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Abstract 

 
 

Advanced Exposure Assessment of Air Pollution and its Effects on Maternal and Child Health in 
Low-income Settings 

 
By Jiawen Liao 

 
 

In this dissertation, the author explored advancing exposure assessment methods of air pollution and 

analyzed the maternal and child health effects of air pollution exposure from solid fuel combustion 

and ambient environment in low-income settings in Guatemala and India. Household air pollution 

from solid fuel combustion is a leading health risk factor for disease in low-income settings. Using 

data from the Household Air Pollution Intervention Network (HAPIN) trial in Guatemala, the author 

showed the feasibility of indirectly assessing household air pollution exposure in children by personal 

use of Bluetooth signal emitters for microenvironment classification. Based on a prospective cohort 

of pregnant women from HAPIN trial in Guatemala, the author then investigated the effects of 

gestational blood pressure effects of fine particulate matter (PM2.5) exposure. In additional to 

household air pollution, there are growing risks of ambient air pollution in low- and middle-income 

countries such as China and India, due to rapid industrialization and urbanization. The author 

developed a monthly ambient PM2.5 exposure prediction model using a machine-learning algorithm, 

based on satellite remote sensing, meteorology and land use information, cross-validated with ground-

based PM2.5 monitoring stations over 10-year period in India. Ultimately, the author examined the 

adverse effects of ambient PM2.5 exposure on child all-cause mortality under age of five in India, 

linking predicted ambient air pollution and a retrospective birth cohort. 
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Chapter 1 Introduction  

 

1.1  Motivation 

 

Air pollution, both household and ambient, is among the major health risk factors globally, responsible for over 

4.5 million premature death in 2017 (Roth et al., 2018). Even though all countries, rich or poor, are adversely 

affected by air pollution, the health burden is disproportionally large among low- and middle-income countries 

(LMICs) (Health Effects Institute, 2019). There are several reasons for this. First, in LMICs, a large proportion 

of the population rely on solid fuel combustion for cooking and heating, generating high levels of household 

air pollution (HAP) with PM2.5 and carbon monoxide (CO) concentrations that are orders of magnitude greater 

compared to those using cleaner fuels (Shupler et al., 2018). Second, populations in LMICs are also exposed to 

high level of ambient air pollution (AAP), the air pollutant in the outdoor air environment. Based on global 

ambient PM2.5 exposure model, nearly all populations exceeding the PM2.5 exposure annual mean of 10 µg/m3, 

a World Health Organization (WHO) annual guideline live in LMICs (Shaddick et al., 2018; World Health 

Organization, 2005b). The higher population average air pollution exposure in LMICs results in the larger life 

expectancy loss (Health Effects Institute, 2019). Populations living in LMICs experience a double burden of 

air pollution, both from HAP and AAP. 

 

In LMICs, pregnant women and young children are particularly vulnerable to air pollution exposures. Women 

often cook meals for their households and thus have higher HAP exposures (Dasgupta et al., 2006).  Biological 

susceptibility is increased in gestating fetuses and young children due to their physiologic immaturity and larger 

inhalation of air pollutant per body weight compared to adults. Children’s airways are narrower compared to 

adults, and pulmonary function is immature until just before adulthood (Makri & Stilianakis, 2008). Maternal 

and child health effects of ambient and household air pollution have been widely studied; multiple adverse 

maternal and child health outcomes include adverse pregnancy outcomes (Amegah et al., 2014; Sun et al., 2015),  
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low birth weight (D. P. Pope et al., 2010a; Stieb et al., 2012), acute respiratory infections (ARI) (Dherani et al., 

2008; Gurley et al., 2013; Romieu et al., 2002; Smith et al., 2011b) and child mortality (Glinianaia et al., 2004; 

Son et al., 2017; WHO Regional Office for Europe, 2013).  

 

Despite the high absolute health burden of air pollution in populous LMICs like India and China, most of the 

epidemiological evidence of maternal and child health effects of air pollution comes from high-income regions, 

mainly in North America and Europe (Burnett et al., 2014, 2018). To inform the health risks of air pollution in 

LMICs and resource-limited settings, several research priorities have been identified, including: 1) improve 

characterization and mapping of air pollution exposure to elucidate health effects, especially in LMICs (Clark 

et al., 2013; Landrigan et al., 2018); 2) design informative observational studies that can collect sufficient 

personal air pollutant exposure data; and 3) design randomized controlled trials of contextualized and realistic 

interventions that take into account broader macroeconomic, infrastructure and environmental factors (Majid 

Ezzati & Baumgartner, 2017). Development and validation of air pollution measurement technologies and 

approaches to assess personal exposure to air pollutants, both AAP and HAP, plays a crucial role in designing 

effective air pollution interventions and informing policies.  

 

Recently, global collaborative efforts have been taken to improve air pollution exposure assessment, especially 

with the refinement of estimates in the Global Burden of Disease (GBD) project in 2012 (Lim et al., 2012). 

The GBD 2012 project developed complex modelling techniques for HAP and AAP exposure globally, largely 

improving exposure data coverage for LMICs (Lim et al., 2012; Stanaway et al., 2018). While this was a 

substantial improvement over previous models, due to the lack of personal air pollution exposure assessment 

in household air pollution studies (Clark et al., 2013; Mortimer et al., 2017; Quansah et al., 2017) and the scarcity 

of ambient air pollution monitoring stations in low-resources settings (Brauer et al., 2019), accurate assignment 

of air pollution exposure in these regions is still lacking. 
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There are large research gaps in the understanding of air pollution health effects in lower-income settings. On 

the one hand, there is limited air pollution exposure data; on the other hand, the dearth of the high-quality 

health data available for epidemiological investigation limits an air pollution exposure-response analysis of 

health outcomes (Balakrishnan et al., 2018). A few cohort studies have been conducted to investigate health 

effects of air pollution exposure in low-income settings, such as in Western Highlands of Guatemala 

(Heinzerling et al., 2016; McCracken et al., 2007; Northcross et al., 2010; Smith et al., 2011a; Thompson et al., 

2011), and in Tamil Nadu of India (Balakrishnan, Ghosh, et al., 2018a). However, knowledge gaps still exist in 

LMICs, especially for information on air pollution exposure-response relationships, which is mostly derived 

from studies in developed regions, even though LMICs have the highest exposures to air pollution (Burnett et 

al., 2014, 2018).  

 

Motivated by the need to clarify the health effects of household air pollution, the Household Air Pollution 

Intervention Network (HAPIN) trial was designed to investigate potential health benefits of liquefied 

petroleum gas (LPG) cookstoves use in settings relying mainly on solid biomass fuels for cooking. The HAPIN 

trial was designed as a randomized controlled trial of an LPG cookstove and fuel intervention in 3,200 

households with pregnant women from four low-income rural settings in India, Guatemala, Peru and Rwanda. 

The trial started recruiting in mid-2018, and follow-up will continue until children reach 1 year of age. The 

HAPIN trial aims to determine the effects of a randomized LPG cookstove and fuel intervention on health 

effects including birth weight, child severe pneumonia, child stunting and adult cardiovascular outcomes, 

including women’s blood pressure. The trial will also investigate exposure-response relationships between 

household air pollution and these and other health outcomes. This is a valuable opportunity not only in air 

pollution and health research in LMICs but also an important project that can fill knowledge gaps in sustainable 

development goals (SDGs) regarding Good Health and Well-being (SDG 3), Affordable and Clean Energy 

(SDG 7), Climate Action (SDG 13) (Rosenthal et al., 2018).  
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In furtherance of the goals of the HAPIN trial, this dissertation aims to advance the knowledge in air pollution 

exposure assessment and provide evidence on the exposure-response relationship of air pollution exposure 

health effects, especially for children and pregnant women in resource-limited settings. This research will 

provide the basis of air pollution exposure assessment for newborn infants in the HAPIN trial and contribute 

to the epidemiological evidence on the gestational health effects of air pollution exposure.   

 

While the HAPIN trial primarily focuses on the health effects of HAP, there is an increasing concern about 

AAP in LMICs. The number of ambient air pollutant monitoring stations in LMICs has increased in recent 

decades, particularly in China and India where air pollution levels are the highest in the world (Brauer et al., 

2019). As of early 2020, there are approximately 1,800 air pollution monitoring stations in China and 430 

monitoring stations in India (Ministry of Environment & Forests of Government of India, 2018; OpenAQ, 

2020a, 2020b). The rapid development of ground monitoring stations in India over the past 4 years created an 

opportunity to validate a prediction model for temporally and spatially resolved high-quality ambient air 

pollution concentrations for use in epidemiological studies of adverse health outcomes among children exposed 

to ambient air pollution. Thus, the research presented here covers both HAP and AAP. 

 

1.2  Dissertation Aims 

 

As described above, the overall goal of the research presented in this dissertation is to advance the 

understanding of air pollution exposures and add evidence on the health effects of air pollution, particularly for 

low-resource settings where air pollution levels are highest. Chapter 2 of this dissertation reviews the current 

knowledge regarding household air pollution exposure assessment and epidemiological evidence of air pollution 

effects on maternal and child health in low-income settings, focusing on household air pollution effects on 

gestational blood pressure and ambient air pollution health effects on child health. Chapter 3 – 5 contains the 

research output of this dissertation research. Lastly, chapter 6 summarizes the main findings of this dissertation 
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research, reflections of my dissertation research during 4 years at Emory University, and future air pollution 

research directions. 

 

Chapter 3 and 4 are based on HAPIN trial data from the Guatemala site, using data collected in the pilot phase 

(chapter 3) and main phase of trial (chapter 4). In the study described in chapter 3, I used data on personal 

direct and indirect PM2.5 measurements of exposure in mothers and children from 20 households using biomass 

measured four times, twice before and twice after an LPG pilot intervention. In this study, I compared the 

indirect PM2.5 exposure assessment method based on Bluetooth emitter beacon system with the direct method. 

I showed that this indirect measurement is a feasible approach to estimate PM2.5 in larger HAPIN main trial, 

when direct measurement is not feasible, such as on children under 2 year of age. 

 

Chapter 4 presents a study on the effects of PM2.5 air pollution exposure on gestational blood pressure among 

pregnant women enrolled in the HAPIN trial in Guatemala.  This study is based on data from 800 households 

in Guatemala cooking with biomass at baseline and at follow-up visits after households were randomized to 

the LPG intervention during the HAPIN main trial. Using exposure-response analysis, I investigated the effects 

of 24-hour personal PM2.5 exposure effects on gestational blood pressure levels among HAPIN participants in 

Guatemala in a longitudinal follow-up with three observations before child birth. It shows the exposure to 

higher level of PM2.5 air pollution from cooking with solid fuel is associated with increase of systolic blood 

pressure, but not diastolic blood pressure, adjusting for covariates. 

 

Chapter 5 of this dissertation moves beyond household air pollution from solid fuel combustion and assesses 

the effect on child survival of ambient air pollution concentration predicted by a machine-learning model in a 

retrospective birth cohort in India. This Chapter is based on data from multiple publicly available sources, 

including both ambient air pollution data source as well as health outcomes. I collected the ground-based PM2.5 

monitoring station data from Central Pollution Control Board (CPCB) of Indian government, satellite remote 

sensing data, meteorology data from National Aeronautics and Space Administration (NASA) and land use 
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information, and built a machine-learning model based on random forest algorithm to predict monthly ambient 

PM2.5 concentrations in India over 10 years from 2009 – 2018. Linking estimated ambient PM2.5 exposure with 

a retrospective cohort constructed using most recent Demographic and Health Survey (DHS), in this study, I 

showed that ambient PM2.5 air pollution during both the gestational period and post-delivery during early 

childhood were associated with child mortality. Nearly 18% premature mortality under year of 5 can be averted 

in India if ambient air pollution level were reduced to 10 µg/m3, the ambient air quality guideline of World 

Health Organization. 

 

Overall, this dissertation research will contribute new information to the air pollution research community and 

clean household energy implementation community. It is hoped that this research will provide new directions 

for air pollution exposure methods as well as enrich the knowledge base of air pollution exposure in resource-

limited settings. 
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Chapter 2 Background 

Air pollution can be categorized mainly as ambient air pollution (AAP) and household air pollution (HAP) 

(Stanaway et al., 2018). AAP, coming from residential, transportation and industrial sources, is a complex air 

pollutant mixture than HAP. AAP includes carbon monoxide (CO), PM, nitrogen dioxide (NO2), sulfur dioxide 

(SO2), ozone (O3) and lead (Pb), which are primary pollutants included in National Ambient Air Quality 

Standard (NAAQS)(US EPA, 2014). HAP is primarily generated from incomplete combustion of solid biomass 

fuels such wood, crop residue, animal dung and coal for cooking, heating and lighting (Clark et al., 2013; Naeher 

et al., 2007). Pollutants from HAP include CO, PM, polycyclic aromatic hydrocarbons (PAH), black carbon 

and other toxic chemicals. Due to infeasibilities of analyzing many of the HAP constituents in rural settings of 

developing countries, the primary focus of HAP is measuring PM and CO. Even though other constituents of 

solid fuel incomplete combustion have adverse effects, fine particulate matter— particulate matter that have a 

diameter of less than 2.5 micrometers (PM2.5)— is mostly used to assess the exposure to HAP by current 

available instrument. Because PM2.5 is a mixture of multiple incomplete combustion components, and is 

moderately correlation with other pollutants(McCracken et al., 2013), it is usually regarded as a surrogate for 

the effects of HAP (Clark et al., 2013; Gordon et al., 2014).  

 

2.1 Air Pollution and Maternal and Child Health 

 

The adverse health effects of air pollution, both from household sources and outdoor ambient environments, 

have been well documented since early 2000s(Brook et al., 2010; World Health Organization, 2005b, 2014). 

Particulate matter air pollution is positively associated with an increase in acute lower respiratory infection and 

childhood pneumonia, the leading cause of the child mortality in LMICs(Smith et al., 2014; Stanaway et al., 

2018). The effects of air pollution on maternal and child health is substantial, responsible for around 7% of 

mortality under-5 globally (IHME, 2020), and associated with multiple adverse birth outcomes, such as low 

birth weight and preterm birth (Stieb et al., 2012). The most recent GBD 2018 project shows that AAP and 
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HAP are associated with over 370,000 premature death globally in under 5 of age, and particulate matter air 

pollution combined from AAP and HAP ranks as forth leading risk factor of mortality for children under 5 of 

age (IHME, 2020; Stanaway et al., 2018). In the following sections, I review the current knowledge base and 

gaps in evidence on of air pollution effects on maternal and child health. I will focus on the current knowledge 

base on HAP exposure and high blood pressure health outcomes during pregnancy, as well as children’s health 

related to air pollution exposure. 

 

2.1.1 Household Air Pollution and Gestational Blood Pressure 

 

Both AAP and HAP exposures have been associated with cardiovascular morbidity and mortality worldwide 

(Gakidou et al., 2017; Yu et al., 2018). Elevated blood pressure (BP), a risk factor for cardiovascular disease and 

associated with negative outcomes during pregnancy, has also been shown to be associated with air pollution 

in the general population (Liang et al., 2014) and in pregnant women (Pedersen et al., 2014).  

 

The biological mechanism of elevated BP after air pollution exposure has been widely investigated in animal 

and human studies, and has been reviewed by Brook et al (Brook et al., 2010). Generally, after inhalation, PM2.5 

can penetrate deeply into alveoli region of the lung.  It can then 1) stimulate systemic pro-inflammatory 

responses, 2) alter systemic autonomic nerve system activity and induce imbalance and 3) dissolve parts of fine 

particulate matter constituents into the circulatory system.  All of the above three pathways could lead to short-

term and long-term increases in BP (Brook et al., 2010). Figure 2-1 illustrates the pathways of PM2.5 exposure 

and biological response after exposure.  
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Figure 2-1. Biological pathways linking PM exposure with Biological Response, adopted from Brook et al. 

reference (Brook et al., 2010) 

 

As noted in figure 2, three pathways can link air pollutant exposure and vascular vessel response. Through 

pathway 1, the BP response to long term air pollution exposure is a sign of vascular injury as cardiovascular 

system damage caused by oxidative stress, endothelial dysfunction and systemic inflammation, induced long 

term air pollutant exposure. Another type of BP change (pathway 2) is the reflection of cardiovascular activation 

induced vasoconstriction through the imbalance of autonomic nerve system in lung caused by exposure of air 

pollutant. This biological response does not necessarily imply negative biological effect. However, this 

mechanism may cause complications for population with pre-existing medical conditions, such as heart failure 
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(Floras, 2009).  The third pathway (pathway 3) of BP change is caused by vessel constriction and oxidative 

stress induced by dissolved constituents of PM in the blood. 

 

A recent systematic review and meta-analysis showed that the use of solid fuel for cooking is associated with 

increased risks of hypertension (Li et al., 2020). The epidemiological studies on the association between HAP 

exposure and BP have been mostly focused on non-pregnant women (Alexander et al., 2015; Baumgartner et 

al., 2011; Clark et al., 2011; Dutta et al., 2011; Fatmi et al., 2019; McCracken et al., 2007; Neupane et al., 2015; 

Peña et al., 2015; Young et al., 2019); only few focused on this relationship in pregnant women (Agrawal & 

Yamamoto, 2015; Alexander et al., 2017; Quinn et al., 2016; Thompson et al., 2011) (Table 2-1). For non-

pregnant populations, epidemiological studies indicated that HAP could induce both short-term and long-term 

perturbations in BP, after adjusting for potential confounders of this association. However, in pregnant women, 

there are only a five studies that have investigated effects of HAP exposure on BP level or maternal 

hypertension during pregnancy (Agrawal & Yamamoto, 2015; Alexander et al., 2017; Quinn et al., 2016; 

Thompson et al., 2011; Wylie et al., 2015), and the results are not as consistent as those in non-pregnant 

population. Some studies showed a positive association between air pollution and gestational blood pressure 

(Alexander et al., 2017; Quinn et al., 2016, 2017) or hypertensive disorder such as preeclampsia (Agrawal & 

Yamamoto, 2015), others did not find any association (Thompson et al., 2011), and one study found an inverse 

association (Wylie et al., 2015). This latter finding is consistent with some studies that showed protective effects 

of smoking on gestational preeclampsia (Glinianaia et al., 2004). Some posited that this association may be from 

vascular protective effects of CO through lowering sFly1 and sEng production in endothelial and placental 

cells, thus potentially lowering blood pressure levels (Karumanchi & Levine, 2010). Others also explained that 

this association is an example of selection bias caused by omitting important confounders associated with both 

exposure and outcomes and controlling for gestational age at delivery (Luque-Fernandez et al., 2016). 
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Table 2-1. Epidemiological studies of high blood pressure and household air pollution among non-pregnant and pregnant population. 

Study Population Study design Outcome Exposure Main Finding, Point estimate (95% CI) Covariates controlled 
Non-pregnant population 

Guatemala 
(McCracken 
et al., 2007) 

N = 120, 
age > 38 
years 

Randomized 
control trial 
(RCT) 

Repeated BP 
measurements 
in improved 
biomass stove 
group  vs. open 
fire group 

24-hour PM2.5 
monitoring before 
BP measurements 

SBP:  3.1 (0.8, 5.3) 
DBP: 1.9 (0.4, 3.9) mmHg lower in 
intervention group 

Age, BMI, daily average 
apparent temperature, 
rainy season, day of 
week, time of day, use 
of a sauna bath, 
household electricity, 
asset index, smoking, 
and SHS. 

India (Dutta 
et al., 2011) 

N = 480 
women, aged 
22-41 

Cross-
sectional 

Three 
measurements 
of SBP and 
DBP with an 
interval of 24h 

Biomass group vs. 
LPG group 

Hypertension prevalence 29.5% in 
biomass group vs. 11% in LPG group None 

Three consecutive 
days of 8-hour 
kitchen PM2.5 and 
PM10 monitoring 
at kitchen 

OR of hypertension 1.35 (1.14, 1.95) and 
1.41 (1.22, 2.08) associated with PM10 
and PM2.5 

Education, family 
income, kitchen 
location 

Nicaragua 
(Clark et al., 
2011) 

N = 124 
households 
cooking with 
open-fire, 
with women 
aged 35 (16) 

Cross-
sectional 

Morning (8am 
– 12pm) SBP 
and DBP 
measurements 

48-hour kitchen 
PM2.5, kitchen CO 
and personal CO 

No statistical significant association 
being found between BP and air 
pollution levels 
SBP: 0.45 (-2.61, 3.52) 
DBP: -0.12 (-2.15, 1.9) mmHg increase 
per IQR increase of PM2.5 

Age, BMI, SHS, 
education 

China 
(Baumgartner 
et al., 2011) 

N = 280 
women 
aged >24 in 
rural 
households 
using 
biomass fuel 

Cohort study 

 
Repeated BP 
measurements 
before and 
after PM2.5 
monitoring at 
participants’ 
home, in 
summer and 
winter 

24-hour personal 
PM2.5 in winter 
and summer 

 
For mixed effect model: 
SBP: 2.2 (0.8, 3.7) 
DBP: 0.5 (-0.4, 1.3) mmHg increase per 
1 unit increase of log personal PM2.5, 
stronger effects on older women (age > 
50) 

 
Age, waist 
circumference, physical 
activity, SES, salt 
intake, day of week, 
time of day, 
temperature 
 
CME model can 
account for day-to-day 
variability in PM2.5 
exposure better 
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Only statistically significant association 
being found in older women: 
SBP: 2.1 (1.9, 2.9) 
DBP: 2.3 (0.0, 4.7) mmHg increase per 1 
unit increase of log personal PM2.5 

 

Peru (Peña et 
al., 2015) 

N = 1004 
individual 
aged 55.3, 
(47% male, 
53% female) 

Cross-
sectional 
(baseline of a 
population 
cohort 
study) 

BP measured 
by field 
workers 

Self-report daily 
biomass fuel use 
for cooking or 
heating for >6 
months 

SBP: 7.0 (4.4, 9.6) 
DBP: 5.9 (4.2, 7.6) mmHg higher in 
participants reporting daily use of 
biomass vs. non-daily use of biomass, 
effects stronger in men than women 

Age, sex, BMI, height, 
wealth index, 
education, depressive 
symptoms, smoking, 
alcohol abuse, and 
physical activity 
 

Nepal 
(Neupane et 
al., 2015) 

N = 519 
cooks 
cooking with 
biogas and 
firewood 
age >25 

Cross-
sectional 
with 
propensity 
score 
matching 

BP measured at 
homes 

Stove type and 
fuel type obtained 
by interview and 
observation 

SBP: -9.84 (-20, 0.8) 
DBP: -6.49 (-12, -1) mmHg lower in 
biomass vs. wood-using cooks aged >50. 

Biogas and wood-using 
cooks matched by age, 
BMI and SES 

Bolivia 
(Alexander et 
al., 2015) 

N =28 
women 
participated 
in cookstove 
intervention 

Cohort study 

Repeated BP 
measurements 
before and 
after 
intervention 

24-hour kitchen 
level PM2.5 
concentration 
before (23 – 750 
ug/m3) and after 
intervention (8 – 
170 ug/m3) 

SBP: Pre-intervention: 114.5 (13) vs. 
post-intervention: 109 (10) mmHg. 
DBP: Pre-intervention: 71.5 (6.3) vs. 
post-intervention: 70.1 (7.8) mmHg. 
SBP and DBP correlate with PM2.5 
concentrations 

None 

India (Norris 
et al., 2016) 

N = 45 
women aged 
25-66 
cooking with 
biomass 

Cohort study 

Repeated 
ambulatory BP 
measurement 
during cooking 
in summer and 
winter 

Black carbon 
personal exposure 
during cooking, 
24-hour kitchen 
black carbon 
measurement 

SBP: 6 (-1.7, 2.2) mmHg increase per 
IQR increase of BC during cooking. 
DBP: -0.9 (-1.7, -0.1) mmHg decrease per 
IQR increase of BC during cooking. 

