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Abstract

Generative Argument Mining: Pretrained Language Models are Argumentative Text
Parsers

By Daniel Jacob Roytburg

Argument mining is a natural language processing task which imposes a rhetorical
structure schema on raw text, assigning labels to argumentative sub-phrases in text
and connecting identified sub-phrases together with relations. Such labels may provide
text analytics describing functional components of complete arguments like claims and
premises, stylistic elements such as testimonies or facts, or some other defined schema.
Argument mining is part of the structure prediction task family, using the formal
definitions of entity and relation extraction in order to label specific decompositions
of rhetorical structure. The task has important implications - not only for applied
use-cases in areas such as social media analytics, jurisprudence, and group decision-
making - but also for improvement on general structure prediction methods given the
unique constraints imposed by the problem.

This thesis adopts the evolving capabilities of pretrained language models to
cast argument mining as a generative task. Classical argument mining approaches
use discriminative classifiers which produce a distribution of predictions for each
individual token or sub-phrase in an input; this requires significant, task-specific
architecture to process outputs of autoencoder language models. We consider whether
task-agnostic generative language models can use a structured annotation scheme to
mimic classification without additional architectural decisions. To this end, we adapt
such a scheme which enables models to translate raw inputs to annotated text outputs,
allowing e�cient parsing and extraction for necessary labels. This decision a↵ords the
flexibility to not only introduce generative argument mining systems but also evaluate
a wide variety of pretrained models, labeling schemas, training environments, and task
configurations.

We explore the limits of these models across four key dimensions: labeling strategies
for long-span entities, comparing full token spans, numerical identifiers, and abstrac-
tive summaries; encoder-decoder versus decoder-only architectures, contrasting their
e↵ectiveness in this structured prediction task; the necessity of fine-tuning for decoder-
only models against few-shot in-context learning; and end-to-end extraction versus
relation-only extraction, evaluating the impact of providing gold entity boundaries
on relation identification. To assess model performance, we supplement traditional
classification metrics with a set of criteria based on adherence to an augmented natural
language output format, measuring reconstruction, entity, label, and format errors.

We find that generative models outperform current classification-based baselines by
10.41% for argumentative relations and 5.28% for argumentative component. Beyond
this, our introduction of compliance allows a granular view of the failure modes of
generative models in this context, revealing that while accuracy can be high, compliance
errors, particularly in relation to entity coherence and label hallucination, remain
significant challenges. Our exploration across model architectures suggests that while



larger decoder-only models exhibit strong in-context learning capabilities, fine-tuned
encoder-decoder models can achieve competitive or superior performance, especially
when data is limited. Furthermore, our investigation into labeling strategies indicates a
trade-o↵ between output length and parsing complexity with accuracy, highlighting the
need for more robust methods for representing long-span argumentative units. These
findings contribute valuable insights into the application of generative language models
for argument mining, outlining both their potential and the key areas requiring further
research and development to realize fully end-to-end, high-fidelity argumentative
structure prediction.
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Chapter 1

Introduction

1.1 Generative Structure Prediction: where are we

now?

Generative, pretrained language models have exhibited fascinating capabilities in

myriad tasks learned through an extensive pretraining process which operates unsuper-

vised tasks over large spans of data. The recent success of large, pretrained language

models over a variety of tasks has prompted their use as surrogates for binary or

multinomial classification tasks typical to natural language processing.

One such task is known as structure prediction. Given a sequence of natural

language tokens as input, the task family of structure prediction requires that a system

accurately parse and identify pre-specified features of a structure. Such features may

be grammatical, such as identifying parts of speech and semantic roles for nouns, verbs,

and adjectives in a sentence [9]. More advanced features might incorporate tasks

like named entity recognition, where certain noun phrases are identified as proper

nouns with classes like ”person” or ”place.” Still others might attempt to tie extracted

entities together based on a set of semantically-defined relations. Often, the goal of

structure prediction is to generate parseable metadata which can then be constructed

1
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into semantic knowledge graphs such as the Semantic Web or Wikidata [92]. Such

structures act as references to index otherwise unstructured text corpora to make

information access, extraction and orchestration as e�cient as possible.

Historically, such structure prediction tasks have served as benchmarks for the

progress of statistical machine learning methods for natural language processing,

facilitating the growth of the field through widespread benchmarks and ample training

data for future methods. Many structure prediction tasks such as named entity

recognition and semantic role labeling were declared as largely ’solved’ through complex

statistical ensembles that incorporated latent state embeddings for span prediction,

such as Long Short-Term Memory Models (LSTMs) or other recurrent models [103].

With the introduction of early embedding models like GloVe and Word2Vec and,

later, transformer-based architectures such as BERT [17], these classification tasks saw

greater improvements. However, satisfactory performance required the construction

of bespoke models which incorporated trainable embedding models as an input to a

sequence of classification heads configured in a manner that corresponded to domain

requirements.

Thus, as pretrained generative models demonstrated remarkable intrinsic represen-

tations of natural language and promising capabilities for use on downstream tasks

with transfer learning, their incorporation as potential substitutes for cumbersome

classification architectures came to focus. While many approaches attempt to treat

generative models as classifiers by posing a classifier prompt and yieldng one- or

two-token answers from models, further research sought to employ the long-form

generation capabilities of pretrained language models (PLMs) by introducing structure

prediction as a machine translation task which required an augmented, annotated

instance of natural language [59].

Since then, research has revolved around optimizing the performance of generative

models on structure prediction in conventionally defined tasks such as named entity
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Input:
”You are a liar! I have been harassed for over 5 years by companies looking for someone I

have never heard of because this person put a random string of our area code, local

exchange and 4 numbers together ( that turned out to be my number ) on a loan that he

then defaulted on. I have told them to stop calling, they have a wrong number, and guess

what ” 5 Years later, they are still calling!”

Output:
”[ You are a liar! | value ] [ I have been harassed for over 5 years by companies looking for

someone I have never heard of | testimony ] [ because this person put a random string of

our area code, local exchange and 4 numbers together ( that turned out to be my number )

on a loan that he then defaulted on. | testimony | reason = I have been harassed for over
5 years by companies looking for someone I have never heard of ] [ I have told them to stop

calling, they have a wrong number, and guess what ” | testimony ] [ 5 Years later, they are

still calling! | testimony ] !”

Figure 1.1: The Augmented Natural Language Framework, a method for encapsulating
argument spans using generative markers, delimiters, and class attributes.

recognition and relation extraction. However, research has not extensively covered the

same possibilities for domain-specific structure prediction, especially for tasks with

unique properties. One such subtask, dubbed ”argument mining,” attempts to use

foundational theories of rhetorical composition to model entire phrases or sentences

as argumentative units which might support one another in a text. Argument mining

carries distinct significance as a departure from traditional structure prediction tasks

because its identified entities are much longer and its labels less objective than those

used for tasks like semantic role labeling. Thus, argument mining presents a unique

case study for evaluating the capabilities of generative pretrained language models for

structure.

This thesis addresses the question of generative language modeling for argument

mining by adopting the frame of translation into augmented natural language. In short,

models are expected to re-produce input sequences with modifications that include

in the input sequence relevant annotations to delineate the spans of argumentative

entities, a class from a set of predefined types, and potential relations which span

across argumentative entities.
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1.2 Expanding the Scope: Beyond Conventional

Benchmarks

The shift from traditional classification-based approaches to generative modeling for

structure prediction marks a significant paradigm shift in natural language processing.

While benchmarks like named entity recognition and semantic role labeling have

historically driven progress, they often fail to capture the complexity and subjectivity

inherent in real-world language understanding. Argument mining, with its focus on

identifying and analyzing argumentative units, o↵ers a compelling alternative. It

pushes the boundaries of structure prediction by demanding the extraction of longer,

more abstract entities and the recognition of nuanced relationships between them.

This thesis takes a bold step by applying generative language modeling to argument

mining, a domain where the lines between objective classification and subjective

interpretation blur. By framing argument mining as a translation task, we leverage the

inherent generative capabilities of pretrained language models to produce augmented

natural language that encodes argumentative structures. This approach not only

challenges the conventional view of structure prediction but also opens up new avenues

for analyzing and understanding the persuasive power of language.

1.2.1 The Four Dimensions

Our research is distinguished by its systematic exploration of four critical dimensions

that influence the performance of generative models in argument mining. These dimen-

sions provide a structured framework for investigating the strengths and weaknesses

of di↵erent model configurations:

1. Annotation Schema/Labeling Strategies: We recognize that the length and

complexity of model outputs can significantly impact performance. Therefore,

we investigate strategies to optimize the annotation schema, ensuring that it
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strikes a balance between expressiveness and conciseness. This involves exploring

di↵erent ways to represent argumentative entities and relations, aiming for a

schema that is both informative and e�cient.

2. Model Architecture and Family Selection: The choice of architecture and

intra-architectural model families play a pivotal role in determining performance.

We consider two generative architectures and five families therein – encoder-

decoder models, like T5 [68] and decoder-only models like LLaMA or GPT.

This exploration aims to uncover the architectural nuances that contribute to or

hinder e↵ective argument mining.

3. The necessity of Fine-Tuning: Do pretrained models require careful fine-

tuning to behave as structure predictors? We investigate the use of fine-tuning

strategies, comparing against in-context learning strategies which might equally

be capable of generating schema-compliant outputs and decomposing argumen-

tative structures.

4. Relaxed Evaluation Metrics: Recognizing the inherent subjectivity of ar-

gument mining, we introduce relaxed evaluation metrics that evaluate model

performance exclusively on relation-based subtasks, enabling us to determine

models’ ability to articulate predictions within defined entity spans and providing

a more nuanced understanding of their performance.

1.2.2 Compliance Metrics: Bridging the Gap

A key contribution of this work is the introduction of ”compliance metrics.” These

metrics address a fundamental challenge in using generative models for classification-

like tasks: the potential for outputs that deviate from the expected input sequences.

By measuring the degree to which model outputs adhere to the annotation schema,

compliance metrics provide valuable insights into the models’ ability to generate
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structured, parseable annotations. These metrics serve as essential heuristics for

evaluating the e↵ectiveness of generative models in argument mining and highlight the

importance of schema adherence in ensuring the usability of generated annotations.

1.3 Thesis Structure

This thesis proceeds as follows:

Background: first, a cursory history is o↵ered of argument composition from

the perspective of literary and philosophical theories of persuasive language compo-

sition, exploring the seminal works of the scholars who established formal theories

of discourse and language. This background then covers the methodological history

of structure prediction as the methodological abstraction behind argument mining

by covering recent developments and other important inflection points in natural

language processing. Finally, the domain and the method are synthesized through a

query into the argument mining literature, considering the tradition of the field in

its own right while incorporating its fundamental links to both rhetorical theory and

parsed structure prediction.

Approach: drawing from the relevant background, we define the formal definitions

necessary to understand argument mining as a structure prediction task, as well as

for framing our approach to applying generative models for parsing. We define the

scope of our core contributions as a roadmap for experiments, select datasets relevant

for the task, and outline the horizon line for future endeavors using our framework.

The approach concludes with definitions of the evaluation metrics necessary for our

analysis.

Experiments: we list the technical specifications for our experiments to ensure

their reproducibility, defining clearly the scope of tests done using the approach and

framework outlined.
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Analysis: we distill findings across the gamut of our analysis, which incorporates

over 50 experiments. We use these findings as the basis for examining future directions

in improving generative argument mining capabilities.

1.4 The Bitter Lesson Revisited: Scaling vs. Do-

main Expertise

Our experimental findings, which demonstrate that pretrained language models can

outperform state-of-the-art classification-based approaches, resonate with Richard

Sutton’s ”Bitter Lesson.” This lesson underscores the power of scaling computational

resources and leveraging general-purpose learning algorithms, even when domain-

specific knowledge seems essential. In the context of argument mining, our results

suggest that the sheer scale and generalization of pretrained language models can

compensate for the lack of specialized architectural designs.

However, we also recognize that domain expertise remains valuable. Our research

aims to strike a balance between the benefits of scaling and the insights gained from

domain-specific knowledge. By carefully designing our experiments and developing

compliance metrics, we seek to harness the power of pretrained language models while

acknowledging the unique challenges and opportunities presented by argument mining.



Chapter 2

Background

2.1 Introduction

Automated argument mining presents a fragmented yet increasingly significant field

within natural language processing, aiming to sca↵old the structure of argumentative

discourse from unstructured text. Its foundations trace back to early e↵orts in

discourse analysis, but the field has gained traction in the past decade due to the

proliferation of large, diverse text corpora and advances in machine learning. At its

core, argument mining seeks to identify both the argumentative components—claims,

premises, and conclusions—and the relations that bind them, such as support or

attack. The evolution from component identification to full discourse parsing reflects

the growing ambition to model entire argumentative structures rather than isolated

fragments.

Methodologically speaking, the field currently finds itself in a state of transition

towards the wave of methods which exploit the generative pre-trained capabilities of

large language models. Current state-of-the-art models employ large language models

of many varieties, but often framed in a classification-based environment by isolating

one component of argumentative data mining and testing a model’s capability to

8
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determine a type of argument or relation between arguments. Consequently, many of

the systems produced with this philosophy use pipelines composed of many di↵erent

models which exhibit cascading errors by sequential accumulation [64] or lack a unified

training structure.

Contemporary surveys emphasize the incremental success of large, pretrained

language models on disjoint sub-tasks like claim detection and stance classification

[81, 16]. However, these works often overlook the broader capacity of language models

to jointly generate argumentative components and their interrelations. Even when

such strategies are employed, they rarely engage decoding strategies, opting instead to

devise task-specific architectures such as bi-a�ne parsers and dependency trees based

on the logits of the outputs of autoencoder architectures.

In light of this, joint argument extraction—a paradigm where models predict

argumentative spans and their relations in a unified fashion—has emerged as a natural

extension of generative systems’ semantic expressiveness. We highlight the paradigm

shift towards trainable, generative systems within argument mining research, arguing

that these models sidestep the need for a pipeline by implicitly structuring discourse

in a single, auto-regressive pass.

In this section, we will broach the subject of argument mining from three distinct

angles:

1. Communication and Rhetorical Theory: we follow the work of Aristotle

and Stephen Toulmin to understand the philosophical foundation of formal

argumentative composition, a precursor to contemporary argument mining

approaches.

2. Argument Mining: we apply this philosophy of rhetoric to approach the

existing literature base of computational argument methods, examining the

recent growth of the argument mining space as well challenges intrinsic to its

murky definition. Here, we can define the goals of our experiments in argument
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mining. We also justify their potential to improve existing methods and exemplify

the importance of argument mining as a methodological case study in structure

prediction tasks.

3. Structure Prediction in Natural Language Processing: finally, we intro-

duce the technical abstraction of structure prediction. Here, we describe how

the task of predicting structures within natural language evolves through the

principles of logical communication. Here, we declare a formal problem definition

and explore the necessary sub-tasks known as entity recognition and relation

extraction, along with the contemporary methods which enable performance

in these environments.

2.2 Communication and Rhetorical Theory

2.2.1 Introduction

Long before the advent of modern computing systems (and certainly before their

application to natural language), philosophers of antiquity such as Aristotle composed

rational hierarchies of argumentation. They delineated between overarching claims

and specific premises - based in observed reality, logical formulation, or deductive

reasoning - that justify a claim.

