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Abstract 

Application of Machine Learning Algorithms for Estimating Daily PM2.5 Concentrations 

By Runing Huo 

Background: The detrimental impact of PM2.5 air pollution is widespread, as it has been linked 

to premature mortality and a diverse range of health concerns such as cardiovascular and 

respiratory illnesses. Machine learning approaches offer several advantages for predicting PM2.5 

levels at locations without monitoring data. These include the ability to handle complex and large 

datasets, detect nonlinear associations, and provide accurate and adaptable solutions. 

Objectives: Compare the prediction ability of four machine learning algorithms with three types 

of cross-validation experiments using data from 2018 in California.  

Methods: Four machine learning algorithms were applied in this analysis: random forest, 

Bayesian additive regression trees (BART), gradient boosting and soft Bayesian additive 

regression trees (SoftBART). We performed 3 types of 10-fold cross-validations (ordinary, 

spatial, and temporal) using, R-squared, mean absolute error (MAE), and root-mean square error 

(RMSE). We also obtained average predictions of PM2.5 concentrations at 1km spatial resolution 

for January, April, July, Octobe in 2018. 

Results: In the cross-validation analysis, we found the random forest performed the best with 

highest R-squared and smallest RMSE and MAE values. Random forest model also the least 

computationally intensive approach. Gradients boosting and BART model with larger number of 

trees are the second-best model. When using small number of trees, SoftBART model behaved 

similarly with the BART model. 

Conclusions: In this study, we demonstrated the superior predictive performance of random 

forest, which is a commonly used method for predicting daily PM2.5 concentrations.  
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1. Introduction  

PM2.5 refers to fine inhalable particles less than or equal to 2.5 micrometers in aerodynamic 

diameter, which can get deep into the respiratory system through breathing. PM2.5 air pollution is 

a global problem because it is known to cause premature deaths and a variety of health issues, 

including the development and exacerbation of cardiovascular and respiratory diseases [1]. 

Continued monitoring and understanding of PM2.5 health effects are crucial for protecting public 

health. 

To measure PM2.5 in the ambient environment, various air monitoring techniques are used, 

including techniques can provide (1) real-time data on the concentration (e.g., tapered element 

oscillating microbalance (TEOM), beta attenuation, and laser particle counters), and (2) 

integrated mass samplers that utilize filters.  Over the past decades, these PM2.5 measurements 

have allowed us to conduct studies to understand impact of ambient PM2.5 on human health and 

the environment.  Particularly, the establishment of air quality monitoring networks and the 

development of air quality index (AQI) enable us to regulate and communicate levels of PM2.5 

and other air pollutants to the public [2].  

Monitoring measurements of PM2.5 are typically only available sparsely in space. This motivated 

the development of many statistical and machine learning approaches to predict the distributions 

of PM2.5 particles with various predictors, including meteorological factors, land cover 

characteristics and satellite imagery. Machine learning models, such as neural network, random 

forest and gradient boosting are among the most commonly employed approaches [3-5].  Some 

advantages of machine learning models include the ability to handle complex and large 

predictors and identify non-linear relationships, in a flexible and accuracy manner.  
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In this analysis, we compared several different machine learning models to predict of daily 

average concentration of PM2.5 in California during the year 2018, a year with significant 

wildfire activities. Specifically, the four models are random forest, gradient boosting, Bayesian 

additive regression trees (BART) and soft Bayesian additive regression trees model. 

Random forest, gradient boosting and BART models have been used in an air pollution 

previously [6-9]. They all have been demonstrated to provide accurate prediction. But SoftBART 

is a new model that haven’t been applied on air pollution data analysis yet. 

 

 

 

 

 

 

 

 

 

 

 



3 

 

2. Materials and Methods  

2.1 Motivating Datasets 

We obtained daily average PM2.5 concentration measurements for California and Oregon in 2018 

from the US Environmental Protection Agency’s Air Quality System and the PurpleAir 

monitoring network. A series of quality control and bias-correction steps were applied to 

measurements from PurpleAir [10].  The year 2018 was chosen due to it being the most severe 

wild fire season in this region.  

