remainder of this study.

When all specimens contribute equal aliquot volumes to the pool, we assume that the

lab assay applied to a pooled sample yields the mean concentration from the individual

specimens comprising the pool. The MLR model for the ith pool then becomes:

Yi = xiβ + εi, i = 1 . . . n,

where Yi = 1
ki

∑ki
j=1 Yij is the measured value of the ith pool, and εi = 1

ki

∑ki
j=1 εij is the

error term for pool i, such that E(εi) = 0 and V ar(εi) = σ2/ki. xi = (1, x̄i•1, . . . , x̄i•P )

represents the vector of predictors for pool i, where x̄i•p = 1
ki

∑ki
j=1 xijp is the arithmetic

mean of the pth predictor across all specimens in pool i.

The MLR model for the entire dataset is then:

Y∗ = X∗β + ε,

where Y∗n×1 = {Yi : i = 1 . . . n} and X∗n×(P+1) = {xi : i = 1 . . . n}. Furthermore, we assume

that E(ε) = 0n and V ar(ε) = σ2V, where Vn×n = diag(1/ki) is the diagonal matrix with

(i, i) element equal to 1/ki (i = 1 . . . n). This setting permits a classical application of

weighted least squares (WLS) with weight matrix V−1 = diag(ki); the WLS estimators of

β and σ2 are:

β̂ = (X∗TV−1X∗)−1X∗TV−1Y∗

σ̂2 =
Y∗T

[
V−1 −V−1X∗(X∗TV−1X∗)−1X∗TV−1

]
Y∗

vE
,

where vE = n − rank(X∗). Note that if ki = k for all pools, i.e. all pool sizes are equal,
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then V = (1/k)In, which reduces to an ordinary least squares with estimators:

β̂ = (X∗TX∗)−1X∗TY∗

σ̂2 =
kY∗T

[
In −X∗(X∗TX∗)−1X∗T

]
Y∗

vE
,

The above weighted and unweighted estimators for the vector β, along with the correspond-

ing estimated variance-covariance matrices of β̂, in each case, are strictly unbiased following

WLS theory since:

E(β̂) = (X∗TV−1X∗)−1X∗TV−1E(Y∗) = (X∗TV−1X∗)−1X∗TV−1X∗β = β

and, letting A = [V−1 −V−1X∗(X∗TV−1X∗)−1X∗TV−1],

E(σ̂2) =
E(Y∗TAY∗)

vE

=
1

vE
{tr[AV ar(Y∗)] + E(Y∗)TAE(Y∗)}

=
1

vE
[σ2tr(AV) + βTX∗TAX∗β]

=
σ2

vE
tr[In −V−1X∗(X∗TV−1X∗)−1X∗T ]

=
σ2

vE
[n− rank(X∗)]

= σ2,

since X∗TAX∗ = X∗TV−1X−X∗TV−1X∗(X∗TV−1X∗)−1X∗TV−1X = 0.

2.2.2 Unequal Aliquot Volumes

When aliquot volumes are not uniform across specimens, we assume these differing aliquot

volumes are known and yield a pooled measurement that is a weighted average of the

specimens constituting that pool. In these situations, appropriate adjustments must be

made to the weight matrix used in the WLS analysis. Let aij be the number of units (e.g.,

mL) contributed by the jth member of pool i. It is then reasonable to assume that the

measurement for pool i is the weighted average Yi =
(∑ki

j=1 aij

)−1∑ki
j=1 aijYij , and the
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MLR model for the ith pool becomes

Yi = xiβ + εi, i = 1 . . . n,

where xi =
(∑ki

j=1 aij

)−1∑ki
j=1 aijxij is the vector of predictors for the ith pool consisting

of the weighted averages of each predictor across all specimens in pool i. The random error

is denoted by εi =
(∑ki

j=1 aij

)−1∑ki
j=1 aijεij , such that E(εi) = 0 and V ar(εi) = σ2vi,

with vi =
(∑ki

j=1 aij

)−2∑ki
j=1 a

2
ij . Standard WLS regression can still be performed, this

time with weight matrix V−1 = diag(1/vi). Failure to include the appropriate weights in

the regression analysis would be expected to result in a loss of efficiency. Flawed inference

due to invalid estimation of regression coefficient standard errors could also occur, unless

robust standard errors were applied. Suppose V−1 is the true weight matrix, such that

V ar(Y ) = σ2V, but that the weight matrix is misspecified as W−1. Then β̂ will remain

unbiased, since

E(β̂) = (X∗TW−1X∗)−1X∗TW−1E(Y∗) = (X∗TW−1X∗)−1X∗TW−1X∗β = β

but σ̂2 will be biased, since, letting B = [W−1 −W−1X∗(X∗TW−1X∗)−1X∗TW−1],

E(σ̂2) =
E(Y∗TBY∗)

vE

=
1

vE
{tr[BV ar(Y∗)] + E(Y∗)TBE(Y∗)}

=
σ2

vE
tr(BV)

=
σ2

vE
tr{[W−1 −W−1X∗(X∗TW−1X∗)−1X∗TW−1]V}

6= σ2

Furthermore, if aliquot information is excluded from calculation of each pool’s covariate

vector (i.e. if the unweighted means are used), coefficient estimates may also be biased,

since, now, β̂u = (Xu
∗TV−1Xu

∗)−1Xu
∗TV−1Y∗, where X∗u is the pooled design matrix of
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unweighted covariate means, and

E(β̂u) = (Xu
∗TV−1Xu

∗)−1Xu
∗TV−1X∗β 6= β.

2.3 Pooling and Selection Methods

Suppose data on the vector of predictors (X) has been collected on N subjects, but that the

budget permits only n lab assays (n < N) for assessment of the response Y . The simplest

way to reduce the number of assays is to randomly select n specimens for inclusion in the

analysis. Another strategy is to randomly allocate each of the N specimens into one of

n equal-sized pools, so that all (or essentially all) specimens are included in the analysis.

Given that the predictor (X) data are available on each subject prior to pooling, however,

substantial gains in efficiency relative to these random strategies are possible when this

information is applied to the selection or pooling process.

Based on the WLS models presented in Section 2.2, an optimal pooling or selection strat-

egy with respect to efficient estimates of the coefficient vector β would minimize V ar(β̂p)

for all p = (1, . . . , P ), where P is the total number of predictors. In the case of SLR, P = 1,

so this simplifies to minimizing

V ar(β̂1) =
σ2∑n

i=1wi(xi − x̄w)2
, (2.1)

where wi is the weight corresponding to observation i and x̄w = (
∑
wi)
−1(
∑
wixi) is the

weighted mean.

2.3.1 “Smart” Selection

For any strict selection strategy applied to the data (i.e. only non-pooled data), wi = 1 for

all i in (2.1), assuming no weight contributions unrelated to pooling (e.g. from sampling

design). For the most efficient selection strategy, minimizing (2.1) equates to choosing the n

observations with covariate (xi) values farthest from their mean (x̄). When x = (x1, . . . , xN )

is symmetric, this can often be achieved by ordering the data by x, then selecting half of

the desired number of samples from each of the top and bottom of the ordered data. We
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refer to this strategy as “smart” selection.

2.3.2 “Smart” Pooling

Although “smart” selection is the most efficient selection strategy for SLR, one major

disadvantage of this method is the complete omission of some biospecimens (generally,

those closest to the overall mean) from the analysis. A potential improvement is based on a

similar idea, but utilizes pooling instead of selection to limit the total number of lab assays

performed.

For pools with equal aliquot volumes, wi = ki is the number of assays in pool i (pool

size), and the components in the denominator of (2.1) are defined as xi = 1
ki

∑ki
j=1 xij and

x̄w = 1
N

∑n
i=1 kixi = 1

N

∑n
i=1

∑ki
j=1 xij . Minimizing the variance of β̂1 is then synonymous

with maximizing the between-pool sum of squares. When pool sizes are equal, this can be

achieved by ordering the data by x and forming pools sequentially, so that pool i contains the

set of observations
{

(y, x(j)) : (i− 1)k < j ≤ ik
}

where (y, x(j)) is the observation associated

with the jth order statistic of x. We call this strategy “smart” pooling; similar arguments

have been made using a D-optimality design for pooling to assess X (rather than Y ) under

an SLR formulation (Ma et al., 2011).

When pools sizes are equal, the “smart” pooling strategy will minimize the variance

of β̂1. To see this, consider two pools of size k, denoted Pr and Ps, r < s, such that

Pr = {(y, x(j)) : (r − 1)k < j ≤ rk} and Ps = {(y, x(j)) : (s − 1)k < j ≤ sk}, where

x(j) is the jth order statistic. Let x̄r and x̄s denote the measured values for these pools,

respectively. Now suppose that two elements in these pools are switched, say xr′ from pool

Pr and xs′ from pool Ps.

Then the measured value for pool Pr will increase, since every element in the original

pool Ps is greater than every element in the original pool Pr. Similarly, the measured value

for pool Ps will decrease. Let δr denote this change in the measured value of Pr, and let δs

denote the absolute value of the change in the measured value of Ps, such that

δ = δr = δs =
1

k
(xs′ − xr′)
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The sum of squares components for the original pools is:

(x̄r − x̄)2 + (x̄s − x̄)2

And for the new pools is

(x̄r + δr − x̄)2 + (x̄s − δs − x̄)2

Then

(x̄r + δ − x̄)2 + (x̄s − δ − x̄)2

= (x̄r − x̄)2 + (x̄s − x̄)2 + 2δ(x̄r − x̄)− 2δ(x̄s − x̄) + 2δ2

= (x̄r − x̄)2 + (x̄s − x̄)2 + 2δ [x̄r − x̄s + δ]

= (x̄r − x̄)2 + (x̄s − x̄)2 +
2

k2
(xs′ − xr′) [(kx̄r − xr′)− (kx̄s − xs′)]

= (x̄r − x̄)2 + (x̄s − x̄)2 − 2

k2
(xs′ − xr′)

∑
s 6=s′

xs −
∑
r 6=r′

xr


< (x̄r − x̄)2 + (x̄s − x̄)2

since 2
k2
> 0, (xs′ − xr′) > 0, and

∑
s 6=s′ xs >

∑
r 6=r′ xr. Thus, deviating from the “smart”

pooling strategy results in a decrease of the total between-pool sum of squares, correspond-

ing to an increase in the variance of β̂1. This result generalizes to any change in the “smart”

pooling strategy, since any alteration of the pools can be broken down into pairwise switches.

2.3.3 k-means Clustering

Further improvements in efficiency can be achieved over “smart” pooling when pool sizes

are permitted to vary. An optimal solution can be targeted through a k-means clustering

algorithm, which is designed to distribute experimental units into groups, or clusters, such

that the between-cluster sum of squares is maximized (Hartigan, 1975). In the SLR case,

the clusters so identified comprise the optimal pools by virtue of minimizing (2.1), since the

between-cluster sum of squares (now the between-pool sum of squares) has been maximized

in the k-means algorithm.
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Although the k-means algorithm identifies the optimal pooling strategy for a fixed num-

ber of pools in an SLR scenario, it provides only small efficiency gains over “smart” pooling,

which differs from k-means clustering only in that it requires each pool to contain the same

number of specimens. The main advantage of k-means pooling emerges from its flexibility

as a tool for efficient allocation of subjects to pools based on an arbitrary number of pre-

dictor variables, such as in multiple linear regression (MLR). In an MLR setting, we seek

to minimize V ar(β̂p) for p = 1, . . . , P , where

V ar(β̂p) =
[
pthelement of diag

(
σ2(X∗TV−1X∗)−1

)]
= σ2

[
(1− r2xp|X(−p)

)

n∑
i=1

wi(xi,p − x̄p)2
]−1

. (2.2)

x̄p is the weighted mean of xp = (x1,p, . . . , xn,p), the vector of the pth covariate values for

each observation, and r2xp|X(−p)
is the squared coefficient of multiple determination from the

weighted regression of xp on the other covariates. Of course, simultaneously maximizing

efficiency for all regression coefficients is challenging, since a near-optimal pooling strategy

for one can be far from optimal for others. The k-means clustering algorithm is particularly

helpful in this case, since it aims to maximize
∑n

i=1wi(xi,p− x̄p)2, the between-cluster sum

of squares, for all p (Hartigan, 1975). In concept, this is a generalization of the D-optimal

design for SLR, which seeks to maximize the determinant of the XTX matrix.

Reducing the total within-cluster sum of squares under the k-means clustering algorithm

can also help reduce r2xp|X(−p)
, thus improving the efficiency of the coefficient estimate for

βp. To see this, consider an example with two independent covariates and 100 observations,

where we seek to create 4 distinct pools based on the observed covariate data. Figure

2.1 illustrates k-means clustering on X1 versus clustering on both predictor variables (X1

and X2). In general, the r2 value will be smaller when all variables are used to form

clusters. This reduction in r2, however, may be accompanied by a decrease in the between

sum of squares value for one of the variables. In the Figure 2.1 example, although the

between sum of squares for X1 is smaller when both variables are included in the clustering

procedure (right panel), the corresponding reduction in r2 is large enough to produce an
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Figure 2.1: k-means clustering on independent variables. 100 observations were grouped into four
clusters, indicated by different symbols. The left panel displays clusters based only on X1. The right
panel shows clusters based on both variables. Between SS values for X1 and r2 values corresponding
to the resulting 4 pools are displayed for each clustering strategy.

overall reduction in variance for the coefficient of X1. Thus, even when covariates are

independent and particularly when they are correlated, k-means clustering applied to all

covariates tends to improve overall efficiency, especially when all are viewed as equally

important.

The kmeans function in R version 2.15.0 was used to define k-means clusters in this

report. The desired number of clusters (pools) can be input into the function, making the

approach a natural fit for the purpose of study planning based on a fixed number of budgeted

lab assays. Specifically, we recommend the application of k-means clustering to the complete

data on the full set of predictors (x1, . . . , xP ), while specifying a number of clusters equal

to the number of laboratory assays supported by the study budget. Given the requested

number of clusters, the function randomly chooses a distinct set of observations from the

input dataset as initial cluster centers. It then searches for the optimal clustering strategy

in a neighborhood of these initial centers (R Development Core Team, 2012). Like most

k-means clustering algorithms, the kmeans function in R finds a locally optimal solution
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Table 2.1: Empirical standard deviations of regression coefficient estimates from 1000 sim-
ulations comparing k-means clustering in SAS and R. N = 240 and n = 30 for each
simulation, with an average pool size of 8.

Method β1 β2 β3 β4
SAS FASTCLUS 0.1112 0.0195 0.0130 0.0088
R local kmeans 0.1092 0.0193 0.0128 0.0088
R global kmeans 0.1108 0.0189 0.0129 0.0086

due to the computational complexity of the problem. Efforts have been made to find more

globally optimal solutions through the prudent choice of initial cluster centers (e.g. leader

algorithms) or by repeating the procedure at a number of random starts and choosing

the best clustering (Jain et al., 1999). The SAS FASTCLUS procedure, for instance, uses

Hartigan’s leader algorithm to choose initial cluster centers prior to performing the k-means

clustering algorithm. Examples of the application of the k-means algorithm in R and SAS

are provided in Appendix A.1.

Table 2.1 illustrates a simulation study comparing the efficiency of three implementations

of k-means clustering. 1000 simulations were performed where data was generated with N =

240 and n = 30 to mimic the simulations performed in Section 2.4.3. Clusters were formed

using SAS’s PROC FASTCLUS, R’s kmeans function, and a global version applying a

stepwise strategy to R’s kmeans function (Likas et al., 2003). Empirical standard deviations

are provided to compare precision of regression estimates from pools formed under each of

the clustering tools.

These results suggest that, on average, each method yields very comparable estimate

precision in the linear regression setting studied here. Since local k-means is more accessible

and computationally efficient than global k-means, all subsequent k-means clustering results

were produced using R’s local kmeans function, unless otherwise noted. Even though this

simulation study suggests that global and local k-means perform similarly, the global version

gives the same clustering every time, whereas clusters formed from the local version can

vary, due to the random selection of initial cluster seeds. FASTCLUS will also generate

the same clusters each time, so long as the order of the observations in the dataset is not

changed. Since R was used for all simulations in this report, we apply the global version
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when performing data analysis in Section 2.5, to avoid the complication of choosing from

multiple clustering options.

When a particular coefficient is of primary interest, variations on the standard k-means

procedure, such as weighted k-means clustering, can be performed to further improve preci-

sion. It is common practice to standardize variables prior to performing k-means clustering,

in order to prevent any one variable from exerting too much or too little influence on the

algorithm (SAS Institute Inc., 2010). A particular variable can be multiplied by a weight

constant after standardization, in order to exert more influence on the clustering procedure

and, subsequently, to reduce the variance of the weighted variable’s coefficient estimate.

This improved efficiency through weighting one variable will nearly always result in a de-

crease in efficiency for all other variables, so it is important to carefully assess the goals of

the regression analysis prior to performing weighted k-means clustering.

It is worth noting that, when the correct weights are applied, the WLS regression coef-

ficient estimates and their estimated variances remain unbiased for all of the pooling and

selection methods considered here, including “smart” selection and pooling as well as pool-

ing based on k-means clustering. This follows from well-known missing data theory, since

these strategies depend only on the fully observed covariate values and not on the outcome

(Y) conditional on the covariates (Glynn and Laird, 1986; Little, 1992; Little and Rubin,

2002).

In the next section, we use simulations mimicking the BioCycle dataset to compare the

k-means clustering strategy to the previously described “smart” and random pooling and

selection strategies in SLR, considering both equal and unequal aliquot scenarios. We then

simulate a multiple linear regression setting to compare regression on pools formed from

standardized k-means to those formed from clustering on a single variable, as well as to a

weighted k-means approach. Finally, we use artificial pooling to test these methods on the

BioCycle Study dataset under both SLR and MLR.
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Table 2.2: Mean and standard deviation for covariates in the BioCycle dataset, as well as
estimated regression coefficients, standard errors, and residual error (σ) for SLR and MLR
on outcome HDL from the complete BioCycle study dataset (N = 240).

Estimate (SE)
Variable Mean (SD) SLR MLR

Intercept 21.282 (2.394) 13.801 (2.925)
log(estradiol) 4.730 (0.639) -0.832 (0.502) -0.938 (0.471)
BMI 3.174 (0.158) 0.079 (0.078)
Vitamin E 2.147 (0.519) 0.041 (0.037)
Age 27.30 (8.164) 0.207 (0.037)
σ 4.954 4.638

2.4 Simulation Study

The BioCycle Study, conducted from 2005 to 2007, followed premenopausal women from

Western New York State for one or two complete menstrual cycles. Regularly menstruating

women not currently taking oral contraceptives were eligible for participation. 259 women

between the ages of 18 and 44 completed the study. Data collected during the study included

age (years) and BMI (kg/m2), as well as serum estrodial, vitamin E, and HDL levels, which

were measured on the 22nd day of a participant’s menstrual cycle. Participant BMI was

right-skewed, with values ranging from 16.1 to 35.0, with an average body mass index of

24.2. Vitamin E and estradiol levels were also right-skewed, with average values of 10.1 and

136.4, respectively. Age appeared to be approximately normal, with an average participant

age of 27 and standard deviation of 8.2. To facilitate analysis, observations containing

missing data were removed, and the first 240 of the remaining 242 complete cases were

included in the final dataset. In our study, we treat HDL level as the outcome and perform

artificial pooling on this variable to test the various pooling strategies. The remaining

variables were treated as fully known and their values were used to facilitate the k-means

and “smart” pooling and selection processes.

The distributions of the covariates BMI, vitamin E level, and estradiol level were right-

skewed. Table 2.2 gives the mean and standard deviation for each of these variables after

a log transformation, along with the mean and standard deviation for patient age. The

sample covariances among these covariates ranged from -0.023 to 0.428. Table 2.2 also
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provides the results (based on complete data) from two regression models of interest: the

SLR of HDL on log(estradiol), and the MLR of HDL on log(estradiol), BMI, vitamin E,

and age.

The results from the regression analysis on the complete BioCycle study dataset mo-

tivated the following simulations to test the pooling and selection strategies discussed in

Section 2.3. To mimic the predictor variables from this dataset, a multivariate normal dis-

tribution was generated with mean vector and covariance matrix matching the observed

sample means and covariances of the predictor variables for each simulation. The simulated

version of log(BMI) and log(vitamin E) were exponentiated to match their format in the

original dataset, while log(estradiol) was not transformed. The outcome (HDL) was then

generated via SLR or MLR, based on the estimated parameters summarized in Table 2.2.

2.4.1 SLR: Equal Aliquots

10,000 simulations were performed in R for each scenario. For the first simulation study,

we simulate a simple linear regression with equal aliquot volumes. For this simulation,

the predictor and outcome variables were generated to mimic the results from regress-

ing HDL levels on log(estradiol) from the BioCycle Study (Table 2.2), such that Y ∼

N(21.3− 0.83X1, 4.952). Simple linear regression was performed under each of the pooling

and selection methods discussed in Section 2.3, as well as random pooling and random se-

lection. The kmeans function in R version 2.15.0 was used to define k-means clusters. For

random selection, only the first n observations from the simulated dataset were retained,

while random pooling assigned each group of k = N/n sequential observations to the same

pool. “Smart” pooling was performed similarly to random pooling, except that the simu-

lated data was ordered by X1 prior to assigning pools. “Smart” selection was conducted by

calculating the squared distance (xi1− x̄1)2 for all i, then choosing the n observations with

the largest squared distance values to be included in the analysis.

For all simulations (both SLR and MLR), performance of each method is assessed

through bias, relative efficiency, and 95% confidence interval coverage for coefficient es-

timates, where relative efficiency is defined as the ratio of SD(β̂fp ), the empirical standard

deviation (SD) of β̂p from the full data regression, to SD(β̂p), the SD of β̂p under the spec-
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Table 2.3: Relative efficiency and 95% confidence interval (CI) coverage of β̂1 from SLR
simulation on N = 240 observations with equal volume aliquots. n = number of pools
formed or observations selected for analysis, and relative efficiency = SD(β̂f1 )/SD(β̂1),

where β̂f1 is the parameter estimate under the full data regression. Regression parameters
were simulated to mimic the SLR results of HDL levels on log(estradiol) from the BioCycle
study.

Relative Efficiency (95% CI Coverage)
Method n = 120 n = 60 n = 30 n = 16

k-means 1.000 (95.1) 0.999 (95.0) 0.996 (95.0) 0.993 (95.1)
Smart Pooling 0.999 (95.2) 0.998 (95.1) 0.995 (95.1) 0.988 (95.3)
Smart Selection 0.963 (94.9) 0.837 (94.9) 0.691 (94.8) 0.562 (95.2)
Random Pooling 0.703 (95.2) 0.491 (95.0) 0.337 (95.0) 0.231 (95.0)
Random Selection 0.704 (95.2) 0.489 (95.0) 0.341 (95.2) 0.237 (95.3)

ified method. To calculate confidence intervals, the additional assumption of normality of

errors is applied, so that confidence intervals are calculated as: β̂p ± t0.975,df ŜE, where ŜE

is the standard error estimate of β̂p, and t0.975,df is the critical value of the t-distribution

with df = n− (P + 1) degrees of freedom.

Since all methods provide unbiased estimates of β1 as well as its standard error, these

values were omitted in order to streamline the results. Table 2.3 displays the relative

efficiency and confidence interval coverage for the SLR results. While all methods also

provide appropriate confidence interval coverage (∼ 95%) for β̂1, estimates calculated under

k-means pooling are the most precise for every sample size, closely approximating the results

from the full data and losing only a trivial amount of precision as the total number of pools

decreases. The “smart” pooling method performs similarly to k-means, although with

slightly less precision in all situations, likely due to its additional restriction of equal-sized

pools. As expected, the random selection and pooling strategies are the least efficient

methods, displaying considerable precision loss with decreased sample size. While both

random strategies appear to perform similarly with respect to precision, “smart” pooling

noticeably outperforms “smart” selection, providing estimates from the smallest sample size

simulation (n = 16) that are more precise than estimates from the largest simulated sample

size under “smart” selection (n = 120).

Another advantage of using “smart” pooling over “smart” selection is its facility in
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Figure 2.2: Scatterplots of X and Y for the full data, “smart” pooling, and “smart” selection
methods.

regression diagnostics. It is often beneficial to check the assumption of a linear association

between the outcome and the predictor variable to determine whether a transformation on

X is required. For example, if a quadratic instead of a linear relationship exists between X

and Y , this relationship is often preserved in “smart” pooling, but may not be as apparent

in “smart” selection. Figure 2.2 demonstrates a situation where “smart” pooling gives

a clearer picture of the true relationship between X and Y than “smart” selection. For

this illustration, 200 observations were generated, with X ∼ Exp(1) and Y ∼ N(X2, 1).