In our current time, the fundamental principles laid out by Aristotle have been

refined and taxonomized by thinkers like Stephen Toulmin. Toulmin’s model is of

use to computational linguists, as it served to be a prescient ontology for modern

annotation structures. Moreover, the model o↵ers an excellent pedagogical framework

for appreciating rhetorical composition. Toulmin’s research spurred interest in the

field of argumentative theory and informs contemporary theories of formal verification

and social discourse alike. While most argumentation data has too much noise to
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neatly fit into his classification, it serves as a meaningful computational bridge into

annotation decisions made by authors in the argument mining space.

2.2.2 Aristotlean Logic

It is Aristotle’s work – including Prior Analytics, Posterior Analytics, and other writ-

ings from The Organon which established the earliest fundamentals of argumentative

theory. Aristotle defined the earliest principles of propositional logic, where claims

were broken down into subsequent sub-claims which were either self-evident or justified

recursively in deeper decompositions [78]. His statement “All humans are mortal.

Socrates is a human. Ergo, Socrates is mortal” is among the first recorded examples

of deductive syllogism, which contains a major, empirical premise (all humans are

mortal) and a minor, particular premise (Socrates is a human) to establish its claim

[78].

In addition to his categorical syllogisms, Aristotle developed a nuanced theory of

modal logic, which accounted for necessity, possibility, and contingency in propo-

sitions. In Prior Analytics, he distinguished between syllogism-by-assertion, where

premises express simple truths, and modal syllogisms, where premises involve modal

qualifiers such as necessity or possibility. For example, the statement “It is necessary

that all humans are mortal” introduces a layer of modality that a↵ects the logical

structure of the argument. This investigation into the temporal and modal dimensions

of logic marked one of the earliest systematic treatments of these concepts, influencing

later developments in formal logic. These are the predecessors to the modern defini-

tions of inverse, converse, and contrapositive. It is this concept of modality which

forms the bedrock of logic across many domains, from mathematical proofs to amicus

briefs to systems and decision theory.

Aristotle considered not only formal logic but public persuasion as well. He

dubbed the terms “ethos”, “pathos”, and “logos” as modes of persuasion when
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seeking the agreement of public audiences. These terms, which refer to an orator’s

sense of authority, their appeal to emotions, and their appeal to reason, enmesh the

fundamental logic described above with key discursive components that connect to the

psychology behind persuasion. Aristotle’s theory of ethos, pathos, and logos continues

to have a significant impact in modern-day communication, especially in areas like

advertising, politics, and media. Politicians and public figures use ethos to establish

trust and authority, pathos to connect emotionally with voters, and logos to present

data and logical arguments to support their positions [65, 57]. In advertising, marketers

combine emotional appeals with logical arguments and trustworthy spokespersons to

persuade consumers. This enduring framework remains a cornerstone of persuasive

communication, helping to shape how we respond to arguments, make decisions, and

influence others in today’s media-saturated world.

2.2.3 The Toulmin Model

The 20th century philosopher and communication scholar Stephen Toulmin (1922-2009)

played a pivotal role in advancing a formal structure of argumentation. His seminal

work The Uses of Argument establishes his graph-based model for processing any

given argument [86]. Toulmin classified arguments as six fundamental entities:

1. Claim: a fundamental, falsifiable conclusion proven through the logical support

of the related entities in the argument graph. Example: “The city of Atlanta

should invest more in public transportation infrastructure.”

2. Grounds/Data: empirical or factual evidence, usually collected at-scale or

through self-evident observation, which suggests the truth of the claim. Example:

“Studies prove that cities with e�cient public transportation have lower tra�c

congestion, reduced air pollution, and higher economic output expressed in

GDP.”
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3. Warrant: a fundamental and unique component to the Toulmin model, the

warrant connects the grounds to the claim by o↵ering reasons explaining the

evidence that data o↵ers. The warrant provides the argument with a causal

component, as without it grounds are often based on correlations and confounded

by other factors. Example: “by o↵ering an alternative to motor transport,

public transportation decreases the volume of vehicles on the road, o↵sets carbon

emissions, and o↵ers economic mobility for those who cannot a↵ord a car.”

4. Backing: related to Aristotle’s notion of ethos, backing strengthens the believ-

ability of the warrant through details such as proof of methodological robustness,

qualifications of publishing authors, or new data that isolates the causal mecha-

nisms in the warrant. Example: “Studies from the Georgia Transit Association

use tests of statistical significant to isolate increases in GDP for counties that

invest in public transportation infrastructure.”

5. Qualifier: used to limit the scope of the initial claim, qualifiers justify establish

distinctions between the general case and the particular claim to prove. Ex-

ample: “While not all counties in Georgia benefit from public transportation

projects, urban and suburban districts in the Perimeter show immense promise

for modernization of MARTA train and bus lines.”

6. Rebuttal: an answer to potential counterarguments. Example: “Some down-

play the economic e↵ects of public transportation, citing the cost of an initial

investment. However, higher levels of urban productivity, costs saved due to

less vehicular transport and long-term project scaling ensure that such a project

could pay for itself.”

Due to its clear, diagrammatic structure and graph-like representation, the Toulmin

model is a widely taught method of systematic argumentation that has prompted

spin-o↵ structures such as the Rogerian argument [83]. The Toulmin model has had a
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Figure 2.1: A network diagram of the Toulmin model, featuring major components
and their relations

significant impact across multiple fields, including law, politics, education, and artificial

intelligence. While critics disagree over the necessity of covering each of its components

to produce a sound argument, the extensive nature of its classification o↵ers a strong,

near-exhaustive ontology for the decomposition of well-reasoned arguments.

In the context of natural language processing, the Toulmin model was identified as

a superior hierarchical system for advancing sentence-wide parsers as early as 2009 [91].

These works operated at the intersection of artificial reasoning, formal verification,

and argumentation software which precedes modern natural language capabilities.

The Toulmin model has become a powerful influence for scholars of computational

linguistics as it bridges the gap between rhetorical tradition and parsed structure. It

continues to form the basis of annotation schema [93, 45].
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2.2.4 Alternative Theorists and the Structured Language

Problem

While the models proposed by Toulmin and Aristotle are among the most cited in the

argumentation theory literature, they are certainly not the only proposed ontological

structures (see [87, 88, 94]). In Antiquity, the statesman and lawyer Cicero also

produced a six-point framework: exordium (introduction), narratio (statement of facts),

divisio (delineation of arguments), confirmatio (proof and evidence), refutatio (refuting

potential counterarguments), peroratio (conclusion)[43]. Due to his background as

an orator and consul, his thinking centered on public persuasion at the expense of

robust categorization, making his taxonomy less appropriate for formal compositions

of argument. Meanwhile, the Rogerian argument [83] evolved from an empathetic

background, attempting to bridge the understanding gap through attempting to view

arguments dialectically.

2.2.5 Conclusion

As a task in computational linguistics, argument mining derives its philosophical

roots from a theory of formal logic and composition millennia in the making. While

humanity has long sought to impose a rational hierarchy over the fluid dynamics of

rhetorical exchange, the empirical reality of written and spoken communication proves

to be more dynamic, with arguments often oscillating between di↵erent functions and

carrying non-argumentative text as well.

These strategies, however, form a basis with which one can mine the key positions

in a paragraph and determine their interrelation. In ensuing sections, we will review

argument mining as a distinct computational tradition in natural language processing,

before unpacking the methodological abstraction behind argument mining – the task

family known as structure prediction.
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2.3 Argument Mining

2.3.1 Introduction

At the confluence of rhetorical composition theory and structure prediction (Section 2.4)

sits the scholarship known as argument mining [42, 77]. With ever-larger collections

of argumentative language becoming available due to the predominance of digital

communication, ample opportunity exists to interpret the relationships between

expressed opinions, factual evidence, and warranted argumentation. Such research

enables at-scale interpretation of the major factors that determine opinions exhibited

by users online. Argument mining assumes the challenge of long-context entity

and relation extraction, where phrase- or sentence-long fragments of argumentative

language form each unit. Research in argument mining grapples with the subjectivity

inherent to structures mapped onto fluid, dynamic natural language. Successful

argument mining systems are capable of typing sentences as premises and claims

(or, depending on training data, with deeper labels such as values, policies, facts,

references, etc.) and establishing typed relations (reasons, supports, attacks) between

entities. As a result, argument mining holds significant potential for applications in

fields such as computational social science, legal analysis, and automated fact-checking,

where discerning the structure of reasoning is crucial.

The following sections will first di↵erentiate argument mining from relation ex-

traction with its sub-components before outlining a cursory history of explorations in

argument mining, the field’s adoption of statistical and neural architectures, and the

growing interest in designing end-to-end trainable systems instead of pipelines. After

covering key datasets that have emerged throughout this history, we will explore some

successful approaches in recent history, drawing parallels between the representation

encoding and dynamic encoding paradigms from structure prediction.
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2.3.2 Subtasks of Argument Mining

Identifying Argumentative Discourse Units

Methods for argument mining historically resemble those for joint entity-relation

extraction, following a similar history of pipeline-based subtask modeling and classifi-

cation environments. Argument mining distinguishes itself from relation extraction

by the expansion of entity spans from a few tokens (such as noun or verb phrases)

to Argumentative Discourse Units [63] (ADUs), each roughly the span of a sentence,

sub-sentence clause [27], or prosodic unit [31] (depending on definition). The broader

scale of argument mining also lends itself to greater subjectivity in entity types and

relation pairs, evidenced by lower agreement scores between annotators.

Identifying argumentative discourse units begins with a segmentation task to

identify beginnings and ends of argumentative spans, followed by a classification task

to subsequently identify the entity type of the segmented span. This is equivalent to

the entity recognition/extraction task defined by structure prediction 2.4.4.

The classification taxonomies used to type argument entities vary widely by ap-

plication, model function, and historical context. In classical rhetorical theory, for

instance, Reynolds and Reynolds [70] produce a set of argumentative “stases”, which

may be classified as statistical, testimonial, anecdotal and analogical. Hoeken and

Hustinx [32] build a similar taxonomy of individual examples, statistical evidence,

causal explanations and expert opinions. Earlier, Fahnestok and Secor [24] type argu-

ments as either fact, definition, cause, value, or action. More recently, argument types

depart from classical theories of rhetoric in service of defining functions for computa-

tional modeling; these may fall along binary classes, notably verifiable/unverifiable

statements [30, 62, 37].
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Identifying Relations Between ADUs

Once argumentative discourse units are identified and classified, the next crucial

subtask involves relation extraction, which aims to identify how these units interact.

Relation extraction in argument mining di↵ers from traditional relation extraction

in that relations are inherently more abstract, often reflecting logical or rhetorical

connections rather than concrete entity-entity interactions. This abstract nature

makes relation annotation more subjective, leading to challenges in inter-annotator

agreement.

Again, the types of relations identified between arguments vary by use case. Many

relation types operate on a support/attack binary [69, 74, 19], indicating whether

an argument supports or undermines another argument in the document. Recent

research has also invested in modeling “undercuts”[100], or relations where an argument

attempts to disprove the reason that a premise may support a claim, rather than

refuting the claim or premise directly. Other relation types have been explored, such

as evidence and reason, used by Park and Cardie [60, 61].

A final stage in argument mining involves discourse-level construction of knowledge

graphs, where extracted components and relations are assembled into coherent argu-

ment graphs. These structures range from simple tree-like configurations to complex

non-hierarchical graphs representing nuanced multi-perspective debates [93]. Some

approaches employ pre-defined templates, while others utilize end-to-end machine

learning models that infer the most likely graph structure given a corpus.

2.3.3 Key Datasets

Argument mining relies on annotated datasets to train and evaluate models that can

identify and extract argumentative structures from text. Many di↵erent datasets exist

which span across di↵erent functions, domain contexts, annotation schemata, and sizes.

The scale of argument mining datasets is limited by the di�culty of hand-annotation
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in data environments:

Cornell eRulemaking Corpus (CDCP)

Introduced by Park and Cardie [61], the CDCP dataset consists of 731 user comments

from an eRulemaking platform concerning Consumer Debt Collection Practices. The

corpus includes 4,931 elementary units categorized into five component types: fact,

testimony, reference, value, and policy. Additionally, it annotates 1,221 support

relations of types reason and evidence. This dataset is valuable for understanding how

arguments are structured in public comments on regulatory matters.

Argument Annotated Essays Corpus (AAEC)

Developed by Stab and Gurevych [76], the AAEC comprises 402 persuasive essays

written by students. Each essay is annotated with argumentative components such as

major claims, claims, and premises, and relations labeled as support or attack. The

corpus contains 751 major claims, 1,506 claims, and 3,832 premises, connected by

3,613 support and 219 attack relations. This dataset is widely used for research on

argumentation structures in educational contexts.

AbstRCT

The AbstRCT dataset, introduced by Mayer et al. [48], comprises 6,000 abstracts

from PubMed, annotated with argumentative components and relations. This dataset

is particularly useful for studying argumentation in scientific writing, focusing on how

researchers construct and present arguments in biomedical literature.

IBM’s Project Debater

The Project Debater Corpus [71] is a large-scale dataset for Context-Dependent

Evidence Detection (CDED), consisting of 547 Wikipedia articles across 58 debate
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topics. In the 39 training topics, annotators identified 3,057 evidence segments from

274 articles, averaging 2.9 supporting evidence per claim.

The dataset categorizes evidence into Study (empirical results), Expert (authorita-

tive statements), and Anecdotal (narratives). It played a key role in IBM’s Project

Debater, advancing automated evidence retrieval and argument mining.

Recent research has attempted to unify the various types of entities and relations

defined in these datasets [25]. The heterogeneity of di↵erent annotation schemata

make the task of generalization across datasets particularly challenging. Nevertheless,

these datasets have played a crucial role in advancing argument mining research by

providing annotated corpora for training and evaluating computational models.

2.3.4 A Brief History

The complexity of argument mining’s subtasks necessitates a variety of modeling

strategies, from rule-based heuristics to deep learning architectures. Traditional

pipeline-based models separate segmentation, classification, and relation extraction,

allowing modular improvements but risking cascading errors. End-to-end neural

approaches, leveraging transformer-based architectures and structured prediction

techniques, increasingly dominate recent e↵orts by optimizing for joint learning across

these tasks. This section provides a historical overview of argument mining research,

highlighting key datasets, methodologies, and innovations that have shaped the field.

Early History

The earliest approaches to argument mining precede the formal definition of the

task and focus largely on the subtask of entity identification/classification within

language. Unlike traditional relation extraction methods, argument mining research

has employed statistical and machine learning-based techniques since its inception.
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These earliest statistical techniques employ hand-crafted features as vectorized

categorical and numerical data as model inputs. Some of the earliest work, done by

Moens et. al [52, 51], adopts a simple argumentative/non-argumentative classification

task on isolated sentences split from unstructured text corpora. They then apply a

Näıve Bayes classifier over word couples, textual statistical features, and a bag-of-

words representation of verbs. This follows a series of publications intended for legal

audiences regarding the use of argumentative legal agents using rule-based methods

extracted from manual annotation interfaces [90, 91]. The initial task definition applies

a simple sentence-based segmentation strategy to produce Elementary Discourse Units

(EDUs) and employs a binary classifier to filter for those units which are explicitly

argumentative. Later, Moens et. al introduce a claim/premise classification task for

units which are categorized as argumentative [50].

Parallel to this work, “argumentative zoning” [85] is framed as a segmentation and

classification task geared towards scientific publications, using “background”, “aim”,

“method”, “result”, “conclusion”, “discussion” and “future work” as potential labels.

This approach allows for the structured analysis of scientific texts by identifying the

rhetorical roles of di↵erent sections, facilitating tasks such as summarization, citation

analysis, and information retrieval.

