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Abstract

Efficient Search and Computation on Encrypted Data with Access Control
By Michael G. Solomon

Outsourcing data and processing to cloud environments often raises security
and privacy concerns, which can be addressed through the use of encryp-
tion. But current approaches either provide all-or-nothing encryption, or
rely on an omniscient third party to handle granular key management and
make access control decisions to provide fine-grained access control, and in-
troduce obstacles to searching over ciphertext. We explore the problem of
efficiently searching encrypted data and simultaneously providing embedded
fine-grained access control, first in a general setting, and then extended to
location-based data. We first propose a new framework for generic database
data that enforces access control for queries from different classifications
of users, while still providing the capability to search over encrypted data.
We then extend our research focus to location-based applications by imple-
menting and assessing several existing location privacy solutions to produce
concrete recommendations of the best technique for implementors to choose
for specific use cases. And finally, we combine the first and second parts of
our work to propose another new framework for mutually private proximity
detection (MPPD) to efficiently support searching over encrypted data and
enforcing fine-grained access control and privacy for data owners (DO) and
users for location-based applications. The culmination of our work provides
researchers and application developers with a viable framework that pro-
vides MPPD in a categorical setting, and is based on current architectures
and technologies.
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Chapter 1

Introduction

1.1 Motivation

The rapid growth of data generated and consumed by diverse applications

and users has led to large scale data and processing outsourcing. Many of

today’s applications execute, and access data stored in, cloud environments,

hosted by cloud service providers (CSP) [31]. An agreement with a CSP

to store data in a public, community, or hybrid cloud environment can pro-

vide the benefits of outsourced maintenance and capability to alter capacity

based on demand [12]. However, diminished control over data security and

privacy [61, 37] is a disadvantage of outsourcing data storage and processing.

CSP environments are untrusted [24] in which local levels of control cannot

be attained [38, 37]. Traditional access control methods are often insuffi-

cient for CSP [38, 45] hosted databases and processing. Lacking sufficient

confidentiality and privacy controls not only exposes the data to additional

vulnerabilities, but is also potentially a violation of laws, regulations, or

contract terms [54]. The primary challenges are to provide increased and

more granular control over who can consume data, while relocating data and

processing outside traditional trust boundaries.

The first part of this dissertation addresses the challenge of providing secure

fine-grained access control in categorical settings, that is, in settings that
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support groups of users with different access needs. Users are commonly

authorized to access data based on characteristics or membership in certain

groups. A common method to protect data in any untrusted environment

is to encrypt data before sending it outside the trusted domain [22]. In

multi-user database scenarios, solutions using most traditional encryption

implementations are suboptimal, requiring an additional key-management

layer thereby degrading performance and scalability [79, 49, 20]. For example,

if two users, Alice and Bob, who both possess the attributes of belonging to

an authorized group, want to share data stored in a cloud database using

traditional encryption methods, they must both have access to the single key

necessary to decrypt data, and their access to that key must be controlled

by some third party. This approach places the access control decisions on

the entity that controls access to decryption keys. We address this problem

by proposing a framework that provides data confidentiality and categorical

access to data without incurring the overhead of traditional complex key

management.

In addition to the need to control general access to data based on user

characteristics, applications deployed on mobile devices increasingly incor-

porate location awareness into services they provide. In fact, many of these

services rely on location to provide context-sensitive results, such as proxim-

ity alerts when a consumer approaches some defined area of interest (AOI).

Such applications can provide guidance to users based on the context of their

current real world environment. AOIs can define locations that users want to

approach, such as a store with an attractive sale, or places to avoid, such as a

traffic accident or other event that threatens public safety. As smart phones,

tablets, and other mobile devices approach ubiquity, detecting and tracking

device location and providing location-specific services becomes increasingly

easier. Different location detection techniques [47, 60] provide various levels

of accuracy in different environments (indoor/outdoor, above/below ground,
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urban/rural, etc.). Today’s smart phones, tablets, and other mobile devices

make accurate location-sensing a commonly used feature. However, con-

sumers of such features are becoming increasingly concerned over the loss

of privacy resulting from ongoing location disclosure. In short, consumers

want to enjoy the benefits of location-based services without disclosing their

location. Likewise, data owners may want to provide proximity notification

without publishing the locations of AOIs, to protect intellectual property or

preserve public safety. Mobile apps often include location based services,

such as proximity to preferred vendors or notification of safety issues, but

require users to disclose their locations. Users want to know “am I near an

area of interest? (e.g. certain type of restaurant or a bank)”, and might

also desire push notifications when they are near areas of interest, areas to

avoid for safety reasons, or any area with associated valuable location specific

information. Users value such services but still want to keep their locations

private. Location exposure privacy issues are being increasingly recognized

including tracking, identification, and profiling threats [25, 14] . In the second

part of this dissertation we evaluate several proposed solutions to providing

mutually private proximity detection (MPPD). Our evaluation includes im-

plementing a subset of the approaches evaluated, and then measuring the

privacy levels and performance of each implemented approach as input data

domains were varied, to develop a recommendation of the best fit approach

for specific deployment environments.

As data owners create larger sets of AOIs for increasingly diverse groups

of consumers, it becomes more important to provide differing levels of ser-

vice based on consumer classifications, without disclosing the locations of all

areas of interest to all consumers. For example, data owners may provide

services of greater value to paid subscribers than to users who consume ser-

vices for free. Data owners want to restrict access to, and even awareness

of, areas of interest to consumers based on access permissions and location.
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In the third part of this dissertation we explore the next logical step, that

is to combine MPPD approaches with categorical access to searchable data.

This third and final part of our research proposes a framework that meets

the usability requirements of today’s location-based services, while providing

mutual privacy for users and data owners, with embedded access rules based

on data owner defined access policies.

1.1.1 Confidentiality in Categorical Settings

A primary challenge when outsourcing data or processing to cloud environ-

ments is to extend both confidentiality assurances and control of privacy into

untrusted domains [45]. Since different data consumers likely have different

privileges, data access must be individualized and restricted only to autho-

rized consumers. And to be functionally effective, the protected data must

be searchable without incurring excessive overhead or exposing any of the

protected data to any entities in the untrusted environment [17].

Traditional data encryption techniques require a single key, or a pair of keys,

to encrypt and decrypt each data item. The most fine-grained approach to

using encryption for data stored in a database requires a separate key for

each cell (each column within a row), and a trusted key authority to store

keys and manage access to them based on pre-determined access criteria. A

more common practice is to reuse keys for groups of cells, reducing the total

number of keys and required administrative overhead to manage them. Even

this more realistic case would require a trusted omniscient third party key

access manager to store keys and manage access to them based on some pre-

determined access criteria. The added overhead of managing key associations

and access rights for many users makes it difficult to scale. The opposite

extreme approach would be to use a single key or key pair to encrypt and

decrypt all protected cells in the database, an approach similar to various
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transparent data encryption (TDE) schemes [27, 19]. This approach makes

it easier to manage keys but introduces a single point of compromise. Any

user who possesses the single key can submit and consume all data stored

in the database. A balance between the two extremes is to define partitions

of encrypted data (the set of encrypted cells in a database that share the

same encryption/decryption key), and are often implemented as roles [77].

Suppose a user, U2 as shown in Figure 1.1, owns the key for partition P2,

(K2), and also wants to access data in partition P1. User U2 would request

the key for P1, (K1), from the key access manager (or directly from user

U1) and then use it to decrypt data from the database. If user U2 only

possessed the keys for partitions P1 and P2, (K1, K2), she could not access

any encrypted data from any other partition. Associating partition keys with

users provides the ability to expose subsets of the database to users, while

maintaining confidentiality of partitions any user is not authorized to access.

P1,  (K1)

P2,  (K2)

P3,  (K3)

K1

K1, K2

K3

Request K1

Key Partitions - Keys define partitions

Key Access 

Manager

(stores all 

keys)

U2

U3

U1

Figure 1.1: Accessing Data From Multiple Partitions

While this approach is a good compromise between minimum and maximum

granularity, the common use of key access managers does still grant access

control authority to the key access manager, instead of giving the authority
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to the data owner.

1.1.2 Location Privacy

Consider a frequent traveler, Alice, with a GPS enabled smartphone. Alice

wants to know when she is near one or more areas of interest (AOIs), without

disclosing her location. AOIs to avoid may include areas of traffic accidents,

infectious diseases, civil emergencies, or even weather events. The locations

of weather AOIs are public and do not need privacy protection. However, au-

thorities may want to keep the locations of some other types of AOIs private,

such as areas of known criminal activity, to protect both the public and law

enforcement officers, or ongoing investigation, to help investigators maintain

the integrity of a crime scene. The data owner (i.e. law enforcement agency)

would likely maintain separate sets of AOIs, one for public consumption and

another for internal personnel consumption. The AOI set for the general

public would likely contain larger AOIs to provide more general information,

and the AOI set for internal personnel would contain smaller AOIs to con-

vey more precise location information. The law enforcement agency wants to

protect their AOI locations until a user has a “need to know” when approach-

ing an AOI. Users would satisfy this property when they are in proximity

to an AOI defined in an AOI set for which they are authorized. We refer to

this problem as MPPD, which detects proximity of a user to defined AOIs

without disclosing the user’s location to the data owner or any AOI infor-

mation to the user. We note that even with MPPD, any user (or multiple

colluding users) will learn some AOI location information after receiving a

proximity alert and potentially construct an AOI map as they move around

in the space. As an orthogonal issue, AOI privacy depends on either the

AOI locations changing before users can infer material portions of the AOI

map or the use of compensating controls. For example, law enforcement may
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enforce physical boundaries around an investigation to prevent unauthorized

individuals from learning anything more than the fact that “something is

going on” in a general area.

1.1.3 Location Privacy in Categorical Settings

The previous section described a need for MPPD in applications that provide

proximity detection for all users within a defined set of AOIs. But as location-

based applications and devices become more commonplace, it becomes more

important to provide MPPD along with controlled access to AOIs. In other

words, it is desirable to allow data owners to define AOIs and specify access

restrictions based on user characteristics. Consider Mary, who is a guest at

the “Fun Times” amusement park. Mary wants to make the most of her day

in the park and desires to minimize time spent waiting in line for attractions

or shows. Mary has subscribed to the “Fun Times InTheKnow app” premium

service that sends information to her smart phone about nearby attractions

and shows with short wait times. Bob is also in the “Fun Times” park

and has the “InTheKnow” app, but Bob did not subscribe to the premium

service. Bob only receives general information about attraction wait times

for attractions that are somewhat close to his current location. Both Mary

and Bob want to receive helpful information but are concerned about openly

broadcasting their every move within the park to the park’s management.

On the other hand, “Fun Times” wants to provide location-sensitive services

to Mary and Bob without publishing all of the “Fun Times” areas of inter-

est. “Fun Times” can limit the information they provide to subscribers, and

even define different subscriber levels based on subscription fees paid. “Fun

Times” also uses this service to direct their employees to areas of the park

that need cleaning, servicing, or even crowd management. Other use cases

for such a MPPD framework in a categorical setting could include providing
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epidemiologic related alerts or criminal activity investigation proximity as

described in the previous section, but with precision granularity based on

clearance and/or “need to know”.

1.2 Contributions

1.2.1 Cloud Database Confidentiality with Fine-grained

Access Control (Chapter 3)

To meet the needs of protecting the confidentiality of outsourced data when

being accessed by various categories of users, based on user attributes, we

propose a framework that provides confidentiality in an untrusted environ-

ment along with maintaining data owner control over data consumer (user)

access without an omniscient key manager. Our framework, termed Zero-

Vis1 [62], combines the ability to search across encrypted data [58] with

fine-grained access control [4] to provide confidentiality protection, searcha-

bility for efficient access, and data owner initiated access control, all in an

untrusted storage environment. Our framework provides a one-to-many (one

data owner to many data consumers) data confidentiality layer that can be

accessed by existing legacy applications to allow current host-bound applica-

tions to migrate to a cloud storage environment and maintain confidentiality.

Our framework does not require a trusted third party to manage encryption

keys for data owners and consumers. Nor does it require specific permission

for each new data consumer (e.g. research team). In essence, each data owner

(e.g. patient) specifies an access policy (based on attributes rather than

identities) for her data that determines who can access protected portions

of her data. Traditional key management schemes require a key manager

1Like flying an instrument approach with limited or no visibility - only pilots with

proper equipment, clearance, and the current local frequencies can land.
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to associate authorized data owners and authorized data consumers with

keys (a many-to-many relationship). Our framework assumes the existence

of an attribute manager that maintains valid attributes for authorized data

consumers (instead of many keys), regardless how many partitions they can

access.

Our framework proposes the use of CP-ABE (Ciphertext Policy Attribute

Based Encryption) [4] to control access to data based on the data consumer’s

attributes. Only consumers who possess attributes that satisfy the cipher-

text’s access policy can decrypt. Our framework also utilizes layered encryp-

tion in combination with CP-ABE to support efficient query processing on

encrypted data. We present an implementation of our framework and a per-

formance study with different database sizes that demonstrate the feasibility

of our proposed approach.

1.2.2 Mutually Private Proximity Detection (Chapter

4)

Naive solutions to protect location privacy include simply stopping location

sensing or the release of physical location. However, this results in the loss of

all utility (e.g. navigation or lost device tracking). An alternative approach

is to introduce novel ways of exchanging and processing location information

that protects the location owner’s privacy without required end user action.

Researchers have focused efforts to provide location privacy at the application

layer in four main areas, each with its own drawbacks: location perturbation

(limited accuracy), access control (limited privacy/utility trade-off), private

information retrieval (PIR) (lack of data owner privacy), and encryption

(performance cost). Each approach attempts to provide the ability for users

to consume location based services without disclosing their locations to a

service provider (SP) or data owner, and in some cases, allow the data owner
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to keep its location data private as well. There is a lack of independent

and objective comparative assessment of these techniques in the literature,

in terms of their privacy, security, and performance. Our goal in this second

part of the dissertation is to provide such an analysis and assessment of a

subset of the techniques, with a view to evaluating their functionality and

performance of a subset of techniques.

In our assessments [63] we focus on techniques guaranteeing accuracy as

well as mutual privacy, i.e. those that are encryption based, and objectively

evaluate their known deficiency, i.e. cost. In selecting the approaches to

evaluate, we chose the algorithms from the “compute-then-compare” algo-

rithm class. Other algorithms, such as Wang’s circular range search [69], do

not require separate computation and comparison steps. The relative prox-

imity feature is embedded in the encoding method and is beyond the scope

of this dissertation. We choose five representative techniques, and imple-

ment three of the selected techniques and evaluate how each implemented

technique performs with varying input data (AOI number and size, and area

coverage.) Organizations implementing a MPPD solution can use our results

to select the best technique to fit how their environment changes over time.

We present our results in a manner that provides clear direction for selecting

the “best” technique for a specific application environment. As part of the al-

gorithm identification process, we found that one approach held promise, but

was not designed specifically to address physical location proximity queries.

It was originally proposed as a general Secure k-Nearest Neighbor technique.

The original technique determined closeness between vectors of attributes.