For “smart” pooling, 100 pools of size two were formed, and for “smart” selection, 100

observations were selected.

The quadratic relationship between X and Y , which can be identified in the scatterplot

from the full data, is preserved in the “smart” pooling scatterplot. This relationship is not

as apparent in the “smart” selection scatterplot due to elimination of observations near the

center of the X distribution, and is less likely to be identified under this method.

2.4.2 SLR: Unequal Aliquots

When pools consist of aliquots with unequal volumes, it is important to apply the correct

weights in the regression analysis (specified in Section 2.2.2). Failure to do so would likely

result in a loss of precision for coefficient estimates, inappropriate standard error estimates,

or both.
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Table 2.4: Relative efficiency with respect to the full data and 95% confidence interval (CI)
coverage of β̂1 from SLR simulations with unequal aliquot volumes.

Relative Efficiency (95% CI Coverage)

Method n = 120 n = 60 n = 30 n = 16

Selection Strategies

Smart Selection 0.963 (94.9) 0.837 (94.9) 0.691 (94.8) 0.562 (95.2)
Random Selection 0.704 (95.2) 0.489 (95.0) 0.341 (95.2) 0.237 (95.3)

Correctly-Specified Aliquots†

k-means 0.999 (94.9) 0.995 (95.1) 0.986 (95.1) 0.950 (95.1)
Smart Pooling 0.957 (95.2) 0.930 (95.3) 0.919 (95.2) 0.908 (95.1)
Random Pooling 0.704 (95.2) 0.490 (94.8) 0.338 (95.0) 0.232 (95.0)

Ignoring Aliquots

k-means 0.950 (94.9) 0.929 (95.1) 0.918 (95.2) 0.911 (94.9)
Smart Pooling 0.950 (95.2) 0.926 (95.2) 0.917 (95.2) 0.906 (95.3)
Random Pooling 0.669 (95.1) 0.453 (95.0) 0.311 (95.1) 0.210 (94.7)
†Aliquot volumes randomly selected from the set (1/4, 1/2, 3/4, 1) informed the k-means
clustering strategy as well as the appropriate weights for all pooling strategies under the
heading “Correctly-Specified Aliquots.” “Ignoring Aliquots” presents regression results
when aliquot volumes are ignored in both the pool allocation and analysis steps.

Assuming aliquot volumes are known a priori, estimate precision can also be improved by

using these values to inform the clustering procedure, particularly in simple linear regression.

By including aliquot volume as if it were another subject-specific covariate in the clustering

algorithm, pools are formed from specimens with similar aliquot sizes. This strategy can

increase precision since wi, the weight contribution for pool i in (2.1), tends to deflate when

pool i is formed from specimens with different aliquot sizes, thus increasing the overall

variance for β̂1. By forming pools from specimens with similar aliquot sizes, this potential

precision loss is mitigated. This improvement in efficiency is most noticeable in simple linear

regression with a binary predictor, but becomes less apparent with the inclusion of additional

predictor variables in the regression formulation. Fortunately, the relative efficiency of

each pooling method can be assessed prior to actually forming the pools by evaluating the

denominators of equations (2.1) or (2.2), depending on which type of regression is being

performed.

Table 2.4 illustrates the potential efficiency gains when aliquot volumes are included in
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the clustering algorithm, as well as the consequences of ignoring differing aliquot volumes

in the regression analysis. For this simulation, aliquot volumes of 1/4, 1/2, 3/4, and 1 were

randomly assigned to observations. These volumes were used to inform the k-means clus-

tering procedure only, but were included as weights in the regression analysis for all pooling

strategies. While aliquot volumes were assumed to have no effect on the selection strategies,

the SLR results under these methods are reiterated in this table for comparison purposes.

A common mistake when dealing with unequal-sized aliquots might be to ignore the

aliquot sizes completely, omitting this information from the clustering procedure, the calcu-

lation of the weighted mean of the predictor variables, and the application of the weights in

the regression procedure. If the covariate means are calculated correctly (i.e. as weighted

means), but the weights in the regression procedure exclude aliquot information, the co-

efficient estimates are expected to remain unbiased, but the estimate of their variance is

expected to be incorrect. Furthermore, if aliquot information is excluded from the calcula-

tion of the pooled covariates, the coefficient estimates themselves may be biased. Results

from this erroneous method are also included in Table 2.4 as an illustration of the potential

consequence of failing to adequately account for differing aliquot volumes. In this simula-

tion, the bias associated with β̂1 (not shown here) under models which completely ignore

aliquot volumes was minor, although this will not always be the case.

Incorporating aliquot volumes into the k-means clustering procedure provides estimates

of β1 that are nearly fully efficient for the larger sample sizes, while omitting this information

from the pooling strategy, as in “smart” pooling, results in relative efficiency levels that

are outperformed by “smart” selection in the largest sample size simulated. This reduced

efficiency under “smart” pooling, however, is much less sensitive to decreasing sample sizes

and easily beats “smart” selection in each of the remaining sample size cases. In all cases,

correctly incorporating aliquot information into the calculation of pooled covariates and

weights improves estimate precision.

While aliquot volumes in this simulation were assumed to be random, in practice it

is often the case that the aliquot volume is correlated with a predictor variable. This

could occur, for instance, if specimens from certain demographic or exposure groups are

of particular interest, and, subsequently, a greater portion of these specimens were used in



31

other studies. In such cases, using aliquot sizes to inform pools is less helpful because the

k-means clustering procedure will form similar pools regardless of aliquot volume due to

the correlation between aliquot size and the predictor variable.

2.4.3 Multiple Linear Regression

Since k-means is clearly the most efficient pooling method out of those tested in an SLR

setting, we now assess its performance in MLR. 10,000 simulations were conducted to mimic

the BioCycle dataset, with N = 240 and (X1, log(X2), log(X3), X4) ∼ N4(µX ,Σ) where

µX = (4.730, 3.174, 2.147, 27.296) (see Table 2.2), and (to match the sample covariance

matrix),

Σ =



0.408 0.008 -0.023 0.140

0.008 0.025 -0.006 0.167

-0.023 -0.006 0.269 0.428

0.140 0.167 0.428 66.64


.

The outcome (Y ) was then generated, conditional on the simulated covariate values, such

that Y ∼ N(µY , 4.642), where µY = 13.8− 0.94X1 + 0.08X2 + 0.04X3 + 0.21X4.

In this simulation study, standard k-means is compared to weighted k-means, “smart”

pooling, and “smart” selection on X1, where X1 may be considered the main variable of

interest. For “smart” pooling and selection, only X1 was included in the pooling or selection

procedure. For standard k-means, all covariates were standardized prior to clustering, to

ensure that each would contribute a similar impact on the final clusters. Covariates were

also standardized for weighted k-means, but X1 was then multiplied by a weight of 2. The

value of two was chosen for the weights in this analysis as it provides a reasonable balance

toward slightly improving the precision of β̂1 without considerably penalizing the precision

of the other coefficient estimates.

Figure 2.3 gives an illustration of weighting the k-means clustering procedure, where

weights with various magnitudes are applied to X1 prior to clustering, with N = 240 and

n = 60. Points represent the relative efficiency of the regression estimates, compared with

efficiency of estimates from the full data.
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Figure 2.3: Weighted k-means, with weights applied to X1 for 60 pools. “Single” refers
to k-means applied only to X1. Horizontal dotted lines provide visual comparison of the
minimum and maximum relative efficiency values.



33

As evidenced in this illustration, β1 gains a small amount of precision, with maximal

precision obtained between weights of 5 and 10. The corresponding drop in precision for the

remaining coefficients, however, is severe. Fortunately, analysis of the potential precision

change based on the chosen weight is available prior to pooling, since we are working under

the assumption that the complete individual-level covariate matrix is known. In general,

small to moderate weights are preferred since weighted k-means becomes indistinguish-

able from “smart” pooling when weights become too large; the influence of the remaining

variables on weighted k-means clustering is essentially nullified.

Relative efficiency and 95% confidence interval coverage for these MLR simulations are

displayed in Table 2.5. Results from random pooling are also supplied for comparison

purposes, where observations were randomly combined into n equal-sized pools. Random

selection was also performed, but these results were omitted from Table 2.5 since they proved

indistinguishable from random pooling. Again, bias is omitted from the results display since

all coefficient estimates are unbiased. All methods at all sample sizes also provide close to

nominal 95% confidence interval coverage, confirming the validity of the estimates as well

as their estimated standard errors under each pooling method. While the precision of each

coefficient estimate is proportional to the total number of pools, the relative efficiency of

these estimates varies between methods.

For β2, β3, and β4, standard k-means provides the most precise estimates at all sample

sizes, maintaining over 98% efficiency at half the number of lab tests required, and continues

to maintain over 84% efficiency at only 16 lab tests. Weighted k-means performs similarly,

but with slightly less precision for these unweighted variables. Weighted k-means provides

the most precise estimates of β1, our coefficient of interest, maintaining over 93% efficiency

at the smallest sample size.

Regardless of the correlation between the covariates, further simulations (not shown)

indicate that weighted k-means regularly outperforms both single and standard k-means for

efficiently estimating β1, and standard k-means performs best for the remaining coefficients.

It is important to keep in mind that the performance of weighted k-means is dependent on

the magnitude of the chosen weights, with larger weights for one variable often corresponding

to worse precision for the unweighted variables. Although it is possible to improve the



34

Table 2.5: Relative efficiency and 95% confidence interval (CI) coverage for estimated re-
gression coefficients after pooling based on different versions of k-means at various sample
sizes. “Standard” refers to standard k-means pooling, “Single” to pooling based on k-means
clustering on X1 only, “Weighted” to pooling based on weighted k-means clustering on X1,
and “Random” to random pooling into equal-sized pools.

Relative Efficiency (95% CI Coverage)
Method β1 β2 β3 β4

n = 120
Standard 0.983 (95.2) 0.985 (95.0) 0.984 (95.0) 0.981 (94.9)
Weighted 0.993 (95.2) 0.978 (94.9) 0.980 (95.1) 0.977 (95.0)
Single 0.988 (95.2) 0.697 (95.0) 0.691 (94.9) 0.698 (95.2)
Random 0.696 (94.7) 0.706 (95.1) 0.697 (95.0) 0.705 (95.3)

n = 60
Standard 0.955 (94.9) 0.957 (95.1) 0.957 (94.9) 0.951 (95.0)
Weighted 0.982 (94.8) 0.936 (95.0) 0.939 (95.2) 0.939 (95.1)
Single 0.959 (94.8) 0.479 (95.0) 0.479 (95.0) 0.478 (94.7)
Random 0.475 (94.7) 0.479 (94.7) 0.483 (95.5) 0.483 (95.2)

n = 30
Standard 0.911 (95.0) 0.901 (94.8) 0.915 (95.3) 0.905 (95.1)
Weighted 0.965 (94.8) 0.866 (94.7) 0.870 (95.0) 0.857 (94.7)
Single 0.905 (95.0) 0.324 (95.2) 0.317 (95.0) 0.320 (94.6)
Random 0.319 (95.1) 0.321 (95.3) 0.327 (95.7) 0.324 (95.2)

n = 16
Standard 0.852 (94.8) 0.842 (94.7) 0.855 (95.2) 0.845 (95.2)
Weighted 0.937 (94.8) 0.764 (94.6) 0.795 (95.2) 0.764 (94.9)
Single 0.810 (94.7) 0.208 (94.8) 0.207 (94.8) 0.206 (95.1)
Random 0.207 (95.1) 0.208 (95.2) 0.209 (95.5) 0.207 (95.1)

precision of a particular coefficient by weighting its corresponding variable, the magnitude

of the cumulative precision loss in the other variables is often much more considerable than

the precision gained, as illustrated in Figure 2.3. Furthermore, if the weights for a particular

variable become too large, the results begin to resemble those of single k-means on that

variable, which can result in a loss of precision for the variable of interest, depending on the

covariate correlation structure. Thus, potential weights must be carefully considered before

clustering with weighted k-means. As an efficient global strategy, we generally recommend

standard k-means pooling. All of our empirical studies suggest that this method yields

outstanding efficiency gains over random pooling and provides the best overall solution,

particularly when all variables are considered equally important.
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Table 2.6: Coefficient estimates and standard errors for SLR on BioCycle dataset. For
k-means pooling, average pool size was 240/n, with maximum pool sizes ranging from 5
(n = 120) to 29 (n = 16). Each sample size had at least one observation comprising a
single pool, with the exception of n = 16, which had a minimum pool size of 2. For “smart”
and random pooling, all pools were of size 240/n. For the random strategies, the data was
randomly ordered prior to implementing any pooling or selection.

log(estradiol) (SE) Full Data (n = 240): -0.832 (0.502)

Method n = 120 n = 60 n = 30 n = 16

k-means -0.834 (0.521) -0.827 (0.448) -0.837 (0.358) -0.839 (0.353)
Smart Pooling -0.825 (0.506) -0.839 (0.449) -0.823 (0.415) -0.889 (0.434)
Smart Selection -0.791 (0.512) -0.599 (0.586) -0.843 (0.715) -0.865 (0.987)
Random Pooling -0.944 (0.627) 1.430 (0.936) 0.805 (1.443) -1.421 (1.988)
Random Selection -1.816 (0.748) -2.229 (1.053) -0.698 (1.201) -3.283 (2.838)

2.5 Data Analysis

Based on the simulations testing the various pooling and selection strategies, k-means clus-

tering, on average, provides the most precise estimates in both simple and multiple linear

regression. Now, we test these various strategies on the BioCycle study dataset, to deter-

mine whether k-means provides the most similar results to those from regression on the full

dataset.

For this data analysis, random pooling and selection strategies were performed by pool-

ing or selecting the first n observations after re-sorting the dataset by a randomly-generated

variable. For all of the analyses involving k-means pooling, a global version of k-means was

used (Likas et al., 2003). To compare the various pooling and selection methods, we first

consider simple linear regression. Table 2.6 provides SLR results for regressing HDL level

on log(estradiol). As expected from our simulations, the k-means and “smart” pooling per-

form the best out of all the methods in terms of approximating the coefficient estimates

and standard errors from the full data regression. In general, k-means pooling provides

estimates that are most similar to those from the full sample, with “smart” pooling only

slightly further away. For this particular dataset, the standard errors for k-means and

“smart” pooling tend to decrease as the number of pools decreases. This trait appeared in

approximately 10% of the simulations performed in Section 2.4.1, indicating that this trend

is uncommon but not implausible.
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Table 2.7: Results from MLR on BioCycle dataset after k-means pooling under various
sample sizes. The first row provides the regression estimates for the full dataset (unpooled).

Estimate (SE)
n log(estradiol) BMI Vitamin E Age

240 -0.938 (0.471) 0.079 (0.078) 0.041 (0.037) 0.207 (0.037)
120 -0.879 (0.472) 0.071 (0.078) 0.045 (0.037) 0.209 (0.037)
60 -0.868 (0.494) 0.057 (0.081) 0.042 (0.038) 0.205 (0.039)
30 -0.729 (0.558) 0.121 (0.092) 0.031 (0.042) 0.194 (0.043)
16 -1.297 (0.540) 0.149 (0.085) 0.042 (0.039) 0.183 (0.040)

In our next analysis, MLR was applied to clusters formed from a global k-means clus-

tering algorithm on all four predictor variables, at various numbers of pools. The results

are displayed in Table 2.7. Coefficient estimates and standard errors from halving the total

number of pools (assays) approximate the results from the full sample extremely closely

for all coefficients, both in terms of point estimates and standard errors. Although more

discrepancy is seen as expected for smaller numbers of pools, remarkably little efficiency

is lost even based on as few as 16 pools. By using the fully observed covariate data to

strategically inform the pooling procedure, we can closely approximate the MLR results

from the full data while drastically reducing laboratory costs.

2.6 Applying k-means to Logistic Regression

As evidenced by the simulation studies and data analysis, k-means clustering can provide a

powerful and accessible tool to assign pools when performing linear regression on a pooled

outcome, and is particularly helpful at promoting estimate precision when one or more

covariates is continuous. Furthermore, the potential for efficiency gains available from

pooling under k-means is not limited to a linear regression setting.

For instance, k-means pooling can contribute to efficient pooling in the logistic regression

setting considered by Vansteelandt et al. (2000), described in Section 1.3.1, where a binary

outcome is pooled. In their paper, Vansteelandt et al. advocate pooling specimens with

similar or identical covariate values in order to achieve more precision. For datasets with

only categorical or binary covariates, x-homogeneous pools can often be formed, so long as

the number of covariates is small relative to the sample size. For datasets in which it is not
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Table 2.8: k-means pooling vs. smart and random pooling in a logistic regression setting.
Mean estimate and empirical standard deviation (SD) are provided.

Mean (SD)
Pooling Method β1 = 1 β2 = −1 β3 = 0.8

N = 2000

Full Data 1.003 (0.065) -1.001 (0.064) 0.802 (0.060)

n = 1000

k-means Pooling 1.006 (0.085) -1.004 (0.083) 0.803 (0.077)
Random Sample 1.009 (0.091) -1.005 (0.093) 0.807 (0.087)
Random Pooling 1.007 (0.099) -1.008 (0.099) 0.805 (0.095)
Smart Pooling on X1 1.005 (0.087) -1.004 (0.101) 0.807 (0.097)
Smart Pooling on X2 1.007 (0.100) -1.006 (0.085) 0.804 (0.094)
Smart Pooling on X3 1.009 (0.100) -1.005 (0.100) 0.804 (0.078)

n = 500

k-means Pooling 1.020 (0.124) -1.016 (0.121) 0.811 (0.112)
Random Sample 1.017 (0.134) -1.010 (0.130) 0.812 (0.123)
Random Pooling 1.040 (0.203) -1.037 (0.203) 0.819 (0.194)
Smart Pooling on X1 1.021 (0.137) -1.016 (0.193) 0.818 (0.185)
Smart Pooling on X2 1.022 (0.189) -1.021 (0.139) 0.811 (0.183)
Smart Pooling on X3 1.026 (0.191) -1.023 (0.197) 0.821 (0.126)

possible to create x-homogeneous pools, k-means clustering can be implemented to form

pools with similar covariate values.

Table 2.8 demonstrates the potential efficiency gains in performing k-means clustering

in a logistic regression setting. For this simulation, 2500 replications with sample size

N = 2000 were performed in R, and the optim function was used to maximize the log-

likelihood (1.1). Three covariates, (X1, X2, X3) were generated independently from standard

normal distributions, and the outcome (Y ) was generated from a Bernoulli distribution with

Pr(Y = 1) = −0.5+(1)X1− (1)X2+(0.8)X3. Several pooling strategies were then applied

to the dataset, testing n = 1000 pools and n = 500 pools. Pools formed by k-means

clustering were compared to pools formed randomly, and by smart pooling on each of the

covariates. Mean estimates and empirical standard deviation are provided.

In this logistic regression setting, k-means pooling continues to provide precise, essen-

tially unbiased estimates of the regression coefficients, outperforming both random selection

and pooling, as well as all of the smart pooling methods, even for those coefficients whose
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corresponding covariates have been pooled under smart pooling. An additional note is that

as the number of pools is reduced to one-fourth the original sample size, random sampling

outperforms all smart pooling methods for all variables. This is likely due to the loss of

information for mixed pools (those containing a mix of case and control specimens), which

are more likely to occur when pool sizes are larger. This characteristic emphasizes the

importance of analyzing potential efficiency loss prior to pooling, a task that is possible so

long as the entire set of individual-level covariate information is known.

2.7 Discussion

When the number of lab tests that can be performed is limited by budget, pooling specimens

based on k-means clustering prior to performing lab assays can be an effective way to

save money with minimal information loss in a linear regression setting. For simple linear

regression in particular, k-means clustering provides an optimal clustering strategy for the

precision of β̂1 for a fixed number of pools (n), losing only a minimal amount of precision even

for small n (or equivalently, large pool sizes). In addition, incorporating aliquot volumes,

when applicable, into the k-means clustering procedure can help reduce the precision loss

that may accompany pooling unequal-sized aliquots.

In multiple linear regression settings, k-means clustering provides an accessible method

to identify a specified number of pools commensurate with available resources for performing

lab assays. By utilizing all of the covariate data to inform pooling, it provides an excellent

overall solution aimed at favorable precision for each coefficient estimate, far outperforming

random pooling. Weighted k-means can be useful if the precision of a particular coefficient

is deemed more important than that of the others, but should be used only after careful

consideration of the potential precision reduction of the remaining coefficient estimates.

Not only does k-means clustering outperform more ad hoc pooling and selection methods

with respect to maintaining coefficient precision, but also in its flexibility and straightfor-

ward application. Clearly, both random pooling and random selection are far from optimal

strategies, as they lose a considerable amount of efficiency, even at the largest sample size

tested. “Smart” pooling, while maintaining good efficiency in the SLR setting or for a par-
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ticular variable in MLR, is not readily generalizable to incorporate all covariates in the MLR

setting. “Smart” selection, even if generalized to multiple variables, provides only marginal

improvements over random strategies and suffers from the exclusion of data points close to

the mean. This can be problematic when assessing regression diagnostics (Figure 2.2). In

addition to these disadvantages, none of these current cost-saving methods for analyzing

biomarkers comes close to maintaining the high level of efficiency for all variables provided

by standard k-means clustering.

The goal of this analysis and simulation study was to illustrate the benefits of using

k-means clustering to inform pools when performing linear regression on a pooled outcome.

The simulations were designed to mimic the BioCycle study dataset, but many alterations

on these assumptions are likely to occur in real-life pooling scenarios. For instance, precision

loss attendant to pooling is expected to become more sensitive to decreasing sample sizes

with the inclusion of more covariates. Other considerations when pooling include the poten-

tial influence of measurement or pooling error on the measured values of the pools, which

has been explored by Schisterman et al. (2010), as well as possible limitations on pooling

strategies due to instrument sensitivity (e.g. minimum specimen volume requirement).

Fortunately, since the potential precision of each estimated coefficient depends only on

the covariates, exploration of the best pooling or selection strategy can be investigated prior

to performing any physical pooling. Thus, not only can strategic pooling of biospecimens

considerably reduce laboratory costs, but the subsequent potential precision loss can be

assessed prior to any actual pooling, so that the advantages and disadvantages of pooling

on a specific dataset can be thoroughly evaluated beforehand. This characteristic may prove

particularly useful in a cost-benefit analysis, when determining the optimal number of pools

to balance statistical precision and lab expense. Furthermore, the proposed efficient pooling

strategy based on k-means clustering applied to individual covariate values is expected to

be efficient for any outcome that might be measured on the pooled samples via linear

regression. Thus, samples pooled based on this strategy retain their potential statistical

efficiency advantages for the analysis of multiple outcomes, so long as the same covariates

are to be considered.

In the next two chapters, we consider extensions of linear regression on a right-skewed
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outcome, which may require methods such as applying a transformation to the outcome or

performing generalized linear regression under distributional assumptions appropriate for

right-skewed data.
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Chapter 3

Lognormal Regression Models for a

Skewed, Pooled Outcome

3.1 Introduction

In the previous chapter, we highlighted the benefits of using covariate data to inform pooling

on an outcome in a linear regression setting. Many biomarkers measured in laboratory

analyses, however, are positive, right-skewed variables. When these biomarkers are treated

as the dependent variable in regression settings, a log transformation of the individual-level

outcome is often applied in order to validate standard linear regression analyses. Analysis

of pooled specimens, however, may not be straightforward. In such cases, we will see that

a slight modification of the usual regression method can still provide valid and precise

coefficient estimates when pools are formed with identical covariate values.

When these x-homogeneous pools cannot be formed, we recommend applying a Monte

Carlo Expectation Maximization (MCEM) algorithm to identify maximum likelihood es-

timates (MLEs). Simulation studies demonstrate that these analytical methods provide

essentially unbiased estimates of coefficient parameters as well as their standard errors

when appropriate assumptions are met. Furthermore, if the fully observed covariate data is

used to inform the pooling strategy, a high level of efficiency can be maintained at a fraction

of the total lab cost. Utilizing these informative pooling strategies in conjunction with the
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appropriate analytical techniques allows researchers to meet budgetary constraints without

sacrificing precision.

In the following section we introduce the Collaborative Perinatal Project (CPP), the

motivating dataset for this study. In Section 3.3 we describe the analytical methods con-

sidered, along with the conditions required for their validity. We discuss various pooling

methods in Section 3.8, with particular focus on the k-means clustering technique intro-

duced in Chapter 2 to promote estimate efficiency. Section 3.9 provides simulation studies

that demonstrate the validity of the proposed analytical strategies and illustrate the bene-

fits of informative pooling techniques. Finally, we apply these methods to a substudy from

the CPP.

