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Abstract 

Unique contributions of skeletal structure to shape perception and object recognition 

By Vladislav Ayzenberg 
 

With seemingly little effort, humans can both identify an object across large changes in 

orientation and extend category membership to novel exemplars. Most remarkably, humans can 

accomplish these feats with little experience, categorizing never-before-seen objects from as little 

as one training exemplar. Although researchers have long suggested that global shape information 

is crucial for robust object recognition, it is unknown how humans perceptually organize visual 

information to create global shape percepts and use these percepts to recognize objects. In the 

current dissertation, I used behavioral, neural, computational, and developmental methods to test 

the hypothesis that a model of structure known as the medial axis, or shape skeleton, can support 

both perceptual organization and object recognition. Moreover, I examined whether shape 

skeletons play a role in rapid object learning by testing whether they can support one-shot 

categorization in infants. Consistent with these hypotheses, I found that a skeletal model was 

predictive of adult participants’ object similarity and category judgments (Study 1). Moreover, 

neuroimaging of the adult visual system revealed that a skeletal model was predictive of the 

multivariate response in V3 and lateral occipital cortex (LO), regions implicated in perceptual 

organization and object recognition, respectively (Study 2). Finally, I found that 6- to 12-month-old 

infants, a population with little object experience, could categorize never-before-seen objects by 

their skeleton after seeing just one exemplar (Study 3). In all studies, the skeletal model best fit 

participants’ responses (behavioral and neural) across changes in image-level properties, contour, 

and when controlling for other state-of-the-art artificial neural networks. Taken together, these 

studies highlight the unique and privileged role of shape skeletons in perceptual organization, 

object recognition, and one-shot categorization.  
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Abstract 

With seemingly little effort, humans can both identify an object across large changes in orientation 

and extend category membership to novel exemplars. Most remarkably, humans can accomplish 

these feats with little experience, categorizing never-before-seen objects from as little as one 

training exemplar. Although researchers have long suggested that global shape information is 

crucial for robust object recognition, it is unknown how humans perceptually organize visual 

information to create global shape percepts and use these percepts to recognize objects. In the 

current dissertation, I used behavioral, neural, computational, and developmental methods to test 

the hypothesis that a model of structure known as the medial axis, or shape skeleton, can support 

both perceptual organization and object recognition. Moreover, I examined whether shape 

skeletons play a role in rapid object learning by testing whether they can support one-shot 

categorization in infants. Consistent with these hypotheses, I found that a skeletal model was 

predictive of adult participants’ object similarity and category judgments (Study 1). Moreover, 

neuroimaging of the adult visual system revealed that a skeletal model was predictive of the 

multivariate response in V3 and lateral occipital cortex (LO), regions implicated in perceptual 

organization and object recognition, respectively (Study 2). Finally, I found that 6- to 12-month-old 

infants, a population with little object experience, could categorize never-before-seen objects by 

their skeleton after seeing just one exemplar (Study 3). In all studies, the skeletal model best fit 

participants’ responses (behavioral and neural) across changes in image-level properties, contour, 

and when controlling for other state-of-the-art artificial neural networks. Taken together, these 

studies highlight the unique and privileged role of shape skeletons in perceptual organization, 

object recognition, and one-shot categorization.  
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Chapter 1 - General Introduction 

The same object produces vastly different shapes on the retina across changes in 

orientation, and objects of the same category have vastly different shape contours across 

exemplars. Yet, with little experience, human adults and infants (Biederman & Bar, 1999; Mash, 

Arterberry, & Bornstein, 2007), as well as nonhuman animals (Wood, 2013; Zoccolan, Oertelt, 

DiCarlo, & Cox, 2009), recognize objects with ease across such variations. Research in the vision 

sciences suggests that shape is crucial for object recognition (Biederman & Ju, 1988; Elder, 2018; 

Marr & Nishihara, 1978). Humans readily use shape to recognize objects in the absence of other 

visual information (e.g., texture and shading; Biederman & Ju, 1988; Wagemans et al., 2008) and 

both adults and children preferentially categorize novel objects by their shape across conflicting 

color and texture cues (Elder & Velisavljević, 2009; Landau, Smith, & Jones, 1988). Moreover, 

human representations of shape are robust to changes in view (Biederman, 1987; Biederman & Bar, 

1999), contour perturbation (Kanizsa, 1976; Spröte, Schmidt, & Fleming, 2016), and deformations 

from bending or stretching (e.g., hand poses; Barenholtz & Tarr, 2008; Leyton, 1989; Spröte & 

Fleming, 2016), suggesting a reliance on global shape properties over local contour information 

(Baker & Kellman, 2018; Sanocki, 1993). However, it remains unknown as to how humans form 

representations of global shape in order to recognize objects (Elder, 2018).  

Models of Object Recognition 

The vision sciences have proposed several theories to explain how humans form robust 

representations of shape in service of object recognition. One class of theories has proposed that 

object shape is represented via a series of diagnostic object viewpoints and recognized by 

comparing the degree of image-level similarity between the current view of an object and a 

representation stored in memory (Tarr & Bülthoff, 1995, 1998). Computational implementations of 

these theories, such as the Gabor-jet model (Margalit, Biederman, Herald, Yue, & von der Malsburg, 

2016), successfully approximate human object discrimination judgments in some contexts (Yue, 
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Biederman, Mangini, Malsburg, & Amir, 2012), and match the representations of early- and mid-

level visual cortical areas (Olshausen & Field, 1996; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 

2007). However, these models have difficulty recognizing objects from novel viewpoints 

(Biederman & Bar, 1999; Biederman & Gerhardstein, 1993), or categorizing object exemplars with 

different image-level properties (Amir, Biederman, & Hayworth, 2012; Hummel, 2000).  

Another class of theories proposes that humans recognize objects by diagnostic component 

parts and a coarse spatial structure (Biederman, 1987; Biederman & Gerhardstein, 1993). This 

theory is better able to explain how humans recognize objects in novel viewpoints (Biederman, 

2000; Biederman & Gerhardstein, 1993) and is consistent with both behavioral and neural evidence 

that humans represent object shape via parts and their relations (Brincat & Connor, 2006; 

Pasupathy & Connor, 2002; Yamane, Carlson, Bowman, Wang, & Connor, 2008). However, it is 

unclear from this perspective how organisms identify category exemplars with different 

component parts (Barenholtz & Tarr, 2006; Tarr & Bülthoff, 1995), and there have been few 

successful computational implementations of component description models (Crouzet & Serre, 

2011; Hummel & Biederman, 1992).  

Most recently, researchers have proposed that humans represent objects via a learned set of 

diagnostic features, such as those used by artificial neural networks (ANNs; Krizhevsky, Sutskever, 

& Hinton, 2012; Ullman, Assif, Fetaya, & Harari, 2016). These models are thought to form human-

like shape representations by extracting and combining object features over a series of 

hierarchically organized layers (DiCarlo, Zoccolan, & Rust, 2012; Kubilius, Bracci, & Op de Beeck, 

2016). Compared to image similarity and component description models, ANNs provide the best 

approximation of human behavioral and neural object responses (Schrimpf et al., 2018). However, 

ANNs require thousands more supervised training examples than humans to achieve such 

performance (Zador, 2019), and they are unable to categorize objects on the basis of global shape 

information (Ayzenberg, Sener, & Lourenco, under review; Baker, Lu, Erlikhman, & Kellman, 2018). 
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Indeed, ANNs show catastrophic object recognition failures even in the presence of minor image 

distortions that are imperceptible to humans (Szegedy et al., 2013). Thus, these theories and 

models are unable to explain the robustness of human shape representations, nor the speed at 

which humans form shape representations to recognize objects.  

Skeletons in computer and human vision 

One class of models that can both explain how humans represent object shape and how 

objects are learned with little experience are known as shape skeletons, or medial axis models. 

Shape skeletons are a class of geometric models that describe shape via the set of symmetry axes 

that lie equidistant between two or more points along the boundary (Blum, 1967; 1973; see Figure 

1). For most shapes, the axes are organized hierarchically, such that there may be a series of parent 

axes that describe the shape’s coarse global geometry, as well as smaller ‘off-shoot’ axes that 

describe individual component parts. More specifically, they describe a shape’s structure by 

providing a low-dimensional description of the spatial relations between contours, as well as 

component parts. The strength of such a description for human vision is that it can support 

perceptual organization by specifying how local visual features are integrated into a complete 

shape. Moreover, because skeletons are tolerant to variations in shape, they can also support 

recognition of objects across changes in viewpoint or exemplar. Importantly, because shape 

skeletons can be computed for any object, they can be used to categorize novel objects with 

minimal training. 

Consistent with these possibilities, computer vision research has shown that such a 

description can be used to determine an object’s shape from noisy or incomplete contour 

information (Feldman & Singh, 2006; Kimia, 2003; Wilder et al., 2019), and to identify objects 

across never-before-seen viewpoints and category exemplars (Sebastian, Klein, & Kimia, 2004; 

Trinh & Kimia, 2011). Indeed, modern skeletal algorithms (i.e., pruned medial axis models; Shaked 

& Bruckstein, 1998; Wieser, Seidl, & Zeppelzauer, 2017), are particularly good descriptors of an 
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object’s global shape because their structure remains stable across contour variations typical of 

natural contexts (e.g., perturbations, bending; Feldman & Singh, 2006; Liu & Geiger, 1999; Trinh & 

Kimia, 2011). Moreover, incorporating pruned models into off-the-shelf ANNs significantly 

improves their performance on visual perception tasks (Rezanejad et al., 2019). 

  

 

Figure 1. An illustration of the shape skeleton for a 2D airplane with (B) and without (A) perturbed contours. 

A strength of a skeletal model is that it can describe an object’s shape structure across variations in contour. 

Skeletons computed using the ShapeToolbox (Feldman & Singh, 2006). 

Increasingly, behavioral research with humans has suggested that participants represent 

the skeletons of shapes. Participants show increased contrast sensitivity for Gabor patches when 

they fall along the skeleton of a 2D shape (Kovács, Fehér, & Julesz, 1998; Kovacs & Julesz, 1994) and 

they are more likely to direct their attention to points within the shape that correspond to the 

skeleton (Firestone & Scholl, 2014; Psotka, 1978). Other research has shown that manipulating the 

similarity between object skeletons changes participants’ abilities to discriminate those objects 

(Destler, Singh, & Feldman, 2019; Lowet, Firestone, & Scholl, 2018; Wilder, Feldman, & Singh, 

2011). Although these studies provide preliminary evidence for the hypothesis that shape skeletons 

play a role in creating and comparing shape representations in human vision, no study has tested 

these hypotheses directly. Indeed, the extant studies did not compare shape skeletons against other 

plausible models of vision, leaving it unknown whether skeletons are the best fit to participants’ 
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responses. Moreover, no study has tested whether shape skeletons support these functions in the 

absence of extensive visual experience.  

To begin addressing these gaps in the literature, my masters research (Ayzenberg, Chen, et 

al., 2019) tested whether human skeletal representations were best described by a pruned medial 

axis model, which is tolerant to noisy or missing contours (Feldman & Singh, 2006; Shaked & 

Bruckstein, 1998; Wieser et al., 2017),  and can support perceptual organization (Ardila, Mihalas, 

von der Heydt, & Niebur, 2012; Feldman et al., 2013). To this end, participants were shown a single 

2D shape with either complete, perturbed, or illusory contours on a tablet computer, and were 

asked to tap the shape once anywhere they liked. Consistent with prior research (Firestone & 

Scholl, 2014; Psotka, 1978), we found that the collective pattern of participants’ responses in 

complete shapes corresponded to the skeletons of the shapes, not other models (see Figure 2A). 

Importantly, in shapes with perturbed or illusory contours, responses were best fit by a pruned 

medial axis skeleton, rather than a skeleton that was sensitive to every edge (Figure 2B-C). That a 

pruned skeleton best described participants’ responses in these conditions suggests that shape 

skeletons are a biologically plausible model of perceptual organization and can support the creation 

of shape percepts. However, it remains unknown whether, in addition to perceptual organization, 

shape skeletons also support object recognition, and, importantly, can do so with little visual 

experience. 
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Figure 2. A subset of results from Ayzenberg, Chen, et al. (2019). Gray circles represent individual responses, 

and the red dotted lines represent the model they were fit with. (A) Responses and model comparison for a 

shape with complete contours. Participants responses were better fit by the shape skeleton (left) than 

another model of shape based on the principal axes (right). (B) Responses and model comparison for a shape 

with perturbed contours. Participants responses were better fit by a pruned skeleton (left) than a skeleton 

sensitive to each edge, known as the medial axis transform (MAT) (right). (C) Responses and model 

comparison for a shape with illusory contours. Participants responses were better fit by a pruned skeleton 

(left) than the MAT (right).  

Current Dissertation 

To test whether shape skeletons are a mechanism by which humans create shape percepts 

and recognize objects with little visual experience, three studies were conducted. In Study 1, we 

investigated whether shape skeletons play a role in object recognition by testing whether a skeletal 

model was uniquely predictive of human object similarity and category judgments, even when 

controlling for other models of vision. In Study 2, we used fMRI to provide converging neural 
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evidence for the hypothesis that shape skeletons are involved in both perceptual organization and 

object recognition. In particular, we examined whether a skeletal model was predictive of the 

multivariate patterns in V3 and LO, regions classically associated with perceptual organization and 

object recognition, respectively. Finally, in Study 3, we examined whether shape skeletons support 

one-shot object categorization by testing whether infants could categorize never-before-seen 

objects by their skeleton from just one training example. Importantly, in all three studies of the 

dissertation I examined the unique contributions shape skeletons to human perception by 

comparing them to image-similarity, component descriptions, and ANN models. The studies in this 

dissertation are either published or under review and, therefore, are presented below in minimally 

altered form. Together, these studies shed light on the mechanisms that support rapid and robust 

object recognition in humans and expand our understanding of the organization of the mind and 

brain more generally. 
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Chapter 2 - Skeletal descriptions of shape provide unique perceptual information for object 

recognition (Ayzenberg & Lourenco, 2019b) 

Accumulating evidence suggests that the skeletal structure of objects is extracted by the 

primate visual system during shape perception. In particular, behavioral studies have shown that 

human participants extract the skeletons of different 2D shapes (Firestone & Scholl, 2014; Harrison 

& Feldman, 2009; Kovács et al., 1998; Kovacs & Julesz, 1994; Psotka, 1978) and those skeletal 

structures remain relatively stable across border disruptions resulting from perturbations or 

illusory contours (Ayzenberg, Chen, et al., 2019). Increasingly, studies have shown that skeletal 

structures may be represented in three dimensions (3D) within an object-centered reference frame. 

Indeed, human adults are better at discriminating 3D objects by skeletal differences than by 

differences in component parts (e.g., part orientation; Lowet et al., 2018). Moreover, studies using 

neural recording (i.e., fMRI and electrophysiology) with humans and monkeys have found 

sensitivity to 3D object skeletons in high-level visual cortical areas (e.g., IT), including those known 

to support object recognition (Hung, Carlson, & Connor, 2012; Lescroart & Biederman, 2012). 

Skeletal sensitivity in these regions was decoded across changes in orientation and variations in 

local shape properties, suggesting a 3D object-centered representation that is robust to changes in 

viewpoint and component parts.  

Despite the success of skeletal descriptions in computer vision systems (Trinh & Kimia, 

2011) and their biological plausibility in the primate visual system (Hung et al., 2012), shape 

skeletons are rarely incorporated into models of object recognition. Instead, modern computational 

approaches to object recognition emphasize image statistics (Oliva & Torralba, 2006) or 

hierarchical feature extraction operations such as those implemented by CNNs (Krizhevsky et al., 

2012; Serre, Wolf, et al., 2007). Yet, without explicitly invoking any skeletal description, these 

models match human performance on object recognition tasks , and they are predictive of both 

human behavioral and neural responses (Jozwik, Kriegeskorte, Storrs, & Mur, 2017; Schrimpf et al., 
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2018; Yamins et al., 2014). Even models that do emphasize global shape properties do so by 

describing the local properties of components parts (e.g., geons) and coarse, categorically-defined, 

spatial relations (Biederman, 1987; Hummel, 2001), not a skeletal structure. Given that these other 

models successfully approximate human object recognition, one might ask whether skeletal 

descriptions of shape are necessary for human object recognition at all. Thus, in the current study, 

we tested the degree to which skeletal descriptions of shape make unique, and possibly privileged, 

contributions to human object recognition in comparison to several other models of shape and 

object perception.  