We extended the technique’s design to support distinct locations and range

queries, while still preserving the mutual privacy of the user and the data

owner. Our modifications adapted the technique to our problem domain and

resulted in a new viable solution.
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1.2.3 Mutually Private Proximity Detection in Cate-

gorical Settings (Chapter 5)

To address the problem of MPPD in categorical settings, we propose a frame-

work and protocol, PrivProxABE [63], that allows data owners to define a

single set of areas of interest (AOI), along with consumer access rules for

each AOI. Embedded AOI access rules provide the ability to limit AOI ac-

cess to specific groups of consumers. The locations of all defined AOIs are

kept private and are not disclosed to service consumers. The framework also

supports proximity detection based on a consumer’s current location, while

keeping the consumer’s location private. That is, a consumer can issue a

proximity query without disclosing current location, and still receive a result

that indicates whether the consumer is near any area of interest for which the

consumer is authorized. Our framework supports mutual privacy (privacy for

the data owner and the consumer), along with embedded access control that

allows data owners to control proximity alerts by consumer type.

Our protocol uses CP-ABE to provide fine-grained access control based on

descriptive consumer attributes, and Hidden Vector Encryption (HVE) to

efficiently determine user proximity to AOIs. To the best of our knowledge,

there is only one other proposed protocol [51] that controls access to AOIs

based on access rules the data owner supplies, along with MPPD. Li’s Paillier

based protocol requires distance calculations for each AOI. Our protocol

reduces computational overhead by using HVE with compressed AOI location

tokens to determine if a user’s location overlaps one or more AOIs, along with

CP-ABE to provide flexible fine-grained access control.

Our proposed protocol is novel in that it provides fine-grained flexible con-

sumer access control, minimizes computational load on devices with limited

processing power, (e.g. mobile devices), and also provides a high level of pri-

vacy guarantees for both users and data owners. The protocol supports these
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services and reduces the data owner administrative workload. Data owners

can create a single set of AOIs, along with access policies for each AOI, that

restricts user consumption of proximity alerts based on data owner defined

access policies. Users (consumers) must possess the attributes necessary to

satisfy a data owner defined access policy for each AOI to receive proximity

alerts for that AOI. All of this functionality is provided without requiring

any third party to access unencrypted location information to make access

authorization decisions. Using CP-ABE, data owners can define the granu-

larity of user proximity alert consumption based on its own defined access

policies. The use of HVE, along with limiting any public key distribution to

only trusted entities, provides the actual proximity determination of a user

location to an AOI without disclosing either location to any party. The com-

bination of CP-ABE and HVE provides a flexible and scalable approach to

implementing MPPD in a categorical user setting.

1.3 Organization

The remainder of the dissertation is organized as follows. In Chapter 2, we

discuss the most related works to the problems addressed in this dissertation.

In Chapter 3, we describe our contributions in preserving confidentiality in

categorical settings for data stored in cloud databases. In Chapter 4 we ex-

amine the performance of three implementations of approaches that provide

mutually private proximity detection. We conclude our contribution to pri-

vate proximity detection in Chapter 5 where we present our mutually private

proximity detection framework for categorical settings. In Chapter 6, we

finally summarize the contributions of this dissertation and propose future

research directions.
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Chapter 2

Related Work

In this chapter, we summarize the related work most relevant to the con-

tributions presented in this dissertation.

2.1 Encryption Key Management

The ZeroVis and PrivProxABE frameworks proposed in this dissertation

both minimize overhead associated with distributed/federated encryption key

management. Both frameworks provide fine-grained access control, with Ze-

roVis focused on general cloud database data and PrivProxABE focused on

location-based shared data.

2.1.1 Sharing Encryption Keys

Researchers have addressed the problem of controlling access to encrypted

data using a variety of methods. Early solutions were based on various

types of encryption key sharing schemes. Broadcast encryption [28] was first

proposed as a solution to the problem of sending secure transmissions from

one site to an arbitrary number of recipients. This scheme relies on a known

hierarchical key distribution pattern and set of privileged users. Later work

based on [28] increases scalability [57] [44] and even integrates key derivation

techniques for greater utility [78]. Since a requirement for our frameworks
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is to minimize overhead associated with traditional key management, we do

not incorporate key sharing in our proposed solutions.

2.1.2 Deriving Encryption Keys

Another approach to controlling access to encrypted data is to derive keys,

as opposed to broadcast encryption techniques that manage key sharing. An

early attempt at managed key derivation was proposed as Identity Based

Encryption (IBE) [7]. IBE is a public key encryption technique in which

keys are derived based on a user’s identity. IBE removes the requirement

that encryption keys must be securely shared with the intended recipient,

but still assumes a single recipient. Goyal [32] proposed an extension to IBE,

called Attribute Based Encryption (ABE), that uses attributes and access

policies, not distinct identities, to encrypt and decrypt data. ABE addressed

the problem of encrypting data for an arbitrary number of recipients. The

two primary forms of ABE are Ciphertext Policy ABE (CP-ABE) and Key

Policy ABE (KP-ABE). The difference between the two approaches is in how

the access policy is used. There are 2 main ABE alternatives, defined by the

location of the access policy. KP-ABE embeds the access policy in the user’s

private key [32], while CP-ABE embeds the access policy in the ciphertext

[4]. KP-ABE gives control over who can decrypt data to the key generator,

while CP-ABE ensures that the encryptor (data owner) retains control over

who can decrypt her data [4]. ABE solves the problem of providing access

to private data for a specified recipient without traditional key management

issues, and is proposed in several outsourcing secure data schemes [74, 36, 75],

but the technique alone does not map well to encrypting data for storage in a

database due to its lack of a mechanism to efficiently search encrypted data.

Li et. al. [50] uses both CP-ABE and KP-ABE schemes to store personal

health record (PHR) data in a semi-trusted environment. Their proposed
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framework extends the basic ABE notion to include Multi-Authority ABE

(MA-ABE) [13] to allow different attribute authorities with different data

needs to collectively generate users’ secret keys based on distinct sets of user

attributes. This approach of securing PHR data focuses primarily on storing

documents and does not address the problem of efficiently searching across

many PHR data items.

2.2 Searchable Encryption

One of the primary obstacles to implementing encryption is the difficulty

in searching encrypted data. Commonly used encryption techniques do not

support searches, as the order of the plaintext is not maintained through the

encryption process.

Various researchers have proposed techniques to provide searchable encryp-

tion in [34, 59, 9, 46]. These techniques involve the data owner encrypting

plaintext and a set of keywords to send to a service provider. Queriers cre-

ate a “trapdoor” of keywords for which they wish to search, encrypt them,

and send them to the service provider. The service provider can use the en-

crypted values to determine if a match occurs that would identify ciphertext

that satisfies a user query. However, current solutions all require the use of

a single same key for encryption for all data in the searchable domain. This

restriction conflicts with our requirement to provide embedded fine-grained

access control for ciphertext.

CryptDB [58] provides a solution to the problem of searching encrypted

data by storing data encrypted for specific purposes. CryptDB is research

software that addresses the performance limitations of accessing encrypted

data stored in a database. Multiple copies of each encrypted column are

stored, using different encryption algorithms, to support many requirements

of common application queries. Although CryptDB does solve the access
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performance issue, it relies on distinct keys that are bound to user identi-

ties. Further, CryptDB focuses primarily on transaction related queries. The

Monomi [66] project uses many of CryptDB’s techniques to address analyt-

ical queries, extending the CryptDB concept by splitting query processing

between the server and the client. While more scalable than CryptDB for

analytical queries, it still does not provide a scalable method for one-to-many

encryption. Verifiable Attribute-based Keyword Search over Outsourced En-

crypted Data (VABKS) [76] uses ABE to provide access control and solves

the problem of searching across encrypted data in the cloud by adding en-

crypted keyword indexes to the ABE payload. While VABKS does provide

searchability for ABE encrypted data, the technique is document-centric, re-

quiring a defined list of searchable keywords for each ABE item, limiting its

usefulness for searching across many database items.

Our ZeroVis framework approach builds on selected concepts from each of

the above, and adds data owner controlled access control to better address

efficient encrypted data access and overcome difficulties associated with dis-

tributed access control.

2.3 Location Privacy

The second and third parts of this dissertation address location privacy con-

cerns. In both parts, we explore the problem of determining if a defined

location is in proximity to some other location or area. There are two pri-

mary variants of the proximity detection problem. The first problem,“nearby

friends”, determines if two or more user locations are within a threshold dis-

tance from one another. The second approach, the focus of our research,

determines if a location overlaps one or more areas defined by an authority.

Existing private proximity detection solutions generally fall into the follow-

ing four main areas, each with its own drawbacks:
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• Location perturbation (limited accuracy)

• Access control (limited privacy/utility trade-off)

• Private information retrieval (PIR) (lack of data owner privacy)

• Encryption (performance cost)

Also, current private proximity detection solutions, with the exception of

[51], provide results based on location alone, and do not consider other at-

tributes. Any results filtering is left to a third party that can examine at-

tributes and learn user locations.

2.3.1 Location Perturbation and Transformation

In a location perturbation scheme users provide obfuscated or perturbed data

to a Location Based Service (LBS). K-anonymity [65] is the most common

technique to limit the LBS’ ability to determine any user location. Kim

[43, 41] proposed two different approaches to cloaking locations. One weak-

ness of such schemes is that users must possess the ability to generate cloaked

areas, and attackers can also use these techniques to analyze shared cloaked

locations. Another weakness of these schemes is that the LBS only responds

with answers of the same, or lower, precision of the obfuscated user location.

Yiu [72] proposed a collection of schemes to strengthen the shared knowledge

weakness by partitioning data using different criteria, but these techniques

are still vulnerable to attacks based on a priori knowledge and brute-force

attacks. Hossain [48] proposed a shear-based spatial perturbation scheme,

and Yoon [73] proposed a line symmetric-based spatial perturbation scheme.

Recent work in cloaking [3, 70] extends differential privacy [21] and provides

greater semantic privacy protection. However, all perturbation schemes re-

duce location data precision.



18

2.3.2 Access Control

Another approach is via structured access control techniques. Bugiel [10]

proposed a fine-grained Mandatory Access Control (MAC) approach for An-

droid devices, called FlaskDroid. Li [51] proposed Privacy-preserving Loca-

tion Query Protocol (PLQP) for fine-grained access to location data. PLQP

allows queries to access location information while still upholding user pri-

vacy and is efficient enough to operate on mobile devices. Lu [52] proposed

Secure and Privacy-preserving Opportunistic Computing (SPOC) framework

for healthcare data, which requires close proximity of a patient and medical

personnel to grant PHI access. Fawaz [26] proposed more fine-grained access

control for sharing location data with third-party apps. Access control meth-

ods only provide binary access control with limited granularity for privacy

protection, i.e. users can either grant or block access, and these approaches

require a trusted third party to access location data to make access decisions.

2.3.3 Private Information Retrieval

PIR [16] allows users to issue queries to a data owner database without the

data owner learning the content of the query. These techniques build pri-

vate spatial indexes that utilize PIR operations, which can provide efficient

spatial query processing while the underlying PIR scheme provides privacy.

Hengartner [35] presents an architecture that uses PIR to hide location in-

formation from an untrusted server and uses trusted computing to guarantee

that the PIR algorithms are only performing the operations as intended.

Khoshgozaran [40] proposed two location privacy approaches that eliminate

the need for an LBS anonymizer. Ghinita [29] proposed a PIR based tech-

nique to support Nearest-Neighbor (NN) queries without requiring a trusted

third party. This approach uses cryptography to protect user locations and

increases performance with data mining techniques to eliminate redundant
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calculations. PIR techniques can be efficient and provide a high level of pri-

vacy guarantees, but they assume that the AOI data is public, and provide no

privacy for data owners. Unlike PIR techniques, mutually private proximity

detection, which is the focus of our research, requires that all AOIs defined

by data owners be kept private as well as user location data.

2.3.4 Encryption

Other approaches use encryption for location data to provide privacy, re-

quiring varying degrees of communication and computation in the encrypted

space to determine proximity. Encryption techniques can be viewed as sym-

metric PIR, that is, PIR plus the restriction of AOI privacy, which is the main

focus of our research. Although encryption introduces overhead, techniques

that use it can be more resistant to attackers, even with prior knowledge.

Khoshgozaran [39] proposed a spatial data encryption scheme based on a grid

that uses group shared symmetric keys, allowing users to query nearby cell

contents and then locally decrypt location details for items encrypted with

their group shared key. Yiu [71] proposed the Metric Preserving Transforma-

tion (MPT) and Flexible Distance-based Hashing (FDH) schemes. MPT is a

Mtree-based encryption technique which uses Order-Preserving Encryption

(OPE) [1] to hide location information. FDH converts data into a bitmap

and uses AES to encrypt each bitmap. FDH is faster than MPT, although

FDH only provides approximate query results. MPT and FDH are limited in

their utility value since they only support NN queries, and not “nearer than

some threshold” queries. Ghinita [30] proposed a method based on Hidden

Vector Encryption (HVE), and searchable encryption techniques that allow

an untrusted server to determine proximity to alert zones without knowing

any user’s actual location. Near-Pri [55] allows users to share their spe-

cific locations once proximity (within a specified threshold) is determined.
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Calderoni [11, 56] proposed a new compact data structure, Spatial Bloom

Filter (SBF), to privately store AOI locations, and the Paillier cryptosystem

to protect AOIs from disclosure while still allowing comparison with encoded

(but unencrypted) user locations. Elmehdwi [23] proposed Secure k-Nearest

Neighbors (SkNN), which uses Paillier cryptosystem and protocols to support

private k-NN queries. Li [51] proposes a MPPD solution that does include

fine-grained access control by using CP-ABE [4], along with Paillier cryp-

tosystem. Li’s use of Pailler is similar to the secure distance calculations of

Elmehdwi’s approach, and is the most relevant to our approach. We com-

pare our framework to Li’s in the experiments section. Choi [15] uses Paillier

cryptosystem and Order Preserving Encryption (OPE) [1] to detect proxim-

ity between proximity zones. Sedenka [67] also uses Paillier crytosystem, but

incorporates garbled circuits to define three protocols to privately calculate

distances between any two points using different coordinate systems on a

spherical surface.

Kim [42] proposed Hilbert Curve Transformation (HCT), which encodes

locations using a Hilbert Curve and then encrypts the result using AES.

Wang [68] proposed an approach to perform a geometric range search on

encrypted spatial data. Encryption techniques are promising and can offer

good privacy guarantees for both users and data owners, but at a cost. En-

cryption requires computation overhead which can be a drawback for devices

with limited processing power. Our approaches combine several encryption

techniques, including CP-ABE, HVE, and Paillier encryption to address the

MPPD problem.
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Chapter 3

Cloud Database Confidentiality

with Fine-grained Access

Control

3.1 Problem Definition

In this work [62], we address the difficulties encountered with providing con-

fidentiality for users from different categories for data outsourced to a CSP.

