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Abstract

Mathematical Models and Numerical Methods for Wavefront Reconstruction
By Qing Chu

Obtaining high resolution images of space objects from ground based tele-
scopes is challenging, and often requires computational post processing meth-
ods to remove blur caused by atmospheric turbulence. In order for an image
deblurring (deconvolution) algorithm to be effective, it is important to have
a good approximation of the blurring operator. In space imaging, the blur-
ring operator is defined in terms of the wavefront of light, and how it is
distorted as it propagates through the atmosphere.

In this thesis we consider new mathematical models and algorithms to re-
construct the wavefront, which requires solving a large scale ill-posed inverse
problem. We show that by exploiting and fusing information from multiple
measurements, we are able to obtain better reconstructed wavefronts than
existing methods. In addition, to fulfill the large scale requirement for as-
tronomical uses, we present results of a parallel implementation utilizing the
Trilinos project, a mathematical software library for solving problems from
many academic and research fields.

Moreover, we study an symmetric successive over-relaxation (SSOR) pre-
conditioner for this image reconstruction problem. Numerical results for
different image reconstruction systems under variety of seeing conditions in-
dicate good behavior of the SSOR preconditioner with respect to iteration
numbers and computational time.
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Chapter 1

Introduction

This thesis mainly focuses on developing efficient approaches to restore im-

ages for astronomical uses. Various fields demand sharp visual observations,

such as biomedical imaging, astronomical imaging and many others; see for

example [21,51,56]. However, it is common that images are subject to loss of

information due to image degradations. Image degradation is no small prob-

lem, and often requires an image restoration [48,75] technique to recover the

original object. The presence of noise makes image restoration particularly

difficult, and numerical methods are needed to compute efficient and reliable

solutions. This chapter covers some mathematical topics of imaging prob-

lems, including mathematical models, ill-posedness and solution techniques.

Many image processing problems eventually require solving large scale ill-

posed inverse problems [23]. Specifically, digital image processing techniques

allow computers to assemble the collected data (e.g., electromagnetic energy)

from a device into images that can be viewed by researchers. The assembling

process is typically an inverse process: that is the image is reconstructed from

indirect measurements of the corresponding object. Ill-posedness arises from

the non-smoothing nature of the inverse process, which brings difficulties to

computing a clear reconstruction in practice. Thus, numerical methods are

developed to treat the ill-posedness, and efficiently and accurately solve this

type of inverse problem.
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1.1 Mathematical Model

Many restoration methods focus on modeling the blur and noise during the

image formation process, and apply inversion algorithms to find an approx-

imation of the original scene. Among the many excellent restoration tech-

niques [1, 5], deconvolution requires solving an ill-posed inverse problem

g(x, y) =

∫
R2

k(x− ξ, y − η)f(ξ, η)dξdη + e(x, y) , (1.1)

where f is the true object, g is the observed image, and e is additive noise.

The kernel function k models the blurring operation, and is called the point

spread function (PSF). By writing the kernel in the convolution form of k(x−
ξ, y−η), we automatically assume the blur is spatially invariant (the blurring

kernel is independent of positions). A more general PSF, which includes the

spatially variant case, would have the form k(x, y; ξ, η).

1.1.1 Linear Least Squares Formulation

In many cases, the deconvolution model can be expressed as a linear system.

The digital image deblurring problem is obtained from Equation (1.1) by

discretizing the functions and approximating integration with a quadrature

rule:

g = Kftrue + e . (1.2)

If the images are assumed to have m × n pixels, then K ∈ Rmn×mn and g,

ftrue, e ∈ Rmn. The matrix K is typically very ill-conditioned; more severe

blurring usually corresponds with a more ill-conditioned K. In the case of

spatially invariant blur with k(x−ξ, y−η), K can involve (depending on the

imposed boundary conditions) circulant, Toeplitz, and Hankel structures [42].

For deconvolution, the matrixK is estimated based on experiments and ob-

servations, and often is not precisely known. This limits the quality of recon-

structed images. One approach to improve the quality of the reconstructed



3

image is to collect more data, and solve a multi-frame image deconvolution

problem. Specifically, several observations of the object are collected, result-

ing in multiple blurred image frames

gi = Ki ftrue + ei , i = 1, 2, . . . , n
F

where n
F

is the number of observed image frames. In this case, we can, for

example, compute a reconstructed image by solving the overdetermined least

squares problem

min
f

∥∥∥∥∥∥∥∥

g1

...

gn
F

−

K1

...

Kn
F

f
∥∥∥∥∥∥∥∥

2

2

. (1.3)

One problem with using this ordinary least squares (OLS) model to restore

images is that we assume that each blurring kernel (and hence each matrix

Ki) is estimated with equal accuracy. In some cases, it might be more ap-

propriate to use a weighted least squares (WLS) approach [33], to reconstruct

the image ftrue. The idea is to assign larger weights, ωi, to observation frames

with better PSF estimates. Thus, in the case of spatially invariant blurs, the

WLS solution can be written as

min
f

∥∥∥∥∥∥∥∥


ω1g1

...

ωn
F
gn

F

−


ω1K1

...

ωn
F
Kn

F

f
∥∥∥∥∥∥∥∥

2

2

. (1.4)

1.1.2 Ill-Posedness and Regularization of Inverse Prob-

lems

French mathematician Jacques Hadamard introduced the basic concept of

a well-posed problem in [37]. According to this definition, for a well-posed

problem, the solution should be unique and exist for arbitrary data. More
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specifically, a well-posed problem requires that its solution continuously de-

pends on the data. This claim implies that if small perturbations of the data

produce arbitrarily large changes in the solution, then the solution is not

really a solution in the physical sense.

An ill-posed problem violates the requirements of well-posedness: solutions

may not exist for all data; they may not be unique; and they may be un-

stable with respect to data perturbations. In a realistic situation, the data

is never exact due to machine accuracy, noise and other possible aberrations

during the measuring and recording process. Thus, the last requirement of

well-posedness is particularly important. In practice, the coefficient matrix

of a discrete linear system may be nonsingular, and thus in theory the linear

system has a unique solution. However, the ill-posedness is reflected in the

ill-conditioning of the coefficient matrix, and can be very sensitive to pertur-

bations in the data. That is even if the solution of the ill-conditioned system

exists and is unique, it often has very little physical resemblance to the so-

lution corresponding to the noise free data. This can be seen by using the

singular value decomposition (SVD) to analyze the discrete inverse solution

of Equation (1.2).

If K ∈ Rmn×mn, the SVD of K is

K = UΣV T ,

where U and V are mn ×mn orthogonal matrices, and Σ is an mn ×mn
diagonal matrix with singular values σ1 ≥ σ2 ≥ . . . ≥ σmn ≥ 0 on its main

diagonal. Suppose K is nonsingular, then the inverse solution takes the form

f = K−1g =
mn∑
i=1

uTi g

σi
vi =

mn∑
i=1

uTi gtrue

σi
vi +

mn∑
i=1

uTi e

σi
vi ,

where ui and vi are left and right singular vectors of K, and gtrue represents

the perfectly measured data without errors. From the above formulation, the

inverse solution is composed of two terms: the exact solution of the object
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∑mn
i=1

uTi gtrue

σi
vi and the error

∑mn
i=1

uTi e

σi
vi. The following properties, which

typically hold for discrete ill-posed problems [42], help to study the error

term and approximate the exact solution.

• The singular values of the coefficient matrix decay to zero without a

clear gap to indicate numerical rank. This property results in a large

condition number of the system making it ill-conditioned.

• The singular vectors corresponding to smaller singular values are highly

oscillatory, representing high-frequency information.

• The spectral components |uTi g| of the noisy image decay faster than

singular values of the coefficient matrix. This requirement to the data,

or the noisy image, is called the discrete Picard condition [38].

The first two properties suggest that the general inverse solution K−1g is

dominated by high-frequency components of the error term, which is mag-

nified by division of small singular values. The last property states that by

reconstructing the components corresponding to large singular values and

filtering out the components corresponding to small singular values, a good

approximated solution can be obtained.

Two popular types of methods are used to treat ill-posedness by addi-

tional information. One imposes a smoothness constraint to stabilize the

inversion process, and is referred to as regularization. Examples include

Tikhonov regularization (see [59, 71]) and regularizing conjugate gradient

iteration (see [2, 18]); many other approaches are described in, for exam-

ple, [38]. The other approach uses statistical properties as the additional

information, and is called Bayesian methods. The rest of this subsection will

go over Tikhonov regularization and some related aspects that will be used

throughout this thesis.
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Tikhonov regularization can be formulated in several ways. In the sense of

SVD filtering, the computed solution can be written as

ffilt =
mn∑
i=1

φi
uTi g

σi
vi ,

where ffilt is the filtered solution, ui, vi, g and σi are as previously defined,

and φi is used to denote the filter coefficient.

In filtering methods, the solution ffilt is a weighted sum of the right singular

vectors vi. For its coefficients, uTi g/σi are the coefficients in a simple SVD

solution as stated previously, and the filter factors φi are introduced to damp

the highly oscillatory components corresponding to smaller singular values.

We notice that the filter factors play important roles in filtering methods

because they control the degree of filtering. That is for large singular values,

let φi ≈ 1 to keep most information contained in the corresponding singular

vectors; while for small singular values, let φi ≈ 0 to filter out the noise. To

be more specific, for Tikhonov regularization, φi are defined for each singular

component as

φi =
σ2
i

σ2
i + α2

,

where α > 0 is defined as the regularization parameter, and thus φi ∈ (0, 1),

for all i.

An equivalent minimization formulation of Tikhonov regularization is as

follows:

min
f

{
‖g −Kf ‖2

2 + α2‖f ‖2
2

}
= min

f

∥∥∥∥∥
[
g

0

]
−

[
K

αI

]
f

∥∥∥∥∥
2

2

, (1.5)

and in the case of the multi-frame deconvolution corresponding to Equa-
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tion (1.3), the regularized version is

min
f

∥∥∥∥∥∥∥∥∥∥∥


g1

...

gn
F

0

−

K1

...

Kn
F

αI

f
∥∥∥∥∥∥∥∥∥∥∥

2

2

. (1.6)

As we discussed previously, regularization methods are motivated by adding

an additional smoothness constraint to the original minimization minf ‖g −
Kf‖2

2 to avoid the unrealistically large norm of the näıve inverse solution

f = K−1g. By adding the additional penalty term α2‖f‖2
2, we ensure that

both the norm of the residual and the norm of the solution are somewhat

small. To summarize, the regularization parameter α controls the weighting

between the two ingredients:

• The square norm of the residual ‖g − Kf‖2
2 measures how well f

predicts the given noisy data g. Therefore, if this term is too large,

then f cannot be considered as a good solution. On the other hand,

if this term is too small, then the solution f will be dominated by the

error term.

• The square norm of the solution ‖f‖2
2 measures the regularity of the so-

lution. By SVD analysis, the small singular values correspond to high-

frequency components in singular vectors. Therefore, by controlling

the norm of f , hopefully we can suppress the large noise components.

• α determines the balance between the two terms. The larger the reg-

ularization parameter α is, the more regularity we introduce to the

solution f , and the smaller α corresponds to more weight on fitting the

noisy data term.

It is crucial to choose an appropriate regularization parameter α to balance

the two terms. Unfortunately, there is no universal method suitable for every
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single case; sometimes experimentation may be needed. However, there are

methods that can be used to guide our computation. We list three ways

to compute regularization parameters. In the case of Tikhonov regulariza-

tion, we denote the norm of the residual with filtering coefficients φi and

regularization parameter α as

α = ‖g −Kftik‖2
2 =

mn∑
i=1

(
(1− φi)uTi g

)2

=
mn∑
i=1

(
( α2

σ2
i+α2 )uTi g

)2

. (1.7)

• The discrepancy principle is seeking to choose a regularized solution

ftik such that

‖g −Kftik‖2 = τδ

where τ > 1, and δ is a good estimate of the error in the observation

g. For Tikhonov regularization, the residual norm by Equation (1.7),

varies monotonically with respect to α, so there is a unique regular-

ized solution satisfying the above criterion. Note that as δ → 0, or in

other words, as the norm of the residual approaches 0, the regularized

solution goes to the exact solution. Thus the major advantage of the

discrepancy principle is its theoretical simplicity. One disadvantage of

this method is the dependence on the prior δ. The computed regular-

ization parameter is very sensitive to the accuracy of this estimate. In

practice, under-smoothing (too small α) occurs in the case of too small

an estimate of δ.

