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Abstract 

The Verbiverse: Creating a Verb Space with Comparative 

Methods of Distributional Semantics 

By Austin James Blodgett 

 Computational semantics as a field includes many of the unsolved problems of Natural 

Language Processing. The need for innovation in this field has motivated much research in 

developing word and language models that better represent meaning and various concepts 

within semantics. This thesis is concerned specifically with measuring verb similarity and verb 

clustering, a task within this field. The goal is to develop representations of verbs that can 

accurately and viably be used to judge semantic similarity between verbs and to group verbs 

into classes that reflect their relatedness in meaning. Verb clustering – a task of distributing 

verbs into semantically related classes - has in previous research been shown to have 

applications in multiple tasks in Natural Language Processing including word sense 

disambiguation. This thesis will present and compare several methods of automatic acquisition 

of verb similarity, with a goal of allowing future applications of these methods in NLP tasks and 

to promote discoveries in how the mechanisms modeled by these methods relate to linguistics. 

This paper presents several methods from verb clustering based on Latent Dirichlet 

Allocation – a probabilistic graphical model commonly used for topic modelling. We model 

verbs as collections of contextual features derived from latent classes. LDA, which is designed 

as a model for Bayesian inference of latent thematic categories, fits well to model verb classes 

based on linguistic context. We demonstrate Recursive LDA, a procedure of executing LDA 



iteratively to produce a hierarchical structure of classes. We test several linguistic features from 

syntax and lexical arguments of verbs with interest in identifying how informative each feature 

is. We evaluate all of our experiments against human judgments of similarity providing a novel 

method for evaluating semantic similarity metrics of word models. We test all of our data on a 

list of 3,000 most common English verbs. 

We test our method against Word2Vec, a popular and recently developed word model 

using skip-gram feature vectors refined by deep learning. The results in this thesis will show 

that given the right features, our method of using LDA with linguistic features outperforms 

Word2Vec’s data-driven statistical approach when weighed against human judgements.  
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1 Introduction 

The Verbiverse is a research endeavor with interest in three concepts that are central to 

the idea of language – verbs, meaning, and context. The Verbiverse is a project with the aim of 

computationally modelling verb meaning based on features of context and using these models 

to calculate verb similarities, verb classes, and a relational verb space. A core principle of this 

project is that there is a strong relationship between word meaning and linguistic context. The 

goal is to develop novel computational methods for measuring the semantic similarity between 

verbs. With these similarities, we can identify verbs that are close together in meaning, we can 

cluster semantically related verbs together into verb classes, and we can create a space of verbs 

based on semantic similarities between them. 

This paper will present several methods of modelling semantic similarity between verbs. 

We present two methods based on Latent Dirichlet Allocation, an algorithm commonly used for 

topic modelling (Blei et al., 2003), and we compare results with several other methods including 

Word2Vec, a word model by Google (Mikolov, Chen, Corrado, & Dean, 2013). We will test our 

methods with a number of different features of linguistic context with special interest in the 

advantages of using syntax versus lexical arguments. We test features from two different 

parsing approaches – constituency parsing and dependency parsing – to test advantages of 

each. We also present a novel method of evaluating verb similarity called a triad evaluation 

task. All of the experiments presented in this paper will be compared to human judgements 

taken from our evaluation task. All of our experiments are used to calculate similarities for a set 

of 3,000 verbs in English. 
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Verb clustering based on semantic similarity has been shown in other research projects 

to be useful for a wide range of Natural Language Processing tasks. These include semantic 

parsing, word sense disambiguation, and semantic role labelling (Shi & Mihalcea, 2005; Dang, 

2004; Swier & Stevenson, 2004; Zapirain et al., 2008). In addition to future applications of this 

research, we hope this paper and future work of the Verbiverse project will motivate further 

linguistic research of language acquisition and relationships between word context and 

meaning. The results in this paper will show that our approach of LDA as a probabilistic 

representation of verb context outperforms Word2Vec – the leading big-data driven approach 

to word modelling – when evaluated against human judgement.  

Section (2) will provide background and discuss previous research related to this project 

including other verb classification algorithms. Section (3) will discuss linguistic context and its 

relationship to meaning. Section (4) presents an abstract model for a formal theoretical 

approach to lexical semantics. This model will be useful for building an understanding of lexical 

semantics and how it may be approached from a computational perspective. Section (5) will 

give an introduction to Latent Dirichlet Allocation (LDA) and our extension of it. Section (6) will 

discuss details of the data used in this project including corpora and features. Section (7) will 

present each of our experiments and results. Section (8) will give conclusions. Section (9) will 

discuss future work. 

2 Related Work 

This project is part of a broad field of computational lexical semantics and more 

specifically distributional semantics. Computational lexical semantics has the aim of developing 
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computational models of word meaning. This can include manually defining semantic 

properties of words and semantic relationships between words (synonymy, hyponymy, etc.) 

and it can also include any data representation of a word that is intended to be representative 

of meaning. Distributional semantics is a subfield with the aim of modelling meaning using 

features of context. Context in general is any information accompanying an utterance that 

might be used to infer meaning. This can include physical surroundings, world knowledge, 

prosody, etc. Linguistic context of a word or utterance refers specifically to surrounding words 

and any relationships (syntactic or semantic) with those words.  

A fundamental foundation of distributional semantics and to some fields of study within 

language acquisition is that there is a strong relationship between a word’s linguistic context 

and its meaning. This is expressed in the distributional hypothesis, attributed to linguists J. R. 

Firth and Zellig Harris, which states that words with similar meaning will also have similar 

context distributions (Harris, 1954). Firth states: 

You shall know a word by the company it keeps. (1957) 

Distributional semantics is traced back to the distributional hypothesis, that it is possible 

to observe the frequencies of a word’s co-occurrences with different context features and 

compare this distribution of context features to that of another word in order to compare their 

meanings. Related ideas have been researched in the study of language acquisition. Specifically, 

the syntactic context of a word has been shown to be useful in the acquisition of word meaning 

in language acquisition scenarios. This concept called syntactic bootstrapping was first 

researched by Brown (1957) and it has since been demonstrated that infants can use syntactic 

properties such as verb transitivity (Naigles 1990) and noun count-ness and mass-ness 
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(Chierchia, 1994) to interpret the meanings of new words. Linguist Beth Levin goes further to 

identify English verb classes - categories of verbs that share syntactic properties and also share 

aspects of meaning (1993). 

2.1 Constructing Verb Classes 

Verb clustering (or verb classification) is the task of grouping verbs together into 

semantically meaningful classes. Often this is done to reflect previously proposed classes like 

Levin’s verb classes (1993). Verb clustering is a task within distributional semantics. This section 

will discuss various methods of verb clustering that have been used, features that have been 

used, and applications.  

Verb classes are created to group verbs together into meaningful semantic groups. In 

other words, the verbs in a verb class should all have in common some aspect of meaning. So 

once a set of verb classes is identified, the verb class labels and other data can be used as 

features that are closely related to meaning. These features can be applied in many NLP tasks 

that rely on verb meaning. Verb clustering has been shown to be useful for a number of NLP 

tasks including semantic parsing, word sense disambiguation, and semantic role labelling (Shi & 

Mihalcea, 2005; Dang, 2004; Swier & Stevenson, 2004; Zapirain et al., 2008). 

These applications have motivated the use of manually annotated verb classes and 

relationships as well as generative algorithms for verb clustering. The concept of verb classes is 

often traced back to the linguist Beth Levin (1993) who outlined 49 groups of verbs (and also 

some subgroups) she observed as having unique and identifiable syntactic and semantic traits. 

There are also verb lexicons such as WordNet and VerbNet that have been manually labelled to 
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characterize verbs into semantic groups and identify semantic relationships between verbs 

(Miller, 1995; Kipper-Schuler, 2005). WordNet and VerbNet are designed to be accessible for 

NLP tasks and used as features. Some verb clustering project set out to match and build on verb 

classes of Levin, WorNet, and VerbNet (Kipper et al., 2006; Kipper et al., 2008).  Supervised verb 

classification algorithms use information from sources like WordNet, VerbNet and others like 

FrameNet, and PropBank as features and use them to train a classifier such as support vector 

machines or maximum entropy (Merlo & Stevenson, 2001; Sun et al., 2008; Li & Brew, 2008). 

Some methods combine information from multiple sources (Schulte im Walde, 2006). Semi-

supervised algorithms combine supervised and unsupervised approaches using labels from 

these sources as pivots to generate more features (Stevenson & Joanis, 2003).  

Models of verb semantics and distributional semantics in general have been developed 

with many different mathematical perspectives. Feature vector models rely on principles of 

linear algebra and treat a verb as a vector in multi-dimensional space (Joanis et al., 2008). A 

verb with F features is treated as a vector in RF with dimensionality equal to the number of 

features. Verbs can be related to each other using various distance metrics such as cosine 

similarity, Euclidean distance, or Pearson coefficient. The values in each feature vector can be 

counts of co-occurrence or pointwise mutual information (pmi) which measures statistical 

dependency between two words or features (Zhou et al., 2011).   

���(�, �) = 
�� �(�, �)
�(�)�(�) 

Feature vector spaces used as models of distributional semantics are also often called 

word spaces. Once a word space has been calculated, various clustering algorithms (k-means, 

brown clustering, etc.) can be used to identify coherent groups within the space that are 
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intended to correspond with verb classes. Since the dimensionality of these spaces is equal to 

the number of features, often high-dimensionality clustering algorithms are used (Sun & 

Korhonen, 2009). Linear models of semantics have some natural benefits. For example, they 

can easily and intuitively be projected into Euclidean space. Vectors can also be added to other 

vectors or subtracted from other vectors for various kinds of analysis. Section (2.2) will give one 

example of this for Word2Vec. 

Probabilistic models of verb clustering rely on probabilistic properties of context 

features for different verbs rather than vectors and linear metrics of distance (Reichart & 

Korhonen, 2013; Merlo & Stevenson, 2001; Vlachos et al., 2009; Dinu & Lapata 2010). 

Probabilistic models of verb clustering, just like linear models, can produce a space of verbs 

with distances or similarities between them. Information theory provides several metrics for 

distributional similarity including Kullback-Leibler divergence.  

��(�||�) =��(�)
� �(�)�(�)
	

�
 

Other metrics like cosine similarity, Pearson correlation, and Jaccard similarity work as well. A 

graphical model is the general term for a network of inter-dependent probabilistic variables 

used to infer latent (non-observed) variables from observed ones. A graphical model can be 

relatively simple or extremely complex. Latent Dirichlet Allocation (Blei et al., 2003) is one 

example of a probabilistic graphical model the design for which will be outlined in section (5). 

Graph-based verb clustering focusses on defining relationships between verbs and 

treating the entire structure of verbs as a graph (Sun and Korhonen, 2011; Matsuo et al., 2006). 
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Once this structure is in place, groups and other properties can be defined in terms of various 

properties of graphs.  