The consideration of relations between arguments is not considered in the initial

argument mining literature. While Mochales and Moens broach the subject of inducing

relational structures by parsing classified claims and premises to build structure trees

[51], the method relies exclusively on the results of the classification schema and

introduces no statistical methodology to construct relations. Later work critiques this

approach, introducing the question of relation extraction as an argument mining task

and advocating for a relation-first approach [10].

Several early approaches respond to the call for relation-based argument mining

(known as Argument Relation Identification). In one case, researchers propose manual
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feature extraction to gather pointwise mutual information scores on key relational

terms like “however” and “thus”, as well as noun features that count the number

of shared nouns between two component structures [76]. These are inputs to a

constrained optimization problem solved with Integer Linear Programming, achieving

an aggregate F1 score of 75% on relations extracted from known components. Another

paper [14] stands out as among the first approaches to explicitly incorporate deep

learning. For any two ADUs, Cocarascu and Toni create separate embeddings with

GloVe and LSTMs before merging the embeddings, using a dense feedforward network

with a softmax classifier head to produce the final, multinomial classification of attack,

support, or neither. This architecture produced impressive results, especially when the

GloVe embeddings themselves were trained. It serves as a precursor to more recent

transformer-based approaches that leverage contextual embeddings for Argument

Relation Identification.

Going Deep

As large, pretrained language models demonstrated remarkable improvements in

natural language understanding and structure prediction, they were increasingly used

to tackle argument mining.

The first deep networks used in an argument mining setting relied on word

embeddings generated from GloVe as inputs, processed with a recurrent network

architecture, and classified with outputs from a feedforward network. Foundational

work relies upon a bidirectional LSTM framework augmented with a convolutional

neural network designed to capture dependencies from out-of-vocabulary words with

character-level relations (BLC, or Bidirectional LSTM-CNN, for short). In Eger et. al,

a BLC is used in two models: one to design a tagging classification scheme which uses

cross-task tags to jointly model entities and relations, and another which separately

models entities and relations, using TreeLSTM to generate many possible relations [20].
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This work optimized the LSTM experiments conducted in [14], proposing the BLCC

and LSTM-ER architectures with a set of ablations to determine the contributing

factors in improved model architecture [11]. The results demonstrate that while both

systems have relative advantages, the pipeline-based, weight-shared LSTM model

outperforms in short-context cases due to the advantage of fine-tuning a model on

two separate tasks while employing the same parameter sets.

Ye and Teufel [99] incorporate some of the first end-to-end systems with BERT-

based bia�ne dependency parsing, dividing tasks not only on the basis of entity

and relation but also on identifying vs. labeling. The parser treats both component

and relation argument tags as a dependency graph, representing the boundaries and

labels of entities with BILOU tagging before passing to a bia�ne parser to calculate

dependency tags on relations as edges. The end-to-end system is jointly trained on

a BERT encoder [17] before fine-tuning on separate FNN heads. BERT encodings

provide significant performance improvements in both the component and relation

classification environment, demonstrating the relevance of task-specific fine-tuning for

large, pretrained language models. Further research has demonstrated how improving

the underlying language model leads to outsized performance gains on the end-to-end

task [53].

Subsequent advances in Argument Relation Identification have leveraged even more

sophisticated transformer-based models, incorporating multi-task learning, contrastive

loss functions, and external knowledge graphs to refine relational inferences. One key

development was the application of cross-attention mechanisms to explicitly model the

interdependencies between argumentative discourse units (ADUs). By encoding ADUs

separately and then applying a cross-attention layer, models could dynamically weigh

the influence of each unit when predicting their relationship, leading to improved

classification accuracy.

Increasingly, the focus on pretrained language modeling has sought to eliminate
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the need for task-specific architectures, utilizing the strengths of generative language

modeling to produce sound results. Some key work begins to tease out the roles

that this intersection may play in analysis. Many works use generative modeling

in a classification-style setting, where a prompt includes a full text, an extracted

portion of said text, and a query to identify a label or argument from a set. In

these cases, model outputs are parsed for each generative call for an argumentative

component O(n) or for each pair of argumentative components O(n2), where n is

the number of pre-identified segmented components. While such baselines exhibit

strong results in component [8, 3, 36] and relation [26, 25] classification, they appear

computationally ine�cient due to overheads incurred from engaging autoregressive

decoders to compute model outputs. The similarity in performance of these results to

encoder-based classification methods above challenges the need for generative models

for e↵ective relation extraction.

On the other hand, some work has begun to consider e�cient, one-pass approaches

to generative argument mining. Kawarada et. al [40] incorporate the TANL framework

[59] to train T5 [68], an encoder-decoder model, to segment text into ADUs, classify

said ADUs, and identify and type relations between them in one pass (see 2.4.4). TANL,

or Translation through Augmented Natural Language, frames structure prediction as

a machine translation task going from raw text input to augmented natural language

- a reiteration of the same text input with structured annotations to incorporate

attributes such as entity type and relations. TANL allows the extraction of structure

information from output texts with basic text manipulations, assuming that a model

adheres to the output requirements and the input text can be reconstructed from its

output. This intervention is critical to employing generative models as classifiers, but

it also creates the possibility for noisy outputs, as deficits in model accuracy may be

the consequence of poor adherence to the structure format, as opposed to attempts to

decode correct annotations. We explore TANL and the implications of its adherence
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gap, dubbed errors in compliance, in Chapter 3).

Another generative argument mining paper by Sun et. al [80] uses a remarkably

sophisticated architecture to enable greater prompt interactivity, passing encoder

embeddings through a relational Graph Convolution Network before subsequently

decoding with an interactive prompt framework. This approach translates the original

text to a serialized list of graph entities and triplets, infusing it with structural

information.

2.4 Structure Prediction

2.4.1 Introduction

Finally, we consider structure prediction, the formal task family which encompasses

computational argument mining. Structure prediction refers to a classification task in

natural language processing which automatically applies some predefined semantic

schema to labeling components of unstructured text. Examples of structure prediction

include tasks like “named entity recognition”, the extraction and labeling of proper

nouns such as names, places, or geopolitical entities; “relation extraction”, where

relations between named entities are identified as edges between entities and labeled;

“coreference resolution”, a subset of relation extraction which merges named entities

by identifying similar/identical entities; “dependency parsing”, when each word in a

sentence is assigned some position in a hierarchy of grammatical relations, and so forth.

This review discusses entity and relation extraction at length, at times formulating

them as a joint task to be done in one pass by a model.

2.4.2 Named Entity Recognition

“Named entity recognition”, or NER, identifies spans in text containing discrete con-

cepts like people or places [1]. Evolution of NER occurred in four phases. First came
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naive rule-based systems, which rely exclusively on a knowledge base, predetermined

rules and dictionaries in order to flag relevant entities [22, 55]. Traditional statisti-

cal/machine learning methods quickly followed, distilling features from text to produce

parameterized models of various architectures such as conditional random fields [72],

support vector machines [41], and hidden Markov models [54]. As computational ca-

pabilities began to match the complex models in deep learning, task-specific recurrent

neural networks and long short-term memory models were successfully applied to NER

[12]. Most recently, the success of attention-based Pretrained Language Models has

encouraged prompt-based applications, where di↵erent multi-turn QA environments

encourage stronger, data-e�cient model results [6, 105].

2.4.3 Relation Extraction

“Relation extraction” (RE) infers a set of relational triplets from unstructured data,

often assuming preexisting knowledge of entities. An RE system must parse the

unstructured data source (usually, a large body of text) to produce relational triplets

in the style of the Resource Description Framework (RDF). Popular early models

[21, 5, 23] used extensive dependency parsing systems as well as some limited parame-

terized/trainable functions to identify strong candidates for relations. In this context,

relation extraction is often framed as a classification task with a finite set of given

nodes, predicting relations through operations on node-pairwise tensor D 2 Rn⇥n⇥d,

where n is the number of nodes and d is the size of the relation embedding. Like

named entity recognition, relation extraction scaled well with evolution in deep learn-

ing thanks to architectures like recurrent neural networks (RNNs) [104] and, more

recently, pretrained language models – both as encoders for classifier systems and as

generators using the translation paradigm [59]. Relation extraction is the basis for

joint entity-relation extraction.



27

2.4.4 Joint Entity-Relation Extraction

Joint entity-relation extraction (JERE) aims to simultaneously identify entities and

their relationships within a given text [104, 106, 105]. This task is more complex than

isolated NER or RE as it requires models to both isolate latent entities and declare

semantic connections at the same time. Traditional approaches often utilize pipelined

systems where NER is performed first, followed by RE. However, these pipelines su↵er

from error propagation and fail to capture the interdependent nature of entities and

relations.

Recent advances in deep learning have enabled the development of end-to-end

models that jointly learn to extract entities and relations [35, 46, 49]. These models

often leverage shared representations and joint decoding mechanisms to improve

performance. For instance, sequence-to-sequence models have shown promise in

generating structured outputs that capture both entities and their relationships [59].

Additionally, graph-based models have been used to explicitly model the dependencies

between entities and relations, leading to improved accuracy [97, 15, 47].

The shift towards generative models, particularly those based on pretrained lan-

guage models, has further enhanced the capabilities of JERE systems. By framing

JERE as a sequence generation task, these models can leverage their strong language

understanding and generation abilities to produce coherent and accurate entity-relation

triplets. This approach not only simplifies the model architecture but also improves

robustness and generalization.

2.4.5 Challenges

While much progress has been made in automated methods for joint entity-relation

extraction, several key roadblocks persist:

1. Data Scarcity: there are no natural data generation processes for abstract
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relation ontologies, placing the burden on manual annotators to produce labels

by hand. Key datasets use noisy or PLM-generated data to address this, which

might propagate existing errors or flaws in the annotations available [79].

2. Inter-annotator Agreement: Relatedly, since a given input yields many

acceptable node and edge designations, agreement between annotators is low.

To resolve this, limited re-annotation e↵orts have been made to include several

right answers. This is especially the case in the context of argument mining, per

the Structured Language Problem.

3. Long-Tail Sparsity: Audits of key datasets TACRED[4] and DocRED[34]

reveal a sparsity of long-tail or rare relation types, due to gaps in annotation

quality along specific types. This causes training data to over-fit to easy relations

and miss triplets obvious to human readers. To address this, researchers propose

re-annotation to include rarer entities, or direct instruction in the case of synthetic

data. However, such sparsity depends on the domain and context of the dataset.

4. Heterogeneous schema: Relation types are not uniform and reflect the context

of their data. This makes it more di�cult for PLMs to scale from multiple sources

or datasets. Unified schema representations seek to harness this heterogeneity

to encourage greater model generalization [47, 96].

2.4.6 Language Models for Joint Entity-Relation Extraction

Researchers have successfully employed two primary strategies to leverage language

models in their methods:

• Representation Encoding: LLMs yield latent embedding or attention weights

which are aggregated to produce relation scores, in a matter akin to binary

candidate classification.
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• Direct Decoding: LLMs, typically encoder-decoders, generate entities and/or

relations themselves. The output is a linearization of an edgelist T 2 R(h,r,t)⇥m

as E and R can be reconstructed from T .

Table 2.1: A survey of featured models

Model PLM Type Notes

Encoding-based models
MaMa [95] BERT,

GPT2
Enc. Only uses attention matrix

ATG [101] DeBERTa* Enc. Encodes spans in a limited vocabulary
matrix.

Grapher [49] T5 Enc./Dec. Modular inputs, end-to-end di↵eren-
tiable. The only node-first approach
listed.

ReLik [58] E5 Enc. Two encoders – one for relations, one
for “reading”

Generation-based models
TANL [59] T5 Enc./Dec. Original seq2seq problem formulation
KnowCoder [46] Enc./Dec. Code Generation instruct-based LLM

from scratch
DeepStruct [96] Enc./Dec. Pretraining on schema generation and

prediction
REBEL [35] BART Enc./Dec. TANL-like on BART with fine-tuning
ReGen [18] T5 Enc./Dec. Fine-tuning with RL-inspired loss func-

tions
GenIE [39] BART Enc./Dec. Beam search during inference for con-

strained generation
UIE [47] T5 Enc./Dec. Universal schema framework and model-

generated schemas
EDC [102] Several Dec. Explicit “schema” and “canonicaliza-

tion” definitions
PiVE [29] T5, GPT Enc.-Dec. Iterative Verification

Representation Encoding Encoding-based models, such as MaMa [95], utilize

LLM attention matrices for relation extraction. Other frameworks, like ATG [101]

and ReLik [58], optimize latent state representations for classification. Grapher [49]

o↵ers a hybrid approach, generating nodes and classifying edges.
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Direct Decoding The generative paradigm, exemplified by TANL [59], reframes

JERE as a sequence-to-sequence task, directly generating entity-relation triplets.

REBEL [35] and BT5 [2] further this approach with fine-tuned BART and T5 models.

Recent innovations focus on optimizing generation through customized loss functions,

like the self-critical sequence training (SCST) used in ReGen [18], GenIE [39], and

PiVE [29], which reduces gradient variance. Creative pretraining strategies, such as

DeepStruct [96] and KnowCoder [46], aim to enhance LLM understanding of structured

prediction by pretraining on diverse tasks and converting schemas to code generation

environments, respectively. These methods address data scarcity and improve model

generalization.

The self-critical sequence training loss function is defined as:

r✓LSCST / � (R(x̂T )�R(x⇤
T ))r✓ log p✓(x̂T , ) (2.1)

where R(x̂T ) is the generated text, R(x⇤
T ) is the greedy-max optimized baseline, and

✓ refers to model parameters.

2.5 Conclusion

We have thus laid the groundwork for understanding argument mining by exploring its

philosophical origins in rhetorical theory, its technical parallels in structure prediction,

and its unique challenges as a field of study. By examining the contributions of

Aristotle and Toulmin, we established a theoretical framework for argumentative

discourse. We then transitioned to the technical aspects of structure prediction,

detailing the evolution of methods for entity recognition and relation extraction,

culminating in the complexities of joint entity-relation extraction. Finally, we explored

the specific domain of argument mining, highlighting its distinctions and the ongoing

shift towards generative models. The challenges inherent in argument mining, such as
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data scarcity, inter-annotator agreement, and the nuanced nature of argumentative

language, underscore the need for innovative approaches. The progression towards

end-to-end trainable systems, particularly those leveraging large language models,

represents a promising direction for overcoming these obstacles. Subsequently, we will

surface key evaluation criteria for understanding a post-language model paradigm for

argument mining, focusing on e�cient and scalable solutions without compromising

the formal requirements of a classification-based task.



Chapter 3

Approach

3.1 Introduction

Here, we define the scope of our project as an audit of pretrained language model

capabilities for end-to-end, joint entity-relation extraction of arguments. After formally

defining the problem, we explore four key dimensions of argument mining to determine

the limits of language models in this domain:

• Labeling Strategies: traditionally, relation extraction tasks assume entities

that comprise very few words. As our task uses entities that span one or more

sentences, referencing entities with full token spans could increase latency and

even reduce performance due to longer context windows. We consider the impact

of instead using numerical labels as well as abstractive summarization techniques.

• Encoder-Decoder v. Decoder-only Models: the necessity of encoders in

e↵ective language modeling has been a subject of debate given the popularization

of attention-based auto-regressive modeling [89]. We experiment with leading

models under these two architectures to compare their e↵ectiveness and o↵er

theories for performance imbalances.

• The Necessity of Fine-Tuning: large language models exhibit an emergent

32
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capability of in-context learning, leveraging knowledge gained in the pretrain-

ing process to incorporate dense embedding and attention structures. While

sequence-to-sequence models typically require fine-tuning for maximal e↵ective-

ness, we measure the impact of fine-tuning on performance of decoder-only

models.