• The L-curve is a graphical tool to directly illustrate the balance be-

tween the size of the regularized solution and its fit to the given data

when the regularization parameter varies. It is actually a log-log plot of

the norm of a regularized solution versus the norm of the corresponding

residual which contains two different parts: one part is quite flat where

the regularized solution norm dominates; the other part is more vertical

where the residual norm dominates. The log-log scale emphasizes the
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different characteristics of the two parts. Intuitively, the corner of the

L-curve corresponds to the optimal regularization parameter. An oper-

ational definition of the corner which involves computing the curvature

of the L-curve can be found in [41]. Figure 1.1 provides an example

of L-curve generated by software package Regularization Tools [40].

Although L-curve is often a good practical tool, it has theoretical dis-
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Figure 1.1: An example of the L-curve. The data is generated from the shaw

problem in Regularization Tools. The regularized solution is obtained by

Tikhonov regularization.

advantages compared to the discrepancy principle. In particular, the

approximated solution fails to converge to the true solution as the di-

mension of the system goes to infinity, or as the error norm goes to

zero [27,74].

• Generalized cross validation (GCV) is different from the previous
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two methods. It is aimed to find the regularization parameter which

predicts the exact data as well as possible. GCV does not require a

priori information. Instead, GCV determines the regularization pa-

rameter α that minimizes the GCV function. In the case of Tikhonov

regularization, the GCV functional is given by

G(α) =
‖g −Kftik‖2

2

(trace(Imn −KK†tik))2
,

where K†tik = (KTK + α2I)−1KT is the pseudoinverse of the matrix[
K

αI

]
in regularized system (1.5), mapping the given data g to the

regularized solution ftik = K†tikg. For the denominator, the trace of a

matrix is the sum of its main diagonal entries, and is invariant under

orthogonal transformation. Thus, by SVD of K = UΣV T , and a

diagonal matrix Φ with filtering coefficients φi on its main diagonal,

we have

trace(Imn −KK†tik) = trace(Imn −UΣV TV ΦΣ−1UT )

= trace(U(Imn −Φ)UT )

= trace(Imn −Φ)

= mn−
mn∑
i=1

φi .

In this case, the expression of the GCV functional becomes

G(α) =

∑mn
i=1

(
α2uTi g

σ2
i+α2

)2

(∑mn
i=1

α2

σ2
i+α2

)2 .

The approximated solution of GCV method may also fail to converge

as the error norm goes to zero [27].
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1.1.3 Solution Techniques

Due to the large scale of the regularized system, iterative methods are often

needed to solve the regularized systems (1.5) or (1.6). Many iterative algo-

rithms, including steepest descent and the conjugate gradient (CG) method

(e.g., the CGLS [18] and LSQR [58] implementation), can be applied. It is

also worth mentioning that many iterative methods can also be directly used

to solve the unregularized least squares problem as iterative regularization

when the iteration index is treated as the regularization parameter. This is

because these types of iterative methods have “semi-convergence” behavior,

for which the early iterations reconstruct components of the solution corre-

sponding to large singular values, while components corresponding to small

singular values are reconstructed at later iterations. Thus the quality of the

reconstruction is improved at early iterations and then degrades at later iter-

ations. Furthermore, another hybrid type of method has been developed to

overcome the drawback of iterative regularization in finding an appropriate

stopping criteria. This type of method incorporates a regularization method

within the iterations; see [39] for more details.

Special techniques can sometimes be applied to solve Tikhonov regulariza-

tion problems. For example, in image deconvolution, if the blurring operation

is spatially invariant, and we impose periodic boundary conditions to model

the image scene outside the field of view, then K is a block circulant matrix

with circulant blocks. In this case, instead of SVD, we factorize K by the

spectral decomposition which has the form

K = F∗ΛF

where F is the 2-dimensional unitary discrete Fourier transform matrix, F∗ =

F−1, and Λ is a diagonal matrix containing the eigenvalues of K. In this

case, the solution to the Tikhonov regularized least squares problem can be
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written as

f = F∗
(
|Λ|2 + α2I

)−1
Λ̄Fg ,

where |Λ|2 is a diagonal matrix whose diagonal elements are the square mod-

ulus of those in Λ, and Λ̄ is the complex conjugate of Λ. Matrix-vector mul-

tiplications with F and F∗ can be done very efficiently using, respectively,

forward and inverse 2-dimensional fast Fourier transforms (FFT). In addi-

tion, the diagonal entries of Λ can be computed efficiently by computing an

FFT of the PSF; for further details, see [75]. In the case of spatially invari-

ant blurs with periodic boundary conditions, the solution of the multi-frame

problem can be written as

f = F∗
( n

F∑
i=1

|Λi|2 + α2I

)−1( n
F∑

i=1

Λ̄iFgi

)
.

Furthermore, if we consider the weighted least squares formulation, then

f = F∗
( n

F∑
i=1

ωi|Λi|2 + α2I

)−1( n
F∑

i=1

ωiΛ̄iFgi

)
. (1.8)

1.2 Outline of the Work

The contributions of this work have been to model and efficiently solve an

inverse problem that estimates the PSF, which includes a parallel implemen-

tation and investigation of preconditioning techniques.

In the rest of this thesis, we will particularly focus on a restoration problem

arising from astronomical imaging. Chapter 2 will provide some background

information and mathematical models with an algorithm efficiently solving

this problem. Chapter 3 will focus on the parallel implementation of the es-

sential part of the algorithm, and preconditioning techniques are investigated

in Chapter 4. Described in Chapter 5, a forward simulation implementation

is provided to generate the testing data. Finally, some remarks and conclu-

sions are provided in Chapter 6.
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Chapter 2

Image Restoration in

Astronomy

Ground based astronomy practice has a long history which could be traced

back to prehistory. Ever since Galileo used his refractor telescope to ob-

serve the sky, telescopes became one of the most important tools for humans

to understand the universe. Today, ground based telescopes are still very

important tools in astronomy.

However, for many years, the resolution available to optical astronomers is

limited by the properties of the atmosphere, such as absorption, dispersion

and turbulence [43]. Note that since the dispersion of the air over the visible

and infrared spectral bands, which is the working wavelength of ground based

telescopes today, is very small, astronomers seek to remove distortions in

recorded images caused by atmospheric turbulence.

2.1 The Effect of Atmospheric Turbulence

Atmospheric turbulence is caused by temperature distortions in the atmo-

sphere, and consequently introduces the refraction index [6]. When the opti-

cal wavefronts from light reflected off a space object pass through the atmo-

sphere, the original planar wavefronts are perturbed by the refractive index
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variations. When reaching the telescope, the oscillatory wavefronts become

non-planar. As a result, the images of space objects obtained by telescopes

on the ground are degraded along the optical path through the atmosphere.

A very simple example of atmospheric turbulence is sparkling stars on a clear

night. Figure 2.1 illustrates the speckle pattern of an essentially point-like

star.

Figure 2.1: A point-like star is recorded in a speckle patten.

According to [63], the refraction fluctuation resulting from temperature dif-

ferences within telescopes and along the path can be significantly reduced by

carefully measuring the temperature and choosing an appropriate observa-

tion time, such as at night (during the day, the sun heats the instruments).

The major source of the image degradation comes from turbulence due to

the velocity gradients at the interface between air layers at different altitudes

and the wind velocity which drives the layer movement. Therefore, the qual-

ity of images may vary under different seeing conditions. Typically, a sharp

image is obtained during a clear night, and with the object directly above the

telescope; conversely, a blurry image is more likely to be captured during the

day, or when the object is close to the horizon. Figure 2.2 gives an example

of image quality under different seeing conditions.

In a realistic imaging situation, the incoming wavefront will be distorted
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Figure 2.2: Illustration of the atmospheric blur. From left to right: the

true object, a satellite, a simulation of the blurry image under good seeing

conditions, and a simulation of the blurry image under poor seeing conditions.

by atmospheric turbulence. The severity of blurring caused by atmospheric

turbulence depends on many factors, including weather, temperature, wave-

length, and the diameter of the telescope. As we have pointed out, viewing

objects directly above the telescope site on a clear night will have signifi-

cantly better seeing conditions than looking during daylight hours at objects

close to the horizon. Astronomers often quantify seeing conditions in terms

of the ratio d/r0, where d is the diameter of the telescope and r0 is called the

Fried parameter, which is related to the wavelength, and provides a statis-

tical description of the level of atmospheric turbulence at a particular site.

It is not essential to understand the precise definitions and characteristics

of the Fried parameter, except that the variance of wavefront turbulence is

proportional to (d/r0)5/3 [73]. That is,

• Good seeing conditions correspond to “small” d/r0, such as d/r0 . 10.

• Poor seeing conditions correspond to “large” d/r0, such as as d/r0 & 20.
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2.2 Mathematical Model

Although the blurring caused by the turbulence can be partially removed

through sophisticated (and expensive) imaging devices, such as adaptive

optics telescopes, computational post-processing techniques are also often

needed to further improve the resolution of the image. As we have already

illustrated that deconvolution can be used to address the loss of information

problem due to image degradation. We use the deconvolution model as in

Equation (1.1), and the corresponding discretization as linear least squares

as shown in Equation (1.2).

2.2.1 The Blurring Kernel Model

The blurring operation for deconvolution problems is assumed to be known

a priori. In order for deconvolution to produce a good approximation of the

object, more study about refractive index, which is closely related to the

blurring operation, or the PSF, should be done. Note that as referred to in

the previous subsection, the refractive index variations that interfere with the

propagation of light leads to atmospheric turbulence. As a result, wavefronts

are non-planar at the telescope. Then by the Fourier optics model [35] of the

atmospheric turbulence, the PSF k depends on the wavefront of incoming

light at the telescope’s mirror; if the wavefront function is known, then k is

known. More specifically, k(x, y; ξ, η) = k(x− ξ, y − η), with

k(s, t) =
∣∣F−1

{
P (s, t)ei(1−ω(s,t))

}∣∣2 =
∣∣F−1

{
P (s, t)eiφ(s,t)

}∣∣2 , (2.1)

where ω(s, t) is a function that models the shape of the wavefront of incoming

light at the telescope, i =
√
−1, P (s, t) is a characteristic function that

models the shape of the telescope aperture (that is P (s, t) is 1 inside the

pupil and 0 outside, e.g., a circle or an annulus), F−1 is the 2-dimensional

inverse Fourier transform, and φ(s, t) = 1 − ω(s, t) is the phase error, or



17

the deviation from planarity of the wavefront ω. Then we can compute the

PSF and consequently by deconvolution approach, the true object f can be

computed.

Figure 2.3 shows examples of wavefront phases and kernels corresponding

to the blurred images in Figure 2.2 for both good (d/r0 = 5) and poor

(d/r0 = 45) seeing conditions. Note that one should interpret the wavefront

“images” as color encoded contour plots. That is, these are not actually

color images, but we display using a false color map so that it is easier to see

how they fluctuate. The color bars show that the severity of the fluctuation,

or deviation from planarity, is more significant in the case of poor seeing

conditions.

2.2.2 Diffraction Limited Imaging Model

Another factor in ground based imaging that should be taken into account

is the diffraction. Due to the limited size of the instrument, diffraction oc-

curs and influences the imaging process. That is, ideally, the best image

one can get is the diffraction limited image, which contains only diffraction

from telescopes without any distortion or noise. When evaluating quality of

reconstructed images, it is, perhaps, more appropriate to compare computed

results to the diffraction limited image, and not to the true object.

In this subsection, we describe diffraction limited imaging. Here, Figure 2.4

shows the diffraction effect on images. In the ideal situation, where the

atmosphere causes no distortion of the incoming wavefront, ω(s, t) = 1 and

φ(s, t) = 0. In this diffraction limited case,

k0(s, t) =
∣∣F−1 {P (s, t)}

∣∣2
where P (s, t) is the pupil aperture function. Note that if P (s, t) = 1 for all

s and t, then k0(s, t) is a Dirac delta function, and (except for noise) there

is no distortion in the observed image g. However, in a realistic situation,
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Figure 2.3: Examples of good and poor seeing conditions. Each row shows

a color contour of a simulated wavefront incident at the telescope, and the

corresponding blurring kernel. The top row illustrates good seeing conditions,

with d/r0 = 5, and the bottom row illustrates poor seeing conditions with

d/r0 = 45.
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Figure 2.4: Examples of diffraction limited images. The top row shows the

true object along with the diffraction limited observations with, respectively,

a circular and an annulus pupil aperture. The diffraction limited images are

not as sharp as the true image. The bottom row displays the pupil apertures

used for this example.
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P (s, t) = 1 in at most a finite region (e.g., within a circle or annulus defined

by the telescope aperture), and thus it is impossible to obtain a perfect image.