Much previous work in verb clustering has supported the use of syntactic features and 

acquired subcategorization frames (Sun et al., 2008). Other work has supported the use of 

lexical features like selectional preference (Sun & Korhonen, 2009) as well as adjunct 

information (Sun et al., 2008; Joanis et al., 2008), arbitrary word co-occurrence within some 

window (Li and Brew, 2008), and even tense (Li and Brew, 2008).   

2.2 Word2Vec 

One research development by a Google project is a program called Word2Vec (Mikolov, 

Chen, Corrado, & Dean, 2013). Word2Vec can be considered an innovation in distributional 

semantics in that its purpose is to produce a vector of informative features for each word. 

Word2Vec is a linear approach to word representation that utilizes deep learning to process 

massive amounts of non-structured word co-occurrence data into a concise useful feature 

vector. Word2Vec gets context information from skip-grams - frequencies of word co-

occurrences that are allowed to “skip” words in the middle strictly based on words as they 

appear in linear order. This produces a massive amount of noisy data, but taken from a source 

with billions of words, deep learning can process this data to produce informative features. 

Word2Vec feature vectors have been shown to have interesting properties corresponding to 

aspects of word meaning. For example, vectors for words can be added or subtracted to 

approximate other words. It’s been shown that the vectors for KING minus a vector for MAN 
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plus the vector for WOMAN gives a vector very close to the vector for QUEEN (Mikolov, Yih, & 

Zweig, 2013).  

KING – MAN + WOMAN = QUEEN 

This is a result of the fact that the features in these feature vectors represent aspects of 

the contexts of those words. KING and QUEEN share most aspects of context but they differ in 

the same way that MAN and WOMAN differ. Since the data is modelled linearly, these 

subsections of context features can be removed or added with simple arithmetic like that 

above. The appeal of Word2Vec and its approach big data refined with deep learning is that it 

requires very little understanding of the features being used – in other words the mechanisms 

of how language works – in order to function. The limits and usefulness of this approach still 

needs to be thoroughly tested.  

2.3 Comparison to Our Approach 

This paper presents a probabilistic model of verbs using Latent Dirichlet Allocation (LDA) 

to identify latent verb categories based on contextual features of syntactic structure and lexical 

arguments. We calculate similarities between verbs using each verb’s distribution across a set 

of topics and Pearson correlation � between distributions (Pearson performed best 

experimentally). Pearson correlation for a sample is defined as follows: 

� = ∑ (�� − �)(�� − �)����
�∑ (�� − �)����� �∑ (�� − �)�����

 

(where � = �
�∑ ������  and � = �

�∑ ������ ) 
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We will build on previous research into the best linguistic features to use in verb 

clustering. This paper will argue that our method of verb similarity using LDA intuitively and 

accurately fits with the structure of verbs, verb classes, and verb meaning. This structure will be 

described more thoroughly in sections (4) and (5.2). The results from this paper will show that 

our method of verb clustering with the right features of linguistic context surpasses Word2Vec’s 

approach of data-driven statistical word modelling when weighed against human data. This 

paper also presents a new method of evaluating verb similarities using human judgment that 

may be used in future research in this field.  

 

3 Linguistic Context & Meaning 

This section is meant to build an understanding of the relationship between context and 

meaning. This section will build on and explore the idea presented in the distributional 

hypothesis that words with similar meanings also have similar context distributions. Section 

(3.1) will present the idea of a meaning acquisition process which will demonstrate the 

importance of this connection between context and meaning and lay out some of the problems 

that distributional semantics has the aim of addressing. The rest of this section will discuss 

specific features of linguistic context and how they might inform aspects of meaning both in a 

computational model and also theoretically as a process of language acquisition. There are 

several types of linguistic context discussed in this section for overview. The work in this paper 

focuses on syntax and lexical arguments.  
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3.1 Meaning Acquisition Process 

The relationship between meaning and context is closely related to a concept that I will call 

a meaning acquisition process. Imagine that you are hearing or reading a sentence in which 

there is a single word you have never encountered before. Perhaps for example this sentence: 

(1) John treibened his car from New York to Los Angeles. 

Given this sentence by itself, without any previous knowledge of the word treibened, the word 

seems to include some meaning related to “motion.” The word treibened has surrounding 

words that seem to provide information of possible meanings of this word. You might replace 

treibened with words like drove, moved, or sent. Notice that words with this related aspect of 

meaning seem most plausible in this position.  

This scenario of context-based word learning represents a major part of both language 

acquisition and word learning in general. I will use the term meaning acquisition process to 

refer to this process of inferring the meaning of some word or utterance from context. The 

word context can refer to linguistic context – the context of surrounding words or sentences – 

or extra-linguistic context such as prosody, body language, and physical context. Most word 

learning scenarios rely on multiple different aspects of context. A toddler learning the word 

clock will usually rely on physical context (a clock being physically present), body language (a 

parent pointing at the clock while saying clock), and possibly any other information available to 
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them. Acquisition of the word clock presents a very simple case of a meaning acquisition 

process. But some words, especially words with abstract meanings, require more complex 

mechanisms of acquisition.  

Lexical Semantics has the aim of bettering our understanding of the structure of 

meaning (how meaning is represented in the brain or how we might represent it in a 

computer), the compositionality of meaning (how different aspects of meaning come together 

and are related to each other), and the acquisition of meaning. The meaning acquisition process 

is thus a core part of lexical semantics as well as lexical semantics. Distributional semantics is 

focused on the use of linguistic context to represent meaning, and specifically how this process 

might be modelled computationally. So distributional semantics can be thought of as an 

attempt to model the meaning acquisition process using a large set of data. There is a great 

incentive for us to further understand particular aspects of context and the roles they play in 

the acquisition of meaning. A feature of context that proves to be informative of meaning may 

give insight into mechanisms of language acquisition and provide a resource for better models 

of language in Natural Language Processing tasks.  

(treibened is taken from the German word treiben ‘to drive’ with the English suffix –ed 

mercilessly attached). 

3.2 Syntax 

For a given verb, there are specific syntactic structures associated with it. Simple examples 

include transitive and intransitive verbs. Another common structure used in verbs such as 

email, write, send, and return can be seen in the following figures: 
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Figure 1. Gave Constituency Tree 

 

In the constituency tree above, the verb give takes three arguments – a subject, a direct object, 

and an indirect object. This is a common structure for certain English verbs, and when these 

verbs are used with the above structure, they all connote a particular aspect of meaning of 

“transfer from one person to another.” Here is a dependency tree representing the same 

sentence: 
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Figure 2. Gave Dependency Tree 

The use of syntactic structure to identify meaning, called syntactic bootstrapping, has 

been researched in the fields of psychology and language acquisition. Syntactic bootstrapping 

was first researched by Brown (1957) and since then it has been demonstrated that toddlers 

can use syntactic properties such as verb transitivity (Naigles, 1990) and noun count-ness and 

mass-ness (Soja, 1992) to interpret the meanings of new words. In linguistics, the syntactic 

constraints of particular verbs are called c-selection (short for category selection). So we might 

think of a verb as having a tree structure sticking out of it. The term subcategorization frame is 

used in distributional semantics and linguistics to refer to the syntactic structure around the 

verb. In the field of computational semantics, the usefulness of syntactic features for verb 

clustering and other tasks has been researched and supported by several projects (Sun & 

Korhonen, 2009; Reichart & Korhonen, 2013). Syntactic features of verbs often come in 

patterns where a group of verbs will use the same syntactic structure and also have similar 
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meaning. Because of this, Levin (1993) was able to define very precise verb classes grouped by 

properties of syntax.  

3.3 Lexical Arguments 

Another important feature of linguistic context is the lexical arguments taken by each 

verb. The verb eat generally takes a subject that is of some category person (or animate) and 

takes a direct object that is of the category food. A verb can be thought to define a relationship 

between a set of arguments. So lexical arguments should theoretically be crucial for inferring 

verb meaning. In linguistics, the constraints of a verb on the semantic type of arguments they 

take is called s-selection (short for semantic selection), also called selectional preference. Both 

of these terms often refer specifically to noun arguments, which is how they will be used in this 

paper.  

Capturing these features requires a little more work than with syntactic features.  

When extracting features, we only consider the lemmatized head of the noun phrase. Doing 

this makes our features much more generalized. Dependency parsing for syntactic features 

makes this part easy. Keeping only the head noun allows us to throw out irrelevant modifiers 

and other non-useful information and just keep the most informative word. Keeping the entire 

noun phrase would make the probability of any feature appearing more than once extremely 

low. The head noun of the noun phrase allows us to capture the essential semantic type of the 

argument (except in some cases like “piece of cake”). Some verb clustering methods have 

grouped selectional preferences into semantic categories first, with the use of WordNet or by 

noun clustering for example, before using them as features to cluster verbs (Sun & Korhonen, 
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2009; Sun et al., 2013). Part of our goals of future work is to improve on research in selectional 

preferences, but noun clustering is not a focus of this paper.  

4 Modelling Lexical Semantics 

In the task of computational lexical semantics, there is a strong motivation to build a 

more thorough understanding of how word meaning works. Ideally, we would like some way of 

talking about meaning and semantic relationships that is relevant from a linguistic perspective 

but is also attainable from a computational perspective. In a computational model of lexical 

semantics, what is a sense or a category? How can a computer identify hyponymy or polysemy? 

And how do we identify and understand meaning? Having a way to computationally identify 

meaning is the ultimate goal of computational lexical semantics. So we have a strong 

motivation to create and lay out formal ways of talking about these concepts that are relevant 

both linguistically and computationally.  

This section presents a formal abstract model of lexical semantics. This model will be 

useful for discussing and understanding linguistic topics of lexical semantics from a 

computational perspective based on some corpus. I will refer to this model as an instance 

space. An instance space is the set of all word instances (of a particular part of speech) from an 

entire corpus. In other words, every time the verb eat is used in a corpus it is a new instance. 

An instance space is meant to be the space of words from every utterance in a corpus, and so 

its basic unit is the word instance rather than words which will be considered a broader 

category. We might even think about the infinite or continuous instance space of all utterances 

in a language. For convenience and simplicity, we will consider only the instance space of a 
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particular part of speech. Specifically, I will discuss the verb instance space and the noun 

instance space which are two examples. 

The instance space model is meant to give us a theoretical approach to how we may 

think about word meaning and many tasks in lexical semantics from a computational 

perspective. Meaning is a latent (non-observable) trait of language. So many of the concepts 

introduced in this section are unsolved problems in Natural Language Processing. But this 

section will present a broad view of computational lexical semantics and many tasks in it, and it 

will also present the approach used in this paper for identifying verb clusters as a subtask of this 

larger schema. 

4.1 The Instance Space 

An instance space is made up of instances, words, senses, and categories. This section will 

define these four terms according to the model.  

 

Figure 3. Instance Space 
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The base unit of an instance space is the instance. So a verb space is made up of verb 

instances and a noun space is made up of noun instances. An instance is a single usage of a 

word in context. An instance can be defined formally as a lemma L, a part of speech P, a context 

C, and a meaning M, making it a 4-tuple. 

� = (�, �,  ,�) 
We might also include other features such morphological form or tense, but for simplicity sake, 

I will leave these out in this model. 