None 

Honduras 
(Young et al., 
2019) 

N = 147 
women 
using 
biomass 
stove 

Cross-
sectional 

systolic and 
diastolic blood 
pressure in 
sitting position 

PM2.5 and black 
carbon (BC) 24-
hour average 
kitchen and 
personal  

SBP: 0.8 (-2.2, 3.8) mmHg increase per 
natural log-transformed personal PM2.5 
increase 

Age, beds per person, 
BMI, physical activity 
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Pakistan 
(Fatmi et al., 
2019) 

N = 850 
women 
above 40 
years of age 

Cross-
sectional 

Systolic and 
diastolic blood 
pressure 
measurement 

Whether currently 
use biomass for 
cooking 

OR for hypertension (SBP >= 140 
mmHg or DBP >= 90 mmHg) is 1.0 (0.8, 
1.4) for biomass users 

Age and other 
covariates with p-value 
less than 0.1 

Pregnant women 

Nigeria 
(Alexander et 
al., 2017) 

N = 322 
pregnant 
women aged 
14-44 
participating 
ethanol 
cookstove 
intervention 

RCT, 
longitudinal 
design 

Repeated BP 
measurements 
at 20, 26, 30, 34 
and 38 week 
gestational age. 

Control (biomass) 
vs. intervention 
(ethanol) group 

The change in DBP over time was 
significantly different between 
intervention and control subjects. Not 
significant for SBP. 

Individual as random 
intercept, visit time 

Ghana 
(Quinn et al., 
2016) 

N = 817 
pregnant 
women 
cooking with 
biomass 

Cross-
section 
(baseline of 
an RCT) 

Baseline BP 
measurements 
at clinic at 16 
(4) week of 
gestational age 

72-hour CO 
personal 
measurement at 
baseline 

SBP: 0.39 (-0.12, 0.9) mmHg increase is 
associated with 1 ppm increase of CO 
DBP: 0.43 (-0.01, 0.86) mmHg increase 
is associated with 1 ppm increase of CO 

Age, gestational age, 
BMI, location of 
community to main 
road 

Guatemala 
(Thompson et 
al., 2011) 

N = 266 
pregnant 
women 
cooking with 
biomass 

RCT, cross-
sectional 
design 

Baseline BP 
measurement 
at clinics 

Control (open-
fire) vs. 
intervention 
(improved 
biomass stove) 
group 

SBP: 109.4 (10.2) mmHg in control 
group vs. 107.7(8.2) mmHg in 
intervention group 
DBP: 68.3(8.2) mmHg in control group 
vs. 66.8(7.8) mmHg in intervention 
group 
Not statistically significant 

None 

India 
(Agrawal & 
Yamamoto, 
2015) 

N = 39657 
pregnant 
women aged 
15-49 

Cross-
sectional 
from NFHS-
3 survey 

Self-reported 
experience of 
preeclampsia 
or eclampsia 
during 
pregnancy 

Self-reported type 
of fuel used, 
grouped as: high- 
and medium-
exposure vs. low-
exposure group 

OR = 2.21 (1.26, 3.87) of 
preeclampsia/eclampsia symptoms for 
high-and medium-exposure group vs. 
low-exposure group. 

SES, maternal factor, 
health- and lifestyle 
factors 

India (Wylie, 
2015) 

N = 1369 
pregnant 
women 

Cross-
sectional in 
central India 

Measured BP 
at delivery 

Self-reported 
booking fuel, 

Adjusted effect size: SBP: -2.0 mmHg (-
3.77 - 0.31), DBP: -1,96 (-3.6, -0.30) 

History of 
hypertension, presence 
of windows, use of 
smokeless tobacco 
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2.1.2 Ambient Air Pollution Effects on Child Mortality 

 

Currently, there is no systematic review assessing the effects of gestational and early child life exposure to air 

pollution on child mortality in LMICs. However, regulatory agencies such as World Health Organizations 

(WHO) reviewed air pollution effects and recommended including infant mortality in risk assessment of air 

pollution (WHO Regional Office for Europe, 2013). To better understand the knowledge base of AAP and 

child mortality, we searched PubMed for relevant articles published in English using the search terms ‘outdoor 

air pollution’ OR ‘ambient air pollution’ OR ‘ambient particulate matter’ AND ‘child mortality’ OR ‘infant 

mortality’ OR ‘child survival’ on Oct 30, 2019. This search identified 25 articles. Most of these studies of AAP 

and child mortality focused on higher income countries. Overall, they suggest short-term (a few days) and long-

term (one month or longer) exposure to ambient particulate matter pollution are associated with elevated risk 

of child mortality. Among these 25 articles, three articles were identified on ambient particulate matter pollution 

in LMICs (Goyal et al., 2019; Heft-Neal et al., 2018; Wang et al., 2019). There is some evidence that the strength 

of association differs by locations across LMICs, and the studies in LMICs are less consistent than studies in 

high income regions. In Sub-Saharan Africa, Heft-Neal and colleagues based their study on nearly 1 million 

birth records from over 20 years and found a 9% increase in risk of infant mortality associated with a 10 µg/m3 

increase in annual PM2.5 concentration (Heft-Neal et al., 2018). The second study, based on 1236 child deaths 

in Beijing, is a time-series design but did not find a significant association between current month PM2.5 

exposure and infant mortality (Wang et al., 2019). A third study, which assessed the early life ambient PM2.5 

exposure effect on child mortality in 43 LMICs (with half a million child births), found inconclusive association 

between AAP and neonatal morality as well, with odds ratio of neonatal death 1.08 (0.95, 1.23) per 10 µg/m3 

increase of annual PM2.5 levels (Goyal et al., 2019). The inconsistencies of findings between AAP exposure and 

child mortality in LMICs could be due to large errors associated with air pollution exposure measurement in 

each study, which may have biased results towards the null. Therefore, more research is needed to confirm and 

clarify the association between AAP health effects of child mortality, using the most appropriate methodologies 

for outcome, exposure assessment, and control of confounders. 
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2.2  Household Air Pollution Exposure Assessment 

Assessing exposure to PM2.5 is usually done by sampling personal or microenvironmental airborne 

concentrations for at least 24 or 48 hours, which is used to represent HAP exposure levels. (Balakrishnan, et 

al., 2015; Dionisio, Howie, et al., 2012; Fitzgerald et al., 2012; Helen et al., 2015; McCracken et al., 2013; 

Mukhopadhyay et al., 2012; Naeher et al., 2000; Ni et al., 2016; B. J. Wylie et al., 2017). By placing the monitor 

directly on the subject, personal exposures can be accurately assessed regardless of the individual’s movements 

within or outside the home. Besides personal exposure, other exposure assessment methods have been used in 

studies to examine the impact of HAP on health, including fuel/stove type, semi-quantitative measures of 

fuel/stove usage, area/kitchen pollutant concentration and internal biomarker of exposure/health effects 

(Clark et al., 2013). As summarized in Figure 2-2, with the increased of accuracy from using regional fuel use 

to using biomarkers as assessment of HAP exposure, the cost of the assessment increases as well.   

 
 

1 Biomarkers

2 Direct exposure assessment of 
household members using personal 

monitoring
3 Indirect exposure assessment of 

household memebers using time activity 
and microenvironment measurements
4 Household measurements in one or 
more microenvironments without time 

activity

5 Household fuel use, housing and stove 
characteristics in purposeful surveys

6 household fuel use from large scale 
general surveys

7 Regional/National fuel use

Accuracy Cost 
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Figure 2-2. Schematic for HAP Exposure Assessment Pyramid, adapted from World Health Organization, 

from reference (World Health Organization, 2005a) 

 

Directly measuring personal PM2.5 exposure is challenging, especially among children under 2 years old. Even 

the latest devices for measuring PM are too large and heavy to be worn by young children who are the most 

vulnerable to the health risks associated with HAP. Current HAP monitoring devices usually consist of pump, 

filters and PM size selector such as impactor or cyclone and batteries, and with a size and weight similar to a 

smart cell phone (Liao et al., 2019; Volckens et al., 2017). These devices are designed to be worn by adults for 

24- 48 hours in rural and low-income settings with high exposure level to PM from cookstove. During the time 

of sampling, these devices are constantly sampling air and collecting PM on a filter used to calculate gravimetric 

time weighted average concentrations. The size and weight of these device are therefore, too large to be worn 

by children under 2 year of age.  

 

To estimate child exposure to HAP, many studies sample CO (with small lightweight monitors more easily 

worn by infants) as a proxy of PM2.5 (Dionisio, Howie, Dominici, Fornace, Spengler, Donkor, et al., 2012; 

Smith et al., 2011a). However,  a previous systematic review has shown that CO is not a consistently valid 

surrogate measurement for PM2.5 exposure(Carter et al., 2017), although this finding may have been reinforced 

by use of poor devices and different sampling strategies. Other studies use less accurate methods of assessing 

personal exposure by using kitchen area (microenvironmental) PM2.5 concentrations (Dionisio, Howie, 

Dominici, Fornace, Spengler, Adegbola, et al., 2012). However, this method is not very accurate since it does 

not measure person-time spent outside the kitchen and in other environments (World Health Organization, 

2005a). To improve the accuracy of PM2.5 exposure measurement for children, there is an increasing need for 

improved PM2.5 monitoring methods that are more likely to capture pollutants to which children are actually 

exposed as they move about within the home.  

 
Recently, an innovative and low-cost exposure assessment method has been developed using Bluetooth low 

energy (BLE) beacons to assess the location of a child, coupled with real-time area PM2.5 concentration to 
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estimate personal PM2.5 exposure (Piedrahita, 2017). This method will be used in the ongoing HAPIN trial to 

estimate child HAP exposure for exposure-response analyses of pneumonia, stunting and other child health 

outcomes. Therefore, validation studies of the indirect exposure assessment method in the field are needed.  It 

is also necessary to determine to what extent the indirect exposure assessment and microenvironmental HAP 

measurement could represent personal exposure levels. In order to facilitate and guide HAP monitoring and 

evaluation of future clean stove intervention programs, there is an urgent need to compare different exposure 

assessment methods to balance both precision and cost. In Chapter 3, I will present a pilot validation study of 

indirect exposure assessment using BLE beacons to locate participants and assign microenvironmental PM2.5 

levels to calculate 24-hour average PM2.5 exposure. 

 

 

2.3  Ambient Air Pollution Exposure Assessment 

 

The adverse health effects of long-term AAP exposure have been well documented (Brook et al., 2010; Burnett 

et al., 2018; World Health Organization, 2005b). Most of the epidemiological studies on health effects of PM2.5 

are based on concentrations monitored by ground-based stations in urban areas. Notably, the Harvard Six City 

Study and American Cancer Society studies applied centrally located air pollution monitoring stations in 

communities to represent the exposure to AAP for cohort participants in each city during baseline and follow-

up period between 1970s to 1990s (Dockery et al., 1993; C. A. Pope et al., 2002). This exposure assessment 

approach applied the same AAP exposure level to all participants from the same city/community, thus 

introducing Berkson's error.  Measurement errors of air pollution monitoring stations will also introduce 

classical errors. In the epidemiological analysis of AAP exposure-outcome analysis, these two types of errors of 

exposure assessment will lead to errors of effects of air pollution on the outcomes. As shown by Zeger et al., 

Berkson’s error in exposure assessment will not affect the point estimate of the exposure-outcome association, 

but will introduce larger standard errors around the estimates, while classical errors will introduce attenuation 

bias and bias the effects towards the null (Zeger S L et al., 2000). In the cohort study measuring long-term air 
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pollution health effects, such as effects of monthly or annual air pollution exposure on population mortality, 

the attenuation bias caused by classical errors could be reduced due to longer averaging periods using station 

monitoring data, thus making the association estimates of air pollution health effects less biased. Another source 

of AAP exposure error is the lack of indoor sources of air pollution when using centrally-located monitoring 

stations to infer air pollution exposure. A lack of indoor air pollution source data in the epidemiological analysis 

of the health effects of AAP exposure is likely to bias the effects toward the null, making the association 

between air pollution and outcomes more conservative. 

 

With the increased number of ground monitoring stations and advanced air pollution modelling, AAP exposure 

can be estimated with higher spatial and temporal resolution, such as at the Zip-code level (Di et al., 2017; Pope 

C. Arden et al., 2019) or 10 km (Yin Peng et al., 2017) or even 1 km spatial grid (Carey et al., 2013). The 

increased spatial and temporal resolution of AAP will decrease the Berkson’s error and increase the precision 

of the estimate. Recently, more evidence has accumulated and supported air pollution health effects, both for 

long-term and short-term air pollution exposure health effects (Burnett et al., 2018; Liu et al., 2019). In addition, 

with the development of satellite remote sensing and chemical transport modelling, temporally and spatially 

resolved estimations of AAP at global level have been developed for PM2.5, NO2 and O3 globally (Achakulwisut 

et al., 2019; Crouse et al., 2015; Shaddick et al., 2018), and used for Global Burden of Disease (GBD) estimation. 

These global ambient air pollutant models provide exposure estimation for many areas without air pollutant 

monitoring stations, and can provide insight for air pollution health effects.  

 

With all these efforts, there are still limitations in assessing AAP exposure in LMICs, especially in developing 

Asia where air pollution is the highest in the world. The air pollution monitoring stations in China and India 

are sparse compared to those in developed countries in North America and Europe (Brauer et al., 2019), and 

the global AAP models have relatively large root mean squared errors (RMSE) in South Asia and East Asia 

areas (RMSE = 17.6 µg/m3 ) (Shaddick et al., 2018). Additionally, validation studies from ground-based 

monitoring stations show some global models have under-estimated the true AAP levels in South Asia and East 
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Asia region where monitored PM2.5 concentrations are higher than modelled (van Donkelaar et al., 2016; Xiao 

et al., 2018). With the increase of ground-based monitoring stations in Asia and the development of AAP 

modeling, such as the machine-learning algorithms, there is a potential to develop more accurate and less biased 

AAP models in the India region. In chapter 5 of this thesis, I report on an exposure modelling of AAP in India 

with sub-annual temporal resolution to understand AAP levels in India. 
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Chapter 3 Indirect Personal Household Air Pollution Exposure Assessment 

Using Bluetooth Low Energy Beacon Systems 

 

3.1  Introduction 

Approximately 3 billion people rely on solid fuel for cooking and heating globally due to lack of access to 

cleaner fuels (Bonjour et al., 2013). According to Global Burden of Disease (GBD), household air pollution 

(HAP) generated from cooking and heating with biomass stoves is associated with over 1.6 million premature 

deaths every year, mainly in low- and middle-income countries (LMICs) (Stanaway et al., 2018). Young children 

and pregnant women are especially at risk from harmful exposure to HAP, since they spend the majority of 

time indoors. HAP is associated with childhood acute lower respiratory infections (ALRI) (Gurley et al., 2013; 

Smith et al., 2011a) and low birth weight (Amegah et al., 2014; D. P. Pope et al., 2010b), both of which are the 

leading causes of death among children under 5 year old in LMICs (Naghavi et al., 2017; Roth et al., 2018). 

However, HAP mitigation through cleaner cooking interventions, such as improved biomass stoves, has 

resulted in inconsistent results (Mortimer et al., 2017; Thakur et al., 2018), and many stove intervention studies 

have failed to sufficiently reduce HAP exposures. 

 

Accurately assessing exposure to HAP – and thus the effectiveness of interventions to mitigate exposure – is 

challenging. While personal exposure monitors can be used on adults and older children to directly measure 

PM2.5 both gravimetrically and nephelometrically (continuously), even the newer and more compact devices 

such as the Enhanced Children’s MicroPEM (ECM) are too heavy and large to be worn by children under 12 

months for periods of 24 hours (Devakumar et al., 2014). When directly estimating personal exposure to PM2.5 

is not feasible, some studies measure personal exposure to carbon monoxide (CO) with small, lightweight 

monitors easily worn by infants as a proxy of PM2.5 and HAP exposure (Dionisio, Howie, Dominici, Fornace, 

Spengler, Donkor, et al., 2012; Smith et al., 2011a). However, a systematic review of 61 studies from 27 

countries has shown that CO is not always a consistently valid surrogate measurement for PM2.5 

exposure(Carter et al., 2017). Furthermore, the PM2.5 to CO relationship may not be transportable across 
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different study settings due to heterogeneous stove and fuel types, combustion conditions, and differences in 

other energy and housing-related factors. A second approach is to rely on kitchen area PM2.5 concentration as 

a proxy for child exposure (Dionisio, Howie, Dominici, Fornace, Spengler, Adegbola, et al., 2012). However, 

this method does not incorporate exposures during time spent away from the kitchen (World Health 

Organization, 2005a). Another approach is to conduct an indirect or microenvironmental exposure assessment, 

which combines conventional pollutant area measurement approaches in various home microenvironments 

with a time-activity diary or an objective measure of the location of participants in microenvironments 

(Balakrishnan et al., 2002; M Ezzati et al., 2000; Sidhu et al., 2017; Zuk et al., 2007). However, many of these 

studies assessed time-location patterns or microenvironmental locations using questionnaires or self-reported 

diaries, which are prone to recall bias and may not be accurate. 

 

To improve the accuracy of PM2.5 exposure measurement, especially in children for whom it may be unfeasible 

to conduct direct measurements, there is need for more precise, objective and less intrusive indirect PM2.5 

monitoring methods. Recently, a Bluetooth® Low Energy (BLE) Beacon proximity sensing system, which 

consists of signal loggers (sensor) and coin-sized signal emitters, was developed to assess the location of children 

during monitoring (Clark et al., 2013; World Health Organization, 2005a). The application and accuracy of this 

BLE Beacon system in indirect PM2.5 exposure assessment has not been evaluated in field HAP studies. Here, 

we report on formative research to evaluate an indirect PM2.5 exposure assessment method using the BLE 

Beacon system with participants including women and children enrolled in the Household Air Pollution 

Intervention Network (HAPIN) trial in rural Guatemala. 

 

3.2  Method 

3.2.1 Purpose and design 

This study was conducted as one part of the formative research phase of the HAPIN trial in one of its 

intervention research centers in Jalapa, Guatemala (Clasen et al., n.d.). This study was designed as a small LPG 

cookstove intervention, including a 2-month baseline period followed up with a 2-month LPG fuel and 
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cookstove intervention period. During the 4-month study period, we conducted monthly visits to each 

household. This study was approved by the institutional review boards of the Universidad del Valle de 

Guatemala (146-08-2016/11-2016) and Emory University (00089799). The trial is registered at 

ClinicalTrials.gov (Identifier NCT02944682). 

 

3.2.2 Study sites and populations 

This study took place between November 2017 and April 2018, in Xalapán area of the Jalapa Department in 

rural Guatemala, 150 km east of Guatemala City. At an average elevation of 1500 meters, Xalapán has a tropical 

wet climate with an average temperature of 20 °C. This pilot study was conducted during the dry season with 

less than 50 mm rainfall per month. We recruited 20 households (1) that relied on woodstoves or open fires 

for cooking, (2) where a non-smoking woman over the age of 35 years identified as the primary cook, and (3) 

who had a child aged <1 year. The selection criteria of households is based on the need for testing standardized 

operating procedures for the main HAPIN trial. Written informed consent was obtained from all participants. 

 

3.2.3 PM2.5 Measurements 

For each household, we conducted four HAP assessments, two before and two after the LPG fuel intervention, 

for a total of 80 assessments. At each assessment, we measured 24-hour microenvironmental area 

concentrations (in kitchens, sleeping area, and outdoor patios) and personal PM2.5 exposures using the 

Enhanced Children’s MicroPEM (ECM, RTI International, Durham, NC USA), the same device selected for 

exposure monitoring in the larger HAPIN main trial (Burrowes, n.d.). In kitchen and sleeping area 

microenvironments, ECMs and personal locating Beacon loggers (more details in section 2.4.1) were placed 1.5 

meters above the floor, usually hanging on the wall, 1 meter away from the edge of the combustion source and 

at least 1 meter away from windows or doors. In the outdoor patio microenvironment, ECMs and Beacon 

loggers were placed in a secure area 1 to 2 meters above the ground, usually installed under the outside edge of 

roof, at least 3 meters away from the kitchen and other rooms. Instruments installed in one microenvironment 

were not visible from the other microenvironment. 
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ECMs were programmed to sample PM2.5 continuously using a nephelometer at a logging rate of 30 seconds 

and also collected gravimetric PM2.5 samples on a 15 mm Teflon filter (PT15-AN-PF02, MTL LLC., 

Minneapolis, MN USA) at a flow rate of 0.3 L/min. Gravimetric PM2.5 measurements made with the ECM 

have a limit of detection of 5 µg/m3 for 24-hour sampling periods. All Teflon filters were pre- and post-weighed 

in a temperature- and humidity-controlled laboratory at the University of Georgia with temperatures between 

20 - 24°C and relative humidity between 30% - 40%. Filters were stored in a -20 °C freezer after sampling in a 

laboratory at Universidad del Valle de Guatemala, and were transported in double zip-lock bags in coolers with 

blue ice to the weighing laboratory. We collected 51 duplicate ECM samples (24-hour side-by-side ECM 

measurements) and 34 field blank filters. In Figure 3-1S (appendix), we showed that duplicate ECM samples 

had good agreement (R2 = 0.90). For all 34 field blanks, net weight changes were less than 5 µg, with a mean 

of 0.7 (Standard Deviation, SD: 2) µg. 

 

We calibrated all nephelometric continuous PM2.5 concentrations with the run-specific 24-hour filter-based 

PM2.5 measurement. First, we calculated a calibration factor for each ECM deployment as the ratio between the 

24-hour filter based gravimetric PM2.5 concentration and the corresponding 24-hour average nephelometric 

PM2.5 concentration. Then, we multiplied each continuous nephelometric measurement by the calibration factor 

for each corresponding run to get the gravimetrically-adjusted nephelometric measurements. Finally, we 

averaged gravimetrically-adjusted nephelometric measurements into 5-minute intervals to reduce variability of 

the original 30-second measurements. We used the gravimetrically-adjusted continuous nephelometric PM2.5 

concentrations to reconstruct PM2.5 exposures in this study. 
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Figure 3-1. (a-d): setup of BLE Beacon systems in the sleeping area (a), the kitchen (b), on the patio (d) and 

on a female participant (c). The dotted red circle in each panel highlights the sampling equipment and Beacon 

loggers. Panel (e) is a schematic of the Beacon-based indirect exposure assessment method 

 

3.2.4 Microenvironment Indirect PM2.5 Exposure Measurement Methods 

In each microenvironment, we concurrently deployed a fixed-position Beacon logger (Berkeley Air Monitoring 

Group, California, USA) with the ECM. Beacon loggers receive Bluetooth signals emitted from coin-sized BLE 

Beacon signal emitters and record the Media Access Control (MAC) address and the Bluetooth Received Signal 

Strength Indicator (RSSI). Participants wore two emitters each (depicted in Figure 3-1e). The RSSI is 

proportional to the distance between the emitter and the logger and can be used to determine the participants’ 

microenvironmental locations. Signals from the Beacon signal emitter were logged every 20 seconds. We 

a. Sleeping area b. Kitchen

c. Mother’s personal
d. Outdoor patio

Beacon Logger

ECM

Beacon Signal

Emitters

e. Diagram of Beacon Indirect Method Setup
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classified participants’ location in five minute intervals as the microenvironment in which the Beacon logger 

recorded the strongest average RSSI from the two Beacon signal emitters worn by participants.  