• End-to-End Extraction v. Relation-Only: while we strive for an end-to-

end system, entity recognition is an upper bound on relation performance. We

conduct experiments where a model is given a segmented and labeled instance

of text to evaluate improvements on relation extraction.

Then, we turn to the key criteria necessary to evaluate performance. Metrics for

performance fall under two categories.

First, we consider compliance, which relates to a model’s capability to adhere to

the structure of the problem without guided decoding. Across our four dimensions,

we consider the integrity of an input after removing annotations (reconstruction

error), adherence to label categories for entities and relations (label error), erroneous

formats on tags (format error), and relations with imprecise, non-existent, or otherwise

irretrievable entities (entity error).

Second, we consider accuracy. Assuming high compliance with the augmented

natural language, we measure the proximity of model outputs to ground truth labels

with traditional metrics such as precision, recall, and F1 scores. As we are especially

interested in a model’s ability to produce relations, we consider a relaxed criterion

for relations which removes labels from entities and relations, requiring only that the

spans of head and tail entities match.

We conclude with reflections on directions for future audits. Potential experiments

could center model size, comparison across datasets or open, out-of-distribution

argumentative relation extraction, as well as the impact of cascading errors in an

end-to-end generation environment such as ours.
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3.2 Problem Formulation

We define the task of jointly mining entities and relations in arguments as an end-to-end

process.

3.2.1 Joint Entity-Relation Extraction

Entity Labeling

Entity labeling is defined as the process of identifying and classifying specific spans of

text that correspond to entities within a given document. An entity can be defined as

any mention of a concrete or abstract object, such as a person, organization, location,

or date. More formally, given a text T = {t1, t2, ..., tn}, entity labeling consists of

identifying a set of token spans S = {s1, s2, ..., sm}, where each span si = [ta, tb]

represents the boundaries of an entity in the text, and assigning a label Li to each

span such that:

EntityLabel(si) = Li, si 2 S, Li 2 Lentity,

where Lentity represents the set of all possible entity labels (e.g., Policy, Value, Fact,

Testimony, etc.).

Relation Extraction

Relation extraction is the task of identifying the semantic relationship between pairs

of entities within a given text. Formally, given two entity spans s1 and s2 from the

set S defined earlier, the relation extraction task can be represented as identifying

a relation r from a set of predefined relations Lrelation between the two entities such

that:

Relation(s1, s2) = r, r 2 Lrelation,
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where Lrelation represents the set of possible relations (e.g., ”reason for”, ”evidence

of”). This task involves not only the identification of entity spans but also the correct

identification of the relation that connects the entities.

Joint Problem Formulation

In the joint entity-relation extraction task, we aim to simultaneously extract both

entities and their corresponding relations from a given text. Formally, the goal is to

extract a set of entity spans S = {s1, s2, ..., sm} and a set of relations R = {r1, r2, ..., rp}

such that for each relation ri in R, there exist two entities sa and sb in S where:

ri = Relation(sa, sb), for sa, sb 2 S, ri 2 Lrelation.

The joint task can be approached as a sequence-to-sequence problem, where the

model must generate both the entity spans and their relations in a single end-to-end

pass. The final output consists of a set of entity-span pairs, along with the relations

that exist between them, as structured entities.

3.2.2 Generation v. Classification

A key distinction in both argument mining and joint entity-relation extraction litera-

ture is the use of generative modeling to produce entities and relations. Previously,

classification-based approaches defined the entity extraction component as a classifica-

tion task determining the probability that a token was at the start, middle, or end of

an entity span using BILOU or IOB tags. Similarly, relation extraction was defined

given predetermined entities, and assessing if a relation exists between them with a

null class to signify no relation.

However, we employ an augmented natural language framework. This means that

we attempt to reproduce an input text with separators and delimiters, such that
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we can parse our output automatically. This is what Paolini et. al[59] refer to as

translation through augmented natural language (TANL).

3.2.3 The TANL Framework

Translation through augmented natural language (TANL) is an abstract framework

framing structured prediction as a sequence-to-sequence translation. TANL takes a

document as input and returns a similar output sequence which adds brackets around

identified entity spans and appends task-specific metadata through delimiters within

the bracket spans:

si = [entity text | attribute1 = value1 | attribute2 = value2 | . . . ]

In the context of joint entity-relation extraction, the attributes refer to entity types,

and relation types to tails (Table 3.1). Generated outputs are expected to follow this

schema for e�cient parsing.

Entity Text Label Relations
I disagree. value

Keeping a paper trail protects everyone. value (reason, I disagree.)

Table 3.1: Parse structure for [I disagree.|value][Keeping a paper trail
protects everyone.|value|reason=I disagree.]
The original sentence is I disagree. Keeping a paper trail protects
everyone. Abridged sample of CDCP dataset.

3.3 Key Questions

We reiterate the key research questions which motivate our experiments. While there

are many dimensions to consider in the open problem space of argument mining, we

select those which appear most task-intrinsic and crucial to a case study of long-context

joint entity-relation extraction.
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3.3.1 Argument Annotation Strategy

How does the representation of entities and relations in the output a↵ect model

performance, especially in long-context arguments? Specifically, we investigate whether

alternative annotation strategies can improve e�ciency without sacrificing accuracy.

We compare three output formats:

• Full Token Spans: Standard TANL output, using actual text spans.

• Numerical IDs: Shortening outputs with numerical identifiers.

• Abstractive Summaries: Condensing entities with generated summaries.

The core questions are: Can numerical IDs reduce latency, and at what cost to

accuracy? Will abstractive summaries maintain TANL compliance? We hypothesize

that numerical IDs may trade accuracy for e�ciency, and abstractive summaries will

likely introduce TANL compliance errors. We expect full token spans to yield the

highest accuracy, assuming long-context handling is not a limitation.

3.3.2 Encoder-Decoder v. Decoder-only

Since the publication of ”Attention is All You Need”[89], researchers have steadily

departed from including encoding architectures when designing generative language

models. The auto-regressive, decoding-based transformer has taken a monopoly in

natural language processing as an optimal configuration for its e�ciency, scaling

capabilities, and representative capacity in pretraining. While decoder-only models

have proven highly e↵ective, encoder-decoder models such as BART[44] or T5[68]

carry certain asymmetric advantages by framing problems as sequence-to-sequence

pretraining with masked language modeling, rather than through next-word prediction.

Their bidirectionality, encoding module, and adaptability to downstream fine-tuning
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render them exceptionally capable, often outperforming state-of-the-art autoregressive

LLMs[66].

We explore how this dynamic plays out in the specific context of joint entity-

relation extraction, particularly within the TANL framework and with long-context

arguments. Specifically, we aim to determine whether the inherent advantages of

encoder-decoder models, such as their ability to capture long-range dependencies

through bidirectional encoding, translate into superior performance in this structured

prediction task. Conversely, we investigate if the generative capabilities and e�ciency

of decoder-only models provide a competitive edge.

To this end, we will compare the performance of encoder-decoder models (T5 and

BART) with decoder-only models (Llama 3.2 3B, Mistral 7B, Qwen 2.5 7B, and GPT-

4o (few-shot)). We would like to compare the performance of seq2seq models with

decoder-only models, determining if recent innovations in decoder-only architectures

can outpace the intrinsic benefits of older models.

3.3.3 Few-Shot v. Fine-Tuning

Here we consider how fine-tuning compares to few-shot, in-context learning for joint

entity-relation extraction with decoder-only models. Specifically, we aim to answer:

Can fine-tuning smaller models achieve higher accuracy than few-shot learning with

larger models?

We investigate the performance di↵erences between these two training paradigms,

focusing on accuracy. We compare di↵erent decoder-only model families, evaluating

their performance with a baseline few-shot prompting strategy and fine-tuning. Fine-

tuning methodologies will be detailed in the experiments section.

We are primarily concerned with accuracy and measure performance using accuracy

and compliance metrics.
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3.3.4 End-to-End v. Relation-only

This ablation relaxes the nature of the task by eliminating the need to correctly

segment relations. The correctness of relation extraction in the joint entity-relation

environment is upper bounded by the correct segmentation of entities. If an entity is

improperly defined, either in terms of its starting or ending spans or by type, then

there is no chance that it correctly identifies ground truth relations.

In light of this, we consider an environment where a model input already has

entities defined, and the desired output is the same input with relations included

as tags on existing entities. This lowers the standard for performance in two ways.

First, it removes the need for precision when labeling and spanning entity arguments.

Second, the relation-only nature of the task allows loss functions to purely reflect

capability in identifying other labels, as opposed to incorporating entity spans.

Naturally, model performance in this space would improve as a function of resolving

the entity problem. Here, we aim to directly understand a model’s ability to recognize

claims and premises.

3.4 Evaluation Criteria

To measure the impact of these levers on model performance, we evaluate performance

based on compliance and accuracy. Compliance, unique to framing entity/relation

extraction in a generative environment, measures how well model generations accord

to the expected parameters of the format. This includes whether a model output

can be correctly parsed, whether it resembles the original sentence, whether related

entities exist or are hallucinations, and whether the entity and relation types are a

part of the dataset schema.
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3.4.1 Compliance

Argument mining and relation extraction systems which use generative models en-

counter the particular challenge of ensuring that model outputs comply with their

expected format. Such questions are crucial when engaging language models as pars-

ing agents or for structured language tasks like SQL generation [73, 75] and tabular

understanding [82]. In the context of structured prediction for relation extraction,

Paolini et. al [59] study the e↵ect of di↵erent testing environments on the quality of

model outputs, isolating four error criteria.

The quick brown fox jumps over the lazy dog.

The [quick brown fox | animal | jumps = dog ] jumped over the [lazy dog | dog | ].

Figure 3.1: An example of the four error types
, where animal is the only valid entity type and jump is the only valid relation type.
Entity error in red , reconstruction error in yellow , label error in blue , and format
error in green .

Reconstruction error: When a generative model re-produces an input text,

it may incorrectly do so, omitting, hallucinating, or modifying punctuation and

semantically meaningful content. Paolini et. al refer to this as reconstruction error, as

it is determined after processing a model output to extract tags and value information.

Reconstruction error is determined by matching sequences to original input. Paolini

et. al introduce a post-processing alignment algorithm based on Needleman-Wunsch’s

dynamic programming solution [56], which computes a minimal-cost adjustment

schema based on a matrix of previous adjustments.

Entity error: When generating relation tags, the related entity (or the tail) may

be attributed to an entity which does not exist. Entities are defined by the bracketed

text which appears in the input, or may be mapped to a shorthand numerical/summary

label which presents in the first tag (the entity class). In the example above, ”dog” is
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not a valid entity, while ”lazy dog” would be.

Label error: Sometimes, models hallucinate labels which are not part of the

defined entity or relation types, such as ”dog” above. These are label errors as they

map entities and relations to types not given.

Format error: If the format of the augmented natural language (namely the

square brackets and | delimiter) are incorrectly formed, a sentence produces a format

error. The extra delimiter in Figure ?? is an example.

Under our evaluation framework, we measure each error type as a simple true/false

value for each example. For any example, a model which makes more than one error

of any type will receive an error score of at most 1 for that type.

3.4.2 Accuracy

Structured prediction tasks such as named entity recognition and relation extrac-

tion are ultimately forms of span classification. As classification tasks, the most

descriptive evaluation frameworks come from the standard precision, recall, and F1

scores. However, the question becomes which unit to evaluate under. We follow the

work of other argument mining researchers [76, 53, 20, 99, 40, 80] to consider each

Argumentative Discourse Units as the basis for analysis, as opposed to token-level or

sentence-level classification. This creates some gray area as the accuracy of a relation

is upper-bounded by the accuracy of the entities which it connects. We consider three

distinct measurements of accuracy:

1. Entity Classification: Models are evaluated on the start token, end token,

and class of each ADU.

2. Relation Identification: Models are evaluated on the start and end tokens for

the head and tail of each relation between ADUs.

3. Relation Classification: Models are evaluated on start, end, and class for the
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head and tail, as well as the correct class of relation type.

3.5 Conclusion

This chapter outlines the key tenets of our contribution towards literature in generative

structure prediction and argument mining, focusing on four dimensions of analysis

and introducing a set of compliance metrics to measure the successful transition of

generative models to classification tasks using augmented natural language. In the

chapters to follow, we articulate the explicit experimental approaches used to test

performance along these dimensions and novel metrics, focusing on two key datasets

in argument mining as a litmus test for structure prediction and improvements.



Chapter 4

Experiments

4.1 Introduction

In this section we apply accumulated domain knowledge and the framework of our

evaluation to a suite of language models which employ di↵erent strategies to learn

the terrain of argument mining-based knowledge extraction. Here, we articulate

datasets and pretrained models used in our experiments, the technical details of the

training paradigms that we used for fine-tuning language models, prompting set-ups

for in-context learning environments, various relaxations applied to the scoring of

model performances and di↵erent evaluation paradigms of most interest. The results

of these experiments are to be addressed in 5.

4.2 Datasets

As covered in Chapter 2, several datasets exist which segment text into argumentative

units, classify said units under a given label scheme, and relate units together with some

heterogeneous edge label. For the sake of our experiments, we pick two benchmark

datasets: the Cornell e-Rulemaking CDCP Corpus [60] and the UKP Lab’s Argument

Annotated Essays Corpus (AAEC) [76]. We selected these datasets over other strong

43
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candidates for several reasons:

CDCP AAEC

Documents 731 402
Components 4,931 6,089
Relations 1,220 3,832
Component Types 5 3
Relation Types 2 3
Avg. Components/Doc. 6.74 15.15
Avg. Relations/Doc. 1.6 9.53
Avg. Tokens/Doc. 121.85 368.42

Table 4.1: Comparison of CDCP and AAEC Datasets

CDCP

Policy 815
Fact 786
Value 2,182
Testimony 1,117
Reference 32

Reason 1,353
Evidence 73

AAEC

Major Claim 751
Claim 1,506
Premise 3,832

Support 4,841
Attack 497
Semantically Similar 349

Figure 4.1: Entity/Relation Counts by Type

1. Diverse node-edge compositions: The two benchmarks represent the most

relation-rich and structurally complex instances of data annotated to include

both entities and relations. The Cornell e-Rulemaking Corpus on Consumer

Debt Collection Practices (CDCP), for instance has 4,931 components and 1,220

relations across 731 comments; this equates to an average of 6.74 entities and 1.6

relations per comment. CDCP also includes a significant quantity of components

which have more than one edge in their composition, suggesting the existence

of a more complicated annotation schema which does not automatically render

directed acyclic graphs. Additionally, the entity classes in CDCP are more

descriptive – describing facts, values, policies, testimonies, and references – while
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the relation classes are only reason and evidence, with no attack/undermine sort

of edge. Meanwhile, the AAEC dataset accomplishes a complementary set of

objectives. It incorporates 6,089 components and 3,832 relations over 402 essays;

these are averages of 15.15 entities and 9.53 relations per essay, significantly

higher than CDCP. AAEC assumes an acyclic graph annotation schema, meaning

that nodes have at most one edge. AAEC has three entity classes: claim, major

claim, and premise, and its relation types are attack, support, and semantically

same. As a caveat, it is possible to use the “semantically same” category to group

entities together as co-references, thus inducing cyclic component relationships

as in CDCP. It is also worth noting that the average entry AAEC is about three

times as long as CDCP (368.42 v. 121.85) 1.