Consider a database D, with tables T1 .. Ti. Each Table contains rows R1

.. Rj, each with columns C1 .. Ck. Clients access the database contents

as data owners/providers (DO), users, or in both roles. Data owners store

data in the database (INSERT, UPDATE), and users retrieve data from the

database (SELECT). In a database that uses client-based encryption to pro-

tect stored data, clients access data in one or more columns (C1, C2, ..., Ck)

from one or more rows (R1, R2, ..., Rj) from one or more tables (T1, T2, ...,

Ti). Data owners encrypt data before storing it in the database and users

must decrypt data after retrieving it from the database. In this model, the

database only stores encrypted versions of protected cells and never sees the

plaintext version of the data. The primary problem with this approach is in
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the difficulty of generating and managing the keys to encrypt and decrypt

data. Data owners and users must share keys to access data, and the number

of keys grows with a higher level of desired fine-grained access (i.e. a need

for more encryption partitions.)

3.1.1 Running Example

Difficulties with balancing data protection and ease of access are common

in medical data collection. Consider the following scenario. Four research

teams, A, B, C, and D, need patient data. Table 3.1 shows four research

teams, along with the specific treatments they are studying and the general

context of their work. The primary challenge to be addressed is to obtain

current data that is pertinent to their research, while complying with HIPAA

rules and patient constraints. Patient constraints allow a patient to control

who can access her data, such as researchers, medical service providers, and

next of kin. A patient can submit her data with constraints, such as “allow

authorized cancer researchers to access my data”. Each team’s attributes are

used to determine whether patient constraints are satisfied for each query.

Uncoordinated independent requests by each team to individual patients

via different medical providers is clearly tedious and impractical. On the

other hand, storing and accessing all data via a centralized, trusted 3rd-

party creates a single point of trust as well as failure, which can only be

partly mitigated by hierarchical grouping of providers and consumers.

Given our running example, assume that a patient received treatment at

an oncologist’s office. The patient specified that the data to describe and

record the visit is saved with the following access policy:

“treatment=‘Z51.11’ AND (context=cancer OR context=tobacco use)” (i.e.

only users that possess the treatment attribute with a value of Z51.111 and

1Z51.11 is the ICD10 code for “Encounter for antineoplastic chemotherapy”, which also
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Table 3.1: Data Access Example: Research teams and contexts of interest

Team Treatment Research Context Description

A Z51.11 Cancer Effectiveness of different

treatment

B E66.09 Nutritional health Impact of obesity on heart

disease

C Z51.11 Tobacco use AND

Heart disease

Impact of lifestyle and heart

disease on cancer treatment

effectiveness

D Modified Diet Nutrition Measurable benefits of vari-

ous diets

the context attribute with either the values of cancer or tobacco can access

her data.)

Data is stored encrypted in a database, but can only be decrypted by users

who possess attributes that satisfy the access policy. In this example, all

research teams could retrieve any encrypted database row (including the pa-

tient data encrypted using the access policy from above). However, only

research teams A and C could decrypt the data since their attributes (treat-

ment and context) match the saved access policy. (Although research teams

B and D can retrieve the encrypted data they cannot decrypt it and it is

therefore unusable to them.)

corresponds to the ICD9 code V58.11.
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3.1.2 Building Blocks

We built the ZeroVis [62] framework on two primary building blocks, Ci-

phertext Policy Attribute Based Encryption (CP-ABE), and CryptDB. Each

component brings desirable features to ZeroVis, but neither one solves our

problem alone.

Ciphertext Policy Attribute Based Encryption A CP-ABE scheme

provides fine-grained access control over data [4]. CP-ABE associates a user

with a set of descriptive attributes to generate the user’s secret key, SK. Data

are encrypted under an access policy such that only users whose attributes

match the access policy can decrypt the data. Existing ABE schemes are gen-

eralizations of Identity Based Encryption (IBE) schemes[7]. IBE uses only

one attribute, the identity of the receiver, as opposed to ABE systems that

support using multiple attributes simultaneously. There are 2 main ABE

alternatives, defined by the location of the access policy. Key Policy ABE

(KP-ABE) embeds the access policy in the user’s private key[32]. The other

alternative is CP-ABE, which embeds the access policy in the ciphertext[4].

The primary difference between the two schemes is that KP-ABE gives con-

trol over who can decrypt data to the key generator, while CP-ABE ensures

that the encryptor (data owner) retains control over who can decrypt her

data[4].

To encrypt a message M using CP-ABE, the encryptor provides an ac-

cess policy which is expressed as a boolean expression containing selected

attributes and values for M. Figure 5.2 shows the access policy presented

earlier (section 3.1.1) in a tree structure. The message is then encrypted

based on the access structure, T. Decryptors generate SK based on their at-

tributes. A decryptor is only able to decrypt ciphertext, CT, when her SK

satisfies the access policy used to encrypt the message. Unauthorized users

cannot decrypt CT even if they collude and combine their disjoint attributes.
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treatment=Z51.11 AND ((context=cancer) OR context=tobacco use))

AND

treatment = 

Z51.11
OR

context = cancer
context = 

tobacco use

Figure 3.1: CP-ABE Access Tree

CP-ABE defines the following four essential functions:

1. Setup(): Input security parameter, output public parameter (PK), for

encryption, and master key (MK), to generate user secret keys.

2. Encrypt: Input message M, access structure T, public parameter PK,

output ciphertext CT.

3. KenGen: Input set of user’s attributes SX and MK, output secret key

SK for SX.

4. Decrypt: Input CT, SK. If SK satisfies access structure in CT, return

M, else return NULL.

CP-ABE works well for encrypting individual shared data where the file’s

name or identifier is known, but there is no provision for searching ciphertext,

thereby making CP-ABE alone insufficient for database queries.

CryptDB. CryptDB is a DBMS that provides confidentiality for data

stored on an untrusted database server [58]. The system provides near-

transparent confidentiality by intercepting database queries and rewriting
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them in such a way as to execute over encrypted data. Decryption for con-

sumption never occurs on the server, only at the trusted proxy. CryptDB

also incorporates an encryption strategy that can adjust the encryption level

of each column based on user queries. At runtime, the CryptDB proxy an-

alyzes each query and determines the encryption needs based on the query

components. The proxy will either then map each query component to an

encrypted data item or request an encryption layer adjustment. All data is

initially stored by CryptDB after being encrypted into multiple layers, with

each layer being encrypted with one of six encryption methods. CryptDB can

encrypt each data item using Random (RND), Deterministic (DET), Order

Preserving Encryption (OPE), Homomorphic Encryption (HOM), Join and

OPEjoin, Word search (SEARCH) encryption. For instance, a data item may

be encrypted with Join encryption method, encrypted again with an OPE

encryption method, and then encrypted once again using a RND method.

CryptDB selects the encryption methods and layer construction based on the

data item’s data type. The resulting value is called an “encryption onion”

with three layers. CryptDB will only “peel” an onion layer (decrypt the

outer layer) if a query requires an inner layer to successfully complete. This

dynamic ability to alter encryption layers gives CryptDB the flexibility to

maintain confidentiality while still responding to query requirements. The

database server peels onion layers with user defined functions, and will never

remove the innermost layer that would expose the original plaintext. The

database server executes supplied queries over encrypted data and then re-

turns the data to the proxy. The CryptDB proxy then decrypts the data and

returns the plaintext to the client. The server never sees the plaintext.

Popa, et al[58], report that the additional overhead only modestly reduces

the DBMS performance. When evaluating CryptDB running on Postgres, the

TPC-C benchmark demonstrated a 27% throughput reduction over an un-

modified Postgres environment. The authors note that one of the advantages
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Figure 3.2: ZeroVisibility Cloud Framework.

to the CryptDB approach is that implementing CryptDB does not require

DBMS engine changes. All of the CryptDB functionality is implemented in

the proxy and by supplying user defined functions, making it portable to new

database engines with a minimal amount of effort.

Although CryptDB does provide the ability to select and search encrypted

data on an untrusted sever, it still requires user-based encryption keys.

CryptDB must rely on an external authority to enforce key management,

including authorizing multiple users to decrypt an owner’s data. This re-

liance on an external authority takes the power over who can access data

away form the data owner.
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3.2 ZeroVis Framework

3.2.1 Framework Overview

To overcome the problems described in the previous section, our approach

integrates CP-ABE with the ability to search across encrypted data, e.g.

as provided in CryptDB, to synthesize a solution that supports single data

owner encryption accessible by multiple users for data stored in an untrusted

environment, along with the ability to efficiently retrieve the data without

decrypting in the cloud.

Figure 3.2 shows the ZeroVis framework. The core of our framework is

the ZeroVis proxy which is responsible for encrypting data and queries and

decrypting query results. The data owner submits data along with access

policies through ZeroVis Proxy which encrypts the data via CP-ABE and

searchable encryption and stores the encrypted data through an unmodified

DBMS. A user submits a query along with a pre-generated secret key, SK,

(generated from the user’s attributes) through the ZeroVis proxy which en-

crypts the query. The DBMS returns encrypted results of the query to the

ZeroVis proxy, which decrypts the results and returns the plaintext to the

user.

One additional requirement of a complete framework in a production en-

vironment is an Attribute Authority (AA). The AA is responsible for au-

thorizing users, and managing attributes associated with those users. The

framework depends on the AA to supply authenticated attributes for each au-

thenticated user, and to prevent unauthorized users from submitting queries

through the framework. Users can submit queries directly to the untrusted

DBMS, but without the necessary master key from the AA, decryption at-

tempts are unsuccessful.
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1) Data Owner (application) submits data AND access policy

2a) Proxy translates query for DBMS (encrypts data for retrieval)

2b) Proxy also encrypts data with CP-ABE using access policy

ZeroVis Proxy INSERT INTO table1 

VALUES (1,Mary,x5a8c34,x589932a9bc)

Unmodified

DBMS

Untrusted domain

Data Owner

INSERT INTO patient VALUES (1,Mary,lymphoma)

POLICY treatment=chemotherapy AND 

(context=cancer OR context=tobacco use) …

Proxy embeds 

access policy in 

CP-ABE ciphertext

Trusted domain

Figure 3.3: Submitting Data (INSERT)

3.2.2 Data Insertion and Encryption

To encrypt data, the data owner provides the trusted proxy with the plaintext

data and an access policy. Figure 3.3 shows the data flow with an example

INSERT query. The trusted proxy encrypts the plaintext data, translates

the query components into their encrypted counterparts (for query elements

that are stored encrypted in the DBMS), and submits the encrypted payload,

along with the embedded access policy, to the DBMS. Notice in Figure 3.3

there are 2 ciphertext values. The first represents existing CryptDB encryp-

tion and the second depicts the new CP-ABE ciphertext added by ZeroVis.

3.2.3 Data Retrieval and Decryption

To decrypt data, a user must first generate a secret key, SK, based on her

attributes. In most implementations, a trusted attribute authority will gen-

erate a key for each identity upon new user registration. The user provides a

set of descriptive attributes, SX, such as treatment and context interest areas
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User requests key, based on attributes

keygen(‘team=A,location=Atlanta,treatment=Z51.11,context=cancer’)

User

1) team=A, location=Atlanta, 

treatment=Z51.11, context=cancer)

Trusted domain

Keygen

2) Return generated key (SK)

Figure 3.4: Generating the Data Access Secret Key

1) User (application) submits query (with pre-calculated key)

2) Proxy translates query for DBMS (encrypts values to match stored data)

Note that the proxy doesn’t send KEY to DBMS

ZeroVis Proxy
SELECT * FROM table1 

WHERE col3=x5a8c34

Unmodified

DBMS

Untrusted domain

User

SELECT * FROM patient WHERE diagnosis=lymphoma

KEY x7acc99437de9eff

Proxy keeps KEY to

process the result

Trusted domain

Figure 3.5: Retrieving Data (SELECT request)

(for our running example). Attributes can describe an entity’s state, status,

or authorized interest areas. The attribute authority generates SK based on

the supplied SX and returns SK to the user on demand. For example, a

research team member may possess attributes:

“treatment=Z51.11, context=cancer”.

Figure 3.4 shows the process of the attribute authority generating a secret

key, SK, based on the supplied attributes and then returning SK to the user.

The user then presents SK (generated by the attribute authority) to the

trusted proxy when attempting to access encrypted data. The trusted proxy
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3) Proxy receives result

3a) Attempts CP-ABE decryption using KEY

3b) Returns successfully decrypted data to the user

ZeroVis

Proxy

Unmodified

DBMS

Untrusted domain

User

col2 col3 col4cpabe1

Bob x5a8c34 Treatment=chemotherapy

AND …

Mary x5a8c34 Treatment=chemotherapy

Ruth x5a8c34 Treatment=radiation

Name Diagnosis

Bob lymphoma

Mary lymphoma

Trusted domain

Figure 3.6: Retrieving Data (SELECT response)

translates the supplied query elements into their encrypted counterparts (for

query elements that are stored encrypted in the DBMS), and submits the

query, depicted in Figure 3.5. The proxy then translates the returned data

from the encrypted state, CT, as stored in the DBMS, depicted in Figure 3.6,

into plaintext state, M, for the application. The CP-ABE decryption algo-

rithm will only return plaintext message, M, when the supplied SK satisfies

the data’s embedded access policy that was provided by the data owner. If

the supplied key does not satisfy the access policy the proxy simply returns

a null value.

The process of modifying data (UPDATE) is essentially a combination of

a data retrieval operation followed by a data submission operation. While

the process of updating data is straightforward, the implementation of the

framework would need to ensure that updates are well-behaved and do not

allow unauthorized data or policy modifications. Users updating data must

possess SK to retrieve data and an access policy to encrypt changes. Tradi-

tional access controls would be necessary to limit data and policy updates to
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authorized users.

3.3 ZeroViz Client Walk-through

ZeroViz supports both interactive clients through a shell prompt and existing

applications through a connection to the proxy. Both client types require

that users register with an Attribute Authority (AA). This section shows the

steps a ZeroVis client follows to register with the ZeroVis system, submit,

and query data.

3.3.1 Attribute Authority Registration

1. Create an account with an attribute authority that ZeroVis trusts (set

up in ZeroVis configuration.)

2. Provide each user’s attribute values to the attribute authority. The at-

tribute authority authenticates each user’s identity and stores attribute

values for each identity.

3. The attribute authority also uses the supplied attributes and values to

generate a CP-ABE key, calling the CP-ABE kegen() function.

• For example:

keygen ( team=A, l o c a t i o n=Atlanta ,

treatment=chemotherapy , context=cancer )

4. The attribute authority stores the generated key for each validated

user profile. Each user may possess several profiles, each defined by a

distinct set of attributes and corresponding values.
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3.3.2 INSERT data

The prerequisites for INSERTing data are:

• Column names and data

• Access policy expressed as a boolean expression of attributes and cor-

responding values

– For example: “treatment=chemotherapy AND (context=cancer

OR context=tobacco use)”

1. Launch ZeroVis

(a) Command to start the ZeroVis proxy:

/path/ to / cryptdb / b ins /proxy−bin / bin /mysql−proxy \
−−p lug in s=proxy −−event−threads=4 \
−−max−open− f i l e s =1024 \
−−proxy−lua−s c r i p t=$EDBDIR/mysqlproxy/wrapper . lua \
−−proxy−address =127 .0 . 0 . 1 : 3307 \
−−proxy−backend−addre s s e s=l o c a l h o s t :3306

(b) Command to start an interactive ZeroVis session:

mysql −u root −pletmein −h 1 2 7 . 0 . 0 . 1 −P 3307

2. Enter desired SQL query

(a) INSERT INTO patient VALUES() POLICY ...

