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Abstract 
 

Spatial analysis of vampire bat (Desmodus) transmitted rabies virus outbreaks in 
livestock across Peru 
By Amanda Vincent 

 
 

Purpose: The thesis research investigated the spread of vampire bat transmitted rabies 
virus in livestock across Peru using reported outbreak data from 2003 to 2016. The thesis 
research aimed to identify spatio-temporal clusters of rabies outbreaks in livestock, 
identify the most likely outbreak origins of the spatio-temporal clusters, and estimate the 
rate at which vampire bat rabies is moving across the landscape in identified outbreak 
clusters.  
Methods: SatScan software was used to identify spatio-temporal clusters of outbreaks 
and simple linear regression analysis was used to find the most likely outbreak origins in 
clusters and to estimate the weekly rates of rabies spread in clusters.  
Results: A total of 8 clusters were identified in a confirmed outbreak dataset and 13 in a 
suspected outbreak dataset. The regression analysis run on suspected outbreak clusters at 
the week level estimated rates of spread spanning from 0.22-5.03 kilometers per week 
and the estimated rates of spread for the confirmed outbreak clusters ranged from 0.33-
6.68 kilometers per week.  
Conclusions: The outbreak distributions within clusters and r2 values indicated the 
presence of wavefronts of rabies spread across the landscape. The research can be used to 
aid vampire bat transmitted rabies control strategies by providing targeted spatial 
identification and forecasting of existing and future outbreaks in livestock. The potential 
use of this research in vampire bat rabies control will promote public health by aiding 
prevention of spillover infections in humans. 
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Introduction 
 

In Latin America, vampire bat transmitted rabies virus is considered a re-

emerging disease with major public health and economic implications (Benavides, 

Valderrama, & Streicker, 2016; WHO, 2013). Human infections with vampire bat 

transmitted rabies have been increasing in South America over the past decade (Condori-

Condori, Streicker, Cabezas-Sanchez, & Velasco-Villa, 2013). Peru is of particular 

concern, as recent research has found evidence of wave front rabies virus spread across 

parts of the landscape (Streicker, Winternitz, Satterfield, Condori-Condori, Broos, Tello, . 

. & Valderrama, 2016; Benavides et al., 2016).  Many experts identify rabies to be “the 

most important viral zoonosis,” because of its extreme mortality rate and spillover 

potential (Hanlon, Niezgoda, & Rupprecht, 2007, p. 201; Real, Russell, Waller, Smith, & 

Childs, 2005; Childs & Real, 2007).  Wave front spread of rabies virus in Peru presents 

an apt example of an ecological and interdisciplinary public health problem, requiring the 

unification of resources and knowledge from human health, animal health, and disease 

ecology.  

Rabies is a very old viral zoonotic disease that causes encephalitis, or brain and 

spinal cord inflammation, and death in humans and animals (Heymann, 2015; Fooks, 

Banyard, Johnson, McElhinney, & Jackson, 2014; Streicker et al., 2016). While common 

understanding conjures images of aggressive canines frothing at the mouth, rabies can 

present as either furious or dumb (Hanlon et al., 2007). Furious rabies is the aggressive 

stereotype, while dumb rabies presents more paralytic symptoms (Hanlon et al., 2007). In 
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general, humans, bats, and cattle present with paralytic clinical rabies (Kuzmin & 

Rupprecht, 2007).  

In addition to being extremely deadly, rabies is extremely adaptive and virtually 

all mammals can become rabies hosts, many of which are carnivores (Childs & Real, 

2007). However, in order for a rabies host to become a reservoir, the rabies virus variant 

must adapt to the reservoir species (Hanlon et al., 2007). While there are many rabies 

variants capable of infecting new hosts, such spillover infections often result in dead-end 

infections or hosts (Childs & Real, 2007; Hanlon, et al., 2007; Real et al., 2005). 

Livestock and humans in particular are dead-end rabies hosts, given that neither makes a 

biological contribution to the disease maintenance. In Latin America, the main rabies 

reservoirs are canines and bats Heymann, 2015; Streicker et al., 2016; Benavides, 

Valderrama, & Streicker, 2016). 

 

Background: Rabies Epidemiology  

Rabies is from the genus Lyssavirus, which consists of 14 virus species, and the 

family Rhabdoviridae (Wunner, 2007; Banyard, Evans, Luo, & Fooks, 2014). A rabies 

case is considered to be any infection from the Lyssavirus family (Childs & Real, 2007). 

All but two of the Lyssavirus species have been found in bat species (Banyard et al., 

2014). Only classical rabies virus (RABV, genus Lyssavirus) is currently endemic in the 

Americas, and RABV is the only lyssavirus found in the New World (Heymann, 2015; 

Banyard et al., 2014). Only bats found in the Americas carry RABV and the species most 

often involved in fatal bat to human RABV transmission include: big brown bats, 
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Mexican or Brazilian free-tail bats, silver-haired bats, tri-colored bats, and vampire bats 

(Banyard et al., 2014).  