 A lemma is the uninflected form of a word (eat is the lemma of eating, ate, or eaten). 

For example: 

�	 = 	“"#$” 
A part of speech is the syntactic category of an instance. An instance space is categorized by a 

single part of speech, so all the instance must be of that part of speech. This is a constraint of 

the model used primarily because different parts of speech (noun, verb) have completely 

different types of contextual features that can’t be easily compared. For example: 

	�	 = 	“&"�'” 
 A context is all the contextual information of an instance – all of the information 

associated with an instance that can be used to infer meaning. It may be defined as a set of 

context features each of which represents one piece of information of the instance’s context.  

 	 = 	 {)�, )�, )*, … } 
 A meaning is the entire meaning conveyed by an instance in context – all the 

information intentionally conveyed by the instance in context. It may be defined as a set of 
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meaning features. Verbs like swim and fly might share a meaning feature for “motion” but 

differ in medium of motion “by water” or “by air.” 

�	 = 	 {-�, -�, -*, … } 
Meaning is latent or non-observable which makes identifying it difficult to say the least. Solving 

this problem completely would theoretically also allow us to solve most tasks in Natural 

Language Processing. Meaning will be discussed much more in depth in sections (4.2) and (4.3). 

 Now that we have instance defined, I’ll discuss larger structures within the instance 

space. All of the structures in this section are defined as sets of instances and subsets of the 

instance space. 

 A word, as I’ll define it in this model, is a set of all instances in an instance space that 

share some lemma. 

./ 	= 	 {� ∈ �12#)"	|	�	 = 	
} 
Words in an instance space are disjoint and jointly exhaustive, simply meaning that every 

instance is contained in exactly one word. Words are observable unlike other structures I will 

discuss. A consequence of defining a word in this way is that this model does not distinguish 

homonyms as separate words. Instead these will be treated as different senses of the same 

word. 

 A sense is a set of all instances in an instance space that have the same lemma and 

share some aspect of meaning. 

3/,4 =	 {	� ∈ �12#)"	|	�	 = 	
,- ⊆ �} 

A sense is a subset of some word where all instances share some set of meaning features. 

Senses do not necessarily have to be disjoint and can overlap. Since senses are defined in terms 



19 

 

of meaning features they are latent (although word sense disambiguation is a field dedicated to 

finding senses). 

 A category is a set of all instances in an instance space that share some aspect of 

meaning.  

 4 	= 	 {	� ∈ �12#)"	|	- ⊆ �	} 
The words swim and fly might both be in the category of motion verbs. Given this definition, it 

seems that senses and categories are extremely similar. A sense is simply the combined 

restrictions of a word and a category. In fact, a sense is an intersection between a word and a 

category.  

3/,4 =	./ 	∩ 	 4 

This tells us that identifying senses and identifying categories are very similar problems. So 

unsupervised sense disambiguation might be reduced to unsupervised word categorization and 

vice versa. 

 

4.2 Understanding Meaning 

 In this section, I’ll discuss in detail how we can conceptualize meaning in the instance 

space model. As meaning is not directly observable, this section is written to outline a 

theoretical approach to modelling and understanding lexical meaning. The next section 

presents a more practical approach that is built on theory developed in this section. Meaning as 

a property of words is a latent (non-observable) trait. In other words, a computer has no way of 

identifying the meaning of a word or sentence just by reading. Solutions to this problem can 
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rely on supervised learning based on some annotated model of meaning or can approximate 

meaning using context and relying on the strong relationship between context and meaning. 

This project is built on the second approach. This section presents a theoretical structural 

understanding of meaning and properties derived from meaning to better understand what we 

are modelling. The next section will discuss how we approximate meaning and its derived 

properties using context. 

 In the last section, I defined the meaning of a word as a set of meaning features  

(�	 = 	 {-�, -�, -*, … }). This actually makes a few assumptions about the nature of meaning. 

1) This model assumes that meaning is compositional – can be broken into smaller 

meanings. 

2) This model assumes that discrete units of meaning exists, units that can’t be broken 

down any further. These are what I've called meaning features. 

 In terms of the way language is represented in the human brain, either of these 

hypotheses might be true or might not. Usage based grammar is a linguistic theory famous for 

hypothesizing that meaning is not separable into autonomous parts and actually exists as one 

cognitive process (Langacker, 1987). But modelling meaning in this way is very convenient for a 

theoretical model for two reasons. First, this allows us to relate word meanings in more than 

one way. Instead of a single number representing the similarity, we could identify that a word is 

similar to one word by one sub-meaning and to another word by another sub-meaning. So 

swim might be related to walk based on motion and float based on the domain water. This is 

something that for NLP applications, we would absolutely like to be able to do and something 

humans seem to be quite good at, so it makes sense to design the model this way. We can 
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relate this to theories of de-compositionality of meaning that have been proposed by several 

linguists studying semantics (Jackendoff, 1990; Katz & Fodor, 1963). Second, modelling meaning 

in this way could allow us to identify what the discrete units of meaning are. Note that this does 

not necessarily assume a finite set of meaning features in a language. While a corpus is by 

nature finite and thus will have a finite (but very large) set of meaning features, language in 

general is an open system and does not necessarily have to be limited in meaning in any way.  

4.3 Properties of Words, Senses, and Categories 

Next, allow me to discuss the nature of senses and categories and the relationships 

between them. Note that a sense is simply a special subset of a category and all the conclusions 

made about senses in this section apply equally well to categories in general. So how do we 

divide words into senses? Based on the definition above, a sense can be pivoted on any 

meaning feature or set of meaning features, in other words any aspect of meaning. So unlike 

words, senses do not have to be disjoint because there can always be a set of instances that 

meet the conditions of two different senses. Senses can also be hierarchical since within one 

sense there can always be a more specific sense with the same conditions and additional ones.  

There are several properties that are very useful for talking about subsets of an instance 

space in general (words, senses, or categories). The size or magnitude of a subset is the number 

of instances it contains as a fraction of the total space. If a word makes up 10% of the total 

instances in a space, then its magnitude is 0.1. This provides a convenient measure of a word’s 

(or sense’s or category’s) productivity – how much that word is used relative to general 

language use.  
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Another characteristic important for this discussion is specificity. Specificity is one way 

of measuring the amount meaning a group of instances contains. Specificity is the number of 

meaning features held in common by an entire subset. For a sense or category, this will include 

the meaning condition of that set but might also include other features that are possibly 

entailed by that meaning. For a word, this is the meaning entailed by the word – held in 

common by all senses and instances within the word. A word with several completely unrelated 

senses will have a specificity of 0, which tells us that nothing can be said definitively about the 

meaning of that word outside of context. Specificity gives a simple, but somewhat unhelpful, 

measure of how much meaning a group of instances contains. 

To define meaning more precisely, we can use a probabilistic distribution. Each subset 

will be characterized by a meaning distribution Ω where each category is a combination of 

meaning features. The distribution will return the proportionality of instances within the set 

that have exactly that combination of meaning features.  

78	 	 	= 	�(�|.) 

This gives us a model for representing the meaning of a word or sense or category including all 

of their variations in meaning. It also sets up convenient ways of comparing word meanings for 

similarity which I will discuss below. The meaning distribution of a word (7) can be thought of 

as the word level variant of the meaning of an instance (�). Whereas specificity measures the 

amount of meaning necessarily entailed by the word, a meaning distribution contains 

information on all the meanings of all the instances within the word. So while specificity is 

greater for instances than for words, a meaning distribution contains more information the 

greater the size of the magnitude. 
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There are also several linguistic categorizations of meaning and meaning relationships 

for which we would like formal definitions in this model. We could measure the synonymy of 

two instances as the overlap in meaning between the instances. 

3�����-�	 = 	 |�� ∩��| 
We can define the synonymy between two words (or senses or categories) as some metric of 

distributional similarity between the meaning distributions of words. 

3�����-�	 = 	1�-(7(�), 7(�)) 
The metric of similarity can be flexible. Any measure of similarity between two distributions 

could work, and there are many different metrics of similarity provided by information theory, 

statistics, and linear algebra (Jaccard, JS-divergense, cosine similarity, etc.). Note that we might 

use a similar metric with some asymmetrical measure of similarity (such as KL-divergence) to 

define hypernymy, where a word is a hypernym of another word if its meaning is a superset of 

another word’s meaning. 

 One last trait that would be very convenient to measure would be polysemy. Light 

words such as do, have, and make carry little semantic content by themselves and can be used 

in a wide variety of contexts to mean a wide variety of things. These words have a high rating of 

polysemy. So measures of polysemy provide us with a metric for the number of senses a word 

might have. We can define polysemy in terms of entropy over meaning features.  

9(:) = −��(��) log �(��)
	

�
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The expression �(-�) indicates the probability that an instance chosen at random contains the 

meaning feature -�. �is a list of all possible meaning features in some group of instances. We 

then get the following equation: 

��
�1"-� = −��(-�) log �(-�)
	|8|

�
	 

A high entropy indicates that the meaning distribution is spread over a large number of possible 

meanings, so the word itself entails very little information. In contrast, a low entropy would 

indicate that a small number of meanings are most likely and so the word itself specifies more 

information. 

 While the terms and definitions in this section are primarily theoretical because of the 

abstract nature of meaning, the next section will explore more concrete ways of approximating 

these metrics using context. 

4.4 Context to Meaning 

 This section discusses the idea of approximating meaning using context within the 

instance space model. Section (5.2) will give a more detailed discussion of how we accomplish 

this with the LDA-based models in this paper. Meaning, senses, and categories are all non-

observable properties of language. If there were a computational way of accessing aspects of 

meaning directly from text, this would solve most of the problems in NLP and much of 

semantics as a linguistic study. But much of the information of meaning can be approximated 

by substituting for context. Given the strong relationship between word meaning and word 
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context, much of the probabilistic structure of word meaning is, theoretically, very similar to 

the probabilistic structure of context. So we can assign a distribution Λ as follows: 

Λ?	 	 	= 	�( |.) 

We can then use Λ as an approximation for Ω and substitute this new distribution in the metrics 

noted above such as polysemy and synonymy. Similarly, categories and senses could be defined 

in terms of context features instead of meaning features. 

 For the work in this paper, we treat each verb as a collection of context features which 

are modelled probabilistically but not as a single distribution. Instead, we hypothesize latent 

categories of context features and infer these using LDA as a model. This allows us to treat each 

verb as a composition of categories of features. These categories can be thought of as 

analogous to the term category that earlier we defined in terms of meaning. The next section 

will explain LDA and how we use it to model verbs. 

5 Latent Dirichlet Allocation (Beyond Topic 

Modelling) 
 

In this paper we present two main methods for verb similarity and clustering along with 

several other previously used methods for comparison. The first method we present in this 

paper is the use of Latent Dirichlet Allocation (LDA) to identify thematic categories of verb 

context features, to group verbs into soft clusters (topics), and to define similarities between 

verbs based on vectors taken from verb proportionality in each topic. The second method 

presented in this paper is an extension of LDA that we call Recursive LDA which is the use of 

LDA to categorize verbs just as described above, but done iteratively in a search across multiple 
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topic splits to develop hierarchical categories of features. This section will outline both of these 

algorithms and discuss motivations given the characteristics of verbs and context that we are 

attempting to model. This section will also relate these algorithms to the instance space model 

discussed in the last section. For this project, we used an implementation of LDA in the MALLET 

library written by Andrew McCallum and David Mimno. 