If the shape’s skeletal structure provides unique contributions to object recognition, then 

humans should perceive objects with similar skeletons as more similar to one another, even when 

controlling for other models. Moreover, if skeletal structures are a privileged source of information 

for object recognition, then humans should favor the shape skeleton over both non-shape based 

models of visual similarity, as well as other descriptors of shape. To this end, we assessed whether 

participants’ perceptual judgments of object similarity scaled with the skeletal similarity between 

novel 3D objects (Experiment 1), including objects whose coarse spatial relations could not be used 

for judging similarity (Experiment 2). We also tested how participants classified objects when the 

shape’s skeletal structure was placed in conflict with the object’s surface form, a manipulation that 

altered the shape’s contours and non-accidental properties (NAPs) without changing its skeleton 

(Experiment 3). In all cases, we examined the unique contributions of skeletal structures in object 

recognition by contrasting the shape skeleton with models of vision that do not explicitly 

incorporate a skeletal structure, but are nevertheless predictive of human object recognition. These 

models included those that describe visual similarity by their image statistics, namely, the Gabor-Jet 

(GBJ) model (Margalit et al., 2016) and GIST model (Oliva & Torralba, 2001), as well as biologically 

plausible neural network models, namely, the HMAX model (Serre, Wolf, et al., 2007) and AlexNet, a 

CNN pre-trained to identify objects (Krizhevsky et al., 2012). To anticipate our findings, a model of 
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skeletal similarity was predictive of participants’ perceptual similarity and classification judgments 

even when accounting for these other models, suggesting that skeletal descriptions of shape play a 

crucial role in human object recognition, independent of other models of shape and object 

perception.  

Experiment 1 – Is perceived object similarity uniquely predicted by a model of skeletal 

similarity? 

Here we tested one of the predictions outlined above: namely, as object skeletons become 

more similar, participants should judge the objects as being more alike. To test for a relation 

between human perceptual judgments and the shape skeleton, we generated a novel set of 3D 

objects that varied in their skeletal structures. Crucially, we compared the predictive power of 

skeletal descriptions to other models of visual similarity and tested the degree to which a model of 

skeletal similarity explained unique variance in human perceptual judgments.  

Stimuli and experimental design. A total of 150 3D objects consisting of 30 skeletons were 

generated (see Figure 3A). All objects were comprised of three segments and were normalized for 

overall size (see Supplemental Methods). Each object was rendered with five surface forms, serving 

to change the visible shape of the object on the retina without altering the underlying skeleton (see 

Figure 3B and Supplemental Methods). Skeletal similarity between every object was calculated in 

3D, object-centered, space as the mean Euclidean distance between each point on one skeleton and 

the closest point on the second skeleton following maximal alignment (see Supplemental Methods). 

We chose to test a 3D skeletal description because of behavioral (Erdogan & Jacobs, 2017) and 

neural (Yamane et al., 2008) evidence for 3D object-centered representations in the visual system. 
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Figure 3. Stimuli used in Experiment 1. (A) Objects were procedurally generated to have different skeletal 

structures. (B) Each object was also rendered with five surface forms so as to vary in contour shape and non-

accidental properties (NAPs) without disrupting the object’s skeleton. A cluster analysis revealed that the 

first and second surface forms (from top to bottom) were comprised of the same NAPs (see Experiment 3 and 

Supplemental Methods for more stimulus details). Subsets of these stimuli were used in Experiments 2 and 3 

(see Supplemental Methods). 

Participants (n = 42) were administered a discrimination task in which they were shown 

images of two objects presented simultaneously in one of three depth orientations (-30°, 0°, +30°), 

with either the same or different skeletons. Participants were instructed to decide whether the two 

images showed the same or different object (independent of orientation). Participants were given 

unlimited time to respond but the instructions emphasized speed and accuracy.  

We chose to use an untimed discrimination task where the objects were presented 

simultaneously in order to minimize task demands. However, we also confirmed that this task could 

be accomplished in a speeded context and found comparable performance to that reported below 

(see Supplemental Experiment 1). 
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Results and discussion. Participants discriminated the objects significantly above chance 

(0.50) Maccuracy = 0.80, t(41) = 17.64, p < .001, d = 2.72 (MRT = 2129 ms). Thus, even though our 

stimulus set may be considered one class of object, and potentially difficult to discriminate, the 

objects differed sufficiently to support accurate discrimination (see also Supplemental Experiment 

1 for comparable performance in a speeded version of the task).  

To analyze whether a skeletal model was predictive of human object judgments, we 

converted participants’ binary discrimination judgments for each object pair into a continuous 

dissimilarity score. Dissimilarity scores for each object pair were computed by taking the mean 

discrimination accuracy for each pair across all participants. Human judgments were compared to 

each model by regressing human dissimilarity scores on model dissimilarity scores (see 

Supplemental Methods).   

Skeletal similarity was a significant predictor of participants’ judgments, r = 0.30, p < 0.001, 

explaining 9% of the variance (significance determined via permutation test; see Figure 4). That is, 

as the similarity between skeletal structures increased, participants were more likely to judge the 

objects as the same. However, one might ask whether another model of vision, which does not 

incorporate skeletal information, would also correlate with human judgments. To answer this 

question, we compared participants’ judgments to GBJ, GIST, HMAX, and AlexNet models. When 

compared independently, these models were all predictive of participants’ judgments (rs = 0.25 – 

0.32, r2 = 6% – 11%; see Figure 4), with no significant differences between models (overlapping 

confidence intervals). For context, a noise ceiling representing a hypothetical true model 

(calculated by repeatedly splitting participants’ data into two sets and correlating them to one 

another; 1000 iterations) was computed: rmean = 0.50, SE = 0.03 (see Figure 4A). 

Because the different models were predictive of participants’ judgments to similar degrees, 

and because objects with similar skeletons might also have similar image-level properties, it was 

important to test whether the different models accounted for the same variance in participants’ 
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judgments, or whether a model of skeletal similarity explained unique variance. To this end, we 

conducted a regression analysis wherein all of the models and the most predictive layer of AlexNet 

(Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet-fc6) were included as predictors of human dissimilarity 

judgments. Together, these models explained 20.5% of the variance in human judgments, with 

Skeletal and GBJ models each explaining significant unique variance (ps < .01; see Supplemental 

Table 1). To ensure that the predictive power of the skeletal model was not simply the result of a 

suppression effect, we tested the skeletal model individually against every other model (Skeleton ∪ 

GBJ; Skeleton ∪ GIST; Skeleton ∪ HMAX; Skeleton ∪ AlexNet-fc6). Skeletal similarity was predictive 

of human judgments in each case (r2 = 14% –18%, ps < .001).   

Finally, to better understand how the amount of variance explained by the skeletal model 

compared to the other models, we used variance partitioning analyses (Bonner & Epstein, 2018; 

Lescroart, Stansbury, & Gallant, 2015). These analyses allowed us to determine how much of the 

total explained variance was unique to the different models and how much was shared by a 

combination of models. These analyses revealed that the model of skeletal similarity accounted for 

the greatest amount of unique variance in participants’ responses (6.6%) explaining 33.13% of the 

total explainable variance (see Figure 4B and Supplemental Table 2). A 4-predictor model 

consisting of the GBJ, GIST, HMAX, and AlexNet-fc6 models accounted for the next greatest amount 

of variance in participants’ responses (3.1%) accounting for 15.49% of the total explainable 

variance (see Supplemental Table 2). Taken together, these analyses suggest that, although other 

models of visual similarity were predictive of participants’ perceptual judgments, a model of 

skeletal similarity uniquely explained these judgments. These results suggest that skeletal 

structures may be an important source of information in making object identity.  
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Figure 4. Results from Experiment 1. (A) Bar plot displaying the correlations (Pearson) between each model 

and human perceptual similarity judgments (error bars are bootstrapped SE). Models did not differ 

significantly from each other in the degree to which they predicted human judgments. The horizontal black 

bar represents the noise ceiling, which indicates the expected performance of the true model given the noise 

in the data (width represents SE). (B) Bar plot displaying the percentage of unique variance accounted for by 

each model. A model of skeletal similarity explained the most unique variance (33.13% of total explainable 

variance) when compared to any single model or combination of models (see Supplemental Table 2 for the 

unique and shared variance explained by all model combinations). 

A potential concern with these findings is that, because we created objects that varied in 

skeletal similarity, it was inevitable that a model of skeletal similarity would predict participants’ 

performance. We would emphasize, however, that other, non-skeletal models were also predictive 

of participants’ judgments, suggesting that participants incorporated other visual properties into 

their judgments. Nevertheless, to address this concern more directly, we tested whether the objects 

differed sufficiently for non-skeletal models to discriminate between them. A feature vector was 

extracted for every image (30 skeletons × 5 surface forms × 3 orientations) from each of these 

models (GBJ, GIST, HMAX, AlexNet-fc8). Then, for each model and object pair (same surface form), a 

linear support vector machine (SVM) classifier was trained to label objects using two object 

orientations; its ability to label the objects was tested using the third orientation. This procedure 
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was repeated for every surface form and every combination of orientations between objects (0º × 

0º; 0º × 30º; 0º × -30º; 30º × 30º; 30º × -30º; -30º × -30º). A final discrimination score was 

computed for each object pair by averaging the decoding accuracies across every surface form and 

combination of orientations. This analysis revealed that every model could discriminate between 

objects significantly above chance (0.50; Ms > 0.75), ts > 41.88, ps < .001, ds > 2.01 (see 

Supplemental Figure 1). Together, these findings demonstrate that the objects within our stimulus 

set were sufficiently different along other visual dimensions that non-skeletal models could 

accurately discriminate them. 

Experiment 2 – Can perceived similarity be explained by another model of structure?  

The results of Experiment 1 suggest that humans incorporate skeletal representations when 

making object similarity judgments. However, an alternative possibility is that participants’ 

sensitivity reflected a different model of structure, namely one based on the coarse spatial relations 

between object parts (Biederman & Gerhardstein, 1993; Hummel, 2000; Hummel & Stankiewicz, 

1996). A model based on coarse spatial relations suggests that the structure of an object is 

represented by the categorical relations between component parts (e.g., components above one 

another vs. components side-by-side). In contrast to skeletal descriptions of shape, which describe 

quantitative relations between component parts, a coarse spatial-relations model would predict 

that only qualitative changes to the overall spatial arrangement of the parts (e.g., changing 

component relations from ‘side-by-side’ to ‘end-to-end’) should influence object recognition. Yet 

objects with similar spatial relations also have more similar skeletal structures. Thus, the relation 

between skeletal similarity and human perceptual judgments in Experiment 1 could have reflected 

the co-variation between the shape skeleton and an object’s coarse spatial relations. 

Here we tested whether participants’ judgments of perceptual similarity were influenced by 

an object’s skeletal structure even when coarse spatial relations were held constant, and thus 

unable to be used as a similarity cue. If perception of object shape is based on a skeletal structure, 
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then a proportional change to the shape skeleton would elicit a proportional decrease in 

recognition, even when the coarse spatial relations are unchanged. Thus, as two skeletons become 

more dissimilar, participants should judge the objects as more different from one another.  

Stimuli and experimental design. To test whether proportional changes to the shape 

skeleton led to proportional deficits in recognition, we adapted three objects from Experiment 1 to 

have six increments of skeletal dissimilarity (0%, 10%, 20%, 30%, 40%, 50% difference; see 

Supplemental Methods for additional details). The three objects consisted of distinct coarse spatial 

relations (see Figure 5A, Supplemental Methods, and Supplemental Figure 2). Changes to the 

skeleton were implemented by moving one component along the length of another component in 

10% increments (see Figure 5A). This manipulation caused systematic changes to the shape 

skeleton without changing the coarse spatial relations between the object’s component parts. Thus, 

if skeletal similarity affects participants’ perceptual judgments, independent of coarse spatial 

relations, then performance should scale proportionally with changes to the skeleton.  

Participants (n = 42) completed a discrimination task in which they were shown two 

simultaneously presented objects and were instructed to judge whether the objects were the same 

or different in their coarse spatial relations. Crucially, participants were instructed to ignore any 

changes to the precise positions of the object parts (i.e., exact skeleton) so as to make their decision 

on the basis of “overall shape.” Participants were given a familiarization phase to ensure they 

understood that these instructions referred to objects with the same coarse spatial relations (e.g., in 

Figure 5A each column consists of objects with the same “overall shape”, but different skeletons). 

Objects were presented from three orientations that maximized the visibility of the object’s 

structure (30°, 60°, and 90°). Participants were given unlimited time to respond but were 

encouraged to respond quickly and accurately.  
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Figure 5. Example stimuli and results from Experiment 2. (A) Objects were comprised of three sets, 

each with distinct coarse spatial relations (separate columns). Crucially, objects with the same spatial 

relations varied in skeletal similarity by increments of 0%, 10%, 20%, 30%, 40%, or 50% (each row within a 

column). On the ‘same’ test trials (objects within the same column), participants were presented with a 

reference object (0%; top row) and an object with the same coarse spatial relations. On the ‘different’ test 

trials (objects across columns), participants were presented with objects that had different coarse spatial 

relations. Objects were presented in one of three orientations (30°, 60°, 90°; see Supplemental Figure 2 for 

full stimulus set). (B) Participants’ recognition accuracy (proportion correct) for objects with the same coarse 

spatial relations decreased as a function of skeletal change, suggesting that humans represent object 

structure by their skeletons. The dotted line represents chance performance and the error bars represent SE. 

Results and discussion. Participants performed significantly above chance (0.50) at every 

level of skeletal change, Ms > 0.60, ts(34) > 2.32, ps < 0.026, ds > 0.39, (MRTs  < 1705 ms),  

demonstrating that they followed the task instructions to identify objects by their coarse spatial 

relations. Crucially, however, participants’ performance in discriminating between objects with the 
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same coarse spatial relations was less accurate as a function of skeletal change, F(1, 34) = 51.77, p < 

0.001, ηp
2 = 0.60 (Figure 5B), suggesting that when participants make perceptual similarity 

judgments, they incorporate fine-grained structural information, as predicted by a skeletal model. 

Nevertheless, as in the previous experiment, a change to the object’s shape skeleton also induced 

changes along other visual dimensions (e.g., image statistics). Thus, we tested whether participants’ 

performance was better described by other models of vision. To this end, we used a random-effects 

regression analysis, with the skeletal similarity model and other models (i.e., GBJ, GIST, HMAX, and 

AlexNet-fc6) as predictors (subject and object as the random effects; see Supplemental Methods for 

additional details). Analyses revealed that the model of skeletal similarity remained a significant 

predictor of human performance, even when controlling for the other models, χ2(1) = 22.30, p < 

0.001, and that it explained the greatest amount of variance in participants’ responses, β = -1.24. 

The only other model to explain unique variance was GIST, χ2(1) = 19.55, p < 0.001, β = 0.63, 

suggesting a role for image-statistics in this process (see Supplemental Table 3 for the results of the 

other models). To ensure that the predictive power of the skeletal model was not simply the result 

of a suppression effect, we tested the skeletal model against every other model (Skeleton ∪ GBJ; 

Skeleton ∪ GIST; Skeleton ∪ HMAX; Skeleton ∪ AlexNet-fc6). Skeletal similarity was predictive of 

human judgments in each case, χ2(1) > 9.27, ps < 0.002. Taken together, these findings suggest that 

participants’ judgments of perceived object similarity reflect the metric positions of object parts, 

consistent with an object representation based on skeletal structure, not the course spatial 

relations. Combined with Experiment 1, these results provide further support for the unique, and 

possibly privileged, role of skeletal descriptions of shape in object recognition. 

Experiment 3 – Are skeletal structures a privileged source of information for object 

recognition? 

A model of skeletal similarity was most predictive of human perception in Experiments 1 

and 2, when compared to other, non-shape-based, models of visual similarity (i.e., GBJ, GIST, HMAX, 



20 
 

and AlexNet), as well as another descriptor of structure (i.e., coarse spatial relations). Together, 

these results suggest that shape information, particularly skeletal descriptors of shape, plays an 

important role in object recognition. However, there exist alternative descriptors of shape, which 

emphasize local contour information (Elder, 1999; Op de Beeck, Torfs, & Wagemans, 2008) or the 

non-accidental properties (NAPs) of component parts (Biederman, 1987), not skeletal structures. 

Thus, it remains unknown whether, for object recognition, skeletal structures offer a more 

informative descriptor of shape than local contour information and component parts.  

To test this hypothesis, the skeleton of an object was pitted against its surface form in a 

match-to-sample task. Surface forms were designed to alter the object’s contours without changing 

the object’s underlying skeleton (Hung et al., 2012; see Figure 3B). As described in more detail 

below, surface form similarity was perceptually matched to skeletal similarity and surface forms 

were well characterized by other models of vision. Moreover, surface forms were created such that 

they differed in NAPs in order to compare the skeletal descriptions against a model of shape based 

on component parts (Amir et al., 2012; Biederman, 1987). NAPs, such as the degree to which a 

component tapers or bulges outward, are thought to play an essential role in models of shape 

perception because they serve as unique identifiers of component parts, allowing objects to be 

identified from a variety of viewpoints (Biederman, 1987, 2000). Thus, by pitting an object’s 

skeleton against its surface form, we can better understand the degree to which different 

descriptors of shape are used for object recognition. 

