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Abstract 
 

Sub-tissue type eQTL analysis of GTEx data 
 

By Qi Yu 
 
 
 

Background: Large-scale expression quantitative trait loci (eQTL) studies have been 
carried out recently to provide insights on how single-nucleotide polymorphisms 
associated with the expression of known genes. However, most of such studies ignored cell 
type mixing. Recent studies showed there are differences in gene expression patterns 
among different cell types. Thus tissue-specific eQTL studies with tissues of mixed cell 
type may suffer from false positives problems. In this work, we provide a new tool for sub-
tissue type eQTL analysis with a recently published method (TOAST) for identifying cell-
type specific effects. 
 
Materials and Methods: Here we only consider the case of whole blood in GTEx project. 
We test both reference-based methods--CYBERSORTx and PRC with reference LM22 and 
a reference-free method--TOAST for deconvolution. We then conduct sub-tissue type 
specific eQTL analysis using TOAST. 
 
Results: Deconvolution analysis show that there is a significant difference in the 
proportions of the six major cell types found in whole blood (CD4 T Cells, CD8 T Cells, 
B cells, Monocytes, Neutrophils and NK cells) across samples. Cell-type specific eQTL 
analysis on gene MARK4 with its significant associated SNPs in whole blood shows that 
eQTLs of MARK4 are more significant for Neutrophils than that for other cell types in 
the mixture.  
 
Conclusion: We present a novel sub-tissue type eQTL analysis tool, can be applied to 
expression data measured from whole tissues provided knowledge of the reference cell 
types of the tissue is known. Our study reveals that eQTL analysis can be conducted at 
the sub-tissue type level when a reference is available. 
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1. Introduction 

Thousands of genome-wide association studies (GWASs) have been published to date.  

Subsequently, large-scale expression quantitative trait loci (eQTL) datasets are studied to 

provide insights into how single-nucleotide polymorphisms (SNPs) associated with the 

expression of known genes. The latest Genotype-Tissue Expression (GTEx) project [12] 

(version 8) collects 54 human tissues from each of 948 donors and identifies eQTLs by 

associating genotypes called from whole-genome sequencing with gene expression levels 

obtained from bulk RNA-Seq. 

  

The GTEx data, however, ignored cell type mixing.  They only provide gene expression 

data with a weighted average of signals from multiple cell types for different tissues.  The 

QTL studies with tissues of mixed cell type may suffer from additional challenges because 

the mixing proportions may be confounded with covariates (PEER factors) used in eQTL 

analysis.   The confounding yields false positives in eQTL and co-expression analysis. [19] 

  

There are several methods and software published for identifying cell-type specifics 

effects [11, 10].  The first step for these methods is figuring out cell mixture proportions. 

Existing cell-type proportion estimate methods mainly fall into two major categories: 

reference-based deconvolution [14, 5, 1, 4] and reference-free deconvolution [10, 16, 3, 

18, 9, 2, 8].  The reference-based deconvolution is limited to known reference panels, 

where existing reference panels are only available in the brain [6], pancreas [13], and 
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blood [22, 1, 17].  The reference-free deconvolution is applied when the reference panels 

are not available or there are mixed tissues.  With known cell-type proportion, a linear 

based model framework can be applied to conducting the cell-type-specific analysis.[11] 

  

In this work, we provide a new tool, for cell-type-specific eQTL analysis. This tool provides 

an RNA-seq deconvolution algorithm with both a reference-based and reference-free 

method, and a linear model-based framework for eQTL analysis. Compared to other eQTL 

analysis tools, our work can identify cell-type-specific eQTLs without knowing cell type 

profiles. 

 

2. Methods and Materials 

The data used for the analyses described in this manuscript were obtained from the GTEx 

Portal and dbGap accession number phs000424.v8.p2. The current release of GTEx (V8) 

includes 17,382 RNA-Seq samples from 948 donors. In this work, we focus on blood-tissue 

cis-QTL Data downloaded from GTEx Portal and corresponding genotype data from dbGap. 

 

2.1 Observation Parameters 

Our dataset includes 369 samples. For each sample, there are 20315 genes with 

expression level, whole genotype calls, and 65 covariates used in eQTL analysis, including 

genotyping principle components and PEER factors. 