 

At the beginning of each deployment, we carried out a 6 to 15 minute long walk-through procedure to assess 

the accuracy of the Beacon system’s location prediction. During the walk-through procedure, field workers 

wore sampling vests containing all BLE Beacon signal emitters and walked through each microenvironment 

for 5 minutes, where Beacon loggers have been installed. The start and end times in each microenvironment 

were recorded and regarded as the ‘gold-standard’ of microenvironment location classification during the walk-

through procedure. We defined the accurate prediction rate of microenvironmental location during the walk-

through as the percentage of time when field workers are classified in the same microenvironment as recorded 

manually. In Figure 3-2S (appendix), we show that the correct microenvironmental classification rate increases 

over time. During initial deployments of the system, due to suboptimal placement of sensors and system failures 

of loggers, the correct prediction rate of microenvironment was 40% - 50%. At the end of this pilot study, the 

system was able to classify the microenvironment correctly at an average rate over 85% during walk-throughs. 

Equation 3-1 defines the indirect exposure (IE) estimate. IE is the time-weighted average of PM2.5 

concentrations in microenvironments where participants spend time as classified by the Beacon systems. 

 

!" =
∑ ∑ 	&'(,*+(,*∆-.*(

∑ ∑ &+(,*∆-.*(
=/!"*

*

 

Equation 3-1 

 

!" refers to the total time-weighted average indirect exposure assessment, !"* refers to the contribution of 

PM2.5 exposure in each microenvironment 0 to the total time-weighted average indirect exposure. '(,*  is the 

gravimetrically-corrected nephelometric PM2.5 concentrations logged by an ECM at time t in microenvironment 

j. +(,* is the indicator of the participant’s location by the BLE Beacon systems at time t, in microenvironment 

j. Specifically, +(,* = 1  if the participant is classified in microenvironment j at time t, otherwise +(,* = 0 . 
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Notably, if none of Beacon loggers received Bluetooth signals from Beacon emitters, we classify participants 

as outside of households, and will not have indirect PM2.5 measurements during that period of time. ∆- refers 

to the sampling interval, in this case 5 minutes. In Figure 3-3S (appendix), we show an example of a time-

series plot of RSSI and microenvironmental location classification for one measurement. In Figure 3-4S 

(appendix), we show a time-series plot of indirect exposure and direct personal exposure from the same 

participant during the same measurement period.  

 

3.2.4.1 Indirect PM2.5 exposure for Women 

In each household, the primary women cook wore two BLE Beacon signal emitters on their sampling vests 

along with ECMs to measure their direct personal exposure. Beacon loggers were placed together with ECMs 

in three microenvironments: kitchen, sleeping area, and outdoor patio. Women’s indirect exposure is estimated 

using gravimetrically-corrected nephelometric PM2.5 concentrations from the three fixed microenvironments, 

when women are classified in the given microenvironment by BLE Beacon systems (Figure 1, a, b, d). Sixty-

two (77%) of 80 indirect exposure assessments were valid for women; 18 (23%) measurements were removed 

due to system failures or suboptimal placement of Beacon loggers (19%) and system failures of ECMs (4%). 

 

3.2.4.2 Indirect PM2.5 exposure for Children 

In each household, we deployed two Beacon signal emitters on the clothing of each child under 1 year of age 

and assessed their microenvironmental locations longitudinally. Children’s indirect PM2.5 exposure is estimated 

using the gravimetrically corrected nephelometric PM2.5 concentrations from the three fixed microenvironment 

locations (kitchen, sleeping area and outdoor patio) and the women’s personal direct microenvironment, when 

children were classified in the given microenvironment by BLE Beacon systems (Figure 1, a-d). Particularly, we 

added one microenvironment of women for assessing children’s indirect exposure. Direct personal PM2.5 

measurements from ECM monitors worn by women were used when children were classified in the women’s 

microenvironment. Sixty-one (76%) of 80 indirect exposure assessments were valid for children; 18 (24%) 
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measurements were removed due to system failures or suboptimal placement of Beacon loggers (19%) or 

system failures of ECMs (5%). 

 

3.2.5 Statistical Methods 

Descriptive statistics, including the arithmetic mean, standard deviation (SD), median and interquartile range 

(IQR) for 24-hour PM2.5 concentrations from area and women’s direct (personal) exposure samples were 

calculated. We reported both mean (SD) and median (IQR) statistics because 24-hour PM2.5 concentrations and 

exposures are not normally distributed (right-skewed). Second, descriptive statistics (mean and SD) for 

women’s and children’s time spent in each microenvironment predicted by the Beacon system were calculated. 

We estimated women and children’s indirect PM2.5 exposure and calculated descriptive statistics and estimated 

the mean contribution to indirect PM2.5 exposure from each microenvironment. To evaluate the performance 

of the Beacon-derived indirect exposure methods, we compared women’s direct (personal) exposure 

measurements with indirect measurements and calculated Spearman correlation coefficients. We created Bland-

Altman plots to evaluate agreement between direct personal exposure, indirect exposure, and kitchen 

measurements. We calculated the root mean squared error (RMSE) of indirect exposure estimates and kitchen 

area PM2.5 concentrations compared to direct personal exposure measurements, respectively. Bias was 

calculated separately as the mean difference of direct personal and indirect measures and the mean difference 

of the direct personal and kitchen paired PM2.5 concentrations, respectively. Data analysis was conducted in R 

(version 3.5.0, the R foundation).  

 

3.3 Results 

Among twenty household in this study, most (n = 17, 85%) had a fully enclosed kitchen with a roof and four 

walls. The walls of households were made of bricks and roofs were made of wood or corrugated metal. The 

average size of an enclosed kitchen was 14.2 m2, with an average of height of 2.5 m. The kitchens were 

potentially well ventilated in the households, with an average of 11 windows or apertures. Table 3-1 shows 24-

hour area PM2.5 concentrations during the pre-LPG baseline measurements and the post-LPG follow-up period. 
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We observed high 24-hour area PM2.5 concentrations during baseline measures compared to the follow-up 

period. We found 94%, 79%, and 62% reductions in 24-hour PM2.5 levels in the kitchen, sleeping area, and 

outdoor patio area microenvironments. 

 

Table 3-1. Area 24-hour PM2.5 Concentration, mean (SD), median (IQR) , unit: µg/m3 

 
Baseline Follow-up 

Mean (SD) Median (IQR) Mean (SD) Median (IQR) 

Kitchen 397 (301) 308 (227) 21 (14) 17 (22) 

Sleeping area 113 (172) 34 (101) 23 (13) 40 (37) 

Outdoor patio 58 (78) 34 (32) 22 (18) 20 (24) 

 

Figure 3-2 shows the average estimated hours (over a 24-hour period) that women and children spent in each 

microenvironment, as well as time outside of the household in the pre- and post-LPG intervention periods. 

Women spent 12.8 hours in the sleeping area, 6.2 hours in kitchen and 3.5 hours in the outdoor patio. Children 

spent 11.3 hours with their mothers, 8.2 hours in bedroom and 2 hours in the outdoor patio microenvironment. 

Women and children spent 0.9 hour outside of the monitored household microenvironments on average. We 

found that the LPG intervention was not associated with women’s time in any of the three microenvironments 

and was only statistically significantly associated with children’s time in the sleeping area (Two-sided t-test p = 

0.01). 
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Figure 3-2. Daily average time (hour) spent in each microenvironment for women (a) and children (b). 

 

Women participants reported high compliance of wearing sampling vest. The average time not wearing 

sampling equipment aside from sleeping and bathing was 1.1 hour. Table 3-2 lists the mean and median 24-

hour women’s direct exposures and indirect PM2.5 exposure reconstructions in pre- and post-LPG periods, 

along with Spearman correlation coefficients between the indirect and direct measurements. The means of 

direct and indirect PM2.5 exposure are 189 (SD: 138) µg/m3, and 258 (SD: 194) µg/m3, respectively, both of 

which are well above World Health Organization (WHO) Interim Target 1 guideline of 35 µg/m3. We found a 
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75% and 91% reduction in direct and indirect 24-hour mean PM2.5 exposures after LPG intervention, 

respectively.  

 

Table 3-2. Direct and indirect PM2.5 exposure for women, unit: µg/m3  

 Baseline  
n =27  

Follow-up  
n = 35 

Overall  
n = 62 

Direct personal PM2.5 exposure 
mean(SD), median (IQR) 

189 (138), 
119 (164) 

47 (29), 
42 (31) 

109 (116), 
66 (79) 

Indirect PM2.5 exposure 
mean(SD), median (IQR) 

258 (194), 
188 (214) 

23 (13), 
21 (21) 

125 (172), 
39 (135) 

Spearman correlation coefficient between 
women’ direct and indirect PM2.5 measure 0.63 0.66 0.81 

SD: standard deviation, IQR: interquartile range 

 

 

Figure 3-3. Direct and indirect PM2.5 exposures for women and the contribution of indirect exposure from 
each microenvironment (kitchen, sleeping area and outdoor patio) 

 

Indirect measures of PM2.5 are highly correlated with direct personal measures for women, with a Spearman 

correlation of 0.81 (Figure 3-5S appendix). Figure 3-3 shows the mean of women’s direct PM2.5 exposure and 

indirect PM2.5 exposure and the contribution of each microenvironmental PM2.5 measurement to the indirect 
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PM2.5 exposure estimates. In the baseline period, indirect exposure estimates were higher than the direct 

exposure measurements, and PM2.5 exposures from the kitchen microenvironment contributed most strongly 

to the average indirect exposure. In the post-LPG period, direct exposures were higher than indirect exposures 

and the sleeping area contributed most of indirect exposure for women.  

 

 

Figure 3-4. Bland-Altman Plot of Women’s 24-hour Direct and Indirect (a) and Women’s Direct and 
Kitchen Area PM2.5 Measure (b) 

 

Figure 3-4 shows the Bland-Altman plot of 24-hour direct versus indirect PM2.5 measurements (left panel) and 

direct versus kitchen PM2.5 measurement (right panel) for women. The x-axis of the plot is the average of two 

measurements, and the y-axis is the 24-hour direct measurement minus indirect measurement (left panel) or 

24-hour direct measurement minus kitchen measurement (right panel), respectively. The blue line is the mean 

of the measurement differences (y-axis value) and two red lines are 95% confidence interval of the measurement 

differences. The left panel (a) of Figure 3 shows a smaller difference between two measurements and dots are 

less deviated from the blue centerline, compared to the right panel (b). Indirect measurements have less bias 

and have better agreement with direct personal measurement when compared with kitchen measurements 

(Figure 3-4). Table 3-3 shows the root mean squared error (RMSE) and bias of direct-indirect PM2.5 exposure 
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pairs and direct-kitchen PM2.5 concentration pairs by LPG intervention period. When compared to women’s 

direct PM2.5 exposure, the RMSE of the women’s indirect PM2.5 exposure was 128 µg/m3 and the RMSE of 

kitchen PM2.5 concentration was 250 µg/m3. The average bias between direct-indirect PM2.5 exposure was -17 

µg/m3 (indicating overestimation of the indirect method), and average bias between direct-kitchen PM2.5 was -

89 µg/m3. Most of the error and bias come from the pre-LPG intervention baseline phase, as indirect exposure 

and kitchen area measurement overestimated direct personal PM2.5 exposure levels (Table 3-3). 

 

Table 3-3. RMSE and bias between direct-indirect and direct-kitchen paired PM2.5, unit: µg/m3 

  Baseline  
n =27  

Follow-up  
n = 35 

Overall  
n = 62 

RMSE Direct-indirect 189 34 128 
Direct-kitchen 377 35 250 

Bias Direct-indirect -70 24 -17 
Direct-kitchen -230 26 -89 

RMSE: root mean squared error 

 

Table 3-4. Children’s Indirect PM2.5 Exposure 

Indirect PM2.5  
exposure estimate 

Baseline  
n = 26 

Follow-up  
n = 35 

Overall  
n = 61 

Mean (SD) 175 (125) 39 (26) 97 (107) 
Median (IQR) 141 (160) 35 (30) 51 (90) 

 

 

Children showed high compliance of wearing Beacons. Women participants reported their children had not 

worn Beacons only for an average of 0.2 hour among 80 measurements, aside from sleeping and bathing. Table 

3-4 lists the mean (SD) and median (IQR) of indirect PM2.5 exposures for children by intervention period. We 

found that children’s indirect PM2.5 exposure was reduced by 77%, from a mean of 175 (SD, 123) µg/m3 to 39 

(SD, 26) µg/m3 after LPG intervention. In Figure 3-5, we show the mean of children’s indirect PM2.5 exposure 

and the contribution of each microenvironment to indirect PM2.5 exposure. In the pre-LPG period, the 

women/mothers’ personal ‘microenvironment’ contributed most strongly, followed by PM2.5 in the kitchen 
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microenvironment. In the post-LPG period, women/mother’s personal microenvironment contributed most 

to the indirect PM2.5 exposure. 

 

Figure 3-5. Indirect PM2.5 exposure for children and contribution of indirect exposure from 
microenvironment locations (kitchen, sleeping area, outdoor patio and women/mothers’ personal direct 
microenvironment) 

 

3.4 Discussion 

In this study, we demonstrated the feasibility of objectively monitoring the location of participants including 

adult women and children in their homes using a BLE Beacon proximity sensing system. This system, when 

combined with ECM PM2.5 monitors placed in microenvironments throughout the home, enabled 

reconstructions of personal exposures that were highly correlated with direct measurements of PM2.5 exposure. 

The same system enabled accurate prediction of the location of children under 1 year of age and enabled 

reconstructions of their exposure to PM2.5 over 24 hour periods.  
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To our knowledge, this is the first study evaluating indirect exposure to PM2.5 using personal locating technology 

and microenvironment PM2.5 monitors in HAP field studies. Previous studies mainly applied time-activity 

questionnaires or diaries as self-reported records of microenvironmental location (Balakrishnan et al., 2002; 

Devakumar et al., 2014; M Ezzati et al., 2000; Sidhu et al., 2017; Zuk et al., 2007). A few studies have applied 

an objective personal locator for time-location assessment in similar settings in Guatemala; those studies relied 

on an ultrasound emitter and detector to provide a binary presence or absence in a specific microenvironment 

(Allen-Piccolo et al., 2009; Ruiz-Mercado et al., 2010). Most of the previous studies using indirect exposure 

approaches did not validate the accuracy of the time-location patterns reported by participants. We conducted 

walk-through tests by comparing records from field workers (our gold standard) with locations determined by 

the Beacon logger, and found Beacon systems could accurately predict location 89% of the time on average. 

This finding of high microenvironment predicting accuracy of the Beacon system is consistent with a previous 

study that utilized ultrasound personal locator devices (Allen-Piccolo et al., 2009). 

 

For adult women, the Beacon system indicated that they spent half of their time in sleeping area (12.8 hours 

per day), followed by kitchen (6.2 hours per day) and outdoor patio (3.5 hours per day) microenvironments, 

and 0.9 hour out of any of these microenvironments. These findings are similar to studies conducted in India 

(Balakrishnan et al., 2002; Sidhu et al., 2017), Kenya (M Ezzati et al., 2000) and Mexico (Zuk et al., 2007), all of 

which found women cooks spend around 12 hours per day in the living room or sleeping room, followed by 

4-7 hours per day in the kitchen. Notably, we found that time-activity patterns did not seem to change between 

pre- and post-LPG periods for women. This is consistent with the findings of Zuk et al., who did not find a 

change in time-activity patterns from an improved biomass stove intervention in rural Mexico (Zuk et al., 2007). 

For children under 1 year old, we found that they spent most of the time with mothers or in the sleeping area. 

Notably, we classified children into women/mothers’ microenvironment if they were close together, even if 

they are in the kitchen or sleeping areas. Our findings are consistent with findings from older children in Nepal 

(Devakumar et al., 2014) and Kenya (M Ezzati et al., 2000), where children spent 12.2 hours per day and 44% 

of their time in the living room or sleeping area, respectively. Interestingly, we found that the LPG fuel 
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intervention increased the time children spent with their mothers. However, since our study did not collect self-

reported time-activity diaries from participants and due to a relatively limited number of samples, more studies 

are needed to confirm the effect of LPG interventions on time-activity patterns. In addition, we found that 

women were not in any of the measured microenvironments for, on average, 1 hour per day. During these 

periods, no indirect measurement of exposure to PM2.5 was captured. This is possibly due to some participants 

leaving their households during the day to visit friends or relatives, or to go shopping, and also due to a few 

participants who went to another home to sleep at night. We still included these households in our evaluation 

of indirect exposure assessment of the women, because we believe these indirect exposure measurements, even 

lacking a few hours of data, are still useful for predicting daily exposure levels. Sensitivity analysis excluding 

measurements with more than 4 hours outside of households (n = 3) shown that the time spent and indirect 

exposure changed less than 10% compared to original results. 

 

Our study illustrates that indirect PM2.5 exposure estimates derived from the Beacon system showed a stronger 

correlation with direct measurements of PM2.5 personal exposure (ρ=0.81), than did correlations between 

kitchen microenvironment PM2.5 levels and direct personal measurements of PM2.5 exposure levels (ρ=0.68). 

As shown in the Bland-Altman plot (Figure 3-4), indirect exposure measurements tended to have less bias and 

agree better with direct personal exposure than kitchen area PM2.5 measurements. Therefore, the Beacon 

indirect exposure method described here better estimates exposures than does simply using area measurements 

as a proxy for exposure, a common, but perhaps inaccurate, method used to estimate PM2.5 exposures for 

infants(Balakrishnan et al., 2004; Balakrishnan, Ghosh, et al., 2018b). Our findings confirm other recent data 

from HAPIN formative research indicating that the LPG intervention can reduce PM2.5 levels close to the 

WHO target of 35 µg/m3 (Johnson et al., 2018). Prior estimates of an LPG intervention effect were around 70 

µg/m3 (Steenland et al., 2018). Despite the fact that we provided a 3-month supply of free LPG gas cylinders, 

it is likely that some continued used of biomass fuel (stove-stacking) and air pollution from neighboring 

households increased PM2.5 exposure above what we would have observed with only gas fuel use.  
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The new indirect microenvironment exposure approach in our study has a number of advantages over typical 

indirect exposure assessment. First, we applied a Beacon proximity sensor system, an objective personal locating 

system to assess microenvironmental locations of participants. This approach can reduce error and recall bias 

from self-reported time-activity data. Second, we used gravimetrically-corrected continuous 

microenvironmental PM2.5 concentrations to reconstruct indirect exposures. Compared to other similar studies 

using time-activity patterns or microenvironmental approaches (Devakumar et al., 2014; Zuk et al., 2007), our 

study has the advantage to capture temporal variation and peaks of PM2.5 for indirect exposure.  

 

We also found that indirect exposure estimation from the Beacon system has some limitations and biases. We 

expect two types of bias would emerge from indirect exposure assessment compared to direct personal 

exposure. One type of bias is that the indirect method is not able to capture all of the microenvironments 

participants move through and could mischaracterize locations of participants. Another type of bias emerges 

when area PM2.5 measures differed from true personal direct PM2.5 measures, which reflects differences between 

area ECM PM2.5 monitors and personal monitors when participants’ locations are known. Figure 3-4 illustrated 

heteroscedasticity using indirect exposure to predict indirect exposure, indicating error of indirect exposure 

increases as PM2.5 level increases. Table 3-4 showed that in the pre-LPG baseline period, indirect exposure 

overestimated direct exposure but in the post-LPG follow-up period, indirect exposure tended to underestimate 

direct exposure. The overestimation at baseline may be due to differences between personal monitors and area 

monitors in households cooking with biomass stoves/open fires, with area monitors being closer to the open 

fire. The underestimation of indirect exposures in post-LPG follow-up periods may be due to the existence of 

other sources of air pollution, which is captured by the personal monitor but not necessarily by area monitors, 

and may have a greater relative importance when kitchen measurements have been sharply lowered. We show 

in the supplementary materials that compared to personal direct exposure measurement (gold standard), the 

Beacon indirect method will likely over-estimate personal exposure levels in biomass households and likely 
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under-estimate personal exposure levels in LPG intervention households, which is in fact what we have 

observed.  

 

It is also worth noting that we have relatively high failure rates for the Beacon system (19%, 15 measurements 

out of 80 measurements), mainly due to incorrect set up of 10 (13%)  Beacon loggers leading to failures of 

Beacon logger systems, and 5 (6%) Beacon logger misplacement in outdoor patio areas, leading to the 

obstruction of Beacon signals. However, we found these failures occurred mainly in the beginning phase of this 

study and could be largely prevented if additional training of field workers was conducted to ensure proper set 

up of Beacon loggers. Despite these limitations, our study still showed that the combination of the Beacon 

system and ECM monitors is a precise and feasible indirect method to assess exposure to PM2.5 in low-and-

middle income settings for children, especially when direct personal exposure measurement is not practical. 

 

3.5 Conclusion 

In conclusion, we provided assessment of an indirect, sensor-enabled exposure measurement technique in 

households using woodstoves at baseline and an LPG cookstove at follow-up. This information adds evidence 

that indirect exposure assessment using the Beacon system as a microenvironmental location monitor provides 

an acceptable estimate of personal exposures in both low and high PM2.5 exposure settings. We found that 

indirect exposure methods have higher correlation with direct personal exposure measurements and less bias 

than do kitchen measurements. In settings where conducting personal direct exposure assessment is not 

practical, such as in children under 1 year old, the Beacon indirect exposure method is an alternative to better 

estimate personal exposure to PM2.5. The results of this study can inform exposure assessments for future 

household air pollution studies. 
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Appendix for Chapter 3 
 
Appendix Figures and Tables 
 

  

 

 

Figure 3-1S. Scatter Plot of Duplicate ECM Measure (N = 51 ECM pairs, sleeping area (SAP): 14, mother 

personal (PEO): 16, kitchen (KAP1): 19, outdoor patio (HOP): 2) 

 

Figure 3-2S shows microenvironmental locations prediction correct rate by the Beacon system during the 

walk-through test, during which we have recorded “true” microenvironment locations of field workers who 

wear all Beacon signal-emitters. This included microenvironmental locations predicted by malfunctioning 

Beacon systems. The microenvironment location prediction correct rate increased from 50% to 80% by the 

end of the study. This is due to troubleshooting of failures of Beacon loggers and the improvement of 

Beacon logger placement. 
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Figure 3-2S. Beacon System Microenvironment Location Classification Rate over Time During Walk-

through Test. The x axis is calendar date; the y axis is the average percent of correct microenvironmental 

classifications per day. The size of the dot is the number of Beacons utilized to generate the datapoint, 

 

Figure 3-3S shows a time-series plot of Received Bluetooth Signal Strength Indicator (RSSI) and mothers’ 

microenvironment locations from one deployment of the system with receivers in the kitchen, on the 

outdoor patio and in the sleeping room. Participants are assigned to microenvironments where the Beacon 

logger received the strongest signal, that is, the largest RSSI over a 5 minute interval. The larger the RSSI is, 

the closer participants are to the Beacon logger, and thus the participant (who wears emitting devices) is 

classified in the microenvironment locations with the largest RSSI over the five minute averaging period.  
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Figure 3-3S. Time-series plot of RSSI and microenvironment location classification (HOP: Outdoor patio, 

KAP1: kitchen, SAP: sleeping area). 

