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Abstract 
 

 
 

Estimating Genetic Effects When Stratification-Score Matching Is Used to 
Correct for Confounding by Population Stratification in Case-Control Studies 

 
 

By Zhe Sun 
 
 

 
Case-control studies are most frequently used to investigate the association between 
the risk of developing a particular disorder and the genetic variation. This association 
may be confounded by population stratification, i.e., when genetic variation is 
correlated with variation in disease risk across latent subpopulations in the 
case-control sample. Failure to properly account for this confounding can lead to false 
associations between the genetic markers and disease. An efficient correction 
proposed by Epstein et al. (2007, 2012) is to infer the ancestry by principal 
components of the sample correlation matrix of SNP genotypes, and fine-match the 
case-control samples by the stratification score, which is the probability of disease 
given genomic variables. However, this approach only provides hypothesis testing of 
the association but not estimation of the genetic effects. In this thesis, we propose a 
novel estimation method based on the fine-matched case-control sample. Extensive 
simulation studies were carried out to evaluate the performance of the proposed 
method and compare with a few alternative strategies. The simulation results 
demonstrate little bias of the proposed estimator, even when there is a strong 
association between the ancestry and the genetic marker under study.  
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1. Introduction 

The association between disease and genetic variation are of main interest in 

contemporary genetic studies. For example, Genome-wide association studies (GWAS) 

can be used to identify the association between the risk of developing a particular 

disorder and single nucleotide polymorphisms (SNPs). There are mainly two types of 

study designs in examining the genetic effects: prospective cohort studies and 

retrospective case-control studies. Confounding factors are those related to both the 

diseases and the genetic variable. They should be accounted for because they can 

distort the true relationship between the disease and the genetic variable (Knowler et 

al., 1988). Since genetic studies tend to include samples with heterogeneous ancestral 

backgrounds, population stratification is the main confounding factor. 

For prospective studies, Rosenbaum and Rubin (1983) proposed a 

propensity-score-matching approach. Stratification on the propensity score, which is 

the probability of an exposure conditional on confounding variables, can remove 

confounding when examining the relationship between a binary exposure and disease.  

For retrospective case-control studies, many methods have been proposed to 

correct for population stratification. One of the strategies uses large sets of genetic 

markers to derive ancestry components, which are often inferred as the principal 

components of the sample correlation matrix of SNP genotypes (Chen et al., 2003; 

Patterson et al., 2006; Price et al., 2006).  Lee et al. (2009) proposed to use 

spectral-graph theory to form ancestry components consisting of eigenvectors derived 
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from the normalized Laplacian matrix of the sample genotype data. We can include all 

of the ancestry components in the model and directly adjust for these covariates to 

correct for population stratification. Such a “direct adjustment” method assumes that 

disease risk is a linear or log-linear function of ancestry components.  

In order to relax the assumption of a parametric relationship between the disease 

and the ancestry components, we can stratify cases and controls based on ancestry 

components. Conditional logistic regression models or Cochran-Mantel-Haenszel 

statistic can be used to test the association. The stratification is performed by 

comparing the dissimilarity of ancestry components between different subjects in a 

case-control study. Those with similar ancestry components are classified into one 

stratum. Such a tight matching strategy is advantageous in GWAS if a study recruits 

controls from large database. It ensures that only controls that have similar ancestry to 

those of cases are used in the analysis. When there are outliers, the matching strategy 

can provide a correction for confounding effect according to Luca et al. (2008) and 

Allen et al. (2010).  

In order to determine genetic dissimilarity, Luca et al. (2008) proposed to use 

Euclidean distance between the principal components of case and control participants 

(referred to as the GEM approach). Lee et al. (2009) further proposed to replace the 

principal components with significant ancestry components derived by spectral-graph 

approach (referred to as the Spectral-GEM Approach). Guan et al. (2009) developed 

an approach named GSM, which matches subjects based on the average proportion of 

alleles (weighted by allele frequency) shared identical-by-state (IBS) over tens of 
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thousands of SNPs. However, without identifying the contribution of ancestry 

components to confounding, the above methods will lead to unsuitable matching 

when the uncorrelated ancestry components are included in the model.  

Epstein et al. (2007) proposed a novel measurement of dissimilarity based on 

the estimated odds of disease given the principal components for ancestry. The new 

measurement is referred to as the stratification score. Epstein et al. (2012) showed that 

the fine matching based on the stratification score can provide better correction for 

population stratification compared with the GEM, Spectral-GEM and GSM 

approaches. The stratification score is univariate while the other approaches attempt 

to match on multiple quantities simultaneously. The stratification score lowers the 

contribution of those uncorrelated ancestry components to the population stratification. 

It can provide a proper matching when there are large numbers of uncorrelated 

components of ancestry.  