2. Content relevance: The content of the two datasets carries important stylistic

variations within themselves and between eachother; however, their supervised

curation prevents them from devolving to noise typically collected online. AAEC

is sourced from English students (many learning English as a second language)

forming arguments, with each data point taking its own subject, such as travel,

friendship, criminal justice, housing, environmentalism, economic inequality,

urban life, etc.. It has a much wider gamut than CDCP, which focuses squarely

on potential regulations to impose upon debt collectors, specifically with respect

to contacting behaviors. While the CDCP dataset includes many documents

produced by fluent English speakers squarely discussing consumer protection

practices, it does not have the same caliber of domain-specific jargon seen in

other similar datasets like the biomedical AbstRCT [61] or for argumentative

zoning [84].

3. Comparison against other baselines: AAEC and CDCP are the most

widely used datasets in terms of benchmarking from other state-of-the-art

1
measured in tokens generated with the LLaMa tokenizer
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“Nowadays, as the world is getting smaller, we need to be able to cooperate. Working in team

is a necessary skill that every individual must master for success. Despite the importance of

working in team, I still believe that the capability of working independly is more significant...”

Figure 4.2: An excerpt of a sentence from AAEC.

“You are a liar! I have been harassed for over 5 years by companies looking for someone I have

never heard of because this person put a random string of our area code, local exchange and

4 numbers together ( that turned out to be my number ) on a loan that he then defaulted

on. I have told them to stop calling, they have a wrong number, and guess what ” 5 Years

later, they are still calling!”

Figure 4.3: An excerpt from CDCP.

reference systems for argument mining. While each piece of literature describes

experiments using a suite of data sources, most data aligns on using these two

datasets as standard benchmarks. CDCP owes this to its status as a relatively

older dataset, while AAEC serves as the largest gold-standard datasets in

argument mining in terms of raw token count. As such, it comes as no surprise

that many recent papers use these two works as benchmarks [53, 99, 40, 7].

4.3 Baselines

To ground our work in current argument mining literature, we also articulate key

works which claim state-of-the-art performance as baselines for evaluation.

Morio et. al 2022 [53] employ a bi-a�ne dependency architecture inherited from

[99], which uses autoencoder embeddings as inputs to a multilayer perceptron classifier

operation to identify and classify spans. Then, classified spans are related to one

another with two separate classification heads: one for link detection and a second

for classification. Weights for the base encoder as well as the classification heads

are updated through backpropagation on spans and ground truth relations. The

autoencoder used is Longformer, which iterates over the BERT base model to support

longer context encoding.
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Bao et. al 2022 [7] implement a generative system to jointly model argumentative

components and relations, decoding classic relational triples with an encoder-decoder

model. They employ several techniques during encoding, namely a pointer mechanism

which marks the start and end tokens of a sequence. The pointer distribution is

constrained through the validity of token matches, such as predicting end tokens after

start tokens; predicting relations using only the distribution of the last token, and

ensuring that relation label pointers can only sample from the predicted relation space.

Kawarada et. al 2024 [40] introduce a generative framework that embraces transla-

tion through augmented natural language. They introduce a basic approach which

uses encoder-decoder models trained on input-output representations constructed in

TANL style.

With these baselines guiding our evaluation of argument mining capabilities with

modern language models, we specify the procedures used to explore the directions

defined in 3.

4.4 Experimental Details

As a reminder, this analysis incorporates a four-dimensional analysis of language

modeling capabilities for argument mining. We are interested in di↵erent ablations

to truncate the labels of Argumentative Discourse Units, the distinction between

in-context learning and fine-tuning strategies, the use of di↵erent model architectures

(with specification about exact models used), and the “oracle” setting where entities

are pre-segmented and classified to facilitate end-to-end experiments.

4.4.1 Argument Labeling Strategy

There are three annotation strategies necessary for this analysis. Experiments with

these annotation strategies each use the same input (a raw, unstructured sentence),
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Regular:
“[ You are a liar! | value ] [ I have been harassed for over 5 years by companies looking for someone I have never heard of | testimony ] [
because this person put a random string of our area code, local exchange and 4 numbers together ( that turned out to be my number )
on a loan that he then defaulted on. | testimony | reason = I have been harassed for over 5 years by companies looking for someone I
have never heard of ] [ I have told them to stop calling, they have a wrong number, and guess what ” | testimony ] [ 5 Years later, they
are still calling! | testimony ] !”

Number:
“[ You are a liar! | value = 0 ] [ I have been harassed for over 5 years by companies looking for someone I have never heard of |
testimony = 1 ] [ because this person put a random string of our area code, local exchange and 4 numbers together ( that turned out
to be my number ) on a loan that he then defaulted on. | testimony = 2 | reason = 1 ] [ I have told them to stop calling, they have a
wrong number, and guess what ” | testimony = 3 ] [ 5 Years later, they are still calling! | testimony = 4 ]”

Summary:
“[ You are a liar ! | value = You are a liar ! ] [ I have been harassed for over 5 years by companies looking for someone I have
never heard of | testimony = I’ve been the victim of harassment ] [ because this person put a random string of our area code ,
local exchange and 4 numbers together ( that turned out to be my number ) on a loan that he then defaulted on . | testimony =
Defendant’s phone number was used in a default | reason = I’ve been the victim of harassment ] [ I have told them to stop calling ,
they have a wrong number , and guess what ” | testimony = They have a wrong number ] [ 5 Years later , they are still calling ! |
testimony = Defendants continue to harass ]”

Figure 4.4: An excerpt from CDCP, with full, number, and summary annotations in
respective order.

but expect di↵erent outputs (exposed through few-shot prompts or in fine-tuned label

ids). Examples of each of these labels are presented as figures at the end of the

subsection.

The first two strategies are quite self-explanatory. The first strategy, referred to as

“full” representation, repeats an argumentative entity if it appears as a tail node in

relation in other argumentative units. The second “number”-based strategy assigns a

numeric id to each entity which is used to relate entities together.

The third, “summary”-based strategy attempts to merge the semantic richness of

full sentences with the e�ciency associated with shorter labels by teaching models

trained under this schema to use a “language decomposition,” or summary of an

ADU, as a label, following research that such decompositions can bring out implicit

arguments in models and potentially improve their relation identification using metrics

of semantic proximity [33]. To do this, a large, autoregressive language model is passed

through each entity in each example. The model is exposed to the entire document

as well as the individual sentence, prompted to produce a summary of the argument

relative to its text with an upper limit on word counts. Arguments less than 10 tokens

long are not included in this abstractive summarization process, and their original

representation is used in a manner similar to the first “full” strategy.

Interestingly, the summary based strategy does not necessarily yield shorter sen-
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tences than full outputs. Because each argument entity must include an entity, there

is potential to create much longer sequences for decoding. Using a LLaMa tokenizer,

the maximum token length of any sequence is 1,670 for sentences with summaries,

followed by 1,123 tokens for “full” labels and 897 tokens for “number” labels. AAEC

also shows little di↵erence: 1,185 tokens is the maximum for summary labels, only 22

tokens shorter than the full label maximum of 1,207. The number label strategy sits

at around 860 tokens.

4.4.2 Encoder-Decoder v. Decoder-only

As with dataset selection decisions, model family selection is quite important for our

experimental environment. We select two sequence-to-sequence (encoder-decoder)

models and three decoder-only models to make comparisons.

Encoder-Decoder Models

For our sequence-to-sequence (seq2seq) experiments, we selected BART-large [44] and

FLAN-T5-large [13].

BART (Bidirectional and Auto-Regressive Transformers) is a denoising autoencoder

that is trained to reconstruct corrupted input text. It’s pre-trained by corrupting

documents with an arbitrary noising function and then learning to reconstruct the

original text. This pre-training enables it to excel at tasks like text summarization,

translation, and text generation.

FLAN-T5 (Fine-tuned LAnguage Net T5) builds upon the T5 architecture, which

is pre-trained on a massive text corpus using a text-to-text framework. However,

FLAN-T5 distinguishes itself by its instruction tuning approach. It’s fine-tuned on

a collection of datasets that are reformulated as natural language instructions. This

process trains the model to follow instructions, making it particularly e↵ective at

zero-shot and few-shot generalization. The instruction tuning allows FLAN-T5 to
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adapt to a wider range of tasks, including those not explicitly seen during training, by

interpreting and following natural language instructions.

While the broader field of language models is increasingly dominated by decoder-

only architectures, the encoder-decoder paradigm remains valuable for tasks requiring

bidirectional context understanding. We selected BART and FLAN-T5 due to their

established e↵ectiveness and the lack of readily available, similarly capable seq2seq

alternatives. These models’ ability to process and generate coherent text, along with

FLAN-T5’s instruction-following capabilities, makes them well-suited for the complex

argument mining tasks we aim to address.

Decoder-Only Models

We use three models as our baseline for decoder-only models.

LLaMA 3.2-3B-Instruct is a mid-size model developed by Meta, belonging to the

LLaMA series of large language models. Its training involves pre-training on a massive

text corpus to learn general language patterns, followed by instruction tuning to

enhance its task-specific capabilities, emphasizing e�ciency and instruction-following

within a smaller model footprint.

Mistral-7B-Instruct, developed by Mistral [38], is a mid-size, language model that

also utilizes a decoder-only transformer architecture. Notably, Mistral-7B incorporates

architectural innovations such as Grouped-query attention (GQA) and Sliding Window

Attention (SWA), which contribute to improved e�ciency and the ability to handle

longer context windows. As with the LLaMA Instruct variant, Mistral-7B-Instruct has

been fine-tuned on instruction datasets, enhancing its ability to accurately follow user

instructions. Its training process involves pre-training on extensive text data, followed

by fine-tuning to optimize instruction-following capabilities, making it particularly

well-suited for tasks demanding both e�ciency and long-context processing.

QWen-2.5-7B-Instruct , developed by Alibaba Cloud [67], is another mid-size
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language model. Pre-training occurs on a large, multilingual dataset, with a strong

focus on both Chinese and English language data. Similar to the other ’Instruct’

models, QWen-2.5-7B-Instruct undergoes fine-tuning on instruction datasets, enabling

it to better respond to user instructions.

These models were selected due to their instruction tuning, allowing them to

closely resemble the goals of encoder-decoder models which require instruction-based

fine-tuning for optimal function. Additionally, each model is the mid-size edition of

the latest open-source releases in each family. The mid-size edition was chosen to

demonstrate the capabilities of fine-tuning and to compare against bart-large and

flan-t5-large, both of which are in the middle relative to XL and XXL models.

4.4.3 End-to-End v. Relation-only

Many argument mining papers which attempt to construct an end-to-end system

also include “oracle” settings [7] where the ground-truth annotations for one pipeline

component – typically the segmentation and classification of Argumentative Discourse

Units – is given. This enables research on the relation extraction or linking component

to be isolated and evaluated independently. Without such settings, the evaluation of

relation extraction becomes entangled with the performance of ADU segmentation

and classification, making it di�cult to pinpoint the source of errors. Therefore, oracle

settings provide a crucial benchmark for understanding the isolated performance of

relation models, though they may not fully reflect real-world scenarios.

In these circumstances, we evaluate models on their ability to identify relations as

well as their classes. We conduct such experiments on both datasets for all fine-tunes

of auto-regressive models as well as for GPT-4o-mini’s few-shot capabilities.
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4.4.4 Few-Shot v. Fine-Tuning

While the previous dimension alters the intended output string, this dimension suggests

two di↵erent approaches to encoding a learning process into auto-regressive language

models. Recent studies and empirical investigations have suggested that auto-regressive

language models are capable of incorporating hard rules from patterns through

prompting strategies. To this end, we prepend the 10 inputs with the most relations

from the CDCP dataset to evaluate the outputs of GPT-4o-mini (which we do not

use in fine-tuning experiments) and LLaMA 3.2 3B in a 10-shot setting.

We use the examples with the most relations in order to increase the statistical

distribution of relations within model selection outputs. CDCP is relatively relation-

sparse, which can lead to circumstances in random sampling where no samples

demonstrate a relation between two argumentative units.

The samples for prompting are taken from the test split, so evaluation results for

the few-shot case are out of 140 examples instead of 150.

4.5 Implementation Details

Below, we describe some necessary implementation details to reproduce the results

in this work. In the spirit of open research, code will be available to review and run

model experiments independently.

For all fine-tuned models, we use unsloth [28], a multi-tool acceleration suite to

attach low rank adapters and flash attention in quantized model training environments

to accelerate the computations necessary for train- and test- time inference without

impeding performance (see subsection 4.5.2).
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4.5.1 Encoder-Decoder Models

Encoder-decoder models were trained on adaptations of the source code for the TANL

paper [59]. We trained all parameters in each model over 20 epochs with a learning

rate of 1e-5 with a dropout rate of 0.1, AdamW optimizer hyper-parameters set to

the default values of 0.9 and 0.99 for ↵ and �, respectively. Models trained on CDCP

had maximum input sizes of 1024 tokens, with unlimited output size. Mixed precision

training was enabled using FP16. All other specifications follow the default values

used for FLAN and BART.

4.5.2 Decoder-Only Models

We loaded the models above with 4-bit quantization for e�cient memory usage. We

configured the model with appropriate maximum sequence length and data type

settings to suit our experimental requirements. To enable parameter-e�cient fine-

tuning, we employed Low-Rank Adaptation (LoRA). LoRA was applied to specific

projection matrices within the model’s architecture, with a LoRA rank of 16 and

corresponding alpha value. We optimized performance by disabling bias and enabling

gradient checkpointing to minimize memory consumption. We used a per-device

training batch size of 2, with gradient accumulation to e↵ectively increase the batch

size. A linear learning rate scheduler with a peak learning rate of 2e-4 was utilized,

with a short warmup period. The model was trained for a maximum of 500 steps. We

used the AdamW 8-bit optimizer with weight decay. Mixed precision training was

enabled using either FP16 or BF16, depending on hardware support. The training

seed was fixed at 3407 for reproducibility.
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4.6 Conclusion

With the framework of our experiment outlined, we detail limitations to our experi-

mental environment, which o↵er opportunities for future directions of exploration.

4.6.1 Future Directions

Further few-shot testing

There are several areas throughout the four dimensions of this analysis which could be

made complete with more experimentation on di↵erent cross-sections. For instance, our

few-shot setting makes limited use of LLaMA-3.2-3B-Instruct in comparison against

GPT-4o-mini and does not attempt to evaluate against Mistral and QWen models.

We found that the preliminary results of the few-shot environment demonstrated

insu�cient capability for open-source models of this size to compete against larger,

proprietary models served by APIs, especially given asymmetric latency expectations

when working with open-source models served locally on GPUs. Future research

would benefit from optimizing the latency of locally-served open-source models prior

to experimentation in order to increase throughput and allow more opportunity for

cross-model analysis. This also applies to the limitation of working with the CDCP

dataset, as poor latency conditions were exacerbated by the relative size of the AAEC

dataset.

Greater model variety

We acknowledge the limitation of using only three decoder-only models and two

encoder-decoder models in terms of finding strong candidates for argument mining

systems. While the models selected represent the state of the art for language modeling

paradigms, they are certainly not the only ones claiming top performance on reasoning

and structured prediction benchmarks. Future research should incorporate a wider set
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of model families to challenge the results set forth in Chapter 5.

The size of the models used for training are quite limited as well, due to constrained

compute resources. Further experimentation would make judicious use of larger models

through quantization, deeper mixed-precision training, larger cloud clusters, and

further optimizations beyond flash attention for reducing the number of TFLOPS

needed per full training/inference pass.