• For example:

INSERT INTO pat i en t VALUES (1 ,Mary , lymphoma)

POLICY treatment=chemotherapy AND

( context=cancer OR context=tobacco use )

The ZeroViz proxy does the following for INSERT (see Figure 3.3):



34

1. Rewrites the supplied query, replacing table and column names with

obfuscated names and encrypting literal values when storing data in

encrypted columns. The encryption method used for each column cor-

responds to the current encryption level for that column, maintained

by CryptDB.

2. Additionally encrypts each ”CP-ABE protected” column with CP-ABE

using the supplied policy, and adds the resulting ciphertext to the IN-

SERT query.

3. Submits the rewritten query to the database.

3.3.3 SELECT data

1. Launch ZeroVis (same commands as above)

2. Enter desired SQL query

(a) SELECT * FROM patient WHERE criteria KEY keyFromAA ...

• For example:

SELECT ∗ FROM pat i en t WHERE d i a g n o s i s=lymphoma

KEY x7acc99437de9e f f

The ZeroViz proxy does the following for SELECT (see Figure 3.5 and

Figure 3.6):

1. Rewrites the supplied query, replacing table and column names with ob-

fuscated names and encrypting literal values when searching encrypted

columns. The encryption method used for each column corresponds to

the current encryption level for that column, maintained by CryptDB.

2. Submits the rewritten query to the database.
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3. Uses the CP-ABE key (from the attribute authority) to decrypt columns

encrypted with CP-ABE.

4. Discards rows that contain any field for which CP-ABE decryption

fails.

5. Returns all remaining rows to the user.

3.3.4 Implementation

Our test implementation of ZeroVis was built on the architecture described

above. The user issues queries to the ZeroVis proxy. The ZeroVis proxy

re-writes each query and submits it to the mySQL database server. We built

the ZeroVis proxy by modifying the CryptDB proxy, which was built by

modifying mysql-proxy. Both CryptDB and ZeroVis can be implemented

using other proxy software and any DBMS the chosen proxy supports. Both

the ZeroVis proxy and the MySQL database server run on computers running

Linux. ZeroVis supports both interactive clients through a shell prompt and

existing applications through a connection to the proxy. Both client types

require that users register with an attribute authority.

We implemented the ZeroVis framework by integrating CP-ABE into the

CryptDB proxy. CryptDB provides query re-writing and capability to search

across encrypted data. The addition of CP-ABE as a new encryption method

within CryptDB gives the framework one-to-many encryption capability. The

first change to CryptDB was to create a new column for each protected col-

umn. CryptDB normally creates 2 or 3 columns to store encrypted data

using different methods to support different types of queries. The new col-

umn for each plaintext column stores the CP-ABE ciphertext. We added

a new encryption layer, ABE, to each onion definition, added a new ABE

security level, and added a new class to handle CP-ABE encryption and de-

cryption operations. The new class uses cpabe-toolkit functions to encrypt
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and decrypt data. We modified the CryptDB proxy query re-writing code to

replace requested columns with CP-ABE columns. We retain the CryptDB

obfuscated column names in the queries to allow the database to select data

using searchable data. The database then returns only CP-ABE encrypted

data. The proxy attempts to decrypt each column and returns successfully

decrypted data to the client.

With the new functionality in place to handle CP-ABE, we extended the

proxy to fetch the user’s CP-ABE SK, based on the MySQL database user

id. The private key will be provided by the attribute authority in more

robust implementations. Additional modifications to the proxy also fetch

and store the current user’s default access policy for CP-ABE encryption

operations. The ZeroVis system currently creates CP-ABE ciphertext for

every encrypted column. The CP-ABE encryption uses the current user’s

access policy. Decryption uses the current user’s SK, previously generated

using the CP-ABE keygen() function. Future work will extend the supported

SQL syntax to allow users to optionally provide access policies with every

query.

3.4 Performance Results

Experiment Setup. Our performance assessment is based on a straight-

forward CP-ABE addition to CryptDB as described above. Our goal was to

determine the additional overhead CP-ABE added to the existing CryptDB

implementation. We created multiple copies of test databases, all based on

subsets of the TPC-C[18] benchmark database. Test databases of different

sizes were built by altering the number of rows in the item, warehouse, and

district tables, all based on cardinality relationships defined in the TPC-C

specification. The resulting 5 test databases DB-a, DB-b, DB-c, DB-d, DB-e

have row cardinality of 1912, 2975, 7156, 18622, 35756 respectively, which are
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approximately increasing in a logarithmic scale. We created sets of queries,

both single row and multiple row returned sets, to assess the general per-

formance of the ZeroVis framework. The queries were simple, single table

INSERT statements to load varying size subsets of the TPC-C database, and

single table SELECT statements to retrieve 1 row (150 SELECTs) and sets

(150 SELECTs) from the item, stock, and customer tables. The SELECT

queries to retrieve sets of rows were randomly generated to select a range from

the domain of each table. The test sever had an Intel Core 2 2.0 GHz(x2)

processor with 3GB RAM running Ubuntu 13.10. The client/proxy com-

puter had an Intel Core i7 2.4 GHz(x8) processor with 16GB RAM running

Ubuntu 13.10. The two computers were connected via a 100Mbit/s Ethernet

connection.

Results. Adding CP-ABE results in an additional encryption operation for

each protected column, adding substantial observed space and computation

time overhead. CryptDB, without CP-ABE, is approximately 26% slower

(throughput loss) than native MySQL [58] when running the TPC-C bench-

mark. Encryption and decryption times are linearly related to the number

of leaf nodes in the CP-ABE access policy. According to Bethenourt et al,

[4], their implementation of CP-ABE took approximately 0.5 seconds to en-

crypt a payload with 20 policy leaf nodes, while only taking 0.04 seconds to

decrypt. One reason why the encryption operation is so much slower is that

it includes parsing and processing the provided policy. The decrypt opera-

tion does not directly interact with attributes. Generating the key, based on

supplied attributes, is a separate function that must be completed prior to

any decryption attempt.

Figure 3.7 shows the resulting database size (in MB) of the 5 test databases

with varying row cardinality (approximately increasing in a logarithmic scale)

for CryptDB (without CP-ABE) and ZeroVis (with CP-ABE) respectively.
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Figure 3.9: Database Query time

As the figure illustrates, the overhead incurred by ZeroVis increases linearly

with the row cardinality. The current implementation stores a complete CP-

ABE ciphertext payload for every protected database column, which includes

the access policy and the encrypted data. Future work will explore reducing

redundancy through consolidating CP-ABE access policies which we expect

will significantly decrease the overhead.

Figure 3.8 shows the load time for each database instance. The ZeroVis

computational overhead is a result of the additional CP-ABE calculations.

As mentioned above, the current test ZeroVis implementation constructs

the access policy tree for each column, even if all columns share the same

policy. It is expected that reducing CP-ABE access policy redundancy will

also reduce computational overhead for future ZeroVis framework versions

and result in ZeroVis performing more closely to CryptDB.

Figure 3.9 shows times for queries that return single rows, and sets of rows

(range queries). We submitted 300 SELECT queries for each database in-

stance, 150 distinct queries and 150 range queries. The queries were scaled

to consider the range of data stored in each database (randomly generated

to exercise the full range of data in each table). Queries use both indexed
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and non-indexed criteria. The disparity between CryptDB and ZeroVis per-

formance for range queries is due to ZeroVis’ current larger data storage

requirements. Additional tests with the proxy and sever running on a single

machine showed that network costs were not responsible for the higher over-

head of ZeroVis. The queries in our test returned most of the columns from

each table, requiring CP-ABE decryption operations for each column. While

decrypting multiple columns is normal expected behavior, the redundancy

of storing and transporting multiple copies of the access policy for each col-

umn increases the workload.We believe reducing redundant CP-ABE opera-

tions and normalizing the access policy storage technique will reduce ZeroVis’

computational overhead and additional costs of the framework, resulting in

performance closer to CryptDB than the current ZeroVis implementation.

3.5 Conclusions

In this section we showed how combining CP-ABE with encrypted data

searching addresses the problem of storing and retrieving confidential data

from an untrusted environment, while giving the data owner control over who

accesses her data. While other frameworks provide some of these capabilities,

ours is the only one to our knowledge that accomplishes this without relying

on traditional key management techniques. Our framework is the first to

specifically address the need for one-to-many encryption in a database envi-

ronment, which requires support for efficient queries across encrypted data.

This dissertation describes the initial ZeroVis framework implementation.

Future framework changes are necessary to create a more production viable

framework. We discuss future work in Chapter 6.
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Chapter 4

Mutually Private Proxmity

Detection Evaluation

4.1 Problem Definition

This second work [63] focused on a critical evaluation of proposed techniques

to provide MPPD to provide guidance that implementers of MPPD solutions

can use to select a ”best fit” technique for a specific environment. We focused

on MPPD techniques that use encryption to maintain precise location data to

maximize the accuracy of any proximity query results. Our goal was to survey

likely candidates, select a representative group from proposed techniques,

implement the selected approaches, and evaluate their relative performance.

In addition to producing useful comparative performance statistics, we also

wanted to provide a basis to develop the extended framework we will describe

in Chapter 5.

4.1.1 System Setting

We evaluated five encryption-based MPPD methods, and selected three to

implement and assess. In our comparative assessment of techniques, we con-

sider the following architecture components:
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1. Data Owner/Provider (DO) - Defines the AOIs

2. Service Provider (SP) - Computation and location services

3. User - User with a location sensing capable device

Each of the methods differs in the techniques used to provide location pri-

vacy and in how they define architecture component responsibilities. Each

method defines a trusted component to manage encryption keys and at least

one computation component to handle much of the computation load. The

distribution of responsibilities among components impacts how well each one

performs. Method descriptions in Section 4.2 explain how each method de-

fines responsibilities.

The methods we implement define AOIs either as circles, each with a defined

radius, or as a collection of grid cells that comprise each AOI. Circles are more

generic but collections of cells allow for non-uniform AOI shapes. Figure 4.1

shows 2 different ways to define AOIs. - circles and defined grid cells. In

the figure there are 3 defined Areas of Interest (AOI). The user, Alice, is in

proximity to AOI 3, (i.e. her location overlaps the region define by AOI 3).

Figure 4.2 shows the general architecture for MPPD. One or more data

owners defines, encrypts, and sends AOIs to the service provider. The user

initiates the query by asking “am I near an AOI?”, and sending an en-

crypted location to the service provider. Further, all algorithms can be im-

plemented as a request-response model to support on-demand queries, or

a publish-subscribe model to support push notifications. The specific steps

each protocol takes to detect user/AOI proximity differs, but all use the same

components in Figure 4.2.
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AOI 1 AOI 2
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Figure 4.1: Mobile user and 3 Areas of Interest (AOI), using circle-based and

cell-based AOI definition

Data Owner (DO)

(may be multiple)

AOI 

database

User

(multiple)

Current 

location

Service Provider (SP)

Encrypted 

AOI DB

Request: “Am I close to any AOIs?”

Encrypted 

AOI DB

Figure 4.2: Mutually Private Proximity Detection Architecture
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4.1.2 Problem Statement

We examine five MPPD approaches that can be deployed to existing mobile

devices. The approaches we analyze allow users to send location informa-

tion to a service provider and receive AOI proximity notification without

divulging their location to the service provider. At the same time, these ap-

proaches allow data owners to publish AOI information for users to consume

when they are within a specified distance from AOIs without publishing AOI

locations in advance. We define proximity to an AOI to be the condition in

which a specific location is within the area defined by the AOI boundaries.

Proximity can be determined when a location is closer to the center of an

AOI than some defined threshold or that the location is within a grid cell

included in an AOI. Data owners can define AOIs of any size. Any of the

approaches in this dissertation can be extended to support the case in which

a single AOI represents a specific user. In this case, the data owner would

be a user and the techniques would provide user to user proximity detection.

However, the focus of our dissertation is to determine user proximity to one

or more AOIs, and techniques designed for user to user proximity is outside

our scope. System designers deploying MPPD have several options available

to them. Our analysis results can help determine the most appropriate ap-

proach, depending on how input data (size or number of AOIs and size of

the grid of AOIs) changes over time.

4.1.3 Security and Privacy Goals

Proximity alerts, by definition, disclose information. The primary goal of

the protocols we implemented is to provide proximity detection to defined

AOIs without divulging either the user or AOI location. In that way, the

location privacy of user and data owner data is maintained. Of course, some

information will always be divulged when a user is in proximity to one or
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more AOIs. A positive service provider response (“Yes, Alice, you are close

to AOI 3”) divulges the general location of that AOI to Alice, and the service

provider learns only that Alice is near AOI 3. Note that the service provider

does not learn Alice’s location or any AOI location information - only that

Alice is within the boundaries of AOI 3. The amount of information divulged

to users is directly related to the size of the AOIs. Proximity to large AOIs

only divulge general information, while proximity to small AOIs would result

in a finer granularity of location information divulged. Our analysis does not

consider the amount of location information that could be divulged among

colluding actors.

We consider the three privacy guarantees listed below for each of the meth-

ods considered. Protecting data from unauthorized disclosure is handled by

the security guarantees of each cryptosystem.

• User location privacy - User location is never divulged to other users,

any service providers, or data owners. The data owner can determine

if a user is in proximity to any AOI, with accuracy dependent on the

AOI size.

• Data Owner/Provider privacy - Data owner defined AOIs are never

divulged to any user unless that user is near an AOI, and never to any

service provider. Users can infer AOI location when they are near one

or more.

• Query privacy - Locations sent to the service provider and responses

returned to users do not provide any information either party could use

to determine current or historical location.

While our assessment focuses on privacy, it is important to address the

security guarantees of each method. Without security guarantees against

specific attacks, there is no basis for discussing privacy guarantees. The
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Table 4.1: Methods and techniques

Method Description Technique

SBF Spatial Bloom Filter Bloom Filter + Paillier

SkNN Secure k-NN and range query Paillier

HCT Hilbert Curve Transformation Hilbert Curve + AES

methods we chose to implement use two different types of encryption to

provide confidentiality. Table 4.1 summarizes the chosen approaches and

each one’s techniques.

SBF and SkNN use the Paillier cryptosystem to encrypt locations. The

data owner creates key pairs, and only the data owner can decrypt data.

Paillier is a probabilistic asymmetric key encryption algorithm and has the

indistinguishability under chosen plaintext attack (IND-CPA) stated as: an

adversary operating in polynomial time has the same probability of success as

simple random guessing. Suppose the adversary chooses two plaintexts, and

we select one of the plaintexts randomly and return the ciphertext of our

chosen plaintext to the adversary. The adversary guesses which plaintext

corresponds to the ciphertext. We say the encryption is IND-CPA if the

attacker can achieve no better success probability than 1/2 + some negligibly

small number. Using the Paillier cryptosystem, an adversary with reasonable

computer processing power may obtain knowledge of some ciphertext, but

will not be able to obtain any useful knowledge of the corresponding plaintext

[53].