However, Epstein et al. (2012) did not provide a solution to the parameter 

estimates adjusting for ancestry components. We propose a novel estimation method 

based on the fine-matched case-control sample. In each stratum, we do “direct 

adjustment” by including ancestry components in the logistic model and estimate the 

genetic effect by conditional logistic regression. Due to non-collapsibility, the 

estimation of the genetic effect on disease proposed by Epstein et al. (2012) is 

problematic when there are multiple ancestry components. This estimation may be 

different from the estimation of the marginal model or the estimation of the 

conditional model adjusting for the ancestry components because we estimate the 
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population stratification based on the stratification score which is univariate. 

In the remainder of this thesis, we review the method of conditional logistic 

regression, stratification score and fine matching approach in Section 2. In Section 3, 

extensive simulations will be presented to show the performance of our method. We 

will also compare alternative methods in estimating the genetic effects. In Section 4, 

we will discuss the advantages and limitations of our method. 
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2. Methods 

2.1 Ancestry Components and Stratification Score 

Confounding due to population stratification can lead to biased estimation of the 

association between the disease and the genetic variable. In order to solve such a 

problem, a common approach is to utilize genetic markers, typically single-nucleotide 

polymorphisms (SNPs), to derive influential components of ancestry. Eigenvectors 

based on the principal components of the sample correlation matrix of SNP genotypes 

are often used as the inference of ancestry components (Chen et al., 2003; Patterson et 

al., 2006; Price et al., 2006). We can then analyze the association between the disease 

and the genotype adjusted for the information of ancestry components. 

Epstein et al. (2012) proposed to use the stratification score, a scalar 

measurement based on potential confounders such as ancestry components, to correct 

for confounding. Let 𝑪𝑪𝒋𝒋 = (𝐶𝑗,1,𝐶𝑗,2, … ,𝐶𝑗,𝑞) denote the ancestry components of the 

𝑗th patients, which is composed of 𝑞 principal components derived by the procedure 

of Patterson et al. (2006). Suppose 𝐷𝑗 = 1 if the 𝑗th patient had the disease and 

𝐷𝑗 = 0 otherwise. Then the stratification score is defined as  

                    𝛩�𝑪𝑪𝒋𝒋� = 𝑃(𝐷𝑗=1|𝑪𝑪𝒋𝒋)
𝑃(𝐷𝑗=0|𝑪𝑪𝒋𝒋)

= 𝑒𝛼+𝜸𝜸𝑻𝑻𝑪𝑪𝒋𝒋  ,                (1) 

which is the odds of disease given the ancestry components. We fit model (1) to the 

case-control data to estimate 𝛼𝛼  and 𝜸𝜸 . Let 𝛼𝛼�  and 𝜸𝜸�  denote the maximum 

likelihood estimator of 𝛼𝛼 and 𝜸𝜸. We estimate the stratification score through  
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                           𝛩��𝑪𝑪𝒋𝒋� = 𝑒𝛼�+ 𝜸𝜸�𝑻𝑻𝑪𝑪𝒋𝒋  .                       (2) 

The estimated stratification score is used to stratify the population and correct the 

confounding effect.  

2.2 Fine Matching 

After deriving the estimated stratification score, we perform fine matching of cases 

and controls using a matching approach proposed by Rosenbaum and Rubin (1985). 

Let 𝑈𝑖𝑟 R be the dissimilarity measure between a case 𝑖 (𝑖 = 1, … . ,𝑁𝑐𝑎𝑠𝑒) and a 

control 𝑟 (𝑟 =  1, … . ,𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙). It is defined as 

          𝑈𝑖𝑟 = | log(𝛩�𝑖)−log(𝛩�𝑟)|

� 1
𝑁−2�(𝑁𝑐𝑎𝑠𝑒−1)𝑠𝑑1�log�𝜃���+(𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙−1)𝑠𝑑0�log�𝜃����

  ,        (3) 

where 𝑁𝑐𝑎𝑠𝑒 R and 𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙 R are the sample size of cases and controls, respectively, N 

is the total sample size, log�𝛩�𝑖� is the estimated log-transformed stratification score 

for the 𝑖th case, log�𝛩�𝑟� is the estimated log-transformed stratification score for the 

𝑟 th control, and 𝑠𝑑1�log�𝜃���  and 𝑠𝑑0�log�𝜃���  are the standard deviations of 

estimated log-transformed stratification score in the cases and controls, respectively. 