Rabies carries a nearly 100% case-fatality rate, and recovery in both animals and 

humans is rare (Baer and Olsen, as cited in Hanlon et al., 2007; Heymann, 2015; Fooks, 

Banyard, Johnson, McElhinney, & Jackson, 2014; Streicker, Winternitz, Satterfield, 

Condori-Condori, Broos, Tello, Recuenco, Velasco-Villa, Altizer, & Valderrama, 2016). 

The estimated global human rabies mortality is between 26,000 to 61,000 deaths per year 

(WHO, 2013). While these rabies numbers are not as staggering as other diseases, it is 

important to note that there is widespread underreporting of rabies cases, especially bat 

transmitted rabies cases (Hanlon et al., 2007; Hampson, Coudeville, Lembo, Sambo, 

Kieffer, & Attlan, 2015). Furthermore, the complexities of rabies control and elimination 

come with a high economic burden, which is especially evident in Latin America (WHO, 

2013; Hanlon et al., 2007, Hampson et al., 2015). According to the Pan American Health 

Organization (PAHO), as of 2013, in Latin America and the Caribbean, canine rabies 

control and elimination campaigns alone required an annual budget of US$20 million 

(WHO, 2013). In Latin America, an estimated 70 million cattle are considered at risk for 

bat transmitted rabies infection (Kuzmin & Rupprecht, 2007; Johnson, 2014). However, a 

study by Hampson et al. (2015) found a level of uncertainty present in global rabies 

estimates due to insufficient surveillance practices. 

 
Vampire bat ecology 
 

The common vampire bat is one of Latin Americas main rabies virus reservoirs 

and the first reported vampire bat transmitted human case in the Americas occurred in 

1927 in Trinidad (Heymann, 2015; Streicker et al., 2016; Benavides et al., 2016; 
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Schneider, Romijn, Uieda, Tamayo, da Silva, Belotto, & Leanes, 2009). In Latin 

America, vampire bats are reservoirs for the sylvatic rabies type, while domestic dogs are 

reservoirs for urban rabies (Condori-Condori et al., 2013). Common vampire bats 

(Desmodus rotundus) are only found in the Americas, ranging from Mexico to Argentina, 

and are the most established rabies reservoir among hematophagous or blood-feeding 

bats (Heymann, 2016; Johnson, 2014). Blood-feeding makes them successful rabies 

sources or transmitters (Johnson, 2014). Vampire bats transmit rabies by biting prey and 

contaminating the bite wound with infected saliva (Johnson, 2014; George et al., 2011). 

Their preferred prey is livestock, especially cattle, but they also feed on wildlife, humans, 

and smaller livestock (Johnson, 2014; Streicker & Allgeier, 2016). Vampire bats always 

feed at night and their bite has very little pain (Johnson, 2014; Streicker & Allgeier, 

2016). This makes vampire bats successful blood-feeders because livestock owners are 

less likely to notice vampire bats feeding on their livestock due to the timing of bites and 

the lessened distress caused by bites with little pain (Johnson, 2014; Streicker & Allgeier, 

2016).  

While vampire bats are rabies reservoirs, not all bats become infectious (Bell, 

1964; Kuzmin & Rupprecht, 2007). In a study by Moreno and Baer, it was shown that the 

bats could develop clinical infection and die shortly after symptoms presented, whereas 

bats that survived inoculation were not infectious (as cited in Kuzmin & Rupprecht, 

2007). When individual infected bats do not become infectious and die, it is an abortive 

infection (Bell, 2964; Kuzmin & Rupprecht, 2007). Bats become inoculated from close 

social contact with infected fellow roost bats, via contaminated saliva (Kuzmin & 

Rupprecht, 2007). As a RABV reservoir, vampire bats are mammals capable of viral 
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maintenance of the rabies variant in a given geographical area (Hanlon et al., 2007). 

While vampire bats are one of the main rabies reservoirs in Latin America, RABV is not 

always present in a given population (Streicker et al., 2016; Benavides, 2016). This is due 

to trends in viral transmission and maintenance, which influence its spread (Childs & 

Real, 2007; George et. al, 2011). The maintenance cycle in vampire bats involves, to the 

best understanding in the literature, introducing the virus into a naïve or uninfected bat or 

bat population, resulting in infection and viral multiplication, which ends with the new 

reservoir bat re-starting the cycle with other susceptible bats (Blackwood, Streicker, 

Altizer, & Rohani, 2013). For rabies maintenance to function, the virus must be exposed 

to an uninfected individual belonging to the original reservoir species (Childs & Real, 

2007).  