HCT uses AES to encrypt its location and index tables. The data owner

creates the key and only shares it with authorized users. AES, when used

in an appropriate mode, such as Cipher Block Chaining (CBC) or Counter

(CTR), also has the IND-CPA property [5].
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4.2 Method Description

4.2.1 Overview

We selected five MPPD methods to examine, and chose three of those to

implement to evaluate their scalability and use the performance comparison

to suggest a best approach for specific requirements, such as a large number

of AOIs or a dynamically changing coverage area size. This chapter describes

the differences between the implemented methods, their security and privacy

guarantees, and how well sample implementations perform with varying com-

putation loads (varying number of AOIs, size of AOIs, and size of the grid on

which locations are mapped). One of the methods was not designed to solve

our problem per se, but offered a framework that presented an opportunity

to implement modifications to align it to our goals. The SkNN approach was

originally proposed to solve a problem in a different domain. The original

protocol determines the distance between vectors of attributes, as opposed to

calculating the distance between two points. For example, such an approach

is useful in determining the closeness of database rows. We modified the

original proposed approach to address the problem of proximity detection

while maintaining the original intent of protecting mutual privacy.

4.2.2 SBF (Technique - Bloom Filter)

Calderoni [11, 56] proposed a new compact structure, SBF, to privately store

location information, and two protocols to determine AOI intersection. One

protocol is for two-party setting involving only a user and the data owner,

while the other protocol is for a three-party setting, in which the data owner

outsources communication with the users to a service provider. The SBF

differs from a normal Bloom filter (BF) in that the SBF can be constructed

over multiple sets, where the BF is constructed only over a single set. This
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difference is desirable since AOIs may be disjoint and require representation

as separate sets of grid cells. Further, the probability of a false positive SBF

result depends on the order in which set membership is assessed. Accuracy

can be increased by prioritizing the order in which AOIs are assessed. SBF

depends on Paillier cryptosystem, as it is additively hormomorphic. This

property supports calculating the sum of two encrypted numbers, and the

product of an encrypted number and an unencrypted number. The data

owner can send an encrypted SBF of AOIs to any user to perform AOI prox-

imity detection calculation without disclosing AOI locations. SBF requires

locations (latitude/longitude) to be mapped to distinct cells in a predefined

grid. The precision of the location mapping depends on the mapping func-

tion. A single grid cell can represent any area size, but in our implementation

we use a mapping function that uses longitude and latitude values expressed

with an accuracy of three decimal points. This results in a grid cell rep-

resenting approximately 111m x 111m (at the equator). In practice, any

precision can be represented, as well as grids that represent any subset of the

entire Earth’s surface. The only requirement is that all users and the data

owner use the same grid definition (and mapping function.) SBF defines the

data owner as the trusted entity and the service provider as an untrusted

computation component. Algorithm 1 lists the SBF protocol steps.

Privacy

SBF guarantees the privacy of all parties. The two-party protocol guarantees

the correctness of the result for the data owner (within a stated probability),

and user location privacy. SBF also provides privacy for the data owner in

that user does not know (and cannot derive) the coordinates of any AOI. The

three-party protocol introduces the service provider to handle communication

and computation. The service provider cannot decode user’s location unless

the service provider gains access to the grid defined by the data owner and
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Algorithm 1 SBF Three-party Protocol

1: The data owner creates an SBF for the AOIs, and Paillier public/private

keys

2: The data owner encrypts the SBF using Paillier public key and sends it

to the service provider

3: The data owner sends k hash functions and the conventional grid to the

user

4: The user creates an SBF for current position and sends result to the

service provider

5: The service provider computes entrywise homomorphic product of the

SBFs

6: The service provider shuffles calculation results and sends result to the

data owner

7: The data owner decrypts the SBF and counts the number of non-zero

entries. Using this information, the data owner can determine if user is

located in any AOI, and if so, which one.

8: The data owner sends result back to the user (which AOIs user is near,

if any)



50

provided to the user. As long as the data owner keeps the grid definition

secret from the service provider, all guarantees from the two-party protocol

hold for the three-party protocol. Further, SBF provides query privacy since

the data owner only sees obfuscated results of the entrywise homomorphic

product of the data owner’s and user’s SBFs. The data owner can keep

history of how many non-zero entries are in the SBF product that user sends,

but there is no direct discernible correlation between user’s obfuscated SBF

product and user’s true location. Although the data owner can determine

if user is in proximity to an AOI (and if so, which one), due to the user’s

randomizing the results of the SBF product, each request sent to the data

owner is unique (even if user is at the same location.)

4.2.3 SkNN (Technique - Homomorphic Encryption)

Elmehdwi [23] proposed two methods, a basic protocol that is not fully se-

cure, and a more complex protocol that strengthens security guarantees.

SkNN splits the computation between two components, defining the data

owner as an untrusted computation component, and the service provider as

a trusted computation component. Algorithm 2 provides SkNN protocol de-

tails. We made two material changes to the original SkNN approach. First,

we changed the distance calculating algorithm. Our new algorithm takes the

(x,y) coordinates of the user and a vector of (x,y) coordinates, along with

and a threshold value for each defined AOI, as input. This differs from the

original SkNN protocol that takes two vectors of attributes as input. The

updated SkNN returns the squared distance between the user’s location and

each AOI’s center, for all distances that are smaller than the squared thresh-

old value. Second, the original algorithm only returns the top k matching

points, but our implementation allows the service provider to return any

number of nearby AOIs. These changes were minor, but they allowed us to
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consider the modified SkNN algorithm in our evaluation. The more secure

protocol hides the intermediate results from both the data owner and the

service provider. Instead of processing each step on a single server, the data

owner and the service provider work together to encrypt values and evaluate

comparisons in a bitwise manner, without divulging plaintext to either server

in the process. The iterative process results in the service provider having a

list of encrypted records that correspond to the set of AOIs that are closer to

a user’s location than each AOI’s threshold. SkNN operates directly on the

user location coordinates and the coordinates of AOIs. Each AOI includes a

threshold, which defines the boundary of the AOI, specified by a radius from

the center of the AOI. This method does not require any location mapping to

a grid system. The precision is determined by the number of decimal places

specified by each location coordinates. SkNN uses the Paillier cryptosystem

to support basic arithmetic operations to carry out primitive operations to

determine closeness (or proximity).

The main difference between the two protocols is that the more secure

protocol decomposes each location into individual bits to hide the true values

from both servers (data owner and service provider.)

Privacy

Both protocols protect the confidentiality of the user’s location from the data

owner and the service provider (user location privacy). It also protects the

database of AOIs from the user (DO privacy). The basic algorithm reveals

query values to the service provider. When the service provider generates

the top-k index and sends that back to the data owner, both the data owner

and the service provider now know data access patterns. Our modifications

to the basic SkNN protocol extend this step. In the new protocol, the service

provider does not limit the index to top-k neighbors, but returns all AOIs

that overlap user’s location. The secure SkNN protocol protects the data
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Algorithm 2 SkNN Basic Protocol (simplified)

1: The data owner encrypts a database of AOIs, (xi, yi), for 0 ≤ i < m,

where m is the number of AOIs

2: The user encrypts location location, (xa, ya) then sends it, E(xa, ya), to

the data owner

3: The data owner and the service provider calculate the Squared Squared

Euclidean Distance (SSED) between the user’s location and the center of

each AOI, for 0 ≤ i < m. The data owner and the service provider call

the Secure Multiplication (SM) protocol to calculate the squared values

of each term, a and bi, as follows (SM calculates the product of any two

encrypted values. In our case, a = b):

(a) The data owner selects and encrypts 2 random numbers, ra and

rb

(b) The data owner calculates a′ = a * Enc(ra), b
′ = bi * Enc(rb),

then sends a′ and b′ to the service provider

(c) The service provider decrypts a′ and b′

(d) The service provider calculates h′ = Dec(a′) * Dec(b′) mod N,

and sends h′ to the data owner

(e) The data owner calculates the square of the supplied encrypted

value:

i. s = h′ * Enc(a)ˆ(N-ra)

ii. s′ = s * Enc(b)ˆ(N-rb)

iii. Enc(a * b) = s′ * Enc(ra * rb)ˆ(N-1)

4: The data owner sends the encrypted squared distance vector to the ser-

vice provider

5: The service provider decrypts the encrypted distance in each entry and

creates and index list, corresponding to the points closer to the user’s

location than each AOI threshold

6: The service provider sends the index to the data owner

7: The data owner selects the records from the database of AOIs using the

index and send the encrypted records to the service provider

8: The service provider decrypts the AOI records and send them to the user
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access patterns (query privacy) by ensuring that the outputs of each step

in the protocol are encrypted (only known to the data owner). Neither the

data owner nor the service provider know which records belong to the current

global minimum, and do not glean any information during the execution of

the query. Permutation by the data owner prevents the service provider from

associating tuples with the actual data, and the encrypted vector prevents the

data owner from making associations with actual data. The secure protocol

prevents the data owner and the service provider from knowing which data

records correspond to the output set.

4.2.4 HCT: (Technique - Hilbert Curve)

Kim [42] offers a solution to protect the privacy of outsourced spatial data

by proposing a method that uses a Hilbert Curve Transformation technique.

The paper describes a method of creating a Hilbert Aggregation Index (HAI)

and a Transformed Data Index (TDI) to increase the efficiency of query

processing, while maintaining spatial data privacy. The proposed method

minimizes the number and size of network messages between clients and

server. The purpose of this method is to balance the speed requirements of

range and kNN queries with privacy requirements to keep from disclosing

actual location data to the service provider. The proposed scheme divides

the entire spatial area into grid cells and assigns them cell IDs based on

the Hilbert curve. HCT distributes trust and computation by defining the

data owner as the trusted component, the service provider as the untrusted

component, and the user as the computation component. Algorithms 3 and

4 list the steps in HCT.
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Algorithm 3 HCT Outsourcing Spatial Data Protocol

1: The data owner generates TDI and HAI from the AOIs. The data owner

retrieves fan-out (F ) AOI cells. If data item count in a cell is less than

F, the search expands the area along the Hilbert curve. When the data

owner finds F AOI cells, the data owner stores IDs and location data in

TDI and HAI IDs of the first and last grid cells of the search area. The

data owner repeats until all AOI cells are encoded.

2: The data owner encrypts TDI and HAI entries with AES and sends to

the service provider

3: The data owner sends the service provider a service token (to validate

HAI version)

4: The data owner sends users the key for decrypting the data

Privacy

HCT provides the highest level of user location privacy of the three meth-

ods we implemented. Using HCT, the user never sends location (even in

encrypted format) to any other entity. The cost of this protection is that

the user must request AOI information from the service provider and carry

out all computations locally. DO privacy is provided, within certain param-

eters. The data owner creates the TDI (a list of AOI cells, each entry having

“fan out” (F ) points), and then the HAI (an index containing starting and

ending cell ranges for TDI entries), as an abstraction of the granular AOI lo-

cation data expressed as distances on a Hilbert Curve. Since the data owner

constructs TDI using the “fan out” value, any entity with HAI could only

guess the actual cell of an AOI with a 1 / F probability of success. This is

analogous to implementing k -anonymity over AOI locations. Thus, the data

owner’s AOI data is said to have the k -anonymity property, where k is equal

to the F value chosen when building TDI structures. Since user has the

decryption key, user can decrypt HAI and derive some information about
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Algorithm 4 HCT Range query Protocol

1: User issues a query with a service token. If the service token of the User

is not identical to that of the service provider, the user performs the HAI

synchronization phase.

i. In this phase, the user requests a service token from the data

owner. The user requests the encrypted HAI from the service provider

by sending the service token received from the data owner.

ii. After the confirming the service token, the service provider sends

the encrypted HAI to the user.

iii. Using the transformation key sent from the data owner, the user

decrypts the encrypted HAI. Because the HAI synchronization phase is

performed only when the service token is changed, the communication

cost for the query processing can be greatly reduced.

Next, using the Hilbert curve, the user searches the IDs of grid cells that

overlap a query region and retrieves the HAI records corresponding to

the grid cells.

2: When the user searches the HAI records that satisfy the range query, the

user sends the IDs of HAI records to the service provider.

3: The service provider sends the TDI records corresponding to the received

IDs to the user.

4: The user decrypts TDI records using a decryption key and filters data

items that are not located inside the query region. As a result, the user

obtains the final result set of the range query.
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the AOI locations. The final privacy property, query privacy, is partially

provided by HCT protocol. The service provider can record TDI records

the user requests and can associate general locations with TDI records. TDI

entries are encrypted with AES, and the service provider does not possess

the decryption key, but IDs of TDI records are not hidden from the service

provider. The service provider could use query history to guess when any

user is close to some other user from some time in the past, but cannot as-

sociate that information with either specific AOIs or user locations. It is

possible that determining one user’s proximity to another user in the past

may divulge enough information to make other assumptions. Thus, the query

privacy property is weakly protected in HCT.

4.2.5 Other Methods - Not Implemented

HVE: (Technique - Searchable Encryption)

Ghinita [30] proposes a privacy-preserving approach to providing alerts to

subscribed users based on their location. Example applications include send-

ing alerts to users in proximity to some emergency or restricted zone. The

method in this paper is based on using searchable encryption techniques

to allow an untrusted server to determine proximity to alert zones without

knowing any user’s actual location. We chose to not implement and assess

HVE as it represents a method of encoding locations and is somewhat similar

to concept to SBF, although the implementation differs substantially. We do

revisit HVE and implement it for use in our extended framework, described

in Chapter 5.

The method uses Hidden Vector Encryption (HVE) to provide searchabil-

ity across encrypted data, supporting exact matching, range and sub-range

queries, all on encrypted data. HVE uses bilinear maps and carries a high

performance cost. To provide usable scalability, the authors propose op-
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timized representation of alert zones (using a hierarchical representation),

and the storing of often reused mathematical operations in the proximity

detection process.

To receive alerts, Alice first contacts a Trusted Authority, Karen, to sub-

scribe to alerts and receives a public key (PK) for the subscribed alert types.

Alice then uses PK to periodically encrypt her current location and send the

ciphertext to the untrusted server, Bob. When the Karen needs to define a

new alert zone, it creates a search token, using a hierarchical representation

of the cells contained by the alert zone. This search token is encrypted and

sent to Bob. Bob evaluates the search token and current subscriber locations

to determine if any user locations intersect the alert zone. Bob can send a

notification to the affected user, or notify Karen of the intersection.

This approach has the advantage of focusing on the problem of determining

proximity of one or more users and some alert zone, without revealing any

user’s actual location to Bob. The only information Bob learns is whether

any user intersects with an alert zone at a specific point in time. Karen does

have the ability to decrypt user locations, since it owns SK, but since Karen

is trusted, this does not reduce the security guarantees.

Near-Pri: (Technique - Homomorphic Encryption)

Near-Pri [55] is an implementation of a scheme to provide private proximity

based location sharing. The complete protocol allows users to share their

specific locations once proximity (within a specified threshold) is determined.

A slightly simplified version of the protocol could terminate once proximity

is determined. (Thereby protecting the true location of each user and only

reporting whether users are in proximity to one another.) We chose to not

implement Near-Pri as part of our evaluation since it is essentially a peer-to-

peer technique, as opposed to a user proximity to an authority-defined AOI

technique.
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The Near-Pri design in the paper uses Facebook chat to provide massage

passing support and friend association. A user, Alice, sends a location query

to another user, Bob. Bob builds a tree segment, a compact representation

(in tree form) of his location. This location representation is critical to the

efficient operation of Near-Pri. Bob creates two trees, one for longitude

and one for latitude. The leaf nodes are numbered and organized so that

locations surrounding any point can easily be isolated. Bob then determines

his wall set (consisting of points below an arc that represents locations within

Bob’s policy threshold), and constructs n polynomials, based on each value

of his wall set, encrypts the negated value of each coefficient, and sends these

encrypted values and the public key used in the encryption to Alice.