The best result we can hope to obtain is the noise free, diffraction limited

image

f0(x, y) =

∫
R2

k0(x− ξ, y − η)f(ξ, η) .

2.2.3 Wavefront Reconstruction

By discretization and integration approximation, the matrix K of the lin-

ear least squares problem can be generated from Equation (2.1) provided φ,

the wavefront, is known. In Chapter 1 we observed that if the matrix K is

known, then very good results can be computed using fairly simple image

deblurring algorithms [72,75]. For a good estimate of K, we need the wave-

front φ. In practice, we can only access its gradients, which are measured

using a wavefront sensor (WFS) in the telescope. A WFS is standard tech-

nology in adaptive optics systems, and many papers have been written about

efficiently reconstructing the wavefront from the gradient measurements; see,

for example [7,47,60]. That is, in addition to observing images, the telescope

collects the additional data[
φx

φy

]
=

[
WDx

WDy

]
φ+ ε , (2.2)

where φx and φy are discrete, noisy (ε is used to denote noise) measurements

of the horizontal and vertical derivatives of φ; Dx and Dy are discrete, hor-

izontal and vertical derivative operators. The precise structure of Dx and

Dy depends on the sensor geometry [28,47] but they essentially model finite

difference approximations. W is a diagonal matrix containing ones and ze-

ros; one for locations that fall within the pupil aperture, and zero otherwise.

Several approaches have been proposed to efficiently solve Equation (2.2),

including [31,62]. For the computational experiments reported in this work,
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we use the approach described in [8], which solves the least-squares minimiza-

tion problem making use of Kronecker products and the generalized singular

value decomposition.

A difficulty with using Equation (2.2) is that the gradient measurements

are given on a relatively coarse grid compared to the observed image data.

More specifically:

• Generally, to satisfy the Nyquist sampling theorem [57], the ratio of

pupil aperture size to number of pixels on the charge-coupled device

(CCD) array is 0.5. That is, if the CCD array that collects image data

contains 256 × 256 pixels, then the diameter of the pupil aperture is

128 pixels.

• Gradient measurements are taken from a sensor on the mirror, so its

grid is only on the pupil aperture region.

• Gradient measurements that are taken use 3 × 3 pixels. Thus, for a

256×256 CCD array, assuming a circular aperture with diameter equal

to 128 pixels, we obtain at best gradient approximations on a 30× 30

grid.

Figure 2.5 provides an illustration, where the small x marks denote pixels in

the CCD array, and the small circles denote locations at which the gradient

approximations are measured by the WFS.

Interpolation of the gradient data to a fine grid can be used to reconstruct

the wavefront and corresponding PSFs. Although this approach may work

well when the seeing conditions are good, the accuracy of the resulting wave-

front and PSF may not allow for quality restorations.
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Figure 2.5: Example of a wavefront sensor. The large circle indicates the

pupil aperture regions, the small x marks denote pixels in the CCD array,

and the small circles denote locations at which the gradient approximations

are measured by the WFS.

2.3 Frozen Flow Hypothesis and the Linear

Formulation

From [53], in order to obtain a good wavefront estimate from its low resolution

gradient measurements, we introduce the frozen flow hypothesis (FFH). FFH

assumes that

• The entire spatial pattern of a random turbulent field is transported

along with the wind velocity.

• Turbulent eddies do not change significantly as they are carried across

the telescope by the wind.

• Typical velocities within the turbulence are small compared with the

overall fluid (wind) velocity.

By FFH, multi-frame wavefronts or their gradients are included to construct

the turbulence on a finer grid. That is, for a short period of time, the

wavefronts, and the corresponding gradients, are assumed frozen. Then the
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overlap regions of the adjacent frames contribute additional information for

the reconstruction. Next, we provide more details about how FFH will be

applied in our model.

2.3.1 Frozen Flow Hypothesis

FFH assumes that atmospheric turbulence can be modeled by a series of

independent static layers, each moving across the telescope aperture with

the prevailing wind at the altitude of that particular layer. Because of its

simplicity, FFH is frequently used as the basis for numerical studies of ground

telescope imaging problems, particularly in the modeling of adaptive optics

(AO) systems [11]. Although FFH is observed not to hold in the real world

over long time scales, a number of studies have shown that it is a reasonable

approximation for short but still interesting periods [29,61,70].

To use FFH to reconstruct wavefront gradients, several frames of data are

collected over a short time interval; each gives gradient measurements at a

different set of grid points. This is illustrated in Figure 2.6 for two different

velocity profiles. For ease of presentation, we consider only one layer; clearly

multiple, overlapping layers will provide even more grid points in regions

where the various layers overlap each other. Note that the composite grid

resolution depends on the velocity profile; in the example shown in the top

part of Figure 2.6, the velocity (direction and magnitude) remains constant

from frame to frame, and the magnitude of the velocity is relatively small. A

more extreme situation is illustrated in the bottom part of Figure 2.6, where

there is a nonlinear change in the velocity from frame to frame.

2.3.2 Linear Model of the Wavefront Motion

Through appropriate coordinates, we could represent the movement of the

wavefront and the gradients by shifting their images. Suppose φx(x, y) and
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

︸ ︷︷ ︸

Composite Grid

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

︸ ︷︷ ︸

Composite Grid

Figure 2.6: Illustrations of building a composite, high resolution grid using

gradient grid points from several frames. The first two rows illustrate a

situation when the velocity remains constant from frame to frame. The

bottom two rows illustrate a situation when the velocity changes nonlinearly

from frame to frame.
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φy(x, y) are functions describing the shape of the gradient fields, and Φx and

Φy are arrays of discrete samples of φx(x, y) and φy(x, y); that is,

Φx(i, j) = Dxφ(xi, yj) = φx(xi, yj) , i = 1, 2, . . . , n, j = 1, 2, . . . , n,

Φy(i, j) = Dyφ(xi, yj) = φy(xi, yj) , i = 1, 2, . . . , n, j = 1, 2, . . . , n,

where Dx and Dy are discrete derivative operators as defined in [8]. Dx and

Dy take the form:

Dx = F ⊗H, Dy = H ⊗ F,

where ⊗ denotes Kronecker product, and H and F are (n − 1) × n taking

the form

H =


1 −1

0 1 −1
. . . . . .

1 −1

 , F =
1

2


1 1

1 1
. . . . . .

1 1

 .

Using FFH, we can assume changes in the gradients, from frame to frame,

are modeled as a rigid movement of φx(x, y) or φy(x, y). Rigid motion of

coordinates in a plane can be described through a 3×3 affine transformation.

So if we let Φ
(m)
x and Φ

(m)
y be the discretization of φx(x, y) and φy(x, y) after

a rigid movement, then

Φ(m)
x (i, j) = φx(x̂i, ŷj)

Φ(m)
y (i, j) = φy(x̂i, ŷj) ,

where


x̂i

ŷj

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



xi

yj

1

 ,

(2.3)

where m denotes the frame index.

In practice the function φx and φy are not known at every point (x, y) (all

that is known are the discrete values Φx and Φy), so it may not be possible
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to evaluate φx(x̂i, ŷj) or φy(x̂i, ŷj), unless x̂i = xî and ŷj = yĵ for integers î

and ĵ, 1 ≤ î ≤ n and 1 ≤ ĵ ≤ n. However, approximations of φx(x̂i, ŷj) and

φy(x̂i, ŷj) can be computed by interpolating known values of φx and φy near

φx(x̂i, ŷj) and φy(x̂i, ŷj). Suppose, as illustrated in Figure 2.7, that φx(xî, yĵ),

φx(xî+1, yĵ), φx(xî, yĵ+1) and φx(xî+1, yĵ+1) are four known pixel values sur-

rounding the unknown value φx(x̂i, ŷj). Bilinear interpolation uses a weighted

average of the four pixels surrounding φx(x̂i, ŷj) for the approximation. The

same idea can be used to compute φy(x̂i, ŷj). Assuming, without loss of gen-

erality that the distance between pixel centers is one, then the weights for

bilinear interpolation are given as

Φ(m)
x (i, j) = φx(x̂i, ŷj)

≈ (1−∆xi)(1−∆yj)φx(xî, yĵ) + (1−∆xi)∆yjφx(xî, yĵ+1)

+ ∆xi(1−∆yj)φx(xî+1, yĵ) + ∆xi∆yjφx(xî+1, yĵ+1),

where ∆xi = x̂i − xî and ∆yj = ŷj − yĵ. This also holds for the Φ
(m)
y (i, j).

φx(xî, yĵ)

φx(xî, yĵ+1)

φx(xî+1, yĵ)

φx(xî+1, yĵ+1)

φx(x̂i, ŷj)

Figure 2.7: Illustration of bilinear interpolation, where a weighted average of

the four known discrete values is used to approximate φx(x̂i, ŷj).

In order to define a matrix-vector multiplication to represent the inter-

polation above, we need to vectorize φx = vec(Φx), φy = vec(Φy) and

φ
(m)
x = vec(Φ

(m)
x ), φ

(m)
y = vec(Φ

(m)
y ) from the discrete data arrays (e.g.,
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through lexicographical ordering), and thus we can write

φ(m)
x = Amφx, φ(m)

y = Amφy ,

where Am is a sparse matrix that contains the interpolation weights. Specif-

ically, the k-th row of Am contains the weights for the pixel in the k-th entry

of φ
(m)
x or φ

(m)
y . That is, in the case of bilinear interpolation, there are at

most four nonzero entries per row, given by

(1−∆xi)(1−∆yj), (1−∆xi)∆yj, ∆xi(1−∆yj), ∆xi∆yj .

For the consideration of data storage and computational cost for practical

problems, we emphasize that by using a sparse data format (e.g., compressed

row [26]) to represent Am, we need only keep track of the nonzero entries

and their locations in the matrixAm. Moreover, this discussion assumes that

the affine transformation used in Equation (2.3) is known from wind velocity

information.

As explained in section 2.2.3, we cannot measure the wavefront directly,

but instead we observe gradients on a low resolution grid. The mathematical

formulation of this process is given by:

φ(m)
x = RWAmDxφ and φ(m)

y = RWAmDyφ,

where W is an indicator matrix that grabs a specified section of φx and φy,

and R is a sparse downsampling (or restriction) matrix that transforms high

resolution data to a lower resolution. More specifically,

• W is a full row rank, under-determined matrix with zeros and ones.

For example, suppose

φ =


φ1 φ4 φ7

φ2 φ5 φ8

φ3 φ6 φ9

 , φ = vec(φ)
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and

W =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


then

vec

([
φ4 φ7

φ5 φ8

])
= Wφ.

• For R, suppose φ ∈ Rn×n is an array of data on a high resolution,

n × n grid, and that we want to downsample this to an m × m grid,

where s = n/m is an integer. Then

R = (R1 ⊗R1)/(s2) ,

where R1 = Im⊗1T
s , Im is an m×m identity matrix, and 1T

s is vector

of length s containing all ones. Note that R is under-determined, but

has full row rank.

Assuming that we obtain m frames of data, we have[
φ

(1:m)
x

φ
(1:m)
y

]
=

[
(I ⊗RW )ADx

(I ⊗RW )ADy

]
φ

where R,W ,Dx,Dy were previously described, ⊗ denotes Kronecker prod-

uct, I is an m×m identity matrix, and

φ(1:m)
x =


φ

(1)
x

φ
(2)
x

...

φ
(m)
x

 , φ(1:m)
y =


φ

(1)
y

φ
(2)
y

...

φ
(m)
y

 , A =


A1

A2

...

Am

 .
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In this model, φ represents a large, global wavefront, but at the time each

frame of data is collected, the telescope detects only a small subregion of

information, which is modeled by the matrix W .

Note that it is impossible to reconstruct the whole global wavefront φ be-

cause we cannot collect enough gradient data to cover the whole wavefront

region. However, we can construct a composite of the collected information

on a high resolution grid by two steps: first, solve an underdetermined least

squares problem for the composite horizontal and vertical gradient measure-

ments: [
φcomposite
x

φcomposite
y

]
= arg min

φx,φy

∥∥∥∥∥
[
φ

(1:m)
x

φ
(1:m)
y

]
−

[
(I ⊗RW )Aφx

(I ⊗RW )Aφy

]∥∥∥∥∥
2

2

(2.4)

and compute gradient measurements on finer grids for each frame by[
φ̂

(1:m)
x

φ̂
(1:m)
y

]
=

[
(I ⊗W )Aφcomposite

x

(I ⊗W )Aφcomposite
y

]
;

next, use the computed gradients to solve an underdetermined least squares

problem for each frame

φ(i) = arg min
φ

∥∥∥∥∥
[
φ̂

(i)
x

φ̂
(i)
y

]
−

[
Dx

Dy

]
φ

∥∥∥∥∥
2

2

, i = 1, 2, . . . ,m . (2.5)

We remark that both (2.4) and (2.5) are underdetermined, and can be

sensitive to noise in the measured data. We use Tikhonov regularization [36,

72] to obtain the reconstructed images.