5.1 A Probabilistic Graphical Model of Documents 

and Topics 

 
Latent Dirichlet Allocation is a hierarchical graphical model designed for inferring latent 

thematic categories called topics (Blei et al., 2003). LDA’s traditional use is topic modelling but 

it presents a framework that is useful for identifying latent structure in many domains and 

applications. LDA has been modified to incorporate syntactic features (Boyd-Graber & Blei, 

2008; Griffiths et al., 2004), it has been used to model selectional preferences (Ritter et al., 

2010), and it has been modified to work as a language model (Wallach, 2008). The LDA model 

starts with three major components. LDA models a set of documents which is a collection of 

words or features. Features are like word instances in that two features can have the same 

name but are still considered separate features. Features are observed variables, but each 

feature is assumed to have some latent topic assignment. Topics are hidden thematic 

categories of related features. Each feature is assigned one topic. A document then has some 

percentage of each topic based on the number of features with that topic assignment. The 

function of LDA is to identify these topic assignments, to calculate the proportionality of topics 

in each document, and to calculate how much a given feature name is associated with a given 
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topic. In topic modelling, a document is written text, features are words in each document, and 

topics are themes of the documents. In our model, we will represent each verb as a document 

containing context features instead of words. This will be described in more detail in section 

(5.2). 

LDA models all of this information using a number of probability distributions with 

dependencies between, and then it uses some method of Bayesian inference such as Gibbs 

sampling or variational Bayesian methods to estimate the values of these distributions. This 

model will be explained thoroughly in this section. 

I will discuss LDA’s name after I have explained LDA’s model when it will make more 

sense. Here is the diagram of LDA as a graphical model: 

 

Figure 4. LDA Graphical Model 

I will discuss each of these variables. Bear in mind that these terms come from topic modelling 

but they can be generalized to any of the many applications of LDA. 

D	–	Number	of	documents	
K	–	Number	of	topics	
V	–	Number	of	vocabulary	terms	
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N	–	Length	of	a	given	document	in	words	
Lowercase letters represent indices in these ranges (d is the index for a document in the range 

1	…	D). A plate in a graphical model designated by some number X	indicates that there are X	

copies of all variables inside that plate. So the variable designated K	represents the K	topics 

with K	copies of the variable ϕk.	The	D	plate	represents	D	documents	and	the	N	plate	

represents	a	single	document	with	N	positions.	Arrows	represent	dependencies. 
At the center of the model is the variable Wd,n	which represents the nth word in the dth 

document.	Wd,n	is the only observable variable in the model.	Wd,n	is an integer value between 1 

and	V.	Wd,n	represents a word, but it is identified by a number that is an index in the list of 

vocabulary. 

.`,� = & ∈ [1, b]	

The variable Zd,n	is the topic assignment of the nth word in the dth document.	Zd,n	has 

an integer value between 1 and K, which is an index to the topic of assigned to Wd,n.	

e`,� = f ∈ [1, g]	

Each document is composed of some proportionality of each topic. We can model this with a 

latent probability distribution θd. The	variable	θd contains the document-topic 

proportionalities. It is a list of D distributions over K. θd for some document d is a distribution of 

topics. θd,k for some document d and some topic k returns the proportion of document d that is 

topic k. (Some document might be 95% about quantum physics and only 2% percent about 

baseball). The following equation formalizes the dependency of Zd,n	on θd showing that Zd,n	is 

sampled from θd: 

i`,jk,l = �(e`,�|θ`) 
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Each	topic	has	some	probability	of	producing	each	word.	ϕk contains the topic-word 

probabilities. ϕk is a list of K distributions over V. ϕk for some topic k is a probability 

distribution of all vocabulary terms. ϕk,v for some topic k and some word v returns the 

probability of topic k producing word v. (The topic baseball will be much more likely to produce 

words like homerun and inning than the topic quantum physics). A given topic Zd,n is more likely 

to produce certain words than others. These likelihoods are specified by ϕk. So Wd,n	is 

dependent on both Zd,n and ϕk. The following equation formalizes this dependency: 

njk,l,ok,l = �(.`,�|e`,�, np) 

Both θd and ϕk are distributions over a set of mutually exclusive categories. So it makes 

sense to model these as categorical distributions with Zd,n	and Wd,n	being sampled from them: 

e`,�~	 #$"����)#
�(i`) 

.`,�~	 #$"����)#
r(njk,l) 

 Of course, these distributions are latent. We have to have some way of inferring them 

using the data we have. The solution to this is to sample θd and ϕk each from another 

distribution. To do this, we will use Dirichlet distributions: 

s(��, … , �p; u�, … , up) =
v(∑ u����� )
∏ v(u�)����

x��yz{�
�

���
 

The Dirichlet distribution is the conjugate prior of categorical distributions. Given two 

distributions X and Y, X is a conjugate prior of Y if within the definition of Bayes Rule 

�(u|i) = �(i|u)�(u)
�(i)  

X can be used as a prior p(α) that when multiplied by the likelihood function p(θ|α) produces Y 

which is a posterior P(θ|α) in the same family as A. This mathematical property makes it 
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convenient to use conjugate priors to model other distributions. A Dirichlet distribution can 

produce the probability of a categorical distribution having a given set of probabilities. A 

Dirichlet is like a probability distribution of distributions.  

 We can sample θd and ϕk from two Dirichlet distributions parameterized by variables α 

and β (each of which is a vector of values): 

i`~	���)ℎ
"$�(u) 
np~	���)ℎ
"$r(~) 

The variables α and β control the Dirichlet distributions’ shapes, affecting the probability of 

particular sets of probabilities appearing in θd and ϕk. You can think of the Dirichlet 

distributions as our hypothesis bias when approaching problems using LDA. We can choose α 

and β assign certain arrangements of probabilities to be more or less likely, and then we infer 

other distributions from data and the assigned structure of the model. The advantage of 

choosing α and β is that we can make distributions sparse. For example, we might like each 

document to have only one major topic most of the time. 

 So LDA’s name, Latent Dirichlet Allocation, means allocating Dirichlet distributions in 

order to infer latent distributions. 

 Now the entire model is set up. The last step is to use some algorithm of Bayesian 

inference to estimate the distributions we want to find. A common example of a Bayesian 

inference algorithm used for LDA is Gibbs sampling, also called a Monte Carlo Markov Chain 

(MCMC). In Gibbs sampling, one variable is estimated at a time in terms of the current values of 

all the other variables. This is done iteratively in a random process that eventually produces 
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approximately correct values for variables being estimated. Collapsed Gibbs sampling, a faster 

version of Gibbs sampling, for LDA gives the following equation: 

��e`,� = f�e({`�),.`,� = &,.({`�), u� ∝ (#ep`,({`�) + up)
#.�

p,({`�) + ~�
#.	p +∑ ~�r��� − 1 

(where # indicates counts. Ex. #.	 p is the number of words assigned to topic k) 

We can use the equation above over a large set of data to estimate Zd,n	and	use	values	to	

estimate	the	distributions	θd and ϕk. 

5.2 LDA with Verbs and Context  

 Section (5.1) outlined the general model of Latent Dirichlet Allocation. This section will 

discuss how we used LDA in this paper to model verb context and verb similarities. 

 We model verbs as documents and context features as words based on the model 

described above. We treat each verb as a collection of context features. We choose some 

number of topics to test (these can be tested experimentally). The topics are categories of 

context features. LDA assigns words that often appear together to the same topics. So using 

this method, we can group context features together into coherent categories of related 

features. In other words, features that commonly appear in the same verbs are grouped 

together more commonly. These categories can be said to correlate with verb classes. Since 

each verb is composed of multiple topics, they may instead be the components that determine 

verb classes. Upon observation of the groups formed, this second conclusion seems more likely. 

 The distribution ϕk represents the different topics or categories and their likelihood to 

produce any given context feature. The distribution θd represents all of the verbs and what 

proportionality of each verb is assigned to each topic. As an example, when LDA is run on 
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syntactic features split into three major groups – transitive, intransitive, and clause 

complementizing syntactic features. Each verb then is composed of some proportionality of 

each group. We can treat each verbs topic proportions as a vector with length equal to the 

number of topics. We calculate similarities between verbs using Pearson correlation: 

� = ∑ (�� − �)(�� − �)����
�∑ (�� − �)����� �∑ (�� − �)�����

 

(where � = �
�∑ ������  and � = �

�∑ ������ ) 

 A number of metrics for similarity can be used in the same way. Pearson performed the 

best for us experimentally. Once there is a measure of similarity for each pair of verbs, we can 

produce a verb space. Appendix B contains a few example pictures of this space projected into 

3 dimensional space. 

5.3 Recursive LDA 

As an extension of LDA, we also test a model in which LDA is run iteratively, first on all 

verbs and then within each topic, to produce a hierarchical structure of verb classes. This could 

be compared to Hierarchical LDA (hLDA), but is performed in a tree search instead of a 

distributional process (Blei et al., 2010). A fundamental drawback of LDA is that the number of 

topics must be chosen in advance. Algorithms that attempt to get around this obstacle are 

called non-parametric approaches to LDA. Another limitation of LDA is that it assumes a finite 

set of separate unrelated topics. However, many descriptions of verb classes including Levin’s 

(1993) involve a tree-like structure, where small groups that are related to each other form 

larger groups. 
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With this in mind, we hypothesize that the total verb space can be divided into a small 

number of categories and within each semantic category, verbs relate to each other forming 

more specific categories. To model this, we run LDA on all verbs with 2 topics. We then divide 

the verbs into 2 sets where each verb is assigned to the topic with the highest proportionality. 

Then within each new set of verbs each of which represents a category, we run LDA again using 

the same features on the smaller set of verbs. This allows us to model smaller categories based 

on relationships between verbs in a single category. In addition to running LDA with 2 topics, 

which produces the general tree structure, we also at each partition run LDA with 4 topics. 

These are used as substitutes of the 2 topic solutions when computing similarity to counter 

problems of data sparsity. We do this iteratively to produce a tree-like structure of verb-

categories. We can model this procedure with the following algorithm. 