Surface form properties. To quantify the degree of visual similarity between surface forms, 

participants (n = 41) conducted a surface form discrimination task (see Supplemental Methods). In 

this task, participants judged whether two objects were the same or different in surface form (same 

skeletons). Surface form discrimination accuracy was compared to skeletal discrimination accuracy 

from Experiment 1 for the four skeletons used here (see Supplemental Methods and Supplemental 

Figure 3). This analysis revealed that surface form discrimination accuracy (M = 0.87, SD = 0.19) did 
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not differ from skeleton discrimination accuracy (M = 0.86, SD = 0.20), t(77) = 0.76, p = 0.94. 

Follow-up analyses revealed that  surface form discrimination was well described by GBJ, GIST, 

HMAX, and AlexNet-fc6 models, rs = 0.63-0.77, with AlexNet-fc6 explaining unique variance when 

all four models were entered into a random-effects regression, χ2(1) = 12.71, p < 0.001. 

To test whether surface forms were comprised of unique NAPs, a separate group of 

participants (n = 41) were taught to identify different NAPs and they then rated the degree to which 

each surface form exhibited a particular NAP (e.g., “To what extent do parts of this object exhibit 

taper?”) on a 7-point Likert scale (1 “not at all”; 7 “a lot”; see Supplemental Methods for details). A 

k-means cluster analysis (Hartigan & Wong, 1979) revealed that participants’ ratings were best 

described by four clusters, and a permutation test, in which cluster labels were shuffled 10,000 

times, revealed that cluster labels were predictive of each surface form significantly better than 

chance (ps < 0.002). That the surface forms were better described by four, rather than five (one for 

each surface form), clusters is consistent with two of the surface forms having the same NAPs, but 

differing in metric properties such as circumference (see Figure 3B; Amir et al., 2012; Vogels, 

Biederman, Bar, & Lorincz, 2001).  

Match-to-sample task: design. Having confirmed that the surface forms were perceptually 

matched to skeletal differences, and that they were comprised of unique NAPs, we were in a 

position to test whether skeletal descriptions of shape were a privileged source of information for 

object recognition relative to other descriptors of shape. In a match-to-sample task, a separate 

group of participants (n = 39) were presented with a sample object and two choice objects (i.e., 

target and distractor; see Figure 6A-C). They were instructed to judge which of the two choice 

objects was most likely to be from the same category as the sample object. The target object 

matched the sample object in either its skeleton or surface form. The distractor object differed from 

the sample object by both skeleton and surface form. These trials ensured that participants were 

able to match objects by either their skeleton or surface form when each property was presented in 
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isolation (see Supplemental Figure 5A-B). Other trials presented a conflict between the object’s 

skeleton and surface form such that one of the choice objects matched the sample’s skeleton, but 

not surface form, and the other object matched the object’s surface form, but not skeleton (see 

Figure 6C). The conflict trials tested whether the skeletal descriptors served as a preferred cue for 

object recognition. The objects were presented as still images in one of three depth orientations 

(30°, 60°, 90°; see Supplemental Figure 3). Participants were instructed to ignore the orientations 

of the objects and, on each trial, to choose which of the two choice objects was from the same 

category as the sample object. 

 

Figure 6. Examples of the three trial types used in Experiment 3. (A) A skeleton match trial wherein one 

choice object matched the sample’s skeleton, but not surface form. The other choice object matched on 

neither skeleton nor surface form. (B) A surface form match trial wherein one choice object matched the 

sample’s surface form, but not skeleton. The other choice object matched on neither skeleton nor surface 

form. (C) A conflict trial wherein one choice object matched the sample’s skeleton, but not surface form, and 

the other choice object matched the sample’s surface form, but not skeleton. 

Match-to-sample task: results and discussion. Participants successfully categorized 

objects by either their skeletons, M = 0.88 (MRT = 1167 ms), t(38) = 27.01, p < 0.001, d = 4.32, 95% 

CI [3.35, 5.41], or surface forms, M = 0.78 (MRT = 1419 ms), ts(38) = 15.51, p < 0.001, d = 2.48, 95% 

CI [1.87, 3.16], when each cue was presented in isolation, as indicated by their above chance 

performance in these conditions (see Figure 7A). Crucially, however, on the conflict trials, 

participants categorized objects by their skeletons, not surface forms, t(38) = 6.63, p < 0.001, d = 
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1.06, 95% CI [0.66, 1.45] (see Figure 7B-C). Indeed, participants preferentially categorized objects 

by their skeletons when pitted against all, M > 0.61 (MRT < 1218 ms), ts[38] > 2.52, ps < .016, ds > 

0.40), but one, M = 0.58 (MRT = 1140 ms) (p = .059, d = 0.31) surface form. Thus, although surface 

forms were perceptually matched to the objects’ skeletons and were comprised of unique NAPs, 

participants relied more heavily on the shape skeleton when classifying objects, suggesting that 

skeletal structure may be a privileged source of shape information for object recognition. 

 

Figure 7. Results from the match-to-sample task of Experiment 3. (A) Participants’ mean accuracy 

(error bars represent SE) on trials in which only a skeleton or surface form match was possible (dotted line 

indicates chance performance). (B) Participants’ categorization judgments in the conflict trial. A value closer 

to 1 indicates greater weighting of the object’s skeleton; a value closer to 0 indicates greater weighting of the 

object’s surface form. Although participants successfully matched objects by their skeletal structure or 

surface forms when each cue was presented in isolation, they were more likely to match objects by their 

skeleton, as opposed to their surface forms, when these cues conflicted with one another. (C) Histogram of 

participants’ responses on the conflict trials. A value greater than zero indicates greater weighting of skeletal 

information. The majority of participants matched objects by their skeleton, demonstrating a consistent 

pattern of responses across participants. 
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Discussion 

The ability to determine the similarity between shapes is crucial for object recognition. 

Shape skeletons may be a particularly useful representation in this context because they provide a 

compact descriptor of shape, as well as a common format from which to compute shape similarity. 

Nevertheless, few models of biological object recognition include skeletal descriptions in their 

implementation. Here we tested whether skeletal structures provide an important source of 

information for object recognition when compared with other models of vision. Our results showed 

that a model of skeletal similarity was most predictive of human object judgments when contrasted 

with models based on image-statistics or neural networks, as well another model of structure based 

on coarse spatial relations. Moreover, we found that skeletal structure was a privileged source of 

information when compared to other properties thought to be important for shape perception, such 

as object contours and component parts. Thus, our results suggest that not only does the visual 

system show sensitivity to the skeletal structure of objects (Hung et al., 2012; Kovács et al., 1998; 

Lowet et al., 2018), but also that perception and comparison of object skeletons may be crucial for 

successful object recognition.  

The strength of skeletal models is that they provide a compact description of an object’s 

global shape structure, as well as a metric by which to determine shape similarity. Indeed, shape 

skeletons may offer a concrete formalization of the oft poorly defined concept of global shape. 

Skeletal descriptions exhibit many properties ascribed to global shape percepts such as relative 

invariance to local contour variations (Ayzenberg, Chen, et al., 2019; Shaked & Bruckstein, 1998). 

Moreover, there exist many methods by which to compare skeletal structures, such as by their 

hierarchical organization (Shokoufandeh, Macrini, Dickinson, Siddiqi, & Zucker, 2005) or using 

distance metrics (as used here; Sebastian et al., 2004), thereby allowing for a quantitative 

description of shape similarity. Such a description may be particularly important when recognizing 

objects across previously unseen views or categorizing novel object exemplars.  
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A question that arises from the current findings is the extent to which the stimuli and tasks 

used here invoke the same mechanisms as rapid real-world object perception, also known as ‘core’ 

object recognition (Rajalingham et al., 2018). Indeed, one might ask whether the tightly controlled 

stimulus set, which was designed to vary in skeletal similarity, and the untimed tasks, where 

participants could directly compare the similarity of objects, invoke ‘core’ object recognition 

processes. It is well known that the visual system receives input from multiple systems (e.g., frontal 

and parietal regions) and incorporates recurrent processes to solve object recognition, particularly 

in cases of uncertainty (Bar et al., 2006; Tang et al., 2018; Van Dromme, Premereur, Verhoef, 

Vanduffel, & Janssen, 2016). Thus, it is possible that object recognition tasks in this study, and the 

implementation of skeletal models more generally, may have invoked higher-level processes. 

Although we acknowledge that object recognition is not a unitary process, with higher-level 

processes playing an important role, we suggest that our stimuli and tasks likely measured core 

object recognition. In particular, in Experiment 1, we found that the objects could be discriminated 

by models that are implemented during a feedforward sweep through the ventral visual stream, 

and these models were also predictive of human judgments. Moreover, we found that participants 

performed equally well when objects were presented for only 100 ms (see Supplemental 

Experiment 1). However, it is an open question whether shape skeletons are implemented using 

exclusively feedforward mechanisms or whether recurrent or generative processes are also needed 

(Ardila, Mihalas, Heydt, & Niebur, 2012; Elder, 2018; Trinh & Kimia, 2007). Nevertheless, our work 

highlights the importance of formalized models of shape for object recognition, particularly the 

unique, and possibly privileged, role that skeletal structures may play. 
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Supplementary Materials for “Skeletal descriptions of shape provide unique 

perceptual information for object recognition” 

Supplemental Methods 

Participants. 205 participants were tested in the current study (Mage = 19.75 years; range = 

18.03 – 23.48 years). Of these participants, 16 were excluded for exhibiting chance, or below 

chance, performance (3 from Experiment 1; 7 from Experiment 2; 3 from the surface form 

discrimination task of Experiment 3). Because accuracy could not be evaluated in the NAP rating 

task of Experiment 3, we ensured that participants exhibited reliable performance; 6 participants 

were excluded from this experiment for failing to meet this criterion (αs < 0.7). All participants 

provided informed consent and participated for course credit. Experimental procedures were 

approved by Emory University’s Institutional Review Board (IRB). All experiments were performed 

in accordance with the relevant guidelines and regulations of the IRB.  

Apparatus. All tasks were presented on a desktop computer with a 19-inch screen (1280 × 

1024 px) and controlled using custom software written in Visual Basic (Microsoft). Participants sat 

at a distance of ~60 cm from the computer screen. 

Experiment 1 

Stimulus generation. Objects were procedurally generated using the Python API for 

Blender (Blender Foundation). Each skeleton was comprised of three segments created from Bezier 

curves of a random size and curvature scaled between .05 and .25 virtual Blender units (vu). The 

first axis segment was oriented forward towards the ‘camera’. The second and third segments were 

oriented perpendicular to the first segment and attached to the first segment or second segment at 

a random point along their length. Surface forms were created by applying a circular bevel to the 

object’s skeleton along with one of five taper properties that determined the shape of the surface 

form. Finally, the overall size of the object was normalized to .25 vu.  
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Skeletal similarity model. The coordinates of the skeleton for each object were extracted 

by sampling 999 points along the length of each axis segment (2997 points in total). Skeletal points 

were normalized by the length of each segment by subsampling points along the skeletal structure 

until these points were evenly spaced across the skeleton by 0.0005 vu (for ease of analysis, 

coordinates were rescaled by a factor of 1000). Skeletal similarity was calculated as the mean 

Euclidean distance between each point on one skeleton structure with the closest point on the 

second skeleton structure following maximal alignment. Maximal alignment was achieved by 

overlaying each structure by its center of mass and then iteratively rotating each object in the 

picture plane orientation by 15° until the smallest distance between structures was found.  

Gabor-jet (GBJ) model. The GBJ model is a low-level model of image similarity inspired by 

the response profile of complex cells in early visual cortex (Margalit et al., 2016). It has been shown 

to scale with human psychophysical dissimilarity judgments of faces and simple objects (Yue, 

Biederman, Mangini, von der Malsburg, & Amir, 2012). To simulate the response profile of complex 

cell responses, the model overlays a 12 × 12 grid of Gabor filters (5 scales × 8 orientations) along 

the image. The image is convolved with each filter, and the magnitude and phase of the filtered 

image is stored as a feature vector. Dissimilarity between each image is computed as the mean 

Euclidean distance between feature vectors of each image. A single dissimilarity value was 

computed for each object pair by taking the mean Gabor activation distance for an object pair 

across the three orientations (30 objects × 3 orientations).   

GIST. The GIST model is considered a mid-level model of image similarity that describes the 

content of an image through global image features (Oliva & Torralba, 2001). It has been shown to 

accurately describe the content of natural images, particularly as they relate to scene perception 

(Oliva & Torralba, 2006). The model overlays a grid of Gabor filters (4 scales × 8 orientations) on 

the image and then convolves the image with the filters, creating a feature activation map. This 

feature map is divided into 16 regions (based on the 4 × 4 grid) and then mean activation within 
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each region is computed and stored as a GIST feature vector. GIST dissimilarity between each image 

is computed as the mean Euclidean distance between feature vectors of each image. A single 

dissimilarity value was computed for each object pair by taking the mean Euclidean distance for an 

object pair across the three orientations (30 objects × 3 orientations).  

HMAX. The HMAX (hierarchical MAX) model is a biologically inspired hierarchical neural 

network model that describes an image by max-pooling over a series of simple (S1, S2) and 

complex (C1, C2) units (Serre, Oliva, et al., 2007; Serre, Wolf, et al., 2007). It has been shown to 

match human performance on simple category judgment tasks (e.g., animals and non-animals) and 

exhibits some invariance to changes in position and scale. In the current study, we used the feature 

patches provided with the HMAX model. In the first layer (S1), each image is convolved with Gabor 

filters (8 scales × 4 orientations), the output of which is fed into a second layer (C1) that determines 

the local maximum over all positions and scales. The outputs of these layers are fed through a 

second set of simple and complex units (S2, C2). Dissimilarity was computed by extracting the C2 

activations for each image and correlating (Pearson) it with the activations for every other image. A 

single dissimilarity value was computed for each object pair by taking the mean correlation for an 

object pair across the three orientations (30 objects × 3 orientations).  

CNN. As a model of high-level vision, we used AlexNet, an eight layer CNN pre-trained to 

classify objects from the ImageNet database (Krizhevsky et al., 2012; Russakovsky et al., 2015). We 

adopted AlexNet rather than other CNNs in our analyses because its architecture is relatively 

simple by comparison and because it can identify objects with high accuracy. Importantly, AlexNet 

has been shown to be predictive of human object similarity judgments (Jozwik et al., 2017). CNN 

similarity for each object was calculated by extracting a feature vector from each convolutional, and 

fully connected, layer for each object image, and then computing the mean Euclidean distance 

between the feature vector for each image with every other image. A single difference value was 

computed for each object pair by taking the mean CNN difference for an object pair across the three 
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orientations (30 objects × 3 orientations). Dissimilarity values were calculated for every layer and 

correlated to participants’ behavioral judgments. Participants’ similarity judgments in Experiment 

1 were most strongly correlated with fully-connected layer 6 (fc6) of AlexNet, r = 0.34 (see Figure 

4A). Because fc6 was most predictive in this experiment, we tested only fc6 in subsequent 

experiments. 

Discrimination task. On each trial, participants were shown images of two objects (side-

by-side) presented simultaneously in one of three depth orientations (-30°, 0°, +30°). Objects were 

matched for surface form and either had the same or different skeleton. Participants were 

instructed to decide whether the two images showed the same or different object (independent of 

orientation). Each object was paired with every other object (including itself) during the 

experimental session. Participants were administered a total of 885 trials (435 different and 450 

same trials). Each trial began with a fixation cross (500 ms), followed by a pair of objects, which 

remained onscreen until a response was made, followed by an inter-trial interval (500 ms). Each 

object was approximately 6° × 6° in size and subtended 9° from the center of the screen.  

Experiment 2 

Stimulus generation and model analyses. A k-means cluster analysis was conducted on 

participants’ discrimination data from Experiment 1. This analysis revealed that objects were well 

described by four clusters. Based on these clusters, three perceptually matched objects were 

chosen whose skeletons could be altered without changing the coarse spatial relations (see 

Supplemental Figure 2). Importantly, these objects also had different coarse spatial relations (Set 1: 

two components below a third, pointing down, one component placed in front of the other; Set 2: 

one component on either side of a third, one pointing up and the other down; Set 3: one component 

on either side of a third, each pointing diagonally down). Six versions of each object (0%, 10%, 20%, 

30%, 40%, and 50% skeleton difference) were generated by moving one segment along the length 

of the central segment in 10% increments (relative to the length of the central component). Objects 
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were rendered with only the thinnest surface form to prevent component parts from overlapping. 

Images of each object (18 total) were generated in three orientations (30°, 60°, 90°) intended to 

maximize the view of each object. Each object was analyzed and compared with every other object 

using the same models and procedure described in Experiment 1. 