2.3.3 Wavefront Motion in the Multi-Layered Assump-

tion

The previous subsection focused on the single layer wavefront problem. Con-

sidering a more realistic model, the atmosphere above the telescope can be
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split into several dominant layers, which move with different velocities [30].

For the multi-layered model, in [22], we assume that the composite high res-

olution wavefront at the telescope is the sum of the high resolution wavefront

at each altitude. Then we have

φ =
L∑
j=1

cjφj (2.6)

where L is the number of turbulent layers, φ is the wavefront at the telescope,

φj is the wavefront of the jth layer, and cj is a constant such that
∑L

j=1 cj = 1

and specifies relative dominance in the contribution of each layer to the total

turbulent field. For example, if it is assumed that all layers contribute equally

to the total wavefront hitting the telescope, then c1 = c2 = · · · = cL. On the

other hand, if it is assumed that the kth layer is the dominant layer of the

atmospheric turbulence, then ck � cj, j = 1, . . . , k − 1, k + 1, . . . , L. In our

experiments, we always assume c1 = c2 = . . . = cL.

Similar to the single layer turbulent model, in the multi-layered case, we

model this problem as

[
φ

(1:m)
x

φ
(1:m)
y

]
=

[
(I ⊗RW )A1Dx · · · (I ⊗RW )ALDx

(I ⊗RW )A1Dy · · · (I ⊗RW )ALDy

]
φ1

...

φL


where R,W ,Dx,Dy were previously described, ⊗ denotes Kronecker prod-

uct, I is an m × m identity matrix, φj and Aj, j = 1, . . . , L, denotes the

wavefront and the matrix that defines the motion of the atmosphere for layer

j, and

Aj =


A1,j

A2,j

...

Am,j

 , j = 1, 2, . . . , L.

Note Ai,j is the motion matrix for the ith frame of the jth layer.
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We need to reconstruct the wavefront for each frame. This can be done by

two steps. First, solve[
φcomposite
x,(1:L)

φcomposite
y,(1:L)

]
= argmin
φx,(1:L),φy,(1:L)

∥∥∥∥∥
[
φ

(1:m)
x

φ
(1:m)
y

]
−

[
(I ⊗RW )A1φx,1 · · · (I ⊗RW )ALφx,L

(I ⊗RW )A1φy,1 · · · (I ⊗RW )ALφy,L

]∥∥∥∥∥
(2.7)

and compute[
φ̂

(1:m)
x

φ̂
(1:m)
y

]
=

[
(I ⊗W )A1φ

composite
x,1 · · · (I ⊗W )ALφ

composite
x,L

(I ⊗W )A1φ
composite
y,1 · · · (I ⊗W )ALφ

composite
y,L

]
,

where φx,j, φy,j, j = 1, . . . , L, are composite gradients of the jth layer, φ
(1:m)
x ,

φ
(1:m)
y , φ̂

(1:m)
x , φ̂

(1:m)
y , I, R and W are defined as before, and

φx,(1:L) =


φx,1

φx,2
...

φx,L

 , φy,(1:L) =


φy,1

φy,2
...

φy,L

 ,

Next, solve

φ(i) = arg min
φ

∥∥∥∥∥
[
φ̂

(i)
x

φ̂
(i)
y

]
−

[
Dx

Dy

]
φ

∥∥∥∥∥
2

2

, i = 1, . . . ,m. (2.8)

Again, (2.7) and (2.8) are underdetermined.

2.4 Numerical Results

2.4.1 Parameter Settings

In this section, using MATLAB, we present results from some numerical

experiments using a realistic model of atmospheric turbulence. Specifically,

assume that the diameter of the telescope is 3.7 m, the light wavelength is
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0.744×10−6 m, the propagation distance is 25 km, there are three dominant

layers moving in different directions, and we assume that 50 frames of data are

collected. Gaussian white noise (1%) was added to the measured gradients,

as well as to the blurred images. We report on results using these basic

parameters, modifying only the turbulence strength.

Table 2.1: Wind velocities in pixel/frame of different turbulent layers.

layer location (km) x-velocity y-velocity

1 0 0.1730 0

2 11 0 0.9686

3 15 0.3669 0.3669

There are three regularized systems to be solved for reconstructing the

images: first, we need to compute gradients on a finer grid (2.7); next, we

construct wavefronts for each frame (2.8); and finally, to restore the image,

we compute an FFT-based WLS solution using Equation (1.8). To choose

weights for our experiments, since we know the true PSFs, we compute the

relative errors of PSFs obtained from the reconstructed wavefronts, and use

the reciprocals of the errors as the weights. We realize that this scheme for

choosing weights is not possible for a realistic problem, but a very similar

approach based on the sampling of the overlapping frames could be used in

practice; frames with better sampling have larger weights, while frames with

poor sampling have smaller weights.

For each system, we need to assign regularization parameters, and since

(2.7) and (2.8) are solved iteratively using LSQR, we need to choose a stop-

ping tolerance for these. Specifically, in the first least squares problem we

used Tikhonov regularization with a regularization parameter 1e-3 and LSQR
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Figure 2.8: Some images needed for comparison. From left to right are the

true object, the diffraction limited image and the pupil mask.

to solve, with a stopping tolerance (relative residual) of 1e-3. In the second

least squares problem, we again used 1e-3 as a regularization parameter and

LSQR to solve, with a stopping tolerance (relative residual) of 1e-6. In the

final multi-frame deconvolution problem, we used Tikhonov regularization

and FFT-based spectral decompositions in GCV to choose the regulariza-

tion parameter.

The size of the least squares system for the FFH reconstruction depends on

the image size and wind velocity (which determines the size of the composite

gradients), as well as the downsampling factor. In our experiments, the image

size of each frame is 256×256, and using the wind velocity listed in Table 2.1,

the grid for the composite gradients is 304×304. The downsampling factor is

4, resulting in a low resolution grid that is 64× 64. Therefore, the size of the

least squares problem in (2.7) is 204, 800×277, 248. The true image, the pupil

mask and the corresponding the diffraction limited image are illustrated in

Figure 2.8

2.4.2 Experiment 1: Good Seeing Conditions

In this first test, we simulate motion of the wavefront using the velocity

profile listed in Table 2.1 with d/r0 = 5. In this case, the seeing conditions

are good, and so we expect a smooth wavefront, and an observed image with
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very little blurring. This is illustrated in Figure 2.10 and 2.13.

In order to restore the image, we need to compute the composite horizontal

and vertical gradient measurements on a finer grid by solving the least squares

problem (2.7), and then reconstruct the approximate wavefront phase by

solving the least squares problem (2.8). The reconstructed high resolution

gradients, wavefront and PSF are shown in Figure 2.9 and Figure 2.10.

We also use a näıve approach, which simply interpolates the gradients to

a finer grid. To obtain a quantitative measure of the effectiveness of our

FFH approach, we compare the reconstructed PSFs with the true PSFs;

Figure 2.11 shows a plot of the relative errors of the reconstructed PSFs for

each of the 50 frames. The FFH approach produces much better approxima-

tions of the PSFs than the näıve approach. The more accurate PSFs result in

a slightly better reconstructed image, which are displayed in Figure 2.13; to

better evaluate the reconstruction, Figure 2.13 provides the diffraction lim-

ited and the blurred images for comparison. Because the seeing conditions

are very good in this example, the näıve approach does quite well, and there

is only a slight improvement with our FFH approach.

The numerical results we show in Figure 2.11 and the middle reconstruc-

tions in Figure 2.13 are based on the true wind profile, with which the affine

transformations in (2.3) are generated. In order to consider more realistic

situations, we perturb the wind velocities for different layers. Figure 2.12

and the bottom row in Figure 2.13 show the relative errors of the computed

PSFs and reconstructed images with noisy wind velocities under the good

seeing conditions, and noises for different layers have different angles and

speeds. Note that Figure 2.12 implies that with 1% noise wind profile, the

relative errors of the PSFs are even smaller than with the true wind profile.

This phenomenon may result from the noisy measured gradients. Since both

the measured data and the wind profile are noisy, they may be balanced out.

On the other hand, with 5% noise, the relative errors are worse than that
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Figure 2.9: The measured and the reconstructed gradients on coarse and fine

grids respectively (d/r0 = 5). The top row shows the measured gradients,

the reconstructed composite gradients of the 1st layers and the reconstructed

gradients of the 1st frame along the horizontal direction. The bottom row

shows the measured gradients, the reconstructed composite gradients of the

1st layer and the reconstructed gradients of the 1st frame along the vertical

direction.
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and the corresponding blurring kernel. The bottom row shows the recon-

structed wavefront and the corresponding blurring kernel.
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Figure 2.11: Plot of the relative errors

of the reconstructed PSFs for each

frame using two different approaches,

the FFH and näıve approach, when

d/r0 = 5.
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Figure 2.12: Plot of the relative er-

rors of the reconstructed PSFs, with

0%, 1% and 5% noise in wind profile

respectively, by FFH approach when

d/r0 = 5.

with the true wind velocity. However, the reconstructed images in both noisy

cases look almost the same as that with true wind velocity.

2.4.3 Experiment 2: Poor Seeing Conditions

In this example, we simulate motion of the wavefront for the case d/r0 =

20. In this case, the seeing conditions are poor, and so we expect to see

more severe oscillations in the wavefront, and much more blurring in the

observed image as compared with the previous example. This is illustrated

in Figure 2.15 and 2.18.

Again, we compared our FFH approach with the näıve scheme of interpolat-

ing the low resolution gradients to the higher resolution grid by investigating

the quality of the reconstructed PSFs for each approach.

Figures 2.16 shows the relative errors of the reconstructed PSFs, and Fig-

ure 2.18 displays the reconstructed images obtained by the two approaches
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Figure 2.13: Comparison of reconstructed images (d/r0 = 5). Form left to

right, the top row shows the diffraction limited image and the first frame

blurred image; the middle row shows the reconstructions by FFH model

(relative error = 0.1238) and by näıve approach (relative error = 0.1110); the

bottom row shows the reconstructions by FFH model with 1% noise wind

profile (relative error = 0.1532), and with 5% noise wind profile (relative

error = 0.1181).
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compared to the diffraction limited image and the blurred image. In this

case, there is a clear advantage to using the more accurate PSFs from our

FFH approach to reconstruct the image.
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Figure 2.14: The measured and the reconstructed gradients on coarse and fine

grids respectively (d/r0 = 20). The top row shows the measured gradients,

the reconstructed composite gradients of the 1st layers and the reconstructed

gradients of the 1st frame along the horizontal direction. The bottom row

shows the measured gradients, the reconstructed composite gradients of the

1st layer and the reconstructed gradients of the 1st frame along the vertical

direction.

Again, Figure 2.17 and the bottom row in 2.18 show the results with noisy

wind profile. Clearly, with the noisy wind profile, the relative errors of the

PSFs are worse. However with 1% noise, the relative errors are smaller

than using the näıve approach with the true wind velocity. Comparing the

reconstructed images, using FFH with 1% noise in the wind profile, we even

obtain an image with better contrast.
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Figure 2.15: The true and the reconstructed phase and PSF of the 1st frame

(d/r0 = 20). The top row shows the true wavefront incident at the tele-

scope and the corresponding blurring kernel. The bottom row shows the

reconstructed wavefront and the corresponding blurring kernel.
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Figure 2.16: Plot of the relative errors

of the reconstructed PSFs for each

frame using two different approaches,

the FFH and näıve approach, when

d/r0 = 20.
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Figure 2.17: Plot of the relative er-

rors of the reconstructed PSFs for dif-

ferent perturbed wind profiles, adding

0%, 1% and 5% noise respectively, by

FFH approach when d/r0 = 20.