��(b"�'1, �ℎ"$#, g): 
 (�ℎ�1	2����#-	$#f"1	#1	��2�$: 
 b"�'1	– 	#	
�1$	�s	)�

")$���1	�s	s"#$��"1 

 �ℎ"$#	– 	-#$���	�s	&"�'	&	'�	$�2�)	f, &"�' − $�2�)	2��2��$���1	i` 	$�	'"	s�

"�	��	'�	��	 
 g	– 	��-'"�	�s	$�2�)1 

 �ℎ"	2����#-	�1"1	��''1	1#-2
���	$�	#22����-#$"	i`  

 '�	�$"�#$�&"
�	1#-2
���	s"#$��"1 

 #��	�"$���1	&#
�"1	��	$ℎ"	&#��#'
"	�ℎ"$#) 
 

�")��1�&"_��(b"�'1, �ℎ"$#, �$"�#$���): 
 (2"�s��-	�")��1�&"	��	��$�
	�"1��"�	��-'"� 

 �s	�$"�#$���1	�) 
 �s	�$"�#$���	 > 	�: 
  �"$���  

 "��	�s 
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 (2"�s��-	��	��$ℎ	4	$�2�)1	#��	1#&"	��$2�$) 
 ��(b"�'1, �ℎ"$#, 4) 
 ���$"(�ℎ"$#) 
 (2"�s��-	��	��$ℎ	2	$�2�)1	#��	1#&"	��$2�$) 
 ��(b"�'1, �ℎ"$#, 2) 
 ���$"(�ℎ"$#) 
 (�1"	$�2�)	12
�$	$�	��&��"	&"�'1	#��	���	�")��1�&"	��	#�#��	��	"#)ℎ  

 �"�	1"$	�s	&"�'1)	 
 b"�'1’	 = 	∅ 

 b"�'1′′	 = 	∅ 

 s��	&	��	|b"�'1|: 
  �s	�ℎ"$#	[&][0] 	>= 	0.5: 
   b"�'1’	 = 	b"�'1’	 ∪ 	b"�'1[&] 
  "
1": 
   b"�'1′′	 = 	b"�'1′′	 ∪ 	b"�'1[&] 
  "��	�s 

 "��	s�� 

 �")��1�&"_��(b"�'1’, �ℎ"$#, �$"�#$��� + 1) 
 �")��1�&"_��(b"�'1’, �ℎ"$#, �$"�#$��� + 1) 
 

To compute a similarity matrix, we can add similarities from each topic from each level 

in the tree. The results for Recursive LDA given in this paper are based on constituency syntactic 

features.  

 

6 Methodology 

This section will outline our methods of acquiring and processing data. It will discuss the 

corpus used in this project, how we obtained the list of 3,000 verbs to model, our two methods 
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of parsing sentences for syntactic features, and what types of features are used in our 

experiments. 

6.1 Corpus 

New York Times 

The Corpus used in this project is a resource from New York Times. It consists of twenty 

years of New York Times articles from 1987 to 2007. This corpus includes over a million articles 

including news articles, stock summaries, etc. 

  

Words: 853,753,166 

Sentences: 42,833,581 

 

(We have a second larger corpus of Wikipedia articles with 60,000,000 sentences that will be 

used in future research.) 

6.2 List of Verb  

The experiments in this paper are based on a list of 3,000 English verbs. The ideal is to 

have a list of verbs that make up the majority of verb use in English. Parsing our corpus and 

compiling a list of every word labeled as a verb, produces a list of about 50,000 “verbs”. 

Actually, most of these are errors and noise – words that were incorrectly labeled by the parser 

because they did not fit well with any particular part of speech. For example, one early decision 
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in our process of choosing verbs was to eliminate words that begin with “#” because a large 

number of interjective hashtags were showing up in our list of verbs.  

To refine this list to 3,000 we place a number of constrains on the verbs to use. The first 

step in this process is that verbs are lemmatized (ate and eaten are changed to eat). We only 

consider verb strings that start with an alphabetic character followed by one or more 

alphabetic characters and hyphens (“[A-Za-z][A-Za-z]+”). So verb strings must be at least two 

characters long, start with a letter, and consist completely of letters and hyphens.  

The main constraint that we place on verbs is to include only the top 99% of verb mass. 

We include the most frequent verbs that make up 99% of verb use. The majority of verbs in the 

list of 50,000 are infrequent enough that they make up only 1% of verb use. The other 99% is 

made up of a smaller number of about 3,049 verbs. After this step, a small number of verbs 

were removed by hand to fix small labeling errors. The most important change is that the verb 

be was removed because this single verb requires a massive amount of memory to process and 

analyze. The complete list of verbs can be found in Appendix A. 

6.3 Parsing Approaches 

Given the need for syntactic information as context features, this project relies on two 

different syntactic parsers. Experiments (1), (2), and (3) in this paper use constituency parsing 

and experiments (4), (5), and (6) use dependency parsing for syntactic features of context. In 

this paper, we will compare results from data from each parser to see if either approach is 

more informative.  
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Constituency syntactic trees come from Phrase Structure Grammar, a theory of syntax 

developed by Noam Chomsky (1957). Our constituency parser is provided by Stanford. We use 

the Factored English Parser, which is a lexicalized syntactic parser (Klein & Manning, 2003). 

 

Figure 5. Constituency tree 

 Phrase structure grammar and constituency parsing have the intention of breaking 

sentences into hierarchical autonomously functioning phrases called constituents. Each non-

terminal in the tree is a phrase node representing the constituent of all the words that are 

descendants of that node. Constituency trees identify different types of phrases with different 

identifiers and include rules of how different types of phrases can combine with each other. 

Constituency trees are most oriented to describe the formation of new sentences and rules 

thereof. Phrase structure grammar has been able to explain many phenomena of syntax using 

constituency tree models such as X-bar and others.  

 Dependency syntactic trees come from dependency grammar theories of syntactic 

structure. Dependency grammar is less concerned with the formation of phrases and instead is 
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concerned with syntactic relationships between words. In dependency grammar, there are no 

phrase nodes. All the nodes in a dependency tree are words or the root node. Each word may 

have dependents, which are syntactic arguments of that word represented as children. A 

relation between a word and its dependents is named by the type of syntactic relationship. Our 

dependency parser is provided by ClearNLP (Choi & McCallum, 2013). 

 

Figure 6. Dependency Tree 

Dependency grammar allows for specific naming of relationships between words which opens 

the possibility for very specifically identified relationships. For many purposes in NLP, this 

allows for very specific very easily accessible data compared to constituency parsing.  

 While constituency trees and dependency trees are each more expressive in the 

characteristic of language syntax that they are designed to convey, there is not much evidence 

for which structure is a more accurate representation of the mechanisms of natural language 

syntax in the human brain. The results in this paper comparing constituency and dependency 

trees might indicate that one structure is more akin to a human meaning acquisition process in 
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terms of the type of syntactic information used. It might also be indicative of a better or more 

efficient way of obtaining syntactic features for NLP applications like verb clustering. 

6.4 Features 

Experiments in this paper compare three different types of features. (1) Purely syntactic 

features, (2) noun arguments including prepositions and markers for subject, direct object, and 

indirect object, and (3) A combined set of features of both (1) and (2). Comparing these sets of 

features can inform us which features are better for verb clustering tasks and also, 

theoretically, give us insight into which features might be more useful in a human meaning 

acquisition process. These features also look a bit different depending on whether they are 

taken from our constituency parser or our dependency parser.  

Table 1. Features 

Feature Description Examples 

F1 Constituency 

Syntax  

We consider only 3 nodes under the verb 

phrase node (VP). A “0” designates that 

there are fewer than 3 embedded phrase 

nodes. 

0_0_0, NP_0_0, 

PP_PP_0, NP_PP_PP, 

NP_ADVP_0 

F2 Constituency 

Lexical 

We consider syntactic arguments (or 

modifiers) of each verb. For any noun 

argument, we include the string and any 

syntactic relationship to the verb including 

specific prepositions. We mark subjects as 

“S:”, direct objects as “DO:”, and indirect 

objects as “IO:”. 

S:NP(john), S:NP(soap), 

DO:NP(water), 

PP(on_NP(behalf)), 

ADVP 

F3 Constituency 

Syntax + Lexical 

This feature set simply conjoins the sets of 

F1 and F2. 

0_0_0, NP_0_0, 

PP_PP_0, S:NP(john), 

S:NP(soap), 

DO:NP(water) 
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F4 Dependency 

Syntax 

Each feature is the name of a syntactic 

dependency. Each verb instance can have 

several dependencies, so each of these 

counts as a feature. 

nsubj, dobj, iobj, prep, 

agent, acomp, prt, 

csubj, ccomp 

F5 Dependency 

Syntax + Lexical 

For each dependency, if there is a noun 

argument and or a preposition or particle, 

we include it in the feature. 

prt:up, prep:on:behalf, 

dobj:water, attr, 

nsubj:john 

 

7 Experiments & Results 

 This section lists the experiments in this paper and will introduce our evaluation task. 

Also, this section will present results for all of the experiments tested for this paper and discuss 

experiments that should be performed in the future based on these results. Conclusions will be 

drawn in the next section. 

7.1 List of Experiment 

Experiment 1 - Syntax from Constituency Parsing 

 Experiment (1) relies on Pearson correlation between topic associations from LDA (see 

section 5.2) based on syntactic features from constituency parsing (see F1 in section 6.4).  

Example features - 0_0_0, NP_0_0, NP_PP_PP, PP_PP_0 

Experiment 2 - Lexical Arguments from Constituency Parsing 

 Experiment (2) relies on LDA and Pearson correlation (see section 5.2) based on lexical 

features from constituency parsing (see F2 in section 6.4). 
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Example features - S:NP(john), S:NP(soap), DO:NP(water), PP(on_NP(behalf)), ADVP 

Experiment 3 - Syntax + Lexical Arguments from Constituency Parsing  

 Experiment (3) relies on LDA and Pearson correlation (see section 5.2) based on 

syntactic and lexical features from constituency parsing (see F3 in section 6.4). 

Example features – 0_0_0, NP_0_0, PP_PP_0, S:NP(john), S:NP(soap), DO:NP(water) 

Experiment 4 - Syntax from Dependency Parsing  

 Experiment (4) uses syntactic features acquired from dependency parsing (see F4 in 

section 6.4) modelled using LDA and Pearson correlation (see section 5.2). 

Example features - nsubj, dobj, iobj, prep, agent, acomp, prt, csubj, ccomp 

Experiment 5 - Syntax + Lexical Arguments from Dependency Parsing  

 Experiment (5) uses syntactic features acquired from dependency parsing (see F5 in 

section 6.4) modelled using LDA and Pearson correlation (see section 5.2). 

Example features - prt:up, prep:on:behalf, dobj:water, attr, nsubj:john 

Experiment 6 – Recursive LDA with Constituency Syntactic Features 

 Experiment (6) is our test of Recursive LDA (see section 5.3) and is based on syntactic 

features extracted from constituency parsing. These results are based off of two layers of 

Recursive LDA.  

Example features - 0_0_0, NP_0_0, NP_PP_PP, PP_PP_0 
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Experiment 7 – N-grams 

 N-grams is a common and well-known statistical language model. In experiment (7), we 

use features of unigrams, bigrams, and trigrams of words immediately following each verb. N-

grams is a fairly simple and easy model of word use, so we use it as a baseline. 

Example Features – 3:far:more:water, 2:far:more, 1:far, 3:the:shape:of, 2:the:shape, 1:the 

Experiment 8 – Word2Vec  

 Word2Vec is on the cutting edge of statistical word models. While it takes the same 

data-driven approach as n-grams, Word2Vec greatly improves on this approach. It uses skip-

grams instead of n-grams to obtain features which makes it possible to obtain more rich data 

from the same text. It refines its massive sets of data using deep-learning, an unsupervised 

method of machine learning used for finding salient features. Skip-gram features are similar to 

n-grams, but in addition to the variable n, skip-grams have a variable indicating the number of 

words that may be skipped. 

