
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory

University, I hereby grant to Emory University and its agents the non-exclusive license to

archive, make accessible, and display my thesis in whole or in part in all forms of media, now or

hereafter now, including display on the World Wide Web. I understand that I may select some

access restrictions as part of the online submission of this thesis. I retain all ownership rights to

the copyright of the thesis. I also retain the right to use in future works (such as articles or

books) all or part of this thesis.

Austin Blodgett April 3, 2015

The Verbiverse: Creating a Verb Space with

Comparative Methods of Distributional Semantics

By

Austin James Blodgett

Jinho Choi

Adviser

Department of Mathematics and Computer Science

Jinho Choi

Adviser

Phillip Wolff

Committee Member

Marjorie Pak

Committee Member

2015

The Verbiverse: Creating a Verb Space with

Comparative Methods of Distributional Semantics

By

Austin James Blodgett

Jinho Choi

Adviser

An abstract of

a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2015

Abstract

The Verbiverse: Creating a Verb Space with Comparative

Methods of Distributional Semantics

By Austin James Blodgett

 Computational semantics as a field includes many of the unsolved problems of Natural

Language Processing. The need for innovation in this field has motivated much research in

developing word and language models that better represent meaning and various concepts

within semantics. This thesis is concerned specifically with measuring verb similarity and verb

clustering, a task within this field. The goal is to develop representations of verbs that can

accurately and viably be used to judge semantic similarity between verbs and to group verbs

into classes that reflect their relatedness in meaning. Verb clustering – a task of distributing

verbs into semantically related classes - has in previous research been shown to have

applications in multiple tasks in Natural Language Processing including word sense

disambiguation. This thesis will present and compare several methods of automatic acquisition

of verb similarity, with a goal of allowing future applications of these methods in NLP tasks and

to promote discoveries in how the mechanisms modeled by these methods relate to linguistics.

This paper presents several methods from verb clustering based on Latent Dirichlet

Allocation – a probabilistic graphical model commonly used for topic modelling. We model

verbs as collections of contextual features derived from latent classes. LDA, which is designed

as a model for Bayesian inference of latent thematic categories, fits well to model verb classes

based on linguistic context. We demonstrate Recursive LDA, a procedure of executing LDA

iteratively to produce a hierarchical structure of classes. We test several linguistic features from

syntax and lexical arguments of verbs with interest in identifying how informative each feature

is. We evaluate all of our experiments against human judgments of similarity providing a novel

method for evaluating semantic similarity metrics of word models. We test all of our data on a

list of 3,000 most common English verbs.

We test our method against Word2Vec, a popular and recently developed word model

using skip-gram feature vectors refined by deep learning. The results in this thesis will show

that given the right features, our method of using LDA with linguistic features outperforms

Word2Vec’s data-driven statistical approach when weighed against human judgements.