Chapter 5

Analysis

5.1 Introduction

In the following section, we will unpack the distribution of model performance results

by defined dimension, comparing against key baselines along the accuracy- and

compliance- based metrics. We find a variety of interesting results across two datasets,

four dimensions of model configuration, and two sets of metrics. We explore the

implications of compliance failures as a potential upper bound on model accuracy,

delving into failure case studies as demonstrations of this e↵ect.

Overall, we find that the dimension of model architectures bears the largest impact

on accuracy, namely di↵erentiating between encoder-decoder and decoder-only models.

While a relative dearth of open-source encoder-decoder models and the stark di↵erence

in output quality might preclude a uniform declaration of the superiority of encoder-

decoder models, our case studies demonstrate the power of this e↵ect. We conjecture

several possible reasons that encoder-decoder models o↵er stronger performance than

decoder-only models. This distinction is particularly defined when comparing these

classes of models in terms of their relation scores. We find that the discrepancy in

relation performance is closely related to the number of predicted relations o↵ered by

56
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each model. T5 models were much more likely to produce relations than fine-tuned

decoder-only models, though GPT produces more relations than T5 in the experiments

conducted. This suggests that potential remains for decoder-only language models

of su�cient size and training to outperform encoder-decoder models in generative

argument mining, though the gap has not yet closed.

Such a hypothesis is corroborated by findings on compliance-based metrics. We

unsurprisingly discover a discrepancy between models fine-tuned on the argument

mining structure prediction task and models which engage in-context learning to

produce few-shot answers. Fine-tuned models are more likely to follow the conventions

of the annotation schema, producing fewer label and entity errors. The compliance

behavior of fine-tuned models is equivalent for both encoder-decoder and decoder-only

language models; both perform quite well at conforming to the basic standards of

parsed language.

Labeling strategies demonstrate relatively smaller performance di↵erences across

models, with full-text label models generally outperforming numerical labels, which in

turn outperform summary labels. Di↵erent labels also carry di↵erent implications for

compliance – for instance, numerical labels yield far fewer entity identification errors

than those for summaries or full text.

Comparing end-to-end models with relation-only model environments, we see

inconsistent results. Some, but not all, models improve their relation-F1 score when

given ground truth entity labels.

This section proceeds by identifying overall performance metrics for the two datasets

investigated. We o↵er an overview table measuring the accuracy and compliance of

models across these four dimensions before comparing across di↵erent dimensions

of analysis and finally exhibiting a curated selection of performance successes and

failures.
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5.2 Accuracy

In terms of accuracy metrics, we compare F1 scores across three settings: (i) Entity

classification, where models are evaluated on the start token, end token, and class of

each ADU; (ii) Relation identification, where models are evaluated on the start and

end tokens for the head and tail of each relation between ADUs; and (iii) Relation

classification, where models are evaluated on start, end, and class for the head and

tail, as well as the correct class of relation type. The full set of results for CDCP is

exhibited in Table 5.1 and for AAEC in Table 5.2, shown against major baselines in

classical and generative argument mining.

The following section will describe overall accuracy on the two datasets before

considering the datasets jointly and analyzing results across dimensions. We will

internally compare encoder-decoder models as well as decoder-only models, both with

the full gamut of labeling strategies. We will then compare relation scores of full-text

models in the ”oracle setting” where entities are given as input.

5.2.1 CDCP Overview

Across models of di↵erent architectures and training environments, we see that FLAN-

T5-Large is the model capable of the strongest performance, matching or beating the

state of the art across all three metrics of analysis (Table 5.1). Our implementation

of TANL using a full labeling strategy and minimal augmentations to the original

formatting scheme, outperforms models of similar scale by Kawarada et. al [40] (E:

+5.24, RI: +4.17). In addition, LLaMA 3.2-3B-Instruct performs unusually well in

the unlabeled case, competing with but not outperforming baseline models.

On the other hand, BART-Large, an encoder-decoder model, performs the worst

of all testing environments. As we will see later, this is due to compliance errors

that BART experiences even after fine-tuning for extended periods of time. BART
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Model Entity Relation ID Relation Class.

GPT4o-few-shot
Full 50.35 8.29 16.20
Number 50.03 6.32 14.22
Summary 48.05 2.82 7.04

LLaMA few-shot
Full 41.50 4.63 7.36

LLaMA 3.2-3B-Instruct
Full 65.44 26.09 21.12
Number 54.33 22.56 11.97
Summary 50.39 6.28 3.86

Mistral 7B-Instruct
Full 70.42 8.47 6.78
Number 70.63 10.11 7.98
Summary 70.25 12.66 11.61

Qwen 2.5-7B-Instruct
Full 58.66 16.09 7.36
Number 61.33 8.48 4.99
Summary 57.84 2.82 1.88

FLAN-T5-Large
Full 72.21 32.59 26.67
Number 71.20 28.35 20.97
Summary 74.18 28.80 21.10

BART-Large
Full 34.92 0.0 0.0
Number 29.02 5.74 0.52
Summaries 36.5 0 0

Other Baselines
Bao et al. 2022 [7] 57.72 16.57
Morio et al. 2022 [53] 68.90 31.94 16.26
Kawarada et al. 2024 Large [40] 68.94 28.42
Kawarada et al. 2024 XL [40] 72.12 31.01

Table 5.1: CDCP Performance Metrics by model and output type, in percentage
points. Top results are in bold.

struggles to reproduce input sentences correctly, often replacing large swaths of text

with semantically distinct content. This creates a low ceiling on the potential for
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accurate performance.

We find small but consistent patterns in performance degradation along the di↵erent

labeling strategies. In the relation identification/classification task, we see that full

text labels tend to outperform numerical labels (avg. E: +3.02%, RI: +4.82%, RC:

+5.01% ), and in turn that numerical labels narrowly outperform summary-based

labels on relation-based tasks, while summaries outperform for entity tasks (avg. E:

�8.36%, RI: +1.91%, RC: +1.24% ). This data a�rms the applicability of Occam’s

Razor to generative argument mining – the simplest approach works best, especially

as foundation models continue to expand context windows.

Figure 5.1: CDCP dataset, comparison of four models across three dimensions (few shot,
seq2seq v. decoder-only, and labeling strategies). Relation/entity identification, the
class-agnostic relaxation of relation/entity classification, is pictured with alpha=0.5.
The baseline is Kawarada et. al 2024’s FLAN-T5-Large finetune [40].

5.2.2 AAEC Overview

For the AAEC dataset, we see general improvements in the relation identification and

classification scores due to an increased prevalence of relations compared to CDCP,

aiding stronger performance for models trained on this dataset. As in the CDCP
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Model Entity Relation ID Relation Class.

GPT4o-few-shot
Full 43.22 17.99 13.68
Number 44.34 16.41 12.88
Summary 39.62 14.65 9.89

LLaMA 3.2-3B-Instruct
Full 68.29 41.77 36.04
Number 70.67 46.38 41.76
Summary 68.32 41.19 33.77

Mistral 7B-Instruct
Full 70.43 48.83 43.18
Number 68.60 38.10 33.05
Summary 72.30 46.50 41.46

Qwen 2.5-7B-Instruct
Full 73.01 46.99 41.97
Number 70.35 38.87 34.29
Summary 72.24 42.53 38.66

FLAN-T5-Large
Full 75.19 53.30 48.05
Number 74.50 45.42 41.29
Summary 76.14 46.46 42.60

BART-Large
Full 28.52 0.00 0.00
Number 28.55 9.58 7.91
Summaries 28.54 0.00 0.00

Other Baselines
Bao et al. 2022 [7] 75.94 50.08
Morio et al. 2022 [53] 75.54 55.66 42.30
Kawarada et al. 2024 Large [40] 77.75 56.06
Kawarada et al. 2024 XL [40] 78.51 56.80

Table 5.2: AAEC Performance Metrics by model and output type, in percentage
points. Top results are in bold, and top performance in our experiments is underlined.

dataset, we again observe that FLAN-T5 fine-tuned with a full label strategy performs

the best on relation identification and classification, while FLAN-T5 fine-tuned on

summary labels performs the best on entity classification (see Table 5.2. However, we

do not see performance improvements relative to established baselines.
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Figure 5.2: AAEC dataset, comparison of four models across three dimensions (few
shot, seq2seq v. decoder-only, and labeling strategies). The baseline is Kawarada et.
al 2024’s FLAN-T5-Large finetune [40].

Along labeling strategies, we observe a slightly di↵erent pattern. While full text

labels continue to perform the best, summary labels appear to narrowly outperform

numerical labels, excluding BART (E: +.03%, RI: +1.23%, RC: +0.62%).

5.2.3 Comparing Encoder-Decoder Models

Between the two encoder-decoder models, T5 consistently outperforms BART on both

relation and entity-based tasks. In the relation setting, BART models struggle to

produce relations. As we will see in compliance metrics, this discrepancy occurs not

because BART does not attempt to produce relations, but because the imprecision

of its sentence reconstruction and entity references is such that sentences cannot be

parsed.

The gap between the T5 experiments, the strongest-performing models, and BART,

the worst-performing, suggests a discrepancy produced by instruction tuning. BART

and FLAN-T5 are pretrained on similar, but distinct objectives – BART is trained

to de-noise corrupted data, while T5 is trained to do masked language modeling
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Figure 5.3: Comparing F1 Scores between BART and T5, CDCP (top) and AAEC
(bottom)

on cloze-style reconstruction. Another key architectural di↵erence is BART’s use of

absolute position encoding, as opposed to relative positional encoding. However, the

vast divergence of performance on this task is likely due to FLAN-T5’s fine-tuning on

a variety of di↵erent instruction tasks. Instruction-following is a crucial step for tasks

which require high-fidelity reconstructions such as generative structure prediction.
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5.2.4 Comparing Decoder-Only Models

Figure 5.4: Comparing F1 Scores between Mistral, Qwen, and LLaMA on CDCP (top)
and AAEC (bottom)

Among fine-tuned auto-regressive models, the picture is more nuanced. When

comparing relation scores, we see that Mistral 7B acts as the strongest performer

- and, in the case of CDCP labeling strategies, exhibits performance inverse to the

general trend; summaries perform better than numbers, which in turn perform better

than full labels.



65

In CDCP, model selection appears to have a large impact on F1 accuracy. LLaMA

shows the strongest relation-based performance with full labels, but the e↵ect does not

carry to summary labels or entity-related tasks. Performance moderates substantially

when compared to Qwen and Mistral (RI: +9.18%, +7.91%, respectively). Choice

of labeling strategy also has a clear impact on relation-based task performance. For

relation identification, full labels achieve an average of 3.16% higher F1 score than

numeric labels and 9.26% higher than summary labels. The diversity of these impacts

suggests that the bottleneck in CDCP, which is the relative scarcity of relations

in the dataset distribution, can have diverse impacts on individual models as well

as on labeling strategies. It is worth noting that Mistral completely inverts the

labeling strategy expectations, performing better with numerical labels and best with

summaries.

CDCP Relation Identification F1 Scores AAEC Relation Identification F1 Scores

Full Num. Sum. Avg.

Mistral 8.47 10.11 12.66 10.41

Qwen 16.09 8.48 2.82 9.13

LLaMA 26.09 22.56 6.28 18.31

Avg. 16.88 13.72 7.25

Full Num. Sum. Avg

Mistral 48.80 38.10 46.50 44.47

Qwen 47.00 38.90 42.50 42.80

LLaMA 41.80 46.40 41.20 43.13

Avg 45.87 41.13 43.40

Table 5.3: Relation Identification F1 scores, averaged by model and strategy, for both
CDCP and AAEC.

In CDCP, model selection appears to have a large impact on F1 accuracy. LLaMA

shows the strongest relation-based performance with full labels, but the e↵ect does not

carry to summary labels or entity-related tasks. Performance moderates substantially

when compared to Qwen and Mistral (RI: +9.18%, +7.91%, respectively). Choice

of labeling strategy also has a clear impact on relation-based task performance. For

relation identification, full labels achieve an average of 3.16% higher F1 score than

numeric labels and 9.26% higher than summary labels. The diversity of these impacts

suggests that the bottleneck in CDCP, which is the relative scarcity of relations
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in the dataset distribution, can have diverse impacts on individual models as well

as on labeling strategies. It is worth noting that Mistral completely inverts the

labeling strategy expectations, performing better with numerical labels and best with

summaries.

In AAEC, Mistral exhibits the strongest average performance across strategies, but

the di↵erences seem to be distributed across labeling strategies as opposed to across

models (see Table 5.3). Performance of full labels beats summary labels (RI: +2.45%,

RC: +2.43%) which in turn beats numerical labels (RI: +2.29%, RC: +1.60%). LLaMA

curiously defies this, achieving the strongest relation performance in the numerical

setting.

5.2.5 Oracle Setting

In the oracle setting, we compare the full text labeling strategy against an environment

where a model input is half-augmented – the entities in the document are given and

classified, and a model is only expected to produce relations. This ablation tests the

power of the span identification upper bound on our datasets, attempting to quantify

the deficit created by error propagation in the end-to-end nature of joint entity-relation

argument mining.

Our findings are quite clear. We reveal that in most cases, providing entities

improves model performance. However, the e↵ect of improvement is di↵erent between

the two datasets. In AAEC, providing entity scores nearly doubles the relation F1

scores (RI: average +38.1%). Understanding the di↵erence of this e↵ect requires an

understanding of the AAEC dataset; in AAEC, not every span is argumentative, while

in CDCP every word is accounted for in some argumentative discourse unit. Thus,

using a simple sentence-level heuristic to segment CDCP would work much better

than for AAEC. In short, the entity spanning problem is slightly harder in AAEC.

Thus, the oracle setting removes the bottleneck for accurate relation identification, as
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Figure 5.5: Relation classification/identification F1 scores for various models on CDCP
(left) and AAEC (right). Relation identification in alpha=0.5 behind classification.

the relations defined by AAEC are clearer both in terms of relation types than for

CDCP and more abundant in distribution (see Table 4.1). For CDCP, however, oracle-

trained models show substantial improvements for only two of four models. In fact,

for Mistral and LLaMA, performance degrades by 5.5% and 3.8% respectively. This

curious finding reveals that CDCP’s relation sparsity problem cannot be alleviated by

exposing a model to relations. Given that 100% of the text in the dataset is featured

in one ADU or another, it should be unsurprising that clarifying entity spans would

not necessarily resolve fundamental performance gaps, even if performance on entity

identification is roughly equivalent for CDCP and AAEC.

5.3 Compliance

Now that we have considered the accuracy of model predictions using F1 scores as

analogues of general classification performance, we ought to consider the second class

of ”compliance” metrics defined in Chapter 3. As a reminder, we incorporate four

metrics in our analysis of compliance: reconstruction error, label error, entity error,
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and format error. Each metric is a simple 0/1 value for each output documented

evaluated, signifying whether such an error type was present.

The quick brown fox jumps over the lazy dog.

The [quick brown fox | animal | jumps = dog ] jumped over the [lazy dog | dog | ].

Figure 5.6: An example of the four error types
, where animal is the only valid entity type and jump is the only valid relation type.
Entity error in red , reconstruction error in yellow , label error in blue , and format
error in green .

5.3.1 CDCP Dataset

Figure 5.7: Analysis of Error Metrics across top-performing CDCP models of each
type, with BART included for reference.

The results depicted in the CDCP dataset establish a set of intuitions regarding

compliance metrics. We will see a repetition of these patterns compared against the

AAEC dataset. Some crucial observations:
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CDCP Original (ex. #86) CDCP GPT Reconstructed Output (ex. #86)

... If is the former, some basic information

relative to the account – contract, itemized

statements, or any other identifying informa-

tion that only the creditor would have access

to would su�ce. If CFPB wants ”verify” to

answer every single objection a debtor can

cook up, a collector could never move
forward without spending hundreds of
hours normally reserved for litigation.
As to a time frame on answering, I think the

current system of stopping collection action

until verification is provided is appropriate...