3.2 A Motivating Example: Cytokines in the CPP

The Collaborative Perinatal Project (CPP) was conducted between 1959 and 1974 to ex-

amine associations between various exposures and pregnancy outcomes (Hardy, 2003). In

a nested case-control study of stored serum samples from the CPP, several cytokines were

measured in participants that experienced a spontaneous abortion (SA), along with con-

trols matched to cases by gestational age (GA) at sample collection (Whitcomb et al., 2007).

Accompanying covariates include participant demographics such as age, race, and smoking

status. While the cytokines in relation to SA from this CPP study have previously been

analyzed via logistic regression with SA status as the dependent variable (Whitcomb et

al., 2007, 2008, 2012), our study treats monocyte chemotactic protein 1 (MCP1) as the

outcome, and SA status, age, race, and smoking status as predictors. The positive, right-

skewed nature of MCP1, as well as nearly all the cytokines measured in this study, motivates

the development of methods to analyze pooled, skewed outcomes in a regression setting.

Specifically, we seek to estimate the parameters of an underlying individual-level lognor-

mal regression model for the dependent variable MCP1, when measurements of MCP1 are

obtained on pooled samples.

This dataset is particularly compelling since it contains both individual-level as well as

pooled measurements of the cytokines, where pools were formed randomly within SA status
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(maximum pool size = 2) as part of a study design incorporating a methods component

to assess measurement error (Whitcomb et al., 2012). This unique characteristic enables

analysis of both observed pooled measurements as well as expected pooled values, the latter

calculated as the actual arithmetic mean of measurements on individual specimens. We use

this dataset collected from the CPP study to illustrate analytical methods and demonstrate

the advantages of informative pooling techniques, so that future studies of this type can

benefit from the increased precision provided by strategic designs.

3.3 Regression Model for Individual Subjects

Performing linear regression on a right-skewed biomarker often invites a log transformation.

Suppose that the log of the outcome is linearly associated with the predictor variables, so

that the true model can be represented by:

log(Yij) = α+ xijβ + εij , j = 1, . . . , ki, i = 1, . . . , n, (3.1)

where α is the intercept, β is the P × 1 column vector of coefficients, and Yij , εij , and

xij = (xij1, . . . , xijP ) are the outcome, error, and row vector of covariates for the jth subject

in the ith pool, respectively. Furthermore, let N =
∑n

i=1 ki denote the total number of

subjects, where ki represents the number of specimens in pool i (i.e., pool size). The εij ’s

are assumed independent and identically distributed with E(εij) = 0 and V ar(εij) = σ2.

If the value of each individual’s outcome were known, a straightforward application of

multiple linear regression (MLR) on the log-transformed outcome would yield the desired

parameter estimates. Similarly, if n individual specimens are selected for analysis, the

same MLR estimation procedure could be applied to this subset of the full data. When

specimens are pooled, however, only the measured value of the pool is known, while each

specimen’s outcome (Yij) remains unobserved, so that a simple application of (3.1) to the

pooled measurements might not be appropriate. Details on the various pooling strategies

considered are reviewed in Section 3.8. For now, we consider methods for analyzing data

based on specimens that have already been pooled, where our objective is valid and efficient
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estimation of β.

3.4 Naive Model for Pooled Data

A natural inclination when faced with analyzing pooled, right-skewed data may be to per-

form linear regression on a log-transformation of the measured values of each pool:

Naive Model : log(Y p
i ) = α+ xiβ + δ

(1)
i ,

where Y p
i and xi = (x̄i•1, . . . , x̄i•P ) are the measured outcome and vector of predictors

for pool i, respectively, such that x̄i•p = 1
ki

∑ki
j=1 xijp is the arithmetic mean of the pth

predictor across all specimens in pool i, and we assume that each Y p
i = 1

ki

∑ki
j=1 Yij reflects

the average of the individual concentrations among specimens constituting that pool as

determined by laboratory assay.

In order to apply the method of least squares, let us initially assume that the expectation

and variance of δ
(1)
i , the error term under this pooled model, is preserved from the unpooled,

true model (3.1), so that E(δ
(1)
i ) = 0 and V ar(δ

(1)
i ) = σ2. Our parameter estimate for

θ1 = (α,β) under the naive model is then:

θ̂1 = (XT
1 X1)

−1XT
1 (log Yp),

where Yp = (Y p
1 , . . . , Y

p
n )′ is the vector of observed, pooled outcomes, and X1 = (1 X),

where X = (x1, . . . ,xP ) is the n×P matrix of pool-wise covariate vectors and 1 is the n×1

column vector of ones. To determine the expectation of θ̂1, we need to evaluate E(log Yp),

where this expectation is conditional on X. This expectation is not defined by the model

assumptions, due to the non-linearity of the log function:

E(log Y p
i ) = E

log

 1

ki

ki∑
j=1

Yij

 6= 1

ki

ki∑
j=1

E(log Yij).
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We can, however, approximate this value with a second-order Taylor series expansion:

E(log Y p
i ) ≈ E

{
log[E(Y p

i )] +
Y p
i − E(Y p

i )

E(Y p
i )

−
[Y p
i − E(Y p

i )]2

2E(Y p
i )2

}
= log[E(Y p

i )]−
V ar(Y p

i )

2E(Y p
i )2

= log

 1

ki

ki∑
j=1

E(Yij)

− k−2i

[∑ki
j=1 V ar(Yij)

]
2k−2i

[∑ki
j=1E(Yij)

]2 , (3.2)

where Yij = eα+xijβ+εij from (3.1) and V ar(Yij) is implicitly conditional on xij . Now, if

pools are x-homogeneous, such that xij = xi for all j = 1, . . . , ki, then (3.2) reduces to:

E(log Y p
i ) ≈ α+ xiβ + log

 1

ki

ki∑
j=1

E(eεij )

− ∑ki
j=1 V ar(e

εij )

2
[∑ki

j=1E(eεij )
]2

= α+ xiβ + log(a)− c

2ki
, (3.3)

where a = E(eε11) and c = V ar(eε11)/E(eε11)2. This last step is based on the assumption

that the εij ’s are independent and identically distributed. Let K = diag(k1, . . . , kn) denote

the diagonal matrix with (i, i) element equal to ki (i = 1, . . . , n). Then (3.3) can be written

in matrix form as:

E(log Yp) ≈ 1(α+ log a) + Xβ − (c/2)K−11 (3.4)

where K−11 = (k−11 , . . . , k−1n )T is the column vector of inverted pool sizes. Then the

expectation of θ̂1 is approximately:

E(θ̂1) = E

 α̂

β̂

 ≈ (XT
1 X1)

−1XT
1E(log Yp)

= (XT
1 X1)

−1XT
1

X1

α+ log(a)

β

− (c/2)K−11


=

α+ log(a)

β

− (c/2)(XT
1 X1)

−1XT
1 K−11,
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Thus, both α̂ and β̂ are expected to be biased under the Naive Model.

3.5 Approximate Model for Pooled Data

To mitigate the potential bias induced by the vector of inverted pool sizes, K−11, we can

incorporate pool size into the regression model:

Approximate Model : log(Y p
i ) = α+ γk−1i + xiβ + δ

(2)
i ,

where γ is the regression coefficient corresponding to k−1i and δ
(2)
i represents the error term

for pool i under this Approximate Model, where we are still working under the assumption

of x-homogeneous pools, i.e. xij = xi for all j = 1, . . . , ki. Note that when all pool sizes

are equal, this model essentially reduces to the Naive Model.

Before performing least squares regression based on this new model, we can approximate

the variance of the log-transformed pooled outcomes to determine whether a weighted least

squares approach could improve efficiency. Using a first-order Taylor series expansion,

V ar(log Y p
i ) ≈ V ar

{
log[E(Y p

i )] +
Y p
i − E(Y p

i )

E(Y p
i )

}
=
V ar(Y p

i )

E(Y p
i )2

=
c

ki
. (3.5)

Since the variance of each pooled outcome is a function of pool size, efficiency could po-

tentially be improved by applying a weighted least squares (WLS) regression with weight

matrix K = diag(k1, . . . , kn). The WLS parameter estimate for θ2 = (α, γ,β) under the

Approximate Model is then:

θ̂2 = (XT
2 KX2)

−1XT
2 K(log Yp),

where X2 = (1 K−11 X). Applying the Taylor series approximation from (3.4), the
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expectation of θ̂2 is approximately:

E(θ̂2) = E


α̂

γ̂

β̂

 = (XT
2 KX2)

−1XT
2 K[E(log Yp)]

≈ (XT
2 KX2)

−1XT
2 K

[
1(α+ log a)− (c/2)K−11 + Xβ

]

= (XT
2 KX2)

−1XT
2 KX2


α+ log(a)

−c/2

β



=


α+ log(a)

−c/2

β

 .

Under this model, α̂ remains biased by a factor of log(a), γ̂ is an approximately unbiased

estimator of −c/2, and β̂ will be an approximately unbiased estimator of the original co-

efficient vector β. Furthermore, V âr(θ̂2) = ĉ(XT
2 KX2)

−1, the estimated variance of θ̂2,

is approximately unbiased as well, where ĉ is the usual WLS estimate of the variance of

the outcome. To see this, let B = (XT
2 KX2)

−1XT
2 K. Following standard WLS theory, the

variance of θ̂2 = (XT
2 KX2)

−1XT
2 K(log Yp) is:

V ar(θ̂2) = V ar(B log Yp) = BV ar(log Yp)BT ≈ cBK−1BT = c(XT
2 KX2)

−1

where the approximation V ar(log Yp) ≈ cK−1 is from (3.5). Now, let vE = n− rank(X2)

and A = KX2(X
T
2 KX2)

−1XT
2 K. Again following standard WLS procedures, the estimate

of this variance is V âr(θ̂2) = ĉ(XT
2 KX2)

−1, where

ĉ =
(log Yp)T (K−A)(log Yp)

vE
,

which will be approximately unbiased if E(ĉ) ≈ c. Let X2θ
∗ denote the true value of
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E(log Yp). Then

E(ĉ) = E

[
(log Yp)T (K−A)(log Yp)

vE

]
=

1

vE

{
tr[(K−A)V ar(log Yp)] + E(log Yp)T (K−A)E(log Yp)

}
≈ 1

vE

{
tr[(K−A)cK−1] + θ∗TXT

2 (K−A)X2θ
∗
}

=
c

vE
{tr(KK−1)− tr[KX2(X

T
2 KX2)

−1XT
2 KK−1]}

=
c

vE
[n− rank(X2)]

= c,

since XT
2 (K − A)X2 = XT

2 [K − KX2(X
T
2 KX2)

−1XT
2 K]X2 = 0. Thus, the estimated

variance of θ̂2 will be approximately unbiased. Furthermore, when the total number of pools

(n) is large, θ̂2 will be approximately normally distributed due to asymptotic properties

under the central limit theorem, since θ̂2 can be written as a sample mean:

θ̂2 = (XT
2 KX2)

−1XT
2 K(log Yp)

=

(
n∑
i=1

xTi kixi

)−1( n∑
i=1

xTi ki log Y p
i

)

=

(
1

n

n∑
i=1

xTi kixi

)−1(
1

n

n∑
i=1

xTi ki log Y p
i

)
.

where
(
1
n

∑n
i=1 xTi kixi

)−1
is fixed. Thus, the usual 95% confidence intervals based on the

normal distribution should provide nominal 95% coverage in large samples. Since this

property only applies when n is large, confidence intervals may be too liberal in small

samples. Thus, although the additional assumption of normality on the original errors (εij)

does not necessarily dictate a t-distribution for the elements of β̂, applying the standard t

reference distribution with n − P − 1 degrees of freedom is a reasonable measure to help

alleviate overly liberal confidence intervals when sample size is small.

One advantage of the Approximate Model is that specific distributional assumptions

about the errors are not required, since the asymptotic normality and consistency of the

WLS estimators are based on the central limit theorem. Instead, the validity of this method
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depends on the independence of the individual specimens, the convergence of the Taylor se-

ries approximation, and the accuracy of the assumed linear relationship between the covari-

ates and the log of the outcome. In Section 3.9, we demonstrate the potential repercussions

of assuming the Naive Model, as well as the advantages of applying the Approximate Model

to analyze x-homogeneous pools. The simplicity of the Approximate Model and its flex-

ibility in not requiring any distributional assumptions are further bolstered by simulation

results.

3.6 Calculating MLEs

It is not always possible to form x-homogeneous pools, especially if one or more of the

covariates are continuous. In such cases, the Taylor series approximations from Section 3.5

are no longer justified. Instead, parametric approaches to identify MLEs of the β vector may

be the best option. While these methods do require distributional assumptions, they provide

theoretically sound alternatives to the Approximate Model when pools are heterogeneous.

A natural method to calculate MLEs is to maximize the observed data likelihood. As

noted in Section 1.4.1, the density for each pool, say fp(Y
p
i ), consists of a (ki − 1)-fold

integral

fp(Y
p
i |X,θ) =

∫
Yiki

. . .

∫
Yi2

ki

f1
kiY p

i −
ki∑
j=2

Yij

 f2(Y2) . . . fki(Yki)

 dYi2 . . . dYiki ,
where fj(y) = f(y|xij ,θ) is the assumed density of the individual level data that depends

on the parameter vector θ as well as the covariate vector xij . When there are at most two

specimens in each pool (i.e. ki ≤ 2 for all i), the observed log-likelihood can often be maxi-

mized through existing numerical integration and optimization functions such as the optim

function in R or the NLPQN function in SAS IML (R Development Core Team, 2012; SAS

Institute Inc., 2010). For larger pool sizes, however, numerical optimization of the likelihood

can quickly become computationally intractable. The integrand characterizing the density

of a sum of lognormal random variables, in particular, has a reputation for being especially

poorly-behaved (Beaulieu and Xie, 2004; Barakat, 1976; Santos Filho et al., 2006). In sub-
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sequent simulations and analyses, we apply direct optimization of the convolution formula

when possible. For larger pools sizes we propose a Monte Carlo Expectation Maximization

(MCEM) algorithm as a more dependable tool to optimize the observed likelihood.

3.7 MLEs via MCEM

The EM algorithm has a natural application to pooled data, since the complete data (i.e.

all individual outcomes) presumably follows a distribution from which MLE calculation is

simple. Similar to the traditional EM algorithm, the Monte Carlo EM algorithm seeks

to maximize the expected value of the conditional log-likelihood in lieu of the observed

likelihood (Dempster et al., 1977; Wei and Tanner, 1990).

Let Lc(θ) =
∏n
i=1

∏ki
j=1 f(Yij |xij ,θ) denote the complete likelihood, where θ = (α,β, σ)

and f is the density of the unpooled Yij ’s. In this scenario, we view the vector of measured,

pooled outcomes, Yp = (Y p
1 , . . . , Y

p
n ), as the observed data and the vector of individual

outcomes, Y = ({Yij} : j = 1, . . . , ki, i = 1, . . . , n), as the missing data, with the restriction∑ki
j=1 Yij = kiY

p
i . Applying this restriction, the missing data in pool i is essentially reduced

to (Yi2, . . . , Yiki), since, given Y p
i , Yi1 = kiY

p
i −

∑ki
j=2 Yij .

3.7.1 E step

The Expectation step of the algorithm requires calculation of the expected value of the

complete log-likelihood given the observed data. Let g(Yi2, . . . , Yiki |Y
p
i ,X,θ

(t)) denote the

density of the missing data given the observed (pooled) data under the parameter vector θ(t)

and fully observed covariate data X for each i = 1, . . . , n. Then the expected conditional

log-likelihood is:

Q(θ|θ(t)) = E[logLc(θ)|Yp,X,θ(t)]

=
n∑
i=1

Eg

log f

kiY p
i −

ki∑
j=2

Yij

 |xi1,θ
+

ki∑
j=2

log f(Yij |xij ,θ)

 (3.6)

where θ(t) = (α(t),β(t), σ(t)) is the estimate of the parameter vector at the tth iteration

of the algorithm. Let h(Yi[-1]) represent any of the continuous functions of the missing
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data contained in (3.6), where Yi[-1] = (Yi2, . . . , Yiki). For data that follows a right-skewed

distribution (e.g. lognormal), finding a closed form expression for Eg[h(Yi[-1])] can be

difficult. In such cases, we recommend using Monte Carlo methods to approximate this

value.

3.7.2 Monte Carlo Estimation

By the weak law of large numbers (WLLN), the conditional expectation Eg[h(Yi[-1])] can

be estimated by the Monte Carlo approximation:

Eg
[
h(Yi[-1])

]
=

∫
Yiki

. . .

∫
Yi2

h
(
Yi[-1]

)
g
(
Yi[-1]|Y

p
i ,X,θ

(t)
)
dYi[-1] ≈

1

M

M∑
m=1

h
(
Yi[-1],m

)
,

where Yi[-1],m = (Yi2,m, . . . , Yiki,m) is generated under the joint conditional distribution

g(Yi[-1]|Y
p
i ,X,θ

(t)) for each m, and M is a number large enough for the asymptotic prop-

erties of the WLLN to hold. Now, we can re-write g(Yi[-1]|Y
p
i ,X,θ

(t)) as:

g(Yi[-1]|Y
p
i ,X,θ

(t)) =
fc(Yi[-1], Y

p
i |X,θ

(t))

fp(Y
p
i |X,θ

(t))

where fp is the marginal density for Y p
i and fc(Yi[-1], Y

p
i |X,θ

(t)) denotes the density of the

complete data. Using the joint transformation approach, let Uj = Yij for j = 2, . . . , ki and

let V = Y p
i = 1

ki

∑ki
j=1 Yij , so that Yi1 = kiV −

∑ki
j=2 Uj . Then

f(V,U2, . . . , Uki) = |J | × f [Yi1(v), Yi2(u2) . . . , Yiki(uki)]

= kif

kiV − ki∑
j=2

Uj |xi1,θ(t)
 ki∏

j=2

f(Uj |xij ,θ(t))

where the Jacobian J , is calculated as:

|J | =
∣∣∣∣ dY

d(V,U)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ki −1 −1 . . . −1

0 1 0 . . . 0

...
. . .

...

0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ki
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Then

g(Yi[-1]|Y
p
i ,X,θ

(t)) (3.7)

=
kiI(

∑ki
j=2 Yij < kiY

p
i )f(kiY

p
i −

∑ki
j=2 Yij |xi1,θ

(t))
∏ki
j=2 f(Yij |xij ,θ(t))

fp(Y
p
i |X,θ

(t))
,

where we have incorporated the linear restriction on the Yij ’s into the density expression

as an indicator function. The main difficulty in generating data from (3.7) is meeting the

inequality constraint contained in the indicator function.

Rejection Sampling A straightforward method toward generating data from the condi-

tional distribution g(Yi[-1]|Y
p
i ,X,θ

(t)) is to first generate each Yij,m from f(Yij |xij ,θ(t)) for

j = 2, . . . , ki. If these simulated data fail to meet the restriction (i.e. if
∑ki

j=2 Yij,m ≥ kiY
p
i ),

then the sample is rejected and a new sample is generated. This process continues until the

desired number of samples, M , have been produced. As expected, this method becomes

increasingly slow with larger values of M , particularly when the distributional variance or

pool size are large.

Importance Sampling A more computationally efficient method than rejection sam-

pling can be achieved through importance sampling (Lange, 2010). The basic idea behind

this strategy is to identify a distribution that is similar to g(Yi[-1]|Y
p
i ,X,θ

(t)) but from

which samples are easier to obtain. Importance weights are then applied to the Monte

Carlo estimate of Eg[h(Yi[-1])] in order to account for generating data under the alter-

nate distribution. Let g∗(Yi[-1]|Y
p
i ,X,θ

(t)) represent this alternate generating distribution.
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Then:

Eg[h(Yi[-1])] =

∫
Yiki

. . .

∫
Yi2

h(Yi[-1])g(Yi[-1]|Y
p
i ,X,θ

(t))dYi[-1]

=

∫
Yiki

. . .
∫
Yi2

h(Yi[-1])g(Yi[-1]|Y
p
i ,X,θ

(t))dYi[-1]∫
Yiki

. . .
∫
Yi2

g(Yi[-1]|Y
p
i ,X,θ

(t))dYi[-1]

=

∫
Yiki

. . .
∫
Yi2

h(Yi[-1])w(Yi[-1])g
∗(Yi[-1]|Y

p
i ,X,θ

(t))dYi[-1]∫
Yiki

. . .
∫
Yi2

w(Yi[-1])g∗(Yi[-1]|Y
p
i ,X,θ

(t))dYi[-1]

≈
∑M

m=1 h(Yi[-1],m)w(Yi[-1],m)∑M
m=1w(Yi[-1],m)

where w(Yi[-1]) = g(Yi[-1]|Y
p
i ,X,θ

(t))/g∗(Yi[-1]|Y
p
i ,X,θ

(t)) are the importance weights,

and each Yi[-1],m = (Yi2,m, . . . , Yiki,m) is now generated under the alternate distribution,

g∗(Yi[-1]|Y
p
i ,X,θ

(t)). The first step in this derivation was based on the property that the

integral of a density function over its entire domain is 1. The advantage of including this

denominator is that any constants (e.g., functions of Y p
i not dependent on m) will cancel

in the final step.

Since the linear restriction
∑ki

j=2 Yij,m < kiY
p
i poses the main difficulty, we can choose a

distribution g∗(Yi[-1]|Y
p
i ,X,θ

(t)) that satisfies this restriction first, then identify the appro-

priate weights to obtain a good approximation of the desired expectation. While there may

be multiple candidates for g∗(Yi[-1]|Y
p
i ,X,θ

(t)), one straightforward way to guarantee the

linear restriction is to first generate each Yij,m from f(Yij |xij ,θ(t)) for j = 1, . . . , ki. This

step is similar to the first step of the rejection sampling method, except that this time we

are also generating Yi1. Then, instead of rejecting the sample if it does not meet the linear

constraint, we alter the sample so that it automatically does. Let Zi,m = (Zi1,m, . . . , Ziki,m)

denote this new sample, where Zij,m = Yij,m(kiY
p
i )/(

∑ki
j=1 Yij,m) for all j = 1, . . . , ki. This

strategy guarantees that the new sample will sum to kiY
p
i , so that exactly M samples need

to be generated at each iteration. Rejection sampling, on the other hand, requires a min-

imum of M samples, and often many more, depending on how often the linear constraint

is met. Table 3.1 illustrates the potential computational savings of performing importance
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sampling over rejection sampling under a lognormal distribution. The results are based

on a simulation study of 30,000 repetitions, where an outcome (Y) was simulated under a

lognormal distribution such that E[log(Y )] = 0 and V ar[log(Y )] = 1, then were grouped in

pairs to mimic a random pooling strategy with pool size = 2. Given these simulated pooled

measurements, both rejection and importance sampling methods were employed at various

values of M .

Table 3.1: Computational efficiency of importance sampling vs. rejection sampling. MRS

refers to the average number of samples generated under rejection sampling before M are
accepted, MIS denotes the number of samples generated under importance sampling. tRS
and tIS refers to the average time in seconds of the computational time required to perform
rejection and importance sampling, respectively, with a Monte Carlo size of M .

Monte Carlo Size (M)
10 50 100 500

MIS 10 50 100 500
MRS 15 74 147 740
tRS/tIS 3.8 14.7 24.3 52.8

As evident by this study, the average amount of additional time required to perform

rejection sampling instead of importance sampling increases noticeably with larger values

of M , since this method must generate around 50% more samples in order to obtain the

desired Monte Carlo size, whereas importance sampling generates exactly M samples for

each pool. When parameters such as variance and pool size are increased, this discrepancy

is even more pronounced. Although importance sampling requires a fair amount of initial

effort in calculating appropriate weights, enormous computational savings can be accrued

by performing importance sampling over rejection sampling, thus facilitating more rapid

convergence.

To calculate the importance weights, we must first determine the appropriate expression

for g∗(Zi[-1],m|Y
p
i ,X,θ

(t)). Following the derivation outlined in Frigyik, Kapila, and Gupta

(2010), the joint density of (Zi1,m, . . . , Ziki,m) can be found by applying the change of

variable:

(Yi1,m, . . . , Yiki,m) =

S
kiY p

i −
ki∑
j=2

Zij,m

 , SZi2,m, . . . , SZiki,m

 ,
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where S is defined as S = (
∑ki

j=1 Yij,m)/kiY
p
i . Then the joint distribution of (S,Zi[-1],m) is:

gs(S,Zi[-1],m|Y
p
i ,X,θ

(t)) =

|J | × f

S
kiY p

i −
ki∑
j=2

Zij,m

 |Y p
i ,xi1,θ

(t)

 ki∏
j=2

f(SZij,m|Y p
i ,xij ,θ

(t)), (3.8)

where the determinant of the Jacobian, |J |, is calculated as:

|J | =

∣∣∣∣ dY

d(S,Z)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

kiY
p
i −

∑ki
j=2 Zij,m −S −S . . . −S

Zi2,m S 0 . . . 0

...
. . .