The Verbiverse: Creating a Verb Space with

Comparative Methods of Distributional Semantics

By

Austin James Blodgett

Jinho Choi

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2015

Table of Contents

1. Introduction ……………………………………………………………………………………………………… 1

2. Related Work ………………………………………………………………………………………………….… 2

2.1 Constructing Verb Classes ………………………………………………………………..…… 4

2.2 Word2Vec ……………………………………………………………………………..……………… 7

2.3 Comparison to Our Approach ……………………………………………………………..… 8

3. Linguistic Context and Meaning ………………………………………………………………………… 9

3.1 Meaning Acquisition Process …………………………………………………………….… 10

3.2 Syntax …………………………………………………………………………………………….…… 11

3.3 Lexical Arguments …………………………………………………………………………....… 14

4. Modelling Lexical Semantics ………………………………………………………………………….… 15

4.1 The Instance Space ……………………………………………………………………………… 16

4.2 Understanding Meaning ……………………………………………………………………… 19

4.3 Properties of Words, Senses, and Categories …………………………………….… 21

4.4 Context to Meaning …………………………………………………………………………….. 24

5. Latent Dirichlet Allocation (Beyond Topic Modelling) ………………………………….….. 25

5.1 A Probabilistic Graphical Model of Documents and Topics ………………….. 26

5.2 LDA with Verbs and Context ………………………………………………………………… 31

5.3 Recursive LDA ……………………………………………………………………………………… 32

6. Methodology ………………………………………………………………………………………………..… 34

6.1 Corpus ………………………………………………………………………………………………… 35

6.2 List of Verbs ……………………………………………………………………………….…..…… 35

6.3 Parsing Approaches ………………………………………………………………………..…… 36

6.4 Features …………………………………………………………………………………….……..… 39

7. Experiments & Results …………………………………………………………………………………..… 40

7.1 List of Experiments ……………………………………………………………………………… 40

7.2 Triad Evaluation Task ……………………………………………………………………..…… 42

7.3 Results ………………………………………………………………………………………………… 44

8. Conclusions …………………………………………………………………………………………………..… 46

9. Future Work ……………………………………………………………………………………………………. 47

Bibliography …….…… 48

Appendix A (List of 3,000 Verbs) ………………………………………………………………………………… 54

Appendix B (Verb Space Images) ………………………………………………………………………………… 62

List of Figures & Tables

Figure 1. Gave Constituency Tree (Stanford Parser) 12

Figure 2. Gave Dependency Tree 13

Figure 3. Instance Space 16

Figure 4. LDA Graphical Model 27

Figure 5. Constituency tree (Stanford Parser) 37

Figure 6. Dependency Tree 43

Figure 7. Triad Task 45

Figure 8. Comparing Constituency Features 46

Figure 9. Comparing Dependency Features 55

Figure 10. Verb Space 62

Figure 11. Verb Classes from Recursive LDA 63

Figure 12. Think/Believe Verbs 64

Figure 13. Manner-of-Motion Verbs 64

Figure 14. Other Motion Verbs 64

Figure 15. Mental-State Verbs 65

Table 1. Features 39

Table 2. Evaluation Results 44

1

1 Introduction

The Verbiverse is a research endeavor with interest in three concepts that are central to

the idea of language – verbs, meaning, and context. The Verbiverse is a project with the aim of

computationally modelling verb meaning based on features of context and using these models

to calculate verb similarities, verb classes, and a relational verb space. A core principle of this

project is that there is a strong relationship between word meaning and linguistic context. The

goal is to develop novel computational methods for measuring the semantic similarity between

verbs. With these similarities, we can identify verbs that are close together in meaning, we can

cluster semantically related verbs together into verb classes, and we can create a space of verbs

based on semantic similarities between them.

This paper will present several methods of modelling semantic similarity between verbs.

We present two methods based on Latent Dirichlet Allocation, an algorithm commonly used for

topic modelling (Blei et al., 2003), and we compare results with several other methods including

Word2Vec, a word model by Google (Mikolov, Chen, Corrado, & Dean, 2013). We will test our

methods with a number of different features of linguistic context with special interest in the

advantages of using syntax versus lexical arguments. We test features from two different

parsing approaches – constituency parsing and dependency parsing – to test advantages of

each. We also present a novel method of evaluating verb similarity called a triad evaluation

task. All of the experiments presented in this paper will be compared to human judgements

taken from our evaluation task. All of our experiments are used to calculate similarities for a set

of 3,000 verbs in English.

2

Verb clustering based on semantic similarity has been shown in other research projects

to be useful for a wide range of Natural Language Processing tasks. These include semantic

parsing, word sense disambiguation, and semantic role labelling (Shi & Mihalcea, 2005; Dang,

2004; Swier & Stevenson, 2004; Zapirain et al., 2008). In addition to future applications of this

research, we hope this paper and future work of the Verbiverse project will motivate further

linguistic research of language acquisition and relationships between word context and

meaning. The results in this paper will show that our approach of LDA as a probabilistic

representation of verb context outperforms Word2Vec – the leading big-data driven approach

to word modelling – when evaluated against human judgement.

Section (2) will provide background and discuss previous research related to this project

including other verb classification algorithms. Section (3) will discuss linguistic context and its

relationship to meaning. Section (4) presents an abstract model for a formal theoretical

approach to lexical semantics. This model will be useful for building an understanding of lexical

semantics and how it may be approached from a computational perspective. Section (5) will

give an introduction to Latent Dirichlet Allocation (LDA) and our extension of it. Section (6) will

discuss details of the data used in this project including corpora and features. Section (7) will

present each of our experiments and results. Section (8) will give conclusions. Section (9) will

discuss future work.