Satellite-derived aerosol optical depth (AOD) was obtained using the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm at a 1 km spatial resolution. 

Missing AOD values were gap-filled based on modelled AOD data and meteorology following a 

previously developed approach [11] . We also obtained simulations from the Community 

Multiscale Air Quality (CMAQ) models at 12km resolution. CMAQ is a numerical transport 

model that incorporates information from emission, atmospheric chemistry and transport [12-13] . 

Several meteorological variables were obtained the North American Land Data Assimilation 

System phase 2, include including air temperature, specific humidity, surface pressure, surface 

downward longwave and shortwave radiation, U and V wind component, total precipitation, and 

potential evaporation, with a spatial resolution of 0.125° × 0.125°. Land cover variables was 

obtained from the National Land Cover Database at 30-meter resolution and include the 

percentage of each land cover type (water, developed area, barren, forest, shrubland, herbaceous 

area, cultivated area, and wetland). Additional land use variables included annual population 

counts, total length of different road by type (highways, primary road, secondary road, tertiary 

road, and local road) and elevations.  
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To create the analytic dataset, each monitor locations of PM2.5 levels were assigned to an AOD 

1km grid cell. Inverse-distance weighting was used to assign predictor variables at coarse 

resolutions (e.g., CMAQ simulation and meteorology) to the AOD grid cell. The sinusoidal 

projection was used calculate Euclidean distances. 

2.2 Statistical Analysis 

2.2.1 Machine Learning Models 

We first examined prediction performance of three traditional machine learning models, which 

are Random Forest (RF), Gradient Boosting (GB) and Bayesian Additive Regression Tree 

(BART) models.  

Random forest is a popular machine learning algorithm based on constructing a large number of 

decision trees, and predictions are these trees are averaged to give a final output. RF is a 

powerful and versatile machine learning algorithm that can be used for various tasks, including 

both regression and classification. It is widely used in various applications, such as image 

classification, natural language processing, and recommendation systems [14-15].  In RF, a subset 

of the training data which is randomly sampled with replacement is used to train a decision tree, 

and process the repeated to generate multiple trees. 

One of the key advantages of RF is that it can handle a large number of predictors and identify 

their relative importance p. It also reduces overfitting, which is a common problem in decision 

trees, by combining the predictions of multiple trees.  

We used the R package “randomForest” to perform the training of the model. The number of 

trees is 100 and the other settings of the parameters are default, the exact parameters are listed in 

the Table 3.1.  
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Gradient Boosting is another algorithm of ensemble methods for regression and classification 

problems. There are 4 common variations of GB, including Gradient Boosting Machine (GBM), 

Extreme Gradient Boosting Machine (XGBM), LightGBM and CatBoost. These methods are 

widely used on the data analysis of healthcare, finance [16-17]. Typically, GB builds an ensemble 

of weak decision trees and the final prediction corresponds to the sum of prediction from each 

tree. The idea behind the GB is to update each base-learner (i.e., decision tree) by using the 

negative gradient of the previous model’s loss function, which corresponds to minimize the loss 

function by the gradient descent method, which we describe below.  

First, we initialize the model and its associated loss function 𝐿(𝑦𝑖, 𝜌) with a constant value 𝑓1, 

𝑓1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜌 ∑ 𝐿(𝑦𝑖, 𝜌)

𝑁

𝑖=1

  

In our analysis, we assume outcome is Gaussian with mean and the loss function corresponds to 

squared error loss. Then for each m =1 to 1000 trees, we calculate the negative gradient, where 

𝑓𝑚(𝑥𝑖) is the mth tree:  

�̃�𝑖 = −
𝜕𝐿(𝑦𝑖, 𝑓𝑚(𝑥𝑖))

𝜕𝑓𝑚(𝑥𝑖)
. 

Using the base learner ℎ𝑚(𝑥),  line search is used to calculate step size 𝜌𝑚 and minimize loss 

function. Then the updated model is:  

𝑓𝑚(𝑥𝑖) = 𝑓𝑚−1 (𝑥) + 𝜌𝑚ℎ𝑚(𝑥𝑖, 𝑤𝑚). 