 

Figure 3-4S shows the time-series plot of direct and indirect exposures from the same measurement as 

Figure 3S. The bar on the bottom of the plot shows the microenvironment locations (kitchen, sleeping area 

and outdoor patio) as classified by BLE Beacon proximity system. 
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Figure 3-4S. Time-series plot of direct and indirect exposure as well as microenvironment classification 

 

Figure 3-5S shows the scatter plot of women’s direct and indirect PM2.5 measure after gravimetric 

calibration, by each phase. Two measurements in the baselines in the lower right corner of the plot are the 

most influential in lowering the R-square. 
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Figure 3-5S. Scatter Plot of 24-hour Direct and Indirect PM2.5 Measure for Women (BL1/BL2: pre-LPG 

intervention baseline measurements; FU1/FU2: post-LPG intervention follow-up measurements, solid line is 

the 1:1 line) 
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Bias Estimate for Beacon Indirect Assessment Methods 
 

True personal exposure metrics integrate exposure from personal PM2.5 levels in all microenvironments as well 

as unobserved microenvironments, such as time spent outside of households. Beacon indirect exposure metrics, 

however, only accounts for microenvironment exposure levels when participants are classified in the 

microenvironment locations. Below two equations expressed true personal PM2.5 exposure (equ-3-1S) and 

measured Beacon indirect PM2.5 exposure (equ-3-2S). 

 

3456789( = :;697<34;697< + :<>(34<>(  

Equ-3-1S 

346?56789( = 34;697<(1 + A	 × 	CDEF) 

Equ-3-2S 

 

3456789( : direct personal PM2.5 exposure from a personal PM2.5 monitor 

:;697<: proportion of time spent in microenvironment (kitchen, bedroom, outdoor patio etc.) 

34;697<: personal PM2.5 levels in microenvironment 

:<>( : proportion of time spent outside of the microenvironment (outside of the household) 

34<>( : personal PM2.5 levels outside of the microenvironment (outside of the household) 

A: difference between personal PM2.5 concentrations and microenvironment PM2.5 concentrations. A > 0 

indicating beacon microenvironmental method in biomass household will overestimate personal PM2.5. 

CDEF: Fuel type of the household, if household is using biomass, Fuel = 1, if using LPG, Fuel = 0. 
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I: the ratio between 34<>(  and 34;697< , I = 34<>(/34;697< . 

 

346?56789( = 3456789((1 + A	 × 	CDEF)  (equ-S2) is based on the fact that beacon microenvironmental 

indirect method can only measure area PM2.5 levels and will overestimate true personal PM2.5 for biomass 

household (A only exists in biomass households) due to large emissions in microenvironment especially kitchen. 

In addition, in our study in Guatemala, beacon indirect method only take the microenvironmental PM2.5 as the 

24-hour average level, not accounting for the time spent outside of the household. 

 

Since the proportion of time spent in microenvironment and outside of the household sum up as 1, i.e. 

:;697< + :<>( = 1, so we can substitute :<>(  and 34<>(  in equ-1, 	3456789( = 34;697<(:;697<(1 −

I) + I).  

 

 

So that 

346?56789( =
(1 + A	 × 	CDEF)

:;697<(1 − I) + I
3456789(  

Equ-3-3S 

For biomass household, since indoor fuel is biomass, and microenvironments are mostly indoor 

microenvironment, so 34;697< > 34<>(  and then I < 1, also notice :;697< < 1. Then, equ-3-3S can be re-

written as: 

346?56789( =
(1 + A	)

:;697<(1 − I) + I
3456789( >

(1 + A	)

(1 − I) + I
3456789( > 3456789(  

Equ-3-4S 
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If I ≥ 1, the relationship 346?56789( and 3456789(  cannot be determined exactly. However, we believe I ≥

1 is not likely to happen in biomass households, due to 34;697< > 34<>(  is usually true in biomass 

household. 

 

For LPG household, we believe 34;697< ≤ 34<>(  is usually observed and indoor microenvironment PM2.5 

levels will be low if there is high compliance of LPG intervention. We can then find I ≥ 1. and equ-3-3S can 

be re-written as: 

346?56789( =
1

:;697<(1 − I) + I
3456789( ≤

(1	)

(1 − I) + I
34O87P<?QR = 3456789(  

Equ-3-5S 

 

Therefore, beacon indirect method will likely over-estimate personal exposure levels in biomass households 

and likely under-estimate personal exposure levels in LPG intervention households. Beacon indirect methods 

will give larger exposure contrast between intervention and control compared to true personal exposure 

contrast and will bias the exposure-response relationship towards the null. 
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Chapter 4  Associations of Fine Particulate Matter (PM2.5) Exposure with 

Gestational Blood Pressure among Rural Guatemala Women: A Prospective 

Cohort Study 

 

4.1  Introduction 

More than 3 billion people rely on solid fuels for cooking and heating globally (Bonjour et al., 2013). Household 

air pollution (HAP), including fine particulate matter (PM2.5) generated from cooking with solid fuel, is the 

leading health risk factors in low- and middle-income countries (LMICs) (Gakidou et al., 2017). In Guatemala, 

HAP is the largest environmental risk factor, responsible for over 5% of total mortality in 2017 and 17% of 

these estimated deaths are from cardiovascular disease (GBD Compare | IHME Viz Hub—Risk Factors in 

Guatemala, n.d.).  

 

Elevated blood pressure (BP), a risk factor for cardiovascular disease, has also been shown to be associated 

with HAP from solid fuel combustion in multiple LMICs, including Guatemala (McCracken et al., 2007), 

Honduras (Young et al., 2019) and China (Baumgartner et al., 2011). A recent systematic review examining 

HAP and high BP and hypertension concluded that the use of solid fuel was associated with increased risk of 

hypertension (Li et al., 2020). The biological mechanisms by which air pollution exposure increases BP have 

been well demonstrated, through an imbalance of lung autonomic nerve system, systematic oxidative stress and 

inflammatory, as well as endothelial, dysfunction (Brook et al., 2010, 2017; Giorgini et al., 2016; McCracken et 

al., 2012). 

 

During pregnancy, elevated BP has important implications for gestational hypertensive disorders such as 

preeclampsia, a leading cause of maternal, fetal and neonatal mortality (Mol et al., 2016). Because women of 

reproductive age are usually the primary cooks in the household in rural low-income settings, and studies have 
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found that women who cook with biomass have an order of magnitude higher exposure to PM2.5 than those 

cooking with clean fuel (Hystad et al., 2019), they are therefore especially vulnerable to HAP exposure.  

 

Unlike consistent results of HAP effects on BP for non-pregnant women, previous studies examining HAP 

and BP levels show mixed results for pregnant women. Some studies have reported a positive association of 

personal exposure to CO on systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Quinn et al., 

2016, 2017) among pregnant women in Ghana; and another study in Nigeria found an ethanol cookstove 

intervention can reduce DBP during pregnancy (Alexander et al., 2017). In contrast, a cross-sectional study in 

India reported that use of biomass cooking fuel is associated with lower BP among pregnant women compared 

to gas users (B. J. Wylie et al., 2017). This large heterogeneity of effects of HAP on gestational blood pressure 

is similar to a previous meta-analysis and systematic review of ambient air pollution effects on gestational blood 

pressure (Pedersen et al., 2014), as well as seen in studies between smoking and gestational pre-eclampsia 

(Karumanchi S. Ananth & Levine Richard J., 2010). In addition, gestational BP changes naturally during 

pregnancy (Macdonald-Wallis Corrie et al., 2012), which decreased in first and second trimester and then 

increased in the third trimester. Longitudinal studies that follow pregnant women could capture the changes of 

BP and HAP exposure over time during gestation, and overcome potential bias introduced in cross-sectional 

studies which examined association between HAP exposure and BP at delivery at once (Luque-Fernandez et 

al., 2016; Blair J. Wylie et al., 2015). To date, however, few longitudinal studies have been conducted to examine 

this relationship (Alexander et al., 2017). 

 

To address these gaps, we designed this prospective cohort study to assess the longitudinal association between 

personal 24-hour PM2.5 exposure and SBP and DBP levels during pregnancy in an intensive cookstove emission 

setting.  The study uses BP measurements during pregnancy from 800 women prospective cohort enrolled in 

Household Air Pollution Intervention Network (HAPIN) trial in Guatemala. This study was approved by the 

institutional review boards of the Universidad del Valle de Guatemala (146-08-2016/11-2016) and Emory 

University (00089799). The trial is registered at ClinicalTrials.gov (Identifier NCT02944682). 
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4.2  Method 

4.2.1 Study site and population 

This study was based on data from pregnant women participants enrolled in HAPIN trail, a randomized 

controlled intervention trial among 3200 pregnant women in India, Guatemala, Peru and Rwanda to assess the 

effects of a liquefied petroleum gas (LPG) cook stove and fuel intervention in settings traditionally relying on 

solid biomass fuel (wood, charcoal, dung and agricultural residue). In this study, we followed women enrolled 

from the Guatemala site (N=809) in Xalapán area of Jalapa Department in rural Guatemala, 100 km east of 

Guatemala City. Xalapán area is a mountainous region in a tropical wet climate zone, with rainy season between 

May – October, and dry season November – April. The average temperature is 20 °C, and the average elevation 

is 1500 meters (871m – 2677 m) in the study site. Details of the HAPIN trial have been published elsewhere 

[ref].  

Briefly, in order to be eligible to participate in the study, women were required to be between 19 and 35 of age, 

non-smokers, between 9 and 20 weeks gestational (confirmed by ultrasound and last menstrual period) and 

cooking with on biomass. Potentially eligible women were first identified at local prenatal clinics by trained 

Guatemalan nurses employed by the HAPIN project. If women met eligibility criteria, nurses went to the 

participant’s home to consent the household to participate in the study, usually the same day but up to 2 weeks 

after the ultrasound visit, and collected baseline clinical and demographic baseline information and scheduled 

a follow-up visit with the exposure team who would collect data on stove use at baseline and other household 

characteristics. During that visit, we measured blood pressure and PM2.5 air pollution personal exposures over 

past 24-hour. Health outcomes and personal PM2.5 exposure was assessed again at two follow-up visits at 

participants’ homes, after randomized and LPG stove installation in the intervention arm. Due to the fact that 

HAPIN is ongoing, and treatment arm remains blinded with respect to exposure and health outcomes, this 

study focused solely on analyzing observed exposures and corresponding responses and, thus, did not include 

intervention status.   
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4.2.2 Outcome and Covariates 

Following informed consent to participate in the study, gestational blood pressure was assessed on enrollment 

(baseline), and two follow up visits at approximately 24-28 gestational weeks (follow-up 1) and 32 – 36 

gestational weeks (follow-up 2), on the next day of the air pollution exposure visit described below. Blood 

pressure was measured in triplicate using an automatic digital blood pressure machine (Model HEM-907XL, 

OMRON, Durham, NC, USA) based on a standardized operational protocol. Field workers ensured that the 

pregnant women participants had not smoked, had alcohol or caffeinated drinks or cooked using biomass in 

the 30-minute period prior to the blood pressure measurement. Participants rested for 5 minutes in a sitting 

position in a chair that supported their back and arms with legs uncrossed. Blood pressure was measured in 

triplicate, 2 minutes between each measurement on the right arm. The second and third blood pressure readings 

were averaged to represent blood pressure levels at that visit. If a participant was found to have a systolic blood 

pressure >140 mmHg and/or a diastolic blood pressure >90 mmHg, she was referred to the nearest health 

center or hospital to receive appropriate treatment. Baseline and follow-up covariates were collected in the case 

reporting forms (CRFs) on tablets using REDCap software (Vanderbilt University, Nashville, TN, USA). We 

collected data on participants’ demographic information, height, weight, medical history, lifestyle behaviors, 

anthropometry and self-reported air pollution exposure as potential covariates. We calculated participants 

household assets index based on a simplified asset indices based on 13 household assets ownership (refrigerator, 

wash machine, microwave, computer, car, toilet, drinking water source, cooking fuel, roof material, wall material 

and floor material) at baseline visit using EquityTool (Chakraborty et al., 2016; EquityTool, 2020), which shows 

agreement with household assets index from Demographic and Health Survey (DHS) in Guatemala. We also 

calculated participants body mass index (BMI) at each visit time. For participants who reported taking anti-

hypertension medicine, we excluded these data points due to we believe these will distort the association 

between exposure and outcome. 
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4.2.3 PM2.5 Exposure 

HAP exposure assessment was conducted according to the HAPIN trial protocol. For each household visit, 

we measured 24-hour personal PM2.5 exposures using Children’s Enhanced MicroPEM (ECM, RTI 

International, USA), to represent longer term personal exposure to PM2.5. ECMs samplers were programmed 

to sample PM2.5 with an air flow of 0.3 L/min rate and collection on Teflon filters with 15 mm diameter for 

gravimetric analysis (PT15-AN-PF02, MTL LLC., Minneapolis, MN, USA). All Teflon filters were pre- and 

post-weighed in a temperature- and humidity-controlled laboratory at the University of Georgia (UGA). Filters 

were transported in cool conditions inside air-sealed bags between the Guatemala field site and UGA. We used 

gravimetric PM2.5 concentration calculated by mass deposition on filters divided by sampled air volume as the 

exposure variable. As shown in a previous study, the gravimetric PM2.5 measurements made by ECM have a 

limit of detection around 5 µg/m3 (Liao et al., 2019).  

 

 

4.2.4 Statistical Analysis 

Firstly, we assessed the overall crude association between blood pressure level between PM2.5 exposure (both 

quartiles and continuous) using simply linear regression. Then, to take into the longitudinal design of this study, 

we conducted a mixed effects model to assess the longitudinal exposure-response relationship between personal 

PM2.5 exposure (both quartiles and continuous) and gestational BP levels. The mixed effects model included 

24-hour personal gravimetric PM2.5 exposure (both quartiles and continuous) as the exposure variable, and 

time-vary and time-invariant covariates (Equation 4-1 and Equation 4-2). Covariates considered in the model 

are potential risk factors of gestational hypertension and blood pressure, including gestational age, age at 

baseline, body weight index (BMI), self-reported physical activity, alcohol consumption, caffeinated drink 

consumption, parity, previous adverse birth event, day of week (weekday or weekend) and time of the day 

(morning/afternoon) of BP measurement (Hermida et al., 2000; Mol et al., 2016; Shen et al., 2017). Among 

these covariates, age at baseline, self-reported physical activity, alcohol drinks consumption, caffeinated drinks 

consumption, previous adverse birth event, education level, and day of week and time of the day of BP 
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measurements are not associated with both SBP and DBP, and did not significantly affect model parameters. 

Therefore, we did not include those predictors in the main analysis. For gestational age, since gestational blood 

pressure level shows a nonlinear relationship with gestational age (Hermida et al., 2000), we included both linear 

and quadratic term of gestational age in the model, similar to previous study (Alexander et al., 2017). 

 

S36* = TU + VW
XYZ[ + V\

X]__`Z[ + Va
XbZ + Tcde6* + Tfde6*

g + I6 + h6* 

Equation 4-1 

 

S36* = TU + VW
XYZ[ + TgFi(346*) + Va

XbZ + Tcde6* + Tfde6*
g + I6 + h6* 

Equation 4-2 

 

S36* is the BP (either SBP or DBP) levels for participant i at observation j. TU is the population intercept. YZ[ 

is the vector containing time varying covariates except for personal PM2.5 exposure and gestational age, in the 

main analysis, this term only includes BMI at each visit. ]__`Z[ (in equation 4-1) denotes each quartile of 

PM2.5 exposure variables for participants in j in visit 0. 346* (in equation 4-2) denotes 24-hour personal PM2.5 

exposure concentration for participants in j in visit 0. bZ is the vector containing individual level time invariant 

variables at baseline, in the main analysis, this term includes parity and maternal age. de6* is the gestational age, 

both for pregnant women i at visit j. I6 is the individual random intercept and h6* is the model residual, both 

of which are assumed to be normally distributed.  

 

In order to assess the robustness of the model and avoid residual confounding, we also conducted sensitivity 

analysis. Firstly, we reported results of model with additional covariates as potential confounders which are 

removed in the main analysis. These additional covariates include age at baseline, self-reported physical activity, 

alcohol drinks consumption, caffeinated drinks consumption, previous adverse birth event, education levels, 

and day of week and time of the day of BP measurements. Secondly, we conducted generalized mixed effects 
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additive model, adding spline smoothing to continuous variables, including maternal age at baseline, gestational 

age, BMI and time of measurement (minutes after 12AM in the morning). The details of sensitivity analysis 

were provided in appendix. The data processing and data statistical analysis was conducted in R software 

(version 3.6.0), with lme4, gamm4 packages for mixed effects regression and additive models. 

 

4.3 Results 

At baseline, 809 participants completed assessments. Nine participants subsequently left the study due to 

voluntary withdrawal (n=4), moving away from study area (n=4) and termination of the pregnancy (n = 1), 

yielding a total of 800 participants who were randomized and eligible for following up. During follow-up, a 

total of 57 participants exited the study before their children were born (end of follow-up), due to voluntary 

withdraw (n = 13), withdrawal of participant by study team (n = 1), moving out of the study area (n = 10) and 

termination of pregnancy during follow-up (n = 33). An additional 22 participants exited the study before the 

first follow-up visit, and 13 participants exited before the second follow-up visit. A total of 786 participants 

completed the follow-up 1, and 708 completed follow-up 2 (Figure 4-1).  
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Figure 4-1. Flow Diagram of Study Participants at Baseline, Follow-up 1 and Follow-up 2 visits 

 

 

A total of 2179 gravimetric personal PM2.5 measurements were obtained after removing samples (n =258, 10.6%) 

that failed to pass quality checks or have not been post-weighed, consisting of 720 samples at baseline, 708 at 

follow-up 1 and 641 at follow-up 2. This sample number contains the 110 side-by-side duplicated samples, 

which were averaged to represent the personal PM2.5 exposure at that visit. Figure 4-1S in the appendix shows 

the details of processing of gravimetric samples. Of 110 duplicated ECM sample pairs, the personal PM2.5 

exposure levels correlate very well with each other (Spearman R = 0.97). In addition, we collected 96 field blank 

samples, with a median filter weight change of +2.5 µg (interquartile range, IQR: +1 – +4.25 µg), showing the 

small change of the filter mass change during the sampling. 

N = 809 participants enrolled

N = 786 participants in 
follow-up visit 1

Baseline

N = 708 participants in 
follow-up visit 2

Follow-up 
1

N = 79 participants 
without complete 

exposure or outcome 
data (including 15 exits)

N = 89 participants without 
valid exposure 

measurement (including 7 
exits)

N = 720 
participants with 
valid data points

N = 707 
participants with 
valid data points

Follow-up 
2

N = 641 
participants with 
valid data points

N = 67 participants 
without complete 

exposure or outcome 
data (including 18 exits)

N = 106 participants exits the study
(completion: 53, withdrawal: 10, move 

away: 6, abortion/miscarriage: 32 )
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After accounting for missing data and data points failing quality check, approximately 10% of samples that are 

removed and potentially 4% of the data points are still in following up. The current analysis includes 

measurements from 720 participants in the baseline, 707 participants in follow-up 1 and 641 participants in 

follow-up 2 visits. The participants we included in the analysis (n = 720) shown similar characteristics in 

demographic as all participants enrolled in the study at baseline (Table 4-1).   

 

Table 4-1. Baseline Characteristics of pregnant women and household in HAPIN Trial Guatemala Site 

Variables Characteristics 
All participants (N = 
809) 

Participants included in the 
analysis at baseline (n=720) 

Maternal Age (years) mean (sd, min – 
max) 

24.7 (4.4, 18 – 34.9) 24.8 (4.4, 18 – 34.9) 

Gestational age (weeks) mean (sd, min 
– max) 

15.1 (3, 9.4 – 21.6) 14.9 (3, 9.4 – 21.6) 

Maternal Education (n,%)   
   No formal education 68 (8.4%) 60 (8.6%) 
   Primary school incomplete 314 (39.1%) 273 (39.2%) 
   Primary school complete 227 (28.3%) 199 (28.6%) 
   Secondary school incomplete 85 (10.8%) 82 (10.1%)  
   Secondary school complete 94 (11.9%) 70 (11.8%) 
   Vocational school 10 (1.2%) 9 (1.3%) 
   College 2 (0.2%) 2 (0.3%) 
First pregnancy [n(%)] 209 (26%) 170 (24%) 
BMI (kg/m2) mean (sd, min - max)  
N = 804 

23.79 (3.32, 16.42 - 
44.24) 

24.44 (18.03, 16.42 – 44.24) 

Drink alcohol [n(%)] 6 (1%) 4 (1%) 
   
Employment status [n(%)]   
    Employed 21 (3%) 20 (3%) 
    Unemployed, work in own house 787 (97%) 675 (97%) 
Known history of hypertension 
(including pre-existing hypertension 
and hypertension) [n(%)]  

16 (1.9%)  12 (1.7%) 

Known history of adverse pregnancy 
outcomes (including miscarriages and 
stillbirth) [n(%)]  

142 (18%)  127 (18%) 

Known history of diabetes [n(%)] 2 (0.2%) 1 (0.1%) 
Morning time of the BP measurement  646 (80.9%) 572 (82.3%) 
Day (weekend) of BP measurement  238 (30%) 215 (31%) 
Household characteristics  
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Asset index1, n(%), N = 808   
   Quintile 1 (lowest) 616 (76.2%) 535 (77.1%) 
   Quintile 2 130 (16.1%) 104 (15.0%) 
   Quintile 3 54 (6.7%) 48 (6.9%) 
   Quintile 4 8 (1%) 7 (1%) 
   Quintile 5 (highest) 0 (0%) 0 (0%) 
Kitchen type, [n(%)]   
   Not enclosed kitchen 90 (11.3%) 83 (11.9%) 
   Fully enclosed kitchen (with roof 
and 4 walls) 

710 (88.7%) 612 (88%) 

Fully enclosed kitchen measurements    
   Kitchen area (m2), mean (sd, min - 
max) 

14.4 (7.5, 3.5 - 129) 14.4 (7.7, 3.5 – 128) 

   Kitchen height (m), mean (sd, min – 
max) 

2.35 (0.28,1.65 – 3.33) 2.35 (0.29, 1.65 – 3.33) 

Number of stoves (N = 798)   
   1 stove 271 (33%) 236 (34%) 
   More than 1 stoves 527 (67%) 457 (66%) 
Primary stove type [n(%)] (N = 798)   
   Open fire stove with chimney 640 (80.2%) 553 (80.1%) 
   Biomass stove with chimney 158 (19.8%) 137 (19.9%) 
Primary fuel type [n(%)] (N = 796)   
   Grass/shrubs 1 (0.1%) 0 
   Agriculture waste 1 (0.1%) 1 (0.1%) 
   Wood 792 (99.5%) 688 (99.6%) 
   Electricity 2 (0.2%) 2 (0.3%) 
Number of days the primary stove is 
used, [n(%)] 

  

   Everyday 757 (94.6%) 659 (95%)  
   Over 3 days per week – everyday 43 (5.4%) 36 (5%) 
   
Number of hours per day the primary 
stove is used, mean (SD, min – max) 

5.9 (2.6, 1 – 18) 5.9 (2.6, 3 – 18) 

1: Based on 13 household assets including refrigerator, wash machine, microwave, computer, car, toilet type, 
water source, cooking fuel, roof materials, wall materials, floor materials 
 

Blood pressure measurements and gestational age at three visits are shown in Table 4-2. In the baseline and 

first follow-up visit, the mean gestational age was 15.2 (range: 9.4 – 21.6) and 25.5 (range: 21.4 – 31.3) weeks, 

respectively. Blood pressure levels among study participants are generally low at the baseline and first follow-

up visits, with mean systolic blood pressure 103.5 (standard deviation: 8.5) mmHg and 103.7 (standard deviation: 

8.3) mmHg and diastolic blood pressure 59.0 (standard deviation: 7.3) mmHg and 59.2 (standard deviation: 7.2) 

mmHg, respectively. However, in follow-up 2 visit when the mean gestational age is 33.4 (range: 31.1 – 37.4) 
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weeks, there is an increase of blood pressure levels among participants, with the mean systolic blood pressure 

and diastolic blood pressure is 106.8 (standard deviation: 8.5) and 62.6 mmHg, respectively. Only four 

participants were classified as hypertensive, as defined as SBP over 140 mmHg or DBP over 90 mmHg, one in 

follow-up 1 visit and three in the follow-up 2 visit. All participants who were classified to have hypertension 

were referred to hospitals, and the participant who shown hypertension at follow up visit 1 existed the study 

due to miscarriage. Four participants reported taking anti-hypertensive medicine during visit, one in follow-up 

visit 1 and four in follow up visit 2 (1 participant reported both in follow up 1 and follow up 2). We excluded 

these 5 data points when anti-hypertension medicine was taken. 