...

Ziki,m 0 0 . . . S

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

kiY p
i −

ki∑
j=2

Zij,m

Ski−1 + Ski−1
ki∑
j=2

Zi2,m

= kiY
p
i S

ki−1

Integrating over the domain of S will give the joint density of the alternate generating

function g∗(Zi[-1],m|Y
p
i ,X,θ

(t)). If this expression has a closed form, calculation of the

importance weights is straightforward. Examples of this process are given in Section 3.7.5 for

a lognormally distributed outcome, and in Section 4.2.2 for a gamma-distributed outcome.

3.7.3 M step

Maximizing Q with respect to θ is generally a straightforward task once the conditional

expectations have been approximated. This is particularly true when the assumed distri-

bution of the outcome is a member of the exponential family, for which there are numerous

maximization functions available in software packages (e.g. SAS, R).
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3.7.4 Standard Error Estimation

One of the drawbacks of using an EM type algorithm is that calculating standard error

estimates can prove difficult. While various methods have been proposed to estimate the

observed information matrix (Jamshidian and Jennrich, 2000; Oakes, 1999; Louis, 1982),

for this study, since Monte Carlo techniques are required to approximate the conditional

expectations of the MLEs, we apply MC approximations to strategies similar to Louis’s

method to estimate the observed information matrix (Louis, 1982).

Let lobs =
∑n

i=1 log fp(Y
p
i |X,θ) denote the observed log-likelihood, fc(Y

p
i ,Yi[-1]|X,θ)

the density of the complete data for pool i, and Qi = Eg[log fc(Y
p
i ,Yi[-1]|X,θ)], the ith

component of Q. Then the Hessian can be written as:

d2lobs

dθ2
(3.9)

=
n∑
i=1

{
1

fp(Y
p
i |X,θ)

[
d2

dθ2
fp(Y

p
i |X,θ)

]
−
[
d

dθ
log fp(Y

p
i |X,θ)

] [
d

dθ
log fp(Y

p
i |X,θ)

]T}
,

where

d

dθ
log fp(Y

p
i |X,θ) = [fp(Y

p
i |X,θ)]−1

[
d

dθ
fp(Y

p
i |X,θ)

]
= [fp(Y

p
i |X,θ)]−1

∫
Yiki

. . .

∫
Yi2

d

dθ
fc(Y

p
i ,Yi[-1]|X,θ)dYi[-1]

=

∫
Yiki

. . .

∫
Yi2

d
dθ fc(Y

p
i ,Yi[-1]|X,θ)

fc(Y
p
i ,Yi[-1]|X,θ)

fc(Y
p
i ,Yi[-1]|X,θ)

fp(Y
p
i |X,θ)

dYi[-1]

=

∫
Yiki

. . .

∫
Yi2

[
d

dθ
log fc(Y

p
i ,Yi[-1]|X,θ)

]
g(Yi[-1]|Y

p
i ,X,θ)dYi[-1]

= Eg

[
d

dθ
log fc(Y

p
i ,Yi[-1]|X,θ)

]
=

dQi
dθ

,
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and [fp(Y
p
i |X,θ)]−1 d2

dθ2 fp(Y
p
i |X,θ) can be written as:

=

∫
Yiki

. . .

∫
Yi2

[
d2

dθ2
fc(Y

p
i ,Yi[-1]|X,θ)

]
[fp(Y

p
i |X,θ)]−1dYi[-1]

=

∫
Yiki

. . .

∫
Yi2

d2

dθ2 fc(Y
p
i ,Yi[-1]|X,θ)

fc(Y
p
i ,Yi[-1]|X,θ)

g(Yi[-1]|Y
p
i ,X,θ)dYi[-1]

= Eg

[
d2

dθ2 fc(Y
p
i ,Yi[-1]|X,θ)

fc(Y
p
i ,Yi[-1]|X,θ)

]

= Eg

{
d2

dθ2
log fc(Y

p
i ,Yi[-1]) +

[
d

dθ
log fc(Y

p
i ,Yi[-1])

] [
d

dθ
log fc(Y

p
i ,Yi[-1])

]T}

=
d2Qi

dθ2
+ Eg

{[
d

dθ
log fc(Y

p
i ,Yi[-1])

] [
d

dθ
log fc(Y

p
i ,Yi[-1])

]T}
.

Monte Carlo methods can be used to approximate (3.9), which can then be inverted to give

the negative of the variance-covariance matrix of the MLEs (Tan et al., 2007).

3.7.5 Example: Lognormal Distribution

While the MCEM methods previously outlined could theoretically be applied to any para-

metric model, we provide explicit calculations of these steps for a lognormal model for

pooled data, since right-skewed outcomes are often assumed to be lognormally distributed

in regression settings.

E step Applying the lognormal density to (3.6), the conditional expectation of the com-

plete log-likelihood becomes:

Q(θ|θ(t)) = c(Y)−N log σ − 1

2σ2

n∑
i=1

ki∑
j=1

Eg[(log Yij − µij)2]

= c(Y)−N log σ − 1

2σ2

n∑
i=1

ki∑
j=1

[
h2(Yij)− 2µijh1(Yij) + µ2ij

]
(3.10)

where Yi1 = kiY
p
i −

∑ki
j=2 Yij , µij = α+xijβ, c(Y) = −Eg[

∑∑
log(Yij

√
2π)],and hb(Yij) =

Eg[(log Yij)
b] for b = 1, 2. To estimate h1 and h2 we apply the importance sampling method

outlined in Section 3.7.2. For a lognormally distributed outcome, integrating over S in (3.8)
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gives a closed from for the alternate sampling distribution g∗(Zi[-1],m|Y
p
i ,X,θ

(t)):

g∗ =

∞∫
0

kiY
p
i s

ki−1 (2πσ2)−ki/2∏ki
j=1(szij,m)

exp

[
−
∑ki

j=1 (log s+ log zij,m − µij)2

2σ2

]
ds

= kiY
p
i

 ki∏
j=1

fij

 ∞∫
0

s−1 exp

[
−

(log s)2 + 2(log s)k−1i
∑ki

j=1 (log zij,m − µij)
2σ2k−1i

]
ds

= kiY
p
i

 ki∏
j=1

fij

 exp

 1

2σ2ki

 ki∑
j=1

(log zij,m − µij)

2
√

2πσ2

ki

where fij = f(zij,m|xij ,θ) is the lognormal density and zi1,m = kiY
p
i −

∑ki
j=2 zij,m. The

importance weights are then:

w(Zi[-1],m) =
g(Zi[-1],m|Y

p
i ,X,θ

(t))

g∗(Zi[-1],m|Y
p
i ,X,θ

(t))

= c(Y p
i )
I(
∑ki

j=2 zij,m < kiY
p
i )
(∏ki

j=1 fij

)
(∏ki

j=1 fij

) exp

−
[∑ki

j=1 (log zij,m − µij)
]2

2σ2ki


= c(Y p

i ) exp

−
[∑ki

j=1 (log zij,m − µij)
]2

2σ2ki

 , (3.11)

where c(Y p
i ) is a function of the observed data that does not depend on m. Note that

I(
∑ki

j=2 zij,m < kiY
p
i ) = 1 since the Zi[-1],m are designed specifically to fulfill this criterion.

Then each hb(Yij) = Eg[(log Yij)
b] for b = 1, 2 in (3.10) can be approximated by:

hb(Yij) ≈
∑M

m=1 (log zij,m)bw(Zi[-1],m)∑M
m=1w(Zi[-1],m)

=

∑M
m=1 (log zij,m)b exp

{
−
[∑ki

j=1 (log zij,m − µij)
]2

(2σ2ki)
−1
}

∑M
m=1 exp

{
−
[∑ki

j=1 (log zij,m − µij)
]2

(2σ2ki)−1
} ,

where Zi[-1],m is generated under g∗. Note that c(Y p
i ) from (3.11) cancels from this approx-

imation since this expression does not depend on m.

Several strategies for choosing the best values of M at each iteration have been explored

(Booth and Hobert, 1999; Caffo, Jank, and Jones, 2005; Levine and Casella, 2001; Tan,
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Tian, and Fang, 2007; Wei and Tanner, 1990). These strategies consist of starting with a

small value for M at early iterations, then increasing at higher iterations. This technique,

referred to as “ascent-based MCEM”, serves to quickly move the algorithm to the appro-

priate neighborhood of the MLEs, then gradually reduces the error associated with the

Monte Carlo estimation as the algorithm stabilizes. Theoretically, Monte Carlo error could

be virtually eliminated as M approaches infinity. Often, however, moderately large values

of M will suffice (e.g. M ≈ 10,000). For the MCEM algorithm applied to the simulations

in this paper, we speed convergence by calculating starting values under the Approximate

Model, which will often give good approximations of the neighborhood of the coefficient

estimates, even when the assumptions required for the validity of the Approximate Model

are not met. After obtaining these starting values, we set M = 50, and after every 20

iterations, M is increased by 25%. For simulations presented in this paper, the algorithm

was run for 500 iterations, since additional iterations produced only negligible changes in

the parameter estimates.

M step Closed form solutions for the update formulas of α, β and σ can be found by

solving for the roots of the gradient vector. The update formulas for these parameters are

given by:

α̂(t+1)

β̂
(t+1)

 = (XT
1 X1)

−1XT
1 h1(Y)

σ̂(t+1) =

 1

N

n∑
i=1

ki∑
j=1

[
h2(Yij)− 2µ̂

(t)
ij h1(Yij) + (µ̂

(t)
ij )2

]
1/2

where X1 = (1 X) is the design matrix, X is the matrix of fully-observed covariate data,

h1(Y) = Eg(log Y), and µ̂
(t)
ij = α̂(t)+xijβ̂

(t)
. Note that these parameter estimates from the

tth iteration are also embedded in h1(Yij) and h2(Yij), since these values were approximated

based on data generated from densities conditional on θ(t).

Standard Error Estimation After calculating an expression for Q, estimating the in-

formation matrix is fairly straightforward. Referring back to Section 3.7.4, the observed
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information can be written as

d2lobs

dθ2
=
d2Q

dθ2
−
(
dQ

dθ

)(
dQ

dθ

)T
+

n∑
i=1

Eg

{[
d

dθ
log fc(Y

p
i ,Yi[-1])

] [
d

dθ
log fc(Y

p
i ,Yi[-1])

]T}
.

(3.12)

Existing software functions, such as the hessian and grad functions in the R package

“numDeriv”, can be employed to numerically calculate the first two terms in (3.12) once

Qi has been evaluated (via MC methods) for each i at the final iteration of the MCEM

algorithm. An expression for the last component, however, must be developed under the

assumed distribution. The gradient of the complete log-likelihood under the lognormal

distribution is:

d

dθ
log fc(Y

p
i ,Yi[-1]) =


σ−2

∑ki
j=1 (log Yij − µij)

σ−2
∑ki

j=1 xTij(log Yij − µij)

−kiσ−1 + σ−3
∑ki

j=1 (log Yij − µij)2

 ,

where µij = α+ xijβ. Eg

{[
d
dθ log fc(Y

p
i ,Yi[-1])

] [
d
dθ log fc(Y

p
i ,Yi[-1])

]T}
can then be esti-

mated for each i = 1, . . . , n through importance sampling.

3.8 Pooling Methods

Recall that, for this study, we assume that N specimens have been collected, but only n

(< N) lab tests can be afforded. Perhaps the simplest way to meet this requirement is

to randomly select n of the available specimens. While this selection strategy allows for

straightforward analysis of this subset, it omits many of the specimens from the study

altogether, often resulting in a considerable loss of efficiency. Randomly pooling specimens

into equal-sized groups would allow all of the specimens to be included in the analysis,

but this method is often accompanied by a similar efficiency loss. An alternative approach

to reduce the number of lab tests while maintaining a high level of efficiency incorporates

covariate data into the pooling process. So long as the pools are based only on the fully

observed covariate values, appropriately defined regression coefficient estimates as well as

their estimated variances remain valid as a consequence of viewing pooled outcomes as
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partially missing data (Little and Rubin, 2002).

3.8.1 x-homogeneous Pools

As demonstrated in Section 3.5, when pools are formed from subjects with identical covari-

ates (for binary or categorical covariates), valid coefficient estimates can easily be obtained

by applying a linear regression to the log-transformed pooled values (Approximate Model).

In order to form x-homogeneous pools, the number of desired pools (n) must be larger

than the number of unique groups with identical covariate values, say G. For this study,

homogeneous pools were formed under the following conditions:

1. Each group of unique covariates is required to supply at least one pool.

2. Groups containing only one member contribute that individual specimen for analysis.

3. When possible, pools are formed to have similar sizes.

3.8.2 k-means Clustering

When it is not possible to form x-homogeneous pools (e.g. when n < G or at least one

covariate is continuous), the k-means clustering algorithm discussed in Chapter 2 can be

applied to the design matrix to maintain similar covariate values in each pool. In subsequent

simulations, we standardize each variable prior to performing k-means clustering to ensure

that each variable contributes similar influence on the resulting clusters, since we consider all

predictors to be equally important. This technique will often, but not always, identify pools

that are homogeneous with respect to any binary or categorical variables included in the

clustering procedure. Alternatively, if we were interested in a particular variable, we could

use the weighted k-means technique described in Section 2.3.3 to improve the efficiency of

its corresponding coefficient estimate. As illustrated in Figure 2.3, however, this increase

in precision can be accompanied by a reduction in precision for the remaining estimates, so

careful consideration must be taken before implementing such weighting strategies.
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3.9 Simulation Study

For each of the simulation scenarios, 5000 simulations were performed in R. Datasets from

the first two simulation studies were simulated to resemble actual motivating data described

in Section 3.2, with sample size N = 672. Independent predictor variables were generated

to mimic age (years), smoking status (yes/no), race (1 = white / 2 = black), and SA

status (yes/no), and the outcome variable was generated to resemble the cytokine MCP1

(µg/mL) based on a lognormal regression against those predictors. Age was simulated as a

normal random variable with mean 26.6 and standard deviation 6.4, then rounded to the

nearest whole number (this permits the formation of x-homogeneous pools when average

pool size is small). Smoking status, race, and SA status were simulated as Bernoulli random

variables with probabilities 0.47, 0.28, and 0.46, respectively. The outcome, MCP1, was

generated under a lognormal distribution such that E[log(MCP1)|X] = −2.48+0.017(Age)+

0.007(Smoking Status)− 0.388(Race) + 0.132(SA) and V ar[log(MCP1)|X] = 1.19.

In the first study, we assess each of the proposed analytical strategies when applied to

x-homogeneous pools (n = 336) mimicking data from the CPP substudy, and in the next

study we compare estimate precision from the various pooling strategies applied to the same

generated datasets, comparing k-means clustering to random pooling and selection when

x-homogeneous pools cannot be formed (n = 112).

The last two simulation studies were developed to assess performance of the analytical

methods in additional scenarios. First, we generate a dataset such that application of

all proposed methods (excluding the Naive Model) is feasible and theoretically justified.

Specifically, pools were formed x-homogeneously on the covariates (to justify analysis under

the Approximate Model) with a maximum pool size of 2 (to enable application of the

Convolution Method). In the first two simulation studies, the nature of the simulated

data precluded formation of pools with both of these characteristics. The final simulation

demonstrates a scenario in which the Approximate Model fails and the Convolution Method

falters, to caution against analysis via the former when pools are not x-homogeneous, and

via the latter (even for pools of maximum size 2) when the convolution integral may be

poorly behaved.
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3.9.1 Comparing Analytical Strategies

The goal of this first simulation study is to assess each of the discussed analytical strategies

for x-homogeneous pools applied to data resembling the CPP substudy, where an analytical

method is deemed appropriate if it provides accurate estimates of the regression coefficients

as well as their standard errors. Pools were formed based on the x-homogeneous clustering

strategy described in Section 3.8.1, where pool sizes ranged from 1 to 6. Analytical strategies

under consideration included standard least squares regression on log-transformed pooled

outcomes (Naive Model), WLS on the log-transformed pools with inverted pool size as a

predictor variable (Approximate Model), and the likelihood-based MCEM strategy under

lognormal regression (MCEM Model). We also provide regression results from the full data

as well as a random sample of size n = 336 for comparison purposes. Since many of the

pools in this simulation consisted of more than 2 specimens, direct optimization of the

likelihood under the Convolution approach was not viable for this first simulation.

Table 3.2 displays the mean bias and empirical standard deviation (SD) of the regression

coefficient estimates. The ratio of mean estimated standard error to empirical standard

deviation (ŜE/SD) is also provided, where a value of 1 is ideal. 95% confidence interval

(CI) coverage is based on the estimated standard errors and a t-reference distribution with

n− 5 degrees of freedom.

Based on these simulation results, the Naive Model provides biased estimates, which

can result in severe CI undercoverage. This characteristic is particularly noticeable for β̂3,

which has only 81% CI coverage. The remaining methods provide approximately unbiased

estimates of the regression coefficients (Mean Bias ≈ 0) as well as their estimated standard

errors (ŜE/SD ≈ 1) and close to 95% CI coverage. Thus, both the Approximate as well as

the MCEM Models provide valid results when pools are x-homogeneous.

Although the main purpose of this simulation is to test the validity of the proposed

analytical methods, it is also worth noting that estimates from these x-homogeneous pools

analyzed under the Approximate and MCEM Models are noticeably more precise than

those from a random sample, and are only slightly less efficient than estimates from the

full dataset. The MCEM method appears to provide marginally more precise estimates
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Table 3.2: Simulation results comparing various analytical models for lognormal regres-
sion on x-homogeneous pools. “SD” refers to empirical standard deviation of regression
coefficient estimates and “ŜE” is the mean estimated standard error.

Mean Bias (SD)

ŜE/SD (95% CI Coverage)

Method n β1 = 0.017 β2 = 0.007 β3 = -0.388 β4 = 0.132

Full Data 672 0.000 (0.007) -0.002 (0.085) -0.001 (0.092) 0.001 (0.085)
0.99 (94.8) 1.00 (95.1) 1.02 (95.4) 1.00 (94.7)

Random Sample 336 0.000 (0.009) -0.003 (0.120) -0.003 (0.130) 0.000 (0.118)
1.00 (95.1) 1.00 (94.6) 1.03 (95.7) 1.02 (95.3)

Naive Model 336 0.000 (0.007) -0.016 (0.099) -0.111 (0.106) -0.016 (0.099)
0.89 (92.0) 1.00 (94.8) 0.98 (80.9) 1.01 (94.6)

Approx. Model 336 0.000 (0.007) -0.002 (0.092) -0.002 (0.105) 0.001 (0.092)
0.99 (94.6) 0.98 (94.7) 1.00 (95.3) 0.98 (94.3)

MCEM Model 336 0.000 (0.007) -0.002 (0.091) -0.003 (0.098) 0.001 (0.090)
0.98 (94.3) 0.99 (94.9) 1.01 (95.0) 1.00 (94.8)

than those under the Approximate Model, most likely due to the fact that this method

identifies MLEs, which are well-known to be the most efficient estimates when the assumed

underlying distribution is correctly specified, as in this simulation. This slight improvement

in efficiency, however, is unlikely to motivate the additional computational time and effort

required to implement the MCEM method. Thus, the Approximate Model may be the

most desirable analytical method when pools are x-homogeneous, due to the simplicity of

its application as well as its flexibility in not requiring specific distributional assumptions

on the errors in the underlying model (3.1).

3.9.2 Comparing Pooling Strategies

In the next simulation, we compare regression results based on pooling by k-means clustering

versus random pooling, when x-homogeneous pools cannot be formed due to a small number

of pools (n = 112). k-means clustering was performed using the kmeans function in R,

where pool sizes ranged from 1 to 49, with an average size of 6. Each of the pooled strategies

was analyzed under the MCEM algorithm, since the heterogeneity of the pools and large
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pool sizes precluded defensible application of the Approximate Model and Convolution

Method.

Table 3.3: Simulation results for regression analysis on various pooling methods using the
MCEM algorithm. “SD” refers to empirical standard deviation of regression coefficient
estimates and “ŜE” is the mean estimated standard error.

Mean Bias (SE)

ŜE/SD (95% CI Coverage)

Method n β1 = 0.017 β2 = 0.007 β3 = -0.388 β4 = 0.132

Full Data 672 0.000 (0.007) -0.002 (0.085) -0.001 (0.092) 0.001 (0.085)
0.99 (94.8) 1.00 (95.1) 1.02 (95.4) 1.00 (94.7)

Random Sample 112 0.000 (0.017) -0.002 (0.210) 0.002 (0.231) 0.004 (0.212)
0.99 (95.2) 1.00 (95.1) 1.01 (95.6) 0.99 (95.1)

Random Pools 112 0.000 (0.019) -0.009 (0.247) -0.018 (0.318) -0.001 (0.251)
0.96 (93.8) 0.97 (94.6) 0.97 (95.4) 0.95 (94.2)

k-means Pools 112 0.000 (0.008) -0.003 (0.101) -0.005 (0.108) 0.000 (0.099)
0.96 (93.8) 0.97 (94.5) 0.99 (95.1) 0.98 (94.5)

Based on the results in Table 3.3, all pooling and selection strategies provide approxi-

mately unbiased estimates with close to nominal 95% CI coverage. While random pooling

seems to give slightly biased estimates of β3, further examination suggests that this ap-

parent bias is a consequence of the estimate exhibiting a slightly left-skewed distribution,

likely due to the sample size being too small for asymptotic normality of this MLE to apply.

Estimates of β3 under k-means pooling, on the other hand, do not exhibit this characteris-

tic, suggesting that asymptotic properties may be applicable at a smaller number of pools

when k-means clustering is performed. k-means pooling also provides coefficient estimates

that are considerably more precise than both random strategies, more than doubling the

efficiency for each of the estimates, and losing surprisingly little efficiency relative to the

full data analysis even at 1/6th the original sample size. Thus, a considerable amount of

information can be retained from the full data when k-means pooling is performed and

appropriate analytical techniques are applied, at just a fraction of the total laboratory cost.
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3.9.3 Convolution Method

In the previous simulations, the Convolution Method was not applied because pool sizes

often exceeded 2, causing the numerical integration required for optimization under this

method to become computationally intractable. In this simulation study, datasets and

pools are formed specifically to permit application of each of the methods proposed in this

chapter. The Naive Model was not included in this analysis as it has been shown, both

theoretically and in simulations, to be an invalid estimation procedure. In fact, the Naive

Model would only be expected to provide a valid estimation procedure if pools were formed

x-homogeneously and with equal-sized pools, as the Naive Model would be then equivalent

to the Approximate Model. Actual datasets with the possibility of forming such pools,

however, are unlikely to be encountered in most real-world research settings.

For this simulation, datasets with a total sample size of N = 1800 were generated to

contain three Bernoulli-distributed covariates (X1, X2, X3) with probabilities 0.3, 0.5, and

0.8, respectively. The outcome Y was generated as a lognormal random variable such that

E(log Y |X) = 0 + 0.5X1 + 0.3X2 − 0.1X3 and V ar(log Y |X) = 0.64. 1000 x-homogeneous

pools were then formed so that every pool contained either 1 or 2 specimens. Results for

this study can be found in Table 3.4.

These results serve to validate each of the proposed analytical strategies. All methods

provide essentially unbiased estimates of both the regression coefficients as well as their

standard errors, and exhibit close to 95% confidence interval coverage. Estimates from

the MCEM and Convolution Methods are nearly identical, supporting the validity of the

MCEM method as an alternative to direct optimization of the observed likelihood (i.e., the

Convolution Method) for calculating MLEs. Results from the Approximate Model are also

extremely similar to those from both the MCEM and Convolution Method, further endors-

ing this model as a more accessible estimation procedure when pools are x-homogeneous.

Similar to the simulation results from Section 3.9.1, the x-homogeneous pooling strategy

provides more precise estimates (i.e., lower SD) than a random sample of the same size.
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Table 3.4: Additional simulation results for regression analysis on the proposed analytical
methods, where pools are x-homogeneous and pool size does not exceed 2. “SD” refers
to empirical standard deviation of regression coefficient estimates and “ŜE” is the mean
estimated standard error.