2 Related Work

This project is part of a broad field of computational lexical semantics and more

specifically distributional semantics. Computational lexical semantics has the aim of developing

3

computational models of word meaning. This can include manually defining semantic

properties of words and semantic relationships between words (synonymy, hyponymy, etc.)

and it can also include any data representation of a word that is intended to be representative

of meaning. Distributional semantics is a subfield with the aim of modelling meaning using

features of context. Context in general is any information accompanying an utterance that

might be used to infer meaning. This can include physical surroundings, world knowledge,

prosody, etc. Linguistic context of a word or utterance refers specifically to surrounding words

and any relationships (syntactic or semantic) with those words.

A fundamental foundation of distributional semantics and to some fields of study within

language acquisition is that there is a strong relationship between a word’s linguistic context

and its meaning. This is expressed in the distributional hypothesis, attributed to linguists J. R.

Firth and Zellig Harris, which states that words with similar meaning will also have similar

context distributions (Harris, 1954). Firth states:

You shall know a word by the company it keeps. (1957)

Distributional semantics is traced back to the distributional hypothesis, that it is possible

to observe the frequencies of a word’s co-occurrences with different context features and

compare this distribution of context features to that of another word in order to compare their

meanings. Related ideas have been researched in the study of language acquisition. Specifically,

the syntactic context of a word has been shown to be useful in the acquisition of word meaning

in language acquisition scenarios. This concept called syntactic bootstrapping was first

researched by Brown (1957) and it has since been demonstrated that infants can use syntactic

properties such as verb transitivity (Naigles 1990) and noun count-ness and mass-ness

4

(Chierchia, 1994) to interpret the meanings of new words. Linguist Beth Levin goes further to

identify English verb classes - categories of verbs that share syntactic properties and also share

aspects of meaning (1993).

2.1 Constructing Verb Classes

Verb clustering (or verb classification) is the task of grouping verbs together into

semantically meaningful classes. Often this is done to reflect previously proposed classes like

Levin’s verb classes (1993). Verb clustering is a task within distributional semantics. This section

will discuss various methods of verb clustering that have been used, features that have been

used, and applications.

Verb classes are created to group verbs together into meaningful semantic groups. In

other words, the verbs in a verb class should all have in common some aspect of meaning. So

once a set of verb classes is identified, the verb class labels and other data can be used as

features that are closely related to meaning. These features can be applied in many NLP tasks

that rely on verb meaning. Verb clustering has been shown to be useful for a number of NLP

tasks including semantic parsing, word sense disambiguation, and semantic role labelling (Shi &

Mihalcea, 2005; Dang, 2004; Swier & Stevenson, 2004; Zapirain et al., 2008).

These applications have motivated the use of manually annotated verb classes and

relationships as well as generative algorithms for verb clustering. The concept of verb classes is

often traced back to the linguist Beth Levin (1993) who outlined 49 groups of verbs (and also

some subgroups) she observed as having unique and identifiable syntactic and semantic traits.

There are also verb lexicons such as WordNet and VerbNet that have been manually labelled to

5

characterize verbs into semantic groups and identify semantic relationships between verbs

(Miller, 1995; Kipper-Schuler, 2005). WordNet and VerbNet are designed to be accessible for

NLP tasks and used as features. Some verb clustering project set out to match and build on verb

classes of Levin, WorNet, and VerbNet (Kipper et al., 2006; Kipper et al., 2008). Supervised verb

classification algorithms use information from sources like WordNet, VerbNet and others like

FrameNet, and PropBank as features and use them to train a classifier such as support vector

machines or maximum entropy (Merlo & Stevenson, 2001; Sun et al., 2008; Li & Brew, 2008).

Some methods combine information from multiple sources (Schulte im Walde, 2006). Semi-

supervised algorithms combine supervised and unsupervised approaches using labels from

these sources as pivots to generate more features (Stevenson & Joanis, 2003).

Models of verb semantics and distributional semantics in general have been developed

with many different mathematical perspectives. Feature vector models rely on principles of

linear algebra and treat a verb as a vector in multi-dimensional space (Joanis et al., 2008). A

verb with F features is treated as a vector in RF with dimensionality equal to the number of

features. Verbs can be related to each other using various distance metrics such as cosine

similarity, Euclidean distance, or Pearson coefficient. The values in each feature vector can be

counts of co-occurrence or pointwise mutual information (pmi) which measures statistical

dependency between two words or features (Zhou et al., 2011).