... If is the former, some basic information

relative to the account – contract, itemized

statements, or any other identifying informa-

tion that only the creditor would have access

to would su�ce. If CFPB wants ”verify” to

answer every single objection a debtor can

cook up, [MISSING] As to a time frame

on answering, I think the current system of

stopping collection action until verification is

provided is appropriate...

Figure 5.8: Example of Reconstruction Error in gpt-4o-mini full text outputs, CDCP.
[MISSING] indicates where the bold text is not included.

1. Fine-tuned models exhibit higher compliance. Unsurprisingly, one of the

most consistent signals a model might learn in from cross-entropy loss is the

exact replication of input sequences and other annotation schema. This makes

compliance a principal initial goal to achieve during the supervised fine-tuning.

The only exception to this is BART.

2. Label strategies do not impact compliance, except when looking at entity

error. In this case, numerical labels are much less likely to yield entity errors

because the entities referenced at the tail of relations are simple number tags

as opposed to repetitions of an entire input sentence or summary labels. If the

parsing algorithm requires strict adherence to labels for a functioning lookup

table, it becomes much easier to index entities by number labels – even if on

accident.

3. BART is quite bad at TANL. These figures give some explanation for the

poor performance of fine-tuned BART on structure prediction and generative

argument mining. As we will explore in case studies, BART frequently ”remixes”

inputs, returning semantically related sentences which are never exact and rarely

even preserve the same semantic meanings. Per empirical experiments, increasing
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the number of fine-tuning epochs does not necessarily encourage discovery of

replication for loss reduction. This begs the question of fundamental pretraining

research around structure prediction, such as that done by KnowCoder and

DeepStruct [46, 96] to teach non-instruct-tuned models how to comply with the

format of TANL.

CDCP Original (ex. #86) CDCP BART Reconstructed Output (ex. #86)

... It contained nothing I recognized. You

are presuming they are actually validating.

This is the biggest mistake. They do none of

that. Any rule that defines what qualifies as

a dispute would help. The clearer, the better.

The vagueness now has led to abuses. Such

as ”frivolous and irrelevant” disputes. That
is a license to abuse consumers. ...

... ” It contained nothing I recognized. You

are presuming they are actually validating.

This is the process They do none of that.

Any rule that defines what qualifies as a dis-

pute would help. The clearer, the better.

THE vagueness now has led to abuses. Such

as ”frivolous and irrelevant” disputes. No, I
was not being sarcastic. You are correct.
The phrase ”frivolous and irrelevant”
suggests the author is expressing frus-
tration with the process, but I didn’t
receive the actual passage from you. If
you’d like to share the passage, I’d be
happy to help you understand its mean-
ing and provide a label for the correct
reason why it’s not clear what consti-
tutes a dispute, specifically the use of a
process server to deliver the summons
and complaint, which is a requirement
in most jurisdictions to ensure that the
person providing the notice is properly
served. ...

Figure 5.9: Example of Reconstruction Error in bart-large full text outputs, CDCP.
Bold text signifies di↵erences from the original.

5.3.2 AAEC Dataset

When evaluating compliance under AAEC training environments, we see across-the-

board performance gaps, likely attributable to the di↵erence in size between AAEC and

CDCP (a factor of about 3.02:1 tokens). Longer sequences increase risk of compliance

errors as more tokens inherently increase the likelihood of lower performance.

Beyond this finding, we see similar performance patterns as shown in CDCP, with
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Figure 5.10: Analysis of Error Metrics across top-performing AAEC models of each
type.

the curious exception of T5. T5 has a higher (avg. 21%) degree of reconstruction

errors than Mistral, as well as notable entity and format errors. Despite this, we see

that T5 achieves the highest accuracy on AAEC. We proceed with a case-by-case

analysis of compliance failures in order to examine the di↵erent negative implications

of model performance.

T5

When parsing examples of failed reconstruction in T5, some consistencies emerge. For

instance, most reconstruction errors involve sentence- and phrase-level omissions and

repetitions. These errors are more likely to happen at the end of a sentence than at

the beginning. In Figure 5.11, the last sentence is repeated several times instead of

continuing to copy the original input. Many examples of this are present in AAEC

towards the end of documents. Other times, the copy will end abruptly in the middle
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AAEC Original Reconstructed Output

... Anyone can meet this problem once

in any conversation. E - mail helps me

arrange my idea perfectly and make it

persuasive. On the whole, to compare

to all ways of communication, I really

think that e - mail is the greatest way

for major people to use. Its convenience

saves our time. Additionally, honesty is

necessary for every conversation and also

fluency can’t be missing for a persuasive

expression.

... Anyone can meet this problem once

in any conversation. E - mail helps me

arrange my idea perfectly and make it

persuasive. On the whole, E - mail
helps me arrange my idea perfectly
and make it persuasive. On the
whole, E - mail helps me arrange
my idea perfectly and make it per-
suasive

Figure 5.11: Example of Reconstruction Error in FLAN-T5-large full text outputs,
AAEC. (ex. #50)

and simply exclude the rest of the original document. However, when all content is

included it is unlikely to be modified, which cannot be said of BART. This perhaps

explains why T5 could have both high compliance errors and relatively strong accuracy

scores. Since mutations do not significantly modify individual text, the compliance

gaps are not zero-sum with e↵ective parsing and might be improved with greater

fine-tuning or pretraining on structure prediction.

BART

On the other hand, BART experiences cascading errors in the AAEC dataset that

make the text di�cult to parse 5.12. BART is more prone to reconstruction errors,

which are semantic mutations of the text as well as omissions or repetitions of earlier

text. These semantic mutations are magnified when entities are repeated as relation

tails, with entities more likely than not to have several words replaced, sometimes

changing the meaning of the entity entirely. These entity errors make it di�cult to

reconstruct relations, and as such BART is logged as making 0 predicted relations

even when many are attempted in the output format. Beyond this, BART also creates

a significant quantity of format errors, which make the text di�cult to parse and

often cause the reconstructed sentence to include many artifacts of the parsing process.
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While each problem might be treated in isolation with relaxations of the parsing

algorithm, together these make BART outputs di�cult to work with.

Again, such an issue could arise in the lack of instruction tuning in BART models,

or it could be a consequence of BART’s training objective, which requires denoising

inputs from corrupted text as opposed to cloze-style masked language modeling.

5.4 Discussion and Analysis

The model fine-tuning experiments conducted on the CDCP and AAEC datasets reveal

curious findings regarding the right ”knobs” to turn to improve model performance in

generative argument mining. The composite of results suggest some trends along the

dimensions identified in our approach, contesting the general literature direction in

natural language processing which favors decoder-only models.

1. Labeling Strategies: we have established that full labels tend to produce

higher accuracy scores for the relation classification and identification tasks, with

limited e↵ects on the entity classification task. Past this, however, a pattern does

not emerge between the two datasets. CDCP data suggests that numerical labels

clearly outperform summary labels, while AAEC muddles such a distinction,

suggesting that summary labels outperform, albeit by a narrow margin.

2. Encoder-Decoder v. Decoder-Only Models: on both datasets, we find

that the strongest performance comes from encoder-decoder model architectures,

something to unpack further in the discussion and analysis. Among decoder-only

models, CDCP would suggest that LLaMA is superior among models tested,

while AAEC demonstrates very little distinction along model family. Further

testing with other decoder-only models might be necessary to establish definitive

claims. Additionally, a crucial prerequisite to e↵ective performance is instruction

fine-tuning. As we see with BART, despite having the supposedly superior
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Figure 5.12: Multiple error types are present in attempting to reconstruct AAEC ex.
73 outputs with BART (left: original, right: reconstructed). Reconstruction errors are
highlighted in yellow , format errors in green , and entity errors in red .

architecture, the pretraining paradigm does not prepare the model to comply

with augmented natural language formats and reproduce input texts, making

outputs too dissimilar from inputs for coherent analysis.

3. Fine-Tuning v. Few-Shot: we find a clear case for supervised fine-tuning
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compared to few-shot use of pretrained language models. Decoder-only models

are more suited for few-shot contexts, as encoder-decoder models require addi-

tional configurations and tuning for few-shot applicability. Among decoder-only

models, most fine-tuned models outperform 10-shot GPT-4o-mini across metrics

and labeling strategies. This is despite GPT-4o-mini training on more data and

with more parameters than open-source, mid-size equivalents. We see this e↵ect

especially when comparing compliance of models

4. End-to-end v. Relations-only: Clearly, making the problem easier for

generative models by including spanned entities as input would at least not

degrade performance significantly in models. However, we found that the e↵ect

of the ”oracle setting” was moderated for one dataset relative to the other. While

models compared under AAEC consistently saw F1 scores double in the oracle

setting, the CDCP dataset did not have the same e↵ects, and some models in

fact performed worse in oracle setting. This suggests di↵erences in the problem

spaces defined by the datasets and the bottlenecks they introduce, revealing the

key di↵erences in these two benchmarks.

5.4.1 Prediction of Relations v. Accuracy

Between encoder-decoder and decoder-only models, a performance in relation-based

tasks might arise from the sheer number of relation predictions a model may or may

not make. We find that, when training on the CDCP dataset, there is a strong

correlation between the number of predictions which are made and the overall F1 score

of relations. This suggests that some models, in particular those in the decoder-only

family, are less likely to produce a relation annotation when decoding an output

sequence, placing an overall cap on their performance (see Figure 5.13.)

Such a hypothesis requires further testing at the logit-level of predictions. Namely,

an experiment could compare the next-token probability of the token which comes
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before a closing bracket. If the next-token probability is, on aggregate, more likely

to be a closing bracket ] than a delimiter |, this would suggest that language models

are less likely to assign a relation to a tag, perhaps due to the relative sparsity of

relations compared to entities. This would present a problem unique to the generative

argument mining context as the next-token probabilities might be controlled by the

distribution present at train-time. A potential solution could devise a custom loss

function which encourages higher production of relations.

5.5 Conclusion

Our analysis confirms the promising capabilities of pretrained language models to

act as annotators for structure prediction and argument mining. Such generative,

end-to-end systems require only one pass in order to produce annotations akin to

classification. Our investigations build upon previous research in generative modeling

for structure prediction, advocating for the unique position of argument mining as

a case study for long-context entity-relation extraction as well as an intrinsically

beneficial system. We define four dimensions of possible configurations upon which to

test further models. Experiments along these four dimensions establish that encoder-

decoder model architectures outperform newer, larger decoder-only models, despite

being more culpable of incorrectly reconstructing input sequences. Additionally, we

confirm that fine-tuning models remains an essential component to ensure their success

in behaving as classifiers to encourage the production of schema-adherent outputs.

Our results demonstrate performance superior or comparable to several state-of-

the-art models which use classification-based systems in order to identify relations

between arguments. Further research is necessary to validate our empirical findings

along the four dimensions identified, with promising research directions for training

and synthetic data techniques to improve bottlenecks to performance in decoder-only
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Model CDCP AAEC

GPT4o-few-shot
Full 297 939
Number 399 1134
Summary 192 1100
Relations-only 475 884

LLaMA 3.2-3B-Instruct
Full 159 1117
Number 26 1065
Summary 140 1130
Relations-only 123 313

Mistral 7B-Instruct
Full 30 1176
Number 52 1071
Summary 55 1115
Relations-only 14 1184

Qwen 2.5-7B-Instruct
Full 111 1125
Number 77 1124
Summary 101 1090
Relations-only 141 1184

FLAN-T5-Large
Full 216 1099
Number 191 1139
Summary 169 1091

BART-Large
Full 0 0
Number 59 129
Summaries 0 0

True 324 1186

Figure 5.13: Left: a table of the number of predicted relations in each dataset. Right:
a plot comparing relation identification scores with number of predicted relations
(CDCP)
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models.



Chapter 6

Conclusion

6.1 Across Four Dimensions

6.1.1 Research Goals

In this work, we investigate the subtask of argument mining as a case study for scaling

generative modeling capabilities towards end-to-end systems for predicting structure

in natural languages. Contemporary research is increasingly focused on using large,

pretrained language models to address these challenges. This evolution marks a shift

from traditional pipeline systems towards end-to-end trainable models, which aim to

capture the complexities of argumentative discourse in a more unified and e�cient

manner. Such work has critical implications for natural language understanding,

unstructured text mining, knowledge graph construction, and a litany of other fields.

Argument mining is a crucial context to situate such goals; it requires models that are

robust to scaled sizes of documents and entities, as well as models that quickly learn

subjective categorization taxonomies and reproduce them on unseen data samples.

Pretrained language models exhibit such characteristics and have begun to see appli-

cations in argument mining, but such an investigation has yet to find grounding on

key empirical considerations - what this work dubs as ”dimensions” of configuration.

79
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We take as our starting point previous research that establishes the framework for

generative structure prediction [59], create perturbations of the framework based on

di↵erent annotation strategies useful for argument prediction, and retrofit the training

environment for applicability to newer model architectures.

The key contribution of this work is the declaration and investigation of four

such dimensions: labeling strategies for argument annotations, model architectures,

fine-tuning versus in-context learning, and end-to-end versus relation-based settings.

We argue that these dimensions form a span of future research trajectories, laying the

groundwork for further exploration of generative argument mining, and by extension,

structure prediction. As defined in this work, we use three di↵erent labeling strategies,

five open-source pre-trained models across two architectures, one proprietary model

for in-context learning, and two settings for task formulation. This presents 36

combinations for exploration, of which 25 configurations were tested.

Another key contribution is to identify a new set of evaluation metrics for under-

standing generative structure prediction. Structure prediction is usually framed as

a classification task, and thus results are exclusively presented through conventional

classification metrics like precision, recall and F1 (dubbed ”accuracy” metrics). We

introduce a set of metrics designed to capture how well generative models behave

as classifiers, or their ”compliance” with structure prediction. This set of metrics

allows us to understand the impact that our four dimensions and tested datasets

might implicate the performance of models, o↵ering greater visibility into performance

failures which are a consequence of incorrect generations as opposed to incorrect

classifications.

6.1.2 Key Findings

Across our experimental configurations, we find a variety of results which suggest

avenues for further research. We sort the dimensions by their relevance to performance
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based on our experiments.

Dimension 1: Fine-Tuning v. In-Context Learning

Along our four dimensions, we identify fine-tuning as the most significant determinant

of generative argument mining capabilities. Models expected to do structure prediction

in a few-shot, in-context environment tend to exhibit worse performance on both

accuracy and compliance metrics, suggesting that they are not only incapable of

meeting the prerequisite requirements of the task but also poor classifiers even when

producing coherent outputs. Smaller pretrained language models fine-tuned on existing

data samples beat larger, proprietary, API-served systems by a considerable margin.

Future research ought to challenge this empirical finding by scaling in-context learning

to incorporate more examples or contrastive learning.