Discrimination task. On each trial, participants were shown images of two objects (side-

by-side) presented simultaneously in one of the three depth orientations (30°, 60°, 90°). Each 

object was rendered with the same surface form (see Figure 5A) and either had the same or 

different coarse spatial relations. On each ‘same’ trial, participants were presented with both a 

reference object (0% skeletal difference) and another object that had the same coarse spatial 

relations but different skeleton in one of the increments described previously (objects in the same 

columns of Figure 5A). On each ‘different’ trial, participants were presented with two objects that 

had different coarse spatial relations (any possible skeleton; objects in the same rows of Figure 5A). 

Participants were instructed to decide whether the two images showed an object with the same or 

different “overall shape” (independent of orientation). Participants were given instructions and 8 

sample trials (with feedback) using a separate set of objects to ensure that they understood that 

“overall shape” referred to objects with the same coarse spatial relations (4 same trials; 4 different 

trials). In the same trials, each skeletal difference was presented an equal number of times in each 

possible orientation. In the different trials, object pairs with different coarse spatial relations (any 

possible skeleton) were randomly selected and presented in randomly determined orientations. 

Participants were administered at total of 648 trials (324 same trials and 324 different trials). Each 

trial began with a fixation cross (500 ms), followed by a pair of objects, which remained onscreen 

until a response was made, followed by an inter-trial interval (500 ms). Each object was 

approximately 6° × 6° in size and subtended 9° from the center of the screen.  

Experiment 3 
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Stimulus generation and model analyses. Four perceptually matched objects were 

chosen from the object clusters identified in Experiment 2. Images of each object (4 objects × 5 

surface forms) were generated in three orientations (30°, 60°, 90°) intended to maximize the view 

of each object (see Supplemental Figure 2).  

Surface form discrimination task. On each trial, participants were shown images of two 

objects (side-by-side) in one of the three depth orientations (30°, 60°, 90°). Objects had the same 

shape skeleton and either the same or different surface forms. Participants were instructed to 

decide whether the two images showed the same or different object (independent of orientation). 

Each surface form was paired with every other surface form an equal number of times for a total of 

600 trials.  

NAP task. To test whether surface forms were comprised of unique component parts, 

participants rated each surface form on the degree to which it exhibited a specific NAP. During a 

training phase, participants were taught a subset of NAPs (drawn from Amir et al. (2012)) and then 

shown a subset of objects that they were asked to rate on the degree to which they exhibited the 

specific NAP. The four NAPs were: (1) taper, defined as the degree to which the thickness of an 

object was reduced towards the end ((taper in the current study corresponds to ‘expansion of 

cross-section’ in Amir et al.Amir et al., 2012)); (2) positive curvature, defined as the degree to which 

an object part curved outwards; (3) negative curvature, defined as the degree to which an object 

part curved inwards; and (4) convergence to vertex, defined as the degree to which an object part 

ended in a point. We excluded the curved versus straight axis property of Amir et al. (Amir et al., 

2012) because it was confounded with the object’s skeleton. We also excluded the change in cross-

section property (e.g., circular vs. rectangular shape) because all of the surface forms had a circular 

cross-section. Participants were tested on their understanding of the four NAPs with a task in which 

they were presented with pairs of single-part objects (simultaneously onscreen) where one 

exhibited an NAP and the other did not. Participants were instructed to select the object that 
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exhibited more/less of a particular NAP (e.g., “Which object exhibits more positive curvature?”; 

feedback was provided). During the rating phase, participants were shown each test stimulus with 

each surface form (4 objects × 5 surface forms) and asked to rate the degree to which each surface 

form exhibited a particular NAP (e.g., “To what extent do parts of this object exhibit taper?”) on a 7-

point Likert scale (1 = “not at all”; 7 = “a lot”).  

Match-to-sample task. On each trial, participants were shown one object (sample) placed 

centrally near the top of the screen above two objects near the bottom of the screen (target and 

distractor). Participants were instructed to choose which of the two bottom objects was most likely 

to be in the same category as the sample. Participants were presented with three possible trial 

types: skeleton and surface form trials, in which one object matched the sample in either skeleton 

or surface form, respectively (the other object matched on neither; see Figure 6A-B); and conflict 

trials in which one object matched in skeleton, but not surface form, and the other object matched 

in surface form, but not skeleton (see Figure 6C). Participants were administered a total of 480 

trials (160 of each trial type). Each trial began with a fixation cross (500 ms), followed by the 

sample and choice objects, which remained onscreen until a response was made, followed by an 

inter-trial interval (500 ms). Each stimulus was approximately 6° × 6° in size, and choice objects 

subtended 9° from the center of the screen.  

Supplemental Experiment 1 

One potential concern with our stimuli is that they may have been difficult to discriminate 

because they represent a single class of unfamiliar objects with a high degree of visual similarity. 

Such objects may be less likely to elicit the same mechanisms that support ‘core’ object recognition, 

which is thought to occur within 100-200 ms via a feedforward sweep through the ventral stream 

(Rajalingham et al., 2018). Instead, discrimination of these objects may elicit additional high-level 

processes, such as mental rotation, not typically implemented when discriminating familiar objects 

(Gauthier et al., 2002). This possibility is difficult to rule out in the main experiments because 
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participants were given unlimited time to discriminate between objects. Thus, in a supplemental 

experiment, we tested participants in a speeded task where the target object was presented for a 

100 ms. If performance on this speeded task were comparable to performance on the unspeeded 

task (see Experiment 1 in the main text), then it would suggest that both tasks measure core object 

recognition. 

Participants (n = 14) were administered a sequential match-to-sample task where they 

were asked to decide which of two choice objects matched a previously presented sample object. 

Each trial began with a fixation cross (500 ms), followed by a display with the sample object (100 

ms), and then a display with two choice objects which remained onscreen until a response was 

made. One choice object had the same skeleton as the sample, and the other choice object had a 

different skeleton. The choice objects always had the same surface form as the sample (randomly 

selected) but were presented from different orientations (-30°, 0°, 30°). Participants were 

instructed to ignore the orientations of the objects and to make their decision on the basis of visual 

similarity. Each object was pitted against every other object an equal number of times (435 trials). 

Each object was approximately 6° × 6° in size, and choice objects subtended 9° from the center of 

the screen. 

Comparisons to chance (0.50) revealed that participants were able to match the sample 

object with the correct choice object, M = 0.82% (MRT = 946 ms), t(13) = 26.8, p < .001, d = 7.16, with 

14/14 participants displaying accuracy above 0.74. This result suggests that our objects differed 

sufficiently to allow object recognition to occur within 100 ms.  

In a subsequent analysis, we tested whether participants’ performance on this task differed 

from their performance in the unspeeded discrimination task used in Experiment 1.  We found that 

participants performed comparably in the two tasks (Maccuracy = 0.82 vs. 0.80), with no statistical 

difference between groups (p = 0.46). These results are consistent with the speeded and unspeeded 

tasks recruiting similar perceptual processes, namely ‘core’ object recognition.  
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Supplemental Table 1. Linear regression results for each model used in Experiment 1. 

Model 

Standardized 
Coefficient 

t p β 

(Constant)   1.82   

Skeleton 0.27 6.01 < .001 

Gabor-Jet 0.31 3.17 0.002 

GIST -0.18 -2.03 0.043 

HMAX 0.11 2.06 0.040 

AlexNet-fc6 0.13 1.80 0.073 
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Supplemental Table 2. Coefficients displaying the percentage of unique and shared variance explained by 

each model and model combinations, as well as percentages of the total explainable variance (20.5%) 

explained by each model and model combinations.  

Model Coefficient Percentage of total  

SKEL 6.631 33.305 

GBJ 1.726 8.669 

GIST 0.587 2.949 

HMAX 0.732 3.678 

fc6 0.499 2.508 

SKEL + GBJ -0.641 -3.218 

SKEL + GIST -0.241 -1.209 

GBJ + GIST -0.512 -2.569 

SKEL + HMAX -0.171 -0.859 

GBJ + HMAX 0.344 1.730 

GIST + HMAX 0.037 0.187 

SKEL + fc6 1.005 5.046 

GBJ + fc6 1.218 6.116 

GIST + fc6 -0.105 -0.525 

HMAX + fc6 0.445 2.235 

SKEL + GBJ + GIST 0.224 1.125 

SKEL + GBJ + HMAX -0.095 -0.477 

SKEL + GIST + HMAX -0.009 -0.047 

GBJ + GIST + HMAX 0.032 0.162 

SKEL + GBJ + fc6 0.299 1.502 

SKEL + GIST + fc6 -0.047 -0.237 

GBJ + GIST + fc6 1.852 9.302 

SKEL + HMAX + fc6 0.236 1.187 

GBJ + HMAX + fc6 1.017 5.109 

GIST + HMAX + fc6 -0.039 -0.196 

SKEL + GBJ + GIST + HMAX -0.006 -0.032 

SKEL + GBJ + GIST + fc6 1.001 5.027 

SKEL + GBJ + HMAX + fc6 0.037 0.186 

SKEL + GIST + HMAX + fc6 0.009 0.045 

GBJ + GIST + HMAX + fc6 3.084 15.493 

SKEL + GBJ + GIST + HMAX + fc6 0.758 3.809 
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Supplemental Table 3. Random-effects regression results for each model used in Experiment 2. The 

standardized coefficients and t-values are drawn from a full regression model that included each model as a 

predictor. The χ2 and p-values were calculated by iteratively testing the full regression model against ones 

without the predictor of interest. 

Model 

Standardized 
Coefficient 

t χ2 p β 

(Intercept)  22.51   

Skeleton -1.24 -4.80 22.30 < 0.001 

Gabor-Jet 0.32 1.44 1.81 0.18 

GIST 0.63 4.46 19.55 < 0.001 

HMAX -0.07 -0.50 0.19 0.66 

AlexNet-fc6 0.06 0.21 0.05 0.83 
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Supplemental Figure 1. Discrimination accuracies for all non-skeletal models. Each model was able to 

discriminate between objects significantly above chance (dotted line).    

Image 
Statistics 

Alex
Net 
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Supplemental Figure 2. All stimuli used in Experiment 2. Objects were comprised of three sets, each with 

distinct coarse spatial relations. Within each set, objects varied in skeletal similarity by increments of 0%, 

10%, 20%, 30%, 40%, or 50% (each row). Each object could be presented in one of three orientations, each of 

which is depicted here (30°, 60°, 90°; each column within an object set). 
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Supplemental Figure 3. The stimulus set used in Experiment 3. Each column displays objects with the same 

skeleton, but different surface forms. Each row displays objects with the same surface form, but different 

skeletons. Each object could be presented in one of three orientations (30°, 60°, 90°); a subset are depicted 

here. 
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Chapter 3 - A dual role for shape skeletons in human vision: Perceptual organization and 

object recognition (Ayzenberg, Kamps, Dilks, & Lourenco, 2019) 

A central goal of vision science is to understand how the human visual system represents 

the shapes of objects and how shape is ultimately used to recognize objects. Research from 

computer vision has suggested that shape representations can be created and then compared using 

computational models based on the medial axis, also known as the “shape skeleton.” Although 

recent behavioral studies suggest that humans also represent shape skeletons (Ayzenberg & 

Lourenco, 2019b; Firestone & Scholl, 2014), it remains unknown whether they contribute to 

perceptual organization, object recognition, or both. Here we provide important neural evidence 

that shape skeletons may be involved in both functions. 

One method to address whether shape skeletons are implicated in both perceptual 

organization and object recognition is to test whether regions of the brain involved in these 

processes also represent the shape skeleton, without an explicit task. If shape skeletons are used to 

create shape percepts, then they should be represented in area V3, a region consistently found to be 

involved in perceptual organization in humans (for review, see Sasaki, 2007). Indeed, V3 is the 

earliest stage of the visual hierarchy where symmetry structure has been decoded (Keefe et al., 

2018; Sasaki, Vanduffel, Knutsen, Tyler, & Tootell, 2005; Van Meel, Baeck, Gillebert, Wagemans, & 

Op de Beeck, 2019). Moreover, it has been implicated in forming shape percepts from illusory 

contours (McMains & Kastner, 2010; Montaser-Kouhsari, Landy, Heeger, & Larsson, 2007) and 

motion (Caplovitz, Barroso, Hsieh, & Tse, 2008; Caplovitz & Peter, 2010). If shape skeletons are also 

used to recognize objects, then they should be represented in the lateral occipital cortex (LO), a 

region that is particularly sensitive to the spatial arrangement of object parts (Behrmann, Peterson, 

Moscovitch, & Suzuki, 2006; Margalit, Biederman, Tjan, & Shah, 2017), and known to be important 

for object recognition (Freud, Culham, Plaut, & Behrmann, 2017; Grill-Spector, Kourtzi, & 

Kanwisher, 2001; Grill-Spector, Kushnir, Edelman, Itzchak, & Malach, 1998),  
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Preliminary evidence for this hypothesis comes from neuroimaging studies with humans 

and monkeys. Using fMRI with humans, Lescroart and Biederman (2012) decoded the axis 

structure of objects in both V3 and LO. With monkeys, electrophysiological studies have 

demonstrated the existence of neurons in inferior temporal cortex (IT), the putative homolog of LO, 

which selectively code for object skeletons independently of their surface characteristics (Hung et 

al., 2012). Although this last study did not examine early visual regions, these two studies together 

are consistent with a role for shape skeletons in perceptual organization and object recognition. 

However, a major limitation of these studies is that they did not measure skeletal coding directly, 

nor did they compare skeletons to other models of vision. More specifically, these studies measured 

how neural populations changed in response to different skeletons. However, changes to object 

skeletons also induce changes along other visual dimensions. Because these studies did not 

measure how much an object’s skeleton changes relative to other visual properties, it is impossible 

to know whether their results reflect skeletal coding or some other model of vision. 

In the current study, we directly measured skeletal coding by varying object skeletons 

parametrically and then examining the unique contributions of skeletal information to neural 

responses. More specifically, we used representational similarity analysis (RSA) to test whether a 

model of skeletal similarity predicted the response patterns in both V3 and LO. Importantly, we also 

examined the specificity of the shape skeleton in these regions by controlling for other models of 

visual similarity that approximate early- (i.e., Gabor-jet; Margalit et al., 2016), mid- (i.e., GIST, and 

HMAX; Oliva & Torralba, 2006; Serre, Oliva, & Poggio, 2007), and high- (i.e., AlexNet-fc6; Krizhevsky 

et al., 2012) level visual processing. Finally, we ensured that the representation of shape skeletons 

could not be accounted for by lower-level shape properties (i.e., contours) by directly manipulating 

the object’s contours while keeping the skeleton intact.  

Materials and Methods 

Participants 
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Twenty participants (Mage  = 19.29 years, range = 20 – 36 years; 8 females) were recruited 

from the Emory University community. All participants gave written informed consent to 

participate and had normal or corrected-to-normal vision. 

Stimuli 

Twelve novel objects were selected from the stimulus set created by Ayzenberg and 

Lourenco (2019b, see Study 1 of current dissertation; see Figure 8A). The selected object set was 

composed of six distinct skeletons and two surface forms. The six skeletons were chosen by first 

conducting a k-means cluster analysis (k = 3) on skeletal similarity data for 30 unique objects (for 

details, see Ayzenberg & Lourenco, 2019). We selected six objects whose within- and between-

cluster skeletal similarities were matched (2 per cluster). That is, the two objects from the same 

cluster were approximately as similar to one another as the two objects within the other clusters; 

objects in different clusters had comparable levels of dissimilarity to one another (see Figure 8B). 

This method of stimulus selection ensured that the stimulus set used in the present study contained 

objects with both similar and dissimilar skeletons. Importantly, to ensure that our stimulus 

selection criteria did not result in skeletons being the only salient visual feature, we also tested 

whether other, non-skeletal, models could discriminate between these objects. This analysis 

revealed that all models could accurately discriminate skeletons (80.2% - 95.3% accuracy; see 

Supplemental Materials for more details).  

Each skeleton was rendered with one of two surface forms, which changed the contours and 

component parts of the object without altering the underlying skeleton. To provide the strongest 

test of a skeletal model, we chose the two surface forms (out of five) that a separate group of 

participants judged to be most dissimilar (Ayzenberg & Lourenco, 2019b). Importantly, the surface 

forms also had qualitatively different component parts, as measured by their non-accidental 

properties NAPs (Amir et al., 2012; Biederman, 1987), and differed in their image-level properties 
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(Margalit et al., 2016). Two additional objects were used as targets for an orthogonal target-

detection task; these objects were not included in subsequent analyses. 

We used a smaller stimulus set (compared to Ayzenberg & Lourenco, 2019b) to increase the 

number of presentations per objects and maximize the signal-to-noise ratio. Furthermore, using a 

smaller stimulus set allowed us to implement a continuous carry-over design with third-order 

counterbalancing, thereby minimizing carry-over effects across trials (see Methods; Aguirre, 

Mattar, & Magis-Weinberg, 2011). Stimulus presentation was controlled by a MacBook Pro running 

the Psychophysics Toolbox package (Brainard, 1997) in MATLAB (MathWorks). Images were 

projected onto a screen and viewed through a mirror mounted on the head coil. 