The estimated stratification score is used to minimize 𝑇, which is defined as 

               𝑇 = ∑ ∑ 𝑈𝑖𝑟𝑖𝜖[1,𝑁𝑐𝑎𝑠𝑒],𝑟𝜖[1,𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙]
𝐿
𝑙=1   .                (4) 

Rosenbaum (1991) showed that 𝑇 could be minimized if one case and ≥ 1 controls 

or one control and ≥1 cases are in the same stratum.  
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2.3 Conditional Logistic Regression Based on Stratification Score 

In order to deal with the highly stratified data, Epstein et al. (2012) proposed to 

perform a Cohran-Mantel Haenszel test to test the association between disease and 

SNP. They showed that the Cohran-Mantel Haenszel test based on fine matching the 

stratification score improved the correction for confounding by population 

stratification, as compared to the GEM and SpectralGEM approaches which directly 

utilized all the significant ancestry components information.  

In this section, we extend the approach of Epstein et al. (2012) and propose a 

novel estimation method based on the fine-matched case-control sample. Suppose that 

the genotype of the 𝑗th patient is denoted by Gj and this patient is in the stratum k 

based on the fine matching approach. There are a total of 𝐾𝐾 strata after fine matching. 

At first, it may seem natural to estimate the magnitude of the association between D 

and G by fitting the model 

                 𝑃(𝐷𝑗 = 1|{𝑺𝑘},𝐺𝑗) = 𝑒𝛼𝛼𝑘
, +𝛽𝛽𝐺𝑗

1+𝑒𝛼𝛼𝑘
, +𝛽𝛽𝐺𝑗

  ,               (5a) 

where {𝑺𝑘} denotes the set of strata.  However, the value of β obtained using this 

model may not correspond to either the value β obtained by fitting the marginal model  

                 𝑃(𝐷𝑗 = 1|{𝑺𝑘},𝐺𝑗) = 𝑒𝜶+𝛽𝛽𝐺𝑗

1+𝑒𝛼𝛼+𝛽𝛽𝐺𝑗
  ,                (5b) 

or the conditional model  

                 𝑃(𝐷𝑗 = 1|𝑪𝑪𝒋𝒋′ ,𝐺𝑗) = 𝑒𝛼𝛼
∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋 +𝛽𝛽𝐺𝑗

1+𝑒𝛼𝛼
∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋 +𝛽𝛽𝐺𝑗

 ,           (5c) 
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due to non-collapsibility (Allen et al. 2010).  Here we assume that the parameter β 

obtained by fitting the conditional model (5c) is of primary interest, but that a 

matched analysis is desired for control of confounding. 

    The approach proposed here is to modify (5a) to explicitly include some of the 

ancestry components in the model.  If matching on the stratification score is very 

tight, then all members of a stratum will have the same value of 𝜸𝜸�𝑻𝑻𝑪𝑪𝒋𝒋.  As a result, 

we cannot add all q ancestry components as they are collinear within each stratum.  

Thus, we use 𝑪𝑪𝒋𝒋′ = (𝐶𝑗,1, … ,𝐶𝑗,𝑞−1) instead of 𝑪𝑪𝒋𝒋 = (𝐶𝑗,1, … ,𝐶𝑗,𝑞−1,𝐶𝑗,𝑞).  If stratification 

is not very tight, then it may be possible to include all q components of ancestry.  Thus, the 

model we use here is  

              𝑃(𝐷𝑗 = 1|{𝑺𝑘},𝑪𝑪𝒋𝒋′ ,𝐺𝑗) = 𝑒𝛼𝛼𝑘
∗+𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋

′+𝛽𝛽𝐺𝑗

1+𝑒𝛼𝛼𝑘
∗+𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋

′+𝛽𝛽𝐺𝑗
 ,           (5d) 

Model (5d) is fitted by the maximum likelihood approach. However, the 𝛼𝛼𝑘∗  is 

difficult to estimate if the sample size is small in each stratum. Thus, the conditional 

likelihood approach (Cox, 1970) is used to eliminate nuisance parameter 𝛼𝛼𝑘∗  and 

borrow information from all the strata to estimate the common genotype effect 𝛽𝛽. Let 

𝑽  denote the 1 × 𝑝  vector (𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾, … ,𝛽𝛽,𝜸𝜸∗𝑻𝑻) . Suppose that in the 𝑘 th 

stratum, there are 𝑁𝑘 subjects. The full likelihood for the kth stratum based on our 

model is  

         𝐿(𝑽|𝑫) = ∏ � 𝑒𝛼𝑘
∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋

′+𝜷𝐺𝑗

1+𝑒𝛼𝑘
∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋

′+𝛽𝐺𝑗
�
𝐷𝑗

𝑁𝑘
𝑗=1 �1 −  𝑒𝛼𝑘

∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋
′+𝜷𝐺𝑗

1+𝑒𝛼𝑘
∗ +𝜸𝜸∗𝑻𝑻𝑪𝑪𝒋𝒋

′+𝛽𝐺𝑗
�
1−𝐷𝑗

 ,     (6) 
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where D= �𝐷1, … ,𝐷𝑁𝑘�. Suppose that in this stratum, only the 𝑗th subject is a case. 