Dimension 2: Choice of Model Architecture

The dimension of model architecture serves as the next significant determinant of

generative argument mining capabilities. Specifically, we find that encoder-decoder

models (T5 in particular) outperform larger decoder-only models when fine-tuned in

similar training environments. This suggests that the architecture of encoder models

enables better bi-directional attention. Decoder-only models tend to produce fewer

relations than encoder-decoder models, and we find some correlation between the

number of relations predicted and the relation-based scores of models. This e↵ect

might be remedied with loss functions designed to encourage production of relations or

the inclusion of a trainable reward model. Surprisingly, we find that encoder-decoder

models exhibit lower compliance, with higher error rates for reconstruction of original

inputs and pointers to non-existent entities in relation tags. These errors appear

towards the end of model outputs, suggesting that encoder-decoder models struggle

to scale relative to decoder-only models. While one encoder-decoder model (T5) still
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exhibits higher accuracy despite these errors, another model (BART) yields outputs

which cannot be parsed, bleeding into accuracy and preventing almost every generated

relation from even counting as a prediction.

Choice of model does not have the same staggering e↵ect when focusing exclusively

on decoder-only, open-source models. Between the three tested, LlaMA-3.2-3B-Instruct

performs the best on the CDCP dataset, while Mistral-7B-Instruct narrowly out-

performs others on AAEC. These models are pretrained with a similar next-token

prediction task, which might explain their relative uniformity when fine-tuned on spe-

cific datasets. Some experimental configurations reveal large di↵erences in decoder-only

models, while others do not.

Dimension 3: End-to-End v. Relation Only

One of our dimensions relaxes the requirements of the problem by introducing an

”oracle setting” with segmented, classified argument entities as inputs. This is key

to testing the impact of cascading errors from an end-to-end system. If an entity is

incorrectly spanned, it would be impossible for a model to correctly identify any of

its relations by the definition of relation accuracy we use. Naturally, we expect such

a relaxation would improve performance by some margin; indeed, performance on

relation-based tasks tends to improve when entities are given as input, though the

impact of improvements are clearly partitioned by dataset. This reveals important

implications regarding the relative bottlenecks in each benchmark which make the

argument mining task di�cult in di↵erent ways.

Further research might continue to explore this as an end-to-end system by using

two calls to a model as opposed to one, incorporating gradients from both components

of the task individually as opposed to the joint composition we use.
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Dimension 4: Labeling Strategies

We anticipated that the axis of labeling strategies would bear large implications for

model performance as they truncate augmented natural language outputs, creating

shorter contexts that might improve model performance or more parse-able text.

However, we find that truncated labeling strategies such as numbers and summaries

perform worse than full text labels. In terms of compliance, all strategies perform

similarly, with numerical labels yielding lower entity error because numerical labels

are the easiest to index.

6.2 Implications for Argument Mining

This work situates itself among emerging research in the argument mining space

which incorporates large, pretrained models in structure prediction [20, 53, 7, 25].

However, the models used are often encoder-only models which are positioned in

bespoke architectures with classification heads in order to improve performance. Even

in instances where generative models are used, they are often configured such that

many model calls must be made for any document to first identify entities, then

classify them, then do pairwise comparisons between identified entities to determine

what relation might exist between them. In comparison, our approach uses a simple

one-pass framework that enables e�cient structure prediction that scales easily to

long documents with diverse entities and relations. We show that such a framework

can beat state-of-the-art systems through certain experimental findings.

While some research has applied similar augmented natural language frameworks

to argument mining [40], it does not establish the four dimensions of configuration

which serve as horizons for future experiments. In contrast, our work lays out clear

directions for exploration by incorporating a variety of di↵erent model types and

label strategies which invite deeper investigations bridging the gap between generative
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structure prediction models and the argument mining subtask. Additionally, our

introduction of compliance-based metrics for generative argument mining highlights

important considerations for treating generative models as classifiers, providing a more

nuanced understanding of their performance.

6.3 Implications for Structure Prediction

Our work carries significant implications for the broader task of structure prediction in

natural language. By framing argument mining as a structure prediction problem and

exploring the capabilities of generative language models within this context, we o↵er

valuable insights into how these models can be e↵ectively leveraged for other tasks

that involve the identification and extraction of structured information from text. The

dimensions that we investigate – labeling strategies, model architectures, fine-tuning

versus in-context learning, and end-to-end versus relation-based settings – are not only

relevant to argument mining but also have broader applicability to other structure

prediction tasks. Our work is inherited from and contributes to the rich legacy of

methods and approaches in the context of named entity recognition and relation

extraction. In this sense, argument mining is understood as a joint entity-relation

extraction problem with unique characteristics due to its size and relatively subjective

nature. The case study provides important implications that challenge conventional

literature.

Considering the compliance scores of encoder-decoder models, we can see why

such a case study would be important. We isolate examples of poor compliance in

long-context documents and observe their frequency towards the end of entity inputs.

The context length of reconstructed outputs tends to exceed that of usual benchmarks

in joint entity-relation extraction, and as such the argument mining context exposes

breakdowns in long-context limits for the older encoder-decoder models. Further
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research ought to explore the scaling limits of such models in order to make the case

for using long-context decoder-only models to generate augmented natural language.

On the other hand, the choice of labeling strategy significantly impacts how

entities are identified and classified. Our research suggests that while truncated

labeling strategies might seem advantageous for solving the long context problem, full

text labels often lead to better performance even in the face of compliance problems.

This insight can help guide the development of more e↵ective NER systems that rely

on generative models. Similarly, the comparison between fine-tuning and in-context

learning has direct implications for NER. Our findings indicate that fine-tuning

generally outperforms in-context learning, highlighting the necessity of task-specific

training for achieving high accuracy in NER tasks.

Furthermore, our emphasis on compliance-based metrics has significant impli-

cations for all structure prediction tasks. Traditional evaluation metrics, such as

precision, recall, and F1-score, may not fully capture the nuances of generative models’

performance in structure prediction. Our introduction of compliance metrics, which

assess a model’s adherence to the structural requirements of the task, provides a more

comprehensive evaluation framework. This framework can be applied across various

structure prediction tasks to gain a deeper understanding of model strengths and

weaknesses.

In conclusion, our research provides a valuable contribution to the broader field

of structure prediction. By thoroughly examining the impact of labeling strategies,

model architectures, fine-tuning versus in-context learning, and end-to-end versus

relation-based settings, we o↵er insights that can be applied to various tasks involving

the extraction of structured information from text. Our emphasis on compliance-

based metrics further enhances the evaluation of generative models, providing a more

nuanced understanding of their performance in structure prediction.



86

6.4 Future Work

The nature of our work is such that it implies a wide gamut of future directions

for research. Here, we articulate those directions which we find critical for further

exploration.

6.4.1 Encoder-Decoder v. Decoder-Only Models

We find that the choice of model architecture carries significant implications for

both accuracy and compliance of generated outputs. A key limitation of decoder-only

models appears to be the under-representation of relations in auto-regressive prediction

of entity tags. Without a cross-attention module which considers the latent state

representation of a full input, it appears as if these models exaggerate the relative

sparsity of relations. This is reflected in Figure 5.13, where the number of relations

predicted is correlated to F1 scores of relations themselves. The under-prediction

problem ought to be diagnosed at greater depth and resolved with creative training

strategies.

Diagnostically, a logits-based analysis can determine whether under-prediction

of relations is a consequence of next-token probabilities. Future work might isolate

the next-token likelihood of a closing bracket ] or a delimiter | after a tag has been

completed. At that position, a delimiter would imply a relation as opposed to a closing

bracket, so aggregating logit probabilities in di↵erent circumstances might yield an

empirical confirmation of the e↵ect observed.

Procedurally, improvements for decoder-only models could be made in a variety

of contexts. Creative sampling procedures with configuration of hyperparameters

like temperature might also help to improve inference-time performance without

changing the supervised fine-tuning procedure. Alternatively, train-time modifications

might be considered, such as a custom loss function which considers the number of
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relations expected versus generated could help improve under-prediction, or a di↵erent

training scheme entirely which employs a reward model and reinforcement learning

techniques for controllable generation. The ensemble of these methods could improve

the performance of decoder-only models. Finally, we consider the use of synthetic

data, or language-model-generated data samples with relevant annotations, as a proxy

for simulating increased relation patterns along generative models [34, 98]. Such

an approach would shift the distribution of relations as present in hand-annotated

benchmarks like CDCP, addressing a potential bottleneck which occurs in certain

language environments.

Beyond under-prediction, ablation experiments using T5 might be used to determine

how necessary the encoder module truly is to T5’s performance. For instance, an

experiment might freeze the weights of the encoder during fine-tuning to determine

how crucial it is for overall model performance.

Finally, novel pretraining techniques might be incorporated in order to improve

model compliance across the board as a pre-requisite to argument mining. While

instruct models trained on following user requests perform best for the structure

prediction task, the instruct pretraining rarely considers structure prediction or

augmented natural language as part of its objective, due to their scarcity. Thus,

incorporating ANL as a pretraining task might be an important consideration.

6.4.2 Further Model Dimensions

There are other dimensions of model selection which might be considered when

expanding the search for optimal models within a certain architecture.

For instance, current literature recognizes that model size has important implica-

tions for performance, citing empirical e↵ects as well as theoretical scaling laws. Model

size is not extensively tested in this work due to limitations in the experiment environ-

ment, as some models with hundreds of billions of parameters are cost-prohibitive to
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download, train and test. This direction might be necessary to establish new directions

in model search.

Expanding the choice of model families is another area of consideration. While we

test two encoder-decoder models and three decoder-only models, many other model

families exist which might have a unique configuration suiting them for structure

prediction.

6.5 Concluding Remarks

Our research has rigorously examined the potential of pretrained language models

(PLMs) to serve as e↵ective annotators for complex tasks such as structure prediction

and argument mining. The generative, end-to-end systems we developed demonstrate a

significant advantage: they can produce annotations that rival traditional classification-

based approaches, but with a single, streamlined pass. This eliminates the need for

multiple iterative steps, simplifying the annotation process and potentially accelerating

it. Our investigation builds upon the burgeoning field of generative modeling for

structure prediction, but we specifically highlight argument mining as a compelling

and unique case study. This domain presents a challenging yet valuable arena for

exploring long-context entity-relation extraction, given the intricate and often lengthy

dependencies between argumentative components. Moreover, the intrinsic benefits of

an automated argument mining system—such as enhanced critical thinking analysis

and improved information retrieval—further underscore its importance.

To systematically evaluate the performance of PLMs in this context, we defined four

critical dimensions of possible configurations. These dimensions encompass variations

in model architecture, fine-tuning strategies, input representation, and output decoding

methods. By meticulously exploring these dimensions, we aimed to uncover the optimal

configurations for achieving high-quality annotations. Our experimental findings
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revealed a notable trend: encoder-decoder model architectures, such as T5, consistently

outperformed newer and larger decoder-only models like GPT-3, particularly when

tasked with generating structured outputs. This result is significant, as it suggests

that the bidirectional encoding capabilities of encoder-decoder models are crucial for

capturing the complex relationships inherent in argument structures. Interestingly, we

observed that encoder-decoder models were more prone to incorrectly reconstructing

input sequences, a phenomenon that warrants further investigation. Despite this, their

superior performance in relation extraction and annotation generation was undeniable.

Furthermore, our experiments provided strong evidence that fine-tuning remains an

indispensable step in adapting PLMs for classification-like tasks. This process is

essential for guiding the models to produce outputs that adhere to predefined schemas,

ensuring the validity and usability of the generated annotations.

Our empirical results demonstrate that our generative, end-to-end systems achieve

performance levels that are either superior or comparable to several state-of-the-art

models that rely on traditional classification-based systems for identifying relations

between arguments. This achievement underscores the potential of PLMs to revo-

lutionize annotation processes in argument mining and related fields. However, we

acknowledge that further research is necessary to validate our findings across a broader

range of datasets and model architectures. Specifically, we advocate for continued

exploration of the four dimensions we identified, with a focus on refining model archi-

tectures, developing more e↵ective fine-tuning techniques, and optimizing input and

output representations. Promising research directions include the development of novel

training methodologies and the exploration of synthetic data generation techniques to

address the performance bottlenecks observed in decoder-only models. By pursuing

these avenues, we can unlock the full potential of PLMs for automated annotation,

paving the way for more e�cient and accurate argument mining systems.
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[58] Riccardo Orlando, Pere-Llúıs Huguet Cabot, Edoardo Barba, and Roberto

Navigli. ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and

Relation Extraction on an Academic Budget. In Lun-Wei Ku, Andre Martins,

and Vivek Srikumar, editors, Findings of the Association for Computational

Linguistics ACL 2024, pages 14114–14132, Bangkok, Thailand and virtual

meeting, August 2024. Association for Computational Linguistics. URL https:

//aclanthology.org/2024.findings-acl.839.

[59] Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille,

Rishita Anubhai, Cicero Nogueira dos Santos, Bing Xiang, and Stefano Soatto.

Structured Prediction as Translation between Augmented Natural Languages,

https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad
https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad
https://aclanthology.org/2024.findings-acl.839
https://aclanthology.org/2024.findings-acl.839


101

December 2021. URL http://arxiv.org/abs/2101.05779. arXiv:2101.05779

[cs].

[60] Joonsuk Park and Claire Cardie. Identifying appropriate support for propositions

in online user comments. In Proceedings of the first workshop on argumentation

mining, pages 29–38, 2014.

[61] Joonsuk Park and Claire Cardie. A corpus of erulemaking user comments for

measuring evaluability of arguments. In Proceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018), 2018.

[62] Ayush Patwari, Dan Goldwasser, and Saurabh Bagchi. Tathya: A multi-classifier

system for detecting check-worthy statements in political debates. In Proceedings

of the 2017 ACM on Conference on Information and Knowledge Management,

pages 2259–2262, 2017.

[63] Andreas Peldszus and Manfred Stede. Rhetorical structure and argumen-

tation structure in monologue text. In Chris Reed, editor, Proceedings of

the Third Workshop on Argument Mining (ArgMining2016), pages 103–112,

Berlin, Germany, August 2016. Association for Computational Linguistics. doi:

10.18653/v1/W16-2812. URL https://aclanthology.org/W16-2812/.

[64] Isaac Persing and Vincent Ng. End-to-end argumentation mining in student

essays. In Proceedings of the 2016 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

pages 1384–1394, 2016.

[65] Wilma Prafitri and Muhammad Alim Akbar Nasir. Persuasive strategies in don-

ald trump’s political speeches. EBONY: Journal of English Language Teaching,

Linguistics, and Literature, 3(1):33–44, 2023.

http://arxiv.org/abs/2101.05779
https://aclanthology.org/W16-2812/


102

[66] Muhammad Qorib, Geonsik Moon, and Hwee Tou Ng. Are decoder-only

language models better than encoder-only language models in understand-

ing word meaning? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,

editors, Findings of the Association for Computational Linguistics: ACL

2024, pages 16339–16347, Bangkok, Thailand, August 2024. Association for

Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.967. URL

https://aclanthology.org/2024.findings-acl.967/.

[67] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,

Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,

Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren

Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu,

Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,

Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,

Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.

Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

[68] Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer. CoRR, abs/1910.10683,

2019. URL http://arxiv.org/abs/1910.10683.

[69] Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Christian

Stab, and Iryna Gurevych. Classification and Clustering of Arguments with

Contextualized Word Embeddings, June 2019. URL http://arxiv.org/abs/

1906.09821. arXiv:1906.09821 [cs].

[70] Rodney A Reynolds, J Lynn Reynolds, James Price Dillard, and M Pfau. The

persuasion handbook: Developments in theory and practice. 2002.

https://aclanthology.org/2024.findings-acl.967/
https://arxiv.org/abs/2412.15115
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1906.09821
http://arxiv.org/abs/1906.09821


103

[71] Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M. Khapra, Ehud

Aharoni, and Noam Slonim. Show me your evidence - an automatic method for

context dependent evidence detection. In Llúıs Màrquez, Chris Callison-Burch,
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