Figure 8. Stimuli used in the current study and a multi-dimensional scaling (MDS) plot illustrating the skeletal 

similarity between objects. (A) Six objects with unique skeletal structures were generated. Each object was 

rendered with two surface forms to change the objects’ component parts without disrupting the skeleton. (B) 

To ensure that the stimulus set contained objects with both similar and dissimilar skeletons, objects were 

selected in pairs such that within- and between-pair skeletal similarity were approximately matched across 

objects. 
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Experimental design 

First, we used a region of interest (ROI) approach, in which we independently localized the 

ROIs (localizer runs). Second, we used an independent set of data (experimental runs) to conduct 

representational similarity analyses in each ROI. 

Localizer runs. We used a block design for the localizer runs. Participants viewed images of 

faces, bodies, objects, scenes, and scrambled objects, as previously described (Dilks, Julian, Kubilius, 

Spelke, & Kanwisher, 2011). Each participant completed three localizer runs, comprised of four 

blocks per stimulus category, each 400 s. Block order in each run was randomized. Each block 

contained 20 images randomly drawn from the same category. Each image was presented for 300 

ms, followed by a 500 ms interstimulus interval (ISI), for a total of 16 s per block. We also included 

five 16 s fixation blocks: one at the beginning, three in the middle interleaved between each set of 

stimulus blocks, and one at the end of each run. To maintain attention, participants performed an 

orthogonal one-back task, responding to the repetition of an image on consecutive presentations. 

Experimental runs. We used a continuous carry-over design for the experimental runs, 

wherein participants viewed images of each novel object. Each run was 360 s long. Using a de 

Bruijn sequence (Aguirre et al., 2011), we applied third-level counterbalancing on the image 

presentation order, which minimized any carry-over effects between stimuli. Importantly, this 

design supports smaller inter-stimulus intervals (ISIs) between stimuli (Aguirre et al., 2011; 

Drucker & Aguirre, 2009; Hatfield, McCloskey, & Park, 2016) and allowed for a greater number of 

presentations per image. Each image was presented for 600 ms, followed by a 200 ms ISI, and 

shown 225 times across the entire session. Each run began and ended with 6 s of fixation. To 

maintain attention, participants performed an orthogonal target-detection task. At the beginning of 

each experimental run, participants were shown one of two objects (not included in subsequent 

analyses) and were instructed to press a response button any time the target object appeared 

within the image stream. 
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MRI scan parameters 

Scanning was done on a 3T Siemens Trio scanner at the Facility for Education and Research 

in Neuroscience (FERN) at Emory University. Functional images were acquired using a 32-channel 

head matrix coil and a gradient echo single-shot echoplanar imaging sequence. Thirty slices were 

acquired for both localizer and experimental runs. For all runs: repetition time = 2 s; echo time = 30 

ms; flip angle = 90°; voxel size = 1.8 × 1.8 × 1.8 mm with a 0.2 mm interslice gap. Slices were 

oriented approximately parallel to the anterior and posterior cingulate, covering the occipital and 

temporal lobes. Whole-brain, high-resolution T1-weighted anatomical images (repetition time = 

1900 ms; echo time = 2.27 ms; inversion time = 900 ms; voxel size = 1 × 1 ×1 mm) were also 

acquired for each participant for registration of the functional images. Analyses of the fMRI data 

were conducted using FSL software (Smith et al., 2004) and custom MATLAB code. 

Data Analysis 

Images were skull-stripped (Smith, 2002) and registered to participants’ T1 weighted 

anatomical image (Jenkinson et al., 2002). Prior to statistical analyses, images were motion 

corrected, de-trended, and intensity normalized. Localizer, but not experimental, data were 

spatially smoothed (6 mm kernel). All data were fit with a general linear model consisting of 

covariates that were convolved with a double-gamma function to approximate the hemodynamic 

response function.  

To investigate whether skeletal descriptions of shape play a role in the creation of shape 

percepts, we defined V3 bilaterally, using probabilistic parcels (Wang, Mruczek, Arcaro, & Kastner, 

2014). As control regions, we also defined V1, V2, and V4 bilaterally from the same set of 

probabilistic parcels. Each parcel was registered from MNI standard space to participants’ 

individual anatomical space. 

To investigate whether skeletal descriptions of shape also play a role in object recognition, 

we functionally defined object-selective region LO, as well as pFs, bilaterally in each individual as 
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the voxels that responded more to images of intact objects than scrambled objects (p < 10-4, 

uncorrected; Grill-Spector et al., 1998). Furthermore, to test the specificity of skeletal 

representations in object-selective regions, rather than higher-level visual regions more generally, 

we also defined the extrastriate body area (EBA; Downing, Jiang, Shuman, & Kanwisher, 2001) and 

fusiform body area (FBA; Peelen & Downing, 2005), as the voxels that responded more to images of 

bodies than objects (p < 10-4, uncorrected). However, because EBA shows a high degree of overlap 

with LO, we subtracted any EBA voxels that overlapped with LO for each participant. 

Analyses were conducted using the top 2000 voxels (1.8 × 1.8 × 1.8 mm) from each ROI (in 

each hemisphere) when available. For regions comprised of fewer than 2000 voxels, all voxels in 

the ROI were used (see Figure 9). To ensure that results were not related to the size of the ROI, we 

also conducted our primary analyses using 100, 500, and 1000 voxels. The same qualitative results 

were found for all ROI sizes. For each functionally defined ROI, we selected voxels that exhibited the 

greatest selectivity to the category of interest from the localizer runs (e.g., the 2000 most object-

selective voxels in right LO). For the probabilistically-defined ROIs, we selected voxels with the 

greatest probability value (e.g., the 2000 voxels most likely to describe right V1). ROIs were 

analyzed by combining left and right hemispheric ROIs (4000 voxels total).  
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Figure 9. ROIs (2000 voxels) in a sample participant displayed on (A) the cortical surface and (B) in 

volumetric space. Each color corresponds to a different ROI. Early visual cortex ROIs (V1-V4) were defined 

using probabilistic maps. Higher-level visual regions (LO, pFs, EBA, FBA) were functionally defined in each 

participant using an independent localizer. 

To investigate whether a model of skeletal similarity explained unique variance in each ROI, 

we used RSA (Kriegeskorte, Mur, & Bandettini, 2008). For each participant, parameter estimates for 

each stimulus (relative to fixation) were extracted for each voxel in an ROI. Responses to the stimuli 

in each voxel were then normalized by subtracting the mean response across all stimuli. A 12 × 12 

symmetric neural representational dissimilarity matrix (RDM) was created for each ROI and 

participant by correlating (1-Pearson correlation) the voxel-wise responses for each stimulus with 

every other stimulus in a pairwise fashion. Neural RDMs were then Fisher transformed and 

averaged across participants separately for each ROI. Only the upper triangle of the resulting matrix 

(excluding the diagonal) was used in the following analyses. Although most dissimilarity measures 

produce similar results, we used Pearson correlation similarity because simulations have shown it 

to be more reliable than other similarity measures (Walther et al., 2016). Nevertheless, data were 
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also analyzed using cosine and squared Euclidean distance similarity metrics. The results were 

qualitatively the same across all measures.  

Neural RDMs were compared to RDMs created from a model of skeletal similarity, as well as 

other models of visual similarity (GBJ, GIST, HMAX, and AlexNet-fc6). Skeletal similarity was 

calculated in 3D, object-centered, space as the mean Euclidean distance between each point on one 

skeleton and the closest point on the second skeleton following maximal alignment. Gabor-jet, GIST, 

and AlexNet (fc6-layer) similarity was calculated by extracting feature vectors from each model and 

computing the mean Euclidean distance between feature vectors for each feature vector. HMAX 

(C2-layer) similarity was calculated as the Pearson correlation between feature vectors. Because 

our primary analyses involve comparing the amount of unique variance explained by the skeletal 

model relative to the other models, we ensured that the skeletal model did not exhibit a high degree 

of multicollinearity with any other model, VIF = 2.61. Multicollinearity statistics for control models 

were also within an acceptable range (VIFs < 4.58; O’Brien, 2007). 

 Results 

How are shape skeletons represented in the visual system? 

We first tested whether skeletal similarity was predictive of the multivariate response 

pattern in each ROI by correlating the neural RDMs from each ROI with an RDM computed from a 

model of skeletal similarity. Significant correlations were found for V1-V4, and LO, rs = 0.35 – 0.67, 

R2 = 12.5 – 50.1 (ps < .001; significance determined via permutation test with 10,000 permutations; 

see Figure 10). Skeletal similarity was not predictive of the response pattern in pFs, EBA, or FBA (ps 

> .23), revealing specificity in the predictive power of the skeletal model (see Table 1).  
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Figure 10. Bar plot displaying the correlations between the skeletal model and the multivariate response 

pattern in each ROI. A model of skeletal similarity was significantly correlated with response patterns in V1-

V4 and LO. A skeletal model was not predictive of the response pattern in pFs, EBA, or FBA. Error bars 

represent bootstrapped SE.  

Next, we tested whether skeletal similarity explained unique variance in each region, or 

whether these effects could be explained by another model of visual similarity (see Table 1 for 

correlations between the skeletal model and all other models). To test whether the skeletal model 

explained unique variance in each ROI, we conducted linear regression analyses with each neural 

RDM as the dependent variable, and the different models of visual similarity as predictors (Skeleton 

∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet-fc6; see Figure 11A). These analyses revealed that the skeletal 

model explained unique variance in V3 (β = 0.46, p = .003) and LO (β = 0.49, p = .029), but not in the 

other regions (βs < 0.29, ps > .14). 

We also conducted variance partitioning analyses (VPA) to determine how much unique 

variance was explained by the skeletal model in V3 and LO (Bonner & Epstein, 2018; Lescroart et 

al., 2015). These analyses allowed us to determine how much of the total explainable variance was 

unique to the different models and how much was shared by a combination of models (shared 

variance is illustrated in Supplemental Table 5). These analyses revealed that the skeletal model 

uniquely accounted for 9.0% of the total explainable variance in V3 and 25.5% of the explainable 
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variance in LO (see Figure 11B-C; details about other models are provided below). Thus, shape 

skeletons account for significant unique variance in V3 and LO even when compared with other 

models of visual similarity. Together, these results are consistent with the hypothesized dual role of 

shape skeletons in visual processing: namely, for perceptual organization and object recognition.  

 

Figure 11. Variance partitioning results. (A) Dissimilarity matrices computed from models of skeletal 

similarity and other models of visual similarity. (B) Bar plot displaying the percentage of unique variance 

accounted for by each model in V3. (C) Bar plot displaying the percentage of unique variance accounted for by 

each model in LO. A model of skeletal similarity explained unique variance in both V3 and LO, but not in other 

cortical regions. Error bars represent bootstrapped SE.   
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Table 1. Results of the correlation, regression, and variance partitioning analyses for each ROI and each 

model. Correlation analyses were conducted by correlating RDMs created from the neural data from each ROI 

with RDMs created from each model. Regression analyses were conducted for each neural RDM by entering 

each model RDM as a predictor into a linear regression model. The R2 values indicates the total explained 

variance by all of the models. Variance partitioning analyses were conducted by iteratively regressing each 

neural RDM on RDMs from each model and the combination of models, and then calculating the percentage of 

the total explained variance (R2) uniquely explained by each model.  

  Model Correlations   Model Regression   Variance Partitioning 

ROI Model r r2 p  R2 β p  Percentage 

V1   - - -  0.52 - -  - 

  Skeleton 0.65 0.43 < .001  - 0.26 .138  3.52 

  Gabor-Jet 0.66 0.44 < .001  - 0.43 .070  5.27 

  GIST 0.56 0.31 < .001  - -0.09 .618  0.39 

  HMAX 0.46 0.21 < .001  - 0.14 .297  1.72 

  AlexNet-fc6 0.38 0.15 .002  - 0.13 .366  1.29 

V2   - - -  0.63 - -  - 

  Skeleton 0.69 0.47 < .001  - 0.23 .140  2.19 

  Gabor-Jet 0.71 0.51 < .001  - 0.55 .010  7.06 

  GIST 0.60 0.36 < .001  - -0.18 .275  1.19 

  HMAX 0.53 0.28 < .001  - 0.13 .265  1.24 

  AlexNet-fc6 0.48 0.23 < .001  - 0.24 .049  3.98 

V3   - - -  0.63 - -  - 

  Skeleton 0.71 0.50 < .001  - 0.46 .003  8.97 

  Gabor-Jet 0.67 0.44 < .001  - 0.10 .637  0.22 

  GIST 0.62 0.39 < .001  - 0.07 .666  0.18 

  HMAX 0.56 0.32 < .001  - 0.14 .239  1.36 

  AlexNet-fc6 0.51 0.26 < .001  - 0.23 .056  3.63 

V4   - - -  0.51 - -  - 

  Skeleton 0.56 0.32 < .001  - 0.18 .321  1.58 

  Gabor-Jet 0.60 0.36 < .001  - 0.41 .085  4.83 

  GIST 0.55 0.30 < .001  - -0.11 .558  0.55 

  HMAX 0.50 0.25 < .001  - 0.06 .678  0.27 

  AlexNet-fc6 0.54 0.29 < .001  - 0.38 .009  11.53 

LO   - - -  0.25 - -  - 

  Skeleton 0.35 0.13 .002  - 0.49 .029  25.46 

  Gabor-Jet 0.25 0.06 .022  - -0.13 .644  1.10 

  GIST 0.23 0.05 .036  - -0.16 .498  2.37 

  HMAX 0.33 0.11 .004  - -0.05 .776  0.42 

  AlexNet-fc6 0.39 0.15 < .001  - 0.41 .020  29.27 

pFs   - - -  0.04 - -  - 

  Skeleton 0.07 0.00 .294  - 0.29 .240  52.33 

  Gabor-Jet -0.02 0.00 .563  - -0.08 .799  2.44 

  GIST -0.09 0.01 .761  - -0.17 .505  16.71 

  HMAX -0.07 0.01 .727  - -0.10 .590  10.90 

  AlexNet-fc6 -0.10 0.01 .782  - 0.01 .959  0.10 

EBA   - - -  0.07 - -  - 

  Skeleton 0.16 0.02 .107  - 0.26 .280  25.29 

  Gabor-Jet 0.07 0.01 .287  - 0.04 .900  0.34 

  GIST 0.00 0.00 .515  - -0.30 .233  30.91 
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  HMAX 0.16 0.03 .096  - 0.05 .790  1.52 

  AlexNet-fc6 0.12 0.02 .159  - 0.15 .428  13.57 

FBA   - - -  0.06 - -  - 

  Skeleton 0.00 0.00 .484  - -0.19 .442  16.68 

  Gabor-Jet 0.04 0.00 .393  - 0.48 .142  61.84 

  GIST -0.06 0.00 .695  - -0.42 .105  75.66 

  HMAX 0.09 0.01 .242  - 0.12 .515  11.93 

  AlexNet-fc6 0.05 0.00 .351  - 0.05 .785  2.09 

             
 

Does skeletal coding in V3 and LO generalize across changes in surface form? 

As described previously, a strength of skeletal models is that they can be used to describe an 

object’s shape across variations in contours or component parts. Thus, if V3 and LO indeed 

incorporate a skeletal model, then, at the very least, these regions should represent objects by their 

skeletons across changes in surface form (see Figure 8). To test this prediction, new dissimilarity 

vectors were created from neural and model RDMs by extracting similarity values from only those 

object pairs whose surface forms differed and then correlating them to one another.  

As predicted, skeletal similarity was a significant predictor of both V3 (r = 0.77, p < .001) 

and LO (r = 0.47, p < .001), even though object pairs were comprised of different surface forms. 

Notably, the finding that both V3 and LO represent shape skeletons across changes in surface form 

provides further evidence that skeletal coding in these regions cannot be accounted for by low-level 

shape properties such as contours and component parts.  

But might another model of visual similarity account for these results? Here we conducted a 

similar regression analysis as above (neural RDMs ~ f[Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet-

fc6]), but now included subject as the random effect because fewer object pairs were involved. This 

analysis revealed that the skeletal model explained the greatest amount of variance in both V3 (β = 

0.28, p < .001) and LO (β = 0.21, p < .001; see Supplemental Table 5 for variance explained by the 

other models). Thus, not only are V3 and LO sensitive to object skeletons, the skeletal 

representations in these regions are invariant to changes in surface form.  