Mean Bias (SE)

ŜE/SD (95% CI Coverage)

Method n β1 = 0.5 β2 = 0.3 β3 = -0.1

Full Data 1800 0.000 (0.041) 0.000 (0.038) 0.000 (0.048)
1.01 (95.1) 0.99 (94.8) 0.99 (94.6)

Random Sample 1000 0.000 (0.055) 0.000 (0.051) -0.001 (0.064)
1.01 (95.2) 1.00 (95.0) 0.99 (94.5)

Approximate Model 1000 0.000 (0.043) 0.000 (0.040) 0.000 (0.050)
1.01 (94.9) 0.99 (94.6) 0.99 (94.5)

MCEM Model 1000 0.000 (0.042) 0.000 (0.039) 0.000 (0.050)
1.01 (95.4) 0.99 (94.6) 0.99 (94.7)

Convolution Method 1000 0.000 (0.042) 0.000 (0.039) 0.000 (0.050)
1.01 (95.4) 0.99 (94.7) 0.99 (94.8)

3.9.4 A Cautionary Tale

As evident in previous simulations, the Approximate Model can be a valuable tool for analyz-

ing x-homogeneous pools. When pooled covariate values are similar, although not identical,

within pools, this model may appear to provide valid estimates of the regression coefficients;

care must be taken, however, since fitting the Approximate Model when pools are not en-

tirely homogeneous can result in flawed inference. To illustrate the potential repercussions of

applying the Approximate Model to heterogeneous pools, we performed a simulation study

in R with 5000 repetitions, for N = 400, X1 ∼ Exp(0.3), X2 ∼ Bernoulli(0.15), X3 ∼

Bernoulli(0.8), and log(Y ) ∼ N(µ, 0.62), such that µ = 3 − 0.5(X1) + 0.7(X2) + 0.2(X3).

Pools were formed randomly in groups of 2 (n = 200), then fit under the Approximate

Model, the MCEM algorithm, and the Convolution Method. Note that in this situation,

the Approximate Model is equivalent to the Naive Model, since all pools have the same size.

Numerically, the Convolution Method proved rather unreliable in analyzing many of

these datasets. Performing numerical integration with the integrate function in R suffered
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from extremely low rates of convergence. To mitigate this issue, the quadinf function from

the “pracma” package was applied as an alternate numerical integration procedure. Con-

vergence rates under this revised convolution function were close to 62%.

Table 3.5: Simulation results for 200 randomly formed pools of size 2 fit under the Approx-
imate Model, MCEM, and Convolution Method, where the Approximate Model is expected
to perform poorly due to x-heterogeneity of pools. “SD” refers to empirical standard devi-
ation of regression coefficient estimates and “ŜE” is the mean estimated standard error.

Mean Bias (SD)

ŜE/SD (95% CI Coverage)

Method n β1 = −0.5 β2 = 0.7 β3 = 0.2

Full Data 400 0.000 (0.009) 0.000 (0.085) 0.001 (0.076)
0.99 (95.4) 0.99 (94.9) 0.99 (94.7)

Approximate Model 200 0.188 (0.036) 0.054 (0.201) -0.007 (0.174)
0.58 ( 0.0) 0.97 (93.3) 1.00 (95.0)

MCEM Model 200 0.000 (0.021) 0.000 (0.112) -0.001 (0.111)
0.97 (94.7) 0.98 (94.3) 0.99 (95.2)

Convolution Method 200 0.015 (0.040) -0.002 (0.114) -0.002 (0.113)
0.51 (82.9) 0.99 (94.6) 1.00 (95.1)

As evident in Table 3.5, the Approximate Model suffers noticeable bias for both β1

and β2, accentuated by a 0% CI coverage for β1. Even when the Convolution Method

appeared to be converging properly, simulation results suggest otherwise, as this method

fails to produce optimal estimates, particularly with respect to β1. The MCEM model, on

the other hand, produces essentially unbiased estimates of the coefficient parameters and

standard errors, with CI coverage close to 95%.

This simulation emphasizes the importance of choosing analytical techniques that are

appropriate for the pooling method. Furthermore, even analytical methods that may be

theoretically justified, such as the Convolution Method in this example, can still fall victim

to sub-optimal convergence rates. More importantly, apparent convergence of the Convo-

lution Method for an individual dataset, particularly when additional effort is required in

order to achieve that convergence, does not necessarily imply true convergence. The MCEM

method, on the other hand, while requiring more computational effort, can provide valid

estimates where these other analytical procedures fail.
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3.10 Data Analysis

Analysis of the CPP substudy example was conducted on data from 672 participants who

provided complete information on MCP1 as well as each of the 4 covariates. The single

MCP1 measurement that fell below the detection limit was assigned a value of 0.00001, and

race values were restricted to include values 1 (white) and 2 (black), as only a small number

(40 observations) were of other races. In addition, specimens from 508 of the participants

had been combined to form 254 actual pools, each containing 2 specimens (Whitcomb et al.,

2012). MCP1 values were measured again on these pools. Thus, we have access to MCP1

measurements from the complete dataset (672 lab assays), as well as from a dataset of 254

pools and 164 individual specimens (418 lab assays).

For this analysis, we first perform linear regression on a log-transformation of MCP1 on

the 672 individual measurements. These results serve as the “gold standard” for subsequent

analyses, since they represent the maximum information available from the dataset. Next,

we analyze the set of 418 observed pooled measurements and individual specimens. As

an additional comparison, we then perform regression on the same set of 418 pools and

individuals, but this time, we use artificial pooling to determine the expected value of each

pool, calculated as the arithmetic mean of the measurements from individual specimens.

These observed and expected pooled datasets are analyzed under both the MCEM algorithm

and the Convolution Method.

For our final analysis, x-homogeneous pools are created artificially, in order to illustrate

the results that would have been available had the entire set of observed covariate informa-

tion been used to inform the pooling process. At the desired sample size (n = 418) pool

sizes ranged from 1 to 5 in order to maintain homogeneity among the pooled covariates. The

Convolution approach was not available due to these larger pool sizes. Instead, we analyze

these x-homogeneous pools using the MCEM algorithm and the Approximate Model.

Results of these data analyses are provided in Table 3.6. Estimates from the MCEM and

Convolution approaches are almost identical, validating the performance of these methods

as appropriate algorithms for estimating MLEs. The observed and expected pools provide

similar conclusions with respect to estimated standard errors and significance levels, al-
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Table 3.6: Results from regression analyses on the individual and pooled dataset. A “*”
indicates predictors that were found to be significantly associated with log(MCP1) at the
0.05 level. “Full Data” was analyzed via linear regression on log(MCP1), “Observed Pools”
and “Expected Pools” under MCEM and Convolution Method, and “Homogeneous Pools”
under both MCEM and Approximate Model.

Estimate (SE)

Age Smoking Status Race SA Status σ̂
Data (years) (yes/no) (black/white) (yes/no)

Full Data 0.017 (0.007)* 0.007 (0.085) -0.388 (0.095)* 0.132 (0.086) 1.09

Observed Pools
MCEM 0.020 (0.009)* 0.083 (0.127) -0.159 (0.146) 0.135 (0.104) 1.23
Convolution 0.020 (0.010)* 0.083 (0.127) -0.159 (0.148) 0.136 (0.104) 1.23

Expected Pools
MCEM 0.021 (0.009)* 0.045 (0.125) -0.214 (0.146) 0.122 (0.101) 1.21
Convolution 0.021 (0.009)* 0.045 (0.124) -0.214 (0.146) 0.122 (0.101) 1.21

Homogeneous Pools
MCEM 0.017 (0.007)* 0.026 (0.092) -0.306 (0.102)* 0.143 (0.093) 1.12
Approx. 0.016 (0.007)* 0.022 (0.092) -0.308 (0.103)* 0.141 (0.092) 1.17

though the actual estimates tend to vary. This discrepancy is likely due to measurement

error or pooling error, a topic explored in depth by Schisterman et al. (2010) when measur-

ing an exposure of interest on pooled samples. While detailed evaluation of these potential

sources of error is beyond the scope of the current study, this issue highlights the impor-

tance of addressing the potential effects of additional error components when analyzing

biomarkers.

For x-homogeneous pools, the MCEM algorithm and the Approximate Model provide

almost identical results, emphasizing the advantages of the more accessible Approximate

Model. Estimates from these artificially-formed pools are generally most similar to those

from the full data analysis, and all are more precise than estimates obtained from the actual

pools, which were formed homogeneously only with respect to SA status (Whitcomb et al.,

2012). In addition, these x-homogeneous pools concur with the full data results that race

is significantly associated with levels of MCP1, a relationship that is lost when pools are

randomly formed with respect to this covariate. As demonstrated by this data analysis and

corroborated by the simulation studies, utilizing the entire covariate information to create
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pools can preserve associations present in the full dataset, maintain a high level of efficiency,

and even simplify the analytical process when pools are x-homogeneous.

3.11 Discussion

Our goal for this chapter was to develop methods for analyzing pooled, right-skewed data,

specifically when a log-transformation is needed on the individual-level outcome and bud-

getary constraints limit the number of assays that can be performed. When covariate data

is available prior to any physical pooling, this information can be utilized to form pools that

will produce precise regression estimates, often losing a minimal amount of information at a

fraction of the original sample size. When possible, forming x-homogeneous pools will not

only tend to maximize efficiency for a particular sample size, but can also allow exploitation

of a Taylor series approximation, so that a suitably specified linear regression model applied

to the log of the observed, pooled values will yield appropriate and precise estimates.

If it is not possible to form x-homogeneous pools, k-means clustering can provide an

efficient pooling strategy with respect to estimation of regression coefficients, but subse-

quent pools will likely require application of an MCEM algorithm, since at least one pool

will almost certainly contain more than two specimens. If specimens have already been

combined into non-homogeneous pools, as in the motivating dataset from the CPP study,

MLEs of regression estimates can be calculated via an MCEM algorithm, or through a

Convolution Method if pool size does not exceed 2. These estimation procedures, however,

require additional distributional assumptions on the outcome and can prove computation-

ally demanding. Assessment of the validity of these assumptions is complicated by the fact

that many of the available measurements are pooled. While it is possible to use only the

unpooled data for common regression diagnostics, much of the original information may be

lost. In the next chapter, we explore the consequences of distributional misspecification on

the analytical methods presented here.
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Chapter 4

Comparing Parametric and

Semi-Parametric Models for a

Skewed, Pooled Outcome

4.1 Introduction

When faced with the task of performing regression on a positive, right-skewed continuous

outcome, a common approach is to assume a lognormal distribution, so that applying a log

transformation to the outcome will simplify to a linear regression model. In Chapter 3, this

approach was extended to accommodate pooled data from a lognormal distribution, and

appropriate estimation procedures were developed and tested. These strategies, however,

may not be ideal for all right-skewed distributions.

Another model that may prove useful for analyzing such data is the gamma distribu-

tion. Similar to the lognormal, the gamma distribution is also appropriate for modeling

positive and continuous right-skewed outcomes, and is likewise often used in conjunction

with a log link in generalized linear regression models. In fact, the lognormal and gamma

regression models are often interchangeable (Firth, 1988). The gamma distribution can be

particularly beneficial for modeling data on pooled specimens, since, if the individual-level

measurements follow a gamma distribution, the pooled measurements (assumed to be the
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mean of individual specimens) also follow a gamma distribution when pools are formed from

individuals with identical covariate values. Recent epidemiological studies involving pooled

specimens have successfully utilized this summation property in special cases of gamma

regression, e.g., two-group comparisons of mean biomarker levels (Whitcomb et al., 2012;

Perkins et al., 2011).

When pools are not homogeneous with respect to covariates, however, the summation

property does not apply under the usual parameterization of the gamma regression model.

When at most two covariates groups are represented in a pool, the observed, pooled, like-

lihood can be maximized where the density of each pool is characterized by a convolution

integral (Perkins et al., 2011). For pools containing specimens with more than two unique

covariate values, however, numerically evaluating the likelihood quickly becomes computa-

tionally intractable, due to high-dimensional integrals in the pooled density.

We propose several methods for dealing with this issue, which we then assess in simula-

tion studies. The first applies an alternate parameterization for gamma regression, which

can take full advantage of the gamma summation property for all types of pooled data. The

second method calculates MLEs based on the standard gamma regression parameterization,

applying a specific version of the Monte Carlo Expectation Maximization (MCEM) method

described in Section 3.7. The third approach applies a strategy based on quasi-likelihood

methods, where only the mean and variance of the pooled measurements are specified, as

opposed to the entire distribution. This semi-parametric model permits straightforward

analysis and provides a more flexible framework for modeling skewed data, as the full spec-

ification of the outcome distribution is not required. As a consequence of these weaker

assumptions, however, estimate precision can deteriorate when compared with correctly

specified fully parametric models.

Akaike’s Information Criterion (AIC) provides a convenient and useful guide for helping

select the best parametric model in order to help ensure validity and optimize estimate

precision, when full specification of the outcome distribution is deemed appropriate. Pre-

vious studies have demonstrated the effectiveness of AIC in differentiating between the

lognormal and gamma models (Burnham and Anderson, 2002; Dick, 2004). For standard

likelihood-based regression methods, calculation of AIC is straightforward. The proposed
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MCEM algorithms for pooled outcome data, however, do not directly provide an observed

data likelihood. Instead, we propose and demonstrate the approximation of AIC using

additional Monte Carlo methods.

In the next section, we introduce each of the parametric models to be considered, for

individual-level as well as pooled data. We then describe the semi-parametric models that

require specification of only the first two conditional moments of the outcome, and de-

termine appropriate application of these models specific to pool type. Next, we perform

simulation studies under each pooling strategy to illustrate the potential consequences of

model misspecification. Finally, we apply these methods to regression performed on the

substudy of data collected from the CPP.

4.2 Parametric Regression Models for Skewed Outcomes

Suppose we have N subjects separated into n groups (later to be defined as pools), where

group i contains ki subjects, so that N =
∑n

i=1 ki. Let the ‘ij’ subscript denote the jth

subject in the ith group. In this section we present three potentially appealing parametric

regression models for a positive, right-skewed outcome.

4.2.1 Lognormal Model

As mentioned in Chapter 3, positive, right-skewed data are often assumed to be lognormally

distributed, in order to take advantage of the convenient properties of the normal distribu-

tion applied to a log-transformation on the outcome. While the details of this model can

be found in Chapter 3, we reiterate here for convenience:

log(Yij) = α+ xijβ + εij , j = 1, . . . , ki, i = 1, . . . , n

where α is the intercept and β the P × 1 vector of regression coefficients. Yij , xij , and

εij represent the outcome, covariate vector, and error for the jth subject in the ith group,

respectively, and we assume independent errors with E(εij) = 0 and V ar(εij) = σ2. Recall

that, while no further distributional assumptions are required in order to calculate least
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squares regression coefficients and standard errors, the additional assumption of normality

on the εij ’s is necessary to apply exact 95% confidence intervals based on the t-distribution,

as well as to compare model fit using likelihood-based model selection criteria such as AIC.

As discussed in Section 3.5, a semi-parametric weighted least squares estimation ap-

proach can provide appropriate estimates when pools are formed with identical covariate

values. We will discuss this model more in Section 4.3.1. For now, we will revisit the

likelihood-based MCEM method for calculating MLEs under x-heterogeneously pooled data.

As detailed in Section 3.7, the MCEM algorithm calculates MLEs by maximizing the

expectation of the complete log-likelihood, given the observed data. Let the complete

likelihood be denoted by Lc(θ) =
∏n
i=1

∏ki
j=1 f(Yij |xij ,θ), where f is the density of the

individual (unpooled) outcomes. At each iteration of the EM algorithm, parameter esti-

mates are updated by maximizing Q(θ|θ(t)) = E[logLc(θ)|Yp,X,θ(t)] with respect to θ,

where Yp represents the observed vector of pooled outcome measurements. We apply a

Monte Carlo approximation using importance sampling to estimate Q since a closed form

is difficult to achieve when a lognormal assumption is applied to heterogeneous pools.

Let h(Yi[-1]) represent any of the functions of the missing data contained in Q. Then,

under importance sampling, Eg[h(Yi[-1])] can be approximated by

Eg[h(Yi[-1])] ≈
∑M

m=1 h(Yi[-1],m)w(Yi[-1],m)∑M
m=1w(Yi[-1],m)

,

where each Yij,m is generated under g∗, the alternate distribution proposed in Section 3.7.2

that facilities generation of samples conforming to the linear inequality constraint. The

expression for w(Yi[-1]) = g(Yi[-1]|Y
p
i ,X,θ

(t))/g∗(Yi[-1]|Y
p
i ,X,θ

(t)) depends on the assumed

distribution of the individual-level data. When the data are assumed lognormal, these

weights are:

w(Yi[-1],m) = exp

− 1

2σ2ki

 ki∑
j=1

(log yij,m − µij)

2
where yi1,m = kiY

p
i −

∑ki
j=2 yij,m and µij = α + xijβ (derivation in Section 3.7.5). To

calculate standard errors when using the MCEM algorithm, we apply similar MC techniques

to those based on Louis’s method (Louis, 1982), where the information matrix can be written
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as:

d2Q

dθ2
−
(
dQ

dθ

)(
dQ

dθ

)T
+

n∑
i=1

Eg

{[
d

dθ
log fc(Y

p
i ,Yi[-1])

] [
d

dθ
log fc(Y

p
i ,Yi[-1])

]T}
. (4.1)

In Section 3.7.5, we provide an explicit expression for the gradient of the complete log-

likelihood, which can be estimated using additional Monte Carlo methods based on impor-

tance sampling. As noted in Section 3.7.4, numerical approximation functions in existing

software packages (e.g. hessian and grad functions from “numDeriv” package in R) can be

used to calculate the Hessian and gradient of the conditional expectation (Q), denoted d2Q
dθ2

and dQ
dθ , respectively, in (4.1).

4.2.2 Gamma1 Model

As mentioned previously, the gamma distribution provides another popular model for a

right-skewed outcome. Let Yij ∼ Gamma(aij , bij), where aij and bij are the shape and

scale parameters, respectively, and let f(Yij) denote the gamma density for the observation

from the jth subject in the ith group, such that:

f(Yij) =
1

Γ(aij)b
aij
ij

e−Yij/bijY
aij−1
ij , aij , bij > 0,

where µij = E(Yij) = aijbij and V ar(Yij) = aijb
2
ij . The log link is most commonly used in

conjunction with gamma regression, giving the model:

log(µij) = ηij = α+ xijβ

where ηij represents the linear predictor component from generalized linear model theory.

In most standard GLM procedures (e.g., PROC GENMOD in SAS and glm in R), the

default parameterization is to assume a constant shape parameter (a) and allow the scale

parameter (bij) to model the expectation, so that bij = a−1µij = a−1 exp(α + xijβ). We

will refer to this parameterization as the gamma1 model. This parameterization maintains

a constant coefficient of variation (CV), where CV =
√
V ar(y)/E(Y ), a property shared

by the lognormal distribution.
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The gamma distribution enjoys a convenient summation property that renders it a

natural analytical tool for pooled data (Whitcomb et al., 2012; Perkins et al., 2011). Namely,

if the Yij ’s are independent and share a common within-pool scale parameter (i.e., Yij ∼

Gamma(aij , bi) for j = 1, . . . , ki), then Y p
i also follows a gamma distribution, such that

Y p
i ∼ Gamma(

∑ki
j=1 aij , bik

−1
i ). To see this, consider the moment-generating function

(mgf) for Yij :

mYij (t) = E
(
etYij

)
= [1− (bit)]

−aij .

Then the mgf for Y p
i = k−1i

∑ki
j=1 Yij is:

mY pi
(t) = E

(
etYi
)

= E

(
etk
−1
i

∑ki
j=1 Yij

)
=

ki∏
j=1

E
[
e(t/ki)Yij

]

=

ki∏
j=1

[1− bi(t/ki)]−aij = [1− (bi/ki)t]
−
∑ki
j=1 aij ,

which is just the mgf for a gamma random variable with shape
∑ki

j=1 aij and scale bi/ki.

Although the gamma1 model permits the scale parameter to vary across all specimens,

an x-homogeneous pooling strategy maintains a constant within-pool scale since all xij = xi

and thus bij = a−1 exp(α + xiβ) for all j = 1, . . . , ki. So even though the scale parameter

varies across pools, the constant scale within each pool permits application of the gamma

summation property, so that Y p
i ∼ Gamma(kia, bik

−1
i ). This characteristic results in the

following mean model based on pooled specimens:

log(µi) = log[E(Y p
i )]

= log

E
 1

ki

ki∑
j=1

Yij


= log

 1

ki

ki∑
j=1

exp(α+ xiβ)


= α+ xiβ,

Furthermore, since V ar(Y p
i ) = k−1i (µ2i /a), a weighted regression with weights {ki : i =

1, . . . , n} can easily be applied using standard glm software. Alternatively, the observed data
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likelihood can be specified and maximized directly using optimization routines available in

standard statistical software.

A big advantage of fitting the gamma1 model to x-homogeneous pools is that it produces

identical coefficient estimates as under the full data. Suppose that all pools are formed

homogeneously with respect to covariate values such that Yij ∼ Gamma(a, bi) and bi =

a−1µi = a−1 exp(α + xiβ) for all j = 1, . . . , ki. Then the MLEs for β∗ = (α,β)′ under the

full data maximize the unpooled log-likelihood:

lf (β∗) =

n∑
i=1

ki∑
j=1

[− log Γ(a)− a log(bi)− Yij/bi + (a− 1) log Yij ]

= −a
n∑
i=1

ki∑
j=1

[
α+ xiβ + Yije

−(α+xiβ)
]

= −a
n∑
i=1

[
ki(α+ xiβ) + e−(α+xiβ)kiY

p
i

]

where any expressions not containing β∗ were removed since they have no impact on the es-

timation procedure for this parameter. For x-homogeneous pools, Y p
i ∼ Gamma(kia, bik

−1
i )

for each pool, so that the MLEs for β∗ based on the observed, pooled data maximize:

lp(β
∗) =

n∑
i=1

[− log Γ(kia)− kia log(bi/ki)− kiY p
i /bi + (kia− 1) log Y p

i ]

= −a
n∑
i=1

[
ki(α+ xiβ) + e−(α+xiβ)kiY

p
i

]

where, again, we have removed any expression not containing β∗. Thus, since the log-

likelihoods are identical, the MLEs for β∗ calculated from both the full and pooled log-

likelihood will also be identical. While it may be tempting to pool all specimens with

identical covariate values due to this preservation of precision, doing so will almost certainly

result in poor standard error estimates (Schisterman et al., 2010). Thus, it is recommended

to form enough pools so that resulting inference based on both estimates and standard

errors can be trusted.

When pools are x-heterogeneous, the summation property of the gamma distribution

no longer applies under the gamma1 model. Instead, we can use MCEM methods (or
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Convolution when pool size ≤ 2) similar to those applied to the lognormal model under

heterogeneous pools. The main difference is the calculation of the importance weights.

When the gamma1 model is assumed, g∗ (referring back to Section 3.7.2) is calculated as:

g∗ =

∞∫
0

kiY
p
i s

ki−1
ki∏
j=1

f(syij,m|Y p
i ,xij ,θ

(t))ds,

= kiY
p
i

∞∫
0

ski−1
ki∏
j=1

{
Γ(a)−1

(µij
a

)−a
(syij,m)a−1 exp

[
−a(syij,m)

µij

]}
ds

= kiY
p
i exp

 ki∑
j=1

ayij,m
µij

 ki∏
j=1

f(yij,m|X,θ(t))
∞∫
0

saki−1 exp

−s ki∑
j=1

ayij,m
µij

 ds

= kiY
p
i exp

 ki∑
j=1

ayij,m
µij

 ki∏
j=1

f(yij,m|X,θ(t))

Γ(aki)

 ki∑
j=1

ayij,m
µij

−aki


where yi1,m = kiY
p
i −

∑ki
j=2 yij,m, µij = exp(α+ xijβ), and f represents the density under

a gamma1 distribution. The weights are then:

w(Yi[-1],m) =
g(Yi[-1],m|Y

p
i ,X,θ

(t))

g∗(Yi[-1],m|Y
p
i ,X,θ

(t))

= c(Y p
i )

 ki∑
j=1

ayij,m
µij

aki

exp

− ki∑
j=1

ayij,m
µij


To calculate the appropriate standard errors from (4.1), the gradient of the gamma1 model

must be derived. To simplify notation, let β∗ = (α,β) and let x∗ij = (1 xij1 . . . xijp). Then,

under a gamma1 model, the gradient for pool i can be written as:

d

dθ
log fc(Y

p
i ,Yi[-1]) =

d

dθ

ki∑
j=1

[− log Γ(a)− a log(µij/a)− aYij/µij + (a− 1) log(Yij)]

=

 a
∑ki

j=1 x∗ij
T (Yij/µij − 1)

ki[1 + log a− ψ(a)] +
∑ki

j=1 [log(Yij/µij)− Yij/µij ]

 ,

where θ = (β∗, a), µij = exp(α + xijβ) and ψ(t) = d
dt log Γ(t) is the digamma function.

Eg

{[
d
dθ log fc(Y

p
i ,Yi[-1])

] [
d
dθ log fc(Y

p
i ,Yi[-1])

]T}
can then be estimated for each pool using
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importance sampling techniques.