2.4.4 Experiment 3: Extremely Poor Seeing Condi-

tions

In this final example, we simulate motion of the wavefront for an extreme case

d/r0 = 45. In this case, the wavefront is highly oscillatory and the observed

images are severely blurred. This is illustrated in Figure 2.20 and 2.23. Fig-

ure 2.21 shows the relative errors of the reconstructed PSFs, using our FFH

approach and the näıve approach, and the middle row in Figure 2.23 shows

the reconstructed image. As can be seen from this example, it is essential

to obtain accurate estimates of the PSFs when attempting to reconstruct

extremely blurred images. In particular, if we attempt to use gradients mea-

sured by a telescope’s wavefront sensor to reconstruct a single image frame,

the highly oscillatory nature of the wavefront does not provide enough infor-

mation to expect to get an accurate estimate of the high resolution gradients

(and, hence, the corresponding wavefront phase and PSF) by simply inter-
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Figure 2.18: Comparison of reconstructed images (d/r0 = 20). Form left to

right, the top row shows the diffraction limited image and the first frame

blurred image; the middle row shows the reconstructions by FFH model

(relative error = 0.2134) and by näıve approach (relative error = 0.3761); the

bottom row shows the reconstructions by FFH model with 1% noise wind

profile (relative error = 0.1826), and with 5% noise wind profile (relative

error = 0.5259).
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polating the low resolution measurements to a high resolution grid. It is

essential to obtain additional information about the gradients on the high

resolution grid, such as we have proposed in this work with the FFH model

of the wavefront.

 

 

−2

0

2

 

 

−1.5

−1

−0.5

0

0.5

1

 

 

−5

−4

−3

−2

−1

0

1

2

3

 

 

−2

0

2

 

 

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

−4

−3

−2

−1

0

1

2

3

Figure 2.19: The measured and the reconstructed gradients on coarse and fine

grids respectively (d/r0 = 45). The top row shows the measured gradients,

the reconstructed composite gradients of the 1st layers and the reconstructed

gradients of the 1st frame along the horizontal direction. The bottom row

shows the measured gradients, the reconstructed composite gradients of the

1st layer and the reconstructed gradients of the 1st frame along the vertical

direction.

Figure 2.22 illustrates the relative errors of the computed PSFs. Note that

the relative errors using multiple FFH model with 1% noise in the wind

profile is much smaller than that using the näıve with the true wind profile.

The corresponding reconstructed image is also improved in Figure 2.23.
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Figure 2.20: The true and the reconstructed phase and PSF of the 1st frame

(d/r0 = 45). The top row shows the true wavefront incident at the tele-

scope and the corresponding blurring kernel. The bottom row shows the

reconstructed wavefront and the corresponding blurring kernel.
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Figure 2.21: Plot of the relative errors

of the reconstructed PSFs for each

frame using two different approaches,

the FFH and näıve approach, when

d/r0 = 45.
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Figure 2.22: Plot of the relative er-

rors of the reconstructed PSFs for dif-

ferent perturbed wind profiles, adding

0%, 1% and 5% noise respectively, by

FFH approach when d/r0 = 45.

2.5 Conclusions

The least squares problem (2.8) and the multi-frame deconvolution problem

are well understood, and there are many approaches to solve these problems.

The new contribution of this work is the FFH gradient reconstruction, which

requires solving the least squares problem (2.7). The structure and spar-

sity of this problem depends on the wind velocity. For example, if the wind

velocity results in uniform shifts that are an integer multiple of the (high

resolution) pixel size, then there may be some structure (e.g., Toeplitz) that

can be exploited when solving this least squares problem. However, for re-

alistic problems, the wind velocity may result in nonuniform shifts, and the

shifts are not likely to be integer multiples of the pixel size. Thus, there is

no obvious general approach that exploits structure when solving this least

squares problem.

However, we do exploit sparsity. In particular, in the experiments reported
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Figure 2.23: Comparison of reconstructed images (d/r0 = 45). Form left to

right, the top row shows the diffraction limited image and the first frame

blurred image; the middle row shows the reconstructions by FFH model

(relative error = 0.6052) and by näıve approach (relative error = 0.7304); the

bottom row shows the reconstructions by FFH model with 1% noise wind

profile (relative error = 0.6391), and with 5% noise wind profile (relative

error = 1.1915).
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in this work, the number of non-zeroes in the 204, 800 × 277, 248 coefficient

matrix in Equation (2.7) is 2,616,204, or approximately 13 unknowns per row.

The number of LSQR iterations needed to solve Equation (2.7) and (2.8) for

each of the examples discussed in this section is reported in Table 2.2.

Table 2.2: This table displays the number of LSQR iterations needed to

compute x− and y-gradients, as well as the average number of iterations

needed for the wavefront reconstruction of each frame.

d
r0

φx φy φ (FFH) φ (näıve)

5 169 174 666 47

20 153 163 663 47

45 154 156 665 48

Note that since the affine transformation depends on the wind velocities, the

wind information is crucial for image reconstruction. Our results show that

the multiple layer FFH model still improves the image reconstruction even

with the inexact wind profile. Especially under the good and not extreme

poor seeing conditions, with 5% or less noise, we still could deblur the images.

Even under the extreme poor seeing conditions, with 1% noise, we improve

the original observed images.
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Chapter 3

Parallel Implementation

3.1 Motivation

One important feature of astronomical imaging problems is their large scale.

The images themselves can be extremely large partly because large image

collectors are built to compensate for the lack of brightness of distant and

small space objects; for example, digitized photographic plates at the Space

Telescope Science Institute can generate 14,000 by 14,000 16-bit pixel im-

ages. Moreover, imaging techniques like deconvolution often involve multiple

frames of images: that is, commonly, hundreds or even thousands of frames

are included to reconstruct the object. Many software packages have been

developed to solve large scale problems: some of them focus on utilizing reg-

ularization, such as Regularization Tools [40] and RestoreTools [55]; some

of them implement parallel computing, for example, ScaLAPACK [19] and

PETSc [4].

In particular, parallel computing is an efficient and feasible way to solve

large scale problems. Among a number of parallel software packages devel-

oped to solve large scale problems, many utilize iterative methods because

of the simplicities and conveniences of iterative implementation. The one we

will focus on in parallel is Trilinos described in the next section.
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3.2 Overview of Trilinos

The Trilinos project [68, 46, 49] has been developed to assist scalable solver

design and provide a good robust solver for application problems in C++.

One characteristic of Trilinos is its two level design where package is the

fundamental building block which contains the minimal dependencies within

itself. Just as the meaning of Trilinos in Greek, “a string of pearls”, each

individual package is a gem on its own, but when combined, their contribu-

tions to the numerical software libraries is worth even more. Since roughly

each package can be treated as an individual mathematical library and can

be distributed separately, in the next few subsections, we focus on only some

of the packages in Trilinos, including Epetra, EpetraExt, Belos and Teuchos.

3.2.1 Epetra

Epetra, along with Tpetra and Jpetra, is one implementation of the Petra

Object Model. Specifically, Petra class provides a foundation for the devel-

opment of all Trilinos solvers. It defines and executes the data structure

of matrices, vectors and graphs for abstract interfaces in parallel implemen-

tation. Specifically, parallel data redistribution requires the identification of

data packets. In Epetra, to facilitate the redistribution and provide a generic

analysis capability, an element global ID (GID) is associated with each packet

of a distributed object according to a map object (i.e., ElementSpace Ob-

ject). Four map objects are defined for a distributed object (e.g., a matrix

or a graph) [45]:

• RowMap lists the GIDs that will be managed on each processor. Typ-

ically the processor owns part or all of the data associated with the rows

indicated in RowMap.

• ColMap is the same as RowMap except that it deals with columns.
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• DomainMap lists the distribution of GIDs associated with vectors

in the domain of the matrix; in other words it defines the layout of

the domain object (i.e., vector x in y = Ax). These GIDs must be

uniquely associated with a processor.

• RangeMap is the same as DomainMap, except that it deals with the

range space (i.e., vector y in y = Ax).

For example, if a matrix is m× n with a linear distribution on p processors,

each processor owns m/p rows of the matrix which are indicated in a one-

to-one RowMap object. The same matrix can also be distributed according

to a two dimensional partition where each processor owns m/p rows and n/p

columns. Note in the latter case, in general neither RowMap nor ColMap is

one-to-one. On the other hand, DomainMap and RangeMap must be one-

to-one.

In addition, we use two Epetra classes to define sparse matrices and dense

vectors for our problem:

• Epetra CrsMatrix is for constructing and using real-valued double-

precision sparse compressed row matrices. The data distribution of

Epetra CrsMatrix is described by all four map attributes listed above.

• Epetra MultiVector is for constructing and using real-valued double-

precision dense multi-vectors, vectors and matrices in parallel. The

dimensions and distribution of the dense multi-vectors are determined

by map attributes and the number of vectors.

In summary, data redistribution is simple with map objects, which enables

users to concentrate on algorithms design.
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3.2.2 EpetraExt

As a compensation of Epetra, EpetraExt supplies a series of extensions to

further assist linear algebra operations. With Epetra focusing on its primary

functionality, EpetraExt supports transformations, coloring, partitioning and

I/O. To reuse the data generated and collected from other resources, what we

are interested in EpetraExt is I/O support. Currently, in EpetraExt, several

data structure conversions are provided, including

• MATLABtriplet format for writing and reading RowMatrix and

Operator objects in Epetra.

• Matrix Market format for writing and reading BlockMap, Map,

MultiVector, Vector, RowMatrix and Operator objects in Epetra.

• HDF5 format for writing and reading of BlockMap, Map, MultiVec-

tor, Vector, RowMatrix and Operator objects in Epetra.

• XML-compatible writer and reader for writing and reading Epetra

objects in XML files.

The ones we use for the imaging problem are the first two: MATLABtriplet

format conversion and Matrix Market format conversion.

3.2.3 Belos

As other Trilinos packages, Belos is named by a Greek term meaning “arrow”.

Belos [10], written using “generic” programming techniques, is the next gen-

eration of iterative solvers. By using TSF (a collection of abstract classes

that provides an interface to perform solver operations), Belos package has

no explicit dependence, and can be used with any linear algebra library that

implements TSF abstract interfaces.
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Belos contains a collection of different iterative methods for solving large

sparse linear systems and least squares problems. Belos prefers algorithms

that solve higher level problems since the library separates the algorithm from

the implementations of the underlying linear algebra objects. Specifically,

Belos contains a collection of standard Krylov methods such as CG, GMRES

and Bi-CGSTAB, and their flexible and block variants.

In order to implement iterative methods effectively and efficiently, several

classes are created to complete solvers. Typically an abstract solver manager

class is needed to detail the functionality for each particular solver; an iterator

class is utilized to specify iterations; and an abstract status test class is used

to test convergence to stop iterating. In our project, we apply the LSQR

solver in Belos to solve the large scale sparse least squares system.

3.2.4 Teuchos

As more and more work has been integrated in Trilinos as packages, Trilinos

provides Teuchos, which is aimed to facilitate collection of the common tools,

to leverage across all packages created by different developers. The goal of

Teuchos is robustness and portability making dependency on Teuchos not a

practical liability. Therefore, Teuchos classes are not required to be adopted

by other packages, and only very few packages have essential dependence on

it. There are several important functionalities provided by Teuchos classes

we need:

• RefCountPtr is a reference-counted pointer for managing dynamically

allocated memory that is safe under multiple inheritance [9].

• ParameterList is a parameter that can be used to tune how a package

is used, or can provide information back to the user from a package.
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• Traits provides detailed information about supported generic data

types. Teuchos provides three types of traits: ScalarTraits, Ordinal-

Traits and PacketTraits.

• Timers defines uniform interface to wall-clock timers.

3.3 Detailed Implementation and Results

For the parallel implementation, we mainly focus on the system to reconstruct

high resolution gradients by FFH as shown in Equation (2.7). The major

task is to efficiently construct the motion matrix and define a corresponding

matrix-vector multiplication for the iterative solver. Specifically, we create

an Epetra CrsMatrix pointer for each layer motion matrix
[
(I ⊗RW )Aj

]
.

All pointers are pushed into a vector for later use. When implementing the

matrix-vector multiplication for the LSQR iterative solver, we split the Epe-

tra MultiVector object into pieces for each layer motion matrix, and after

multiplication, we reassemble vector pieces back to one vector. These oper-

ations utilize two functions defined in the Trilinos Teko package: one2many

and many2one. Those two functions redistribute an Epetra MultiVector ob-

ject through Epetra map objects. For the low resolution gradient data (the

left hand side in Equation (2.7)), we read data generated from MATLABin

Matrix Market format, and use the Epetra MultiVector objects to represent

dense vectors.

This parallel implementation is run on a machine with 64 GB of RAM

and 16 cores (eight Dual-Core AMD Opteron(tm) Processor 8220 CPUs).