 If shrinkage is used, the update is: 

𝑓𝑚(𝑥) = 𝑓𝑚−1 (𝑥) + 𝜈𝜌𝑚ℎ𝑚(𝑥, 𝑤𝑚). 
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We used GBM with R package “gbm” to implement the GB, assuming the Gaussian distribution 

outcome model. The number of trees was set as 1000, and the maximum depth of each tree was 4 

and shrinkage parameter was 0.01 which is also called learning rate. 

Bayesian Additive Regression Trees (BART) model is also based on decision trees. It is similar 

to GB in that the final prediction represents the sum of predications from all trees. Bayesian 

backing fitting via Markov Chain Monte Carlo (MCMC) is employed for Bayesian inference to 

obtain the posterior distribution of each prediction.  

The BART model is given below: 

𝑌𝑖 = ∑ 𝑇𝑘(𝑀𝑘; 𝑥𝑖) + 𝜖
𝐾

𝑘=1
 

𝜖~𝑁𝑛(0, 𝜎2𝐼𝑛) 

where 𝑇𝑘(𝑀𝑘; 𝑥𝑖) represents the tree structure, and 𝑀𝑘 represents the parameters of terminal 

nodes dependent on predictor vector 𝑥𝑖.We used the R package “BART” to perform the model 

training and the default setting of the function “wbart”. The number of decision trees are 10 or 

200, the number of MCMC iterations for burn in is 100, the total number of iterations are 1100. 

Soft Bayesian Additive Regression Trees (SoftBART) is a variate machine learning algorithm of 

BART model, it is first generated by Linero and Yang in 2018 [18]. The main difference between 

SoftBART model and BART model is that SoftBART uses a Bayesian hierarchical model to 

calibrate the predicted values of the model to better match the actual values in the data. This is 

done by modeling the residuals of the original BART model as a Gaussian process and adjusting 

the predicted values accordingly.  
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SoftBART model can take less time to make more accurate predictions. It also has some 

similarities with BART model. Both of them are tree-based algorithms and use Bayesian 

framework. They both use MCMC to estimate the posterior distribution of the model parameters. 

They take long time for calculation when applied on large dataset. 

2.2.3 Prediction Performance Comparison 

Cross-validation (CV) is a method to evaluate out-of-sample prediction performance of 

algorithms by separating the dataset into two mutually exclusion sets: the training set and the 

testing set. The training set is used to perform learning and testing set is used to validate a 

model’s predictions. In a k-fold CV study, the dataset is divided into k segments evenly. The 

training and testing process is conducted in k rounds. In each round, we use each segment as the 

testing set, and the other k-1 folds as training set. In the end, an out-of-sample prediction is 

obtained for each data point in the entire dataset.  In all CV analysis, RF, GB, BART and 

SoftBART were applied to the same training and testing datasets in each fold. 

 

We used three different types of 10-fold cross validation: traditional 10-fold cross validation, 

spatial 10-fold cross validation, and temporal 10-fold cross validation. The difference among 

them is how the dataset is partitioned into training sets and testing sets. 

The traditional 10-fold cross validation separates the entire dataset randomly into 10 folds. To 

evaluate prediction performance, we calculated coefficient of determination(R2), root mean 

squared error (RMSE) and mean absolute error (MAE). A larger R2, smaller RMSE and smaller 

MAE are preferred. Specifically,  
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R2takes value from 0 to 1 and is a measure that describes the proportion of the variance in the 

dependent variable explained by the model. of the equation for R2 is: 

𝑅2 = 1 −
𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
= 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 −  y̅)2𝑁
𝑖=1

 

where,  yi is the observational data, yî is the predicted values,  y̅ is the mean of observational 

data. 