4.2.3 Gamma2 Model

In addition to the gamma1 model, we consider an alternate parameterization of the gamma

distribution, which we refer to as the gamma2 model. This parameterization assumes a

constant scale parameter (b) and models the mean as a function of the shape parameter

(aij). Here, we set aij = b−1µij = b−1 exp(α + xijβ), and the relationship between the

expectation and variance is now linear, such that V ar(Yij) = bµij . This model can prove

particularly appealing when data consists of pooled outcome measurements, as the constant

scale parameter allows exploitation of the gamma sum property regardless of the homogene-

ity of pools. Calculating MLEs under this parameterization can be achieved by numerically

optimizing a user-defined log-likelihood function in packages such as PROC NLMIXED in

SAS or optim in R. Sample code is provided in Appendix A.2.

For individual level data, the log-likelihood is maximized with respect to (β∗, b) =

(α,β, b), where

logL(β∗, b) =

n∑
i=1

ki∑
j=1

log f(Yij |xij ,β∗, b)

=
n∑
i=1

ki∑
j=1

[− log Γ(aij)− aij log b− Yij/b+ (aij − 1) log Yij ], (4.2)

where aij = b−1 exp(α+ xijβ).

For pooled data, since the gamma2 model assumes a constant scale parameter, the sum

property applies to pooled outcomes regardless of pooling strategy, so that the pooled values

maintain a gamma distribution, such that Y p
i ∼ Gamma(

∑ki
j=1 aij , bk

−1
i ). Maximizing the

log-likelihood for pooled data is straightforward, requiring only a slight variation from (4.2),

where we now maximize:

logL(β∗, b) =

n∑
i=1

log f(Y p
i |X,β

∗, b)

=
n∑
i=1

[− log Γ(ai)− ai log(bk−1i )− kiY p
i /b+ (ai − 1) log Y p

i )] (4.3)
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where ai =
∑ki

j=1 aij = b−1
∑ki

j=1 exp(α+ xijβ). Under x-homogeneous pools, ai reduces to

ai = kib
−1 exp(α+ xiβ). Again, numerical optimization methods can be used to maximize

(4.3) with respect to b and β∗.

While each of the aforementioned models may be well suited to regression analysis on

a positive, right-skewed outcome, they are unlikely to fit equally well to a particular set

of data. A constant mean-variance relationship, for instance, should be best fit by the

gamma2 model, whereas an outcome exhibiting a constant CV would be better modeled by

the lognormal or gamma1 models. Figure 4.1 illustrates how individual-level data generated

under each of these models may differ. Each of the models are generated with linear

predictor ηi = −1 + xi, where X ∼ Bernoulli(0.5) and i = 1, . . . , 10000. The first row

shows histograms of data generated under a lognormal distribution, such that log(Yi) ∼

N(ηi, 0.5
2). The second row is from data generated under a gamma1 model, with Yi ∼

Gamma(a = 2, bi = eηi/2), and the final row has Yi ∼ Gamma(ai = 2eηi , b = 1/2). The

right column provides the histograms of the log of the outcome, separated by the levels

of x. As expected, a log transformation on lognormal data provides approximately normal

distributions, which readily invites a least squares fit. The log of the gamma1 outcome, while

slightly left-skewed, suggests that a log-transformation may fit this data well. Those from

gamma2, however, are highly left-skewed, indicating that applying a log-transformation to

data generated under this distribution may overcorrect the original skewness. In such cases,

a model based directly on the gamma2 distribution may be more appropriate.

4.3 Semi-parametric Regression Models for Skewed Data

While the parametric models described in Section 4.2 will provide the most precise coef-

ficient estimates when correctly specified, semi-parametric models may be preferred when

full distributional specification on the outcome could be unreliable. As we will demonstrate

in the following sections, these semi-parametric models can greatly simplify analytical pro-

cedures, particularly for pooled outcome measurements.
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Figure 4.1: Histograms of data generated under lognormal, gamma1, and gamma2 distribu-
tions.
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4.3.1 Approximate Model Revisited

As discussed in Section 3.5, when pools are formed with identical covariate values, a weighted

least squares estimation applied to the Approximate Model can provide approximately

unbiased estimates of β as well as standard errors:

Approximate Model: log(Y p
i ) ≈ α+ γk−1i + xiβ + δi,

where δi is the error term, ki is the pool size for pool i, and Y p
i = 1

ki

∑ki
j=1 Yij denotes

the measured value for the ith pool, assumed to be the arithmetic mean response for the

individuals comprising that pool. This approximation is based on a Taylor Series expansion,

which reduces the effect of pool size on the expectation of log(Y p
i ) by incorporating it as

a predictor variable. The validity of the Approximate Model follows from the assumptions

E(log Yij) = α + xiβ and V ar(log Yij) = σ2 for all j = 1, . . . , ki and i = 1 . . . n. While

this model does not require an explicit distributional specification on the outcome, we will

demonstrate that this model provides appropriate estimates when data is generated from

either a lognormal or gamma1 model.

In Section 3.5, we showed that for x-homogeneous pools, the Taylor Series approximation

gives

E(log Y p
i ) ≈ log [E(Yi1)]−

V ar(Yi1)

2kiE(Yi1)
2

and

V ar(log Y p
i ) ≈ V ar(Yi1)

kiE(Yi1)2

since the homogeneity of pools results in equality of the first two moments for each member

of that pool (e.g., E(Yi1) = E(Yi2) = · · · = E(Yiki)). When the individual specimens are

lognormally distributed, E(Yi1) = e(α+xiβ+σ
2/2) and V ar(Yi1) = E(Yi1)

2(eσ
2 − 1) for all

j = 1, . . . , ki. It follows that:

E(log Y p
i ) ≈ (α+ σ2/2)− (2ki)

−1(eσ
2 − 1) + xiβ
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and

V ar(log Y p
i ) ≈ k−1i (eσ

2 − 1)

which is consistent with the requirements for the Approximate Model, such that the original

β vector is preserved once the inverted pool sizes are incorporated as a covariate, and the

variance for each pool is a function of that pool’s size.

Now suppose that the Yij ’s are instead generated from a gamma1 model. Then E(Yi1) =

e(α+xiβ) and V ar(Yi1) = a−1E(Yi1)
2. Thus,

E(log Y p
i ) ≈ α− (2aki)

−1 + xiβ

and

V ar(log Y p
i ) ≈ (aki)

−1,

once again preserving the β vector by including the k−1i ’s in the mean model and motivating

a weighted least squares, as the variance is a function of pool size.

On the other hand, this model is not appropriate when data are generated under

the gamma2 model. Under this alternate parameterizion of gamma regression, E(Yi1) =

e(α+xiβ) and V ar(Yi1) = bE(Yi1), resulting in the following approximate mean for the pooled

outcomes:

E(log Y p
i ) ≈ α+ xiβ −

b

2ki
e−(α+xiβ)

Clearly, a least squares approach will not provide appropriate estimates of the regres-

sion coefficients under the gamma2 model, since the approximate expectation of the log-

transformed pooled values is a nonlinear function of β. Thus, we see that although the

Approximate Model may not be universally applicable, it does provide a more flexible

and computationally accessible alternative to fully parametric models such as the MCEM

algorithm based on the lognormal distribution. The semi-parametric nature of the Ap-

proximate Model, while bolstering versatility, unfortunately precludes the application of

likelihood-based model selection tools such as AIC.

Recall that the Approximate Model is only applicable to x-homogeneous pools and can

perform poorly when applied to heterogeneous pools (see Table 3.5). Thus far, we have
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only discussed parametric models for analyzing heterogeneous pools; specifically, direct

maximum likelihood under the gamma2 model or the MCEM algorithm applied to lognormal

or gamma1 data. In the next section, we propose a semi-parametric model based on quasi-

likelihood methods that provides a straightforward and flexible framework for analyzing

x-heterogeneous pools.

4.3.2 Quasi-Likelihood Models

The application of quasi-likelihood methods in this context is particularly compelling due to

a close connection to the gamma distribution under certain conditions (Wedderburn, 1974).

To estimate QL regression coefficient estimates on the individual-level data, the following

QL score equations are solved with respect to β∗ = (α,β):

n∑
i=1

ki∑
j=1

Yij − µij
φV (µij)

(
dµij
dβ∗

)
= 0 (4.4)

where µij is some known function of β∗ and V (µij) is a known function of µij . Assuming a

constant coefficient of variation, i.e. V (µij) = µ2ij , these QL score equations are equivalent

to the ML score equations under the gamma1 model, where the ML score equations are

defined as:

S(β∗) =

n∑
i=1

ki∑
j=1

d

dβ∗
log f(Yij |xij ,β∗, a)

=
n∑
i=1

ki∑
j=1

d

dβ∗
[
− log Γ(a)− a log(a−1µij)− aYij/µij + (a− 1) log Yij

]
=

n∑
i=1

ki∑
j=1

a

(
Yij
µ2ij
− 1

µij

)(
dµij
dβ∗

)

=

n∑
i=1

ki∑
j=1

Yij − µij
a−1µ2ij

(
dµij
dβ∗

)
= 0 (4.5)

Thus the β̂
∗

= (α̂, β̂) estimates calculated under (4.4) and (4.5) will be identical, since φ

and a have no effect on the solution of these equations with respect to β∗. We will refer to

the QL model with log link and V (µ) = µ2 as the QL1 model.
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While the ML gamma1 model and the QL1 model provide identical coefficient estimates,

the main difference between these two approaches is the estimation of the standard errors.

Under the gamma1 model, â is the maximum likelihood estimate (MLE), whereas, under

QL1, the estimate for φ is moment-based:

φ̃ =
1

n− (P + 1)

n∑
i=1

ki∑
j=1

(Yij − µ̂ij)2

µ̂2ij

where P is the number of covariates in the model (not including the intercept) and µ̂ij =

exp(α̂+ xijβ̂). One practical note is that the default standard errors calculated under R’s

glm function with the gamma distribution and log link are based on the QL estimate of the

dispersion parameter, whereas SAS PROC GENMOD will calculate standard errors based

on ML estimates of a.

The QL1 model is also convenient in that its mean and variance assumptions also ap-

ply to a lognormally distributed outcome. Let Yij be lognormally distributed such that

E(log Yij) = α + xijβ and V ar(log Yij) = σ2. Then, from the properties of the lognormal

distribution,

E(Yij) = eα+xijβ+σ
2/2

and

V ar(Yij) = (eσ
2 − 1)E(Yij)

2.

Note that since log(µij) = logE(Yij) = (α+ σ2/2) + xijβ, applying a log link will preserve

β since the additional σ2/2 term will be absorbed into the intercept estimate. Similarly, the

(eσ
2−1) expression in the variance of Yij will be absorbed into the dispersion parameter, so

that the mean-variance relationship from the QL1 model (V (µ) = µ2) is appropriate. Thus,

estimates of β as well as their standard errors should remain valid when the QL1 model is

fit to a lognormally distributed outcome.

This quasi-likelihood method is easily extended to x-homogeneous pools. When pools
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are x-homogeneous, such that xij = xi for all j = 1, . . . , ki, then

µi = E(Y p
i ) =

1

ki

ki∑
j=1

E(Yij) = eα+xiβ

and

V ar(Y p
i ) =

1

k2i

ki∑
j=1

V ar(Yij) =
1

k2i

ki∑
j=1

µ2ij = k−1i e2(α+xiβ) = µ2i /ki

Estimates for β∗ = (α,β) are then calculated by solving the QL score equations:

n∑
i=1

ki(Y
p
i − µi)
φµ2i

(
dµi
dβ∗

)
= 0, (4.6)

Just as x-homogeneous pools evaluated under the gamma1 model will give identical esti-

mates to those calculated under the full gamma1 model, regression estimates calculated

from (4.6) will also be identical to those calculated under the QL1 model applied to the full

data. To see this, consider the individual-level QL score equations. Under x-homogeneous

pools, µij = µi for all j = 1, . . . , ki, so that (4.4) reduces to:

n∑
i=1

ki∑
j=1

Yij − µi
φV (µi)

(
dµi
dβ∗

)
=

n∑
i=1

ki(Y
p
i − µi)
φµ2i

(
dµi
dβ∗

)
= 0,

which is identical to the pool-wise QL score equations in (4.6). This property means that,

so long as pools are formed homogeneously on the covariates values, and one can validly

assume that pooled assay measurements equal the arithmetic mean of their constituents,

the precision of the QL β∗ estimates will be maintained regardless of the total number of

pools. Again, we do not advise pooling all individuals with identical covariate values, since

the validity of the standard error estimates depends on asymptotic properties that are lost

when the total number of pools is small.

Perhaps the most valuable aspect of this semi-parametric approach is the accessibility

of analyzing heterogeneous pools when an outcome is right-skewed. For x-heterogeneous

pools, we extend the traditional QL framework to solve the following score equations with
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respect to β∗ = (α,β):

U(β∗) =
n∑
i=1

(Y p
i − µi)

V ar(Y p
i )

dµi
dβ∗

=
n∑
i=1

(Y p
i − µi)
φV (β∗)

dµi
dβ∗

= 0 (4.7)

where

µi = E(Y p
i ) = k−1i

ki∑
j=1

E(Yij) = k−1i

ki∑
j=1

eα+xijβ

V (β∗) ∝ k−2i

ki∑
j=1

V ar(Yij) = (k−2i /a)

ki∑
j=1

e2(α+xijβ) ∝ k−2i
ki∑
j=1

e2(α+xijβ)

and

dµi
dβ∗

= k−1i

ki∑
j=1

(x∗ij)
T eα+xijβ

Note that the format of (4.7) is slightly different from classical QL estimation, since V ar(Y p
i )

is a function of (α,β) rather than a function of µi. Under suitable regularity conditions,

estimates of (α,β) will remain consistent and asymptotically normal so long as the assump-

tions on the individual level data hold, namely, that E(Yij) = µij = exp(α + xijβ) and

V ar(Yij) ∝ µ2ij (Huber, 1964; McCullagh, 1983; Wedderburn, 1974).

Computationally, (4.7) can be solved numerically using nonlinear equation solvers such

as the nleqslv function in R (R Development Core Team, 2012). An example of this code is

provided in Appendix A.3. Since the shape parameter in the variance function is a constant,

it will be absorbed by φ as an estimate of the dispersion, so it can be omitted from the

specification of the QL score equations. Estimates of the standard errors of the resulting

QL estimates β̂QL are found by taking the square root of the diagonal of the dispersion

matrix D, where:

D =

[
−

n∑
i=1

U ′(β∗)

]−1
=

[
− 1

φ

n∑
i=1

d

dβ∗

(
Y p
i − µi
V (β∗)

dµi
dβ∗

)]−1

where D is evaluated at the QL estimates β̂
∗
QL and the moment estimate of φ (Wedderburn,

1974). D/φ can be readily obtained by specifying the jacobian option in the nleqslv R

function. Since the dispersion parameter is not included in the estimation procedure for
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β̂
∗
QL, D/φ must be multiplied by the estimate φ̃ in order to get accurate standard error

estimates. While appropriate estimates of the dispersion matrix will be obtained so long as

the variance function is correctly specified, a more robust estimator of the standard errors

can be obtained using a sandwich estimator if the specified mean-variance relationship is

uncertain (White, 1982).

Similar QL methods could be applied to pooled data under different assumptions for the

first two moments. In this paper, we will limit our study to the QL model with constant CV,

as well as one with a linear mean-variance relationship. The latter is considered in order to

match the mean-variance relationship under the gamma2 model. Similar QL equations are

required for this model under heterogeneous pools, but now

V ar(Y p
i ) = k−2i

ki∑
j=1

V ar(Yij) = (k−2i /a)

ki∑
j=1

e(α+xijβ)

We will refer to this QL model with linear mean-variance structure as QL2.

The QL2 model does not have the same relationship with the gamma2 model as the

QL1 enjoys with the ML gamma1 model. The QL1 extension of the gamma1 model is

special, since coefficient estimates for this model are identical to the MLEs for full and x-

homogeneous pools. That is, for the gamma1 model, no precision is lost by specifying only

the first two moments of Y p
i as opposed to the entire distribution. While this relationship

does not hold between the QL2 and gamma2 models, the QL2 model may still provide a

nice alternative to the ML-based gamma2 model when a linear mean-variance relationship

may yield a better model for the data.

These quasi-likelihood based methods are quite useful in providing more flexible models

than their ML-based counterparts, due to fewer required assumptions. They are also helpful

in offering a convenient and straightforward analytical procedure for heterogeneous pools,

particularly when compared with the MCEM methods used to calculate MLEs under certain

distributions. The QL1 model is especially compelling since its coefficient estimates match

the precision of the MLEs under the gamma1 model exactly. Aside from this anomaly, the

semi-parametric models described in this section will generally suffer a loss of efficiency

relative to the efficiency potential under a correctly-specified maximum-likelihood based
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model. From classical theory, we know that MLEs calculated from a correctly-specified

parametric model will maximize precision of the coefficient estimates. In the next section,

we consider a criterion for choosing the best parametric model, when maximizing precision

is of utmost importance.

4.4 Model Selection

As illustrated by Figure 4.1, a lognormal distribution may provide a reasonable fit for data

generated under a gamma1 distribution, but not under the gamma2 model. Similarly, the

gamma2 model may not be appropriate to model data from the lognormal or gamma1

distributions.

In order to choose the best model among these three alternatives, we apply an AIC-

based information criterion to both full and pooled data to compare models under different

distributional assumptions. Details concerning the proper use of AIC to select between

models with differing probability distributions can be found in Burnham and Anderson

(2002). For full data or a random sample of individual specimens, AIC is defined as:

AIC = −2 logL(θ) + 2K = −2
n∑
i=1

ki∑
j=1

log f(Yij |xij ,θ) + 2K

where K refers to the total number of estimated parameters in the model, and a lower value

of AIC indicates better fit (Akaike, 1974). An important note is that in order to compare

these values between the gamma and lognormal models, the data must be on the same scale.

For instance, the AIC under a normal model for log(Y) will be different from that under

the lognormal model on the untransformed Y.

Under both gamma models, we can insert the observed likelihood into the AIC equation

when pools are x-homogeneous, since these pools retain a fully-specified gamma distribution.

A closed form likelihood is available for the gamma2 model under heterogeneous pools as

well. One practical note is that when estimates are obtained under a weighted regression

function, as in the gamma1 model, the glm function in R multiplies the given weight by

the log-density contribution for each observation, whereas the GENMOD procedure in SAS
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standardizes the dispersion parameter for each density by the given weight. While these

techniques provide identical coefficient parameters, the given value of the AIC varies. Care

must be taken to maintain a similar treatment of all AIC values in order to ensure proper

comparison. Furthermore, since the default estimate for the dispersion parameter in R’s glm

function is based on the moment estimate, the MLE of this parameter must be calculated

separately in order to create a true log-likelihood to be used in the AIC function under the

gamma1 model for both individual-level data as well as x-homogeneous pools.

For models that employ the MCEM algorithm to calculate MLEs, such as the lognormal

model applied to pooled outcomes or the gamma1 model fit to heterogeneous pools, we

recommend a Monte Carlo estimation of the observed log-likelihood. For these models,

f(Y p
i ) can be approximated by:

f(Y p
i ) =

∫
Yiki

. . .

∫
Yi2

f(Y p
i , Yi2, . . . , Yiki)dYi[-1]

=

∫
Yiki

. . .

∫
Yi2

kif

kiY p
i −

ki∑
j=2

Yij |xi1,θ

 I

 ki∑
j=2

Yij < kiY
p
i

 ki∏
j=2

f(Yij |xij ,θ)dYi[-1]

= EYi[-1]

kif
kiY p

i −
ki∑
j=2

Yij |xi1,θ

 I

 ki∑
j=2

Yij < kiY
p
i

 , (4.8)

Estimating this value with Monte Carlo methods is straightforward once the MLEs have

been calculated, as we can approximate (4.8) with

f(Y p
i ) ≈ ki

M

M∑
m=1

f
kiY p

i −
ki∑
j=2

Yij,m|xi1, θ̂

 I

 ki∑
j=2

Yij,m < kiY
p
i

 (4.9)

where each Yij,m is generated from f(yij |xij , θ̂) for m = 1, . . . ,M , and θ̂ denotes the MLE.

A similar concept concerning this type of MC estimation is applied in Dupuis et al. (2007).

By the law of large numbers, this approximation will converge to f(Y p
i ) for large M . In our

simulations, we set M = 10,000, as this number proved sufficiently large.

Table 4.1 shows simulation results for the frequency of model selection when data was

generated and fit under each of the three distributions: (1) lognormal (2) gamma1 and
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(3) gamma2, for various pooling types. Simulation conditions are described in detail in

Section 4.5. For all pooling types fit under the gamma2 model as well as non-heterogeneous

pools fit to the gamma1 model, the observed log-likelihood was used to calculate AIC,

since all pooled outcomes retain gamma distributions in these scenarios. All pools under

the lognormal model and heterogeneous pools under the gamma1 model are based on the

MCEM algorithm, where the MC approximation technique from (4.9) was used to estimate

the log-likelihood. For the lognormal model based on the full dataset or a random sample,

the additional assumption of normality is applied to the errors in order to obtain a log-

likelihood. Recall that, although the Approximate Model provides valid estimates of β

when pools are x-homogeneous, this model is not eligible to produce AIC values, since

it is based on weighted least squares instead of maximum likelihood analysis. Thus, the

MCEM method must be used to calculate MLEs and the Monte-Carlo approximate AIC

when a lognormal model is fit to any pooled data. In general, if pool size does not exceed

2, the Convolution Method can also be applied to calculate MLEs and AIC value based

on the observed log-likelihood. For this simulation study, however, all simulated datasets

contained pool sizes greater than 2, so the Convolution-based MLEs and AIC values were

unavailable.

As indicated by this simulation study, AIC tends to provide a fairly effective measure for

selecting the best distribution, correctly choosing the lognormal distribution over 95% of the

time, and accurately identifying the best gamma model over 60% of the time. Furthermore,

our MC approximation techniques tend to perform as well as the closed-form AIC under a

random sample of the same number of pools. This result suggests that the ability of AIC to

select the best model is not hindered by the additional MC methods applied to approximate

this value under models that require MCEM methods to calculate MLEs. Needless to say,

this study represents only one instance of AIC’s ability to select the best model. In other

situations, the lognormal and gamma1 models may fit certain datasets similarly well; while

AIC may not be as effective in selecting the true underlying distribution in such cases, it is

more likely that both of these models may provide equally appropriate fit.

The benefit of applying a model-selection technique like AIC is to optimize precision

of the regression coefficient estimates by selecting the best distribution for modeling the
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Table 4.1: Frequency of model selection based on AIC.

Fit Model
True Model n Sampling Method lognormal gamma1 gamma2

lognormal 651 Full Dataset 100.0 0.0 0.0
404 Random Sample 100.0 0.0 0.0

x-homogeneous Pools 99.9 0.1 0.0
150 Random Sample 97.0 2.6 0.4

x-heterogeneous Pools 95.7 3.0 1.2

gamma1 651 Full Dataset 0.0 80.4 19.6
404 Random Sample 0.0 73.5 26.5

x-homogeneous Pools 0.0 76.8 23.2
150 Random Sample 1.2 60.3 38.5

x-heterogeneous Pools 3.9 66.6 29.5

gamma2 651 Full Dataset 0.0 12.5 87.5
404 Random Sample 0.0 19.5 80.5

x-homogeneous Pools 0.0 17.8 82.2
150 Random Sample 0.7 33.6 65.7

x-heterogeneous Pools 1.9 27.4 70.7

data. In the next section, we use simulation studies to assess the effects of using AIC as the

only tool to select a model, and compare these results to those fit under the true underlying

distribution. We also compare these ML-based methods to those from the semi-parameteric

methods discussed in Section 4.3. Based on well-known characteristics of maximum like-

lihood, we expect the ML models to provide the most precise estimates when correctly

specified. Yet we are also curious as to the potential consequences of distributional mis-

specification, as well as the effectiveness of relying on AIC to choose the best distribution.

While, in general, semi-parametric models are expected to have less potential precision

than the fully parametric models, they provide a more flexible framework when full speci-

fication of the outcome distribution is dubious. Additionally, the typical lapse in precision

as a result of weaker assumptions is overcome in part by the close relationship between the

QL1 and gamma1 models. Thus, we will use the following simulation studies to more closely

examine the trade-offs between potential precision gains under parametric models and the

increased flexibility of the semi-parametric models.
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4.5 Simulation Study

For each of the simulation studies, 5000 simulations were performed in R. Datasets were

generated to resemble the data from the CPP study discussed in Section 3.2, but this time

treating the interferon gamma inducible protein (IP) as the outcome. Predictor variables

were simulated to mimic covariates from the CPP data, namely, X1 = age (years), X2 =

smoking status (yes/no), X3 = race (1 = white / 2 = black), and X4 = SA status (yes/no).