���(�, �) =
�� �(�, �)
�(�)�(�)

Feature vector spaces used as models of distributional semantics are also often called

word spaces. Once a word space has been calculated, various clustering algorithms (k-means,

brown clustering, etc.) can be used to identify coherent groups within the space that are

6

intended to correspond with verb classes. Since the dimensionality of these spaces is equal to

the number of features, often high-dimensionality clustering algorithms are used (Sun &

Korhonen, 2009). Linear models of semantics have some natural benefits. For example, they

can easily and intuitively be projected into Euclidean space. Vectors can also be added to other

vectors or subtracted from other vectors for various kinds of analysis. Section (2.2) will give one

example of this for Word2Vec.

Probabilistic models of verb clustering rely on probabilistic properties of context

features for different verbs rather than vectors and linear metrics of distance (Reichart &

Korhonen, 2013; Merlo & Stevenson, 2001; Vlachos et al., 2009; Dinu & Lapata 2010).

Probabilistic models of verb clustering, just like linear models, can produce a space of verbs

with distances or similarities between them. Information theory provides several metrics for

distributional similarity including Kullback-Leibler divergence.

��(�||�) =��(�)
� �(�)�(�)
	

�

Other metrics like cosine similarity, Pearson correlation, and Jaccard similarity work as well. A

graphical model is the general term for a network of inter-dependent probabilistic variables

used to infer latent (non-observed) variables from observed ones. A graphical model can be

relatively simple or extremely complex. Latent Dirichlet Allocation (Blei et al., 2003) is one

example of a probabilistic graphical model the design for which will be outlined in section (5).

Graph-based verb clustering focusses on defining relationships between verbs and

treating the entire structure of verbs as a graph (Sun and Korhonen, 2011; Matsuo et al., 2006).

7

Once this structure is in place, groups and other properties can be defined in terms of various

properties of graphs.

Much previous work in verb clustering has supported the use of syntactic features and

acquired subcategorization frames (Sun et al., 2008). Other work has supported the use of

lexical features like selectional preference (Sun & Korhonen, 2009) as well as adjunct

information (Sun et al., 2008; Joanis et al., 2008), arbitrary word co-occurrence within some

window (Li and Brew, 2008), and even tense (Li and Brew, 2008).

2.2 Word2Vec

One research development by a Google project is a program called Word2Vec (Mikolov,

Chen, Corrado, & Dean, 2013). Word2Vec can be considered an innovation in distributional

semantics in that its purpose is to produce a vector of informative features for each word.

Word2Vec is a linear approach to word representation that utilizes deep learning to process

massive amounts of non-structured word co-occurrence data into a concise useful feature

vector. Word2Vec gets context information from skip-grams - frequencies of word co-

occurrences that are allowed to “skip” words in the middle strictly based on words as they

appear in linear order. This produces a massive amount of noisy data, but taken from a source

with billions of words, deep learning can process this data to produce informative features.

Word2Vec feature vectors have been shown to have interesting properties corresponding to

aspects of word meaning. For example, vectors for words can be added or subtracted to

approximate other words. It’s been shown that the vectors for KING minus a vector for MAN

8

plus the vector for WOMAN gives a vector very close to the vector for QUEEN (Mikolov, Yih, &

Zweig, 2013).

KING – MAN + WOMAN = QUEEN

This is a result of the fact that the features in these feature vectors represent aspects of

the contexts of those words. KING and QUEEN share most aspects of context but they differ in

the same way that MAN and WOMAN differ. Since the data is modelled linearly, these

subsections of context features can be removed or added with simple arithmetic like that

above. The appeal of Word2Vec and its approach big data refined with deep learning is that it

requires very little understanding of the features being used – in other words the mechanisms

of how language works – in order to function. The limits and usefulness of this approach still

needs to be thoroughly tested.