By Bayes’ rule, the conditional probability of the observed results in this stratum is         

𝑃�𝐷1 = 0, … ,𝐷𝑗 = 1, … ,𝐷𝑁𝑘 = 0�𝐷1 + 𝐷2 + ⋯𝐷𝑁𝑘 = 1� 

         =
𝑃(𝐷1=0,…,𝐷𝑗=1,…,𝐷𝑁𝑘=0)

𝑃�𝐷1=1,𝐷2=0,…,𝐷𝑁𝑘=0�+⋯+𝑃(𝐷1=0,…,𝐷𝑁𝑘=1)
  .                     (7) 

Since we assume the mutually independence of the 𝑁𝑘 subjects in this stratum, we 

have 

𝑃�𝐷1 = 0, … ,𝐷𝑗 = 1, … ,𝐷𝑁𝑘 = 0� = 𝑃(𝐷1 = 0) …𝑃�𝐷𝑗 = 1�…𝑃�𝐷𝑁𝑘 = 0� .  (8) 

Thus, the conditional probability in equation (7) can be simplified as 

𝑃�𝐷1 = 0, … ,𝐷𝑗 = 1, … ,𝐷𝑁𝑘 = 0�𝐷1 + ⋯+𝐷𝑁𝑘 = 1� 

         =
exp �𝜸𝜸𝑻𝑻𝑪𝑪𝒋𝒋

′+𝛽𝐺𝑗�

exp (𝜸𝜸𝑻𝑻𝑪𝑪𝟏
′ +𝛽𝐺1)+⋯+exp�𝜸𝜸𝑻𝑻𝑪𝑪𝑵𝒌

′ +𝛽𝐺𝑁𝑘�
  .                               (9) 

For a stratum m where there is only one control (the 𝑗’ th subject), when the total 

number of subjects is 𝑁𝑚, the conditional probability of the observed results in this 

stratum is 

        𝑃�𝐷1 = 1, … ,𝐷𝑗′ = 0, … ,𝐷𝑁𝑚 = 1�𝐷1 + ⋯+𝐷𝑁𝑚 = 𝑁𝑚 − 1� 

  =
exp�𝜸𝜸𝑻𝑻𝑪𝑪𝟏

′ +𝛽𝐺1�…exp�𝜸𝜸𝑻𝑻𝑪𝑪𝒋𝒋′−𝟏
′ +𝛽𝐺𝑗′−1�exp (𝜸𝜸𝑻𝑻𝑪𝑪𝒋𝒋′+𝟏

′ +𝛽𝐺𝑗′+1)…exp�𝜸𝜸𝑻𝑻𝑪𝑪𝑵𝒎
′ +𝛽𝐺𝑁𝑚�

exp�𝜸𝜸𝑻𝑻𝑪𝑪𝟐
′ +𝛽𝐺2�…exp�𝜸𝜸𝑻𝑻𝑪𝑪𝑵𝒎

′ +𝛽𝐺𝑁𝑚�+⋯+exp�𝜸𝜸𝑻𝑻𝑪𝑪𝟏
′ +𝛽𝐺1�…exp�𝜸𝜸𝑻𝑻𝑪𝑪𝑵𝒎−𝟏

′ +𝛽𝐺𝑁𝑚−1�
  .  (10)                                   

The equation (9) and (10) only depends on 𝜸𝜸𝑻𝑻 and 𝛽𝛽. The maximum likelihood 

estimator of 𝛽𝛽  can be derived by maximizing conditional likelihood based on 

equation (9) and (10).  
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Our method utilizes the stratification score stratum information. In each stratum, 

we fit a conditional logistic regression directly adjusting for ancestry components. 

Compared with the method proposed by Epstein et al. (2012), our method can 

estimate the genetic effect on disease adjusting for ancestry components. Extensive 

simulations will be presented in section 3. 

2.4 Software Implementation 

We implemented our study in R code using existing R packages. The stratification 

score is derived by glm() function in R package. “optmach” package is used to 

calculate the stratum information. Note that, because the package has been updated, 

mdist() is used to calculate the dissimilarity score. All functionality of the pscore.dist() 

function (used by Epstein et al., 2012) has been moved into to the mdist() function. 

fullmatch() can be useful in fine matching approach. The main analysis, conditional 

logistic regression, is implemented by “survival” package. The clogit() function 

within survival package can be used to fit model (5).  
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3. Results 

3.1 Simulation Studies 

To evaluate the performance of the proposed approach, we conducted simulation 

studies. In each replicate, we enrolled 500 cases and 500 controls to form a 

case-control study. For simplicity, we assumed the ancestry components to be a 

two-dimensional vector. Each component of the vector is independent and follows the 

standard normal distribution.  