 

Livestock in Peru 
 

In Peru, cattle represent the largest portion of livestock ownership, followed by 

sheep and goats, poultry, and lastly pigs (FAO, 2005). National livestock distribution 

naturally follows a similar distribution to human population density (FAO, 2005). Much 

of Peru’s livestock are part of small farms, located in the highlands where there is 

adequate grassland for feeding (FAO, 2005). While cattle ownership is widespread in 

Peru, most cattle are not used for meat production, but for dairy (FAO, 2005). Given that 

cattle ownership is concentrated in small scale farms (FAO, 2005), it is likely that cattle 

are relied upon for household dairy subsistence, in addition to dairy production.   

Rabies research commonly uses livestock rabies cases as a proxy for vampire bat 

presence (Streicker et al., 2016; Benavides et al., 2016), due to difficulties in tracking bat 
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movements (Streicker et al., 2016; Benavides et al., 2016; Johnson et al., 2014). Given 

that livestock dead-end RABV hosts and are the preferred prey of vampire bats, they 

make suitable sentinels for monitoring RABV circulation in bat populations (Streicker & 

Allgeier, 2016; Streicker et al., 2016).  

 
 
Viral invasion and seasonal expansion  

 
Throughout rabies research, specific trends are consistently identified as drivers of 

viral invasion and seasonal expansion of bat transmitted lyssaviruses, including: 

seasonality, geographic distribution of bat hosts, anthropogenic change, and livestock 

density (Streicker et al., 2016; Streicker & Allgeier, 2016; Streicker, Lemey, Velasco-

Villa, & Rupprecht, 2012; Benavides et al., 2016; George, Webb, Farnsworth, O'Shea, 

Bowen, Smith, & Rupprecht, 2011). Vampire bats present several difficulties to efforts to 

monitor RABV in vampire bat populations, including: wide geographic distribution, 

isolated roosting sites, and flight ability (Stoner-Duncan, Streicker, & Tedeschi, 2014; 

Streicker et al., 2016; Benavides et al., 2016; Johnson et al., 2014). As a result, spatial 

modeling and mapping are often used to investigate the incidence and transmission of 

RABV to animals and humans, as well as to extricate the complexities of RABV viral 

evolution (Smith et al., 2002; Real et al., 2005; Blackwood et al., 2013; Benavides et al., 

2016; Streicker et al., 2016). Viral invasion and seasonal expansion of RABV in Peru is 

interdependent, as RABV variants invade new vampire bat populations via seasonal 

expansion of male dispersal from the host populations (Streicker et al., 2016; Blackwood, 

Streicker, Altizer, & Rohani, 2013). However, whether or not invading RABV variants 

are maintained in naïve bat populations is determined by susceptibility in the population 
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and (Streicker et al., 2016; Blackwood, Streicker, Altizer, & Rohani, 2013). Rabies 

variants are species specific, and while geographic distribution is a known factor, there is 

currently no mechanistic explanation for the variability in geographic distribution 

(Banyard et al., 2014).  

Streicker et al. (2016) and Benavides et al. (2016) have completed significant work 

on vampire bat rabies invasion and expansion trends in Peru by using livestock as 

proxies, into the avenues of identifying landscape barriers to rabies spread, evidence of 

seasonal expansion, and predicting rabies spread into new areas in Peru’s landscape. The 

research has demonstrated consistent trends of vampire bat dispersal expansion and 

rabies virus invasion into areas where rabies was historically absent (Streicker et al., 

2016; Benavides et al., 2016). These expansions and invasions across the landscape are 

increasingly considered to be waves of spread, and this wave front process has been 

observed in other infectious diseases, such as Ebola (Benavides et. al, 2016; Walsh, Biek, 

& Real, 2005). It is predicted that vampire bat rabies virus will invade Peru’s coast by 

2020 (Streicker et al., 2016). This trend of expansion identifies vampire bat rabies as an 

emerging disease requiring novel rabies control strategies (Benavides et al., 2016).  

Benavides et al. (2016) also explored elevation as a landscape barrier to rabies 

expansion in Peru and found that overall, RABV was expanding into the Andes and 

elevation levels of outbreaks were increasing. Furthermore, Benavides et al (2016) found 

wavefront spread in the landscape and concluded that the speed of waves traveling 

through valleys suggest RABV spread in vampire bats populations occupying constrained 

areas more so than expanding into new territories via flight (Benavides et al., 2016). 

Using landscape factors to investigate barriers and promoters of RABV spread across 
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landscapes has also been done in terrestrial mammal rabies research, particularly in 

raccoon rabies in the United States (Smith, Waller, Childs, & Real, 2002; Real, Russell, 

Waller, Smith, & Childs, 2005). 

Evidence has also been found suggesting that seasonality plays a large role in 

vampire bat rabies expansion in Peru, specifically relating to host male dispersal patterns 

and births followed by parent to offspring vertical RABV transmission (Streicker et al., 

2016; Benavides et al., 2016; Lord, 1992). This recent evidence is further supported by 

work confirming the effects of seasonality in raccoon rabies spread in the United States 

(Duke-Sylvester et al., 2011). In addition to seasonality, another notable element 

potentially influencing viral expansions and invasions in Peru is anthropogenic change, 

such as culling campaigns, land use, livestock density and usage, and deforestation 

(Streicker et al., 2012; Benavides et al., 2016; Schneider et al., 2009). 