2.3 Comparison to Our Approach

This paper presents a probabilistic model of verbs using Latent Dirichlet Allocation (LDA)

to identify latent verb categories based on contextual features of syntactic structure and lexical

arguments. We calculate similarities between verbs using each verb’s distribution across a set

of topics and Pearson correlation � between distributions (Pearson performed best

experimentally). Pearson correlation for a sample is defined as follows:

� = ∑ (�� − �)(�� − �)����
�∑ (�� − �)����� �∑ (�� − �)�����

(where � = �
�∑ ������ and � = �

�∑ ������)

9

We will build on previous research into the best linguistic features to use in verb

clustering. This paper will argue that our method of verb similarity using LDA intuitively and

accurately fits with the structure of verbs, verb classes, and verb meaning. This structure will be

described more thoroughly in sections (4) and (5.2). The results from this paper will show that

our method of verb clustering with the right features of linguistic context surpasses Word2Vec’s

approach of data-driven statistical word modelling when weighed against human data. This

paper also presents a new method of evaluating verb similarities using human judgment that

may be used in future research in this field.

3 Linguistic Context & Meaning

This section is meant to build an understanding of the relationship between context and

meaning. This section will build on and explore the idea presented in the distributional

hypothesis that words with similar meanings also have similar context distributions. Section

(3.1) will present the idea of a meaning acquisition process which will demonstrate the

importance of this connection between context and meaning and lay out some of the problems

that distributional semantics has the aim of addressing. The rest of this section will discuss

specific features of linguistic context and how they might inform aspects of meaning both in a

computational model and also theoretically as a process of language acquisition. There are

several types of linguistic context discussed in this section for overview. The work in this paper

focuses on syntax and lexical arguments.

10

3.1 Meaning Acquisition Process

The relationship between meaning and context is closely related to a concept that I will call

a meaning acquisition process. Imagine that you are hearing or reading a sentence in which

there is a single word you have never encountered before. Perhaps for example this sentence:

(1) John treibened his car from New York to Los Angeles.

Given this sentence by itself, without any previous knowledge of the word treibened, the word

seems to include some meaning related to “motion.” The word treibened has surrounding

words that seem to provide information of possible meanings of this word. You might replace

treibened with words like drove, moved, or sent. Notice that words with this related aspect of

meaning seem most plausible in this position.

This scenario of context-based word learning represents a major part of both language

acquisition and word learning in general. I will use the term meaning acquisition process to

refer to this process of inferring the meaning of some word or utterance from context. The

word context can refer to linguistic context – the context of surrounding words or sentences –

or extra-linguistic context such as prosody, body language, and physical context. Most word

learning scenarios rely on multiple different aspects of context. A toddler learning the word

clock will usually rely on physical context (a clock being physically present), body language (a

parent pointing at the clock while saying clock), and possibly any other information available to

11

them. Acquisition of the word clock presents a very simple case of a meaning acquisition

process. But some words, especially words with abstract meanings, require more complex

mechanisms of acquisition.

Lexical Semantics has the aim of bettering our understanding of the structure of

meaning (how meaning is represented in the brain or how we might represent it in a

computer), the compositionality of meaning (how different aspects of meaning come together

and are related to each other), and the acquisition of meaning. The meaning acquisition process

is thus a core part of lexical semantics as well as lexical semantics. Distributional semantics is

focused on the use of linguistic context to represent meaning, and specifically how this process

might be modelled computationally. So distributional semantics can be thought of as an

attempt to model the meaning acquisition process using a large set of data. There is a great

incentive for us to further understand particular aspects of context and the roles they play in

the acquisition of meaning. A feature of context that proves to be informative of meaning may

give insight into mechanisms of language acquisition and provide a resource for better models

of language in Natural Language Processing tasks.

(treibened is taken from the German word treiben ‘to drive’ with the English suffix –ed

mercilessly attached).

3.2 Syntax

For a given verb, there are specific syntactic structures associated with it. Simple examples

include transitive and intransitive verbs. Another common structure used in verbs such as

email, write, send, and return can be seen in the following figures:

12

Figure 1. Gave Constituency Tree

In the constituency tree above, the verb give takes three arguments – a subject, a direct object,

and an indirect object. This is a common structure for certain English verbs, and when these

verbs are used with the above structure, they all connote a particular aspect of meaning of

“transfer from one person to another.” Here is a dependency tree representing the same

sentence:

13

Figure 2. Gave Dependency Tree

The use of syntactic structure to identify meaning, called syntactic bootstrapping, has

been researched in the fields of psychology and language acquisition. Syntactic bootstrapping

was first researched by Brown (1957) and since then it has been demonstrated that toddlers

can use syntactic properties such as verb transitivity (Naigles, 1990) and noun count-ness and

mass-ness (Soja, 1992) to interpret the meanings of new words. In linguistics, the syntactic

constraints of particular verbs are called c-selection (short for category selection). So we might

think of a verb as having a tree structure sticking out of it. The term subcategorization frame is

used in distributional semantics and linguistics to refer to the syntactic structure around the

verb. In the field of computational semantics, the usefulness of syntactic features for verb

clustering and other tasks has been researched and supported by several projects (Sun &