To generate the genotype at the test locus, we assumed that the genotypes follow 

Hardy-Weinberg Equilibrium conditional on the ancestry components. The odds of 

possessing of the minor SNP allele over the major SNP allele 𝜓𝜓(𝑪𝑪𝒋𝒋) is modeled 

through 

                      𝑙𝑙𝑙𝑙𝑙𝑙 𝜓𝜓�𝑪𝑪𝒋𝒋� = 𝜉𝜉 + 𝜼𝜼𝑻𝑻𝑪𝑪𝒋𝒋  ,                   (8) 

where 𝜼𝜼 denotes a two-dimensional vector of coefficients corresponding to the two 

significant principal components. We set the overall MAF to be 0.2 at this locus so 

that 𝜉𝜉 = log (0.2/0.8). The disease status is generated through  

                     𝑃(𝐷𝑗 = 1) = 𝑒𝛼+𝜸𝜸
∗𝑻𝑻𝑪𝑪𝒋𝒋+𝛽𝐺𝑗

1+𝑒𝛼+𝜸𝜸
∗𝑻𝑻𝑪𝑪𝒋𝒋+𝛽𝐺𝑗

 .                  (9) 

The prevalence of the disease is assumed to be 0.05, so that 𝛼𝛼= log(0.05/0.95).  

    In each simulation, subjects with disease were discarded after we enrolled 500 

cases. Subjects without disease were discarded from the simulated dataset after we 

enrolled 500 controls. The whole process of sampling would not end until all 1000 

subjects enrolled in the case-control study.  
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Five methods (model 1 to 5) have been compared in the following section. 

1. Unconditional Logistic Model (UL):  

 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑡 𝑃(𝐷𝑗 = 1) = 𝛼𝛼 + 𝛽𝛽𝐺𝑗  , 

which is the model not considering the confounding effect. 

2. Conditional Logistic Model without Principal Components (CL.NPC):       

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑡 𝑃(𝐷𝑗 = 1) = 𝛼𝛼𝑘 + 𝛽𝛽𝐺𝑗  

3. Conditional Logistic Model with Two Principal Components (CL.KPC):       

                  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑡 𝑃�𝐷𝑗 = 1� = 𝛼𝛼𝑘 + 𝛾1𝐶1,𝑗 + 𝛾2𝐶2,𝑗 + 𝛽𝛽𝐺𝑗 

4. Conditional Logistic Model with the First Principal Components (CL. PC1): 

                  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑡 𝑃�𝐷𝑗 = 1� = 𝛼𝛼𝑘 + 𝛾1𝐶1,𝑗 + 𝛽𝛽𝐺𝑗  

5. Conditional Logistic Model with the Second Principal Components (CL. PC2): 

                      𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑡 𝑃�𝐷𝑗 = 1� = 𝛼𝛼𝑘 + 𝛾2𝐶2,𝑗 + 𝛽𝛽𝐺𝑗  

    The parameter of main interest is the genetic effect on disease β. Through 5000 

simulations, we evaluated the performance of different models in five aspects: the 

bias, the sample standard error, the average of estimated standard error, the power and 

the type I error. We designed four scenarios to evaluate the performance of our 

method. We defined that 𝜼𝜼1 = (0.05, 0.05)𝑇𝑇  and 𝜸𝜸1 = (0.05, 0.05)𝑇𝑇 ; 𝜼𝜼2 =

(0.1, 0.1)𝑇𝑇  and 𝜸𝜸2 = (0.1, 0.1)𝑇𝑇 . The first scenario is referred to as S1. S1 is 

designed to test our method under both weak population stratification and weak 

association between principal components and genotype (i.e. 𝜼𝜼 = 𝜼𝜼1 and 𝜸𝜸∗ = 𝜸𝜸1). 

Under the second scenario (S2), 𝜼𝜼 = 𝜼𝜼1  and 𝜸𝜸∗ = 𝜸𝜸2 . The true value of the 

parameters are changed to 𝜼𝜼 = 𝜼𝜼2 and 𝜸𝜸∗ = 𝜸𝜸1 under scenario 3 (S3). The last 
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scenario (S4) is used to test our method under both stronger population stratification 

and stronger association between principal components and genotype (i.e., 𝜼𝜼 = 𝜼𝜼2 

and 𝜸𝜸∗ = 𝜸𝜸2) than those in S1. 