Are V3 and LO predictive of participants’ similarity judgments of objects? 
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Previous research has shown that shape skeletons are predictive of human participants’ 

behavioral judgments of object similarity (Ayzenberg & Lourenco, 2019b; Destler et al., 2019; 

Lowet et al., 2018). Our neuroimaging results suggest that these judgments may be supported by 

areas V3 and LO. Here we tested this possibility by examining whether the response patterns of V3 

and LO explain unique variance in humans’ judgments of object similarity. Using discrimination 

data from Ayzenberg and Lourenco (2019), we created behavioral RDMs for the present objects. 

Using linear regression analyses, we first tested whether a model of skeletal similarity explained 

unique variance in behavioral judgments, after controlling for other models of visual similarity 

(GBJ, GIST, HMAX, AlexNet-fc6). We found that the skeletal model explained the greatest amount of 

variance in participants’ judgments (VPA = 22%, β = 0.28, p < .001), replicating Ayzenberg and 

Lourenco (2019b). Next we tested whether the response profile of V3 and LO were also predictive 

of the behavioral RDM. These analyses revealed significant correlations for both V3 (r = 0.81, p < 

.001) and LO (r = 0.46, p < .001) and participants’ judgments. In a final analysis, we tested whether 

V3 and LO were uniquely predictive of participants’ behavioral judgments, or whether another 

region could explain this effect. We tested whether V3 and LO explained unique variance in 

participants’ judgments by conducting separate regression analyses in which V3 and the other early 

visual regions (V1, V2, V4) were predictors, or LO and the other high-level visual regions (pFs, EBA, 

FBA) were predictors. The behavioral RDM was the dependent variable in both cases. These 

analyses revealed that V3 (VPA = 10%, β = 0.83, p = .002) and LO (VPA = 70%, β = 0.70, p < .001) 

explained unique variance in participants’ similarity judgments, even when controlling for other 

early- and high-level visual regions, respectively.  

What role do other models of visual similarity play in the visual processing of objects? 

Although the skeletal model was predictive of the response profiles of V3 and LO, even 

across different surface forms, one might ask whether the other visual models still play a role in the 

neural processing of objects. For example, previous research has shown that other models of visual 
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similarity account for unique variance in participants’ object similarity judgments (Ayzenberg & 

Lourenco, 2019). To explore whether other models play a role in the neural processing of objects, 

we tested whether these other models explained unique variance in the ROIs. Linear regression 

analyses revealed that the Gabor-jet model, which approximates V2-like complex cells, accounted 

for unique variance in the response profile of V2 (β = 0.55, p = .009), but not other regions. We also 

found that AlexNet-fc6, a model consisting of non-linear features, explained increasingly more 

variance in increasingly higher-level visual regions (V2: β = 0.24, p = .049; V4: β = 0.38, p = .009; LO: 

β = 0.41, p = .020). None of the models were predictive of the response profiles of V1, pFs, EBA, or 

FBA (ps > .070; see Table 1). Thus, the predictive power of these models of visual processing is 

largely consistent with the hypothesized regions they are meant to approximate.  

Discussion 

In the present study, we tested the hypothesis that shape skeletons are associated with two 

visual processes: namely, the creation of shape percepts and object recognition. Consistent with 

this hypothesis, we found that a model of skeletal similarity was predictive of the response pattern 

in V3, a region implicated in perceptual organization, and LO, a region involved in object 

recognition. Moreover, and crucially, skeletal representations in these regions could not be 

explained by low-, mid-, or high-level image properties, as described by other computational 

models of vision, nor by representations based on contours or component parts (i.e., surface forms) 

of the objects. These results provide novel neural evidence that the human visual system represents 

shape skeletons and may do so for both perceptual organization and object recognition.  

The finding that V3 represents shape skeletons is consistent with human neuroimaging 

studies showing its involvement in perceptual organization. But how might shape skeletons arise in 

V3? One possibility is that shape skeletons reflect the response profile of grouping cells (G-cells), 

which play an important role within neural models of perceptual organization. More specifically, 

these models suggest that perceptual organization is accomplished by border ownership cells (B-
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cells) in V2, which selectively respond to the contours of a figure (rather than the background), as 

well as G-cells in the subsequent visual region, which coordinate the firing of B-cells via top-down 

connections and help to specify the contours that belong to the same figure (von der Heydt, 2015; 

Zhou, Friedman, & von der Heydt, 2000). Interestingly, G-cells exhibit properties associated with 

shape skeletons. For example, G-cells specify the relations between contours, which may allow the 

visual system to determine an object’s shape despite noisy or incomplete visual information (Craft, 

Schütze, Niebur, & von der Heydt, 2007; Martin & von der Heydt, 2015). Moreover, the response 

profile of G-cells within a shape corresponds to the points of the shape’s skeleton (Craft et al., 

2007), as would be expected if they implement a skeletal computation. Indeed, pruned shape 

skeletons, resembling those extracted from 2D shapes by human participants (Ayzenberg, Chen, et 

al., 2019), can be generated using a model of perceptual organization that incorporates the 

response profile of G-cells (Ardila, Mihalas, von der Heydt, et al., 2012).  

Nevertheless, one might ask why we did not find evidence of skeletal representations in V2 

or V4, given that these regions are also frequently implicated in perceptual organization (Cox et al., 

2013; McMains & Kastner, 2010; Zhou et al., 2000), particularly in electrophysiology studies with 

monkeys (von der Heydt, 2015). First, if shape skeletons reflect the response profile of G-cells, then 

they would not arise in V2, which is primarily comprised of B-cells. Moreover, G-cells are thought to 

arise in the visual region directly following V2 (Craft et al., 2007; Martin & von der Heydt, 2015) 

which, in humans, is V3 but, in monkeys, is often delineated as V4 (DiCarlo et al., 2012; Gross, 

Rodman, Cochin, & Colombot, 1993; Serre, Oliva, et al., 2007). Studies have shown that V3 in 

humans is proportionally much larger than in monkeys, and there is debate regarding whether 

monkeys have a human-like V3 at all (Arcaro & Kastner, 2015; but, see Brewer, Press, Logothetis, & 

Wandell, 2002). Most relevant here is the fact that few studies on perceptual organization with 

monkeys have recorded from V3. Instead, these studies have focused primarily on V2 and V4 

(Hegdé & Van Essen, 2006; Poort et al., 2012; Zhou et al., 2000). Our findings suggest that V3 may 
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be the locus of G-cells in humans and that the skeletal representations within V3 may be an 

emergent property of G-cell responses.  

We also found evidence of shape skeletons in LO, which is consistent with a role for 

skeletons in object recognition. Much work has illustrated the importance of LO in using shape for 

object recognition (Chouinard, Whitwell, & Goodale, 2009; Grill-Spector, Kushnir, Hendler, & 

Malach, 2000). This region has been shown to be particularly sensitive to object-centered shape 

information and is tolerant to viewpoint changes and border perturbations (Grill-Spector et al., 

2001; Grill-Spector et al., 1998). Our results suggest that LO may achieve such invariance by 

incorporating a skeletal description of shape, which provides a common format by which to 

compare shapes across variations in contours and component parts. Importantly, our results are 

consistent with electrophysiology work in monkeys in which the skeletal structure of 3D objects 

can be decoded from monkey IT across changes in both object orientation and surface form (Hung 

et al., 2012). Our findings are also consistent with patient studies in which damage to LO results in a 

specific impairment perceiving the spatial relations of component parts, but not the parts 

themselves, as would be predicted by a skeletal model (Behrmann et al., 2006; Konen, Behrmann, 

Nishimura, & Kastner, 2011). Building on these studies, the present work provides the first direct 

evidence of skeletal representations in human LO and, crucially, demonstrates that such 

representations cannot be accounted for by other models of visual processing.  

Interestingly, we did not find evidence of skeletal representations in another object-

selective region, namely pFs. This finding may reflect a division of labor between LO and pFs, 

following the posterior-to-anterior anatomical gradient of shape-to-category selectivity in the 

ventral stream (Bracci & Op de Beeck, 2016; Freud et al., 2017). More specifically, many studies 

have illustrated that shape selectivity peaks in posterior regions of the ventral stream and 

decreases in higher-level anterior regions (Brincat & Connor, 2004, 2006; Freud et al., 2017). By 

contrast, sensitivity to semantic category-level information, and other non-shape visual 
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information, progressively increases in anterior regions of the temporal lobe (Barense, Gaffan, & 

Graham, 2007; Behrmann, Lee, Geskin, Graham, & Barense, 2016). Given that skeletal models are 

exclusively descriptions of shape, such that they do not take semantic content into account, it 

follows that we did not find evidence of shape skeletons in pFs.  

Importantly, we found that the predictive value of a skeletal model in V3 and LO held even 

when controlling for low- (i.e., Gabor-jet), mid- (i.e., GIST, and HMAX), and high-level (i.e., AlexNet-

fc6) models of visual processing. Not only are these other models representative of different levels 

of visual processing, but they also approximate different theories of object recognition, such as 

those based on image-level similarity (i.e., Gabor-jet and HMAX; Tarr & Bülthoff, 1998) and feature 

descriptions (i.e., AlexNet-fc6; Ullman et al., 2016; Yamins et al., 2014). Moreover, by changing the 

object’s surface forms, we changed the non-accidental properties of the object’s component parts, 

thereby allowing for a test of component description theories (Biederman, 1987; Kayaert, 

Biederman, & Vogels, 2003). That skeletal models explained unique variance even when controlling 

for these other properties suggests that shape skeletons may play a privileged role in the visual 

processing of objects and highlights their importance in theories of object recognition. 

Yet our results also point to the contributions of two other models of vision to the neural 

processing of objects. We found that the Gabor-jet model was predictive of the response profile in 

V2 (earlier in the hierarchy than shape skeletons) and that AlexNet-fc6 was most predictive in LO 

(same region as skeletons). That these models are also associated with object processing is perhaps 

unsurprising given that other visual properties are important for solving a range of object 

recognition tasks. For instance, lower-level visual properties and feature descriptions may be 

particularly important for subordinate- (Biederman, Subramaniam, Bar, Kalocsai, & Fiser, 1999; 

Davitt, Cristino, Wong, & Leek, 2014) or superordinate-level (Long, Störmer, & Alvarez, 2017; Long, 

Yu, & Konkle, 2018) categorization. Collectively, our findings illustrate how the visual system may 

incorporate multiple models in parallel to create holistic object representations. 
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Although we have suggested that shape skeletons may be implicated in both perceptual 

organization and object recognition, the spatial and temporal resolution of fMRI places important 

qualifiers on these conclusions. First, although our results were consistent across different ROI 

sizes (see Supplemental Data), it is nevertheless possible that shape skeletons are represented in 

sub-populations of neurons within each region and that these regions have secondary functions. 

Indeed, V3 and LO have been shown to be sensitive to other types of visual cues, including motion 

(Dupont et al., 1997; Felleman & Van Essen, 1987) and depth (Parker, 2007; Welchman, 2016). 

Moreover, our own results showed that other models of vision (i.e., AlexNet-fc6) were represented 

in tandem with shape skeletons in these regions. Our data also cannot address whether skeletal 

representations in these regions arise via feedforward or feedback processes. Indeed, feedback 

processes are known to be important for both perceptual organization (Mannion, McDonald, & 

Clifford, 2010; Murray, Kersten, Olshausen, Schrater, & Woods, 2002; Wokke, Vandenbroucke, 

Scholte, & Lamme, 2013) and invariant object recognition (Kar, Kubilius, Schmidt, Issa, & DiCarlo, 

2019; Tang et al., 2018), and may even lead to skeleton-like representations in early visual cortex 

(Lee, 1996; Li, 2000). A more complete understanding of V3 and LO, along with experiments 

designed to test the causal role of shape skeletons in human vision, will be needed to confirm the 

claims of the present research. Nevertheless, our findings are consistent with computer vision, 

behavioral, and neuroimaging work suggesting a role for shape skeletons in both perceptual 

organization and object recognition.  
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Supplemental Materials for “A dual role for shape skeletons in human vision: 

Perceptual organization and object recognition” 

Can non-skeletal models discriminate the objects? 

A potential concern with the current study is that, because we explicitly varied skeletal 

similarity, object skeletons were an especially salient cue. To address this concern, we tested 

whether non-skeletal models could discriminate the objects. If they could, it would suggest that the 

visual system need not necessarily rely on a skeletal model to discriminate these objects. A feature 

vector was extracted for every image (30 skeletons × 5 surface forms × 3 orientations) from each of 

these models (GBJ, GIST, HMAX, AlexNet-fc6). Then, for each model and object pair (same surface 

form), a linear support vector machine (SVM) classifier was trained to label objects using two object 

orientations; its ability to label the objects was tested using the third orientation. This procedure 

was repeated for every surface form and every combination of orientations between objects (0° × 

0°; 0° × 30°; 0° × -30°; 30° × 30°; 30° × -30°; -30° × -30°). A final discrimination score was computed 

for each object pair by averaging the decoding accuracies across every surface form and 

combination of orientations. This analysis revealed that every model could discriminate between 

objects significantly above chance (0.50; Ms > 0.80), ts > 11.78, ps < .001, ds > 3.30 (see 

Supplemental Figure 4). Together, these findings demonstrate that the objects within our stimulus 

set were sufficiently different along other visual dimensions such that non-skeletal models could 

accurately discriminate them. 
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Supplemental Figure 4. Discrimination accuracies for all non-skeletal models. Each model was able to 

discriminate between objects significantly above chance (dotted line). 
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Supplemental Table 4. Percentages of unique and shared variance explained by each model and for each ROI.  

  ROI 

Model V1 V2 V3 V4 LO PFS EBA FBA 

Skel 3.5% 2.2% 9.0% 1.6% 25.5% 52.3% 25.3% 16.7% 

GBJ 5.3% 7.1% 0.2% 4.8% 1.1% 2.4% 0.3% 61.8% 

GIST 0.4% 1.2% 0.2% 0.5% 2.4% 16.7% 30.9% 75.7% 

HMAX 1.7% 1.2% 1.4% 0.3% 0.4% 10.9% 1.5% 11.9% 

fc6 1.3% 4.0% 3.6% 11.5% 29.3% 0.1% 13.6% 2.1% 

Skel + GBJ 18.0% 17.5% 11.1% 12.2% 9.1% 17.8% 28.7% -13.9% 

Skel + GIST 0.3% 0.4% -0.2% 0.3% 2.3% 8.2% 7.7% -7.3% 

GBJ + GIST 1.3% -0.2% 0.9% 0.6% 7.3% 33.5% 19.3% -55.0% 

Skel + HMAX 2.3% 1.5% 3.6% 0.7% 0.6% -9.7% 7.3% -6.7% 

GBJ + HMAX -0.3% -0.3% -0.1% -0.1% -0.1% -0.6% -0.1% -3.1% 

GIST + HMAX 0.1% 0.2% -0.1% 0.1% -0.1% -1.7% 1.0% 4.3% 

Skel + fc6 -0.6% -0.9% -1.7% -1.2% -8.4% 0.9% -5.6% 2.9% 

GBJ + fc6 -0.3% -0.7% -0.1% -1.0% 1.0% 0.1% -0.2% -1.3% 

GIST + fc6 -0.3% -1.0% 1.1% -0.3% -2.3% 1.3% -10.0% 0.6% 

HMAX + fc6 6.0% 9.5% 9.3% 13.6% 15.3% 6.3% 22.9% 23.1% 

Skel + GBJ + GIST 28.5% 23.2% 24.5% 18.3% -11.3% -53.3% -48.2% 7.2% 

Skel + GBJ + HMAX 6.0% 5.4% 4.2% 2.8% 2.0% -0.6% 9.1% 12.8% 

Skel + GIST + HMAX 0.3% 0.4% 0.1% 0.2% 0.7% 0.8% 3.6% 0.8% 

GBJ + GIST + HMAX -0.5% -0.4% -0.2% -0.1% -0.2% -3.9% 2.7% 0.4% 

Skel + GBJ + fc6 -0.1% -2.2% -1.6% -4.6% -7.0% 4.2% -5.7% -3.5% 

Skel + GIST + fc6 0.0% -0.2% -0.8% -0.4% -2.2% 7.4% 2.4% -4.7% 

GBJ + GIST + fc6 2.1% 3.6% 1.6% 6.0% -6.5% 5.8% -2.6% -0.3% 

Skel + HMAX + fc6 1.2% 1.5% 2.7% 1.8% 11.1% -2.1% 8.4% -4.0% 

GBJ + HMAX + fc6 -1.2% -1.8% 0.0% -1.7% 2.2% -1.0% 0.1% -8.6% 

GIST + HMAX + fc6 0.0% -0.2% 2.6% 1.6% 1.7% 12.4% -9.6% -23.5% 

Skel+ GBJ + GIST + HMAX 4.9% 3.8% 4.5% 2.4% 0.1% 4.9% -10.2% -9.3% 

Skel+ GBJ + GIST + fc6 -0.7% 1.1% 1.8% 2.9% 14.3% -10.3% 8.5% 5.1% 

Skel+ GBJ + HMAX + fc6 -2.6% -1.2% -2.6% 0.6% -2.9% 0.9% -5.6% 2.7% 

Skel+ GIST + HMAX + fc6 -0.8% -0.7% -0.9% -0.6% -2.2% -4.7% -6.4% 6.0% 

GBJ+ GIST + HMAX + fc6 2.5% 3.1% 0.6% 2.6% -2.3% 7.3% -3.6% 11.8% 

Skel+ GBJ + GIST + HMAX + fc6 21.8% 23.1% 25.3% 24.7% 19.2% -6.5% 14.4% -4.5% 
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Supplemental Table 5. Random-effects regression results for each model and for each ROI on objects with 

different surface forms. 