RMSE represents the average distance from predicted values to the out-of-sample data. RMSE is 

given by (N is the number of observations): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑁

𝑖=1

𝑁
  

Mean absolute error (MAE) is another useful metric. The difference between RMSE and MAE is 

that MAE measure the absolute distance from predicted values to the observations. It is less 

sensitive to the outliers than RMSE, because it doesn’t square the difference between predicted 

and observational values. MAE is given by 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 −𝑁

𝑖=1  𝑦�̂�|

𝑁
  

In addition to the traditional CV analysis, we also considered spatial 10-fold CV. where data 

from 10% of all monitors were designated as the testing set, and the other ninety percent of 

monitors were used as the training set. The spatial CV is designed to evaluate prediction 

performance associated with spatial interpolation. Similarly, in a temporal 10-fold CV analysis, 

data from 10% of unique dates were designated as the testing set in order to evaluate model’s 

performance to predict days without any observations.   
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The parameters used in the three types of cross-validations for different methods are given 

below: 

Table 3.1 Parameters Used in the Cross-Validation Analysis 

Random Forest ntree=100, mtry=sqrt(p), nodesize=5 

BART ntree=10 and 200, nskip=100 

Gradient Boosting ntree=1000, shrinkage=0.01, depth=4 

Soft BART ntree=5, num_burn=100 
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3. Results  

3.1 Results of Cross-Validation Experiments 

In the dataset used to perform cross-validation, there are total 56, 274 records of PM2.5 

measurements, consists datapoints from 365 days and 206 different air quality monitoring 

locations (158 from California and 48 from Oregon). There are 38 predictors, include 

meteorological parameters, land-cover variables, and geographical information of the air 

monitoring devices.  

The histogram and boxplot showed below indicate that our outcome variable PM2.5 has a highly 

right-skewed distribution, and there are many outliers. Most of the values are from 1 to 50, but 

outliers are distributed between 50 to 420. The correlation plot shows complicated correlations 

among predictors, most of the variables are weakly correlated, but there are several highly 

correlated variables (e.g., elevation and surface pressure). 

Figure 3.1 Histogram, Boxplot of PM2.5 in 2018 
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Figure 3.2 Correlation Plot of Predictors 

 
 

3.1.1 Traditional 10-fold Cross-Validation 

. The results in Table 3.1.1 showed that the RF model behaved the best and have the highest R-

squared, followed by the BART model with 200 trees. Soft BART model behaved better then 

BART model when both have smaller number of trees. 

Table 3.1.1 Prediction performance with traditional 10-fold Cross-Validation 

Type of Cross-Validation ML Methods 𝑅2 RMSE MAE 

 

Traditional 10-fold Cross-

Validation 

Random Forest (100) 0.833 5.661 2.705 

BART (10) 0.572 8.989 4.772 

BART (200) 0.742 6.99 3.590 

Gradient Boosting (1000) 0.719 7.298 3.940 

Soft BART (5) 0.623 8.447 4.439 
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From the predicted versus observed plots, we can see that the datapoints from RF are more 

compact andshow stronger linearity. The plot of Gradient Boosting model looks similar with 

Random Forest one, but with more dispersed datapoints. The plots of BART model (with 10 

trees) and SoftBART model have weaker linearity and the datapoints distributed more spread out 

from the diagonal. The plots showed the same conclusions with the R-squared and RMSE.  

Figure 3.1.1 Predicted and Observational Data in Traditional 10-fold Cross-Validation Experiments 

  

  

 

3.1.2 Spatial 10-fold Cross-Validation 

The spatial cross-validation results given in Table 3.1.2 have similar results in the traditional 

cross-validation experiment. The Random Forest model is still the best one, but compared with 

the results from traditional cross-validation, the R-squared is smaller and RMSE, MAE are 
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larger. The Gradient Boosting is the second best one, and the Soft BART model is better than the 

BART model even though it only has 5 trees. 

Table 3.1.2 Prediction performance in Spatial 10-fold Cross-Validation Experiments 

Type of Cross-Validation ML Methods 𝑅2 RMSE MAE 

 

Spatial 10-fold Cross-Validation 

Random Forest (100) 0.785 6.454 3.263 

BART (10) 0.497 9.734 5.228 

BART (200) 0.550 9.565 5.734 

Gradient Boosting (1000) 0.695 7.623 4.076 

Soft BART (5) 0.575 8.947 4.642 

 

From the predicted versus observed plots generated with the spatial 10-fold cross-validation, we 

find that the Random Forest still looks the best compared with the other models. The datapoints 

from SoftBART model stay closer than BART model.  