 
 
Public health implications 
 
 Previous rabies control efforts in Latin America have relied heavily on culling the 

bat populations (Benavides et al., 2016; Condori-Condori et al., 2013). However, this is a 

difficult method to implement successfully, since bats are airborne movers, which can 

hamper culling logistics, and due even more so to some emerging evidence suggesting 

that culling campaigns could unintentionally promote viral dispersal (Benavides et al., 

2016; Streicker et al., 2012). While part of the elevated importance of zoonotic bat rabies 

is due to improved rabies surveillance, the ecological and anthropogenic changes must 

also be considered before simply attributing increasing cases to better disease detection 

(Condori-Condori et al., 2013; Streicker et al., 2012).  
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As a public health problem, rabies presents a significant mortality and economic 

burden within human and animal health, and has demonstrated biological persistence in 

its many viral variants across its respective reservoir species that enables potential 

spillover infections or secondary host adaptation (WHO, 2013; Real et al., 2005; Childs 

& Real, 2007). Given that livestock are dead-end hosts, there is no established livestock 

to human zoonotic transmission risk, however, there is concern that continued bat 

expansions and virus invasions across the landscape will cause an increase in both human 

and livestock rabies cases by increasing exposures due to proximity and bat population 

growth (Streicker et al., 2016, Benavides et al., 2016; Condori-Condori et al., 2013). 

Without adequate interventions, rabies expansions across Peru’s landscape will serve to 

increase Peru’s national rabies burden, exacerbate rabies risk in livestock health, and 

negatively impact agricultural contributions to the economy (Streicker et al., 2016; 

Benavides et al., 2016). 

 

Goals & Questions 
 

This research expanded upon the work of Streicker et al. (2016) and Benavides et 

al. (2016) in investigating the speed of vampire bat transmitted rabies spread across the 

landscape in Peru. The projects goals included: (i) identifying spatio-temporal clusters of 

outbreaks using national level livestock RABV incidence data (2003-2016), (ii) 

identifying the most likely outbreak origins of spatio-temporal clusters, and (iii) 

estimating the rate at which vampire bat RABV is moving across the landscape in 

identified outbreak clusters. Estimating rabies spread and identifying most likely 
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outbreak origins will aid creating more accurate predictions of future RABV invasions in 

Peru and other landscapes.  

 

Methods 
 
Data 
 

The reported livestock rabies outbreak data were assembled by infectious disease 

ecologists Daniel Streicker and Julio Benavides at the University of Glasgow, and 

originated from publicly available national records from Peru’s Servicio Nacional de 

Sanidad Agraria (SENASA). The outbreak reports (n=2992) cover national level 

suspected livestock vampire bat transmitted rabies outbreaks from 2003 to 2016 

(Benavides et al., 2016). The reports include direct fluorescent antibody results from 

brain tissue samples, when possible, which confirm or refute reports of suspected 

outbreaks. The main variables of interest were rabies sample test results, time of reported 

outbreak, and reported latitude and longitude coordinates.  

The outbreak data were separated into two subsets, one with the confirmed 

positive outbreaks, and the second with suspected outbreaks that designated all confirmed 

positive and negative outbreaks as suspected positives. The suspected subset was 

included due to questions as to the veracity of the confirmed laboratory results. As stated, 

the SENASA outbreaks brain tissue samples were tested using the direct fluorescent 

antibody test for rabies, which is the standard testing procedure (Brown et al., 2016). 

Many samples have to be shipped from rural areas of Peru to laboratory facilities, which 

allows for sample degradation and thus increases the likelihood of false negative results 

(Duong et al., 2016). The criteria for including outbreaks in either subset included: 
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necessary geographic information, time of the outbreak, and a positive or negative direct 

fluorescent antibody test result. Reported outbreaks missing geographic information or 

giving results other than negative or positive, such as sample not tested, were dropped. 

After dropping reports that did meet the criteria for inclusion, the confirmed outbreak 

subset included 1,374 positive outbreaks and the suspected outbreak subset included 

2,364 outbreaks (Positive=1,374; Negative=990). 

 
Analysis 
 
 Spatio-temporal clusters were identified using the SatScan software and scans for 

clusters were conducted using the space-time permutation model (Kulldorff, 2003). 

SatScan input case and coordinate files were created using the rsatscan (Kleinman, 2015) 

R package. The data were scanned separately twice, at the year, and year month levels. 

Both scan levels found the same clusters, with eight total confirmed outbreak clusters and 

thirteen total suspected outbreak clusters. The subsequent analysis used the year scan 

datasets.  