2.2 Deconvolution Algorithm 
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The first step for our method is to obtain mixing proportions. The mixing proportion can 

be computationally measured by several existing methods. In this manuscript, we use 

reference-based deconvolution methods CYBERSORTx [15], Robust Partial Correlations 

(PRC) [21], Constrained Projection (CP)[7] and a reference-free deconvolution method 

TOAST RefFreeEWAS [10] 

 

The Reference-based method treats the gene-expression profile of any given sample as a 

linear combination of a given set of reference gene-expression profiles underlying some 

specific cell-types. Given a number C of underlying cell-types, each with a gene-expression 

profile bc and denoting by y the gene-expression profile of a given sample, the underlying 

model is 

 

The general idea is to estimate the weight coefficients for each cell-type in a least squares 

sense. Assuming that the reference database contains some specific cell-types presenting 

in the sample y, one may assume that ∑ 𝑤! = 1"
!#$  (or more generally that ∑ 𝑤! 	£	1"

!#$ ) 

The 3 algorithms differ in how the normalization constraint is implemented: 

 

CYBERSORTx and PRC restrict the weight of the cell types that must be non-negative and 

add to one after the deconvolution process. CYBERSORTx enforces the constraints using 

a machine learning-based method and RPC applies robust multivariate linear regression 

and robust partial correlations. 
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CP performs the inference of weight least squarely but imposes the positivity and 

normalization constraints as a part of the inference process. 

 

The reference-free method based on kinds of factor analysis. It selects a set of 

"informative" features that contains the information for cell proportion. TOAST provides 

an efficient feature selection procedure to improve RefFreeEWAS [8]. The key idea is to 

identify features showing distinct profiles across different cell types, without knowing the 

pure cell type profiles or mixing proportions a priori. The feature selection procedure is 

purely data-driven, without requiring any additional information. When the reference is 

unavailable, the reference-free method is the only solution. 

 

2.3 Cell type-specific eQTL analysis 

With a known mixing proportion, we conduct cell-type-specific eQTL analysis with the 

differential signals dissecting method proposed by Li (2018) [11]. In our work, we have G 

genes and N samples. Denote the observed expression level for gth gene and ith sample 

by Ygi We assume there are K cell types in the mixture, and the proportions obtained for 

sample i are θ% = 'θ%$, θ%&, … , θ%'* . Here we note that for reference-based method 

CYBERSORT, there are six types of purified blood cells (K=6, Nk, Bcell, CD8Tcell, CD4Tcell, 

Monocytes, Neutrophils). For reference-based method TOAST RefFreeEWAS, K can be set 

as a constant number, with unknown exact cell type. 
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For the gth gene in the ith sample, denote the unobserved expression in the kth cell type 

as Xgik. For simplicity of notation, we will drop the subscript g in the following derivation. 

And our method will be performed one gene at a time in the same manner. Let δ(  be the 

genotype and 𝑍(  be a vector for covariates, including genotyping principle components 

and PEER factors. 

 

We assume the pure cell type profile satisfies: E(Xik) = uk + dirk + Zibk. Here uk represents 

the mean level for cell type K, and rk,  bk are coefficients associated with the covariates. 

The observed data Yi is the weighted average of Xik 's. For sample i, given the proportion 

θ(  we have 

 

This is a linear based model, which includes mixing proportion as main effects and mixing 

proportion by covariate interactions. Assume we have Y from a total of N samples. Denote 

all observed data as 𝑌	 = 	 [𝑌$, 𝑌&, ⋯ , 𝑌 ]) *  , the observed data can be described as a linear 

model: 

 

Where: 

 



 6 

Using this model, we can conduct a cell-type-specific eQTL analysis. Note that genotype 

δ(  has three levels (0, 1, 2). Therefore, we can perform F-test on k cell-type-specific eQTL 

analysis by following hypothesis test: 

 

 

3. Results 

3.1 Deconvolution 

3.1.1 Reference based deconvolution CYBERSORTx on blood tissue 

In this work, we only consider the case of blood tissue, in which the main constituent cell 

types are well known. We use the leukocyte gene signature matrix (LM22) designed by 

CYBERSORT team as a blood reference which contains 6 blood cell types (CD4.T.cells, 

CD.8.T.cells, B cells, Monocytes, Neutrophils, and NK.cells) 

 

 

Figure 1, box plot of cell proportion in whole database 
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Figure 2, Density plot of cell proportion in whole database 

Figure 1 and figure 2 show the proportion of six cell types in the whole database. The 

distribution of these proportions is all highly skewed, with a median around 0, but some 

high proportions for a few samples. Six cell types have different distribution patterns. CD4 

T cells, CD8 T cells, and Neutrophils are three main components for most of the samples. 

 

Figure 3, Pearson correlation coefficient matrices for 369 samples 
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Figure 3 shows the Pearson correlation coefficient matrices for 369 samples, indicating 

heterogeneity among samples. In the next section, we will compare eQTL analysis in a 

homozygous subgroup to that in a random group. 