X1 was generated from a normal distribution with a mean of 27 and standard deviation of

6.5, then rounded to the nearest whole number. X2, X3, and X4 were each generated from

Bernoulli distributions with probabilities 0.47, 0.30, and 0.45. The simulated outcome (Y)

was based on estimates from a generalized linear model fit to the individual-level IP data,

such that

η = −4.26 + 0.012(Age) + 0.022(Smoking Status) + 0.169(Race)− 0.091(SA status).

For all simulations, three different sets of outcomes with sample size N = 651 were generated

under the following distributions:

1. log(Y ) ∼ N(η, 1)

2. Y ∼ gamma1(1.24, exp(η)/1.24)

3. Y ∼ gamma2(exp(η)/0.02, 0.02)

For each of the following simulations, datasets were fit under the full data, x-homogeneous

pools, and heterogeneous pools. x-homogeneous pools were formed based on the description

in Section 3.8.1, and x-heterogeneous pools were formed via k-means clustering on the stan-

dardized versions of all the covariates. For the full data, the glm function in R was applied

to the lognormal and gamma1 models. Since the default gamma regression in R provides

standard errors based on the QL estimated dispersion parameter, the gamma.dispersion

function was used to calculate the MLE for the shape parameter, then applied to the in-

formation matrix to obtain the ML-based standard error estimates for the gamma1 model.

For the quasi-likelihood methods under full data and x-homogeneous pools, the “quasi”
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family under the glm function was specified, with variance function appropriate to the de-

sired model. For heterogeneous pools from the QL1 and QL2 models, R’s nonlinear solver

nleqslv was applied to (4.7) to calculate regression coefficient estimates.

To calculate MLEs under the gamma2 model, the optim function with box constraints

in R was used. To speed convergence, starting values for the regression coefficients were

set as the weighted least squares estimates, and the analytical gradient function was passed

directly to the optimization procedure. Let ai = b−1
∑ki

j=1 exp(α + xijβ) so that a′i(β
∗) =

b−1
∑ki

j=1 x∗ij
T exp(α+ xijβ) and a′i(b) = −b−2

∑ki
j=1 exp(α+ xijβ) are the derivatives of ai

with respect to β∗ = (α,β) and b, respectively. Then the gradient is:

dl

dθ
=

 l′(β∗)

l′(b)

 =

 a′i(β
∗)[log(kiY

p
i /b)− ψ(ai)]

a′i(b)[log(kiY
p
i /b)− ψ(ai)]− ai/b+ b−2kiY

p
i


For the first simulation, the outcome is generated from the lognormal distribution spec-

ified above. The next simulation treats data generated from the gamma1 distribution, and

the final simulation generates outcomes from the gamma2 distribution. Each of the models

discussed in Sections 4.2 and 4.3 were applied under each scenario, with the exception of

the Approximate Model, which is only applicable under x-homogeneous pools. At each sim-

ulation, we also calculate AIC values, applying the proposed Monte Carlo approximation

when necessary, and calculate coefficient estimates under the selected best-fitting distribu-

tion. For each simulation, AIC values were calculated according to Section 4.4, and the

model with lowest AIC was selected as the best model. Results from these models chosen

by AIC are also provided in order to assess performance when AIC is the only measure of

fit considered. Table 4.2 gives a summary of each of the simulations performed and the

estimation procedures applied under each scenario. Note that although a semi-parametric

least squares estimation is available under the lognormal model applied to the full data, we

assume normality of the errors in order to calculate AIC values, resulting in the ML-based

parametric model.
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Table 4.2: Summary of simulations, including analytical methods performed under each
assumed model. (W)LS = (Weighted) Least Squares, ML = Maximum Likelihood, QL =
Quasi-Likelihood, MCEM = Monte Carlo Expectation Maximization

Model
Pooling Method lognormal gamma1 gamma2 Approx. QL1 QL2

Full Data LS†/ML∗ ML∗ ML∗ – QL† QL†

x-homogeneous Pools MCEM∗ ML∗ ML∗ WLS† QL† QL†

x-heterogeneous Pools MCEM∗ MCEM∗ ML∗ – QL† QL†

∗ Parametric (Maximum-Likelihood) Methods
† Semi-Parameteric (Quasi-Likelihood) Methods

4.5.1 Lognormal

Table 4.3 provides mean bias, ratio of estimated standard error (ŜE) to empirical standard

deviation (SD), and 95% CI coverage, to assess the validity of each of the models when the

underlying distribution is lognormal. A valid estimation procedure will exhibit a mean bias

close to 0, nominal 95% confidence interval (CI) coverage, and ŜE/SD close to 1.

As expected, since the lognormal models correctly specify the underlying distribution,

they provide ideal estimates, with bias close to 0, mean estimated standard errors close to

empirical standard deviation, and close to nominal 95% CI coverage. Results from choosing

an ML model based on the AIC values performs almost identically to these lognormal

models, due to the AIC’s ability to accurately select the lognormal distribution, as evidenced

in Table 4.1.

Table 4.3 shows that the Approximate Model (AP) performs well when applied to x-

homogeneous pools, validating this semi-parametric model as an alternate analytical strat-

egy to MCEM when pools are formed with identical covariates. Both QL1 and QL2 also

provide approximately unbiased estimates, since these models assume the correct link func-

tion corresponding to lognormal regression. QL1 slightly outperforms QL2 with respect to

estimating standard errors, since the QL1 model assumes a constant CV, which is charac-

teristic of the lognormal distribution, while the QL2 model misspecifies the mean-variance

relationship as linear.

While the misspecified gamma2 model tends to produce biased estimates, gamma1 per-

forms identically to the QL1 model with respect to bias, as a consequence of the relationship
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Table 4.3: Simulation results comparing regression models applied to a lognormal outcome.
“SD” refers to empirical standard deviation and “ŜE” represents the mean estimated stan-
dard errors. Model fit codes are LN = lognormal, GA1 = gamma1, GA2 = gamma2, AIC
= AIC-selected model, QL1 = Quasi-likelihood with constant CV, QL2 = Quasi-likelihood
with linear mean-variance structure, AP = Approximate Model.

Mean Bias (ŜE/SD), 95% CI Coverage

β1 β2 β3 β4

Full Data (n = 651)

LN 0.000 (1.00), 94.8 0.000 (1.00), 95.3 0.000 (1.00), 95.1 0.001 (0.99), 94.8
GA1 0.000 (0.73), 84.5 0.000 (0.72), 85.0 -0.003 (0.73), 84.4 0.000 (0.72), 83.8
GA2 -0.004 (1.16), 88.5 -0.008 (1.16), 97.7 -0.059 (1.13), 87.9 0.033 (1.15), 94.6

AIC 0.000 (1.00), 94.8 0.000 (1.00), 95.3 0.000 (1.00), 95.1 0.001 (0.99), 94.8

QL1 0.000 (0.99), 94.6 0.000 (0.98), 94.5 -0.003 (0.98), 94.4 0.000 (0.97), 94.3
QL2 0.000 (0.98), 94.7 0.000 (0.97), 94.5 -0.002 (0.97), 95.0 0.001 (0.96), 94.6

x-homogeneous Pools (n = 404)

LN 0.000 (1.00), 94.7 0.000 (1.00), 95.0 0.000 (0.99), 95.3 0.000 (0.99), 94.4
GA1 0.000 (0.77), 86.5 0.000 (0.76), 86.8 -0.003 (0.76), 86.6 0.000 (0.75), 86.0
GA2 -0.004 (1.13), 92.0 -0.004 (1.09), 96.5 -0.034 (1.07), 94.4 0.027 (1.08), 94.8

AIC 0.000 (1.00), 94.7 0.000 (1.00), 95.0 0.000 (0.99), 95.3 0.000 (0.99), 94.4

AP 0.000 (1.01), 94.7 0.000 (0.98), 94.7 0.001 (0.98), 95.0 0.001 (0.97), 94.2
QL1 0.000 (0.98), 94.5 0.000 (0.97), 94.2 -0.003 (0.98), 94.2 0.000 (0.96), 94.1
QL2 0.000 (0.96), 94.5 0.000 (0.96), 94.4 -0.003 (0.95), 93.7 0.000 (0.96), 94.3

x-heterogeneous Pools (n = 150)

LN 0.000 (0.99), 94.5 -0.001 (0.98), 94.3 -0.003 (0.98), 94.7 0.000 (0.96), 94.0
GA1 0.000 (0.83), 89.0 0.000 (0.82), 89.3 -0.003 (0.82), 89.0 0.000 (0.81), 88.6
GA2 -0.002 (1.07), 94.3 -0.002 (0.98), 94.3 -0.013 (0.97), 94.0 0.015 (0.97), 93.9

AIC 0.000 (0.98), 94.2 -0.001 (0.98), 94.0 -0.004 (0.97), 94.5 0.000 (0.96), 93.8

QL1 0.000 (0.98), 94.0 0.000 (0.96), 93.6 -0.003 (0.97), 93.6 0.000 (0.96), 93.7
QL2 0.000 (0.96), 94.2 0.000 (0.96), 93.7 -0.003 (0.94), 93.3 0.000 (0.96), 94.0
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between these two models detailed in Section 4.3.2. Note, however, that the gamma1 model

noticeably underestimates standard errors, resulting in confidence interval undercoverage.

This difference between the performance of the gamma1 and QL1 models highlights the

flexibility of the QL-based models in providing valid inference for data generated under

various distributions, so long as the specification of the first two moments is correct.

4.5.2 Gamma1

For an outcome generated under the gamma1 distribution, the parametric lognormal and

gamma1 models tend to perform well (Table 4.4). The semi-parametric models (Approx-

imate Model, QL1, and QL2) perform quite well in estimating the β vector as well as its

standard errors, even though the mean-variance relationship under QL2 is misspecified.

Once again, the gamma2 model, which requires full distributional specification under the

alternate parameterization of the gamma distribution, fails to provide adequate analysis,

resulting in biased estimates and sub-optimal confidence interval coverage.

Results from the model chosen from AIC values provide approximately unbiased esti-

mates of the regression coefficients, but tend to slightly underestimate standard errors, likely

due to the occasional misspecification of the true distribution. Thus, it may be preferable

to fit one of the semi-parametric models, or perhaps to invoke a more robust method for

estimating standard errors (such as bootstrap or a sandwich estimator) in order to guard

against this flaw (Efron, 1979; White, 1982).

One interesting point is that when the outcome is lognormally distributed, as in Table

4.3, the gamma1 model noticeably underestimates the SE estimates, while SE’s estimated

under the QL1 model are close to the empirical standard deviation. When the underlying

distribution is in fact gamma1, however, the gamma1 and QL1 models provide, on average,

nearly identical SE estimates. This characteristic suggests that when analyzing a single

dataset, considerable differences between the standard error estimates under the gamma1

vs. QL1 models may indicate that the gamma1 model does not provide an ideal fit.
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Table 4.4: Simulation results comparing regression models applied to an outcome generated
from a gamma1 distribution. “SD” refers to empirical standard deviation and “ŜE” the
mean estimated standard errors. Model fit codes are LN = lognormal, GA1 = gamma1,
GA2 = gamma2, AIC = AIC-selected model, QL1 = Quasi-likelihood with constant CV,
QL2 = Quasi-likelihood with linear mean-variance structure, AP = Approximate Model.

Mean Bias (ŜE/SD), 95% CI Coverage

β1 β2 β3 β4

Full Data (n = 651)

LN 0.000 (0.99), 94.9 -0.001 (0.99), 94.8 -0.003 (1.01), 95.3 0.000 (0.99), 94.9
GA1 0.000 (0.99), 94.9 0.000 (0.98), 94.7 -0.003 (1.00), 95.0 -0.001 (0.99), 94.8
GA2 -0.004 (0.98), 85.0 -0.008 (0.98), 94.4 -0.057 (0.98), 84.5 0.030 (0.99), 91.7

AIC 0.000 (0.94), 92.8 -0.001 (0.94), 93.6 -0.007 (0.94), 92.9 0.002 (0.94), 93.5

QL1 0.000 (0.99), 94.8 0.000 (0.98), 94.6 -0.003 (1.00), 94.8 -0.001 (0.99), 94.5
QL2 0.000 (1.00), 94.9 0.000 (0.98), 94.4 -0.002 (0.99), 94.8 -0.001 (0.99), 94.8

x-homogeneous Pools (n = 404)

LN 0.000 (0.97), 94.4 -0.002 (1.01), 95.4 -0.008 (1.01), 95.0 -0.002 (1.01), 95.2
GA1 0.000 (0.99), 94.8 0.000 (0.98), 94.7 -0.003 (1.00), 94.9 -0.001 (0.98), 94.6
GA2 -0.003 (0.98), 89.4 -0.005 (0.98), 94.8 -0.041 (0.97), 90.2 0.020 (0.99), 93.4

AIC 0.000 (0.95), 93.4 -0.001 (0.95), 93.6 -0.006 (0.95), 93.4 0.001 (0.95), 93.5

AP 0.000 (0.99), 94.7 -0.001 (1.01), 95.6 -0.002 (1.02), 95.1 -0.001 (1.02), 95.5
QL1 0.000 (0.99), 94.6 0.000 (0.98), 94.6 -0.003 (1.00), 94.7 -0.001 (0.99), 94.5
QL2 0.000 (0.99), 94.6 -0.001 (0.98), 94.5 -0.003 (0.97), 94.2 -0.001 (0.99), 94.8

x-heterogeneous Pools (n = 150)

LN 0.000 (0.96), 94.1 0.000 (1.02), 95.5 -0.005 (1.02), 95.5 -0.001 (1.03), 95.5
GA1 0.000 (0.98), 94.2 0.000 (0.97), 94.4 -0.003 (0.98), 94.5 -0.001 (0.97), 94.4
GA2 -0.002 (0.98), 92.6 -0.002 (0.97), 94.4 -0.020 (0.96), 93.4 0.008 (0.99), 94.4

AIC 0.000 (0.95), 93.2 -0.001 (0.95), 93.7 -0.004 (0.96), 93.6 0.000 (0.96), 93.9

QL1 0.000 (0.99), 94.5 0.000 (0.98), 94.6 -0.003 (1.00), 94.6 -0.001 (0.98), 94.5
QL2 0.000 (0.99), 94.6 -0.001 (0.98), 94.6 -0.003 (0.97), 94.0 -0.001 (1.00), 94.9
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Table 4.5: Simulation results comparing regression models applied to an outcome generated
from a gamma2 distribution. “SD” refers to empirical standard deviation and “ŜE” rep-
resents the mean estimated standard errors. Model fit codes are LN = lognormal, GA1 =
gamma1, GA2 = gamma2, AIC = AIC-selected model, QL1 = Quasi-likelihood with con-
stant CV, QL2 = Quasi-likelihood with linear mean-variance structure, AP = Approximate
Model.

Mean Bias (ŜE/SD), 95% CI Coverage

β1 β2 β3 β4

Full Data (n = 651)

LN 0.008 (1.00), 82.4 0.014 (0.99), 94.4 0.104 (1.06), 86.2 -0.059 (0.98), 90.7
GA1 0.000 (0.99), 94.6 0.000 (0.99), 94.6 -0.001 (1.04), 96.0 0.000 (0.98), 94.4
GA2 0.000 (1.00), 95.0 0.000 (0.99), 94.6 -0.001 (1.00), 95.4 0.001 (0.98), 94.8

AIC 0.001 (0.97), 94.3 0.001 (0.94), 93.8 0.005 (0.99), 95.2 -0.003 (0.94), 93.7

QL1 0.000 (0.99), 94.6 0.000 (0.99), 94.7 -0.001 (1.03), 96.0 0.000 (0.97), 94.4
QL2 0.000 (1.00), 94.8 0.000 (0.99), 94.6 -0.002 (1.00), 95.3 0.000 (0.98), 94.8

x-homogeneous Pools (n = 404)

LN 0.006 (0.97), 86.5 0.008 (1.01), 95.2 0.063 (1.06), 92.2 -0.039 (1.01), 93.8
GA1 0.000 (0.98), 94.6 0.000 (0.99), 94.5 -0.001 (1.03), 95.9 0.000 (0.97), 94.2
GA2 0.000 (0.99), 94.9 0.000 (0.98), 94.3 -0.001 (1.01), 95.6 0.001 (0.98), 94.6

AIC 0.001 (0.95), 94.0 0.001 (0.94), 93.3 0.005 (0.99), 95.2 -0.003 (0.94), 93.6

AP 0.006 (0.99), 88.0 0.009 (1.02), 95.3 0.065 (1.08), 92.3 -0.034 (1.01), 94.2
QL1 0.000 (0.98), 94.4 0.000 (0.99), 94.5 -0.001 (1.03), 95.9 0.000 (0.97), 94.3
QL2 0.000 (1.00), 94.8 0.000 (0.99), 94.6 -0.002 (1.00), 95.3 0.000 (0.98), 94.6

x-heterogeneous Pools (n = 150)

LN 0.004 (0.94), 90.6 0.004 (1.04), 95.3 0.027 (1.06), 95.6 -0.015 (1.03), 95.4
GA1 0.000 (0.97), 94.3 0.000 (0.97), 94.0 -0.001 (1.01), 95.5 0.000 (0.96), 93.8
GA2 0.000 (0.98), 94.8 0.000 (0.97), 94.2 -0.002 (0.99), 95.1 -0.001 (0.97), 94.3

AIC 0.001 (0.95), 93.9 0.001 (0.94), 93.4 0.003 (0.98), 94.6 -0.003 (0.94), 93.6

QL1 0.000 (0.98), 94.4 0.000 (0.98), 94.1 -0.001 (1.02), 95.4 0.000 (0.96), 93.8
QL2 0.000 (0.99), 94.6 0.000 (0.99), 94.2 -0.002 (1.00), 95.0 0.000 (0.98), 94.2
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4.5.3 Gamma2

Results from the final simulation are provided in Table 4.5, where data is generated under

the gamma2 model. When correctly specified, the gamma2 model performs as expected,

providing essentially unbiased regression estimates and appropriate CI coverage. This final

simulation verifies the incompatibility between the lognormal and gamma2 distributions, as

neither perform well under reciprocal misspecification. The gamma1 model, on the other

hand, tends to perform quite well with respect to estimate validity even when the underlying

distribution is gamma2.

Both of the QL models also provide valid estimates, with the QL2 model slightly outper-

forming QL1 due to its correct specification of the variance structure. Estimates calculated

under the Approximate Model, on the other hand, are noticeably biased, with bias very

similar to that inherent in the lognormal model calculated under the MCEM algorithm.

This result confirms our derivation in Section 4.3.1, where we showed that the Approximate

Model might not be appropriate to fit data from the gamma2 distribution.

Here we notice a similar trend from the AIC-based model as under the gamma1 dis-

tribution. Namely, that while estimates tend to remain approximately unbiased, standard

error estimates and confidence intervals tend to suffer slightly, suggesting application of a

robust standard error estimation procedure.

4.5.4 Precision

Now that we have assessed the validity of each of the models under misspecification, we con-

sider the potential efficiency gains from choosing the best model. Table 4.6 provides results

on the estimate precision of each model under the three different types of pooling, where

lower empirical standard deviation (SD) indicates a more precise estimation procedure. In

this table, SD’s that are crossed out are from models that produce invalid (i.e., biased)

coefficient estimates. Since these models are not valid, their precision values are irrelevant.

Although the gamma1 model underestimates the SE’s when the true model is lognormal,

these precision values were not crossed out, since it is possible to calculate robust variance

estimators. Thus, these poorly estimated SE’s do not necessarily disqualify the gamma1
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model as a viable option in this situation.

With respect to precision, the correctly specified distribution, as expected, produces the

most precise estimates (lowest SD) among the class of unbiased estimators, for all types

of pooling. Here, the QL models perform extremely similarly to each other, with only

minuscule differences in precision, suggesting that both variance functions may provide

useful models for these simulated datasets.

When the underlying distribution is gamma1, the relationship between the parametric

gamma1 model and the semi-parametric QL1 model is particularly impressive. Corroborat-

ing our derivations in Section 4.3.2, precision values are identical under these two models

for full data and x-homogeneous pools, and extremely similar under heterogeneous pools,

likely due to the informative pooling strategy applied via k-means clustering. These simula-

tion results underscore the advantage of the QL1 model, which requires fewer assumptions

than its likelihood-based counterpart, yet enjoys the same precision. In addition, analyzing

x-heterogeneous pools under the QL1 model is much simpler than calculating MLEs under

the MCEM algorithm.

Using AIC to choose the model tends to perform well, and can help maintain a high level

of precision, closely approximating the precision levels under the true model. Recall that

models chosen from AIC can suffer from underestimation of SE’s, so it may be desirable to

apply robust standard error estimates, particularly when either of the gamma models are

chosen.

4.5.5 Naive QL Models

In the previous simulations, both quasi-likelihood methods performed extremely similarly,

indicating that for the simulation setting mimicking the motivating dataset, the choice be-

tween a linear mean-variance structure or a constant CV may not noticeably impact the

results. This similarity in performance, however, will not always hold. As mentioned previ-

ously, the QL1 model constructed under heterogeneous pools is not equivalent to applying

a QL with constant CV to the pooled data. In some cases, these two different models will

produce very similar results, especially when within-pool covariates are similar, such as

when pools are formed via k-means clustering on all covariates. Consider a quasi-likelihood
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Table 4.6: Empirical standard deviation (SD) of regression estimates under lognormal,
gamma, and quasi-likelihood regression models. SD’s under models that produce invalid
(i.e. biased) results are crossed out, since precision under these models is irrelevant.

Empirical Standard Deviation

SD(β̂1)/SD(β̂2)/SD(β̂3)/SD(β̂4)

Full Data x-homogeneous Pools x-heterogeneous Pools
Model (N = 651) (n = 404) (n = 150)

True Model: Lognormal

LN 0.006/0.079/0.086/0.080 0.006/0.082/0.090/0.083 0.007/0.090/0.097/0.092
GA1 0.008/0.101/0.110/0.103 0.008/0.101/0.110/0.103 0.008/0.101/0.110/0.103
GA2 0.004/0.051/0.057/0.052 0.004/0.061/0.066/0.062 0.005/0.080/0.085/0.081

AIC 0.006/0.079/0.086/0.080 0.006/0.082/0.090/0.083 0.007/0.090/0.097/0.092

AP – 0.006/0.083/0.092/0.084 –
QL1 0.008/0.101/0.110/0.103 0.008/0.101/0.110/0.103 0.008/0.101/0.110/0.103
QL2 0.007/0.090/0.095/0.092 0.008/0.104/0.112/0.105 0.008/0.104/0.112/0.105

True Model: Gamma1

LN 0.007/0.088/0.093/0.087 0.007/0.083/0.090/0.083 0.006/0.078/0.084/0.077
GA1 0.005/0.072/0.077/0.072 0.005/0.072/0.077/0.072 0.005/0.072/0.077/0.072
GA2 0.004/0.059/0.064/0.058 0.005/0.063/0.068/0.063 0.005/0.069/0.074/0.068

AIC 0.006/0.072/0.078/0.072 0.005/0.072/0.078/0.072 0.006/0.073/0.078/0.072

AP – 0.006/0.081/0.090/0.082 –
QL1 0.005/0.072/0.077/0.072 0.005/0.072/0.077/0.072 0.005/0.072/0.077/0.072
QL2 0.006/0.076/0.080/0.076 0.005/0.072/0.077/0.072 0.005/0.072/0.077/0.072

True Model: Gamma2

LN 0.008/0.103/0.105/0.104 0.008/0.097/0.099/0.097 0.007/0.088/0.092/0.089
GA1 0.006/0.079/0.083/0.081 0.006/0.079/0.083/0.081 0.006/0.080/0.083/0.081
GA2 0.005/0.062/0.066/0.063 0.005/0.068/0.070/0.068 0.005/0.075/0.077/0.076

AIC 0.005/0.067/0.069/0.068 0.005/0.073/0.074/0.073 0.006/0.078/0.081/0.079

AP – 0.007/0.094/0.099/0.095 –
QL1 0.006/0.079/0.083/0.081 0.006/0.079/0.083/0.081 0.006/0.079/0.083/0.081
QL2 0.006/0.079/0.083/0.081 0.006/0.079/0.083/0.081 0.006/0.079/0.083/0.081



104

model with constant CV applied to pooled data, so that the first and second moments of

the pooled outcomes are specified as:

E(Y p
i ) = µi = eα+xiβ and V ar(Y p

i ) = V (µi) ∝ e2(α+xiβ) (4.10)

where xi = k−1i
∑ki

j=1 xij . Let us refer to this model as the “naive” QL model. Under the

QL1 model applied to heterogeneous pools the mean and variance are adapted to incorporate

the fully-known covariate information:

E(Y p
i ) = k−1i

ki∑
j=1

eα+xijβ and V ar(Y p
i ) ∝ k−2i

ki∑
j=1

e2(α+xijβ). (4.11)

When within-pool covariate values are similar, such that xij ≈ xi for all j = 1, . . . ki, then

the two models are approximately equivalent. When covariates are not similar, however,

these two models can produce very different results. The same characteristic also applies

to the QL2 model and the “naive” QL with linear mean-variance relationship applied to

pooled data, with the exception that the variance term no longer has a ‘2’ in the exponent.