 

Table 4-2. Systolic and Diastolic Blood Pressure Measurement (mmHg) at Each Visit for Women 

Visit n Gestational week 
(mean, min – max) 

Mean SD Hypertension1, n(%)  

Baseline      
   SBP 715 15.1 (9.4 – 21.9) 103.5 8.5 0 (0%) 
   DBP 715  59.1 7.4 
Follow-up 1      
   SBP 703 25.3 (21.4 – 31.3) 103.8 8.3 2 (0.3%) 
   DBP 703  59.2 7.4 
Follow-up 2      
   SBP 635 33.3 (30.7 – 37.2) 107 8.6 3 (0.5%) 2 
   DBP 635  63 8.0 

1 hypertension was defined as systolic blood pressure (SBP) equal or more than 140 mmHg or diastolic blood 
pressure equal or more than 90 mmHg.  

2 Three participants developed hypertension at follow-up visit 2 are different from the participants who 
developed hypertension at follow-up visit 1. 

 

Nearly all (98%) of participants reported they wore the ECM all the time except for sleeping and bathing. The 

mean sampling time was 24.2 hours (22.2 – 26.4 hours). The personal 24-hour PM2.5 exposure levels at baseline 

showed that exposure was relatively high with mean (standard deviation, SD) of 142.2 (102.7) µg/m3. (Table 

4-3). At follow up visits, when half of the study participants had received the stove intervention, the overall 

personal PM2.5 exposure was substantially lower, with a mean (SD) of 82.0 (95.5) µg/m3 and 79.7 (83.3) µg/m3 

in follow-up 1 and follow-up 2 visits, respectively (Figure 4-2). Among all the participants, 525 of them have 
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three valid observations in the longitudinal follow-ups, 225 of them have two observations and 43 of 

participants have one data point during the whole period. 

 

Table 4-3. Personal 24-hour PM2.5 Exposure at Each Visit 

Visit Personal 24-hour PM2.5 
exposures (µg/m3) 

Baseline (n = 720)  
   Mean (SD), range 142.2 (102.7), 2.3 – 619.5 
   Median (IQR) 115.6 (67.6 – 186.6) 
Follow-up 1 (n = 708)  
   Mean (SD), range 82.0 (95.5), 3.3 – 788.4 
   Median (IQR) 45.2 (24.4 – 102.3) 
Follow-up 2 (n = 641)  
   Mean (SD), range 79.7 (83.3), 1.7 – 506.7 
   Median (IQR) 46.9 (26.4 – 99.9) 
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Figure 4-2. Distribution of 24-hour Personal PM2.5 Exposure.  The x-axis is in log-scale. 

 

The scatter plot between personal PM2.5 exposure and blood pressure levels are shown in Figure 4-3. The 

figure shows that PM2.5 exposure follow the log-normal distribution, and shows reductions in the post-

intervention follow-up phases compared to baseline phase. The overall quartile of PM2.5 exposure is calculated 

as: Q1: PM2.5 < 32 µg/m3, Q2: 32 µg/m3 <PM2.5 < 68 µg/m3, Q3: 68 µg/m3 <PM2.5 < 137 µg/m3, and Q4: 

137 µg/m3 <PM2.5. 
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Figure 4-3. Scatter Plot of Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) Between 
Personal 24-hour PM2.5 Exposure with Smoothing Line 

 

The overall crude model shown that PM2.5 exposure levels (both continuous and quartile) did not show strong 

association with systolic blood pressure (SBP) and diastolic blood pressure (DBP) levels (appendix Table 4-

1S). However, after we controlled potential risk factors of gestational hypertension, including gestational age, 

BMI and parity, and considering the longitudinal design of the study using mixed effects model, we found 

statistically significantly association between PM2.5 exposure and SBP but not DBP. In Table 4-4, we show the 

model parameters for mixed effects models with random intercept at individual level, between personal PM2.5 

exposure concentration and blood pressure (SBP and DBP). In the mixed effects model with PM2.5 exposure 

quartiles, the second, third and fourth quartile of personal PM2.5 exposure concentration shown a positive 

association between SBP but not DBP compared to lowest quartile of personal PM2.5 exposure, adjusting for a 

random intercept for each participant and selected covariate (gestational age, BMI and parity). In the second, 

third and fourth PM2.5 exposure quartiles, the SBP is 0.653 (95% CI: -0.147, 1.453), 0. 312 (95% CI: -0.560, 

1.184) and 1.065 (95% CI: 0.142, 1.988) mmHg higher than in the first PM2.5 exposure quartile, respectively. 
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These results manifested some evidence of non-monotonic response between PM2.5 exposure and SBP, with 

highest SBP levels in fourth and second quartiles of PM2.5 exposure as compared to first quartile. 

 

Table 4-4. Model Parameter for Main Analysis using Mixed Effects Model 1 
 Quartile PM2.5 Model 2 Continuous PM2.5 Model 3 

Systolic Blood Pressure (SBP) 
Q1 (PM2.5 < 32 µg/m3) Reference = 0 NA 
Q2 (32 µg/m3 <PM2.5 < 68 µg/m3) 0.653 (-0.147, 1.453) NA 
Q3 (68 µg/m3 <PM2.5 < 137 µg/m3) 0.312 (-0.160, 0.784) NA 
Q4 (137 µg/m3 <PM2.5) 1.065 (0.1418, 1.988) NA 
Continuous PM2.5 Natural-logged NA 0.342 (0.003, 0.681) 
Gestational age (week) -0.691 (-0.922, -0.460) -0.690 (-0.921, -0.459) 
Gestational age quadratic term 
(week2) 

0.018 (0.014, 0.022) 0.019 (0.015, 0.023) 

BMI (kg/m2) 0.037 (0.01, 0.068) 0.038 (0.007, 0.069) 
Had birth before 1.273 (0.091, 2.455) 1.272 (0.092, 2.452) 

Diastolic Blood Pressure (DBP) 
Q1 (PM2.5 < 32 µg/m3) Reference = 0 NA 
Q2 (32 µg/m3 <PM2.5 < 68 µg/m3) 0.021 (-0.737, 0.780) NA 
Q3 (68 µg/m3 <PM2.5 < 137 µg/m3) -0.511 (-1.336, 0.314) NA 
Q4 (137 µg/m3 <PM2.5) -0.058 (-0.926, 0.810) NA 
Continuous PM2.5 Natural-logged NA -0.072 (-2.155, 2.011) 
Gestational age (week) -0.994 (-1.215, -0.773) -0.991 (-1.212, -0.769) 
Gestational age quadratic term 
(week2) 

0.025 (0.021, 0.0289) 0.025 (0.021, 0.029) 

BMI (kg/m2) 0.018 (-0.009, 0.045) 0.019 (-0.010, 0.048) 
Had birth before 1.017 (-0.125, 2.160) 1.023 (0.909, 1.137) 

1 The results are shown as point estimate (95% Confidence Interval (CI)) per 1 mmHg increase of blood 
pressure levels 
2 Adjusted for gestational age in weeks including linear and quadratic terms, BMI and parity (whether had 
birth before), exposure variable is quartile of PM2.5 exposure concentration. 
3 Adjusted for gestational age in weeks including linear and quadratic terms, BMI and parity (whether had birth 
before), exposure variable is natural log-transformed continuous PM2.5 exposure concentration. 
 

Similarly, in the mixed effects model with continuous PM2.5 exposure variable, SBP but DBP is significantly 

associates with PM2.5 exposure. We show that a 1 unit increase of log transformed 24-hour personal PM2.5 

exposure was associated with a 0.342 (95% confidence interval (CI): 0.003, 0.681) mmHg change of SBP and -

0.072 (95% CI: (-2.155, 2.011) mmHg change of DBP, respectively. After additional adjusting for a random 

intercept for each participant and selected covariate (gestational age, BMI and parity) . The effects of covariates 
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in mixed effects models are also listed in the Table 4-4, and the direction of effects is the same as expected. In 

the mixed effects model, the variance of random intercept for each participant is larger than the model residual, 

with intra-class correlation more than 0.55 for models of SBP and DBP as outcomes. This indicates the 

relatively large between person variability in blood pressure level, explained by random intercept at participant 

level. 

 

The sensitivity analysis results are shown in appendix. Table 4-2S in appendix shows the model parameters of 

mixed effects models between continuous PM2.5 exposure concentration and blood pressure levels with more 

confounder adjustment, adding age at baseline, self-reported physical activity, alcohol drinks consumption, 

caffeinated drinks consumption, previous adverse birth event, education levels, and day of week and time of 

the day of BP measurements. Table 4-3S reported additional sensitivity analysis results of PM2.5 exposure on 

blood pressure levels. These analyses include adding regression splines to all continuous variables except for 

personal PM2.5 exposure, and model excluding participants taking hypertension medication. Sensitivity analysis 

were consistent in in direction and strength of association between PM2.5 exposure and SBP level, as reported 

in main analysis.  

 

4.4 Discussion 

In this study, we showed that an increase in 24-hour personal PM2.5 exposure in a prospective cohort of 800 

pregnant women enrolled in HAPIN trial was associated with an increase in their SBP levels during pregnancy, 

in a longitudinal data analysis. In the overall crude analysis, no strong evidence showing the positive association 

between PM2.5 exposure and both SBP and DBP have been found. But in the longitudinal analysis, after 

controlling for gestational age, BMI, and parity, we found a positive and statistically significant association 

between PM2.5 exposure concentration and SBP, which tends to show a non-monotonic relationship. The 

model shows that an increase of 1 unit of log-transformed PM2.5 exposure was associated with a 0.342 (95% 

confidence interval (CI): 0.003, 0.681) mmHg increase of SBP; there was no clear association between PM2.5 

exposure and DBP. Our model results implied that with the 50% reduction of 24-hour personal PM2.5 exposure 
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is associated with 0.237 (95% CI: (0.002, 0.474) mmHg reduction of SBP. In addition, the mixed effect model 

with continuous PM2.5 exposure with adjusted variables show that the random intercept for each participant 

explained relatively large variability, compared to model residual. The intra-class correlation is 0.61 and 0.55 for 

SBP and DBP outcomes. 

 

To our knowledge, this is the first study examining the longitudinal exposure-response association between 

PM2.5 as HAP and BP during pregnancy. Comparing with previous study, the results from this study are 

consistent with findings from cross sectional studies among pregnant women (Alexander et al., 2017; Quinn et 

al., 2016, 2017; Thompson et al., 2011) and non-pregnant women  (Li et al., 2020; McCracken et al., 2007), even 

though previous studies have shown heterogeneous findings. Two previous studies assessed the exposure-

response association between CO exposure and blood pressure levels among pregnant women  (Quinn et al., 

2016, 2017). Quinn and collogues in a cross-sectional design found that a 1 ppm increase of 72-hour CO 

exposure is associated with 0.43 (95% CI: 0.01, 0.86) mmHg increase of DBP among pregnant women cooking 

with biomass in Ghana in the baseline of an LPG trial. Among the longitudinal follow up of the subset of these 

15 pregnant women, they also found that peak CO exposure (defined as hourly concentration >4.1 ppm) was 

associated with 4.3 (95% CI: 1.1 – 7.4) mmHg increase in ambulatory hourly SBP and 4.5 mmHg (95% CI: 1.9 

– 7.2 mmHg) increase in DBP, who cook either with biomass or LPG. Other studies assessed the clean 

cookstove intervention effects on the blood pressure. One study found in Guatemala, the improved biomass 

chimney-stove can reduce 1-2 mmHg SBP and DBP level among pregnant women compared to those using 

open-fire stoves, but these differences are not statistically significant(Thompson et al., 2011). Another ethanol 

cookstove intervention study in Nigeria found that change in DBP but not SBP over time was significantly 

different between pregnant women using ethanol compared to those using kerosene or firewood, in a 

longitudinal follow up  (Alexander et al., 2017). Another studies in India, however, found that pregnant women 

using biomass for cooking has 2 (95%CI: 0.31, 3.77) mmHg lower SBP and 1.96 (95% CI: 0.30, 3.60 ) mmHg 

DBP at delivery compared to pregnant women using LPG for cooking, in a cross-sectional studies. Our study 

shows in the longitudinal follow-up, personal 24-hour PM2.5 exposure has a stronger association with SBP than 
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DBP, as we found that 50% increase of PM2.5 exposure is associated with 0.237 (95% CI: (0.002, 0.474)) mmHg 

of SBP, but no clearly association between PM2.5 exposure and DBP has been found. Due to the different study 

design and exposure assessment methods of previous studies, the findings from our paper imply that HAP 

exposure will influence SBP and will have an adverse effect on gestational hypertension. 

 

As SBP is a better predictor of adverse pregnancy outcomes including adverse events related to central nervous 

system, cardiorespiratory, hepatic, renal, or hematological morbidity or maternal mortality than DBP did (Mol 

et al., 2016), the results from our study implied PM2.5 exposure may have larger clinical implications than 

previously reported. The results from our study contribute to the evidence suggesting an increased health risk 

from HAP.  These include hypertensive disorders and other complications during pregnancy. Though the 

prevalence of the hypertension remains low in our study population (less than 1% have been classified to have 

hypertension), our study implied that reducing personal PM2.5 exposure level could reduce the risk of such risks.  

 

A strength of the study is the repeated measurements of 24-hour PM2.5 individual-level exposure and BP three 

times during pregnancy, which can capture longitudinal changes of exposure and outcomes over time. This 

study design can reduce the potential selection bias introduced in cross-sectional or case-control studies 

assessing blood pressure level at delivery that implicitly controlled the gestational age at delivery. At the same 

time, there are some limitation in our study. Firstly, our study is based on a cohort from randomized controlled 

trial, participants were randomized to receive free LPG cookstove and fuel or remain using biomass stove after 

baseline measurements. The LPG cookstove and fuel intervention may introduce a back-door association 

between PM2.5 exposure and blood pressure outcome through dietary changes. If those who receive free fuel 

in the intervention arm can purchase more food, a weight gain in the intervention group can change through 

dietary change. We are collecting data on diet and it may affect blood pressure (Mol et al., 2016), and we are be 

able to control for change in future analyses. Secondly, the results of this study lack consistencies in association 

between PM2.5 exposure and DBP. We did not observe clear association between personal PM2.5 exposure and 

DBP in our study as compared to SBP. Given in inconsistencies of our studies and previous literatures, more 
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studies are in need to further clarify the association between HAP exposure and gestational blood pressure. 

Despite these limitations, this investigation shed light on the potential health benefit by reducing HAP levels 

and switching to clean cooking fuel. 

 

4.5 Conclusion 

In conclusion, we found that exposure to household air pollution is associated with increases in systolic blood 

pressure, but not diastolic blood pressure for pregnant women during pregnancy. Consistent with previous 

studies, our study showed that household air pollution from solid fuel combustion was associated with increases 

in blood pressure, a risk factor for adverse pregnancy outcome later in the pregnancy. Interventions to reduce 

HAP level such as clean cooking stove and fuel such as LPG can provide positive impact on blood pressure 

during pregnancy, and could also provide wider health benefit. 
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Appendix for Chapter 4 
 

 

  

Figure 4-1S. Flow Diagram of Personal PM2.5 Exposure Samples 

 

Table 4-1S. Crude Overall Association between PM2.5 exposure and Blood Pressure1 

 Crude model 2 
Systolic Blood Pressure (SBP) 
Q1 (PM2.5 < 32 µg/m3) Reference = 0 
Q2 (32 µg/m3 <PM2.5 < 68 µg/m3) 0.088 (-0.965, 1.141) 
Q3 (68 µg/m3 <PM2.5 < 137 µg/m3) -0.370 (-1.423, 0.683) 
Q4 (137 µg/m3 <PM2.5) 0.071 (-0.980, 1.122) 
Continuous PM2.5 model 0.004 (-0.004, 0.003) 
Diastolic Blood Pressure (DBP) 
Q1 (PM2.5 < 32 µg/m3) Reference = 0 
Q2 (32 µg/m3 <PM2.5 < 68 µg/m3) -0.510 (-1.463, 0.443) 
Q3 (68 µg/m3 <PM2.5 < 137 µg/m3) -1.078 (-2.030, -0.125) 
Q4 (137 µg/m3 <PM2.5) -0.940 (-1.893, 0.0126) 
Continuous PM2.5 model -0.0025 (-0.006, 0.001) 

1 The results are shown as point estimate (95% CI) per 1 mmHg increase of blood pressure levels 
2 Only included personal PM2.5 exposure quartiles, or natural log-transformed personal PM2.5 exposure 
 

N = 2437
BL: 838

P1: 839

P2: 760

N = 2419
BL: 833

P1: 834

P2: 752

ECM measurements (non field blank) on PEM from Guatemala 
BL, P1, P2 visit timepoint, as of Feb 4, 2020

REDCap Entry

• Missing filter or duplicated filter IDs 
(N = 18)

Match with 
H45, H48 and 

ECM real-time 

files, based on 
Filter ID

N = 2179 (BL: 746, P1: 
753, P2: 680)

• Missing filter weights (N = 9)
• Flow rate* out of range (N = 121)

• Duration# out of range (N = 70)

• Filter weight flag%, including 
negative weight or filter damage (N 

= 51)

N = 2069 (BL: 720, P1: 
708, P2: 641)

• Average duplicated measurements 
(N = 110)Merge with 

other REDCap

entry

*Flow rate is based on both of 
H48 (calibrated flow) and ECM 

real time files, outside of [285, 

315] ml/min
# Duration is based on both of 

H41a/b entry in REDCap and 
ECM real time files, outside 

[1296, 1584] min
& filter weight flag include 
negative weight (probably due 

to mis-match) and filter 
damage notes on H45

Total of HHIID visited:
N = 2303

BL: 809

P1: 786
P2: 708
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Table 4-2S. Model Parameters of Mixed Effects Model with Continuous PM2.5 Exposure Results and More 
Covariates Adjustment1 

 Model: Systolic blood pressure  Model: Diastolic blood 
pressure 

Intercept 128.3 (120.7, 135.9) 77.75 (70.7, 84.8) 
Natural log-transformed PM2.5 
exposure concentration 

0.365 (0.016, 0.714) -0.086 (-0.41, 0.23) 

Gestational age in weeks-linear 
term (week) 

-0.69 (-0.925, -0.455) -1.00 (-1.22, -0.78) 

Gestational age in weeks-
quadratic term (week2) 

0.018 (0.013, 0.023) 0.025 (0.021, 0.030) 

Whether conducted vigorous 
activity over past week 

-0.34 (-1.104, 0.424) 0.20 (-0.58, 0.98) 

Whether drank alcohol drinks 
over past 30 minutes 

-5.24 (-13.02, 2.54) 14.57 (3.12, 26.02) 

Whether drank caffeinate 
drinks over past 30 minutes 

1.14 (-0.39, 2.67) -1.59 (-3.16, -0.02) 

Age in year (year) 0.004 (-0.125, 0.133) 0.14 (0.02, 0.26) 
BMI (kg/m2) 0.039 (0.007, 0.070) 0.015 (-0.014, 0.044) 
Whether had adverse birth 
event 

-0.54 (-1.93, 0.85) 0.22 (-1.03, 1.47) 

Whether took anti-
hypertensive medicine 

21.97 (16.13, 27.81) 14.70 (9.09, 20.36) 

Whether was first pregnancy 1.45 (0.058, 2.84) 1.34 (0.09, 2.59) 
Day (weekend/weekday) of 
measurement 

-0.03 (-0.66, 0.60) -0.083 (-0.71, 0.54) 

Time (morning/afternoon) of 
the measurement 

0.30 (-0.41, 1.01) -0.201 (-0.92, 0.52) 

Education level (whether 
above high school) 

-1.26 (-2.85, 0.33) -0.136 (1.55, 1.27) 

1 Shown as point estimate (95% CI) per 1 mmHg of increase blood pressure level  

 

Table 4-4S. Analysis Results for Mixed Effects Models with Regression Splines and Models Including 

Participants taking Hypertension Medication1 

 Model with regression 
spline2 

Models including participants taking 
hypertension medicine3 

Systolic Blood 
Pressure (SBP) 

0.404 (0.057, 0.751) 0.368 (0.021, 0.715) 

Diastolic Blood 
Pressure (DBP) 

-0.032 (-0.357, 0.293) -0.0590 (-0.380, 0.262) 

1 Shown as point estimate (95% CI) per 1 mmHg of increase blood pressure level 
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2 Models have same layout as models reported in Table 4-2S, but adding a smoothing spline to gestational 
age, maternal age and BMI, continuous time of BP measurement, also controlled for whether has adverse 
birth history and whether take anti-hypertensive medicine, whether is the first pregnancy, education level 
(above high school or not) and day (weekend/weekday) of measurement. Associations are shown as per 1 
unit increase of natural log-transformed PM2.5 exposure 
3 The model has the same layout as main model (equation 4-2), except including 5 participant-visit data point 
where participants reported taking hypertension medication. 
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Chapter 5 Gestational and Childhood Exposures to Ambient Fine Particulate 
matter and Child Survival in India: A Retrospective Cohort Study 
 

 

5.1  Introduction 

Fine particulate matter (PM2.5  or particles with an aerodynamic diameter less than 2.5 µm) has been shown to 

be strongly associated with adverse health effects in children, including preterm birth(Balakrishnan, Ghosh, et 

al., 2018a; Huynh et al., 2006; Q. Li et al., 2018; Stieb et al., 2012), low birth weight(Bell Michelle L. et al., 2007), 

low height-for-age z-score(Spears et al., 2019), respiratory infections(Gurley et al., 2013; Smith et al., 2011b) 

and mortality(Heft-Neal et al., 2018; Son et al., 2017; Woodruff Tracey J. et al., 2006). In India, ambient PM2.5 

air pollution exposures are among the highest in the world, with an estimated 89.9 µg/m3 population weighted 

annual average(Balakrishnan, Dey, et al., 2018; Chowdhury & Dey, 2016) in 2017. The Global Burden of 

Disease (GBD) Project identified ambient PM2.5 air pollution as the second largest risk factor for disease burden 

in India, accounting for over 670 000 premature deaths every year, more than 49 000 of which are premature 

deaths in children under 5 years of age(Balakrishnan, Dey, et al., 2018; Stanaway et al., 2018). To date, however, 

most evidence on child mortality due to exposure to ambient air pollution during pregnancy and early childhood 

is from developed regions(Glinianaia Svetlana V. et al., 2004; Scheers Hans et al., 2011; Son et al., 2017; 

Woodruff T J et al., 1997; Woodruff Tracey J. et al., 2006). Few studies have been conducted in low- and 

middle-income countries (LMICs)(Goyal et al., 2019; Heft-Neal et al., 2018). While prospective pregnant 

mother-child cohort studies have recently been initiated in India to examine the association between air 

pollution exposure and indicators of child health, such as birthweight (Balakrishnan, Ghosh, et al., 2018a; 

Balakrishnan, Sambandam, Ramaswamy, et al., 2015), impacts on child mortality have thus far not been 

reported. Furthermore, due to the low density of ambient air pollution monitoring stations in India and other 

LMICs(Brauer et al., 2019; Landrigan et al., 2018), current studies of air pollution and infant mortality in LMICs 

are mainly based on annual average ambient PM2.5 prediction models(Shaddick et al., 2018; van Donkelaar et 

al., 2016). Such exposure estimates may be prone to errors or misclassifications, especially for child mortality 
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which has been associated with monthly or daily changes in air pollution levels(Scheers Hans et al., 2011; Son 

et al., 2017). The expansion of ground PM2.5 monitoring stations during recent years in India, and the 

development of spatial PM2.5 prediction models, now makes it possible to estimate a more spatiotemporally 

resolved mapping of ambient PM2.5 air pollution exposure throughout India. 