Alice can evaluate each coefficient, encrypts the evaluation results, and

sends them back to Bob. Bob decrypts each value, and if any value decrypts

to zero. Bob knows that his wall set intersects with Alice’s path set (i.e.

Alice and Bob are within Bob’s proximity policy.)

The Near-Pri protocol then requires Bob to reuse Alice’s public key, which

he uses to encrypt his own location. Bob sends his encrypted location to

Alice, who can then decrypt it (using her private key), and then determine

Bob’s location.

4.3 Privacy Comparison

The privacy guarantees, as discussed earlier in each protocol section, differ

as well. Table 4.2 summarizes the privacy guarantees of each method we

implemented. If user location privacy is of the utmost concern, HCT never

sends a user’s location to any other entity, and therefore provides the highest

level of user location privacy, followed by SkNN. SkNN does have the user

send current location to the data owner, but the protocol carefully ensures

that the data owner cannot decrypt the user location and the service provider
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Table 4.2: Comparison of privacy guarantees

Method User location

privacy

DO privacy Query privacy

SBF k -anonymity

based on filter

size. The data

owner learns

when user is in

an AOI

User only knows if lo-

cation overlaps AOI

The data owner only sees

obfuscated results - can-

not correlate query to

user

SkNN The data owner

only learns

when user loca-

tion overlaps an

AOI

User only knows if lo-

cation overlaps AOI

Extended protocol:

The data owner/ser-

vice provider cannot

correlate queries to users

HCT User location

is never shared

with the service

provider, the

data owner, or

any other user

k -anonymity guaran-

tees based on fan-out

(F ) value

Limited, the service

provider learns proxim-

ity of user to AOI with

1/F accuracy
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never has enough information to associate decrypted information with a user

(or any AOI.) SBF also protects user location privacy by obfuscating the

SBF representing the user’s location when it is used for computation by

the service provider. And finally, each protocol provides differing levels of

privacy guarantees for queries issued. SkNN is designed specifically to limit

any data leakage, including query information. Neither the data owner nor

the service provider ever have enough information to know which queries

are associated with any individual user. SBF provides a high level of query

privacy by ensuring that the data owner only sees obfuscated computation

results (non-zero SBF entries), but never enough information to determine

the user’s location. And as discussed above, HCT protocol does divulge some

query history, but does not allow the service provider to determine any user’s

actual location.

4.4 Experiments

We implemented each algorithm and ran multiple tests to evaluate perfor-

mance as input data size varied. We ran each test by first defining a set of

AOIs, ranging from 1 to 100, then issuing 1,000 location proximity queries,

each with a random user location. The times reported in the results repre-

sent the average time to resolve a single location proximity query. Our test

engine recorded the result of each query, along with the “true” return value

to assess each algorithm’s accuracy. Accuracy results are expressed as the

percentage of correct results returned over 1,000 queries. All tests were run

on a single computer with 16GB memory and an Intel Core i7 2.4GHz CPU

running Ubuntu Linux 15.10. We chose to run all tests on a single computer

to focus on computation load. In future work we will expand the evaluation

to measure communication overhead. Tests were run for varying numbers of

AOIs, ranging from 1 to 100, using grid sizes from 10x10, up to 1000x1000,
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and AOI sizes ranging from 1 to 9 units (or 9 to 361 cells).

4.4.1 SkNN

We implemented the Secure k-Nearest Neighbor algorithm in the C language.

We also extended the paper’s original functionality to support distinct loca-

tion queries. The paper defined the kNN query in a classic sense, that is, to

determine the nearest neighbors to a set of attributes by calculating the Eu-

clidean distance between two vectors. Since our problem domain focuses on

locations, we modified the Secure Squared Euclidean Distance (SSED) func-

tion to calculate Euclidean distance between two points. We also included

a distance threshold with each AOI coordinate. The resulting algorithm

only returns the AOIs that are closer to the user location than the AOI dis-

tance threshold. In this way, we allow the service provider to define AOIs

by designating the AOI center point and the radius of the AOI. One draw-

back to this method is that AOIs can only be defined as circular regions.

However, multiple circular AOIs can be defined to represent irregular AOI

groups as necessary. The SkNN algorithm successfully determined proxim-

ity 100% of the time. This is expected since the SkNN algorithm compares

distinct encrypted locations to determine proximity with the same precision

as comparing unencrypted locations.

4.4.2 HCT

We implemented the Hilbert Curve Transition algorithm [42] in the C++

language. The HCT algorithm successfully determined proximity 94% of the

time. Since the HCT algorithm maps true locations to grid cells, there is a

small loss of accuracy. Our tests show that accuracy loss is tolerable, but

non-trivial.
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Table 4.3: Factors affecting performance

Method Num

AOIs

AOI

Size

Grid

Size

Spatial Bloom Filter (SBF) No No Yes

Secure k-Nearest Neighbor (SkNN) Yes No No

Hilbert Curve Transformation (HCT) Yes Yes Yes

4.4.3 SBF

We implemented the Spatial Bloom Filter algorithm for location privacy [11,

56] in the C language. The SBF algorithm successfully determined proximity

over 99% of the time. Although Bloom Filters can exhibit false positives, in

our experiments, we only observed false positives in less than 1% of our tests.

4.4.4 Input variable impact on performance

Each algorithm showed different scalability patterns as the number of AOIs,

size of AOIs, and size of the grid increased. Comparing the raw run times of

the implemented algorithms is of less interest than examining how each reacts

to input domain data size growth. Any of the algorithms can be optimized

to increase overall performance prior to release in a production environment.

The results in Figure 4.3, Figure 4.4, and Figure 4.5 represent the average

runtime for a single query (i.e. user proximity query). The results only

consider computation time and do not represent communication overhead.

Table 4.3 summarizes the sensitivity to input domain data size growth.

Impact of AOI number

Figure 4.3 shows how changing the number of AOIs affects performance. Test

were run with constant AOI and grid sizes, and the number of AOIs ranging
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from 1 to 100. SBF had the most stable performance in this test, but was

also the slowest algorithm, although SkNN approached SBF run time when

the number of AOIs exceeded 50. HCT run time increased with the number

of AOIs, but was the fastest overall. It is expected that both SkNN and HCT

would exhibit slower performance than SBF as the number of AOIs exceed

200.

Impact of AOI size

Figure 4.4 shows how changing the size of AOIs affects performance. We

varied the size of AOIs from 1 to 9 units, keeping the number of AOIs and grid

size constant. The size of each AOI depends on how locations and thresholds

are defined. We simply use the term “unit”, but real implementations will

require a unit definition, such as each unit equals 1 mile or 1 km. HCT

and SBF use cell groups to define AOIs. To standardize our comparison, we

defined the cells in each AOI using the formula aoiCells = ((r*2)+1)2, where

r is the radius of the AOI. Neither SBF or SkNN algorithms were affected

by AOI size. HCT’s performance slowed as the number of AOIs increased.

Impact of Grid size

Figure 4.5 shows how changing the size of the grid affects performance. We

varied the size of the grid from 10x10 to 1000x1000 cells, keeping the number

and size of the AOIs constant. SkNN’s performance was unaffected by grid

size increase. HCT and SBF performance both degraded as the grid size

grew. The performance degradation was nearly the same for HCT and SBF,

and was most noticeable when the grid size grew larger than 50x50 cells.
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4.4.5 Performance comparison

Based on our findings, each protocol satisfies different criteria in different

ways. For environments that must cover large areas, SkNN was least affected

by grid size. Since SkNN only evaluates defined AOIs, the actual grid size

has essentially no effect on the protocol’s performance. We did note that

the raw performance numbers of HCT exceeded SkNN up to a grid size of

1000x1000. It is assumed that implementation optimizations could reduce

the actual deployed run time of SkNN to compete with HCT at smaller

grid sizes (<1000x1000). If the grid size is fairly constant, but the number

of AOIs changes frequently, SBF provided the most consistent performance

results. One side effect of SBF for very large grid sizes (>1000x1000) is that

more hash functions are necessary to avoid collisions, which may negatively

affect overall performance. And finally, if the primary variable is the AOI

size, both SBF and SkNN are valid choices. Both of these protocols were

unaffected by the size of AOIs. Although the greatest performance variance

was measured with HCT, this protocol performed the best of all three for

smaller AOI counts (<100), smaller AOI sizes (<7 units radius), and smaller

grid sizes (<1000x1000). HCT uses smaller data structures with smaller

overhead than the other protocols. Each of the methods we examined fit

well into different use cases. Our findings support the following guidelines

for choosing an method based purely on performance considerations:

• SBF - Best for small to medium grid size (<500x500), when number

or size of AOIs vary

• SkNN - Best for environments with varying grid and AOI size, but

with a limited number of AOIs (<50)

• HCT - Best for small to medium number (<100) and size of AOIs (<7

units radius), and small coverage area (<500x500)
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4.5 Conclusions

We implemented the SBF and HCT algorithms as the authors presented,

and extended the SkNN algorithm to support our problem statement. We

evaluated the performance of the implemented algorithms and presented our

results as the input domain of the number and size of AOIs, and size of the

overall grid changed. We presented results comparisons, along with recom-

mendations for choosing the best algorithm based on environmental require-

ments.

Our results can be used to select the best of our assessed techniques for

specific environments, for example, Smart Cities. It is expected that Smart

Cities will need to respond to the needs of its constituents based on growth

and usage needs. For environments that experience radical increases and

decreases in the number of AOIs it must manage, the SBF approach likely

offers the most stable runtime performance. This recommendation is depen-

dent on the assumption that the grid size of a Smart City is relatively small,

as in smaller than 500x500 cells. If the selected cell size is 0.2km with a

grid size of 500x500 cells, SBF would easily handle even the largest cities in

the world. If a Smart City only needs to manage fewer than 100 AOIs that

are relatively small (<7 units radius), then HCT may be a better solution.

Using a grid size of 0.2km, that would mean that most AOIs would be <1km

radius. Such a scenario could indicate that HCT performs better than SBF

for a specific application. Regardless of the specific application parameters,

our assessment provides tangible guidance for choosing the best approach for

specific Smart City environments.
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Chapter 5

Mutually Private Proxmity

Detection in Categorical

Settings

5.1 Problem Definition

This third work [64] focused on the logical next step indicated by the previ-

ous two works, that is, to extend MPPD to include users defined in different

categories. In Chapter 4, we explored MPPD techniques, and additionally

contributed a new technique to existing solutions. One drawback of all of

the existing solutions is that they assume “all or nothing” access control de-

cisions. The only way to define sets of AOIs to be consumed by a specific

category of user would require defining separate AOI sets for each user cat-

egory. This would increase administration and redundancy. In this chapter

we present a solution that allows users defined in different categories, (i.e.

that possess different attributes), to consume only authorized AOI location

information while using a single set of AOIs.



69

5.1.1 Motivation

Consider Mary, who is a guest at the “Fun Times” amusement park. Mary

wants to make the most of her day in the park and desires to minimize time

spent waiting in line for attractions or shows. Mary has subscribed to the

“Fun Times InTheKnow app” premium service that sends information to her

smart phone about nearby attractions and shows with short wait times. Bob

is also in the “Fun Times” park and has the “InTheKnow” app, but Bob did

not subscribe to the premium service. Bob only receives general information

about attraction wait times for attractions that are somewhat close to his

current location. Both Mary and Bob want to receive helpful information

without disclosing their locations to “Fun Times”. On the other hand, “Fun

Times” wants to provide location-sensitive services to Mary and Bob without

publishing all of the “Fun Times” areas of interest. “Fun Times” can limit the

information they provide to subscribers, and even define different subscriber

levels based on subscription fees paid. “Fun Times” also uses this service

to direct their employees to areas of the park that need cleaning, servicing,

or even crowd management. Other use cases for such a location privacy

preserving framework could include providing epidemiologic related alerts or

criminal activity investigation proximity with precision granularity based on

clearance and/or “need to know”.

5.2 Problem Statement

Existing MPPD solutions largely focus on location as the only criteria for

determining proximity to a defined area. In some cases, additional attributes

should be considered, such as security level or subscriber status, before pro-

viding proximity responses. A useful MPPD framework should allow a single

set of AOIs to service a large group of diverse users. Such a framework would
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only provide proximity alerts for users that are both near a defined AOI and

meet requirements set by the data owner. This is normally accomplished

by separating the MPPD functionality from the authorization phase. This

requires a third party to examine each user and AOI attributes to determine

of a proximity alert is allowed, based on data owner policy. In this scenario,

the third party possesses substantial information about users and AOIs. Our

framework provides fine-grained access control that is embedded in the en-

cryption technique. That is, decryption is only successful when attempted

with an authorized user’s key. Users are authorized to decrypt AOI informa-

tion based on their attributes and the policy provided my the data owner.

This feature allows the data owner to control which types of users can de-

crypt (and access) their AOI data without knowing which users will access

the data in advance. In addition to our use of CP-ABE for fine-grained access

control, our framework uses HVE to determine proximity without disclosing

any location data to a third party. The HVE decryption succeeds only when

the user’s location (i.e. the one who submits the proximity query) is near

an AOI. The service provider learns nothing more than whether a user is

near one or more AOIs, or not. And since HVE supports compressed tokens,

(i.e. a single token uses wildcards to represent multiple cell locations), the

proximity detection computational load is reduced. For example, Figure 5.1

shows two applications and three types of users. In the first application, a

general user asks ”Am I near a dangerous area?” A firetruck driver asks the

same question. The answer may be different, and the action taken by each

party should be different. The general user should receive a general warning

and should stay clear of the dangerous area, while the firetruck driver should

be given precise location information for the emergency. In the second appli-

cation, an amusement park visitor is looking for short lines. The amusement

park application has that information, but will reply with different types on

information depending on the subscription status of the user.
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Example Applications

Am I near a dangerous area?

Are there any short lines nearby?

Where is the fire?

Are you a 

premium 

subscriber?

Figure 5.1: CP-ABE Access Policy Tree
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5.3 Background

5.3.1 Framework Model

Our location-based proximity detection model is based on users traveling

through real space represented by a two-dimensional grid. At any one point

in time, a user occupies exactly one grid cell. On demand, users can query

an encrypted database of AOIs, using their own encrypted locations, to de-

termine if their current location overlaps any AOI. The data owner defines

multiple AOIs, encrypts them, and supplied them to the service provider.

The service provider carries out the calculations on encrypted data to deter-

mine if the user’s current location is in proximity to one or more AOIs. The

service provider responds to the user with a list of AOIs that overlap the cell

that encloses the user’s location. Cells can represent any physical size. The

only restriction is that the data owner and all users must use the same cell

granularity when converting AOI or user locations into grid coordinates.

Our protocol uses an architecture of four distinct entities. They are:

• Data Owner/Provider (DO) - Defines/encrypts AOI locations/access

policies

• Key Generator (KG) - Generates CP-ABE and HVE keys and tokens.