  
Model 

Correlations   
Random Effects 

Regression 

ROI Model r p   β p 

V1         - - 

  Skeleton 0.733 < .001   0.115 .132 
  Gabor-Jet 0.639 < .001   -0.062 .534 

  GIST 0.586 < .001   0.083 .268 

  HMAX 0.526 < .001   -0.030 .548 

  AlexNet-fc6 0.771 < .001   0.440 .001 

V2   - -   - - 

  Skeleton 0.762 < .001   0.062 .385 

  Gabor-Jet 0.738 < .001   0.137 .142 

  GIST 0.665 < .001   0.052 .456 

  HMAX 0.482 .003   -0.044 .354 

  AlexNet-fc6 0.752 < .001   0.550 .000 

V3   - -   - - 

  Skeleton 0.766 < .001   0.241 .001 

  Gabor-Jet 0.688 < .001   -0.045 .615 

  GIST 0.654 < .001   0.152 .026 

  HMAX 0.513 .001   -0.031 .489 

  AlexNet-fc6 0.744 < .001   0.512 .000 

V4   - -   - - 

  Skeleton 0.682 < .001   0.139 .068 

  Gabor-Jet 0.620 < .001   0.001 .995 

  GIST 0.563 < .001   0.077 .304 

  HMAX 0.484 .003   0.006 .901 

  AlexNet-fc6 0.676 < .001   0.330 .010 

LO   - -   - - 

  Skeleton 0.467 .004   0.280 .001 

  Gabor-Jet 0.366 .027   -0.031 .767 

  GIST 0.275 .104   -0.043 .593 

  HMAX 0.196 .253   -0.050 .353 

  AlexNet-fc6 0.321 .056   -0.007 .959 

pFs   - -   - - 

  Skeleton 0.037 .832   0.261 .001 

  Gabor-Jet -0.046 .793   -0.149 .162 

  GIST -0.076 .665   -0.036 .656 

  HMAX -0.072 .677   -0.045 .402 

  AlexNet-fc6 -0.065 .705   -0.180 .188 

EBA   - -   - - 

  Skeleton 0.267 .117   0.145 .077 

  Gabor-Jet 0.187 .271   0.029 .786 

  GIST 0.100 .560   -0.084 .297 

  HMAX 0.170 .318   0.047 .384 

  AlexNet-fc6 0.164 .339   -0.116 .397 

FBA   - -   - - 
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  Skeleton -0.057 .738   0.136 .095 

  Gabor-Jet -0.134 .431   -0.126 .236 

  GIST -0.142 .404   -0.011 .892 

  HMAX -0.007 .964   0.026 .634 

  AlexNet-fc6 -0.076 .655   -0.111 .414 
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Chapter 4 - The shape skeleton supports single exemplar categorization in infants 

(Ayzenberg & Lourenco, 2019a) 

Thus far, evidence from human adults demonstrates that participants spontaneously extract 

the skeletons of 2D shapes, even in the presence of incomplete contours (Ayzenberg, Chen, et al., 

2019; Firestone & Scholl, 2014). Moreover, a 3D skeletal model predicted participants’ object 

similarity and category judgments, even when controlling for other models of vision (Ayzenberg & 

Lourenco, 2019b). Finally, neuroimaging studies with human and nonhuman adult primates 

demonstrate that shape skeletons are represented in early visual areas (i.e., V3; Lescroart & 

Biederman, 2012), putatively involved in creating “shape percepts”, and higher-level visual areas 

(e.g., inferiortemporal cortex; Hung et al., 2012), known for their involvement in object recognition. 

Nevertheless, adults have had extensive experience categorizing objects across variations in 

appearance. Thus, it is unknown whether skeletal representations support rapid object learning 

early in development, when experience is more limited. To answer this question, we tested whether 

infants categorize objects with identical skeletons, but different component parts and image-level 

properties, as similar. To further minimize effects of experience, infants were tested with unfamiliar 

objects and required to categorize objects from a single exemplar. 

Experiment 1 

Using a habituation-dishabituation paradigm, we tested whether infants categorize objects 

by their shape skeletons across variations in surface form, which changed the component-part and 

image-level properties of the objects without altering the skeleton. If shape skeletons are used for 

categorization, then infants should look longer at an object with a novel skeleton compared to a 

familiar skeleton, even across different surface forms. 

Methods 

Participants. Thirty-four full-term infants (M = 9.53 months, range = 6.47 – 12.2 months; 

18 female) participated in this experiment (6 additional infants were excluded: 5 for fussiness and 
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1 because of equipment failure). Sample size was determined by an a priori power-analysis with a 

hypothesized medium effect size (d = 0.50; 1 - β > .8).  

Stimuli. Six videos of 3D novel objects were rendered from the stimulus set created by 

Ayzenberg and Lourenco (2019b; see Figure 12 and Supplemental Figure 5). The object set was 

comprised of three distinct skeletons chosen by first conducting a k-means cluster analysis (k = 3) 

on skeleton similarity data for 30 unique objects and then selecting three objects that adult 

participants judged to be equally dissimilar (see Supplemental Materials). Each object was also 

rendered with two different surface forms, which changed the component parts of the object 

without altering its skeleton (see Figure 12A). These two surface forms (out of five) were selected 

because a separate group of adult participants judged them to be most dissimilar (see Supplemental 

Materials).  

We used data from Ayzenberg and Lourenco (2019b) to ensure that surface forms and 

skeletons were matched for perceptual discriminability and that surface forms were comprised of 

qualitatively different component parts (Biederman, 1987; see Supplemental Materials). Moreover, 

using the Gabor-jet model, a low-level model of image similarity based on the response profile of V1 

(Margalit et al., 2016), we confirmed that objects with different surface forms (same skeletons) 

differed significantly in their image-level properties, and importantly, objects with different 

skeletons (same surface forms) were matched in their image-level properties (see Supplemental 

Materials).  

Altogether, the present stimulus set provides an especially strong test of skeletal structure 

coding because objects with the same skeleton differed in both their component parts and image-

level properties, such that if infants categorized objects on the basis of their skeletons, they would 

do so despite these other visual differences. 
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Figure 12. Experimental design and results for Experiment 1. (A) Infants were habituated to one object, and 

then tested with objects that had either a familiar or a novel skeleton. Both objects differed in surface form 

from the habituation object. (B) Mean looking times for each phase of the experiment. Results are shown for 

the first four and last four trials of the habituation phase, and for familiar and novel trials of the test phase. 

Error bars represent standard error. (C) Histogram of infants’ responses on the test trials. A value greater 

than zero indicates greater looking time to the object with the novel skeleton.  

Procedure. Infants were seated on a caregiver’s lap approximately 60 cm from a 22-inch 

computer monitor (1920 × 1080 px). Caregivers were instructed to keep their eyes closed and to 

refrain from interacting with the infant during the study session. The experiment was controlled by 

a custom program written in Visual Basic (Microsoft) and gaze data were recorded with an Eye-

Link 1000 plus eye tracker recording at 500 Hz (SR-Research). Prior to the start of the experiment, 

the eye tracker was calibrated to each infant using a 5-point calibration routine. 

The experiment consisted of a habituation phase in which infants were presented with one 

object (single skeleton and surface form), and a test phase where categorization was tested using 

objects with familiar and novel skeletons, both of which differed in surface form from the 

habituated object (see Figure 12A). Each trial began with an attention-getting stimulus, which 
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remained onscreen until infants fixated it for 2 s. Infants were then shown a video of one object 

rotating across 60° (-30° to 30°; see Supplemental Materials). Videos remained onscreen for 60 s, or 

until infants looked away for 2 s.  

Average looking times for the first four habituation trials were computed online for each 

infant. Infants met the habituation criterion when average looking time in the preceding four trials 

was below 50% of the average looking time in the first four trials of the experiment. Test trials were 

presented after infants habituated, or following 24 habituation trials, whichever came first. Each 

infant was habituated to an object with one of three possible skeletons (random assignment), with 

half of the infants habituated to each surface form.   

All infants were presented with six test trials. The skeleton of the test objects was either 

identical to, or different from, the habituated object (alternating presentation; first test trial 

counterbalanced across infants). Each skeleton was used as the novel object in the test phase 

(random assignment).  

Results 

To ensure that results were not due to sample size decisions, we included non-parametric 

and Bayesian analyses in addition to null-hypothesis tests. 

Parametric and non-parametric results are displayed in Figure 12. A significant decrease in 

looking times between the first four trials and last four trials of the habituation phase confirmed 

that infants habituated to the object exemplar, t(33) = 8.39, p < .001. An analysis of the test trials 

revealed that infants looked significantly longer to the test object with the novel skeleton (M = 6.61 

s, SD = 4.75 s) than the familiar skeleton (M = 4.64 s, SD = 2.84 s), t(33) = 3.04, p = .005, d = 0.52, 

95% CI [0.16, 0.88], with the majority of infants demonstrating this pattern of performance (73.5%, 

p = .009; binomial test). Likewise, a Bayes factor (BF) analysis (Jeffrey-Zellner-Siow prior; Jarosz & 

Wiley, 2014) suggested moderate support for the alternative hypothesis, BF10 = 8.42. Moreover, 

there was significant dishabituation to the object with the novel skeleton, t(33) = 3.36, p = .002, d = 
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0.58, BF10 = 17.47, but not the familiar skeleton, t(33) = 1.00, p = .325, d = 0.17, BF10 = 0.29. There 

were no effects of age (ps > .179) or gender (ps > .631) in the habituation or test phase. Altogether, 

these results present strong evidence that infants categorized the objects on the basis of their 

skeletons, despite only experiencing a single exemplar during habituation, and despite the familiar 

test object differing from the habituated object in both the component parts and image-level 

properties. 

Experiment 2 

Nevertheless, an alternative explanation to the findings in Experiment 1 is that infants 

categorized objects, not by their skeletons, but by the “coarse” spatial relations of object parts 

(Biederman, 1987; Hummel, 2000). Like shape skeletons, a coarse spatial-relations model describes 

the relations between parts. However, unlike shape skeletons, this description is qualitative, not 

quantitative. For example, in Figure 12, the familiar object could be characterized as two 

components below a third (like the habituated object), whereas the novel object could be 

characterized as one component on either side of a third (unlike the habituated object). 

Importantly, a coarse spatial-relations model predicts that only qualitative changes to the 

arrangement of object parts should influence categorization. To rule out this alternative model, we 

tested infants with objects whose coarse spatial relations were held constant and, thus, not 

diagnostic of category.   

Methods 

Participants. Forty-eight full-term infants (M = 9.12 months, range = 6.17 – 12.00 months; 

20 female) participated in this experiment (4 additional infants were excluded: 3 for fussiness and 

1 because of equipment failure). Because objects with the same coarse spatial relations also have 

more similar skeletons, and, thus, may be more difficult to discriminate (Ayzenberg & Lourenco, 

2019), we hypothesized an attenuated effect of categorization in infants. Accordingly, to retain 
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adequate power, we chose to test 14 additional infants in this experiment (compared to Experiment 

1), the exact number of which was determined according to a fully counterbalanced design.  

Stimuli and Procedure. Four videos of 3D novel objects were rendered from the stimulus 

set created by Ayzenberg and Lourenco (2019; see Supplemental Figure 6). The object set was 

composed of two skeletons and two surface forms, the presentation of which (across habituation 

and test phases) was fully counterbalanced across infants. Importantly, objects consisted of the 

same coarse spatial arrangement of parts (i.e., a part on either side of a third; see Figure 13A), 

rendering these spatial relations uninformative. Thus, if infants’ performance in Experiment 1 was 

based on coarse spatial relations, then they would be unable to categorize objects in the current 

experiment. However, if infants represent objects via a shape skeleton, then they should 

successfully categorize the objects. Finally, as in Experiment 1, we used the Gabor-jet model to 

ensure that objects with the same skeletons (different surface forms) differed significantly in their 

image properties, and importantly, that objects with different skeletons (same surface forms) did 

not differ in these properties (see Supplemental Materials). The procedure was identical to 

Experiment 1, except that objects were presented from orientations that maximized the visibility of 

their structure (30° to 90°; see Figure 13A and Supplemental Materials). The presentation order of 

test objects was counterbalanced across infants.  



70 
 

 

Figure 13. Experimental design and results for Experiment 2. (A) Infants were habituated to one object, and 

then tested with objects that had either a familiar or a novel skeleton. Both objects differed in surface form 

from the habituation object but had the same coarse spatial relations. (B) Mean looking times for each 

condition. For the habituation phase, results are shown for the first four and last four trials. For the test 

phase, results are shown for familiar and novel trials. Error bars represent standard error. (C) Histogram of 

infants’ responses on the test trials. A value greater than zero indicates greater looking time to the object with 

the novel skeleton.  

Results 

Parametric and non-parametric results are displayed in Figure 13. A significant decrease in 

looking times between the first four trials and last four trials of the habituation phase confirmed 

that infants habituated to the object exemplar, t(47) = 7.23, p < .001. An analysis of the test trials 

revealed that infants looked significantly longer to the test object with the novel skeleton (M = 5.96 

s, SD = 4.32 s) than the familiar skeleton (M = 4.57 s, SD = 3.33 s), t(47) = 2.60, p = .012, d = 0.38, 

95% CI [0.08, 0.67], with the majority of infants demonstrating this pattern of performance (68.8%, 

p = .013; binomial test). Likewise, a Bayes factor (BF) analysis (Jeffrey-Zellner-Siow prior; Jarosz & 

Wiley, 2014) suggested moderate support for the alternative hypothesis, BF10 = 3.18. Moreover, 
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there was significant dishabituation to the object with the novel skeleton, t(47) = 3.63, p < .001, d = 

0.52, BF10 = 39.77, but not the familiar skeleton, t(47) = 1.42, p = .163, d =0.16, BF10 = 0.40. There 

were no effects of age (ps > .146) or gender (ps > .193) in the habituation or test phase. Finally, to 

ensure that effects were not unduly influenced by the larger sample size in this experiment, we 

computed bootstrapped CIs on a smaller sample. For each bootstrap procedure (10,000 iterations), 

we calculated Cohen’s d on data that were resampled (without replacement) to match the sample 

size of Experiment 1 (n = 34). The bootstrapped effect size was greater than zero, 95% CI [0.20, 

0.61], even with a smaller sample. These findings rule out infants’ reliance on coarse spatial 

relations as a strategy for single exemplar categorization, providing further evidence for 

categorization on the basis of the object’s shape skeleton.  

Discussion 

The ability to form robust object categories is often thought to rely on extensive experience 

with different exemplars, as well as conceptual object knowledge (Kibbe & Leslie, 2019; Slone, 

Smith, & Yu, 2019). Here we provide evidence for a perceptual mechanism that may support rapid 

object learning and may be innate to the visual system. Across two experiments, we found that 

infants were able to categorize unfamiliar objects by their skeletal structure following exposure to a 

single exemplar. Importantly, infants showed evidence of single exemplar categorization despite 

differences in the object’s component parts, image-level properties, and even when the objects’ 

coarse spatial-relations were identical. These results stand in stark contrast to state-of-the-art 

ANNs, which require thousands of training examples to learn an object category and have difficulty 

categorizing novel exemplars.  
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Supplemental Materials for “The shape skeleton supports single exemplar 

categorization in infants” 

Skeleton selection 

Experiment 1. Three novel objects with distinct skeletons were selected (from a set of 30) on 

the basis of their skeletal similarity. Skeletal similarity was calculated in 3D, object-centered, space 

as the mean Euclidean distance between each point on one skeleton and the closest point on the 

second skeleton following maximal alignment. A k-means cluster analysis (k = 3) was used to select 

three distinct objects, one from each cluster (see Supplemental Figure 5).  

We ensured that the three selected objects were matched for discriminability by analyzing 

participants’ discrimination judgments using data from Ayzenberg and Lourenco (2019b). 

Participants (n = 42) were shown images of two objects (side-by-side) that had either the same or 

different skeletons (same surface forms). Participants were instructed to decide whether the two 

images showed the same or different object. A repeated measures ANOVA, with skeleton pairs as 

the within-subject factor, revealed that the three skeletons did not significantly differ in their 

discriminability, F(2, 64) = .11, p = .898. 