The spatio-temporal clusters were analyzed with R software (R Core Team, 2016) 

to identify the most likely outbreak origin locations for each cluster. Simple linear 

regression models positioned against time were used to identify the likely outbreak 

origins and to estimate rates of spread in kilometers within each cluster. The simple linear 

regression models searched the area containing the minimum and maximum latitude and 

longitude coordinates of outbreaks. The regression criteria assumed that the most likely 

outbreak origin was located within the area of each cluster. Separate linear regressions 

were run for two time levels for both subsets: years and weeks. Each regression was run 

through 100,000 simulations using the minimum and maximum latitude and longitudes to 
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generate random coordinates and find the distance from the origins, using the “fields” 

package (Nychka, Furrer, Paige, & Sain, 2015). Time was included by finding the 

difference in time from the earliest outbreak within a cluster, successively running 

through time of each outbreak minus the previous outbreak time. The simulations 

identified the best fit r2 value to infer the most likely outbreak origin of each cluster 

(Streicker et al., 2016). The regression models were re-fit based on the best r2 value, the 

slope was used to generate the rate of RABV spread by cluster in kilometers, and each 

cluster was plotted as a no-intercept regression, using both the outbreak origin and cluster 

specific coordinates. The regression analysis most likely outbreak origins were visualized 

in descriptive maps, using ESRI ArcMap software, alongside the outbreak cluster specific 

point distributions (ESRI, 2015). The suspected outbreak clusters regression analysis at 

the weekly level generated several high rates (Table 4). The outbreak clusters with 

especially high rates were subset and re-run through SatScan individually, to determine if 

a finer cluster scale would be identified. The subset dataset of clusters was then also 

analyzed using simple linear regression to identify the most likely outbreak origins and 

the rates of spread were estimated. To check for convergence of estimates, the regression 

analyses on the weekly time scale for the confirmed and suspected cluster datasets were 

run through five trials of the 100,000 regression simulations to verify consistency in the 

most likely outbreak origin estimates. To determine if there was an association between 

the rate of spread and the number of outbreaks, a correlation analysis test was performed 

on all three datasets of clusters. 
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Results 
 

The SENASA suspected outbreak dataset of clusters from SatScan is larger, with 

a total of 734 outbreaks spread across 13 clusters, than the confirmed outbreak clusters 

dataset from SatScan, with 379 outbreaks spread across 8 clusters (Figure 1a, 1b). 

Clusters 2 and 6 in the confirmed outbreak data had the highest proportions of SENASA 

outbreaks identified as part of a cluster (Table 1).  In the suspected outbreak dataset, 

clusters 7, 8, and 9 had the highest proportion of suspected SENASA outbreaks (Table 2). 

The subset of suspected clusters (Figure 13a, 13b, 13c) output 202 outbreaks spread out 

within 21 clusters, which broke up several of the clusters found in the first suspected 

outbreak group of clusters (Figure 1b). The regression analyses at the weekly time scale 

generated the finest scale r2 and rate estimates (Table 3, 4, & 5). 

Using the t-statistic, all regression results in both the confirmed and suspected 

SENASA clusters were found to be statistically significant (alpha = p < 0.05) (Table 3 & 

4). The suspected clusters subset regressions for clusters 13a and 13b (p=0.45; p=0.46) 

were found not significant (Table 5). All other subset clusters were found to be 

statistically significant (alpha = p < 0.05) (Table 5). The convergence trials for confirmed 

outbreak and suspected outbreak SENASA subsets found consistent estimates of latitude 

and longitude for the most likely outbreak origin within 2 decimal places, indicating that 

the origin is consistently estimated by the regression analysis.  

In the confirmed outbreak dataset, cluster 4 had the highest r2 fit (r2=0.84) at the 

week scale (Table 3, Figure 6a). The estimated rate of spread for confirmed cluster 4 was 

0.33 kilometers per week, and reported with 95% confidence that repeated trials will 

generate a spread rate within 0.27-0.39 kilometers per week (Table 3). The confirmed 



14 
 

clusters 5 and 6 also had high r2 values (Table 3, Figure 8a & 8b). In the suspected 

SENASA dataset analysis, cluster 11 had the highest r2 fit (r2=0.84) (Table 4, Figure 6b) 

and in the suspected dataset subset, clusters 9a and 9c had the highest r2 values and the 

best fit (r2=0.98) (Table 5). 