 

The primary objective of our study was to evaluate the association between child mortality and ambient PM2.5 

air pollution exposure during in-utero and post-delivery lifetime periods among a nationally representative, 

retrospective cohort based on maternal-reported data in the Demographic and Health Survey (DHS, also 

known as National Family Health Survey (NFHS) in India). To estimate time-dependent ambient PM2.5 air 

pollution exposure for the cohort, we developed a monthly ambient PM2.5 model with 0.1° resolution between 

2009–2018 over the entire Indian subcontinent. Our ground station validated model was developed using 

machine learning, with multiple inputs from satellite remote sensing, meteorological data, and land use 

information. 

 

5.2  Methods 

5.2.1 Study Design and Population 

We conducted a retrospective cohort study of a nationally representative sample of children 0 – 59 months of 

age born throughout India (29 states and 5 Union Territories, excluding Andaman and Nicobar Islands and 

Lakshadweep Union Territories), whose mothers participated in the 2015 – 2016 DHS/NFHS in India between 

January 2015 – November 2016. The design of the DHS/NFHS has been described elsewhere(IIPS/India & 

ICF, 2017). Briefly, DHS/NFHS is cross-sectional survey using a two-stage stratified sampling framework to 

collect information from a nationally-representative sample of households with women 15 - 49 years of age and 

their children. When multiple children were born to the woman respondent, the mother answered separately 

for each child. We only included children born to women no more than 5 years preceding the survey. Three 

tiers of all-cause mortality – including neonatal mortality (death occurred less than the first month of age), 

infant mortality (death occurred less than the 12 months of age), and child mortality (death occurred less than 
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60 months of age) – were outcome variables in our study. Child birth month, child death month (if the child 

died), and other potential confounders were reported by mothers. In-utero and post-delivery PM2.5 air pollution, 

temperature, and rainfall data were linked to each child based on geo-coordinates of households at the level of 

a cluster (a primary sampling unit (PSU) or a segment of PSU, of around 100 – 150 households) provided by 

DHS. We calculated follow-up time in months, starting from child birth until child death as the failure event 

and the month of the DHS/NFHS survey or passing the at-risk age as the censoring event. We included 

prespecified variables that are potential confounders from DHS/ NFHS data as suggested by previous 

studies(Heft-Neal et al., 2018; Spears et al., 2019; Subramanian et al., 2009). These include child’s sex, birth 

month and year, birth order, location of birth (institutional birth or not), whether multiple birth, mother’s age 

at child birth, mother’s height, marital status, education (whether above secondary level), whether maternal 

smoking, wealth index, whether household members smoke (second-hand smoke exposure), whether 

households were urban or rural, geographical region/zonal council (Northern, Central, North Eastern, Eastern, 

Western and Southern), primary cooking fuel, and toilet facilities. We dichotomized toilet facilities as whether 

they are safely managed based on WHO/UNICEF Joint Monitoring Program (Croft et al., 2018; World Health 

Organization & United Nations Children’s Fund (UNICEF), 2017), and dichotomized cooking fuel as clean 

(electricity, liquefied petroleum gas (LPG), natural gas and biogas) or solid biomass and others (kerosene, coal, 

wood, straw, agriculture crop residue, dung). Monthly air temperatures at 2-meters (T2M) were extracted from 

MERRA-2 (Modern-Era Retrospective analysis for Research and Applications) data(Koster, 2015), and 

monthly rainfall precipitation in mm/month were extracted from CHIRPS (Climate Hazards Group InfraRed 

Precipitation with Station) data(Funk et al., 2015), and were matched with the geo-coordinates of households 

(in the same way as was performed for PM2.5 air pollution exposure). We did not adjust for low birth weight 

(LBW), as we found this variable was likely to be an intermediate variable between air pollution and childhood 

death, as air pollution predicted LBW, and LBW predicted child death(Hernández-Díaz et al., 2006). 
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As this study only analyzed publicly available data without personal identifiers, the Institutional Review Board 

(IRB) of Emory University determined this study not to be ‘human subject research’ and did not require IRB 

review. Data analyses were conducted between March 2019 – September 2019. 

 

5.2.2 Ambient PM2.5 Air Pollution Exposure 

In this study, we developed a random forest (RF) model to predict monthly ambient PM2.5 concentrations at 

0.1° spatial resolution (approximately 11km at equator) over the entire Indian subcontinent, from 2009 to 2018 

(10 years). This approach has been shown to have reliable historical prediction (hindcast) capabilities in previous 

studies and has good agreement with ground measurements in East Asia and Latin America(Vu et al., 2019; 

Qingyang Xiao et al., 2018). Briefly, we used multiple satellite retrieved aerosol, NO2, and fire spot data products; 

global meteorological and aerosol reanalysis model; land use information; and population density as inputs for 

the model [Appendix part 1]. We trained the RF model on gridded monthly mean PM2.5 concentrations from 

2017 – 2018 (N = 1 446) collected by 134 ground air pollution monitoring stations with the above input 

predictors. We evaluated model performance by comparing predicted monthly PM2.5 with observations, using 

out-of-sample 10-fold cross validation. We also evaluated hindcast performance of the model using monthly 

measurements in 2015 – 2016 (N = 456) from 57 stations. We then estimated population-weighted annual 

mean PM2.5 concentrations over India during 2009 – 2018, evaluated the change of PM2.5 levels over 10 years, 

and compared our estimates with other published databases(Balakrishnan, Dey, et al., 2018; Shaddick et al., 

2018; van Donkelaar et al., 2016) [Appendix part 2]. Predicted ambient monthly PM2.5 levels were matched to 

each child with geo-coordinate in the cluster level. For each child, we assigned the 9-month average PM2.5 

concentrations prior to birth as the in-utero PM2.5 exposure. We treated post-delivery average PM2.5 exposures 

as time-dependent and define it as the average of PM2.5 concentrations from the calendar month of childbirth 

through a given month the child is at risk, until the month of death or censoring. 
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5.2.3 Statistical Analysis 

We conducted Cox regression models with follow-up time in calendar months as the time variable and child 

death as the outcome. We included 9-month in-utero and time-dependent post-delivery average ambient PM2.5 

air pollution exposure to estimate adjusted hazard ratios (HRs) relating child mortality risk with 10-µg/m3 

increases of PM2.5 exposure. In this model, the effects of PM2.5 exposure during in-utero and post-delivery 

periods were adjusted for each other. We also conducted single-exposure models with PM2.5 exposures from 

either the in-utero or post-delivery periods for comparison. Prespecified time-independent predictors and time-

dependent monthly temperature and rainfall precipitation were included in the Cox regression model [appendix 

part 3]. We stratified the analysis by childbirth month and year, child’s gender, and geographical regions (927 

strata) to account for spatiotemporal differences in child survival. In addition, we included the sample weight 

from DHS/NFHS survey in the Cox regression. (Equation 5-1) 

 

 

ℎl&m, n, o(m). = ℎUl(m) exp[V
Xb + tXY(u)] 

Equation 5-1 

ℎl(m) is the hazard function (probability of death) at month t, and w refers to the (1 – 927) strata of child 

birth month, sex, and geographical location; b is the vector containing time-independent variables, and Y(u) 

are the time-dependent variables. To evaluate whether effects of PM2.5 differed across covariates, we 

conducted subgroup stratified analysis of the two-exposure model. Lastly, to examine the robustness of our 

results, we conducted additional sensitivity analysis for different model setups and accounted for potential 

correlation of outcomes within household and cluster [appendix part 3]. We also tested the proportional 

hazards assumption in our main model, and found it was not violated for in-utero nor post-delivery PM2.5 

exposure. Stata (version 14) and R (version 3.6.0) were used in statistical analysis. 
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5.3 Results 

The PM2.5 prediction model characterized monthly PM2.5 levels well with cross-validation (CV) R-square 0.82 

at monthly level and with annual CV root mean squared error (RMSE) of 10.9 µg/m3 in 2017 – 2018. 

Compared to historical measurements in 2015 – 2016, our model provides good predictions of monthly PM2.5 

with R-square of 0.82 [appendix part 4]. Figure 5-1 shows the predicted annual PM2.5 in India in 2018 and 

the annualized change of PM2.5 over 10 years. The predicted annual population weighted mean PM2.5 in India 

in 2018 was 71.7 µg/m3. The highest annual PM2.5 concentrations (over 120 µg/m3) were in the Indo-

Gangetic Plain (IGP), covering the states of Haryana, Uttar Pradesh, and Bihar and the National Capital 

Territory of Delhi. These values are three times above 40 µg/m3, the recommended limit set by National 

Ambient Air Quality Standards of India(Gautam, 2019). Details of predicted PM2.5 in India over 10 years are 

in the [appendix part 4, Table 5-4S, Table 5-5S, Table 5-6S Figure 5-2S]. We observed increased ambient 

PM2.5 over 10 years in most areas, with the strongest increase of ambient PM2.5 concentrations at around 1 

µg/m3 per year in the IGP region and along the west coast of Western region; while the Northeastern region 

and north part of the Northern region show decrease in ambient PM2.5 levels. 

 

Figure 5-1. Spatial Patterns of Annual PM2.5 Concentration. a) Model-predicted annual PM2.5 
concentrations with measurements from 133 ground-based monitoring stations in subcontinental India in 
2018. b) Annualized change rate of PM2.5 concentrations between 2009 – 2018.  
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This study included data from 259 627 live-birth children born 5 years preceding the survey from 699 686 

women in DHS data. We excluded 6 839 (2.6%) children living in Andaman and Nicobar Islands and 

Lakshadweep Union Territories, for not living with their mothers or because of missing variables [appendix 

part 5]. A total of 252 788 children born January 2010 – November 2016 were included. In the follow-up 

time of 7 447 724 child-months, 11 559 deaths were reported in children under five years of age by their 

mothers. Among these deaths, 7 520 deaths occurred before the first month of life; 10 862 deaths occurred 

during the first year of life. For the entire cohort, the mean (SD) of 9-month in-utero and post-delivery 

lifetime average PM2.5 exposure until failure or censoring was 71.1 (28.2) and 73.3 (29.8) µg/m3, respectively. 

The characteristics of the cohort are shown in Table 5-1, stratified by 9-month in-utero average PM2.5 air 

pollution exposure, at levels less than 49.7 µg/m3, 49.7 to less than 62.4 µg/m3, 62.4 to less than 90.3 µg/m3, 

and equal or more than 90.3 µg/m3. In general, children with highest quartile of ambient PM2.5 air pollution 

levels tended to reside in rural areas, were born to mothers with shorter stature and lower educational, and 

lived in households with a lower wealth index. Central and eastern Indian states have higher estimated 

ambient PM2.5 levels and also have lower social-economic status compared to states in other geographical 

zones. Most children were born between 2013 – 2014, with the least number of children born in 2016 (Table 

5-2). The correlation between average in-utero and post-delivery lifetime exposure for the same child was 

0.74. 

Table 5-1. Unweighted Characteristics of Children Less than 5 Years of Age by four quartiles of 9-
month In-utero PM2.5 Air Pollution Exposure  

 Entire 
Cohort Average 9-month in-utero PM2.5 Exposure Quartile 

Average 9-month in-utero PM2.5 
exposure, µg/m3  Quartile 1 

20.9 – 49.7 
Quartile 2 
49.7 – 62.4 

Quartile 3 
62.4 – 90.3 

Quartile 4 
90.3 – 153.5 

Children (n) 252,788 63,197 63,197 63,197 63,197 
Total follow-up in month 7,447,724 1,860,527 1,891,613 1,873,198 1,822,386 
# of under-5 child death 11,559 2,187 2,688 3,001 3,683 
All-cause child mortality rate (per 
1000 child-years) 18.62 14.11 17.05 19.22 24.25 

Average 9-month in-utero PM2.5 
exposure range, µg/m3 20.9 – 153.5 20.9 – 49.7 49.7 – 62.4 62.4 – 90.3 90.3 – 153.5 
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Average post-delivery lifetime 
PM2.5 exposure until death or 
censoring, mean(SD), µg/m3 

73.7 (29.8) 46.6 (10.6) 57.1 (11.5) 83.6 (25.6) 107.6 (20.1) 

Child covariates† 
Sex      
Male, % 52.1 51.6 51.8 52.4 52.3 

Low birth weight, %§ 13.1 13.8 13.7 14.1 10.98 
Birth order, %      
First 36.9 41.0 37.5 38.2 30.7 
Second 30.7 34.3 30.8 30.4 27.3 
Third 16.1 14.1 16.0 15.8 18.4 
Forth and above 16.3 10.6 15.7 15.6 23.6 

Multiple birth, % 1.65 1.59 1.55 1.78 1.67 
Birth at institution, % 75.3 81.6 76.3 74.8 68.5 
Second-hand smoke exposure, % 56.6 51.8 61.1 55.1 58.7 

Maternal covariates† 
Age at child birth, %      
<19 12.2 12.5 11.3 13.8 11.2 
20 – 24 43.4 43.1 42.2 45.0 43.2 
25 - 29 28.4 28.7 29.2 27.0 28.8 
>=30 16.0 15.7 17.3 14.2 16.9 

Mothers height in cm, %      
< 149.9 37.7 33.3 34.2 36.9 47.9 
150 – 154.9 33.7 35.2 34.4 33.3 31.8 
155 – 159.9 19.6 21.6 21.6 20.5 14.6 
>160 8.7 9.9 9.8 9.3 5.7 

Marital status, %      
Not married 1.4 1.8 2.0 1.1 0.9 
Married 98.6 98.2 98.0 98.9 99.1 

Education, %      
Below secondary level 31.5 19.0 27.9 33.5 45.5 
Above secondary 68.5 81.0 72.1 66.5 54.5 

Currently smoke % 10.0 13.6 14.7 6.9 4.9 
Household covariates† 

Cook with clean fuel, % 29.7 41.8 28.7 24.4 23.7 
Access to improved toilet, % 41.5 48.9 43.7 39.4 33.8 
Urban area, % 23.6 29.6 23.1 22.0 20.0 
Zone area, %      
Northern 16.6 4.0 25.0 60.6 6.8 
North Eastern 13.7 22.1 23.4 9.4 0 
Central 31.8 15.3 35.6 23.2 53.1 
Eastern 21.1 4.1 8.1 32.0 40.1 
Western 7.2 16.3 7.6 4.8 0 
Southern 9.6 38.3 0.3 0 0 

Wealth quartiles, %      
First (lowest) 25 15.0 22.3 26.7 36.0 
Second 25 23.3 26.5 24.6 25.6 
Third 25 31.9 26.0 22.5 19.6 
Forth 25 29.8 25.2 26.2 18.9 

Meteorological covariates‡ 
Temperature in °C, mean(SD) 27.1 (6.4) 26.7 (4.9) 24.7 (7.8) 27.6 (6.0) 39.4 (5.5) 
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Monthly Total Rainfall in cm, 
mean(SD) 103 (114) 115 (144) 98 (134) 90 (145) 110 (151) 

§Assume children with missing LBW values are not LBW infants. 

†Child, maternal and household level covariates collected at the end of the follow-up, during the 
Demographic and Health Survey/National Family and Health Survey (DHS/NFHS) interview between 2015 
– 2016. 

‡Meteorological covariates were post-delivery lifetime average estimates. 

 

In the two-exposure Cox regression model, both in-utero and post-delivery lifetime average PM2.5 air 

pollution exposures are significantly associated with increases in child mortality, infant mortality and neonatal 

mortality, after controlling for covariates (Table 5-3, Figure 5-2). A 10 µg/m3 increase of in-utero PM2.5 

exposure is associated with an increase in neonatal mortality (HR: 1.018, 95% CI: 1.001, 1.036), infant 

mortality (HR: 1.021, 95% CI: 1.006, 1.037) and child mortality (HR: 1.023, 95% CI: 1.000, 1.038). A 10 

µg/m3 increase of post-delivery average PM2.5 exposure is associated with an increase in neonatal mortality 

(HR: 1.017, 95% CI: 1.003, 1.030), infant mortality (HR: 1.015, 95% CI: 1.003, 1.027) and child mortality 

(HR: 1.013, 95% CI: 1.001, 1.026). In single-exposure Cox regression models, with either in-utero PM2.5 

exposure or post-delivery average PM2.5 exposure, we found stronger PM2.5-mortality HRs compared to HRs 

in the two-exposure model. This could be explained by the correlation between the two exposure estimates. 

Single exposure models have similar AICs as two-exposure models [Appendix Table 5-8S].  

 

Table 5-3. Hazard Ratio of Mortality per 10 µg/m3 Increase of Ambient PM2.5 Air Pollution 
Exposure§ 

 
All-cause neonatal 
mortality All-cause infant mortality All-cause child 

mortality 

No. of death 7,520 10,862 11,559 

Single-
exposure 
models† 

  

In-utero PM2.5 1.032 (1.019, 1.045) 1.033(1.021, 1.044) 1.033 (1.022, 1.044) 

Post-delivery 
average PM2.5 

1.025 (1.015, 1.035) 1.025 (1.016, 1.034) 1.025 (1.016, 1.033) 

In-utero PM2.5 1.017 (1.003, 1.030) 1.015 (1.003, 1.027) 1.013 (1.001, 1.026) 
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Two-
exposure 
model‡ 

Post-delivery 
average PM2.5 

1.017 (1.003, 1.030) 1.012 (1.001, 1.023)  1.011 (1.000,1.022) 

 

§ Adjusted hazard ratios and 95% confidence intervals for all-cause neonatal mortality, infant mortality and 
child mortality are shown for 10 µg/m3 increase of ambient PM2.5 air pollution during 9-month in-utero 
period before child birth and post-delivery periods. Models stratified on child sex, birth month and year, 
geographical zone, adjusted for birth order, multi-birth, birth location, mother’s age, height, marital, 
education, maternal smoking, household wealth, second hand smoking, cooking fuel, improved toilet, urban 
or rural location of households, monthly temperature, monthly precipitation. 

†Single-exposure model include either one of PM2.5 exposure during 9-month in-utero period before child 
birth or post-delivery average until death, or censoring. 

‡ Two-exposure model includes both ambient PM2.5 exposure during 9-month in-utero period before child 
birth and post-delivery lifetime average until death, or censoring. 

 

Figure 5-2. Hazard Ratio of Mortality per 10 µg/m3 Increase of Ambient PM2.5 Air Pollution 
Exposure. Adjusted hazard ratios and 95% confidence intervals for all-cause neonatal mortality, infant 
mortality, and child mortality are shown for 10 µg/m3 increases in ambient PM2.5 air pollution. All models 
have the same specification, except for PM2.5 exposure. Single-exposure models only included either PM2.5 
exposure during the in-utero PM2.5 period or during the post-delivery lifetime period. Two-exposure model 
include both PM2.5 exposure during the in-utero and post-delivery lifetime periods. Red circles (●) represent 
effects of in-utero PM2.5 exposure, and blue triangles (▲) represent effects of post-delivery lifetime average 
PM2.5 exposure. 
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We found little effect modification by covariates with the exception of multi-birth and geographical locations 

(Figure 5-3). The effects of in-utero PM2.5 on mortality tend to be lower for multi-birth children as compared 

to singleton children. This could be due to random error from small sample size of multi-birth children (n = 

4 172, 1.7%). For low birth weight (LBW) children, we observed in-utero PM2.5-mortality HRs are less than 

one. This is similar to the protective effect of maternal smoking on infant mortality for LBW children 

observed in the United States as a result of selection bias(Hernández-Díaz et al., 2006), as LBW could 

mediate in-utero PM2.5 exposure and child mortality [appendix Table 5-9S, Table 5-10S]. Additionally, we 

observed some heterogeneity of PM2.5-mortality HRs across different geographical locations, such as in North 

Eastern states the in-utero PM2.5-mortality HRs less than one. Since there is no air pollution measurement in 

that region, additional validation of our predicted PM2.5 air pollution in North Eastern states and investigation 

of its health effects is needed.  

 

Figure 5-3. Hazard Ratios of Mortality per 10 µg/m3 Increase of Ambient PM2.5 air pollution 
Exposure, According to Subgroup Analysis for Two-exposure Model. Adjusted hazard ratios and 95% 
confidence intervals for all-cause neonatal mortality, infant mortality and child mortality are shown for 10 
µg/m3 increases in ambient PM2.5 air pollution exposure during both in-utero and post-delivery lifetime 
periods, stratified on subgroups by individual and household level covariates. All model specifications are the 
same for main analysis except for subgroup analysis of low birth weight (LBW), which is not included in the 
main analysis. Red circles (●) represent effects of in-utero PM2.5 exposure, and blue triangle (▲) represent 
effects of post-delivery lifetime average PM2.5 exposure. 
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Our results are robust to different variable selections, unweighted analysis, and Cox regressions with generalized 

estimating equation to account for correlation of outcomes within households and clusters, and inclusion time-

dependent post-delivery monthly PM2.5 exposure to replace post-delivery lifetime PM2.5 exposure [Appendix 

Figure 5-6S]. 