3.2 Under the Null Hypothesis  

The results of the performance of different methods are presented by Table I. Under 

S1, the bias of CL.KPC, UL, CL.NPC, CL.PC1 and CL.PC2 are respectively 0.004, 

0.010, 0.009, 0.007 and 0.006. Under weak ancestry component effects on disease, 

the bias of conditional logistic models (model 2-5) is smaller than the bias of UL. The 

bias of UL increases when there is a stronger ancestry component effect on disease or 

stronger ancestry component effect on genotype. The bias of UL is respectively 0.014, 

0.014 and 0.024 under S2, S3 and S4. In contrast, the bias of conditional logistic 

models (model 2-5) in these scenarios is smaller, compared with the bias of UL. Thus, 

the conditional logistic regression models can estimate the genetic effect on disease 

more precisely than the UL method. 

In all scenarios, the bias of CL.NPC is quite close to the bias of UL, which is the 

limitation mentioned by Epstein et al. (2012). The bias of CL.KPC is the smallest in 

all scenarios because we fitted the model which we used to generate disease status. 

Our method (i.e. CL.PC1 and CL.PC2) can estimate a more precise genetic effect on 

disease, compared with CL.NPC and UL when there is no true genotype effect on 

disease. Especially under S4, the bias of CL.PC1 and CL.PC2 are both 0.012, which 

are quite smaller than the bias of UL and CL.NPC (0.24 and 0.021). As shown by 
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Table I, the SE and SEE are very close for the estimator, which indicates the standard 

error estimator is accurate. 

We evaluated the type I error under different models. The results are shown in 

Table I. The type I error of conditional logistic models (model 2-5) is similar to each 

other and close to the nominal significance level 0.05 under all scenarios. The type I 

error of UL is higher, compared with the conditional logistic models. Under S4, the 

type I error is 0.063 for UL, which is inflated. In contrast, the type I error are 

respectively 0.049, 0.051, 0.052 and 0.049 for CL.KPC, CL.NPC, CL.PC1 and 

CL.PC2. The type I error under CMH test is very close to the type I error of CL.NPC, 

which means that CL.NPC is equivalent to CMH in terms of hypothesis testing.  

3.3 Under the Alternative Hypothesis  

In this section, we compared our method with other three models under the alternative 

hypothesis. The genetic effect on disease 𝛽𝛽 increases from 0.2 to 0.8 in each scenario. 

The disease status is generated under different values of 𝛽𝛽 by equation (9).  

The bias of the CL.NPC method is close to the bias of UL method when the 

genetic effect on disease increases. Under S4, the bias of CL.NPC is 0.024, 0.028, 

0.024 and 0.022, respectively. Meanwhile, CL.KPC, CL.PC1 and CL.PC2 have a 

much smaller bias when the genetic effect increases, compared with the bias of 

CL.NPC and UL. The bias of CL.PC1 is 0.015, 0.019, 0.016 and 0.015 respectively. 

There is a small difference between CL.PC1 and CL.PC2. Our method (i.e. CL.PC1 

and CL.PC2) can estimate a more precise genetic effect on disease, compared with 

 



 15 

CL.NPC and UL under the alternative hypothesis. CL.KPC still has the smallest bias 

because the model we fitted is exactly the model we used to generate the disease 

status. Under other scenarios (S1, S2 and S3), although the difference of bias among 

different models is smaller than those in S4, CL.PC1 and CL.PC2 can always provide 

a smaller bias compared with CL.NPC and UL. 

Figure I gives us a picture of the bias under S4. The bias of the CL.KPC is the 

closest to the reference line (i.e. Bias=0). The curves of the bias of UL and CL.NPC 

model deviate quite far away from the reference line. The curve of the bias is closer to 

the reference line for CL.PC1 and CL.PC2, compared with UL and CL.NPC. From 

Table I, under all scenarios, the power of CL.PC1 and CL.PC2 is larger than CL.KPC. 

Including all ancestry components makes CL.KPC more conservative, compared with 

our method. Also, under the alternative hypothesis, the power under CMH test is very 

close to the power of CL.NPC. 
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4. Discussion 

In this thesis, we propose a novel estimation method based on the fine-matched 

case-control sample. The inclusions of controls with substantial dissimilar ancestry 

from cases can lead to improper stratification in “direct adjustment” method. The 

stratification score, proposed by Epstein et al. (2007), was used for fine matching 

method to correct population confounding effect. The stratification score can 

upweight the contribution of components of ancestry that are potential confounders to 

the population stratification, and meanwhile, downweight those components that are 

not. As a result, it lowers the chance of inaccurate matches for confounding in fine 

matching approach. After combining these two methods, the bias of parameter 

estimators is lower under different genetic effects on disease compared with the 

method proposed by Epstein et al. (2012).  

 Stratification based on the propensity score will correct confounding effect in 

prospective studies (Rosenbaum and Rubin, 1983, 1984) when testing the relationship 

between exposure and disease. The propensity score is defined as the odds of an 

exposure conditional on confounder variables. Matching on the stratification score in 

case-control association studies is comparable to matching on the propensity score in 

prospective studies.  