Figure 3.1.2 Predicted and Observational Data in Spatial10-fold Cross-Validation Experiments 
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3.1.3 Temporal 10-fold Cross-Validation 

Results from temporal cross-validation are similar to the traditional cross-validation, the Random 

Forest model being the best one, followed by Gradient Boosting model.  

Table 3.1.3 Prediction performance in Temporal 10-fold Cross-Validation Experiments 

Type of Cross-Validation ML Methods 𝑅2 RMSE MAE 

 

Temporal 10-fold Cross-

Validation 

Random Forest (100) 0.776 6.548 3.154 

BART (10) 0.539 9.319 4.888 

BART (200) 0.681 7.792 3.883 

Gradient Boosting (1000) 0.691 7.639 4.045 

Soft BART (5) 0.576 8.940 4.698 

 

From the predicted versus observed plots generated by the temporal 10-fold cross validation, we 

observe that Soft BART model behaved better than the BART model when generated small 

number of trees, though it still has worse prediction than Random Forest did.  
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Figure 3.1.3 Predicted and Observational Data in Temporal 10-fold Cross-Validation Experiments 

  

  

 

To quantify the contribution of individual predictors, we also trained a RF model with the full 

dataset, and examine variable importance (Figure 3.1.4). The top 9 predictors are PM simulated 

from CMAQ, aerosol optical depth, U-direction wind speed, boundary layer height, grid cell, 

population density, surface pressure, relative humidity, and elevation. 

 

 

 

 



16 

 

Figure 3.1.4 Importance of Variables in Random Forest Model 

 
 

 

3.2 Results of Predictions 

Figures 3.2.1 to 3.2.3 show the monthly average PM2.5 concentrations predicted from RF, GB 

and SoftBART for California in January, April, July and October. We see that the distributions of 

PM2.5 levels were different between the four months, with the highest concentration observed in 

the middle part of California and in July. 

Figure 3.2.1 Predicted Concentrations of PM2.5 in California from Random Forest Model 

January April July October  
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The plots we got from GB model are similar with the RF model, but the range of the predictions 

are a little bit high. July is still the month with highest concentrations of PM2.5. 

Figure 3.2.2 Predicted Concentrations of PM2.5 in California from Gradient Boosting Model 

January April July October  

     

 

In the predictions of SoftBART, we can see the range of the predictions became much larger, and 

there are some extreme values appeared in October. But from the whole state view, July is still 

the month has higher concentrations of PM2.5. 

Figure 3.2.3 Predicted Concentrations of PM2.5 in California from SoftBART Model 

January April July October  
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4. Discussion 

In the analysis, we evaluated the prediction performance of four machine learning models: 

Random Forest, BART, Gradient Boosting and SoftBART. From three types of cross-validations 

(traditional, spatial and temporal), RF consistently performed the best, as determined by its 

highest R-squared and lowest RMSE and MAE. RF has the additional advantage of having the 

less computation time. In BART model, we observed that increasing the number of trees can 

improve prediction, despite additional memory and run-time requirements. SoftBART model 

behaved better than BART model when both used small number of trees. Gradient Boosting 

model is often the second-best model. 

Random Forest model is an efficient and accurate model to use It can prevent overfitting by 

creating multiple decision trees, each trained on a different subset of the data and a random 

subset of the predictors. It can also provide the importance of each feature in the model, which 

helps better interpretation of the results. This information may be particularly useful as a tool to 

select variables to as inputs to methods that cannot handle large predictor set, such as Treed 

Gaussian Process [19].  

There are several follow-up analyses that can be built upon the current work. Particularly, the 

choice of parameters setting in BART and SoftBART should be examined more comprehensively 

by changing the number of trees, depth of trees, and prior’s distributions’ parameter or MCMC 

iterations. Secondly, we can continue to work on prediction plots of BART modes and see the 

differences. 
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