Example features – 2-1:far:water, 2-2:the:is, 3-2:this:shape:has 

7.2 Triad Evaluation Task 

 All of our experiments are evaluated against a human intuition task we call a triad 

evaluation task. This task is setup as follows: A single triad is composed of three verbs arranged 

in a triangle. 
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Figure 7.Triad Task 

 For each triad participants are asked to choose a verb at the bottom of the triad (B for 

donate and C for exist) that is most similar in meaning to the verb at the top (give). Each 

participant does this for 96 triads (288 total verbs). The evaluation results in this paper are 

based on judgments of 29 participants. The same set of triads is used for each participant to 

allow for an adequate amount of data. Once data has been gathered from this task, the results 

can be compared to any similarity or distance matrix based on the same verbs. The similarity 

matrix can be given a percentage of accuracy that is the percentage of triads that agree with 

the matrix on which verb is closer.  

 This allows us to test the verb similarities produced by any or our experiments against 

human judgements, several constraints are placed on verbs chosen for each triad to generally 

improve judgement reliability of the task. Verbs are chosen to be very close in frequency, to 

have similar length, and to not start with the same letter as the top verb. This is to assure that 

participants do not choose verbs by similarity in any of these arbitrary properties instead of 

meaning. 



44 

 

7.3 Evaluation Results 

 This section presents the evaluation of each experiment using our triad evaluation task 

as described above. For experiments (1) to (5), we tested LDA with 3, 4, and 5 topics. Each 

experiment was used to calculate similarities for 3,000 verbs which are listed in Appendix A. 

The evaluation for each experiment is based on a sample of 288 verbs with judgements 

gathered from 29 participants. 

Table 2. Evaluation Results 

 
3 topic 4 topic 5 topic 

Constituency Parsing 

Experiment 1. 

Syntax 

 

0.648936 0.613 0.564 

Experiment 2. 

Lexical 

Arguments 

0.62766 0.670213 0.606383 

Experiment 3. 

Syntax + Lexical 

 

0.553191 0.574468 0.585106 

Dependency Parsing 

Experiment 4. 

Syntax 

 

0.583333 0.604167 0.635417 

Experiment 5. 

Syntax + Lexical 

 

0.59375 0.591398 0.612903 

 

Experiment 6. 

Recursive LDA  

 

0.614583 

Experiment 7. 

N-gram 

 

0.57 

Experiment 8. 

Word2Vec 

0.648352 
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Inter-rater 

Reliability 
0.739583 

  

 Experiment (2), lexical features using constituency parsing, with 4 topics performed with 

the best evaluation results out of all of our experiments with a rating of 0.67. Experiment (1) 

with 3 topics tied with Word2Vec for the next best evaluation at 0.65. One interesting 

observation we could make from this data is that combining syntactic and lexical features 

seems to hurt evaluation ratings as opposed to keeping them separate.  

 

Figure 8. Comparing Constituency Features 
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Figure 9. Comparing Dependency Features 

 In both dependency and constituency based experiments, experiments with either 

syntactic or lexical features evaluated better than experiments with syntactic and lexical 

features combined.  

 The inter-rater reliability is our measure of how well one human participant did when 

their judgement was compared to that of the judgements of the other 28 participants. Inter-

rater reliability gives us a measure of how much participants in the evaluation task agreed with 

each other. It also provides an upper bound on evaluations of verb similarity algorithms. 

Theoretically, no verb similarity matrix from any experiment should perform better than 0.74, 

the value of the inter-rater reliability, on our evaluation task.    

8 Conclusions 

 Although the data presented in this section took a significant amount of time and 

resources to collect, these experiments represent a small set of testable features and 

parameters. These results show that the right arrangement of linguistic context features 
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3 topics 4 topics 5 topics

Dependency Features

Syntax Syntax + Lexical
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modelled probabilistically with LDA can outperform leading statistical models such as 

Word2Vec, with still much room for improvement. The best results presented in this paper 

come from experiment (2) using lexical features from constituency parsing and LDA with 4 

topics. This evaluation outperforms Word2Vec which is tied for the second best results. 

Recursive LDA, while it may present a viable method of producing hierarchical verb classes, 

evaluated in the mid-range of our experiments. One observation we could is that conjoining 

syntactic and lexical features is counter-productive according to the results we have. Our 

experiments which modelled only syntactic features or only lexical features performed better 

than our experiments with combined features. This suggests that to be able to utilize multiple 

types of features, we have a strong motivation to develop more viable models for combining 

these features. Our future research in word modelling and verb clustering will take this insight 

into account. 

 

9 Future Work 

 The work presented in this paper is the preliminary findings and models created in the 

Verbiverse project. In the future, we intend to expand this work to include metrics for the 

informitivity of a wide variety of features. We also plan to test our models for application in 

word sense disambiguation tasks. When the Verbiverse project was created, we set out with 

the goal of expanding on this framework to other parts of speech. The Nouniverse, the 

Prepiverse, and the Adjectiverse are strong possibilities with the Verbiverse as groundwork. 

During the development of these projects, we plan on developing metrics of informitivity for 
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each kind of context information. We plan to develop this both for future NLP applications and 

to further test which types of context might be part of the human meaning acquisition process. 
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Appendix A (List of 3,000 Verbs) 

A 

abandon, abate, abbreviate, abdicate, abduct, abet, abide, abolish, abort, abound, absolve, absorb, 

abstain, abuse, abut, accede, accelerate, accent, accentuate, accept, access, acclaim, accommodate, 

accompany, accomplish, accord, accost, account, accredit, accrue, accumulate, accuse, accustom, 

achieve, acknowledge, acquaint, acquiesce, acquire, acquit, act, activate, adapt, add, addict, address, 

adhere, adjoin, adjourn, adjust, administer, admire, admit, admonish, adopt, adore, adorn, advance, 

advertise, advise, advocate, affect, affiliate, affirm, affix, afflict, afford, age, aggravate, agitate, agree, 

aid, ail, aim, air, alarm, alert, alienate, align, allay, allege, alleviate, allocate, allot, allow, allude, ally, 

alter, alternate, amass, amaze, ambush, amend, amount, amplify, amputate, amuse, analyze, anchor, 

anger, angle, animate, annex, announce, annoy, annul, anoint, answer, antagonize, anticipate, 

apologize, appal, appeal, appear, appease, applaud, apply, appoint, apportion, appraise, appreciate, 

apprehend, approach, appropriate, approve, approximate, arch, argue, arise, arm, arouse, arraign, 

arrange, array, arrest, arrive, articulate, ascend, ascertain, ascribe, ask, aspire, assail, assassinate, 

assault, assemble, assert, assess, assign, assimilate, assist, associate, assuage, assume, assure, astonish, 
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attach, attack, attain, attempt, attend, attest, attract, attribute, auction, audit, audition, augment, 

authorize, autograph, automate, avenge, average, avert, avoid, await, awake, awaken, award 

B 

back, backfire, baffle, bag, bail, bait, bake, balance, balk, ban, band, bang, banish, bank, bankrupt, 

baptize, bar, bare, bargain, barge, bark, barricade, base, bash, bask, bat, bathe, batter, battle, bead, 

beam, bear, beat, beckon, become, bed, befall, befit, befriend, beg, beget, begin, behave, behold, 

believe, belittle, belong, belt, bemoan, bench, bend, benefit, bequeath, berate, beset, besiege, best, 

bestow, bet, betray, better, beware, bewilder, bicycle, bid, bill, bind, bite, black, blacken, blame, blanket, 

blast, blaze, bleach, bleed, blend, bless, blind, blindfold, blink, blister, block, bloom, blossom, blow, 

bludgeon, blunt, blur, board, boast, bog, boil, bolster, bolt, bomb, bombard, bond, boo, book, boom, 

boost, boot, border, bore, borrow, botch, bother, bottle, bottom, bounce, bound, bow, bowl, box, 

boycott, brace, brag, braid, branch, brand, brandish, brave, breach, break, breathe, breed, brew, bribe, 

bridge, brief, brighten, bring, broadcast, broaden, broker, brood, brown, browse, bruise, brush, bubble, 

buck, buckle, bud, budget, bug, build, bulge, bulldoze, bully, bump, bundle, buoy, burden, burgeon, burn, 

burrow, burst, bury, bus, bust, buttress, buy, buzz, bypass 

C 

calculate, calibrate, call, calm, camouflage, camp, campaign, can, cancel, cap, capitalize, capitulate, 

captivate, capture, care, carry, cart, carve, cascade, cash, cast, castigate, catalog, catalogue, catapult, 

catch, categorize, cater, cause, caution, cave, cease, cede, celebrate, cement, censor, censure, center, 

certify, chain, chair, chalk, challenge, champion, change, channel, chant, characterize, charge, charm, 

chart, charter, chase, chastise, chat, cheat, check, cheer, cherish, chew, chide, chill, chip, choke, choose, 

chop, choreograph, christen, chronicle, churn, circle, circulate, circumvent, cite, claim, clamp, clap, 

clarify, clash, clasp, classify, claw, clean, cleanse, clear, click, climb, clinch, cling, clip, clock, clog, clone, 

close, clothe, club, cluster, clutch, coach, coalesce, coast, coat, coax, cock, code, codify, coerce, coexist, 

coil, coin, coincide, collaborate, collapse, collect, collide, colonize, color, comb, combat, combine, come, 

comfort, command, commandeer, commemorate, commence, commend, comment, commercialize, 

commission, commit, communicate, commute, compare, compel, compensate, compete, compile, 

complain, complement, complete, complicate, compliment, comply, compose, compost, compound, 

comprehend, compress, comprise, compromise, compute, conceal, concede, conceive, concentrate, 

concern, conclude, concoct, concur, condemn, condense, condition, condone, conduct, confer, confess, 

confide, configure, confine, confirm, confiscate, conflict, conform, confound, confront, confuse, 

congratulate, congregate, conjure, connect, conquer, consent, conserve, consider, consign, consist, 

console, consolidate, conspire, constitute, constrain, constrict, construct, construe, consult, consume, 

consummate, contact, contain, contaminate, contemplate, contend, contest, continue, contract, 

contradict, contrast, contribute, contrive, control, convene, converge, converse, convert, convey, convict, 

convince, cook, cool, cooperate, coordinate, cope, co-produce, copy, copyright, corner, correct, correlate, 

correspond, corroborate, corrupt, cost, costume, cough, counsel, count, counter, counteract, couple, 

course, court, cover, covet, crack, craft, cram, cramp, crank, crash, crave, crawl, create, credit, creep, 

crest, cripple, criticize, critique, crop, cross, crouch, crowd, crown, cruise, crumble, crusade, crush, cry, 
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crystallize, cull, culminate, cultivate, curb, cure, curl, curry, curse, curtail, curve, cushion, customize, cut, 