The regression analysis on the confirmed outbreak clusters at the week level 

found estimated rates of spread ranging from 0.33 to 6.68 kilometers per week (17.17-

347.61 km/yr) (Table 3). The regression analysis run on suspected outbreak clusters at 

the week level estimated rates of spread spanning from 0.22-5.03 kilometers per week 

(11.54-261.52 km/yr) (Table 4). The regression analysis on the subset of the suspected 

clusters estimated rates of spread ranging from 0.08 to 3.90 kilometers per week (4.22-

202.87 km/yr) (Table 5). The Pearson’s product correlation on the confirmed clusters 

between weekly rate of spread and the number of outbreaks was not significant (p=0.66) 

and the point estimate was 0.18, suggesting a weak positive relationship. Given the small 

sample size (n=8), the point estimate is evidence of a meaningful effect. The Pearson 

product correlation found that the association between weekly rate of spread and the 

number of outbreaks was not statistically significant, with a point estimate of 0.45, 

suggesting a meaningful effect and a moderate positive relationship. The Pearson product 

correlation on the subset of the original suspected clusters found that the association 

between weekly rate of spread and the number of outbreaks was not statistically different 

from 0 (p=0.97) and the point estimate of -0.009 found a weak negative relationship.   

The confirmed outbreak clusters 2, 3, and 8 all displayed unique point 

distributions and most likely origins (Figure 2b, Figure 3a, & Figure 5b). Confirmed 

cluster 2 displayed a consistent spread across the cluster area, like a wave, (r2=0.74).    
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(Figure 2b). Confirmed cluster 3 displayed a distinct east-west band, likely originating 

from the south (Figure 3a). Confirmed cluster 8 visualized a north-south band wave, 

likely originating in middle of the cluster area (Figure 5b). The suspected outbreak 

clusters 4, 5, 6, 8, 9, and 12 also visualize unique point patterns (Figure 7b, 8a, 8b, 10a, & 

11b). Suspected cluster 8 displayed consistent RABV within the cluster area and cluster 4 

visualized three near distinct spots within the cluster area (Figure 7b & 9b). Suspected 

cluster 4 is further broken into five subset clusters, which could indicate multiple waves 

present within the cluster 4 area (Figure 7b & 13b). Suspected cluster 5 shows two large 

concentration regions of outbreaks, with the most likely origin from the weekly 

regression analysis indicating west to east spread in a wave (r2=0.70) (Figure 8a, Table 

4).  

The suspected cluster weekly regression scale analysis found r2 values at or above 

0.80 for clusters 6, 7, 11, and 13, which indicates reasonably good r2 fits for the no-

intercept regression lines (Table 5). The suspected clusters 6, 7, and 8 outbreak 

distributions and the most likely origins suggested potentially endemic RABV areas 

(Figure 8b, 9a, & 9b). Suspected cluster 9 also potentially suggested RABV is endemic, 

considering the distinct and dense line patterns and the three-year cluster interval, 

indicating RABV has remained in the bat populations (Figure 10a). The suspected cluster 

13 distribution pointed to a north to NE spread pattern (Figure 12a). 

 

Discussion 

 Several spatio-temporal clusters were identified across the landscape and study 

period (2003-2016), with minimum estimated rates of spread of 17.17 (or 11.54)  
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kilometers per year (0.33-6.68 km/wk; 0.22-5.03 km/wk) and indicated the presence of 

consistent RABV waves of spread across the Peruvian landscape within the 14 year study 

period (Table 3, 4, & 5). This conclusion is supported by the recent findings of Benavides 

et al. (2016), which found wavefront RABV spread in areas of Peru within a smaller time 

period. No statistically significant associations were found in cluster datasets between 

rates of spread and number of outbreaks, however meaningful effects of point estimates 

were observed. All three outbreak cluster datasets demonstrated moderate to high range 

in the best r2 and the subsequent rate estimates. Despite the difference in total clusters 

between datasets, the ranges of spread per week are very similar. All of the confirmed 

and suspected outbreaks regression models were found to be statistically significant, 

however, as the regression models were plotted with no-intercept, positive slopes are 

more likely to occur as the regression line is forced through the origin.  

The study’s main strength was using fourteen years of national scale georeferenced 

outbreak data with sample results. The SENASA data is a considerably robust dataset by 

rabies research standards, especially when the rabies variant in question is transmitted by 

the very complex vampire bat host-reservoir. There was moderate to high variability in 

the cluster regression analyses r2 values, with several values of medium fit (Table 3, 4, & 

5). The variability indicates that the linear regression criteria is a potential limitation to 

the analysis. The regression model criteria assumed that the most likely outbreak origin 

occurred within the area of the identified outbreak cluster, which limited the bounds of 

the results. Additionally, in the cases of larger clusters, the variability in the r2 fits could 

be attributed to the presence of multiple wave patterns of RABV spread, which could be 

masked by the SatScan cluster grouping. The variability could also be indicating a bias in 
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cluster grouping via potential correlation between time and the most likely outbreak 

origins. The variability illustrates a need for further analysis to draw definitive 

conclusions.  