 

3.1.2 Comparison between reference based methods and reference free method. 

We verify and compare the result in Figure 1 with alternative reference-based method 

RPC and reference-free method TOAST RefFreeEWAS. (Note: for this specific database 

and reference, reference-based method CP provided in our R package is unavailable due 

to inconsistent constraints in CP) 

 

Figure 4, correlation plot of reference-based methods and reference-free method 
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Figure 4 shows the correlation plot for reference-free methods and reference-based 

methods with specific cell types. Results for reference-based methods CYBERSORTx and 

RPC are significantly correlated (with Pearson correlation coefficient 0.95), whereas 

results for reference-based method CYBERSORTx and reference-free method TOAST 

RefFreeEWAS are moderate positive correlated (with Pearson correlation coefficient 

0.46).  

 

It was reported that the reference-based method, in general, provides a more accurate 

and robust estimation than the reference-free method [14, 21, 23]. However, when 

reference is unavailable, the reference-free method is still a moderate reliable solution. 

 

3.2 Cell-type specific eQTL analysis 

In this manuscript, we pick gene MARK4 (ENSG00000007047.10) and its significant SNP 

pairs on chromosome 19 provided by the GTEx portal to illustrate our methods and 

findings. We use MARK4 due to a recent study that there is a functional requirement of 

MARK4 to maintain Neutrophils recruitment, and MARK4 expresses more significant in 

Neutrophils than in other cell types in blood. 

 

3.2.1 Cell-type specific eQTL analysis on whole sample 

We conduct a cell-type-specific eQTL analysis with the proposed method. 
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Figure 5, -log(p-value) matrices for whole sample eQTL and cell specific eQTL 

Figure 5 shows that the whole sample produces more significant p-value for the same 

eQTL than that for any specific cell type. This difference due to a limitation of our method, 

we will consider improving our algorithm in future work. 

 

To make this comparison between different cell types and the whole sample more 

straight forward. We only consider significant eQTLs with a p-value of less than 0.05. Our 

threshold 0.05 is larger than the standard in the GTEx portal. We choose 0.05 because of 

our small sample size and limited number of covariates in our database. 

 

Figure 6, Significant whole sample eQTLs and cell-specific eQTLs 

Cell type Whole Neutrophil Monocytes NK cells CD 4 T cells CD 8 T cells B cells 
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Num of sig 
eQTL 

122 60 11 21 3 7 2 

Table 1, Summary table for cell-specific eQTLs analysis 

Figure 6 and table 1 show there are more significant eQTLs of MARK4 in Neutrophil than 

in other cell types, corresponding to the study MARK4 expresses more in Neutrophil than 

in other cell types. And for each cell type, it has specific eQTLs compared to other cell 

types. Therefore, our tool works well on finding cell-type-specific eQTLs. 

 

3.2.2 Cell-type specific eQTLs in homozygous subgroup and random subgroup 

Figure 4 shows there are three cluster groups in the whole sample. We conduct a cell-

type-specific eQTL analysis on the first cluster and a random group with the same sample 

size. 

 

(a) homozygous subgroup 
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(b) random subgroup 

Figure 7, box plot of cell proportion in homozygous subgroup and random subgroup 

Figure 7 shows that homozygous subgroup has more B cells, CD 8 T cells and NK cells than 

random group.  

 

(a) homozygous subgroup 

 

(b) random subgroup 
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Figure 8, Significant cell-specific eQTLs in homozygous and random subgroups 

Cell type Whole Neutrophil Monocytes NK cells CD 4 T 
cells 

CD 8 T 
cells 

B cells 

Num of sig 
eQTL(homozygous) 

118 9 8 19 0 5 0 

Num of sig 
eQTL(random) 

119 2 15 18 2 3 6 

Table 2, Summary table for cell-specific eQTLs in homozygous and random subgroups 

Figure 8 and Table 2 indicate there isn’t a specific pattern in a significant level change in 

homozygous and random subgroups. And compared to the whole database, Neutrophils 

do not have more significant eQTLs than other cell types. The possible reason is that our 

method does not perform well in a small database. Future work is needed to improve our 

tool. 

 

4. Conclusion 

In summary, we have presented a novel sub-tissue type eQTL analysis tool, for finding 

cell-specific eQTLs in mixtures. We expect wide applications of the proposed method on 

uncovering sub-tissue heterogeneity in eQTL analysis, and to this expectation, we are 

working on an R package which will be freely provided to the bioinformatics community. 

 

5. Discussion 

For the future version of our tool, we plan to consider several extensions and 

modifications. Firstly, we consider designing a fast and efficient cell-type-specific eQTL 

analysis tool which can perform testing on multiple transcript-SNP pair at a time. It may 

provide 5-10 orders of increase in performance. Secondly, we will consider using several 

methods dealing with missing data, rather than abandon the whole sample. Thirdly, we 
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will consider an alternative method for testing how gene expression associated with 

genotypes. We will also consider designing a procedure to help users choose a better-

performed deconvolution and method and make improvements on reference-free 

deconvolution. 
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