We illustrate the performance of this parallel implementation in Table 3.1,

3.2 and 3.3. For each problem, the program ran 10 times, and the average

time is recorded. Specifically, Table 3.1 summaries the average time for

solving a 50-frame problem, while Table 3.2 and 3.3 correspond to a 100-
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frame and a 200-frame problem respectively. The setup time in the tables

includes time for constructing matrices and reading in data; and the iterative

time is the iterative phase of LSQR. The iteration numbers remain almost

constant as the number of processors grows. The timings show relatively

good scalability up to 8 processors. When using 16 processors, the setup

time increases while the iterative time slightly decreases. This phenomenon

may result from the fact that increasing the number of processors will bring in

additional communication time among processors. Another potential reason

is when increasing the number of processors, virtual memory may be needed

because more local data is created and eventually the total amount exceeds

the memory size.

Figure 3.1, 3.2 and 3.3 show the speedup of setup and iterative time with

respect to the time using 1 processor as a baseline.

Table 3.1: Timing of 50-frame problem.

No. of proc Setup time (sec) Iterative time (sec) Iter No.

1 51.8 374.5 173

2 32.1 209.4 174

4 20.3 126.8 174

8 14.2 77.6 174

16 15.7 72 174
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Figure 3.1: Parallel computing time vs. ideal scalability of a 50-frame prob-

lem based on one processor. The left figure is the comparison of the setup

time; and the right figure is the comparison of the iterative time.

Table 3.2: Timing of 100-frame problem.

No. of proc Setup time (sec) Iterative time (sec) Iter No.

1 131.0 862.2 163

2 80.3 475.7 163

4 50.1 270.7 163

8 34.8 175.1 163

16 39.1 154.7 163
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Figure 3.2: Parallel computing time vs. ideal scalability of a 100-frame

problem based on one processor. The left figure is the comparison of the

setup time; and the right figure is the comparison of the iterative time.

Table 3.3: Timing of 200-frame problem.

No. of proc Setup time (sec) Iterative time (sec) Iter No.

1 388.6 2887 174

2 241.0 1520 175

4 150.4 814.6 174

8 102.8 500.5 176

16 118.8 461 176
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Figure 3.3: Parallel computing time vs. ideal scalability of a 200-frame

problem based on one processor. The left figure is the comparison of the

setup time; and the right figure is the comparison of the iterative time.
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Chapter 4

Preconditioning

4.1 Preconditioning LS systems

A general linear least squares system takes the form:

min
x
‖b−Ax‖2, A ∈ Rm×n, b ∈ Rm,

where the rectangular matrix A can be full rank or rank deficient. In the late

nineteen sixties, basic numerical methods for solving least squares problems

had been developed. For example, Golub in 1965 [32] proposed the QR de-

composition using Householder transformations. Since then, great progress,

in both direct and iterative methods, has been made to solve least squares

problems.

When A is large and sparse, iterative methods can be applied to the nor-

mal equation AT (Ax−b) = 0. An important class of iterative methods, the

Krylov subspace methods, seeks an approximation xk in step k which mini-

mizes a quadratic error functional such that xk ∈ x(0)+Kk(ATA, r(0)) , r(0) =

AT (b−Ax(0)), where Kk is the Krylov subspace,

Kk(ATA, r(0)) = span{r(0),ATAr(0), (ATA)2r(0), · · · , (ATA)k−1r(0)} .
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The implementation can either be based on a CG algorithm or a Lanczos pro-

cess. Among all iterative methods, the LSQR algorithm (see Algorithm 1),

which is based on Lanczos bidiagonalization, and which was developed by

Paige and Saunders [58], is one of the most popular approaches to solve least

squares systems.

Algorithm 1 LSQR

Let x(0) = 0 be an initial approximation

Compute β0 = ‖b‖2, u0 = b/β0, α0 = ‖ATu0‖2, v0 = ATu0/α0

Set w0 = v0, φ0 = β0, ρ̄0 = α0

for k = 0, 1, . . . , do

• βk+1 = ‖Avk − αkuk‖2

• uk+1 = (Avk − αkuk)/βk+1

• zk = ATuk+1 − βk+1vk

• αk+1 = ‖zk‖2

• vk+1 = zk/αk+1

• ρk = (ρ̄2
k + β2

k+1)1/2

• ck = ρ̄k/ρk

• sk = βk+1/ρk

• θk+1 = skαk+1

• ρ̄k+1 = −ckαk+1

• φk = ckφ̄k

• φ̄k+1 = skφ̄k

• xk+1 = xk + (φk/ρk)wk

• wk+1 = vk+1 − (θk+1/ρk)wk

• Test for convergence

end for

According to [58], LSQR is mathematically equivalent to applying the CG

method to the normal equations (for example CGLS, the Conjugate Gradient
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Least Squares method), but converges somewhat more quickly when A is ill-

conditioned. However, when we need to solve a regularized LS system, such as

the one in our FFH reconstruction problem, we may need to solve the system

for many values of the regularization parameter. If the system is large scale

with a small regularization parameter, the convergence of LSQR is slowed

down. Therefore, we may need preconditioning to achieve a reasonable rate

of convergence.

Researchers have come up with a lot of different ways to construct a pre-

conditioner P for the CG method. Early ideas for preconditioning the CG

method started in the nineteen fifties; see more details in [34]. More recent

preconditioning techniques for iterative methods, including the CG method,

are discussed in [67,12]. In particular, we consider right preconditioning

min
y
‖b−AP−1y‖2 , P

−1y = x .

Performing LSQR with the right preconditioner, we obtain Algorithm 2.

4.2 General Techniques for Choosing Precon-

ditioners

Although a preconditioner is chosen based on properties of the matrix A,

there are a few particularly important concerns that should be satisfied:

• AP−1 should be close to the identity matrix or at least have a spectrum

that is clustered.

• The operation x = P−1y should be cheap/easy to perform.

A good preconditioner P typically depends on the problem under consider-

ation. Below, we describe three ways to construct preconditioners.
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Algorithm 2 LSQR with right preconditioning

Find a preconditioner matrix P

Let y(0) = 0 be an initial approximation

Compute β0 = ‖b‖2, u0 = b/β0, q0 = ATu0, α0 = ‖P−Tu0‖2, v0 =

P−Tq0/α0

Set w0 = v0, φ0 = β0, ρ̄0 = α0

for k = 0, 1, . . . , do

• pk = P−1vk

• βk+1 = ‖Apk − αkuk‖2

• uk+1 = (Apk − αkuk)/βk+1

• qk+1 = ATuk+1

• zk = P−Tqk+1 − βk+1vk

• αk+1 = ‖zk‖2

• vk+1 = zk/αk+1

• ρk = (ρ̄2
k + β2

k+1)1/2

• ck = ρ̄k/ρk

• sk = βk+1/ρk

• θk+1 = skαk+1

• ρ̄k+1 = −ckαk+1

• φk = ckφ̄k

• φ̄k+1 = skφ̄k

• yk+1 = yk + (φk/ρk)wk

• wk+1 = vk+1 − (θk+1/ρk)wk

• if |φ̄k+1| is small enough then compute xk+1 = P−1yk+1

• Test for convergence

end for
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4.2.1 Classical Iterative Scheme as Preconditioners

Each linear stationary iterative method induces a preconditioner. To see this,

for simplicity, assuming A is square and we consider the classical iterative

methods as splitting methods

A = G−H ,

where G is nonsingular. Then

Ax = b→ Gx = b+Hx→ x = G−1b+G−1Hx ,

which has a fixed point form

xk+1 = G−1Hxk +G−1b

= Mxk +Nb , where M = G−1H and N = G−1 . (4.1)

The iteration matrix can be written as

M = G−1H = N (G−A) = N (N−1 −A) = I −NA .

Convergent stationary iterations satisfy ρ(M) < 1, i.e., the spectrum of M

is small, or in other words, NA is close to the identity matrix I. Thus, N

plays the role of an approximate inverse. Hence, the matrix P = N−1 may

be used as a preconditioner - it approximates A in some sense.

4.2.2 Incomplete Factorizations

Another very popular class of preconditioners is the incomplete factorization.

Such type of preconditioning is also one of the historically earliest examples

which made preconditioned CG become widely accepted. The idea was driven

from the fact that by direct methods, computing LU decomposition of a

sparse matrix A may result in considerable fill-in. In view of the fact that a
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preconditioner just needs to be an approximation to A−1, one may consider

computing an approximate factorization L̃Ũ ≈ A, where L̃ and Ũ should

also be sparse. Then choosing P = L̃Ũ leads to an efficient evaluation of

x = P−1y, since z = L̃−1y and x = Ũ−1z can easily be realized by forward

and backward substitution.

For symmetric positive definite (SPD) matrices A, it is common to use the

Cholesky factorization LLT = A instead of the LU-decomposition. This

sparked the development of incomplete Cholesky factorization techniques.

Another type of preconditioner derives from the incomplete QR factoriza-

tion, see [3, 17, 66]. With rigorous algorithm design, a robust preconditioner

can be constructed by incomplete QR factorization.

4.2.3 Approximate inverse

Starting from the observation that the right preconditioner P should satisfy

AP−1 ≈ I, approximate inverse preconditioners are directly aiming at a

matrix P−1 = X such that

‖AX − I‖

is small in some norm ‖ · ‖. The matrix-vector multiplication Xy is then

taken as the action of the preconditioner. For this to be viable, the matrix

X needs to be sparse. One possible way of generating X is to prescribe its

sparsity pattern and then try to construct X as the minimizer of

min{‖AX − I‖F : X ∈ Rn×m , with prescribed sparseity pattern}

where ‖·‖F is the Frobenius matrix norm. More information on approximate

inverse preconditioning techniques can be found in [14,15,13,16]
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4.3 SSOR Preconditioner

In this section, we construct a preconditioner for the wavefront reconstruction

problem by symmetric successive over relaxation (SSOR) iteration. Consider

normal equations of a regularized least squares system

min
x

(
‖b−Ax‖2

2 + α2‖x‖2
2

)
. (4.2)

In the following we throughout write the matrix of normal equations b̂ = ATb

and Â = ATA + α2I = D + L + LT , where D, L, LT are the diagonal,

the strictly lower, and the strictly upper triangular part of ATA + α2I ,

respectively. Note that the diagonal matrix D > 0.

Starting from the forward Gauss-Seidel iteration, we choose the splitting

where G = D +L and H = −LT . By Equation (4.1), we have

xk+1 = (D +L)−1(−LT )xk + (D +L)−1b̂ ,

where N = D + L can be used as a preconditioner. Since D is invertible,

the matrix D + L is lower triangular, so the equation x = (D + L)−1y is

easy to solve by backsubstitution. Similarly, we could define the backward

Gauss-Seidel iteration by splitting G = (D +LT ) and H = −L, then

xk+1 = (D +LT )−1(−L)xk + (D +LT )−1b̂ .

The so-called successive over relaxation (SOR) method is obtained by intro-

ducing a relaxation factor ω in the component formulation of the Gauss-Seidel

method. For example based on forward Gauss-Seidel, define G = ( 1
ω
D +L)

and H = −((1− 1
ω

)D +LT ), then

xk+1 = (D + ωL)−1
[
(1− ω)D − ωLT

]
xk + ω(D + ωL)−1b̂ .

SSOR is a symmetric iteration, which aims to overcome the disadvantage of

the Gauss-Seidel and SOR methods. By applying first a step of SOR based
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on the forward Gauss-Seidel method

xk+ 1
2

= xk + ω(D + ωL)−1(b̂− Âxk) ,

and then an SOR step based on the backward Gauss-Seidel method

xk+1 = xk+ 1
2

+ ω(D + ωLT )−1(b̂− Âxk+ 1
2
) ,

the iteration matrix of SSOR is symmetric if the original matrix is symmetric.

In particular, Â = ATA + α2I is symmetric, and the associated SSOR

iteration matrix is I −ω(2−ω)(D+ωLT )−1D(D+ωL)−1Â. Then we may

define an approximate inverse matrix N = ω(2 − ω)(D + ωLT )−1D(D +

ωL)−1; or in other words, we now find a matrix

P̂ =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT ) ,

such that (ATA+ α2I)P̂−1 ≈ I. Note that we rewrite P̂ as

P̂ =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT )

=
1

ω(2− ω)
(D + ωL)D−1/2D−1/2(D + ωLT )

=

√
1

ω(2− ω)

(
D−1/2(D + ωLT )

)T √ 1

ω(2− ω)

(
D−1/2(D + ωLT )

)
= P TP , whereP =

√
1

ω(2− ω)

(
D−1/2(D + ωLT )

)
. (4.3)

Equation (4.3) gives a preconditioner P of the original regularized least

squares system

[
A

αI

]
. We use this P as the right preconditioner for the

LSQR algorithm.
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4.4 Numerical Results

For the relaxation parameter ω, it is well known that ω ∈ (0, 2) satisfies the

convergence requirement. According to an early report [44] and also [20], un-

der relaxation is essential in image reconstruction because it provides better

stability and convergence rate. In our work, based on numerous experiments,

we choose ω = 0.08.