• Service provider (SP) - Provides computation services for users to de-

termine user proximity to any AOI

• User - user with ability to determine current location (GPS or other

means)

The function of each entity at each step of the protocol is explained in a

later section.
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5.3.2 Privacy Model

An important privacy requirement of an MPPD scheme is that the data

owner learns nothing about user locations and users learn nothing about AOI

locations (defined by the data owner), except in the case when their current

location overlaps one or more AOIs. Even when a user learns that he or she

overlaps an AOI, the complete dimensions of the AOI are undisclosed. A user

could travel around the grid in a structured attempt to learn AOI locations

by remembering cells with AOI overlaps. Our framework and protocol does

not protect eventual AOI location disclosure from such an attack. Protocol

extensions to protect AOI locations from deliberate user brute-force attacks

are left for future work, but could be implemented at the key generator by

having the key generator detect patterns of such attacks and responding to

the user accordingly. The key generator does know the location of a user when

that user requests an HVE key, but the key generator is trusted, and thus

does not share user location with any other entity and does not have access

to any AOI information. The key generator does not return the generated

HVE encrypted user location to the user. Instead the key generator sends the

encrypted user to the service provider. The service provider only has access

to encrypted AOI and user locations. It can only learn that a user’s location

overlaps one or more AOIs, but does not know what location the overlap

represents in the gird. The service provider could infer user to user proximity

when multiple users are in proximity to the same AOI within a short period

of time. But the service provider still would not know the location of any

user or AOI. Although HVE is a public key cryptography scheme and would

provide the possibility for a malicious service provider to attempt to build a

fake encrypted AOI list, our framework limits the distribution of the HVE

public keys. This practice limits the ability to encrypt AOI locations to only

trusted entities, thereby removing the ability to use dictionary type attacks

to generate imposter AOI lists.
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treatment=Z51.11 AND ((context=cancer) OR context=tobacco use))

AND

treatment = 

Z51.11
OR

context = cancer
context = 

tobacco use

Figure 5.2: CP-ABE Access Policy Tree

5.3.3 Ciphertext Policy Attribute Based Encryption

Recall from Chapter 3, a CP-ABE scheme provides fine-grained access control

over data [4]. CP-ABE associates a user with a set of descriptive attributes to

generate the user’s secret key, SK. Data are encrypted under an access policy

such that only users whose attributes match the access policy can decrypt

the data. To encrypt a message M using CP-ABE, the encryptor provides an

access policy which is expressed as a boolean expression containing selected

attributes and values for M. Figure 5.2 shows the access policy presented

earlier in a tree structure. The message is then encrypted based on the access

structure, T. Decryptors generate SK based on their attributes. A decryptor

is only able to decrypt ciphertext, CT, when her SK satisfies the access policy

used to encrypt the message. Unauthorized users cannot decrypt CT even if

they collude and combine their disjoint attributes.

CP-ABE defines the following four essential functions:

1. Setup(): Input security parameter, output public key (PK), for encryp-

tion, and master key (MK), to generate user secret keys.
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2. Encrypt: Input message M, access structure T, public key PK, output

ciphertext CT.

3. KenGen: Input set of user’s attributes SX and MK, output secret key

SK for SX.

4. Decrypt: Input CT, SK. If SK satisfies access structure in CT, return

M, else return NULL.

5.3.4 Hidden Vector Encryption

Hidden Vector Encryption (HVE) [8] is an extension of an anonymous iden-

tity based encryption (IBE) [6] scheme. With IBE, the keys used for encryp-

tion and decryption are based on identities and attributes. HVE allows an

attribute string that is associated with the ciphertext or the user secret key to

contain wildcards. Thus, HVE provides a searchable encryption scheme that

supports conjunctive equality, range and subset queries. An HVE attribute

is represented as a vector of elements with a value of 0, 1, or a wildcard (rep-

resented as ’*’ and often referred to as a ”don’t care” value). The wildcard

in an HVE attribute matches the values 0 or 1 in comparison operations.

An HVE comparison of a search predicate S and a ciphertext C evaluates as

True if the attribute vector I used to encrypt C contains the same values as

S for all positions that are not ’*’.

HVE defines the following four essential functions:

1. Setup(): Input security parameter, output public key (PK), for encryp-

tion, and master key (MK).

2. KeyGen: Input MK and a string y in 0, 1, *, output secret key SK for

y.

3. Encrypt: Input public key PK, message M, attribute string x in 0, 1,

output ciphertext CT.
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4. Query: Input CT, SK. If SK satisfies attribute string x in CT, return

M, else return NULL.

Note that the HVE setup() function returns PK and MK. In most public

key encryption schemes, PK is intended for public consumption. Any user

can access PK and can generate ciphertext. In our framework, we want to

limit the ability for create ciphertext, (encrypted AOIs), to trusted entities,

specifically, data owner. Of course, since the key generator generates PK, it

has access to PK as well. Thus, each data owner protects the privacy of its

own AOIs by protecting (i.e. not disclosing) its own PK for HVE encryption.

While it is true that any data owner could collude with a service provider,

that act would violate the data owner’s stated goal of protecting the privacy

of its own AOI locations.

5.4 Protocol Description

Suppose the “Fun Times” park defines four types of AOIs, each with a dif-

ferent color designator. Table 5.1 lists the AOI types and what each one

represents. These AOI types are simply examples of what our proposed

framework can represent. AOI types can be of any type and any number.

The AOI type definition is left up to the specific implementation definition.

The only requirement is that each AOI must be uniquely identified with some

character label. AOIs can overlap one another by sharing one or more defined

cells. In such cases, users would receive a response to a proximity query in-

dicating that their current location places them within all AOIs that contain

their current cell. Using our example, “Fun Times” wants to provide some

value to users who use their mobile app, but reserve the more detailed infor-

mation for premium subscribers to their service. Users of the “InTheKnow”

app that have paid for the premium service can receive “warn”, “notify”,

and “approach” alerts. The first two alert types could be used to provide
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Table 5.1: AOI Types

Color Who can access Alert type

Red Paid subscribers Warn

Blue Paid subscribers Notify

Green Paid subscribers Approach

Yellow Free users Notify

guidance for areas to avoid, while the third alert type could inform users of

areas that would be beneficial to visit. Users that have not paid for the pre-

mium subscription will only receive “notify” alerts. Notice that there are two

different colors for the “notify” alert. Premium subscribers will receive more

specific information about “notify” alerts, while free users will only receive

general messages.

Figure 5.3 shows how each AOI accessible by paid subscribers is defined on

a grid and the access policy associated with each AOI. Figure 5.4 shows the

AOI accessible by free users and its associated access policy.

Our example includes four users to demonstrate the protocol’s flexibility.

Figure 5.5 shows each user and their associated descriptive attributes used

to generate each user’s secret key. A user’s attributes must satisfy (match)

an AOI’s access policy to decrypt and access the AOI.

To determine proximity to an AOI, a user sends the current encrypted

location to a service provider, which then determines if that user is within

any cell defined as an AOI, all without ever learning any location information

from the user or data owner. Users request a secret key from a key generator

based on descriptive attributes. The attribute-based key provides the ability

for the service provider to assess accessibility for each AOI. To continue our

example, four users request proximity alerts for the amusement park defined

AOIs.
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21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

AOI “red” AOI “green”

Subscriber (paid user) AOIs

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

AOI “blue”

Assume: AOIs “red”, “blue”, and “green” are available only to subscribed (paid) users

Access policy: AOI “red”

“(subscriber=paid) AND

(alertType=warn)”

Access policy: AOI “green”

“(subscriber=paid) AND

(alertType=approach)”

Access policy: AOI 

“blue”

“(subscriber=paid) AND

(alertType=notify)”

Figure 5.3: Subscriber (paid user) AOIs
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21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

AOI “yellow”

Non-subscriber (free user) AOIs

Access policy: AOI “yellow”

“(subscriber=free) AND

(alertType=notify)”

AOIs for free users are 

more generic, less granular

(i.e. provide less specific 

information to free users)

Figure 5.4: Non-subscriber (free user) AOIs

User Subscriber AOI types Can decrypt AIOs

Alice free warn, notify yellow

Bart free approach None

Mary paid approach, notify Blue, green

Daniel paid warn, notify Red, blue

User access to AOIs

AFTER decrypting, we can determine user proximity to AOI cell

Figure 5.5: Users and Descriptive Attributes
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Data Owner

(DO)

After setup:

PKABE, PKHVE

Service Provider 

(SP)

After setup:

PKABE

Key 

Generator

(trusted)
Note: SP does 

NOT have PKHVE

Figure 5.6: PrivProxABE Setup phase

We call the technique PrivProxABE (MMPD using ABE) [64]. The proto-

col is made up of four basic phases:

I Setup - Initializes protocol state

II InitAOIs - Encrypts AOIs with access policy

III InitUserLoc - Encrypts current user location

IV Query - User-initiated location proximity query

5.4.1 Setup

Algorithm 1 shows the steps in the “Setup” phase and refers to figure 5.6.

In the “Setup” phase, the data owner calls the ABEsetup() method on the

key generator to generate the ABE public key, PKABE. The key generator

sends PKABE to the data owner and the service provider. The data owner

also calls the HVEsetup() function on the key generator to generate the HVE

public key, PKHVE, and returns PKHVE to the data owner. The data owner

keeps PKABE and PKHVE secret, (i.e. the data owner does not share either

key with any other entity.)
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Algorithm 5 PrivProxABE Protocol - Setup

1. The data owner calls ABEsetup() on key generator. The key generator

sends PKABE to the data owner and service provider.

2. The data owner calls HVEsetup() on key generator. The key generator

sends PKHVE to the data owner.

5.4.2 InitAOIs

Algorithm 2 shows the steps in the “InitAOIs” phase and refers to Figure 5.9.

Encode AOI Locations

In the “InitAOIs” phase, the data owner first maps cell IDs to coordinates,

(x,y), and the generates Gray codes for each point in the ordered pair. The

complete Gray code for a cell ID is the concatenation of the ordered pair’s

x value and the ordered pair’s y value. Figure 5.7 shows the Gray codes for

the “red”, “blue”, “green”, and “yellow” AOIs presented in Figure 5.3 and

Figure 5.4 .

To reduce the number of comparisons necessary to determine AOI proximity

during user queries, we compress the Gray codes into search tokens that

contain wildcards, as proposed in [30] . If two Gray code values differ by

only a single digit, we replace the digit with a wildcard, “*”, and thus a

single search token can represent two individual Gray codes, or Cell IDs. We

continue the compression process iteratively until no two remaining search

tokens differ by only a single digit. This process can compress multiple Cell

IDs into a small number of search tokens.

For example, the Gray codes for cell 18 (0001000110) and cell 19 (0011000110)

only differ by the value in position 2. Therefore, we can combine the two

Gray codes into a single token, replacing the value in position 2 with a wild-

card “*”, (00*1000110). The wildcard represents a “don’t care” value, since
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AOI Encoding – Step 1

AOI

color

Cell 

ID

Cell 

Coordinate

Gray code

red 18 (3,3) 0001000110

red 19 (4,3) 0011000110

red 23 (3,4) 0001000111

red 24 (4,4) 0011000111

blue 14 (4,3) 0011000010

blue 15 (5,3) 0011100010

blue 19 (4,4) 0011000110

blue 20 (5,4) 0011100110

green 1 (1,1) 0000100001

green 6 (1,1) 0000100011

AOI

color

Cell 

ID

Cell 

Coordinate

Gray code

yellow 9 (4,2) 0011000011

yellow 10 (5,2) 0011100011

yellow 12 (2,3) 0001100010

yellow 13 (3,3) 0001000010

yellow 14 (4,3) 0011000010

yellow 15 (5,3) 0011100010

yellow 17 (2,4) 0001100110

yellow 18 (3,4) 0001000110

yellow 19 (4,4) 0011000110

yellow 20 (5,4) 0011100110

yellow 22 (2,5) 0001100111

yellow 23 (3,5) 0001000111

yellow 24 (4,5) 0011000111

yellow 25 (5,5) 0011100111

Figure 5.7: AOI Location Encoding - Step 1

the token matches any value in position 2. The Gray codes for cell 23 and

24 also differ by only a single digit and can be represented with the token

(00*1000111). Notice that the two resulting tokens differ by only a single

digit and can also be combined into a single token (00*100011*). In this

way, a single token can represent four cells. Figure 5.8 shows the result of

the compression process for the “red”, “blue”, “green”, and “yellow” AOIs

presented in Figure 5.3 and Figure 5.4 .

Encrypt Encoded AOIs

After compressing each of the Gray encoded AOI locations, each AOI is

represented by one or more compressed tokens. The data owner encrypts

each compressed token with HVE using PKHVE, returning CTHVE. The data

owner then encrypts the AOI label and any additional AOI information for

a single AOI with CP-ABE using PKABE, returning CTABE. The data owner
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AOI Encoding – Step 2

AOI color Compressed Gray code token(s)

red 00*100011*

blue 0011*00*10

green 00001000*1

yellow 0011*00*1*, 0001*00*10, 0001*00111

Figure 5.8: AOI Location Encoding - Step 2

Data Owner 

(DO)

AOIs

(cells)

3) EncHVE (AOIs)

4a) EncABE (AOI 

info)
CTABE

Service Provider 

(SP)

After InitAOIs:
PKABE, CTABE , CTHVE

CTHVE

Figure 5.9: PrivProxABE InitAOIs phase
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then sends CTABE and CTHVE for all AOIs to the service provider.

Algorithm 6 PrivProxABE Protocol - InitAOIs

3. The data owner encrypts encoded AOI cells (encoded using Gray

encoding) and keeps CTHVE.

4a. The data owner encrypts AOI label and other descriptive AOI info

using access policy to get CTABE.

4b. The data owner sends CTABE and CTHVE to the service provider.

5.4.3 InitUserLoc

Algorithm 3 shows the steps in the “InitUserLoc” phase and refers to Fig-

ure 5.10. If the user is new (e.g. not a user known to the key generator),

the key generator authenticates the user and records the authorized user at-

tributes in the key generator user table. The key generator uses the user

attributes to generate a secret key (SKABE), and returns SKABE to the user.

The user then calls HVEencrypt(currentLocation) on the key generator to

encrypt the user’s current location using HVE, generating LocHVE The key

generator returns LocHVE to the user. The user then generates a randomI-

dentifier for use in the query phase. The randomIdentifier detaches queries

from user identities.

Algorithm 7 PrivProxABE Protocol - InitUserLoc

5. User calls ABEkeyGen(userID) on key generator. The key generator

authenticates new users and generates a CP-ABE secret key (SKABE)

based on the user’s attributes, and returns SKABE to the user.

6. User calls HVEencrypt(currentLocation) on key generator. The key

generator returns the encrypted location (LocHVE) to the user. The user

generates a randomIdentifier.



85

User

randomIdentifier,

SKABE , LocHVE

Key Generator

(trusted)

5) SKABE = 

ABEkeyGen(userID)
6a) LocHVE = 

HVEencrypt(location)

6b) randomIdentifier = 

genRandomIdentifier()

Figure 5.10: PrivProxABE InitUserLoc phase
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5.4.4 Query

Algorithm 4 shows the steps in the “Query” phase and refers to Figure 5.11.