 

5.4 Discussion 

In a large, nationally representative retrospective cohort of children under 5 years of age in India, we found a 

consistent elevated risk for child mortality associated with exposure to ambient PM2.5 air pollution during both 

in-utero and post-delivery periods. An increase of 10 µg/m3 of PM2.5 exposure during the 9-month in-utero 

period and post-delivery period were associated with 2.3% (95% CI: 0.8% - 3.8%) and 1.3% (95% CI: 0.1% - 

2.6%) increases of all-cause child mortality, respectively, in our two-exposure model. The effects of both these 

correlated exposures increased in single-exposure models. Similar results have been observed for infant and 

neonatal mortality. To our knowledge, this is the first cohort study conducted in India to assess the effects of 

ambient PM2.5 air pollution on child survival, in a national representative population. 

 

To estimate monthly PM2.5 air pollution concentrations, we developed a model based on multiple inputs from 

satellite observations, meteorological datasets, and land use information between 2009 – 2018. We identified 

disproportionally high levels of PM2.5 in Indo-Gangetic Plain region, where population density is high. 

Additionally, we found increasing levels of ambient air pollution over the past 10 years, emphasizing an urgent 

need to control ambient air pollution in India. Children under 5 years included in our study have high exposure 

levels to ambient PM2.5 air pollution, with in-utero, post-delivery lifetime means (SD) of PM2.5 exposure as 71.1 

(28.2) µg/m3 and 73.7 (29.8) µg/m3, respectively. This is nearly twice the National Ambient Air Quality 

Standards of India (40 µg/m3) (Gautam, 2019) and more than seven times the World Health Organization Air 

Quality Guidelines (10 µg/m3) (World Health Organization, 2005b). The difference between in-utero PM2.5 

levels in highly exposed children (95th percentile, 130.0 µg/m3) and the least exposed children (5th percentile, 

35.8 µg/m3) was 94.2 µg/m3. Based on mortality risk estimated from our Cox regression model with of in-utero 
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PM2.5 exposure mean level (71.1 µg/m3) and standard population attributable fraction calculations, we estimate 

that 18.0% (95% CI: 12.6% - 23.1%) of mortality could be reduced if their exposure were reduced to 10 µg/m3. 

Given the high levels of ambient PM2.5 air pollution throughout India, reduction of ambient air pollution could 

provide a relatively large reduction in child mortality and substantial health benefits. 

 

The child mortality-HRs estimates per 10 µg/m3 of PM2.5 exposure in our study are in the range of 1-3%, lower 

than previous estimates in LMICs. In Sub-Saharan Africa, Heft-Neal and colleagues found a 9% increase in 

risk of infant mortality associated with a 10 µg/m3 increase in annual PM2.5 concentration(Heft-Neal et al., 

2018); and Loomis and colleagues found a 7% increase of infant mortality associated with 10 µg/m3 increase 

of PM2.5 concentration during the 3-5 days before death in Mexico city(Loomis et al., 1999). In our study, 

however, the PM2.5 exposure range is three times higher than those in previous studies, and the HRs per 

interquartile range (IQR) change of PM2.5 are in the range of 5% - 12%, more similar to earlier findings. One 

study which assessed the early life ambient PM2.5 exposure effect on child mortality in 43 LMICs did not find 

a significant association between air pollution and child mortality(Goyal et al., 2019). This could be because this 

study used annual PM2.5 exposure as a proxy for exposure at less than one year, and thus introduced 

measurement error which may have biased results towards the null(Zeger S L et al., 2000). Another study 

conducted in Beijing using a time-series design also did not find a significant association between current-

month PM2.5 exposure and infant mortality(Wang et al., 2019). 

 

Our study has several strengths. First, we use machine-learning to develop a high-quality model of ground 

station measured ambient PM2.5 air pollution concentrations that has monthly temporal resolution and high 

spatial resolution that can reflect seasonal differences in ambient air pollution. These estimates of ambient PM2.5 

air pollution level can be potentially applied in future health impact assessment and epidemiological analysis in 

India (SI files). Second, we used a large, retrospective and nationally representative cohort of children under 5 

in India based on a well-documented and well-conducted DHS/NHFS survey. Third, we applied Cox 

regression with time-dependent air pollution, temperature and rainfall precipitation on child mortality using 
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calendar month as time variable. This approach allows us to examine the longitudinal association between air 

pollution and child mortality, and compare post-delivery PM2.5 exposure for children with same follow-up time. 

This approach will largely reduce exposure misclassification compared to previous studies(Goyal et al., 2019, 

p.; Heft-Neal et al., 2018), which were based on yearly PM2.5 average to assess a binary outcome of child death 

at the end of one year of age. Additionally, our analysis controlled for individual-level, household-level, and 

cluster level risk factors of child mortality. Finally, the positive PM2.5-mortality HRs are consistent in single-

exposure and two-exposure models and are robust in additional sensitivity analysis. The estimated PM2.5-

mortality HRs were not highly sensitive in sub-cohorts with stratified covariates, except for multi-birth and 

Northeastern region. 

 

Our study also has some limitations. First, no national PM2.5 air pollution monitoring data were available during 

the study period between 2009 – 2014, so we lacked ground level PM2.5 measurement data before 2015 with 

which to validate our PM2.5 prediction model. Similar to previous PM2.5 prediction models (Qingyang Xiao et 

al., 2018), our model tended to underestimate some high PM2.5 values [Appendix Figure 5-3S]. Secondly, we 

only used total ambient PM2.5 mass concentration as our exposure without estimation of different PM2.5 

components, and did not include the impact of other ambient air pollutants or direct household air pollution 

exposures from cooking, which are significant in many parts of India. Third, our retrospective cohort was based 

on a cross-sectional survey. Child birth month, vital information, and covariates were collected at the end of 

the study and recalled by mothers, and may have differed from values at the time children were born. Fourth, 

we did not have children’s gestational age at birth and assigned in-utero PM2.5 exposure levels as 9-month 

average prior to the birth, which may not be the case for preterm infants who have a shorter in-utero exposure 

period. Due to this data collection limitation, our study could suffer from recall bias. However, we believe this 

will would lead to non-differential misclassification of outcomes and covariates, which could bias our results 

towards the null. Lastly, as with all observational studies, our study may have potential unmeasured confounders 

inadequately controlled in this analysis. This calls for more future prospective cohort studies(Balakrishnan, 
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Sambandam, Ramaswamy, et al., 2015), including intervention trials, to investigate air pollution effects on child 

health. 

 

5.5 Conclusion 

In conclusion, this study found increased mortality risk associated with ambient PM2.5 air pollution during 9-

month in-utero and post-delivery periods for children under 5 years of age. This study, based on a nationally 

representative retrospective cohort in India, substantially expands evidence that in-utero and post-delivery air 

pollution exposure contributes to child mortality in developing countries. Given the high levels of the ambient 

PM2.5 air pollution throughout India, expanding air pollution monitoring stations, adding more epidemiological 

research, and making a substantial effort to reduce ambient air pollution and early life exposures are all needed. 
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Appendix for Chapter 5 

 

1. Data inputs for Ambient PM2.5 Prediction Model 

1.1 Ground PM2.5 Measurement 

We collected daily ambient PM2.5 concentrations over 2015 – 2018 from air monitoring stations across India 

and averaged them into monthly ambient PM2.5 concentrations over this period. The daily ambient PM2.5 

measurement data were downloaded from Central Pollution Control Board (CPCB, 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing). We also collected hourly PM2.5 

measurements from five US Embassy and Consulates to India from AirNow.gov (https://airnow.gov/) during 

the same period. We excluded the daily average PM2.5 concentrations outside of 3 standard deviations of the 

mean for the log-transformed daily PM2.5 concentrations (0.05% of total data, outside of range 4.2 ug/m3 - 845 

ug/m3). We believe these measurements may be implausible and may be due to measurement or other errors. 

For hourly PM2.5 concentration data from US consulates or embassies, we removed data that lacked valid quality 

checks. Daily concentrations with less than 18 hourly measurements were excluded (2.2%).  

 

Table 5-1S shows the number of stations and days of measurements in each year from 2015 – 2018. Daily 

average PM2.5 measurements from stations within the same grid were averaged, resulting in 56,834 grid-day 

PM2.5 measurements. We averaged gridded daily PM2.5 measurements into gridded monthly PM2.5 averages if 

more than 15 days have daily measurements for a given grid cell in a given month. We ended up with 1446 

grid-months of PM2.5 measurement during 2017 – 2018 for model development and 465 grid-months of 

PM2.5 measurement during 2015 – 2016 for hindcasting.  
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1.2 Satellite Data 

We downloaded the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 level-2 aerosol 

optical depth (AOD) products (MOD04_L2 and MYD04_L2) at 10 km resolution collected by Aqua and Terra 

satellites, from Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/) during years 

2009 – 2018(MODIS Atmosphere Science Team, 2015; MODIS Science Team, 2014). We used Deep Blue 

(DB) and Deep Blue-Dark Target combined parameters (Combined) from MODIS retrial and assigned and 

averaged the centroid of each retrial to created 0.1° × 0.1° grid cells and calculated monthly average AOD value 

for DB and Combined algorithms. MODIS DB algorithm can provide high quality retrievals over bright land 

areas such as urban regions, where most air pollution monitors are located, while the DT algorithm works 

better over vegetation covered land. DB-DT combined AOD parameter only used high quality retrievals from 

DB and DT algorithms, and excluded retrievals when cloud coverage was high during the rainy season. Similar 

to AOD missing patterns in East Asia(Q. Xiao et al., 2016), we found that 56% – 72% of the monthly AOD 

data is missing in India between 2009 – 2018.  

 

Table 5-2S summarizes the AOD data missing patterns in 2017. Similar to a previous study(Qingyang Xiao et 

al., 2018), we imputed missing AOD patterns at the monthly level, using random forest algorithm. Figure S1 

shows combined AOD parameter and DB AOD parameter spatial distribution after gap-filling in July 2017. 

 

Active Fire Data were obtained from the Fire Information for Resource Management System (FIRMS, 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms), using Collection 6 NRT Hotspot / 
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Active Fire Detections product (MCD14DL)(LANCE FIRMS, 2016), from 2009 - 2018. This active fire 

product is provided from MODIS sensor aboard the Aqua and Terra satellites. We processed the active fire 

points and assign each active fire event to each grid cell using a 15km buffer and aggregated the number of 

active fire events in each 0.1° grid cell each month. 

 

Normalized Difference Vegetation Index (NDVI) data were obtained from MODIS Vegetation Indices 

product (MOD13C1) with 16-day temporal resolution and 0.05-degree spatial resolution from Distributed 

Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/), for 2009 - 2018. This NDVI product 

incorporates a data fill strategy, based on historic data records, producing a continuous NDVI estimate(K. 

Didan, 2015, p. 1). We conducted oversampling and calculated the monthly average NDVI value for each 0.1° 

grid cell, based on original 0.05-degree 16-day data. The aerosol absorbing index (AAI) in visible light and UV 

light and tropospheric NO2 density data were obtained from Ozone Monitoring Instrument (OMI), 

downloaded from Goddard Earth Sciences Data and Information Service Center 

(https://mirador.gsfc.nasa.gov/). We used parameters AerosolIndexUV and AerosolIndexVIS from OMI Aerosol 

Extinction Optical Depth and Aerosol types level 2 data (OMAERO) and UVAerosolIndex from OMI Near-

UV Aerosol Absorption and Extinction Optical Depth and Single Scatter Albedo level 2 data (OMAERUV) to 

represent aerosol absorbing index (AAI). We extracted parameter ColumnAmountNO2Trop from the OMI NO2 

level 2 data (OMNO2) to represent tropospheric NO2 density. We excluded retrievals with the cross-track 

anomaly flag as nonzero, due to a row anomaly starting from 2007(Krotkov et al., 2019; Stein-Zweers & 

Veefkind, 2019). Then we conducted oversampling and calculated the monthly average AAI and tropospheric 

NO2 density for each 0.1° grid cell. 
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1.3 Meteorological Reanalysis and Aerosol Simulation Data 

Daily meteorological data and aerosol diagnostics were obtained from Goddard Earth Observing System Data 

Assimilation System (GEOS 5/MERRA-2, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ ), at 0.5° 

latitude × 0.625° longitude resolution, from 2009 - 2018(Koster, 2015). Air temperature at 2-meter (T2M), 

eastward wind speed at 10-meter (U10M), northward wind speed at 10-meter (V10M), specific humidity at 2-

meter (QV2M), surface pressure (PS), and total liquid water precipitation (TQL), total ice precipitation (TQI) 

and total water vapor precipitation (TQV) were extracted from 2d assimilated state at hourly intervals 

(inst1_2d_asm_Nx). Planetary boundary height (PBLH) data were extracted from 2d time-averaged surface 

flux diagnostics at hourly intervals (tavg1_2d_flx_Nx). Aerosol diagnostics data including organic carbon 

surface mass concentration (OCSMASS), SO2 surface mass concentration (SO2SMASS), sulfate surface mass 

concentration (SO4SMASS), black carbon surface mass concentration (BCSMASS), sea salt surface mass 

concentration – PM2.5 (SSSMASS25), dust surface mass concentration – PM2.5 (DUSMASS25), dust extinction 

aerosol optical thickness (AOT) at 550 nm – PM2.5 (DUEXTT25) were extracted from 2d time-averaged 

primary aerosol diagnostics at hourly intervals (tavg1_2d_aer_Nx). We conducted inverse distance weighting 

to calculate meteorological and aerosol diagnostic data to each 0.1° grid cell and calculated the monthly mean 

for each grid from 2009 - 2018. 

 

1.4 Land Use and Population Data 

We downloaded elevation data from Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global Digital Elevation Model (GDEM) version 2 at 1’’ spatial resolution (approximately 30 meters), 
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and averaged to 0.1° grid cell(NASA’s Land Processes Distributed Active Archive Center (LP DAAC), 2009). 

Highway, primary road, and other road density were obtained from Global Roads Inventory Project 

(GRIP)(Meijer et al., 2018) at 5’ spatial resolution (approximately 9 km) from GLOBIO 

(https://www.globio.info/download-grip-dataset) and were averaged and assigned to 0.1° grid cell. Yearly 

varying population 2009 – 2017 were obtained from LandScan™ Global Population Database at 30’’ resolution 

(approximately 1km) and averaged to 0.1° grid cell. The population in 2018 in each grid cell was predicted using 

linear regression based on population from 2009 to 2017. Table 5-3S listed details of variables used in PM2.5 

prediction model used in this study.  
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2. PM2.5 Random Forest Model Development and Evaluation 

 

We chose random forest algorithm (RF), a machine-learning algorithm based on bootstrap aggregating decision 

trees, to build the prediction model on monthly PM2.5 concentrations over study domain. Initially developed 

by Breiman(Breiman, 2001), the RF algorithm has several advantages allowing both continuous and categorical 

input variables and being robust to outliers. Another advantage of random forest models is that they can provide 

variable importance vectors to compare the importance of variables in building the model; random forest 

algorithms are not likely to overfit. 

 

We trained RF model on monthly averaged PM2.5 concentration from 2017 – 2018 for each grid cell using 

ground based PM2.5 measurements and evaluated the model performance using 10-fold cross validation (CV). 

The number of decision trees chosen is 280, based on minimizing the error rate of prediction. To evaluate 

temporal and spatial performance of the model, we also conducted 10-fold spatial and temporal CV. Spatial 

CV refers to using data from 90% of grids for developing the model and then testing the model on the 

remaining 10% of grids; temporal CV relays on using 90% of monthly data to develop the model and then 

testing the model based on the remaining 10% of monthly data. We further evaluated model prediction and 

performance by hindcasting on monthly data from 2015 – 2016 (N = 465), before the time period from which 

the model was trained. Root-mean-squared error (RMSE) and R-squared (R2) from out-of-sample 10-fold 

cross-validation and from hindcasting were reported to evaluate the historical prediction performance of the 

model. Lastly, we predicted monthly ambient PM2.5 concentrations over India for 10 years (2009 – 2018). We 

compared our modeled annual PM2.5 mean concentrations and model performance with published databases: 
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global estimates of fine particulate matter by van Donkelaar and collegues(van Donkelaar et al., 2016) and Data 

integration Model for Air Quality (DIMAQ)(Shaddick et al., 2018) and DIMAQ-2 model(Balakrishnan, Dey, 

et al., 2018), which are the models used in Global Burden of Disease (GBD) 2016 and GBD 2017 project for 

ambient air pollution, respectively. R (version 3.5) with the randomForestSRC (version 4.6) package was used 

for PM2.5 modelling, prediction, and assignment for each child. 
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3. Cox Regression and Additional Analysis 

 

3.1 Variable included in Cox Regression model 

For the two-exposure Cox regression model in the main analysis, 9-month in-utero PM2.5, and post-delivery 

lifetime average PM2.5 exposure all satisfied proportional hazard assumptions based on test of nonzero slope in 

a generalized linear regression of the scaled Schoenfeld residuals on time(StataCorp, 2013). The prespecified 

time-independent covariates include child’s sex, birth month and year, birth order, location of birth 

(institutional birth or not), whether multiple birth, mother’s age at child birth, mother’s height, marital status, 

education (whether above secondary level), maternal smoking, wealth index, whether household member 

smoke (second-hand smoke exposure), urban or rural location of households, geographical region/zonal 

council (Northern, Central, North Eastern, Eastern, Western and Southern), primary cooking fuel, and toilet 

facilities. Time-dependent covariates include monthly rainfall precipitation and monthly temperature. Child 

birth year and month, sex, and geographical location of households were modelled as strata and unique baseline 

hazard functions were given for all 927 strata of combinations of these variables. The robust variance estimation 

for coefficients were used. For the tied outcomes, Breslow’s method was used. Children born as low birth 

weight (LBW, birth weight less than 2 500 g) might mediate in-utero PM2.5 and mortality and previous literature 

suggested not including LBW in the analysis of parental exposure and child mortality(Hernández-Díaz et al., 

2006). Therefore, we exclude LBW covariates in the main analysis and conducted sensitivity analysis (explained 

in part 3.3 and 3.4), and further analyzed whether in-utero PM2.5 exposure is associated with LBW using mixed 

effects logistic regression. 
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Single-exposure and two-exposure model comparison 

We conducted sensitivity analysis and compared PM2.5-mortality HRs and Akaike Information Criterion (AIC) 

for the two-exposure model and single-exposure models using in-utero PM2.5 and post-delivery lifetime PM2.5 

only. All two-exposure model and single-exposure models included covariates specified in the main analysis. 

 

3.3 Additional sensitivity analysis 

To check the robustness of our results, we conducted a series of sensitivity analysis on the two-exposure model 

and the single-exposure models with in-utero or post-delivery life PM2.5 exposure. First, to check whether 

inclusion of LBW will modify the model results, we added LBW to the single-exposure and two-exposure 

models (modify 1 model). Second, we conducted analysis using the stratified variables (child birth month and 

year, sex and geographical location) as time-independent predictors in the single-exposure and two-exposure 

models (modify 2 model). Third, we included additional cluster-level covariates, including the percentage of 

households with improved toilets, and the percentage of households using clean fuels (modify 3 model). Fourth, 

we conducted unweighted analysis of two-exposure models without using sample weight from DHS (modify 4 

model). Next, due to 76 923 (30%) of children being from the same households and the potential correlation 

of mortality in these households (n = 175 865) or clusters (n = 27 835) level, we conducted Cox regression 

analysis with generalized estimating equations to account for the correlation at the household (modify 5 model) 

and cluster levels (modify 6 model), by specifying vce(cluster) in stcox command in Stata. Lastly, we replaced 

post-delivery lifetime PM2.5 exposure with monthly PM2.5 exposure, defined as monthly mean PM2.5 exposure 

each month after child birth until child death or censoring, in the two-exposure model (modify 7 model). 
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3.4 Mediation analysis of In-utero PM2.5 exposure, LBW and child mortality 

In order to check whether LBW mediates associations between in-utero PM2.5 exposure and child mortality, we 

conducted additional modeling assessing the relationship between in-utero PM2.5 exposure and LBW and the 

relationship between LBW and child mortality. First, we conducted a mixed effect logistic regression between 

in-utero PM2.5 exposure and LBW, with cluster-level random intercepts and controlled with related covariates. 

Then, we conducted Cox regression with LBW, post-delivery single-exposure PM2.5 exposure, and other 

covariates to assess whether LBW can predict child mortality. 
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4. Ambient PM2.5 Prediction Model Performance and Predicted PM2.5 in India Over 10 Years.  

4.1 Performance of PM2.5 Prediction Model 

Figure 5-2S shows the number of decision trees used and variable importance matrix in RF model to fit the 

ambient PM2.5 prediction model. We chose 280 as the number of decision trees in order to minimize the error 

rate of prediction. The variables with highest prediction importance are simulated aerosol and reanalyzed 

meteorological variables from the global reanalysis model. Direct satellite retrievals of aerosol optical depth 

have medium importance among all variables. These includes aerosol absorption index (AAI) from OMI 

satellite, deep-blue (DB), deep-blue, and dark-target combined (Combined) AOD parameters from Terra and 

Aqua satellites. Table 5-4S shows the RF model CV performance and historical prediction/hindcast 

performance.  

 

A total of 1 446 data points of monthly PM2.5 was included in the RF model from over 134 ground based PM2.5 

monitoring stations in 2017 - 2018, with overall measured mean PM2.5 concentration 76.5 µg/m3. The RF model 

shows 10-fold CV R2 (root-mean-squared error, RMSE) of 0.82 (25 µg/m3), with predicted mean of 77.3 µg/m3. 

The spatial and temporal CV R2 (RMSE) of RF model is 0.77 (26 µg/m3) and 0.77 (25 µg/m3) respectively, 

indicating stable and good fit of monthly PM2.5 air pollution measurements from ground stations. The historical 

hindcasting based on monthly measurements (N = 465) from 2015 – 2016 shows a R2 (RMSE) of 0.82 (32 

µg/m3), with predicted mean of 81.8 µg/m3 compared to observed mean of 91.2 µg/m3. The historical 

prediction shows our model underestimates PM2.5 levels during periods with extreme levels, when monthly 

PM2.5 is over 350 µg/m3 (for instance, a few high ambient air pollution measurements in Northern India in 

January and November of 2016). Regardless, our model still has relatively good hindcasting capacity to predict 
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historical monthly PM2.5 levels. The annual within-sample RMSE from model CV in 2017 - 2018 is 10.9 µg/m3, 

and annual RMSE from historical hindcasting in 2015 - 2016 is 21.7 µg/m3, with better performance compared 

to previous ambient air pollution models used in Global Burden of Disease study in the South Asia 

region(Shaddick et al., 2018), which has within-sample RMSE of 17.6 µg/m3. Table 5-5S shows the modelled 

and measured annual mean PM2.5 concentration in Delhi, Mumbai, Kolkata, Chennai and Bangalore in 2015 - 

2018, confirming our model has relatively good predictions over large cities in India. 