    We extended the approach proposed by Epstein et al. (2012) by using conditional 

logistic regression instead of the Cochran-Mantel-Haenszel (CMH) tests of 

SNP-disease association. In fact, the CMH test corresponds to the score test for the 
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association parameter in conditional logistic regression. Meanwhile, after 

implementing the conditional logistic model, we can estimate the genetic effect on 

disease adjusting for ancestry components. 

The main limitation for our method is that the bias will increase when there is a 

strong ancestry component effect on disease, leading to residual within-stratum 

confounding. This residual confounding occurs because the dissimilarity of the 

stratification score among the subjects in the same stratum is high when the ancestry 

component effect is strong. As a result, the bias will increase because of the 

inadequate correction of the confounding. We are working on an alternative matching 

approach in which we draw a fine-matched control from a general population for each 

case. 
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6. Appendix  
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Fig I. Bias for different genetic effect on disease under the condition that 
𝜸𝜸 = (0.1,0.1)𝑇𝑇 and 𝜼𝜼 = (0.1,0.1)𝑇𝑇 
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R Code for Implementing Stratification Score Matching and Fitting Conditional 
Logistic Regression Models 
 
### simulation ### 
require(stats) 
require(optmatch) 
require(survival) 
require(coin) 
 
### function prob ### 
prob<-function(lp){ 
    ep<-exp(lp) 
    return(ep/(1+ep)) 
} 
 
### set the number and seed of simulation ###   
sim<-5000 
sig<-rep(0,sim) 
sig_value<-rep(0,sim) 
 
set.seed(123) 
seed<-runif(sim)*1000 
 
nPC = 2 
 
effect_ConY<-c(log(0.05/0.95),0.1,0.1) 
effect_ConG<-c(log(0.2/0.8),0.1,0.1) 
effect_GonY<-0 
 
nCO = 500 
nCC = 500 
 
effect_ConY_est = NULL 
effect_ConY_sd = NULL 
 
fit.beta<-rep(0,sim) 
fit1.beta<-rep(0,sim) 
fit2.beta<-rep(0,sim) 
fit3.beta<-rep(0,sim) 
fit4.beta<-rep(0,sim) 
 
fit.se<-rep(0,sim) 
fit1.se<-rep(0,sim) 
fit2.se<-rep(0,sim) 
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fit3.se<-rep(0,sim) 
fit4.se<-rep(0,sim) 
 
fit.p<-rep(0,sim) 
fit1.p<-rep(0,sim) 
fit2.p<-rep(0,sim) 
fit3.p<-rep(0,sim) 
fit4.p<-rep(0,sim) 
 
### start the loop ###   
for (z in 1:sim){ 
    set.seed(seed[z]) 
   
    print(z) 
     
    pc<-NULL 
    g<-NULL 
    dis<-NULL 
   
    nCO_cum = 0 
    nCC_cum = 0 
     
    alltable<-NULL 
     
    while (nCO_cum+nCC_cum < nCO+nCC){ 
 
        ### generate the ancestry components ### 
        cn<-rnorm(nPC) 
         
        ### generate the genotype at the test locus ### 
 
        g.lp<-sum(c(1,cn)*effect_ConG) 
        sim.g<-prob(g.lp) 
        minor_allele<-runif(2) 
        gn<-(minor_allele[1]<sim.g)+(minor_allele[2]<sim.g) 
         
        ### generate the disease outcome ### 
        d.lp<-sum(c(1,cn)*effect_ConY) + gn*effect_GonY 
        sim.p<-prob(d.lp) 
        pt<-runif(1) 
        disn<-(pt<sim.p)*1 
         
        if ( (nCC_cum < nCC) & (disn == 1) ) { 
            nCC_cum = nCC_cum+1; 
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            g=c(g,gn) 
            dis=c(dis,disn) 
            pc=rbind(pc,cn) 
        } 
        if ( (nCO_cum < nCO) & (disn == 0) ) { 
            nCO_cum = nCO_cum+1;  
            g=c(g,gn) 
            dis=c(dis,disn) 
            pc=rbind(pc,cn)             
        } 
    }#while 
   
     
    ### stratification-score matching ### 
    rownames(pc)<-1:nrow(pc) 
    datag<-cbind(dis,g,pc) 
     
    head(datag) 
    datag<-data.frame(datag) 
     
    ### construct the stratification score using the significant eigenvectors ### 
    sscore_pc<-glm(dis~pc,family=binomial(),data=datag) 
    effect_ConY_est = rbind(effect_ConY_est, summary(sscore_pc)$coef[,1]) 
    effect_ConY_sd  = rbind(effect_ConY_sd,  summary(sscore_pc)$coef[,2]) 
     