The HVEdecrypt(LocHVE) function, run on the service provider, iterates

through each AOI and attempts to decrypt CTHVE. If HVE decryption is

successful, that means that the user’s location shares one cell defined by the

AOI. The service provider returns a list of all successfully decrypted HVE ci-

phertexts to the user. The user runs ABEdecrypt(SKABE,CTABE) to attempt

to decrypt each AOI returned from the service provider. Successful ABE de-

cryption means the user’s attributes satisfy the AOI’s access policy for an

AOI that overlaps the current user’s location. The service provider returns

a list of encrypted AOIs that overlap the user’s location. The user then at-

tempts to decrypt each AOI using CP-ABE. Any successfully decrypted AOI

means that the user’s location overlaps the AOI and the user is authorized

to consume the AOI’s information.

Algorithm 8 PrivProxABE Protocol - Query

7. User calls HVEdecrypt() on the service provider. The service provider

attempts to decrypt all AOIs using user’s LocHVE.

8. The service provider returns a list of all successfully decrypted (HVE)

AOIs.

9. User calls ABEdecrypt(SKABE,CTABE) for each AOI returned from

the service provider to determine if the user is authorized to consume

proximity alerts for each AOI.

5.5 Security and Privacy

One of the primary requirements of this framework is to maintain the privacy

of all actors. The proposed framework relies on the security guarantees of

CP-ABE and HVE to provide the overall security of our approach. In each
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Service Provider 

(SP)

7b) If HVEdecrypt() 

succeeds, add ABE 

ciphertext to list

User

SKABE , LocHVE, 

randomIdentifier

9) ABEdecrypt

(SKABE, CTABE)

Figure 5.11: PrivProxABE Query phase

scheme, the SK is necessary to decrypt data. Our framework ensures that

only trusted entities, users and the key generator, have access to any SK. Ta-

ble 5.2 summarizes the privacy guarantees with respect to each architectural

entity and the following list explains each of the privacy guarantees.

• Data Owner/Provider (DO) - The data owner is the only entity with

access to the unencrypted AOI data. It does not share unencrypted

AOI locations or any HVE keys with any other entity to protect AOI

locations. The data owner does not have access to any other informa-

tion generated or stored by the key generator or any user, and thus

cannot learn any information about user locations.

• Key Generator (KG) - The key generator, a trusted entity, generate

SKs, but never has access to AOIs and cannot decrypt any AOI infor-

mation without colluding with another entity. The key generator does
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Table 5.2: Factors affecting performance

Entity Privacy

Data Owner/Provider (DO) Does not share unencrypted AOI data or

HVE keys. The DO has no access to other

data.

Key Generator (KG) Trusted entity with no access to AOI data.

Does not share user location data with any

other entity.

Service Provider (SP) No access to unencrypted data. The SP can

learn user/AOI proximity, but cannot corre-

late to real location.

User User does not share location with any en-

tity other than the KG. The user can spoof

location to build a partial AOI map.
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learn user locations when it generates LocHVE for a user’s current loca-

tion, but does not share this information with any entity other than the

user and does not have access to any information, such as AOI loca-

tions, with which to correlate user locations. The key generator could

remember user locations to build user trajectories, but our framework

defines the key generator as a trusted entity and we expect that the

key generator will not exceed its authority.

• Service provider (SP) - The service provider never has access to unen-

crypted AOI or user locations, and cannot access the decryption keys

to decrypt any ciphertext. Thus, the service provider never learns any

information about AOI or user locations. The service provider does

learn that a user is in proximity to one or more AOIs when the loca-

tions overlap, but does not have any information to imply actual user

or AOI locations. The service provider also can determine when two

or more users are close to one another when they are found to be in

proximity to the same AOI(s). The service provider cannot attempt a

dictionary type attack by building a fake AOI list since it lacks PKHVE

which is necessary to encrypt AOI locations.

• User - The user only divulges actual location to the key generator. Since

the service provider carries out all calculations on encrypted data, the

service provider never learns the user’s location, and as stated previ-

ously, the data owner never has access to any user location information.

The user never has access to any AOI location and only learns general

AOI information when the service provider discloses that the user is

in proximity to one or more AOIs. The user learns that the current

location overlaps the reported AOIs, but does not immediately learn

the dimensions of any AOI. Through a process of strategically visiting

multiple cells, a user could build a limited map of AOI locations based
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on proximity alerts. However, a user could only construct meaningful

map entries from AOI data the user is authorized to decrypt. One

method to restrict malicious users from building even a partial AOI

map in a short period of time could be to set a threshold of maximum

speed at which a user could realistically travel from cell to cell. If a user

attempts to exceed this threshold, he would be deemed malicious. Hall-

gree, et. al. [33] propose a protocol, MaxPace, based on the concept of

using travel speed thresholds to detect malicious users. Implementing

protection from this type of attack is left for future work.

Our protocol protects both AOI and user locations from disclosure, and

only allows users to eventually build an AOI map after determined actions

resulting in recording history of cells visited and proximity alerts.

5.6 Experiments

We implemented a prototype of our framework and Li’s [51] similar frame-

work and ran multiple tests to evaluate performance as input data size varied.

We ran each test by first defining access policies, half of which are satisfied

by test user attributes. So for each test, the user is authorized to query half

of the AOIs. We then define a set of AOIs, each with one of the test access

policies. The test user then issues location proximity queries, each with a

random user location. The times reported in the results represent the av-

erage time to resolve a single location proximity query. All tests were run

on a single computer with 16GB memory and an Intel Core i7 2.4GHz CPU

running Ubuntu Linux 16.04. We chose to run all tests on a single computer

to focus on computation load. In future work we will expand the evaluation

to measure communication overhead. Tests were run for varying numbers of

AOIs, ranging from 10 to 250, using grid sizes from 100x100, up to 500x500,

and various AOI shapes. Figure 5.12 shows the 11 different AOI shapes used
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Regular AOI shapes

Irregular AOI “Circular” AOI 

(can be depicted 

as a single circle)

Figure 5.12: AOI shapes used in tests

in the performance evaluation. We defined 9 basic shapes, 1 irregular shape,

and a standard symmetric AOI represented as a square when using grid cells

and as a circle for circle-based AOIs. Figure 5.13 shows how we constructed

AOIs using circles to approximate the shapes built from grid cells, and how

irregular AOI shapes require more computation due to requirement for more

circles to represent each AOI.

Both frameworks were implemented in Python 2.7, using the Charm [2]

framework for rapid cryptosystem prototyping. The primary purpose of our

prototype implementations is to demonstrate the viability and advantages of

our proposed framework and to compare its relative performance to another

proposed framework that is similar but less scalable. We found that varying

the grid size did not affect the performance in a material way. For this reason,

we chose to present results of tests all run using a grid size of 250x250. The

unit size can represent any physical distance. In this way, the association

of a physical measurement with the unit size defines the precision of the

approach. That is, a smaller unit size results in higher precision.
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Irregular AOI

Requires 8 circles

Circular AOI 

(coverage is similar 

to cell-based AOI)

Requires 1 circle

Figure 5.13: Representing AOIs using circles



93

0

10

20

30

40

50

60

70

80

90

10 25 50 75 100 250

T
im

e 
(s

)

AOI count

User query - Circular AOIs

HVE Pailler

Figure 5.14: Circular AOIs

Our tests show that the choice of HVE for AOI encoding and encryp-

tion provides superior scalability over Paillier cryptosystem distance calcu-

lations. Li’s CP-ABE/Paillier approach works efficiently for circular AOIs,

but lacks scalability for more complex AOI shapes. Figure 5.14 shows that

CP-ABE/Paillier performs better than our CP-ABE/HVE framework when

all AOIs are represented as circles only. This is because our HVE approach

requires a collection of cells to define each AOI. Although using Gray codes

with token compression to combine multiple tokens, the Paillier distance

calculation for a single circle is still more efficient than an HVE token match.

However, when AOI shapes are not circular, the CP-ABE/Paillier approach

which requires multiple circles to represent a single AOI exhibits slower per-

formance due to the additional overhead. Our approach can efficiently rep-

resent irregular AOI shapes and still provide good performance. Figure 5.15

shows the performance when using AOIs with irregular shapes. The last set

of test we ran randomly selected AOI shapes from 10 pre-defined shapes,
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Figure 5.15: Irregular Shaped AOIs

including circular AOIs. Even when selecting some regular shapes, our ap-

proach using CP-ABE and HVE performs better than the P-ABE/Paillier

approach. Figure 5.16 shows the performance for randomly shaped AOIs.

5.7 Conclusion

We propose a novel framework and protocol based on CP-ABE and HVE

that provides MPPD with embedded access control for different classifica-

tions of users. With our framework, data owners can define and maintain

a single set of AOIs and grant access to AOI information based on user at-

tributes. We implemented our framework and protocol, along with another

approach that uses CP-ABE and Paillier cryptosystem, and showed that our

approach is more scalable when using AOIs defined as non-circular shapes.

Our framework provides a basis for implementers to develop scalable MPPD
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services that minimizes workload on data owners or users. This approach can

provide flexible MPPD services to meet a wide variety of client needs, with-

out requiring a trusted third party to examine user locations to determine

proximity.
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Chapter 6

Conclusions and Future Work

In this dissertation, we addressed challenges encountered in enforcing both

confidentiality of outsourced data to categorical users, and mutually private

location privacy detection. Organizations face each of these challenges when

designing, developing, and deploying applications that provide location-based

or location-sensitive services for enviroments in which privacy for all actors

is a design goal and users are authorized to consume data based on descrip-

tive user attributes. Our solutions are viable for inclusion in the design of

real world applications and the specific mutually private proximity detection

techniques have been shown to exhibit performance characteristics sufficient

to support current end user response expectations. We expect that new or

upgraded location-sensitive applications can use these solutions to provide

privacy to both data owners and users, and provide a flexible methods to

control access to various types of data based on data owner policies.

6.1 Summary

6.1.1 Confidentiality in Categorical Settings Contribu-

tions

In Chapter 3, we presented the problem of limiting access for data based on

data owner requirements to different classifications of users. We showed that
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CryptDB provides a partial solution, specifically by providing the ability to

search across encrypted data, but does not have the ability to limit access

by categorical users. We extended CryptDB by integrating CP-ABE into

the storage design. Using CP-ABE, our new framework, ZeroVis, extends

all of the benefits of CryptDB to enforce categorical user access, providing

confidentiality by user categories, for outsourced data. With ZeroVis, all

data inserted into the cloud database carries a data owner provided access

policy. This access policy defines the unique collection of user attributes

required to decrypt, and thereby consume, the data. A user who requests

data but cannot satisfy the access policy for that data is unable to decrypt

it and access the resulting plaintext. In a database setting where queries

commonly return multiple database rows, ZeroVis will only return rows that

both match the query predicate and can be successfully decrypted by the

requesting user. The ZeroViz proxy ensures that users are unaware of the

existence of, or the number of, rows that match the query predicate but

could not be decrypted. As we summarized in Chapter 3, the performance of

the initial ZeroVis framework implementation was not optimal and would be

inefficient if deployed in its current state. We will leave ZeroVis optimization

for future work.

The work on ZeroVis was fundamental for our later work on location pri-

vacy in categorical settings. We used the results of the ZeroVis project to

strongly influence our later work. We used the concept of access control in

categorical settings in our PrivProxABE framework, which we describe in

Chapter 6. PrivProxABE combines our work on mutually private proximity

detection in general settings with CP-ABE to provide access to location-

based information defined by data owner access policies. This enhancement

to the frameworks we describe in Chapter 4 allows application designers to

define and maintain a single set of AOIs and individual AOI access policies to

define user attributes necessary to consume each AOI. Integrating CP-ABE
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makes it possible for users to request proximity detection alerts, and only be

provided the alerts defined by the AOI data owner, all without having to ar-

tificially partition AOIs into sets. The access control is part of the CP-ABE

cryptographic technique.

6.1.2 Location Privacy Contributions

In Chapter 4 we introduced the problem of protecting privacy of both data

owners and users in location-based services. We described a solution as mutu-

ally private proximity detection. Several such solutions have been proposed,

and we selected three representative techniques that use encryption to pro-

vide proximity detection. As part of our survey we identified a promising

approach that addressed “nearness” of vectors of attributes. We found that

the approach, Secure k-Nearest Neighbors (SkNN), was novel and warranted

further examination. We made modifications to SkNN, extending the original

approach, to determine proximity based on distinct locations, as opposed to

distance between vectors of attributes. This extension allowed us to include

the new SkNN in our implementation assessments.

We implemented three techniques and assessed their performance as we

changed input data set sizes. Specifically, we varied the number of AOIs, the

size of AOIs, and the size of the overall grid. We summarized our findings and

used those to formalize specific recommendations of which technique would

likely perform best in a specific deployment setting.

In Chapter 5 we combined our research into categorical access control and

mutually private proximity detection to propose a new framework, PrivProx-

ABE. This new framework protects the privacy of data owners and users in

a location-based services environment, and restricts access to any proximity

alert to users based on data owner provided access policies. We found that

there is only one other framework similar to ours, but the other framework
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exhibits suboptimal performance as it scales. Our framework is designed to

provide consistent performance as the input data sizes and users scale, and

we presented performance experiment results in Chapter 5.

6.2 Future Work

6.3 ZeroVis Framework

This dissertation describes the initial ZeroVis framework implementation.

Future framework changes are necessary to create a more production viable

framework. A specific requirement for a trusted AA needs to be included.

Although we only generally described the need for the attribute authority,

the AA will be an integral component of a completed framework. It will

be responsible for authorizing users, securely storing their attributes, and

providing the ZeroVis proxy with sufficient authentication information and

attributes to properly handle encryption and decryption operations for au-

thorized users. The AA will act as the layer of protection that stops attackers

from arbitrarily providing unauthorized attributes to the CP-ABE encryp-

tion/decryption functions. The AA will also manage the master key required

for encryption/decryption operations.

Additional work is necessary to reduce the storage and computational

overhead of CP-ABE. Others have already studied this problem, including

Constant-size CP-ABE (CP-ABE) [78] and techniques discussed in [44] and

[4]. Future work will also include explore normalizing the CP-ABE cipher-

text, which is currently a concatenation of the access policy and the encrypted

payload. The access policy comprises over 90% of the ciphertext size. De-

normalizing the CP-ABE ciphertext will reduce the storage (and network

transmission) requirements for multiple columns that share the same access

policy.
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6.4 PrivProxABE Framework

As with the ZeroVis framework implementation, our PrivProxABE imple-

mentation is an initial solution to mutually private proximity detection in

categorical settings. Although our framework performs better than the only

other proposed framework that addresses the same problem, we still plan

to explore performance enhancements. The key manager needs to be more

clearly defined, with a formal API definition that standardizes access to its

functionality.

Also, when using the current PrivProxABE design, it is possible for users

to simply visit each cell in a grid to determine the locations of all AOIs.

Alternatively, users could provide false locations to the service provider to

also construct an AOI map. Future extensions of PrivProxABE will need to

address the problem of malicious or even curious users that attempt to build

an AOI map. We believe that solutions to these problems are feasible and

will greatly enhance the utility value of PrivProxABE.
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