 

4.2 Predicted Ambient PM2.5 Levels 

Figure 5-4S shows predicted annual mean ambient PM2.5 concentrations over 10 years from 2009 to 2018. The 

map on the upper left shows the predicted annual mean PM2.5 concentrations in 2018. The remaining maps 

show the difference of predicted annual mean PM2.5 concentrations between each year from 2009 – 2017 and 

the predicted concentration in 2018. Annual concentrations show clear spatial patterns, with highest annual 

PM2.5 concentrations in the Indo-Gangetic Plain (IGP) covering Haryana, Uttar Pradesh, Bihar states and 

National Capital Territory of Delhi of over 120 µg/m3, three times above 40 µg/m3, the recommended limit 

set by National Ambient Air Quality Standards (NAAQS) of India(Gautam, 2019). On the contrary, southern 

Indian states have the lowest annual mean PM2.5 concentrations, with most of the areas around annual mean 

PM2.5 of 35 µg/m3, the interim target-1 (IT-1) level of World Health Organization and below the Indian 

NAAQS(Gautam, 2019). The monthly average PM2.5 concentration over 10 years shows that PM2.5 levels have 

strong seasonal variations (Figure 5-5S), with peak PM2.5 between November and March, and lows during the 

month July and August.  
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To estimate the change of annual ambient PM2.5 air pollution over time, we conducted a linear regression of 

annual predicted PM2.5 over 10 years for each grid. We found that most states shows an increase of annual 

PM2.5 concentrations at the rate of 0.5 µg/m3 per year. Particularly, the IGP and west coast of Western region, 

the ambient PM2.5 concentrations increased at around 1 µg/m3 per year; while Northeastern region and north 

part of Northern region shown decrease of ambient PM2.5 levels during 2009 -2018 (Figure 5-1).  

 

Table 5-6S displays population weighted ambient PM2.5 concentrations over 2009 – 2018 from our predictions, 

ground station measurements, and other model predictions of population-weighted ambient PM2.5 

concentrations. The population weighted-annual ambient PM2.5 concentration slightly increased from 2009 – 

2015 and remains relative stable from 2016 – 2018. Our model prediction levels are constantly higher than van 

Donkelaar et al’s model prediction(van Donkelaar et al., 2016) but similar to DIMAQ models(Balakrishnan, 

Dey, et al., 2018; Shaddick et al., 2018) 
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5. Demographic and Health Survey (DHS) Data Missing Patterns 

 

All 259 627 live-birth children born to DHS respondents (women of 15 – 49 age) no more than 5 years 

preceding the survey were included. We excluded 2 282 (0.9%) children born in the Union Territories of 

Andaman and Nicobar Islands and Lakshadweep, both of which are more than 200 km away from the 

subcontinent and excluded 1 117 (0.5%) children without geo-coordinates. In addition, we excluded 1 912 

(0.7%) children who were not living in the same households as their mothers during the survey interview, and 

1 528 (0.6%) children with missing values of birthplace or mother’s height measurements. A total 252 788 

children born January 2010 – November 2016 from 27 853 clusters were included in the analysis. 
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Supplementary Tables 

 

Table 5-1S. Number of PM2.5 measurement stations, the number of station-days of data, and the number of 
measurement days by year. 

Year Number of 
stations 

Total 
station-days  

Measurement days for each station 

Min Mean Median Max 

2015 13 2721 1 239 254 292 

2016 56 13075 1 294 321 366 

2017 86 17253 1 274 325 365 

2018 133 40655 25 324 347 365 
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Table 5-2S. Missing Patterns of AOD retrieval from Aqua and Terra satellite. 

 Number of days in each month with valid AOD retrieval 

Month Satellite Terra Satellite Aqua Two Satellite combined 

 
DB 
algorithm 

DB-DT 
combined DB algorithm DB-DT 

combined 
DB 
algorithm 

DB-DT 
combined 

1 10.4 8.5 13.7 11.2 17.7 13.3 

2 4.4 4.0 13.3 11.4 14.2 11.8 

3 12.3 11.5 11.7 10.5 17.4 14.0 

4 11.7 10.5 11.8 9.9 16.9 13.0 

5 11.6 9.0 10.3 6.8 16.2 9.5 

6 5.8 3.1 4.6 2.0 8.1 2.9 

7 1.3 0.5 1.4 0.4 2.3 0.5 

8 0.6 0.2 1.8 0.6 2.1 0.6 

9 6.1 3.3 5.0 2.0 8.6 3.0 

10 11.5 8.7 10.5 7.2 15.9 10.1 

11 13.8 10.7 13.0 9.5 18.9 12.9 

12 13.8 10.7 13.6 10.5 19.3 13.4 

DB: deep blue AOD retrieval algorithm, DB-DT combined: deep blue – dark target combined AOD retrieval 
algorithm 
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Table 5-3S. Variables in Random Forest (RF) Model in Predicting Monthly Ambient PM2.5 Levels 

Variable name Source Original Product Name Variable Meaning 

MODIS.DB.AOD 
Terra and Aqua satellites MOD04_L2 and 

MYD04_L2 

Deep-blue (DB) AOD estimation Retrieval 

MODIS.Combined.AOD Deep-blue and Dark-target combined AOD 
estimation retrieval 

MERRA.PS 

MERRA-2/GEOS 5 
Meteorological Reanalysis and 
Aerosol Similation Model 

PS Surface pressure 

MERRA.T2M T2M 2-meter air temperature 

MERRA.U10M U10M 2-meter eastward wind 

MERRA.V10M V10M 2-meter northward wind 

MERRA.QV2M QV2M 2-meter specific humidity 

MERRA.TQL+TQI Derived variable Total ice and liquid precipitation: TQI and TQL 

MERRA.OCSMASS OCSMASS Organic Carbon Surface Mass Concentration 

MERRA.SO2SMASS SO2SMASS SO2 Surface Mass Concentration 

MERRA.BCSMASS SO4SMASS SO4 Surface Mass Concentration 

MERRA.SSSMASS25 BCSMASS Black Carbon Surface Mass Concentration 

MERRA.DUSMASS25 SSSMASS25 Sea Salt Surface Mass Concentration - PM 2.5 

MERRA.DUEXTT25 DUSMASS25 Dust Surface Mass Concentration - PM 2.5 

MERRA.PBLH DUEXTT25 Dust Extinction AOT [550 nm] - PM 2.5 

OMI.AAI Aura ozone monitoring 
instrument (OMI) satellite 

 

OMAERO and 
OMAERUV 

Aerosol absorption index, averaged from 
AerosolIndexUV, AerosolIndexVIS and 
UVAerosolIndex variables 

OMI.NO2 OMNO2 Tropospheric NO2 concentration, based on 
ColumnAmountNO2Trop variable 



 

 
 

101 

MODIS.Fire Terra and Aqua satellites MCD14DL Active Fire Spot Detection 

MODIS.NDVI Terra satellite MOD13C1 Normalized Difference Vegetation Index (NDVI) 

LS.POPULATION LandScan population model LandScan Global population estimation model 

GDEM.Elevation Global Digital Elevation Model ASTER-GDEM Global elevation estimation model 

GRIP.HW 

Global Road Inventory Project 

GRIP Highway Highway road density 

GRIP.MR GRIP Major road Major road density 

GRIP.OR Derived variable Primary road, secondary road and territory road 
density 

GRIP.AllRoad Derived variable All types of roads (highway, major, primary, 
secondary and territory) density 
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Table 5-4S. Ambient PM2.5 Air Pollution Prediction Model Fitting, 10-Fold Cross-Validation, and Historical 
Hindcasting at Monthly Level 

 

 Number of observations R2 (RMSE (µg/m3)) 

Standard 10-fold CV§ 1446 0.82 (25) 

Spatial 10-fold CV§ 1446 0.77 (27) 

Temporal 10-fold CV§ 1446 0.77 (26) 

Historical Prediction/Hindcast ¶  465 0.81 (32) 

RMSE: rooted mean square error; §based on 2017 – 2018 data; ¶based on external 2015 – 2016 data 
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Table 5-5S. Modelled and Ground Station Measured Annual PM2.5 Concentration (µg/m3) in Delhi, Mumbai, Kolkata, Chennai and Bangalore 2015 – 
2018 

 2015 2016 2017 2018 

City/Region Modelled PM Ground station 
measurements 

Modelled 
PM 

Ground station 
measurements 

Modelled 
PM 

Ground station 
measurements 

Modelled 
PM 

Ground station 
measurements 

Delhi 111.8 119.4 116.1 133.2 111.5 132.05 114.6 113.6 

Mumbai 51.4 50.0 52.4 54.9 53.0 65.01 53.3 58 

Kolkata 89.2 68.5 88.7 84.4 81.9 76.7 82.9 95.1 

Chennai 37.1 25.8 40.9 55.3 39.5 46.9 40.6 48.4 

Bangalore 33.3 NA 35.6 48.3 34.9 34.7 35.4 34.6 

NA: not available 
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Table 5-6S. Predicted Population Weighted Annual Average PM2.5 in India and Comparison of Other Model 

  2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Our model Population weighted 
PM2.5 (µg/m3) 70.5 67.7 70.6 72.8 69.7 72.9 70.3 73.5 72.3 71.7 

Ground 
station 
measurements 

PM2.5 measurement 
(µg/m3) NA NA NA NA NA NA 86.5 92.3 83.4 73.1 

van Donkelaar 
et al., 2016 
(van 
Donkelaar et 
al., 2016) 

Population weighted 
PM2.5 (µg/m3) 52.1 50.2 49.5 48.5 53.2 54.8 57.0 61.3 NA NA 

DIMAQ/DIM
AQ-
2(Balakrishnan
, Dey, et al., 
2018; Shaddick 
et al., 2018) 

Population weighted 
PM2.5 (µg/m3) NA 64.6 63.9 66.1 69.0 71.6 75.6 75.8 89.9 NA 

DIMAQ/DIMAQ-2: Data integration Model for Air Quality (version 1 and version 2), which was used in 
GBD2016 and GBD2017 project; NA: not available 
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Table 5-7S. Variables in Cox Regression Model in Predicting Child Mortality 

Variable Source Type 

Child’s birth month and year DHS Stratified variable (categorical) 

Child’s sex DHS Stratified variable (binary) 

Household geographical region DHS Stratified variable (categorical) 

Birth order DHS Categorical 

Institutional birth DHS Binary 

Multiple birth DHS Binary 

Mother’s age at childbirth (quartile) DHS Categorical 

Mother’s height (quartile) DHS Categorical 

Maternal smoking DHS Binary 

Maternal education DHS Binary 

Other household member smoke DHS Binary 

Household wealth index DHS Continuous 

Household cooking fuel DHS Binary 

Household toilet DHS Binary 

Urbanity of household DHS Binary 

Monthly temperature MERRA-2 Continuous 

Monthly rainfall precipitation CHIRPS Continuous 

MERRA-2: Modern-Era Retrospective analysis for Research and Applications; CHIRPS: Climate Hazards 
Group InfraRed Precipitation with Station 
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Table 5-8S. Akaike Information Criterion (AIC) for single-exposure and two-exposure models§ 

 Single-exposure Two-exposure 

 Model 1 Model 2 Model 3 

Child 
mortality 1,733,004 1,733,059 1,732,961 

Infant 
Mortality 1,562,318 1,562,346 1,562,265 

Neonatal 
Mortality 1,156,491 1,156,481 1,156,433 

Model 1: in-utero model, with only 9-month in-utero PM2.5 exposure 

Model 2: post-delivery lifetime average model, with only post-delivery lifetime average PM2.5 exposure 

Model 3: Two-exposure model, with both in-utero and post-delivery lifetime average PM2.5 exposure 

§All Cox regression models controlled for individual level, household level and cluster level covariates, 
stratified by child birth year and month, age and geographical zones, and correspond to the models in main 
analysis. 
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Table 5-9S. Odds Ratio of Low Birth Weight (LBW) per 10 µg/m3 increase of In-utero PM2.5 exposure § 

 

 Odds Radio (95% CI) 

Crude model 1.006 (0.999, 1.013) 

Adjusted model 1.013 (1.004, 1.022) 

§ based on mixed effect logistic model with cluster level (N = 27 436) random intercept, crude model only 
included in-utero PM2.5 exposure, adjusted model included child birth month and year, sex, birth order, multi-
birth, birth location, mother’s age at child birth, height, marital status, education level, maternal smoking, 
household’s wealth index, urban or rural location, toilet and cooking fuel. 

 



 

 
 

108 

Table 5-10S. Adjusted Hazard Ratios associated with LBW on Child Mortality in Single-exposure Model with 
In-utero PM2.5 exposure§ 

 

 Hazard Ratio (95% CI) 

Child Mortality 1.419 (1.326, 1.519) 

Infant Mortality 1.442 (1.343, 1.548) 

Neonatal Mortality 1.406 (1.296, 1.527) 

§ Controlled for in-utero PM2.5, child birth month and year, sex, geographical location, birth order, multi-birth, 
birth location, mother’s age at child birth, height, marital status, education level, maternal smoking, 
household’s wealth index, urban or rural location, toilet and cooking fuel, the same model as modify 1 model 
in additional sensitivity analysis. 
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Supplementary Figures 

 

Figure 5-1S. Gap-filling for Deep-blue (DB) and Deep-blue and Dark-Target combined (Combined) Aerosol Optical Depth Retrieval Algorithm in July 
2017 
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Figure 5-2S. Variable importance plot of Ambient PM2.5 Random Forest Model Fitting 
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Figure 5-3S. Cross-validation and Hindcasting Performance of the Random Forest Model on Monthly PM2.5 
Measurements 
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Figure 5-4S. Predicted Annual PM2.5 Concentrations from 2009 – 2018. The upper left map shows the predicted annual PM2.5 Concentrations in 2018, 
and the rest of maps shows the differences of annual PM2.5 Concentrations between 2018 and each year in 2009 – 2017. 
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Figure 5-5S. Predicted Monthly PM2.5 Concentrations, averaged across 10 years 2009 – 2018. 
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Figure 5-6S. Hazard Ratios (HRs) of Mortality and 95% Confidence Interval per 10 µg/m3 increase of PM2.5 
Exposure, According to Additional Sensitivity Analysis. Red circle represents effects of in-utero PM2.5, and 
blue triangle represents effects of post-delivery cumulative PM2.5. 

 

Original model: represents model in the main analysis 

Modify 1: add low birth weight (LBW) as predictor 

Modify 2: use stratified variables (child birth month, year, sex and geographical area) as time-independent 
predictor in the model 

Modify 3: add cluster level covariates including percentage of households with improved toilet and clean 
cooking fuel as predictor 
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Modify 4: un-weighted analysis 

Modify 5: GEE to control correlation within household 

Modify 6: GEE to control correlation within cluster 

Modify 7: Replace post-delivery lifetime average PM2.5 with post-delivery monthly PM2.5, only in two-
exposure model 
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Chapter 6  Summary, Implications and Further Research 

6.1  Summary 

The overall objective of the research described in this dissertation was to address knowledge gaps in air 

pollution exposure assessment and provide evidence on the exposure-response relationship of air pollution, 

especially for children and pregnant women in resource-limited settings. The research is intended to support 

air pollution exposure assessment for newborn infants in HAPIN trial and contribute to the epidemiological 

evidence on the gestational health effects of air pollution exposure. We sought to accomplish this objective by 

conducting three studies, each of which involved different methods and sources of data.   

 

In Chapter 3, we provided an assessment of an indirect, sensor-enabled exposure measurement technique in 

households using woodstoves at baseline and an LPG cookstoves at follow-up. This chapter demonstrated that 

indirect exposure assessment using the Beacon system as a microenvironmental location monitor provides an 

acceptable estimate of personal exposures in both low and high PM2.5 exposure settings. We found that indirect 

exposure methods have a higher correlation with direct personal exposure measurements and less bias than do 

kitchen measurements. In settings where conducting personal direct exposure assessment is not practical, such 

as in children under 1 year old, the Beacon indirect exposure method is an alternative to better estimate personal 

exposure to PM2.5. The results of this study can inform exposure assessments for future household air pollution 

studies. 

 

In Chapter 4, we applied a mixed effects model to examine the effect of personal PM2.5 exposure on gestational 

blood pressure using a prospective cohort of pregnant women enrolled in the HAPIN intervention trial. We 

found that exposure to household air pollution is associated with an increase in systolic blood pressure, but not 

diastolic blood pressure during pregnancy. Consistent with previous studies, our study shows that household 

air pollution from solid fuel combustion is associated with increases in blood pressure, a risk factor for adverse 

pregnancy outcomes later in the pregnancy. Interventions to reduce HAP, such as provision of a clean cooking 
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stoves and LPG fuel, can positively impact blood pressure during pregnancy, with potential benefits on 

maternal health. 

 

In Chapter 5, we developed a spatial-temporal resolved mapping of ambient PM2.5 concentration over India 

from 2009 – 2018. We demonstrated that the adverse child health effects were associated with high levels of 

ambient PM2.5 exposure, both in utero and post-delivery period, based on a retrospective birth cohort 

reconstructed from Demographic and Health Survey (DHS). We showed that up to 18% (95% CI: 12.6% - 

23.1%) of child mortality can be averted by reducing exposure levels to WHO ambient PM2.5 guidelines — a 

massive disease burden in a country like India due both to the large population and the egregious levels of air 

pollution.   

 

By advancing exposure assessment of both household air pollution and ambient air pollution through state-of-

art technology and data analysis, this thesis demonstrated the feasibility of these improved exposure assessment 

methods in both intervention studies of a clean cooking stove and observational studies of ambient air pollution. 

This thesis also provides evidence supporting the adverse maternal and child health effects of air pollution from 

cookstoves and outdoor ambient environments in low-income settings. 

 

6.2  Implications 

This research has important implications in exposure science and environmental epidemiological research 

around air pollution and associated adverse health effects among pregnant women and children in LMICs, 

where many households rely on solid fuel for cooking and heating and experience high ambient air pollution 

due to industrialization. The assessment and validation of the Beacon system demonstrate that it offers a 

promising alternative in assessing the personal exposure to air pollution among very young children who are 

considered as one of the most vulnerable yet challenging group to monitor. Current personal air monitoring 

does not suit children for two reasons: 1) the size of monitors which are too large for children to wear and 2) 

the air pump in the air monitor that is bothersome to operate on the youngest children. Results from the study 
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will inform instrument selection in future studies. More importantly, overcoming the difficulties in assessing 

child exposure will encourage more studies to look into this unique age group and add more environmental 

epidemiological evidence to this important but not well-studied population, especially the effects of early life 

exposure to air pollution and its’ on later health outcomes, such as the development of the respiratory system, 

nervous system, and metabolic system.  

 

The development of the ambient air pollution model over India for the past 10 years addressed the lack of the 

ground-based air pollution monitoring stations in the South Asia subcontinent.  It provides a basis for future 

epidemiological studies on the health effects of long-term air pollution exposure in India, where the ambient 

air pollution remains the highest globally. This advance in air pollution exposure assessment also has important 

implications for estimating the health effects of air pollution, especially in low-income settings. The study of 

the gestational blood pressure effects of household air pollution and the study of child mortality effects of 

ambient air pollution contribute to our knowledge of increased maternal and child health risks from exposure 

to air pollution – from both around the household and the ambient environment.  

 

Overall, the results of this dissertation research underscore the importance of air pollution intervention 

strategies at the household level, such as provision of clean cookstoves and fuel, as well the urgency to address 

ambient air pollution levels in low-income settings with high air pollution exposures. 

 

6.3  Further Research 

In this dissertation research, we used cutting-edge and innovative methods to characterize individual exposure 

to air pollution and associated health effects. Accurately assessing personal exposure is the key to environmental 

health research. In the area of air pollution, the development of monitoring technologies, and advances in 

artificial intelligence and the focus on human centered design promise a new wave of air pollution evaluation 

techniques. This promises to continue development of temporal and geographical resolutions and increased 

application of low-cost sensors and open data sources.  
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Despite the progress in these areas, research gaps remain in characterizing life-course exposure, as well as 

understanding how different environmental exposure sources interact with each other over a lifetime. These 

aspects of exposure are likely to play significant roles in human health, interacting with genetic, metabolic and 

environmental differences. There is a need to further study the effectiveness of air pollution interventions, 

identifying critical exposure windows such as during pre-conception, gestation and early-life periods, and 

examining potential effect differences based on gender and socioeconomic status. Future research should also 

focus on leveraging the rich dataset generated from high-throughput ‘omics’ approaches, including exposome, 

metabolomics, epi-genetics and genomics data, to understand genetic and metabolic pathways linking air 

pollution exposure during critical periods and the development of disease outcomes and disorders. 

 

 

6.4  Reflections 

With the completion of my dissertation research, I want to summarize what I have learned and what could have 

been done differently. For my research first aim in Chapter 3, I took advantage of an innovative technology 

and method to assess the air pollution of young children, and trained myself with strong analytical and coding 

skills. However, the heavy data processing burden and complicated process may prevent the large-scale uptake 

of this method. The full application of Beacon system in the HAPIN main trial needs more attention and inputs 

for analysis. More efforts are needed on streamline the data processing, analysis procedures and data integration. 

Application of new technologies in HAP research and applications should also consider cultural appropriation, 

acceptance and accessibility in low-resources settings.  Future applications of technology to combat household 

air pollution in rural settings of developing countries should seriously consider these requirements. 

 

In the second research aim of this dissertation, I contributed the epidemiological evidence in understanding 

maternal effects of HAP in low-income settings, especially among pregnant women where knowledge is 

currently scarce. To tackle this research question in-depth more, since gestational BP is determined dynamically 
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by many different factors, designing survey questions to account for potential confounders such as diet and 

physical activity need to be considered in future research. In addition, my first and second research aims are 

based on the HAPIN trial in Guatemala, and I contributed to a less extent in data collection, field training and 

management. This dissertation and my doctoral work have a significant contribution to the science of 

household air pollution and reducing its health burdens. However, in order to achieve the optimal public health 

outcomes, better management should always be conducted; therefore I need to train myself more in my 

academic and professional career in public health project management.  

 

As for my last aim, I learned to use publicly available data sources to improve both ambient air pollution 

exposure assessment, as well as child health risks of air pollution in India. Both of these dissertation outputs 

serve as early information regarding health risks in applying ambient air pollution research in global health 

context in developing Asia. Using this open data source to conduct a retrospective cohort requires a number 

of assumptions and tends to be more susceptible to confounding and information bias than first-hand 

prospective cohort study. I am therefore looking to apply more advanced statistical and epidemiological models 

in prospective cohorts or randomized controlled trial studies in my future studies.  

 

Overall, this dissertation examines advanced exposure assessment methods in HAP and AAP that are to 

strengthen the base of knowledge to understand the effects of air pollution in low-income settings, especially 

on maternal and child health. The application of the exposure assessment techniques in the HAPIN trial and 

future studies will be advanced through this dissertation work. Future epidemiological analysis of air pollution 

in developing Asia and other rural settings might be inspired by the methodology and findings from this 

dissertation.  

 

Ultimately, achieving global health equity in the disease burden of air pollution, both from household and 

ambient environment, especially for vulnerable population like pregnant women and children in low-income 

settings, requires greater efforts to reduce air pollution levels are urgently needed. This requires rigorous 
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evidence to inform policy.  The findings of this dissertation should assist air pollution exposure assessment, 

epidemiology research and implementation, and the identification of critical time periods for vulnerable 

population. 
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