    ### calculate the dissimilarity measure based on the stratification score 
### 
    ssd_pc<-mdist(sscore_pc) 
     
    ### Step 3: perform full matching of cases and controls ### 
    fmatch_ssd_pc1<-fullmatch(ssd_pc) 
    fmatch_ssd_pc<-as.numeric(fmatch_ssd_pc1) 
     
    ### form a new dataframe combining the disease, test-SNP genotype, and 
matched-stratum indicator ### 
    full_match_dat_pc<-data.frame(cbind(dis,g,fmatch_ssd_pc)) 
     
    ### perform CMH test of SNP-disease association: 
    ### must first remove strata with fewer than two observations 
    ### (possible if SNP vector g contains missing data) 
    orig_table<-table(full_match_dat_pc) 
    orig_table_strat<-max(full_match_dat_pc[,3]) 
    miss_strat<-0 
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    for(i in 1:orig_table_strat){ 
        if(sum(orig_table[,,i])<=1) 
        miss_strat<-c(miss_strat,i) 
    } 
   
    if(length(miss_strat)>1){ 
        miss_strat<-miss_strat[-1] 
        final_table<-orig_table[,,-c(miss_strat)] 
        nstrat<-orig_table_strat-length(miss_strat) 
    } 
    else if(length(miss_strat)==1){ 
        final_table<-orig_table 
        nstrat<-orig_table_strat 
    } 
     
    ng<-length(table(full_match_dat_pc[,2])) 
    gscore<-seq(0,(ng-1)) 
   
    ### logistic regression ### 
    
    fit<-glm(dis~g,data=datag,family=binomial()) 
    fit1<-clogit(dis~g+strata(fmatch_ssd_pc),data=full_match_dat_pc) 
    fit2<-clogit(dis~g+pc+strata(fmatch_ssd_pc),data=full_match_dat_pc) 
    fit3<-clogit(dis~g+pc[,1]+strata(fmatch_ssd_pc),data=full_match_dat_pc) 
    fit4<-clogit(dis~g+pc[,2]+strata(fmatch_ssd_pc),data=full_match_dat_pc) 
       
    fit.beta[z]<-fit$coefficients[2] 
    fit1.beta[z]<-fit1$coefficients[1] 
    fit2.beta[z]<-fit2$coefficients[1] 
    fit3.beta[z]<-fit3$coefficients[1] 
    fit4.beta[z]<-fit4$coefficients[1] 
 
    fit.se[z]<-sqrt(vcov(fit)[2,2])   
    fit1.se[z]<-sqrt(fit1[2]$var) 
    fit2.se[z]<-sqrt(fit2[2]$var[1,1]) 
    fit3.se[z]<-sqrt(fit3[2]$var[1,1]) 
    fit4.se[z]<-sqrt(fit4[2]$var[1,1]) 
     
     
    ### implement CMH test ###   

cmh_analysis<-cmh_test(as.table(final_table),scores=list(dis=0:1,g=gscore)) 
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    fit.p[z]<-summary(fit)$coefficients[2,4] 
    fit1.p[z]<-summary(fit1)$coefficients[1,5] 
    fit2.p[z]<-summary(fit2)$coefficients[1,5] 
    fit3.p[z]<-summary(fit3)$coefficients[1,5] 

fit4.p[z]<-summary(fit4)$coefficients[1,5] 
 
### obtain p-value from CMH test ###   
pvalue_cmh<-pvalue(cmh_analysis)     
sig[z]<-(pvalue_cmh<=0.05) 

    sig_value[z]<-pvalue_cmh 
         
} 
 
### Bias, SE and SEE ### 
fit.bias<-sum(fit.beta-effect_GonY)/sim 
fit1.bias<-sum(fit1.beta-effect_GonY)/sim 
fit2.bias<-sum(fit2.beta-effect_GonY)/sim 
fit3.bias<-sum(fit3.beta-effect_GonY)/sim 
fit4.bias<-sum(fit4.beta-effect_GonY)/sim 
 
 
fit.se<-sqrt(sum((fit.beta-mean(fit.beta))^2)/sim) 
fit1.se<-sqrt(sum((fit1.beta-mean(fit1.beta))^2)/sim) 
fit2.se<-sqrt(sum((fit2.beta-mean(fit2.beta))^2)/sim) 
fit3.se<-sqrt(sum((fit3.beta-mean(fit3.beta))^2)/sim) 
fit4.se<-sqrt(sum((fit4.beta-mean(fit4.beta))^2)/sim) 
 
fit.see<-mean(fit.se) 
fit1.see<-mean(fit1.se) 
fit2.see<-mean(fit2.se) 
fit3.see<-mean(fit3.se) 
fit4.see<-mean(fit4.se) 
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