In this next simulation, we demonstrate the potential repercussions of fitting a quasi-

likelihood with moment-specifications from (4.10) when covariate values are dissimilar. We

use the same simulations generated in Section 3.9.4, where N = 400, X1 ∼ Exp(0.3),

X2 ∼ Bernoulli(0.15), X3 ∼ Bernoulli(0.8), and log(Y ) ∼ N(µ, 0.62), with µ = 3 −

0.5(X1)+0.7(X2)+0.2(X3). Since the outcome is lognormally distributed, a quasi-likelihood

with log link and constant CV should provide valid results on the coefficient estimates as

well as their standard errors. Pools were then formed randomly in groups of 2, such that

the pooled sample size is n = 200.

Tables 4.7a and 4.7b provide results from this simulation on the full data and randomly

pooled data, for QL models under both a linear and quadratic (i.e. constant CV) mean-

variance relationship. For the pooled data, QL models are first applied “naively” directly

to the pooled data, then are redefined under the proper mean and variance functions (4.11).

As expected, both QL models on the full data provide valid estimates of the coefficient

parameters, since the link function was correctly specified. Since the outcome is lognormally
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Table 4.7a: Mean bias and 95% CI coverage comparing QL models on individual-level
and randomly pooled specimens. “SD” refers to empirical standard deviation and “ŜE”
represents the mean estimated standard errors. V (µ) represents the variance function in
the QL model.

Mean Bias (ŜE/SD)
95% CI Coverage

Method µ V (µ) β1 β2 β3

Full Data (N = 400)

QL1 eα+xijβ µ2ij 0.000 (0.98) -0.002 (0.98) 0.002 (0.98)

94.7 94.1 94.4
QL2 eα+xijβ µij 0.000 (1.00) -0.002 (0.63) 0.003 (0.79)

95.3 79.1 87.6

Randomly Pooled Data (n = 200)

QLnaive eα+xiβ µ2i 0.265 (0.57) 0.083 (0.94) -0.003 (0.97)
0.0 91.7 94.1

QLnaive eα+xiβ µi 0.227 (0.81) 0.072 (0.91) -0.005 (1.04)
0.0 90.1 95.7

QL1 1
ki

∑ki
j=1 e

α+xijβ 1
ki

∑ki
j=1 µ

2
ij -0.001 (0.97) -0.003 (0.98) 0.002 (0.99)

94.3 94.1 94.5

QL2 1
ki

∑ki
j=1 e

α+xijβ 1
ki

∑ki
j=1 µij -0.001 (1.25) -0.004 (0.74) 0.005 (0.92)

98.3 85.2 91.6

Table 4.7b: Empirical standard deviation for various QL models on individual-level and
randomly pooled specimens. V (µ) represents the variance function in the QL model. SD’s
under models that produce invalid (i.e. biased) results are crossed out, since precision under
these models are irrelevant.

Empirical standard deviation
Method µ V (µ) β1 β2 β3

Full Data (N = 400)

QL1 eα+xijβ µ2ij 0.010 0.094 0.083

QL2 eα+xijβ µij 0.026 0.118 0.110

Randomly Pooled Data (n = 200)

QLnaive eα+xiβ µ2i 0.043 0.242 0.209

QLnaive eα+xiβ µi 0.037 0.192 0.174

QL1 k−1i
∑ki

j=1 e
α+xijβ k−1i

∑ki
j=1 µ

2
ij 0.023 0.121 0.120

QL2 k−1i
∑ki

j=1 e
α+xijβ k−1i

∑ki
j=1 µij 0.037 0.136 0.140
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distributed, the assumption of constant CV (i.e. V (µ) = µ2) is appropriate, thus the QL1

model on the full data also provides valid SE estimates and nominal 95% CI coverage,

whereas QL2 underestimates the true SE’s, due to misspecification of the variance structure

under this model. Likewise, if data were generated such that the variance structure were

a linear function of the mean, the QL2 model would be expected to outperform the QL1

model.

For pooled data, both naive models provide biased coefficient estimates and display poor

CI coverage, emphasized by a 0% CI coverage for β̂1. The QL1 and QL2 models applied to

these heterogeneous pools perform similarly to their full data counterparts. The results from

the QL1 model are particularly impressive, as this model provides both valid standard error

estimates as well as precise coefficient estimates. Its performance is especially motivating

in light of its relatively straightforward implementation. While performing MCEM under

a lognormal assumption would provide more precise estimates, this QL1 model can provide

a more accessible ‘first look’ at data containing heterogeneous pools, and a convenient

alternative to ML estimation when distributional specification is dubious.

4.6 Data Analysis

Among the 651 individual-level measurements for the outcome, cytokine IP, the four val-

ues that fell below the detection limit were set to 0.0005, half the lowest observed limit of

detection. In addition to the dataset containing IP values on individual specimens, 508 of

those specimens were then physically combined and measured in pools of 2, formed homo-

geneously with respect to participant SA status (Whitcomb et al., 2012). This subsequent

pooling, which was conducted as part of a study design including a methods component,

formed a secondary, hybrid dataset consisting of the 208 pooled values as well as the initial

measurements on 164 of the individual specimens that were not pooled. In addition to these

observed pooled values, we also artificially recreate these pools based on the individual mea-

surements, in order to obtain the regression estimates on the expected values of the pools,

calculated as the mean of the IP values from the specimens comprising each pool. Each of

the resulting datasets, (full, observed pools, and expected pools) were then fit to each of
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the available models. For both pooled datasets, since pools are not entirely homogeneous,

the MCEM method was used to fit the lognormal and ML-based gamma1 models. Since

all pool sizes were less than or equal to 2, the Convolution approach of maximizing the

observed log-likelihood is also available. This method was applied to the pooled specimens,

along with its corresponding AIC value, in order to compare the Monte Carlo based approx-

imations to estimates from direct maximization of the observed log-likelihood. AIC values,

where applicable, were generated based on the log-likelihood of the pooled data. For models

fit under the MCEM method, the Monte Carlo approximation of the pooled log-likelihood

was estimated with an MC size of 10,000. Since the QL models are semi-parametric, AIC

values are not available for these methods. Instead, simulations results must be relied upon

to assess the performance of these models.

As illustrated in Table 4.8, different conclusions can result from different assumed mod-

els. Although not identical, estimates for regression coefficients and standard errors between

the MCEM and Convolution methods are extremely similar. In particular, MC AIC values

are nearly identical to the AICs calculated from direct optimization of the likelihood via

the Convolution Method, thus validating the MC-based AIC as an appropriate technique

for approximating this criterion. All AIC values in this analysis tend to favor the lognormal

distribution regardless of pooling type, although additional information is recommended to

help select the final model. If preventing a Type I Error is a priority, then perhaps one of

the QL models may be the most favorable, with application of a variance sandwich estima-

tor for additional assurance (White, 1982). These models are also perhaps the easiest to

fit under heterogeneous pools, since the MCEM method is not required. If power is more

important, then the potentially more precise lognormal model may be the top contender,

due to its favorable AIC values. As suggested by the simulations, the gamma2 model would

perform well assuming the data are actually distributed according to this model, but tends

to perform poorly otherwise.

Several issues arose concerning analysis of this pooled dataset. One complication evident

in this data analysis is the difference in parameter estimates between the observed and

expected pools, suggesting that further information concerning the impact of pooling and

measurement error may influence not only the decision on whether to pool data, but also
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Table 4.8: Regression estimates and estimated standard errors on data from CPP substudy,
with cytokine IP as the outcome. A ‘*’ indicates significant association at the 0.05 level.
Gamma1 refers to the ML gamma regression model with constant shape parameter, gamma2

the ML gamma regression model with constant scale parameter, and QL to quasi-likelihood
methods, where a ‘1’ superscript assumes a constant CV on the individual data and the ‘2’
superscript a linear mean-variance structure.

Age Smoking Status Race SA Status
Fit AIC (yrs) (yes/no) (black/white) (yes/no)

Full Data (n = 671)

Lognormal -3894 0.009 (0.006) 0.017 (0.074) 0.185 (0.081)* -0.017 (0.075)
Gamma1 -3808 0.012 (0.005)* 0.022 (0.069) 0.169 (0.076)* -0.091 (0.070)
Gamma2 -3804 0.006 (0.004) 0.008 (0.057) 0.118 (0.062) -0.008 (0.058)
QL1 NA 0.012 (0.008) 0.022 (0.095) 0.169 (0.104) -0.091 (0.096)
QL2 NA 0.011 (0.007) 0.017 (0.095) 0.159 (0.101) -0.095 (0.096)

Observed Pools (n = 404)
Lognormal
MCEM -2443 0.018 (0.009)* -0.004 (0.116) 0.315 (0.126)* -0.028 (0.093)
Conv. -2443 0.018 (0.007)* -0.001 (0.105) 0.312 (0.124)* -0.029 (0.094)

Gamma1

MCEM -2390 0.025 (0.009)* -0.022 (0.130) 0.353 (0.122)* -0.093 (0.088)
Conv. -2390 0.025 (0.008)* -0.019 (0.129) 0.350 (0.119)* -0.093 (0.088)

Gamma2 -2383 0.011 (0.006) -0.006 (0.089) 0.194 (0.095)* -0.018 (0.073)

QL1 NA 0.022 (0.010)* 0.010 (0.143) 0.320 (0.151)* -0.094 (0.110)

QL2 NA 0.019 (0.008)* 0.005 (0.119) 0.300 (0.125)* -0.100 (0.095)

Expected Pools (n = 404)
Lognormal
MCEM -2435 0.014 (0.008) 0.012 (0.108) 0.333 (0.116)* -0.004 (0.086)
Conv. -2436 0.014 (0.008) 0.013 (0.108) 0.329 (0.116)* -0.002 (0.086)

Gamma1

MCEM -2364 0.014 (0.009) 0.067 (0.163) 0.365 (0.119)* -0.112 (0.084)
Conv. -2366 0.014 (0.009) 0.072 (0.157) 0.364 (0.116)* -0.111 (0.084)

Gamma2 -2361 0.009 (0.006) 0.008 (0.086) 0.214 (0.091)* -0.005 (0.071)

QL1 NA 0.013 (0.010) 0.084 (0.147) 0.337 (0.151)* -0.111 (0.108)

QL2 NA 0.012 (0.009) 0.071 (0.119) 0.309 (0.123)* -0.113 (0.093)
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the treatment of that pooled data. While these pools were formed homogeneously only with

respect to SA, more precision may have been preserved had they been formed homogeneously

with respect to all covariates included in the model. In addition, the simpler estimation

procedures would be available under this pooling strategy, making model comparison much

more accessible.

4.7 Discussion

In summary, the best model for a particular dataset depends on the underlying distribution

of the outcome and the type of pooling. Misspecification will almost certainly lead to

reduced precision, and can even cause bias in estimates of both the regression coefficients

as well as their corresponding standard errors, leading to flawed inference. Semi-parametric

models provide an alternative to full specification on the outcome distribution, helping to

guard against these potential errors by requiring specification on only the first two moments.

The benefit of these quasi-likelihood based models is particularly compelling when analyzing

heterogeneous pools, as implementation of these analytical procedures is straightforward,

especially when compared with the MCEM algorithm.

On the other hand, when maximizing precision is of utmost importance, these maximum-

likelihood based models may be preferable. AIC can help improve precision by identifying

the best model, but applies only to likelihood-based methods. In any case, AIC should

mainly be used as a guidance tool, in conjunction with other information, such as prior

experience and prioritizing between fewer assumptions vs. less precision, in order to choose

the best model for each specific study.

As illustrated in Table 4.7a, incorrect specification of the mean or variance structure in a

quasi-likelihood framework could result in flawed inference. A quasi-likelihood information

criterion may be available to help choose the best mean and variance structures under these

semi-parametric models (Pan, 2001), and additional research is recommended to verify the

efficacy of these selection methods applied to pooled data. An additional guard against

misspecification of the variance structure is the application of sandwich estimators. While

we did not explicitly apply these types of estimates in our study, previous research has
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demonstrated their ability to provide robust standard error estimates even under incorrect

specification of the mean-variance relationship (White, 1982).

The goal of this chapter was to provide and test various analytical strategies available

to model right-skewed outcomes in a regression setting that may be subject to pooling. The

methods presented here provide a base of available models to analyze datasets similar to

the CPP data. Exhausting all possible models for right-skewed data subject to pooling is

well beyond the scope of this project. Techniques similar to those discussed here, however,

may be applied to additional likelihood-based or semi-parametric methods, depending on

the qualities of each particular dataset.

The simulation studies illustrated characteristics of each of the considered models under

misspecification, in order to help select the most desirable model. As evidenced in the

data analysis, however, real datasets are rarely immune to complications such as a limit of

detection or pooling and measurement error. While recent studies have researched these

topics with respect to pooling (Schisterman and Vexler, 2008; Schisterman et al., 2010),

additional investigation extending these ideas specifically to right-skewed, pooled outcomes,

may prove helpful in order to maximize the accessibility and benefit of pooling biospecimens.
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Chapter 5

Summary and Future Research

This study focused on analysis and design considerations when a regression outcome is

assayed on pooled samples. Simulation results demonstrated the advantages of strategic

pooling designs; specifically, when pools are formed from specimens with similar covariate

values, high levels of statistical efficiency can be maintained. Furthermore, when pools are

x-homogeneous, analytical methods can be greatly simplified. For a right-skewed regression

outcome, we developed and tested analytical methods appropriate for this type of data based

on parametric and semi-parametric models. These methods were applied to several datasets

from epidemiological studies. In particular, the CPP substudy provided important insights,

as this dataset contained both individual as well as pooled measurements.

As is often the case, the application of these methods to a real dataset raised several

additional considerations. In Chapter 2, we examined an SLR scenario when specimens

may contribute unequal aliquot sizes to pools. While we anticipate that similar treatment

of the aliquots applied to additional pooling scenarios (e.g. generalized linear regression)

would result in similar consequences, it may be useful to verify this assumption through

additional studies.

One of the more obvious issues evident from the data analyses, perhaps, is the difference

between the observed measurement from an actual pool and the expected value based on

the average of the measurements from the individual specimens comprising that pool. This

discrepancy may be a result of measurement or pooling error, or both, and is potentially

important because most analytical methods for handling pooled specimens (including ours)
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assume that the lab assay returns the average biomarker concentration across members

of the pool. Schisterman et al. (2010) explored this topic with respect to estimating the

marginal mean and variance for a particular biomarker, recommending a hybrid pooled-

unpooled design as an effective strategy in evaluating pooling and measurement error for

a gamma or normal distribution. We anticipate that a similar design could prove helpful

in evaluating error components in a regression setting, and in future research, we intend

to extend these methods to the regression settings considered here, both when pooling

is applied to the outcome and when it is applied to an exposure of interest. The latter

scenario raises the more challenging questions regarding processing and measurement error

adjustment.

Another complication evident during data analysis is the effect of the limit of detection

on pooled data. Schisterman and Vexler (2008) demonstrated the potential advantages

of pooling when estimating the mean and variance of biospecimens subject to a limit of

detection, where the decision concerning whether or not to pool depends on the detection

threshold. Furthermore, the treatment of non-detects can affect analytical results. Addi-

tional exploration of these topics is recommended in order to identify an ideal strategy for

dealing with this complication when regression is performed on a pooled outcome.

In this study, we limited our focus to pooling on an outcome, where pools are formed

based only on fully-known covariate data. Another area of interest, however, is pooling

an exposure, where pools are potentially informed by a fully known outcome and other

covariates. In general, informative pooling strategies that incorporate the outcome into the

pooling method tend to produce biased estimates of the regression coefficients. In a logistic

regression setting, Prentice and Pyke (1979) demonstrated that sampling on an outcome

does not induce bias into the regression coefficient estimates, which simplifies analyses under

a case-control sampling design. Weinberg and Umbach (1999) were able to take advantage

of this result to assess a pooled exposure in logistic regression, where pools are formed

homogeneously with respect to a binary outcome. In Chapter 1 we briefly summarized

their method, which exploits the multiplicative properties of the risk model to maintain the

benefit of the Prentice and Pyke result when pooling on exposure.

For linear regression or other generalized linear regression models, a ‘safe’ way to avoid
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this bias is to limit pooling strategies to only incorporating other covariate values, so at

least the remaining coefficient estimates will be precise, and, under appropriate analytical

models, all estimates will be consistent. Additional efficiency may be gained by including

the outcome information into the pooling strategy, however, and we intend to explore the

possibility of correcting any potential bias to maintain estimate accuracy and precision.

One potential mitigation technique is based on bias-correction methods incorporated into

an outcome-dependent sampling design. Weaver and Zhou (2005) recommend an alternate

likelihood that utilizes a semi-parametric approximation of the distribution of the predictor

variables in order to reduce this potential bias. Just as Weinberg and Umbach (1999)

extended the results from Prentice and Pyke (1979) to a pooled exposure, we intend to

explore the possibility of extending these outcome-dependent sampling methods to a pooling

scenario, in order to optimize efficiency from pooling based on a continuous outcome while

maintaining valid estimates of the regression coefficients.

A critical aspect of any regression analysis is assumption validation. Currently, we are

not aware of any diagnostic tests developed specifically for pooled data. Examination of any

potential assumption violations is complicated by the nature of pooled data, which can mask

the underlying distribution. When assumptions apply directly to the pooled measurements,

such as in the linear regression scenario in Chapter 2, the Approximate Model in Chapter 3,

or some of the models in Chapter 4, we expect extension of the usual diagnostic techniques

to be relatively straightforward. For those models that make assumptions on the individual

specimens that do not carry directly over to the pools, such as any of the models that apply

the MCEM method, diagnostic procedures may not be straightforward. In such cases,

we recommend application of a hybrid pooling design, where pools as well as individual

specimens are measured. In this way, diagnostics can be performed on the individual data,

so that any violations of the assumptions might be identified using this subset. While the

k-means algorithm will often single out individual specimens naturally, additional samples

may be desired in order to obtain enough individual specimens for reliable evaluation of

diagnostic tests. Future research will focus on extending the Monte Carlo methods used

to approximate the AIC for these models to calculation of deviance or other measures of

fit. While AIC can help choose the better of two models, deviance can aid in determining
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whether a particular model might have poor fit.

Similar methods could also be developed for the quasi-likelihood models from Chapter

4. In this study, the main motivation in applying quasi-likelihood models to pooled data

was the relative ease of analysis. The robustness of these QL methods, however, could be

further exploited by developing a pooled version of the sandwich estimator (White, 1982).

A quasi-likelihood information criterion (QIC) for pooled regression might also prove useful

in testing between candidate mean and variance structures (Pan, 2001).

A further extension of these quasi-likelihood methods might also apply to longitudinal

data, where generalized estimating equations (GEE) can be used to evaluate correlated

data in a regression setting. Chen et al. (2009) and Lyles et al. (2012) considered nonlinear

mixed models for a binary outcome and exposure, respectively, when within-subject pooling

is applied to evaluate these variables in a longitudinal study, and Malinovsky et al. (2012)

considered pooling designs for estimating the intraclass correlation coefficient under a Gaus-

sian random effects model when the repeated outcome is pooled. Future work will focus on

developing similar methods to handle longitudinal or otherwise correlated outcomes in the

skewed regression settings considered in Chapters 3 and 4.

A primary focus of this study was to consider pooling strategies when budgetary con-

straints limit the number of feasible lab tests to be performed. The strategic pooling

designs, such as x-homogeneous pools and k-means pooling, are advantageous under this

assumption. When pooling is performed for other reasons, such as to reduce the number of

non-detects subject to a limit of detection, additional designs will likely need to be consid-

ered for optimal performance. Ultimately, the best pooling design will depend on additional

considerations specific to each study. A thorough evaluation of cost savings vs. potential

precision reduction, feasibility and practicality of implementation, and inclusion of individ-

ual specimens to facilitate error assessment and model diagnostics is recommended. While

pooling can be a valuable tool in reducing the cost of lab assays, the advantages and disad-

vantages of any pooling strategies as well as availability of appropriate analytical methods,

whenever possible, should be carefully considered prior to implementation.
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Appendix A

R and SAS Code Examples

A.1 k-means Clustering

R Code

X is standardized using the defined function ‘stdize’ so that each covariate has similar

influence on clustering procedure. Then kmeans is applied to form 50 clusters from the

original 100 observations.

X = data.frame(x1 = rnorm(100),x2 = rnorm(100))

stdize = function(t) (t-mean(t))/sd(t)

stdX = apply(X,2,stdize)

kmeans(stdX,50)

SAS Code

X is standardized using the STANDARD procedure, and 50 clusters are formed using the

FASTCLUS procedure.

proc standard data=one out=stand mean=0 std=1;

var x1 x2; run;

proc fastclus data=stand out=clust maxclusters=50 converge=0 maxiter=100;

var x1 x2; run;
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A.2 gamma2 Model

R Code

R code to calculate MLEs from gamma2. Code as shown applies to individual-level data

as well as both x-homogeneous and heterogeneous pools. The defined AV E function just

alters the built-in R ave function so that it can be used in conjunction with apply without

duplicating the function argument. The Poolit function was written to simplify the pooling

process, by averaging (or summing) the data by cluster, then ordering by cluster number

and dropping duplicates (i.e. keeping only one observation per pool). When optimizing

the gamma2 function, the ‘y’ vector should be a vector of unique pooled measurements, in

the order of cluster number. In the optim statement, ‘par’ is a vector of starting values for

θ = (β, φ). In this code, the intercept (α) is included in the coefficient vector (β).

AVE = function(x,...,fun = mean) ave(x,...,FUN=fun)

Poolit = function(data,cluster,sums=F){

if(sums) fun = sum else fun = mean

unique(apply(cbind(cluster,data),2,

FUN=AVE,cluster,fun=fun)[order(cluster),])[,-1]

}

gamma2 = function(theta,y,X,cluster=1:length(y)){

b = theta[length(theta)]

Beta = theta[-length(theta)]

eta = as.matrix(cbind(1,X))%*%Beta

mu.ij = exp(eta)

mu.i = Poolit(mu.ij,cluster,sum=T)

a.i = mu.i/b

ki = tabulate(cluster)[tabulate(cluster)>0]

b.i = b/ki
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ll = sum(dgamma(y,shape=a.i,scale=b.i,log=T))

return(-ll)

}

optim(par,fn=gamma2,y=y,X=X,cluster=cluster,

hessian=T,method="L-BFGS-B",lower=c(rep(-Inf,length(par)-1),1E-7))

SAS Code

SAS code to calculate MLEs from gamma2 model using NLMIXED procedure. Shown here

for full data, but can be altered to accommodate x-homogeneous or heterogeneous pools.

PROC NLMIXED data=one;

*starting values;

parms alpha = 0 beta1 = 0 beta2 = 0 scale = 1;

ai = exp(alpha + beta1*x1 + beta2*x2);

trm1 = -lgamma(ai) - ai*log(scale);

trm2 = (ai-1)*log(y) - y/scale;

LL = trm1 + trm2;

model y ~ general(LL);

ods output parameterestimates = est convergencestatus = rc;

run;

A.3 QL Model under heterogeneous pools.

R Code

R code using nleqslv to calculate QL estimates for β under heterogeneous pools (‘nleqslv’

package required). The variance function for individual data (V.ij) can be altered to specify

a constant CV or a linear mean-variance relationship. Again, ‘y’ should be a vector of unique

pooled measurements in the order of cluster number, and ‘par’ is a vector of starting values

for θ. Note that this code only calculates regression coefficients; the dispersion parameter
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φ must be calculated separately.

library(nleqslv)

QL.htro = function(Beta,y,X,cluster=1:length(y)){

X1 = as.matrix(cbind(1,X))

eta = X1%*%Beta

mu.ij = exp(eta)

V.ij = mu.ij^2 # QL1: constant CV

#V.ij = mu.ij # QL2: linear mean-var

ki = tabulate(cluster)[tabulate(cluster)>0]

mu.i = Poolit(mu.ij,cluster,sum=F)

V.i = Poolit(V.ij,cluster,sum=T)/ki^2

dmu = Poolit(X1*c(mu.ij),cluster)

Q = t(dmu)%*%as.matrix((y-mu.i)/V.i)

return(Q)

}

nleqslv(par,QL.htro,y=y,X=X,cluster=cluster,jacobian=T)