We test this preconditioner under different seeing conditions using MAT-

LAB. First we use parameters listed in Table 2.1 to build the problem. Table

4.1, 4.2 and 4.3 illustrate the vertical and horizontal reconstructed gradi-

ents (denoted as “x−” and “y−”), the number of iterations (represented as

“IterNo”), the relative residual (represented as “Res”), the relative PSF er-

rors (represented as “Err”), total LSQR iterative time (denoted as “Total

time”) and average iterative time per iteration (denoted as “Iter time”) of

the unpreconditioned and preconditioned systems with different d/r0; Figure

4.1 provides the reconstructed images without and with a preconditioner;

Figure 4.2 demonstrates relative residuals of the unpreconditioned and pre-

conditioned LSQR. Based on our experiments, the number of iterations drops

when using the SSOR type of preconditioner while achieving almost the same

accuracy of the solution. Especially, the relative residual decays faster with

an SSOR preconditioner. However, the total LSQR iterative time indicates

that using the SSOR preconditioner results in longer overall computational

time to compute reconstructions for this particular wind profile problem.

To show the effectiveness of preconditioning in the sense of computational

time, we provide another example utilizing the SSOR preconditioner based

on a new set of wind profile in Table 4.4. Table 4.5, 4.6 and 4.7 again sum-

marize the unpreconditioned and preconditioned LSQR with different d/r0;

Figure 4.3 and Figure 4.4 provide the reconstructed images and the relative

residuals of both unpreconditioned and preconditioned systems. Based on
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Table 4.1: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 2.1 when d/r0 = 5.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 169 0.0097 0.0245 37.89/0.2242

y− 174 0.0097 - 38.34/0.2203

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 96 0.0096 0.0310 85.63/0.8920

y− 95 0.0096 - 85.68/0.9019

Table 4.2: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 2.1 when d/r0 = 20.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 153 0.0097 0.1930 32.99/0.2156

y− 163 0.0097 - 34.86/0.2139

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 85 0.0096 0.2129 75.08/0.8833

y− 92 0.0096 - 81.56/0.8865
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Figure 4.1: The comparisons of reconstructed images from unpreconditioned

and preconditioned systems corresponding to Table 2.1. The columns from

left to right correspond to the true object, the reconstructed images from the

unpreconditioned and the preconditioned systems respectively; the first row

shows the results in the case d/r0 = 5, and the second and third rows are in

the case d/r0 = 20 and d/r0 = 45.
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Figure 4.2: Residual vectors of unpreconditioned and preconditioned systems

corresponding to Table 2.1. The left column is along the x−direction, and the

right is y−direction. The vertical axis of each plot is log scale residual and

the horizontal axis is iteration numbers. Rows correspond to d/r0 = 5, 20, 45

respectively.
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Table 4.3: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 2.1 when d/r0 = 45.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 154 0.0097 0.4796 36.75/0.2386

y− 156 0.0097 - 37.91/0.2430

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 85 0.0096 0.5264 77.49/0.9116

y− 91 0.0096 - 83.37/0.9162

the second set of results, both the number of iterations and the total LSQR

iterative time are reduced by an SSOR preconditioner with the same solution

accuracy. Moreover, comparisons of the relative residual also support that

SSOR preconditioners are effective and efficient for this problem.

In summary, SSOR preconditioners reduce the iteration numbers for the

image reconstruction problem. However, their efficiency in computational

time actually depends on each particular problem, i.e., the wind profile.

Table 4.4: Wind velocities in pixel/frame of different turbulent layers.

layer location (km) x-velocity y-velocity

1 0 0.0865 0.1498

2 11 0.8388 0.4843

3 15 0.3669 0.3669
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Table 4.5: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 4.4 when d/r0 = 5.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 846 0.0092 0.0062 236.65/0.2797

y− 826 0.0092 - 261.72/0.3169

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 138 0.0093 0.0202 154.84/1.1220

y− 141 0.0093 - 175.32/1.2434

Table 4.6: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 4.4 when d/r0 = 20.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 877 0.0092 0.0856 269.03/0.3068

y− 860 0.0092 - 264.57/0.3076

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 138 0.0093 0.1077 161.17/1.1679

y− 141 0.0093 - 149.86/1.0628
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Figure 4.3: The comparisons of reconstructed images from unpreconditioned

and preconditioned systems corresponding to Table 4.4. The columns from

left to right correspond to the true object, the reconstructed images from the

unpreconditioned and the preconditioned systems respectively; the first row

shows the results in the case d/r0 = 5, and the second and third rows are in

the case d/r0 = 20 and d/r0 = 45.
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Figure 4.4: Residual vectors of unpreconditioned and preconditioned systems

corresponding to Table 4.4. The left column is along the x−direction, and the

right is y−direction. The vertical axis of each plot is log scale residual and

the horizontal axis is iteration number. Rows correspond to d/r0 = 5, 20, 45

respectively.
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Table 4.7: Numerical results of unpreconditioned and preconditioned systems

corresponding to Table 4.4 when d/r0 = 45.

No Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 852 0.0092 0.3395 243.61/0.2859

y− 848 0.0092 - 238.14/0.2808

SSOR Preconditioner

Direction IterNo. Res Err Total time/Iter time

x− 137 0.0093 0.3310 162.48/1.1860

y− 140 0.0093 - 206.41/1.4744

4.5 Other Preconditioning Techniques

We also considered other preconditioning techniques, such as incomplete fac-

torization and approximate inverse mentioned previously. However, it turns

out those types of preconditioners do not efficiently improve the convergence

rate or the computational performance. Here we summarize the precondi-

tioning techniques we used for the regularized LS system (4.2):

• Kronecker product approximation: The basic idea of utilizing Kro-

necker product approximation is similar to the incomplete factorization;

that is, find an approximate factorization of the linear system, and use

the matrix or matrix product from the factorization as a preconditioner.

Specifically, according to [54], a Kronecker product approximation of

normal equations for (4.2) (with A ∈ R(nsspm)×(ncompL), where nssp and

ncomp denote the dimensions of the downsampled and composite images;
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m and L represent the number of frames and layers) can be written as:

ATA+ α2I ≈K1 ⊗K2 ⊗K3 + α2I

where K1, K2 ∈ Rncomp×ncomp , K2 ∈ RL×L. We further symmetrize

K1, K2 and K3 by

Ki = (Ki +KT
i )/2 , i = 1 , 2 , 3 ,

so that an eigen-decomposition can be computed for eachKi, and since

the size of each matrix is relatively small, the decomposition is not too

expensive to be computed. We assume Ki = ViEiV
T
i , where Vi is an

orthogonal matrix and Ei is a diagonal matrix. By the properties of

Kronecker product, we may find an approximation:

ATA+ α2I ≈K1 ⊗K2 ⊗K3 + α2I

≈ (V1 ⊗ V2 ⊗ V3)(E1 ⊗E2 ⊗E3)(V1 ⊗ V2 ⊗ V3)T + α2I

= V EV T + α2I

= V (E + α2I)V T

= V E1/2
α V TV E1/2

α V T ,

where V = V1 ⊗ V2 ⊗ V3, E = E1 ⊗E2 ⊗E3 and E
1/2
α is a diagonal

matrix with the square roots of the sums of the diagonal elements and

α2 on its main diagonal. Therefore, we may use P = V E
1/2
α V T as

a preconditioner. Unfortunately, although this type of preconditioner

has been shown to work well in other image processing applications, it

performed poorly for our FFH reconstruction problem.

• Incomplete Cholesky factorization: We also implemented a pre-

conditioner using incomplete Cholesky factorization. However, if we

choose a preconditioner from a more “exact” factorization, which im-

plies a better convergence rate, the computational time for the fac-

torization increases dramatically, and exceeds the total computational
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time without a preconditioner. On the other hand, if we choose a

less “exact” factorization, the computational time for factorization de-

creases, but due to poor convergence rate, the total computational time

still overruns that without a preconditioner.

• Approximate inverse: According to [25], we construct an approxi-

mate inverse type preconditioner for Equation (4.2). However, both the

iteration number and the computational time increase dramatically.
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Chapter 5

Wavefront Screen Simulation

The efficiency and accuracy of an algorithm should be verified not only in

a theoretical way, but also in a practical way by testing. Although testing

should always be based on the actual data, good simulations are still needed

to test different algorithms in a controlled manner and under a wide variety

of conditions, especially in the case of lacking realistic testing data sets. A lot

of excellent work has been done to simulate the atmospheric turbulence [52,

50, 64]. This chapter mainly concerns one approach, in [69], of generating

simulation of moving wavefronts of the atmospheric turbulence for testing in

the previous chapters.

This chapter is organized in the following way: first, we briefly go through

some classical models in optics; then, simulate the moving wavefronts for

both single layer and multi-layered cases; finally, some simulation results,

which are used in the tests of the previous chapters, and open questions are

presented.

5.1 Optics Models

The key to simulate the turbulent process is to generate the wavefront. In

the simplest situation, the atmosphere above the telescope is treated as a

single layer, so that the turbulence moves along a uniform wind velocity. We
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call this simple assumption the single layer case. For more realistic situation,

the atmosphere above the telescope is treated as several layers, each layer

moving with its own velocity. We call the second situation the multi-layered

case. Next, we discuss data generation of both cases.

First, we introduce the modified von Karman power spectrum density (PSD)

model. In this model, PSD is defined as

Φ(κ) = 0.033C2
n

exp(− κ2

κ2
m

)

(κ2 + κ2
0)11/6

, (5.1)

where C2
n is the structure constant of the index of refraction fluctuations,

κ = 2π(fx̂i + fy ĵ) is angular spatial frequency in rad/m (fx and fy are

angular spatial frequency in cycle/m, and κ2 is element wise squaring), and

κm = 5.92/l0 and κ0 = 2π/L0 (l0 and L0 are the inner and outer scale

respectively; and the modified von Karman PSD model allows l0 = 0 and

L0 = inf). The modified von Karman model is the simplest PSD model that

includes effects of both inner and outer scales.

The Fried parameter r0 can also be used to represent PSD in place of C2
n.

That is

Φ(κ) = 0.49r
−5/3
0

exp(−κ
2

κ2
m

)

(κ2 + κ2
0))11/6

. (5.2)

Consequently, if we use the ordinary frequency in cycle/m other than in

rad/m, by the modified von Karman model, we obtain

Φ(f) = 0.023r
−5/3
0

exp(−f
2

f2
m

)

(f 2 + f 2
0 ))11/6

, (5.3)

where f = (fx̂i + fy ĵ), fm = 5.92/(2πl0) and f0 = 1/L0. For simulation, we

use (5.3) to generate the wavefront. The reason we choose r0 instead of C2
n

to represent PSD is because the Fried parameter r0 is closely related to the

image quality which is discussed in Section 2.1.
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5.1.1 Sinlge Layer Wavefront Screen Generation

Let φ(x, y) again denote the wavefront, which is Fourier-transformable. Then

the phase is represented as the Fourier series

φ(x, y) =
∞∑

l=−∞

∞∑
n=−∞

cl,n exp[i2π(fxl î + fyn ĵ)] , (5.4)

where fxl , fyn are the discrete horizontal and vertical directed spatial fre-

quencies, and the cl,n are the Fourier series coefficients [69].

By the central-limit theorem, we assume that the Fourier coefficients cl,n

have a Gaussian distribution because of independent random atmospheric

fluctuations along the optical path. In general we assume that the real and

imaginary parts of Fourier coefficients have zero mean and equal variances,

and the cross-covariances are zero. Moreover, to obtain real-valued φ, the

Fourier coefficients in (5.4) are Hermitian symmetric, i.e. cl,n = c̄−l,−n. For

the zero frequency term (l = n = 0), we assume that c0,0 is a real, zero mean

Gaussian random variable. Then the inverse Fourier transform of cl,n are all

real, and the expectation of the squared wavefront module satisfies

E
[
|φ|2
]

= E

[ ∞∑
l,n=−∞

|cl,n|2
]
. (5.5)

The total power in the wavefront written using both Parseval’s theorem

and the definition of power spectral density gives us the relationship between

wavefront φ(x, y) and PSD:∫ ∞
−∞

∫ ∞
−∞
|φ(x, y)|2dxdy =

∫ ∞
−∞

∫ ∞
−∞

Φ(fx, fy)dfxdfy . (5.6)

Therefore, (5.6) is true if we assume

E
[
|cl,n|2

]
= Φ(fxl , fyn)4fxl4fyn

=
1

hxhy
Φ(fxl , fyn) ,

(5.7)
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where 4fxl = 1/hx and 4fyn = 1/hy, and hx, hy are horizontal and vertical

grid sizes respectively.