Experiment 2. We selected one object from Experiment 1 whose skeleton could be altered 

without changing the coarse spatial relations. We altered the object’s skeleton by moving one 

segment 50% down the length of the central segment (see Supplemental Figure 6).  

Surface form selection 

Two surface forms were used in both experiments, a ‘thin’ (Surface Form 1) and ‘bulbous’ 

(Surface Form 2) form (see Supplemental Figures 5 and 6). Selection of these surface forms were 

based on adult participants’ data from the study of Ayzenberg and Lourenco (2019). In a match-to-

sample task, participants (n = 39) were shown one object (sample) placed centrally above two 

choice objects. One of the choice objects matched the sample’s skeleton, but not surface form, and 

the other choice object matched the sample’s surface form, but not skeleton. Participants were 
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instructed to decide which of the two choice objects was most likely to be in the same category as 

the sample object. Participants performed worst at categorizing objects by their skeleton when 

Surface Form 1 was paired with Surface Form 2, M = 0.58, compared to the other surface forms (Ms 

= 0.61 - 0.78). Thus, by choosing the surface forms that presented adult participants with the 

greatest conflict, we provided infants with an especially strong test of skeletal structure coding.  

To ensure that surface forms were matched in discriminability to the selected skeletons, 

participants (n = 41) conducted a surface form discrimination task, wherein they were shown 

images of two objects (side-by-side) that consisted of either the same or different surface forms 

(same skeleton). Participants were instructed to decide whether the two images showed the same 

or different object. Participants were found to discriminate between Surface Forms 1 and 2 

significantly better than would be predicted by chance (0.50), t(40) = 8.95, p < .001, and 

importantly, discrimination accuracy between surface forms did not differ from discrimination 

accuracy between skeletons, t(80) = 0.02, p = .981. 

In a separate set of analyses, we tested whether surface forms were comprised of 

qualitatively different component parts by having participants rate each surface form on the degree 

to which it exhibited a specific non-accidental property (NAP). During a training phase, participants 

(n = 34) were taught four NAPs (drawn from Amir et al., 2012). They then rated the degree to which 

each surface form exhibited a particular NAP. The four NAPs were: (1) taper, defined as the degree 

to which the thickness of an object was reduced towards the end; (2) positive curvature, defined as 

the degree to which an object part curved outwards; (3) negative curvature, defined as the degree 

to which an object part curved inwards; and (4) convergence to vertex, defined as the degree to 

which an object part ended in a point. Prior to the statistical analyses, we ensured that all 

participants in this sample exhibited reliable performance (αs > 0.7). A repeated measures ANOVA, 

with NAP as the within-subject factor and surface form as the between-subject factor, revealed a 
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significant main effect of surface form, F(1, 66) = 64.00, p < .001, suggesting that surface forms were 

comprised of different NAPs. 

In a final analysis, we tested whether objects with different surface forms, but the same 

skeleton, had significantly different image-level properties. Each object video was converted into a 

sequence of images (30 frames/s; 300 frames total), which were analyzed with the Gabor-jet model 

(Margalit et al., 2016). This model overlays a 12 × 12 grid of Gabor filters (5 scales × 8 orientations) 

on each image. The image is convolved with each filter, and the magnitude and phase of the filtered 

image is stored as a feature vector. To test whether two object videos consisted of different image-

level properties, we used paired t-tests to compare the feature vectors from each frame of one 

video to the corresponding frames of a second video. To provide an estimate of the image-level 

difference across the entire video, the resulting p-values from each t-test were then averaged across 

frames. This analysis revealed that objects with the same skeleton, but different surface forms, had 

significantly different image-level properties (p = .002), whereas objects with different skeletons, 

but same surface form, did not (p = .09).  

  



75 
 

 

Supplemental Figure 5. Stimulus set used in Experiment 1. Each column displays objects with the same 

skeleton, but different surface form. Each row displays objects with the same surface form, but different 

skeleton. Each object was presented as a video wherein the object rotated through 60° (-30° to 30°). 

 

Supplemental Figure 6. Stimulus set used in Experiment 2. Each column displays objects with the same 

skeleton, but different surface form. Each row displays objects with the same surface form, but different 

skeleton. Objects with different skeletons consisted of the same “coarse” spatial relations. Each object was 

presented as a video wherein the object rotated through 60° (30° to 90°). 
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Chapter 5 - General Discussion 

How do humans quickly form robust shape representations to accomplish object 

recognition? In the present dissertation, I hypothesized that a model of structure, known as the 

shape skeleton, supports the ability to both form global shape representations and recognize 

objects, with little visual experience. In Study 1, I found that shape skeletons were predictive of 

human object dissimilarity and category judgments, even when controlling for other models of 

vision. The findings from this study suggest that shape skeletons play a unique role in object 

recognition (Ayzenberg & Lourenco, 2019b). In Study 2, I found that a model of skeletal similarity 

was predictive of the multivariate patterns in V3 and LO, regions implicated in perceptual 

organization and object recognition (Ayzenberg, Kamps, et al., 2019). Finally, in Study 3, I found 

that infants, a population with little visual experience, could readily categorize never-before-seen 

objects using the shape skeleton, suggesting that it may support one-shot object categorization 

(Ayzenberg & Lourenco, 2019a). Together, these studies provide support for shape skeletons as a 

powerful mechanism by which humans form robust shape representations and accomplish object 

recognition.  

Two roles for skeletons in human vision 

Perceptual organization plays an important role at every level of visual analysis. At early 

stages of visual processing, it allows adjacent contours to be grouped into continuous line segments 

(Wagemans et al., 2012; Zhou et al., 2000); at the later stages, it groups local visual features into 

complete objects (Craft et al., 2007; Feldman et al., 2013; Martin & von der Heydt, 2015). This latter 

stage of processing is particularly complex because it requires the visual system to determine the 

relations between spatially distant elements (von der Heydt, 2015). Indeed, unlike other aspects of 

visual perception, neural network models do not approximate human perceptual organization 

processes (Linsley, Eberhardt, Sharma, Gupta, & Serre, 2017; Mehrani & Tsotsos, 2019), perhaps 

explaining why ANNs have difficulty recognizing objects when there are minor distortions to the 
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image background (Rosenfeld, Zemel, & Tsotsos, 2018; Szegedy et al., 2013; Wu, Wu, & Kreiman, 

2018).  

I have proposed that shape skeletons are ideally suited to support this latter stage of 

perceptual organization because they describe how local visual features (e.g., component parts) are 

arranged relative to one another to make a complete shape. Indeed, my masters work showed that 

skeletons were predictive of participants’ responses in Kanisza shapes – stimuli where the shapes 

are inferred by integrating spatially distant elements (i.e., corners; Ayzenberg, Chen, et al., 2019). 

Moreover, Study 2 of my dissertation showed that a model of skeletal similarity explained the most 

variance in the multivariate pattern of area V3, a visual region consistently implicated in perceptual 

organization (Sasaki, 2007). Thus, shape skeletons not only offer a mechanism by which the human 

visual system accomplishes perceptual organization, but they also provide a quantitative method to 

improve these abilities in artificial neural networks.  

As mentioned previously, shape skeletons are also particularly good models for object 

recognition because their structure remains stable across variations in viewpoint and exemplar. 

These properties make shape skeletons a strong candidate for explaining how organisms 

accomplish invariant object recognition – the ability to recognize never-before-seen viewpoints or 

exemplars of objects. Invariant object recognition has been a long-standing problem in the vision 

sciences because it requires the organism to form an object representation that is abstracted away 

from the image on the retina. Across the studies of this dissertation, I tested skeletons against 

multiple theories of invariant recognition: image-similarity models (e.g., Gabor-jet; Tarr & Bülthoff, 

1998), component description theories (Biederman, 1987), and learned feature descriptors (i.e., 

AlexNet; Krizhevsky et al., 2012). In all three studies, I found that participants’ behavioral and 

neural responses were best fit by a skeletal model. Shape skeletons explained more variance in 

participants’ responses than either image models or ANNs, and they were a better predictor of 

human category judgments than models based on component parts and coarse spatial relations. 
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Shape skeletons can support invariance by ignoring visual features that may be considered 

noise. However, it remains unclear how the visual system determines which visual properties 

constitute noise. One possible determinant for what constitutes as noise follows from rules 

governing object-part segmentation (De Winter & Wagemans, 2006; Feldman et al., 2013). 

According to these rules, a visual feature may be less likely to be treated as noise if it is perceived as 

a new object part (Feldman & Singh, 2006). Thus, in current dissertation, participants readily 

generalized across surface form changes because they changed shape of individual component 

parts, but did not meet constitute as a new object part (De Winter & Wagemans, 2006; Dhandapani 

& Kimia, 2002; Hoffman & Richards, 1984; Singh, Seyranian, & Hoffman, 1999). By contrast, if we 

had added an additional part, or ‘leg’, to the objects, then participants would not have generalized.   

A second determinant for what constitutes noise may depend on the level of perceptual 

detail required by the task. As described previously, the shape skeleton is organized hierarchically, 

such that there may be a series of parent axes that describe the shape’s coarse global geometry, as 

well as smaller ‘off-shoot’ axes that describe individual component parts. Although these smaller 

off-shoot branches are typically pruned away during shape perception (Ayzenberg, Chen, et al., 

2019),  participants may extract a more detailed skeleton if the task required subordinate-level 

categorization and fine-grained shape discriminations (Biederman & Shiffrar, 1987; Tarr & 

Bülthoff, 1995). In the current dissertation we sought to characterize the nature of participants 

‘default’ skeletal representations, however, future work should explore how skeletal 

representations change with different types of object manipulations and different task demands. 

What is a shape? 

Shape is thought to be a fundamental property of object representations (Wagemans et al., 

2008). Yet, there is very little agreement regarding the format of human shape representations. 

Indeed, proposals have ranged from veridical representations that are closely tied to the physical 

input on the retina, such as models based on contours and image-level properties (Tarr & Bülthoff, 
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1998), to mentally constructed representations that abstract away from the input, such as those 

based on component parts and non-accidental properties (NAPs; Biederman, 1987). In the current 

dissertation, I have argued for a constructed representation of shape based on an extracted skeletal 

structure. Unlike veridical representations, shape skeletons (particularly pruned algorithms) are 

tolerant to variations in contours and image-level properties. Indeed, in all three studies of my 

dissertation, human behavioral and neural responses were better described by a skeletal model 

than models based on image or contour properties (e.g., Gabor-jet; surface forms). Moreover, even 

though participants were largely tested with 2D images (Study 1 and Study 2), their responses were 

best fit by a 3D viewpoint-invariant skeletal model, further suggesting that human representations 

of shape are abstracted away from the physical stimulus. Our results also suggest that skeletal 

models are a better descriptor of shape representations than other constructed models, such as 

those based on component parts and a coarse spatial structure. Indeed, both adults and infants 

identified objects by their skeletons across differences in surface form, which changed the non-

accidental properties of objects, as well as when coarse spatial relations were held constant. Thus, 

shape skeletons are a biologically plausible mechanism by which humans represent shape 

information and may offer a quantitative formalization of the oft poorly defined concept of global 

shape. 

In the current dissertation, I tested whether humans represent a 3D skeletal structure 

rather than a 2D skeleton that is arguably easier to compute from an image (Trinh & Kimia, 2011). 

This decision was motivated by behavioral (Lowet et al., 2018) and neuroimaging work (Hung et al., 

2012; Lescroart & Biederman, 2012) suggesting sensitivity to 3D skeletons in the primate visual 

system, as well as accumulating evidence that object perception (at least for novel objects) is best 

described by a 3D object-centered shape representation (Erdogan & Jacobs, 2017; Yamane et al., 

2008). However, it remains unknown how a 3D skeletal structure arises from 2D images on the 

retina. One possibility is that skeletal computations in the visual system invoke generative shape 
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processes (Elder, Oleskiw, Yakubovich, & Peyré, 2013; Trinh & Kimia, 2007). These processes may 

be able to recover an object’s 3D skeletal structure from retinal images by incorporating a small 

number of image-computable 2D skeletons (e.g., one from each eye; Qiu, Hatori, & Sakai, 2015). 

Alternatively, it is possible that an object’s 3D structure may be recovered from a single image by 

first creating a representation based on depth properties and surface orientation, a so-called 2.5D 

sketch (Marr & Nishihara, 1978). Indeed, recent neural network models have been able to 

successfully reconstruct an object’s 3D shape from single images by incorporating 2.5D sketches 

(Wu et al., 2017). Moreover, preliminary data from our lab suggest that input from depth 

perception regions of the parietal cortex are particularly important for recovering an object’s 3D 

shape when its presented from rotated viewpoints (Ayzenberg, Kubert, Dilks, & Lourenco, in prep). 

Together, these studies suggest that monocular and binocular depth information may be 

particularly important for 3D skeleton generation. 

Developmental origins of shape skeletons 

One question raised by these findings is: how do skeletal representations arise in 

development? Although we found evidence of skeletal representations in infants as young as 6 

months of age, it remains unclear whether infants are born with skeletal representations. One 

possibility is that children learn to rely on shape skeletons because they are a stable property of 

many object categories. That is, although image-level properties and component parts vary across 

views and exemplars, the shape skeleton remains constant and may come to serve as a privileged 

source of information. However, another possibility is that shape skeletons are an emergent 

property of early developing visual regions. More specifically, it is well known that early visual 

regions (i.e., V1-V3) are relatively mature at birth (Johnson, 2011; Kellman & Arterberry, 2006; 

Rakig, 1977). In Study 2, we found evidence of skeletal coding in V3, which may suggest that young 

infants are able to rely on mature V3 representations to categorize objects using the shape skeleton. 
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Thus, the early maturity of V3, and its ability to represent the shape skeleton, may help bootstrap 

object learning across development. 

Yet, the results from Study 3 stand in stark contrast to other developmental work that 

suggests that global shape perception is experience dependent. For instance, many studies have 

suggested that even 8- and 9-year-old children have difficulty perceiving global shape and, instead, 

may focus on local object features (Davidoff & Roberson, 2002; Scherf, Behrmann, Kimchi, & Luna, 

2009; Wakui et al., 2013). Moreover, the development of the ‘shape bias’ has been shown to depend 

on prior experience, such that children will begin to favor shape cues (over color and texture) only 

once they have sufficient linguistic experience with other categories (Landau, Smith, & Jones, 1998; 

Smith, 2003). How can these disparate findings be reconciled? One possibility is that these results 

reflect a performance-competence distinction. More specifically, many of the aforementioned 

studies rely on trials wherein global shape is placed in conflict with another cue (e.g., texture). To 

succeed on these trials, children must exhibit sufficient inhibitory control to avoid responding to 

the distracting cue – a feat which is difficult for children of this age (Logan, Schachar, & Tannock, 

1997). Moreover, it’s unclear whether studies linking object categorization to linguistic experience 

are measuring children’s perceptual abilities to form categories, or their ability to link words to an 

object referent. Indeed, other work from our lab has found that 3-year-old children can readily 

recognize objects by their global shapes when inhibitory control and language demands are 

reduced (Ayzenberg et al., under review). Together, our findings suggest that the ability to 

categorize objects by a skeletal representation of global shape is present from early in development 

and may underlie later perceptual abilities. 

A role for other visual properties 

Although our findings suggest that skeletal descriptors play an important role in perceptual 

organization and object recognition, we would not argue that skeletal descriptions alone are 

sufficient. Humans do not perceive the visual environment simply as a collection of skeletons, but 
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rather, as complete objects where local contours, textures, and colors are integrated with a skeletal 

structure. Indeed, our results in Studies 1 and 2 showed that other models of vision were also 

predictive of participants’ behavioral and neural responses to varying degrees. That other models 

were also predictive may be unsurprising, given that both shape- and non-shape-related properties 

are known to play important roles in object recognition. For instance, local contour information 

may be particularly useful for making subordinate-level category distinctions where pruned object 

skeletons of objects are roughly the same (Davitt et al., 2014; Hummel & Stankiewicz, 1996). 

Similarly, texture statistics and feature descriptions have been shown to be important indicators of 

both basic (Elder & Velisavljević, 2009; Ullman et al., 2016) and superordinate-level (Long et al., 

2017; Long et al., 2018) object distinctions. Nevertheless, our work highlights the importance of 

formalized models of shape for object recognition, particularly the unique, and possibly privileged, 

role that skeletal structures may play. 

Conclusion 

How is it that, from early in development, humans are able to form robust and seemingly 

abstract representations of objects to support recognition? Using a combination of behavioral, 

neural, computational, and developmental methods we found that a model of structure known as 

the medial axis, or shape skeleton, can support the creation of robust shape representations, 

recognition, and rapid object learning. Together, these findings offer insights into the object 

processing mechanisms of the human mind and brain, and shed light on the developmental 

mechanisms that support mature perception and recognition.  
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