 An important second limitation was the uncertainty associated with the rabies 

tissue sample test results due to questionable test conditions that may have promoted 

false positive results in the direct florescent antibody test. However, this was at least in 

part addressed by the inclusion of a suspected dataset that treated all confirmed positive 

and negative results as positive outbreaks. While the suspected group analysis results 

must be considered conservatively, it does provide plausible enough data for finding 

RABV wavefront spread patterns across the landscape, given that all outbreaks, 

regardless of testing results were reported as potential disease cases. Outbreak reporting 

is the final main limitation, as the surveillance data collected by SENASA is prompted by 

reports of livestock disease, and Peru is known to have under-reporting of rabies (WHO, 

2013). This is likely especially true in rural areas where most livestock cases are found, 

because ownership is associated with farms (WHO, 2013).  

Building on this work, further analysis should assess bias in clustering via testing for 

correlating relationships between rates and geographic information and time period. 

Convex hull polygons could be created to visualize the outbreak points and enable area 

calculations for running correlation analysis. Follow-up investigation should pursue 

landscape factors, such as livestock density and elevation, to determine if there is an 

association between the landscape factors and the estimated rates of spread in the 

identified spatio-temporal clusters.  
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This research, in conjunction with the suggested further analysis could aid in 

implementing RABV control measures in Peru to prevent both livestock and spillover 

human infections. A great deal of past efforts and funding have attempted to control 

vampire bat transmitted RABV in Peru, and throughout Latin America, using culling 

campaigns when high incidence of RABV prompted response (Benavides et al., 2016; 

Condori-Condori et al., 2013; Stoner-Duncan et al., 2014). Culling campaigns are 

increasingly considered not effective enough for adequate control of RABV spread, 

however the literature presents alternatives such as vampire bat vaccination campaigns 

and promoting research into non-lethal and sustainable methods of bat population control 

(Almeida, Martorelli, Aires, Barros, & Massad, 2008; Stoner-Duncan et al., 2014). 

Regardless of the future methods employed in vampire bat transmitted RABV control, 

this research can provide targeted spatial identification and forecasting for the 

implementation of control measures. The identified spatio-temporal clusters, wavefront 

spread, and estimated rates of spread per week could be used to apply preventative 

vaccinations, in livestock, humans, or bats, in areas determined at risk to an approaching 

wavefront. The research could also potentially be used to hypothesize vampire bat 

roosting sites. Lastly, targeted research could use the identified spatio-temporal clusters 

to sample livestock at farms within the cluster area, to investigate area prevalence in 

relation to reported incidence cases.   
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Tables & Figures 
 
 

 
 
 
 
 

 
 
 
 
 
 

Table	1.	Proportions	of	confirmed	outbreaks	found	by	cluster
Cluster Confirmed	%	(N=	1,374)

1 1.6
2 4.4
3 1.0
4 6.7
5 4.1
6 3.8
7 1.9
8 4.1

Table	2.	Proportions	of	suspected	outbreaks	found	by	cluster
Cluster Suspected	%	(N=	2,364)

1 1.5
2 3.9
3 0.4
4 2.2
5 0.5
6 2.0
7 4.3
8 6.0
9 4.6
10 1.2
11 1.6
12 1.9
13 1.0
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Cluster 
Number

Outbreaks 
(N=)

Start 
Time

End 
Time

R2
Weekly rate 

(km/wk) *C.I. (95%) Annual rate 
(km/yr)

p-value

7 22 2003 2004 0.66 0.54 (0.36-0.71) 27.90 <.001
1 60 2003 2005 0.70 6.68 (5.56-7.81) 347.61 <.001
6 14 2005 2006 0.80 1.64 (1.14-2.13) 85.16 <.001
3 92 2006 2008 0.66 0.66 (0.56-0.75) 34.10 <.001
2 57 2009 2011 0.58 0.49 (0.38-0.60) 25.48 <.001
5 52 2013 2014 0.80 1.25 (1.07-1.43) 64.99 <.001
4 26 2014 2014 0.84 0.33 (0.27-0.39) 17.17 <.001
8 56 2015 2016 0.72 2.37 (1.97-2.78) 123.47 <.001

*95% confidence interval calculated for the weekly rates

Table 3. Confirmed outbreak clusters regression analysis (weekly time scale)

 
 
 
 
Table 4. Suspected outbreak clusters regression analysis (weekly time scale)

Cluster 
number

Outbreaks 
(N=)

Start 
Time

End 
Time R2 Weekly rate 

(km/wk)
*C.I. (95%)

Annual rate 
(km/yr)

p-value

5 36 2003 2004 0.70 0.65 (0.50-0.79) 33.76 <.001
2 92 2003 2006 0.74 5.03 (4.41-5.65) 261.52 <.001