cycle 

D 

dabble, damage, damn, damp, dampen, dance, dangle, dare, darken, dart, dash, date, dawn, dazzle, 

deal, debate, debilitate, debunk, decay, deceive, decide, decimate, decipher, deck, declare, declassify, 

decline, decode, decompose, deconstruct, decorate, decrease, decree, decry, dedicate, deduct, deem, 

deepen, default, defeat, defect, defend, defer, define, deflate, deflect, defraud, defuse, defy, degenerate, 

degrade, delay, delegate, delete, deliberate, delight, delineate, deliver, delve, demand, demean, 

demolish, demonstrate, demoralize, demote, denigrate, denominate, denote, denounce, deny, depart, 

depend, depict, deplete, deplore, deploy, deport, depose, deposit, depress, deprive, derail, deride, derive, 

descend, describe, desert, deserve, design, designate, desire, despair, despise, destabilize, destine, 

destroy, detach, detail, detain, detect, deter, deteriorate, determine, detest, detonate, detract, devalue, 

devastate, develop, deviate, devise, devolve, devote, devour, diagnose, dial, dictate, die, differ, 

differentiate, diffuse, dig, digest, digitize, dilute, dim, diminish, dine, dip, direct, disable, disagree, 

disallow, disappear, disappoint, disapprove, disarm, disavow, disband, disburse, discard, discern, 

discharge, discipline, disclose, disconnect, discontinue, discount, discourage, discover, discredit, 

discriminate, discuss, disdain, disenfranchise, disgruntle, disguise, dish, dishearten, disillusion, 

disintegrate, dislike, dislocate, dislodge, dismantle, dismay, dismiss, disorient, disparage, dispatch, 

dispel, dispense, disperse, displace, display, dispose, disprove, dispute, disqualify, disregard, disrupt, 

dissect, disseminate, dissent, dissipate, dissolve, dissuade, distance, distil, distinguish, distort, distract, 

distress, distribute, distrust, disturb, ditch, dive, diverge, diversify, divert, divest, divide, divorce, divulge, 

do, dock, document, dodge, dog, dominate, don, donate, doom, dope, dot, double, doubt, douse, down, 

downgrade, download, downplay, downsize, draft, drag, drain, dramatize, drape, draw, dread, dream, 

dredge, drench, dress, dribble, drift, drill, drink, drip, drive, droop, drop, drown, drug, drum, dry, dub, 

duck, duel, dump, dupe, duplicate, dust, dwarf, dwell, dwindle, dye 

E 

earmark, earn, ease, eat, echo, eclipse, edge, edit, educate, effect, eject, eke, elaborate, elapse, elect, 

electrify, elevate, elicit, eliminate, elude, email, emanate, embark, embarrass, embed, embellish, 

embezzle, emblazon, embody, embolden, embrace, embroider, embroil, emerge, emigrate, emit, 

emphasize, employ, empower, empty, emulate, enable, enact, enamor, encapsulate, encase, enchant, 

encircle, enclose, encode, encompass, encounter, encourage, encroach, encrust, end, endanger, endear, 

endorse, endow, endure, energize, enforce, engage, engender, engineer, engrave, engross, engulf, 

enhance, enjoy, enlarge, enlighten, enlist, enliven, enrage, enrich, enrol, enroll, enshrine, enslave, ensue, 

ensure, entail, entangle, enter, entertain, enthral, entice, entitle, entrance, entrench, entrust, entwine, 

envelop, envision, envy, epitomize, equal, equate, equip, eradicate, erase, erect, erode, err, erupt, 

escalate, escape, eschew, escort, espouse, establish, estimate, etch, evacuate, evade, evaluate, 

evaporate, even, evict, evidence, evoke, evolve, exacerbate, exact, exaggerate, exalt, examine, 

exasperate, excavate, exceed, excel, exchange, excise, excite, exclaim, exclude, excuse, execute, 

exemplify, exempt, exercise, exert, exhaust, exhibit, exhort, exhume, exile, exist, exit, exonerate, expand, 

expect, expedite, expel, expend, experience, experiment, expire, explain, explode, exploit, explore, export, 
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expose, expound, express, extend, extinguish, extol, extort, extract, extradite, extrapolate, extricate, 

exude, eye 

F 

fabricate, face, facilitate, factor, fade, fail, faint, fake, fall, falsify, falter, fan, fancy, fantasize, fare, farm, 

fascinate, fashion, fast, fasten, father, fault, favor, fear, feast, feature, feed, feel, feign, fell, fence, fend, 

ferment, ferry, fertilize, fetch, feud, field, fight, figure, file, fill, film, filter, finalize, finance, find, fine, 

finish, fire, fish, fit, fix, fixate, flag, flank, flap, flare, flash, flatten, flatter, flaunt, flavor, flee, flesh, flex, 

flick, fling, flip, flirt, float, flock, flood, floor, flop, flounder, flourish, flow, flower, fluctuate, flush, flutter, 

fly, focus, foil, fold, follow, foment, fool, foot, forage, forbid, force, forecast, foreclose, foresee, 

foreshadow, forestall, forfeit, forge, forget, forgive, forgo, form, formalize, formulate, forsake, fortify, 

forward, foster, foul, found, founder, fracture, frame, freak, free, freeze, frequent, fret, frighten, front, 

frown, frustrate, fry, fuel, fulfil, fulfill, fumble, function, fund, funnel, furnish, further, fuse 

G 

gag, gain, gallop, galvanize, gamble, gap, garner, garnish, gather, gauge, gaze, gear, generalize, 

generate, get, give, glance, glaze, glean, glide, glimpse, glitter, glorify, gloss, glow, glue, gnaw, go, goad, 

govern, grab, grace, grade, graduate, graft, grant, grapple, grasp, grate, gratify, gravitate, graze, greet, 

grieve, grill, grind, grip, groom, gross, ground, group, grow, growl, guarantee, guard, guess, guide, gun, 

gut 

H 

hack, hail, halt, halve, hammer, hamper, hamstring, hand, handcuff, handicap, handle, hang, happen, 

harass, harbor, harden, hark, harm, harmonize, harness, harvest, hasten, hatch, hate, haul, haunt, have, 

hawk, head, headline, heal, heap, hear, heat, heckle, hedge, heed, heighten, help, herald, herd, hesitate, 

hew, hide, highlight, hijack, hike, hinder, hinge, hint, hire, hit, hitch, hoard, hoist, hold, hole, home, 

homer, hone, honor, hook, hop, hope, horrify, hospitalize, host, hound, house, hover, howl, hug, hum, 

humble, humiliate, hunt, hurl, hurry, hurt, hype 

I 

ice, identify, idle, idolize, ignite, ignore, illuminate, illustrate, imagine, imbue, imitate, immerse, 

immigrate, immobilize, immortalize, impact, impair, impart, impeach, impede, impel, impersonate, 

implant, implement, implicate, implode, implore, imply, import, impose, impound, impress, imprint, 

imprison, improve, improvise, inaugurate, incapacitate, incarcerate, incense, incite, incline, include, 

incorporate, increase, incriminate, incur, index, indicate, indict, induce, induct, indulge, industrialize, 

infect, infer, infest, infiltrate, inflame, inflate, inflict, influence, inform, infringe, infuriate, infuse, ingest, 

inhabit, inhale, inherit, inhibit, initiate, inject, injure, inquire, inscribe, insert, insinuate, insist, inspect, 

inspire, instal, install, instigate, instil, institute, institutionalize, instruct, insulate, insult, insure, integrate, 

intend, intensify, interact, intercede, intercept, interest, interfere, interlock, intern, interpret, interrogate, 

interrupt, intersect, intersperse, intertwine, intervene, interview, interweave, intimidate, intrigue, 
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introduce, intrude, inundate, invade, invalidate, invent, invert, invest, investigate, invigorate, invite, 

invoke, involve, iron, irritate, isolate, issue 

J 

jail, jam, jeopardize, jettison, jog, join, joke, journey, judge, juggle, jump, justify, jut, juxtapose 

K 

keep, key, kick, kidnap, kill, kiss, kneel, knit, knock, knot, know 

L 

label, labor, lace, lack, lag, lament, land, landscape, languish, lap, lapse, lash, last, latch, laud, laugh, 

launch, launder, lay, layer, lead, leak, lean, leap, learn, lease, leave, lecture, legalize, legislate, legitimize, 

lend, lengthen, lessen, let, letter, level, leverage, levy, liberalize, liberate, license, lick, lie, lift, light, 

lighten, like, liken, limit, limp, line, linger, link, liquidate, list, listen, litigate, litter, live, load, loan, loathe, 

lob, lobby, locate, lock, lodge, log, long, look, loom, loop, loosen, loot, lose, love, lower, lumber, lump, 

lure, lurk 

M 

magnify, mail, maim, maintain, major, make, malfunction, man, manage, mandate, maneuver, manifest, 

manipulate, manufacture, map, mar, march, marginalize, mark, market, marry, marshal, marvel, mash, 

mask, masquerade, mass, massacre, master, mastermind, match, mate, materialize, matter, mature, 

maximize, mean, meander, measure, meddle, mediate, meditate, meet, meld, melt, memorialize, 

memorize, menace, mend, mention, mentor, merge, merit, mesh, mesmerize, mess, mete, migrate, milk, 

mill, mimic, mind, mine, mingle, minimize, minister, mint, mire, mirror, mishandle, misidentify, 

misinterpret, mislead, misplace, misrepresent, miss, misspell, mistake, mistreat, misunderstand, misuse, 

mitigate, mix, mobilize, mock, model, moderate, modernize, modify, modulate, mold, molest, monitor, 

monopolize, moor, mop, morph, motivate, motorize, mount, mourn, move, mow, multiply, murder, 

muse, muster, mutate, mute, mutilate  

N 

nail, name, narrate, narrow, nationalize, navigate, near, necessitate, need, negate, neglect, negotiate, 

neighbor, nest, nestle, net, neutralize, nickname, nod, nominate, notch, note, notice, notify, nourish, 

nullify, number, nurse, nurture 

O 

obey, object, obligate, oblige, obliterate, obscure, observe, obsess, obstruct, obtain, occupy, occur, 

offend, offer, officiate, offset, oil, omit, ooze, open, operate, oppose, oppress, opt, orbit, orchestrate, 

ordain, order, organize, orient, originate, orphan, ostracize, oust, outdo, outfit, outgrow, outlast, outlaw, 
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outline, outlive, outnumber, outpace, outperform, outrage, outrun, outscore, outsource, outstrip, 

outweigh, overcome, overestimate, overflow, overhaul, overhear, overheat, overlap, overload, overlook, 

overpower, override, overrule, overrun, oversee, overshadow, overstate, overtake, overthrow, overturn, 

overwhelm, owe, own 

P 

pace, pack, package, paddle, page, paint, pair, pan, panel, panic, parade, parallel, paralyze, paraphrase, 

pardon, pare, park, parody, parole, parse, part, participate, partner, party, pass, paste, patch, patent, 

patrol, patronize, pattern, pause, pave, pay, peak, peddle, peel, peer, peg, pelt, pen, penalize, penetrate, 

pepper, perceive, perch, perfect, perform, perish, permeate, permit, perpetrate, perpetuate, persecute, 

persevere, persist, personify, persuade, pertain, pervade, petition, phase, phone, photograph, phrase, 

pick, picket, pickle, picture, piece, pierce, pile, pilot, pin, pinch, pinpoint, pioneer, pipe, pit, pitch, placate, 

place, plague, plan, plant, plaster, plate, play, plead, please, pledge, plot, plow, pluck, plug, plummet, 

plunder, plunge, ply, poach, pocket, point, poise, poison, poke, polarize, police, polish, politicize, poll, 

pollute, ponder, pool, pop, popularize, populate, portray, pose, posit, position, possess, post, postpone, 

pound, pour, power, practice, praise, pray, preach, precede, precipitate, preclude, predate, predecease, 

predicate, predict, predominate, prefer, preoccupy, prepare, presage, prescribe, present, preserve, 

preside, press, pressure, presume, pretend, prevail, prevent, preview, prey, price, pride, prime, print, 

privatize, prize, probe, proceed, process, proclaim, procure, prod, produce, profess, profile, profit, 

program, progress, prohibit, project, proliferate, prolong, promise, promote, prompt, promulgate, 

pronounce, prop, propagate, propel, propose, prosecute, prosper, protect, protest, protrude, prove, 

provide, provoke, prune, pry, publicize, publish, pull, pulsate, pulse, pump, punch, punctuate, puncture, 

punish, punt, purchase, purge, purify, purport, pursue, push, put, puzzle 

 