Next, in order to produce realizations of the Fourier coefficients for wave-

fronts, we need to generate the PSD Φ by (5.3). Then taking the square

root of the variance given in (5.7) produces the random draws of the Fourier

series in Equation (5.4). Finally, the inverse Fourier transform is applied to

the Fourier coefficients cl,n to generate the wavefront.

5.1.2 Multi-Layered Wavefront Screen Generation

In [65], it is stated that for the multi-layered model, the C2
n profile can be split

into a finite number of layers. Each layer is characterized by a turbulence

strength that is approximately constant within the layer. The notation C2
nj

is used to represent the structure constant for the jth layer. The notations

zj and ∆zj are used to represent the altitude and thickness of the jth layer.

The motivation for breaking the turbulence region into layers is the desire

to investigate turbulence subregions that have approximately homogeneous

statistics. The effect of field propagation through the entire turbulence region

(assuming the indices of refractive fluctuations for each layer are statistically

independent) is the sum of the effects of that through all subregions. This

layering of the turbulence greatly simplifies the calculations to follow.

The values of the weight of the jth layer, C2
nj

, and the altitude, zj, are

chosen in such a way that the zeroth through seventh-order moment, m, of

the continuous model match the layered model:∫ ∆z

0

zmC2
n(z)dz =

L∑
j=1

zmj C
2
nj

∆zj , (5.8)

where 0 ≤ m ≤ 7, ∆z is the length of the propagation path through the

turbulence, and L is the number of wavefront layers being used.
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According to [69], since previously we used the Fried parameter r0 to gen-

erate the PSD, we need the following equation for the plane-wave source:

r0,pw =
[
0.423k2

∫ ∆z

0
C2
n(z)dz

]−3/5

, (5.9)

where k = 2π/λ (λ is the wave length) is the wave number. Moreover, we

need to define the log-amplitude variance

σ2
χ,pw = 0.563k7/6∆z5/6

∫ ∆z

0

C2
n(z)(1− z

∆z
)5/6dz . (5.10)

Then by (5.8), the Fried parameter r0,pw and the log-amplitude variance

σ2
χ,pw of the layered model match the parameters of the bulk turbulence being

modeled, and

r0,pw = (0.423k2

L∑
j=1

C2
nJ

∆zj)
−3/5 ,

σ2
χ,pw = 0.563k7/6∆z5/6

L∑
j=1

C2
nj

(
1− zj

∆z

)5/6

∆zj .

(5.11)

By grouping the equations in (5.11), we can define the Fried parameter of

the jth layer by

r0j =
[
0.423k2C2

nj
∆zj

]−3/5

. (5.12)

That is

r0,pw = (
L∑
j=1

r
−5/3
0j

)−3/5 ,

σ2
χ,pw = 1.33k−5/6∆z5/6

L∑
j=1

r
−5/3
0j

(1− zj
∆z

)5/6 .

(5.13)

The above equations can be written as a linear system

(
r
−5/3
0,pw

σ2
χ,pw

1.33
( k

∆z
)5/6

)
=

(
1 1 · · · 1

(1− z1
∆z

)5/6 (1− z2
∆z

)5/6 · · · (1− zL
∆z

)5/6

)
r
−5/3
01

r
−5/3
02

...

r
−5/3
0L

 . (5.14)
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From (5.14), we can build up an underdetermined LS problem, which requires

finding r01 , r02 , . . . , r0L to minimize∥∥∥∥∥∥∥∥
 r

−5/3
0,pw

σ2
χ,pw

1.33
( k

∆z
)5/6

−( 1 1 · · · 1

(1− z1
∆z

)5/6 (1− z2
∆z

)5/6 · · · (1− zL
∆z

)5/6

)
r
−5/3
01

r
−5/3
02

...

r
−5/3
0L



∥∥∥∥∥∥∥∥
2

2

. (5.15)

Then we can solve for r0j and generate the wavefront for each layer.

The least squares problem (5.15) can be solved in different ways. Since

the scale of the linear system is small, we apply the näıve normal equation

approach to solve this least squares problem. The solution is with the smallest

2-norm, and possibly has negative values. In our project, we also consider

a constrained optimization approach, for which the solution is forced to be

nonnegative. Thus, the solution is more physically realistic.

5.2 Simulation Results

Using the above idea, we generate the single layer wavefront. Parameters are

set as in Table 5.1, and the generated wavefront and the associated PSF in

Figure 5.1.

Table 5.1: Parameter settings for single layer simulation

Dimensions Diameter of pupil Structure constant Fried parameter d/r0

N d C2
n r0 d/r0

800 3.7(m) 2.1901e-18 0.7400 5.0001
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Figure 5.1: Simulated wavefronts and associated PSF in single layer case. On

the left is the generated single layer wavefronts; on the right is the generated

single layer PSF.

For multi-layered case, solving a LS problem with constraints [69], we could

split the single layer into three wavefront screens. The corresponding r0j for

each layer are listed in Table 5.2. The generated wavefront and PSF are in

Figure 5.2.

Table 5.2: Multi-layered Fried parameters (by constrained LS)

Layer 1 2 3

r0 r01 r02 r03

0.7400 50.0000 0.9025 1.5856

We also list r0j by normal equations in Table 5.3, and the generated wave-

front and PSF are in Figure 5.3.
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Figure 5.2: Simulated wavefronts and PSFs in multi-layered case. From top

to bottom are the 1-st, the 2-nd and the 3-rd layer wavefronts (left) and PSFs

(right) by solving a constrained LS problem.
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Figure 5.3: Simulated wavefronts and PSFs in multi-layered case. From top

to bottom are the 1-st, the 2-nd and the 3-rd layer wavefronts (left) and PSFs

(right) by solving normal equations.



86

Table 5.3: Multi-layered Fried parameters (by normal equations)

Layer 1 2 3

r0 r01 r02 r03

0.7400 3.6440 1.2558 1.1011

5.3 Remarks and Future Directions

There are still some open questions and remarks we need to list here for

future study.

• Large ratio d/r0 implies more turbulence involved. If we set the struc-

ture constant C2
n = 1.7810e− 16, then the corresponding Fried param-

eter r0 = 0.0529. Again we assume the diameter of the observation

aperture d = 3.7, then d/r0 = 70. In this case, the generated PSFs are

in Figure 5.4

• If we split the generated wavefront in the extreme case d/r0 = 70 into

three layers by the constrained minimization approach, then we obtain

the PSFs on the left of Figure 5.5. It seems that the split PSFs are

much better than we expect or in the single layer case. Possibly, it is

because of the constraints.

• If we split the generated wavefront in the extreme case d/r0 = 70 into

three layers by normal equation approach, then we obtain the PSFs

on right of Figure 5.5, which are more consistent with the single layer

generation.
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Figure 5.4: PSF in single layer case when d/r0 = 70.
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Figure 5.5: PSFs in multi-layered case when d/r0 = 70. The left column are

the three layer generated PSFs by solving a constrained LS problem, and the

right column are the three layer generated PSFs by solving normal equations.
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Chapter 6

Conclusions

6.1 Concluding Remarks

In this thesis, we described how practical deblurring of images distorted

by atmospheric turbulence requires solving three large scale least squares

problems:

• Reconstructing high resolution wavefront phase gradients from low res-

olution measurements obtained from a wavefront sensor on the tele-

scope.

• Reconstructing wavefront phases from wavefront phase gradients.

• Reconstructing the image using an atmospheric blurring model that

depends on the wavefront phase.

The main contribution of this work is to describe a mathematical model,

based on a frozen flow hypothesis, that allows for reconstruction of more

accurate high resolution gradients than existing approaches. The frozen flow

hypothesis captures the inherent temporal correlations present in wavefronts

in consecutive frames of data. Exploiting these correlations can lead to more
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accurate PSF estimations, as illustrated by the numerical experiments in

Chapter 2. We also showed that the FFH model can be formulated as a

sparse least squares problem that can be efficiently solved with iterative

methods such as LSQR.

We have also investigated the effectiveness of the FFH model for inexact

systems based on noisy wind velocities. Our experiments demonstrate that

even with up to 5% error in the wind vectors, the multi-layered FFH model

still improves the reconstructed image quality.

A parallel implementation of the essential FFH model has been developed

situations when a large number of frames and layers is used in the model

(thus resulting in extremely large linear systems). Numerical experiments

for parallel programs show good scalability up to 16 processors.

We considered several various preconditioning approaches for LSQR. We

found that with the same regularization parameter, SSOR preconditioners

reduce the number of iterations. In the case when the iteration number

decreases dramatically, the total computational time can also be reduced by

this type of preconditioner.

There are several open issues not addressed in this work. For example, we

do not have an automatic approach for choosing regularization parameters,

and in this regard, hybrid methods (see, for example, [24] and the references

therein) might be useful. In addition, it might be worth investigating alter-

natives to Tikhonov regularization. We also mention that the frozen flow

model is only valid for short time periods. For long time periods, it might

be necessary to partition the frames into sub-time periods over which the

frozen flow is valid. Currently we assume the wind speeds are known to high

accuracy. Therefore, another issue worth investigation, if there is uncertainty

in the wind speeds, is to reformulate the FFH reconstruction as a separable

nonlinear least squares problem, where the wind speeds are considered as un-

knowns. Finally, because we obtain only an approximation of the wavefront
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phases, we only have an approximation of the corresponding PSFs. Further

improvement of the PSFs and reconstructed image might be possible using

multi-frame blind deconvolution algorithms. In this case, our approach can

be used to obtain an initial guess for the PSFs.

6.2 Contributions

This dissertation presents the following contributions we have made:

• We have proposed an efficient algorithm to compute high resolution

gradient approximations from low resolution gradient measurements

obtained from a wavefront sensor on a telescope.

• We have incorporated the general rigid motion model for the gradient

reconstruction problem, which allows both linear and nonlinear motions

of the atmospheric turbulence from different air layers.

• We have implemented this algorithm in MATLAB, and provided a par-

allel implementation utilizing the Trilinos framework, which can be

used for extremely large scale realistic problems in astronomical imag-

ing.

• We have analyzed the efficiency of our algorithm under different seeing

conditions, and the sensitivity of the solution with respect to the noisy

parameters (i.e., wind velocities).

• We have demonstrated that an SSOR preconditioner, with severe under-

relaxation, can be effective at reducing the number of iterations and

total computational time of the gradient reconstruction problem.



92

Bibliography

[1] H. C. Andrews and B. R. Hunt. Digital Image Restoration. Prentice-

Hall, Inc, Upper Saddle River, NJ, US, 1977.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press,

Cambridge, United Kingdom, 1996.

[3] Z. Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthog-

onal factorization methods. I: Methods and theories. BIT Numerical

Mathematics, 41(1):53–70, 2001.

[4] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. Petsc Web Page,

May 2013.

[5] M. R. Banham and A. K. Katsaggelos. Digital image restoration. Signal

Processing Magazine, IEEE, 14(2):24–41, 1997.

[6] J. M. Bardsley. An analysis of methods for wavefront reconstruction

from gradient measurements in adaptive optics. Int. J. of Pure and

Applied Mathematics, 42:71–81, 2008.

[7] J. M. Bardsley. Wavefront reconstruction methods for adaptive op-

tics systems on ground-based telescopes. SIAM J. Matrix Anal.Appl.,

30(1):67–83, 2008.



93

[8] J. M. Bardsley, S. Knepper, and J. G. Nagy. Structured linear alge-

bra problems in adaptve optics imaging. Comp. Math, 35(2-4):103–117,

2011.

[9] R. A. Bartlett. Teuchos:: RCP beginners guide. Technical Report

SAND2004-3268, Sandia National Laboratories, 2004.

[10] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist. Ame-

sos2 and Belos: Direct and iterative solvers for large sparse linear sys-

tems. Scientific Programming, 20(3):241–255, 2012.

[11] J. M. Beckers. Adaptive optics for astronomy: Principles, performance,

and applications. Annu. Rev. Astron. Astrophs., 31:13–62, 1993.

[12] M. Benzi. Preconditioning techniques for large linear systems: a survey.

Journal of Computational Physics, 182(2):418–477, 2002.

[13] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse pre-
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[16] M. Benzi and M. Tůma. A robust incomplete factorization precon-

ditioner for positive definite matrices. Numerical Linear Algebra with

Applications, 10(5-6):385–400, 2003.



94
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