11 9 2004 2004 0.84 0.29 (0.19-0.40) 15.34 <.001
12 52 2004 2006 0.67 4.77 (3.83-5.71) 248.03 <.001
13 13 2004 2005 0.83 2.91 (2.09-3.74) 151.43 <.001
8 47 2007 2008 0.68 0.63 (0.50-0.75) 32.63 <.001
1 101 2009 2011 0.60 0.39 (0.33-0.45) 20.34 <.001
9 141 2012 2015 0.70 3.69 (3.29-4.10) 192.10 <.001
4 109 2013 2014 0.77 2.91 (2.61-3.21) 151.24 <.001
6 29 2014 2014 0.83 0.29 (0.24-0.34) 15.15 <.001
7 38 2015 2016 0.82 0.31 (0.27-0.36) 16.32 <.001
3 44 2016 2016 0.60 0.22 (0.17-0.28) 11.54 <.001

10 23 2016 2016 0.72 1.84 (1.33-2.35) 95.93 <.001
*95% confidence interval calculated for the weekly rates
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Table 5. Suspected outbreak clusters subset regression analysis (weekly time scale)

Cluster 
number

Outbreaks 
(N=)

Start 
Time

End 
Time

R2
Weekly 

rate 
(km/wk)

*C.I. (95%)
Annual 

rate 
(km/yr)

p-value

2c 13 2003 2003 0.58 0.39 (0.18-0.60) 20.36 <.001
2d 11 2004 2004 0.58 0.40 (0.18-0.62) 20.68 <.001
12e 7 2004 2004 0.46 2.64 (-0.23-5.51) 137.25 <.05
12c 7 2004 2004 0.51 3.08 (0.07-6.09) 160.07 <.05
13a 3 2004 2004 0.35 0.22 (-0.68-1.11) 11.27 0.45
2b 6 2004 2004 0.92 0.23 (0.15-0.30) 11.73 <.05
2a 21 2005 2006 0.65 3.12 (2.04-4.21) 162.50 <.001
12a 5 2005 2005 0.83 1.16 (0.44-1.88) 60.29 <.05
13b 2 2005 2005 1.00 0.80 (0.80-0.80) 41.81 0.46
12b 11 2006 2006 0.73 1.54 (0.89-2.19) 80.03 <.001
12d 4 2006 2006 0.77 0.78 (0.0-1.56) 40.43 <.05
9c 9 2012 2012 0.98 0.10 (0.09-0.11) 5.36 <.05
4e 5 2013 2013 0.88 0.27 (0.13-0.41) 14.06 <0.05
4a 27 2013 2013 0.82 3.90 (3.16-4.65) 202.87 <.001
4d 8 2013 2013 0.94 0.16 (0.12-0.20) 8.40 <.001
9d 5 2013 2013 0.97 0.15 (0.12-0.19) 7.95 **
4b 7 2014 2014 0.50 0.40 (0.0-0.81) 21.01 <.05
4c 9 2014 2014 0.83 0.56 (0.35-0.76) 28.96 <.001
9a 13 2014 2014 0.98 0.08 (0.07-0.09) 4.22 <.001
9b 26 2015 2015 0.53 1.13 (0.69-1.57) 58.84 <.001

*95% confidence interval calculated for the weekly rates
**T-statistic did not calculate
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Figure 1. Outbreak cluster distributions in Peru 

Figure 1(a) Figure 1 (b)
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Figure 2. Confirmed outbreak clusters 1 and 2 linear regression analysis identified outbreak origins

Figure 2 (a)

Figure 2 (b)
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Figure 3. Confirmed outbreak clusters 3 & 4, linear regression analysis identified outbreak origins

Figure 3 (a)

Figure 3 (b)
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Figure 4. Confirmed outbreak clusters 5 & 6, linear regression analysis identified outbreak clusters 

Figure 4 (a)

Figure 4 (b)
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Figure 5. Confirmed outbreak clusters 7 & 8, linear regression  analysis identified outbreak origins

Figure 5 (a) 

Figure 5 (b)
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Figure 6. Suspected outbreak clusters 1 & 2, linear regression analysis identified outbreak origins    

Figure 6 (a)

Figure 6 (b)
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Figure 7. Suspect outbreak clusters 3 & 4, linear regression analysis identified outbreak origins 

Figure 7 (a)

Figure 7 (b)
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Figure 8. Suspected outbreak clusters 5 & 6, linear regression analysis outbreak origins 

Figure 8 (a)

Figure 8 (b)
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Figure 9. Suspected outbreak clusters 7 & 8, linear regression analysis outbreak origins 

Figure 9 (a)

Figure 9 (b)
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Figure 10. Suspected outbreak clusters 9 & 10, linear regression analysis outbreak origins

Figure 10 (a)

Figure 10 (b)
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Figure 11. Suspected outbreak clusters 11 & 12, linear regression analysis outbreak origins

Figure 11 (a)

Figure 11 (b)
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Figure 12. Suspected outbreak cluster 13, linear regression analysis outbreak origins
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Figure 13. Subset of smaller suspected clusters 2, 4, 9, 10, 12, & 13

Figure 13 (a)

Figure 13 (b) Figure 13 (c)
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Figure 14. Cluster outbreaks by weeks and stance from most likely outbreak origins 
(a)

(b) (c)