Q 

quadruple, qualify, quantify, quarrel, quarterback, quash, quell, question, quicken, quiet, quilt, quip, quit, 

quote 

R 

race, rack, radiate, radio, rage, raid, rail, rain, raise, rake, rally, ram, ramble, range, rank, ransack, rap, 

rape, rat, rate, ratify, ration, rationalize, rattle, ravage, rave, raze, reach, react, read, ready, reaffirm, 

realign, realize, reap, reappear, rear, rearrange, reason, reassemble, reassert, reassess, reassign, 

reassure, rebel, rebound, rebuff, rebuild, rebuke, rebut, recall, recant, recapture, recast, recede, receive, 

recess, recharge, recite, reckon, reclaim, recline, recognize, recoil, recommend, reconcile, reconfigure, 

reconsider, reconstitute, reconstruct, reconvene, record, recount, recoup, recover, recreate, re-create, 

recruit, rectify, recuperate, recur, recycle, red, redeem, redefine, redesign, redevelop, redirect, rediscover, 

redistribute, redo, redress, reduce, reel, re-emerge, re-enter, re-establish, re-evaluate, re-examine, refer, 

refill, refine, reflect, refocus, reform, refrain, refresh, refrigerate, refund, refurbish, refuse, refute, regain, 
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regard, register, regret, regroup, regulate, rehabilitate, rehearse, rehire, reign, reignite, reimburse, rein, 

reinforce, reinstall, reinstate, reinterpret, reintroduce, reinvent, reinvigorate, reissue, reiterate, reject, 

rejoice, rejoin, rejuvenate, rekindle, relate, relax, relay, release, relegate, relent, relieve, relinquish, relish, 

relive, relocate, rely, remain, remake, remark, remarry, remedy, remember, remind, reminisce, remodel, 

remove, rename, rend, render, renege, renegotiate, renew, renounce, renovate, rent, reopen, reorganize, 

repackage, repaint, repair, repatriate, repay, repeal, repeat, repel, replace, replay, replenish, replicate, 

reply, report, reposition, represent, repress, reprimand, reprint, reprise, reproduce, repudiate, 

repurchase, repute, request, require, reroute, reschedule, rescind, rescue, research, resell, resemble, 

resent, reserve, reset, resettle, reshape, reside, resign, resist, resolve, resonate, resort, respect, respond, 

rest, restart, restate, restore, restrain, restrict, restructure, result, resume, resurface, resurrect, 

resuscitate, retail, retain, retake, retaliate, retell, rethink, retire, retool, retort, retrace, retract, retrain, 

retreat, retrieve, return, reunite, reuse, revamp, reveal, revel, revere, reverse, revert, review, revile, 

revise, revisit, revitalize, revive, revoke, revolt, revolutionize, revolve, reward, rework, rewrite, rezone, 

rhyme, rid, ride, ridicule, rig, right, ring, rinse, rip, ripen, rise, risk, rival, rivet, roam, roar, roast, rob, rock, 

roll, room, root, rope, rot, rotate, round, rouse, rove, row, rub, ruin, rule, rumble, rumor, run, rupture, 

rush, rust 

 

S 

sabotage, sack, sacrifice, sadden, saddle, safeguard, sag, sail, salt, salute, salvage, sample, sanction, 

sandwich, sap, satirize, satisfy, saturate, save, saw, say, scale, scan, scar, scare, scatter, schedule, school, 

scoff, scold, scoop, scorch, score, scorn, scour, scout, scramble, scrap, scrape, scratch, scream, screen, 

screw, script, scroll, scrub, scrutinize, sculpt, sculpture, scuttle, seal, search, season, seat, secede, secure, 

seduce, see, seed, seek, seem, seep, segregate, segue, seize, select, sell, send, sense, sentence, separate, 

sequence, sequester, serve, service, set, settle, sever, sew, shade, shadow, shake, shame, shape, share, 

sharpen, shatter, shave, shear, sheathe, shed, shell, shelter, shelve, shepherd, shield, shift, shimmer, 

shine, ship, shock, shoot, shop, shore, short, shorten, shoulder, shout, shove, show, showcase, shower, 

shred, shrink, shroud, shrug, shuffle, shun, shut, shutter, shuttle, shy, sicken, side, sideline, sift, sign, 

signal, signify, silence, simmer, simplify, simulate, sing, single, sink, siphon, sit, situate, size, skate, 

sketch, skew, ski, skim, skip, skirt, skyrocket, slam, slant, slap, slash, slate, slaughter, slay, sleep, slice, 

slide, slip, slit, slope, slow, slug, slump, smack, smash, smear, smell, smile, smite, smoke, smooth, 

smother, smuggle, snag, snap, snatch, sneak, sniff, snow, snub, soak, soar, sob, socialize, soften, solicit, 

solidify, solve, soothe, sort, sound, sour, sow, space, span, spar, spare, spark, spawn, speak, spearhead, 

specialize, specify, speculate, speed, spell, spend, spew, spice, spike, spill, spin, spiral, spit, splash, splice, 

splinter, split, spoil, sponsor, sport, spot, spotlight, sprain, sprawl, spray, spread, spring, sprinkle, sprint, 

sprout, spur, spurn, spy, squander, square, squash, squat, squeeze, stab, stabilize, stack, staff, stage, 

stagger, stagnate, stain, stake, stalk, stall, stamp, stand, standardize, star, stare, start, startle, starve, 

state, station, stave, stay, steal, steam, steep, steer, stem, step, stereotype, sterilize, stick, stiffen, stifle, 

stigmatize, stimulate, sting, stipulate, stir, stitch, stock, stockpile, stoke, stomp, stone, stoop, stop, store, 

storm, straddle, straighten, strain, strand, strangle, strap, stray, streak, stream, streamline, strengthen, 

stress, stretch, strew, strike, string, strip, stripe, strive, stroke, stroll, structure, struggle, strut, stud, 

study, stuff, stumble, stump, stun, stunt, style, stylize, stymie, subdivide, subdue, subject, submerge, 
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submit, subpoena, subscribe, subside, subsidize, substantiate, substitute, subtitle, subtract, subvert, 

succeed, succumb, suck, sue, suffer, suffice, suffocate, suffuse, suggest, suit, sum, summarize, summon, 

superimpose, supersede, supervise, supplant, supplement, supply, support, suppose, suppress, surf, 

surface, surge, surmise, surmount, surpass, surprise, surrender, surround, survey, survive, suspect, 

suspend, sustain, swallow, swamp, swap, swarm, sway, swear, sweat, sweep, sweeten, swell, swerve, 

swim, swing, swipe, swirl, switch, swivel, swoop, symbolize, sympathize, synchronize, syndicate, 

synthesize 

T 

tabulate, tack, tackle, tag, tail, tailor, taint, take, talk, tally, tame, tamper, tan, tangle, tap, tape, taper, 

target, tarnish, taste, tattoo, taunt, tax, teach, team, tear, tease, teem, telephone, televise, tell, temper, 

tempt, tend, tender, term, terminate, terrify, terrorize, test, testify, tether, texture, thank, thaw, theorize, 

thicken, thin, think, thrash, thread, threaten, thrill, thrive, throw, thrust, thwart, tick, ticket, tie, tighten, 

tile, tilt, time, tinge, tint, tip, tire, title, toast, toil, tolerate, tone, top, topple, torment, torture, toss, total, 

touch, tour, tout, tow, tower, toy, trace, track, trade, traffic, trail, train, trample, transcend, transcribe, 

transfer, transform, translate, transmit, transpire, transplant, transport, trap, trash, traumatize, travel, 

traverse, tread, treasure, treat, trek, tremble, trespass, trick, trickle, trigger, trim, trip, triple, triumph, 

trouble, trounce, trump, trust, try, tuck, tumble, tune, turn, tutor, tweak, twist, type, typify 

U 

uncover, undercut, underestimate, undergo, underlie, underline, undermine, underperform, underscore, 

understand, understate, undertake, underwrite, undo, undulate, unearth, unfold, unify, unite, unleash, 

unload, unlock, unravel, unseat, unveil, up, update, upgrade, uphold, uplift, uproot, upset, urge, urinate, 

use, usher, usurp, utilize, utter 

 

V 

vacate, vacation, vaccinate, validate, value, vandalize, vanish, vanquish, vary, vault, veer, veil, vend, 

vent, venture, verify, verse, vest, vet, veto, vibrate, victimize, videotape, vie, view, vilify, vindicate, 

violate, visit, visualize, voice, void, volunteer, vomit, vote, vow 

W 

wade, wage, wager, wail, wait, waive, wake, walk, wall, wander, wane, want, war, ward, warm, warn, 

warp, warrant, wash, waste, watch, water, wave, waver, wax, weaken, wean, wear, weather, weave, 

wed, wedge, weed, weep, weigh, weight, welcome, weld, whale, wheel, whip, whisk, whisper, whistle, 

widen, widow, wield, will, win, wind, wipe, wire, wish, withdraw, wither, withhold, withstand, witness, 

wonder, woo, word, work, worry, worsen, worship, wound, wrap, wreak, wreck, wrest, wrestle, wrinkle, 

write 
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Y 

yearn, yell, yield 

Z 

zone, zoom 
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Appendix B (Verb Space Images) 

 

Figure 10. Verb Space 



63 

 

 

Figure 11. Verb Classes from Recursive LDA 
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Figure 12. Think/Believe Verbs 

 

 

Figure 13. Manner-of-Motion Verbs 

 

 

Figure 14. Other Motion Verbs 

 



65 

 

 

Figure 15. Mental-State Verbs 