Korhonen, 2009; Reichart & Korhonen, 2013). Syntactic features of verbs often come in

patterns where a group of verbs will use the same syntactic structure and also have similar

14

meaning. Because of this, Levin (1993) was able to define very precise verb classes grouped by

properties of syntax.

3.3 Lexical Arguments

Another important feature of linguistic context is the lexical arguments taken by each

verb. The verb eat generally takes a subject that is of some category person (or animate) and

takes a direct object that is of the category food. A verb can be thought to define a relationship

between a set of arguments. So lexical arguments should theoretically be crucial for inferring

verb meaning. In linguistics, the constraints of a verb on the semantic type of arguments they

take is called s-selection (short for semantic selection), also called selectional preference. Both

of these terms often refer specifically to noun arguments, which is how they will be used in this

paper.

Capturing these features requires a little more work than with syntactic features.

When extracting features, we only consider the lemmatized head of the noun phrase. Doing

this makes our features much more generalized. Dependency parsing for syntactic features

makes this part easy. Keeping only the head noun allows us to throw out irrelevant modifiers

and other non-useful information and just keep the most informative word. Keeping the entire

noun phrase would make the probability of any feature appearing more than once extremely

low. The head noun of the noun phrase allows us to capture the essential semantic type of the

argument (except in some cases like “piece of cake”). Some verb clustering methods have

grouped selectional preferences into semantic categories first, with the use of WordNet or by

noun clustering for example, before using them as features to cluster verbs (Sun & Korhonen,

15

2009; Sun et al., 2013). Part of our goals of future work is to improve on research in selectional

preferences, but noun clustering is not a focus of this paper.

4 Modelling Lexical Semantics

In the task of computational lexical semantics, there is a strong motivation to build a

more thorough understanding of how word meaning works. Ideally, we would like some way of

talking about meaning and semantic relationships that is relevant from a linguistic perspective

but is also attainable from a computational perspective. In a computational model of lexical

semantics, what is a sense or a category? How can a computer identify hyponymy or polysemy?

And how do we identify and understand meaning? Having a way to computationally identify

meaning is the ultimate goal of computational lexical semantics. So we have a strong

motivation to create and lay out formal ways of talking about these concepts that are relevant

both linguistically and computationally.

This section presents a formal abstract model of lexical semantics. This model will be

useful for discussing and understanding linguistic topics of lexical semantics from a

computational perspective based on some corpus. I will refer to this model as an instance

space. An instance space is the set of all word instances (of a particular part of speech) from an

entire corpus. In other words, every time the verb eat is used in a corpus it is a new instance.

An instance space is meant to be the space of words from every utterance in a corpus, and so

its basic unit is the word instance rather than words which will be considered a broader

category. We might even think about the infinite or continuous instance space of all utterances

in a language. For convenience and simplicity, we will consider only the instance space of a

16

particular part of speech. Specifically, I will discuss the verb instance space and the noun

instance space which are two examples.

The instance space model is meant to give us a theoretical approach to how we may

think about word meaning and many tasks in lexical semantics from a computational

perspective. Meaning is a latent (non-observable) trait of language. So many of the concepts

introduced in this section are unsolved problems in Natural Language Processing. But this

section will present a broad view of computational lexical semantics and many tasks in it, and it

will also present the approach used in this paper for identifying verb clusters as a subtask of this

larger schema.

4.1 The Instance Space

An instance space is made up of instances, words, senses, and categories. This section will

define these four terms according to the model.

Figure 3. Instance Space

17

The base unit of an instance space is the instance. So a verb space is made up of verb

instances and a noun space is made up of noun instances. An instance is a single usage of a

word in context. An instance can be defined formally as a lemma L, a part of speech P, a context

C, and a meaning M, making it a 4-tuple.

� = (�, �, ,�)
We might also include other features such morphological form or tense, but for simplicity sake,

I will leave these out in this model.

 A lemma is the uninflected form of a word (eat is the lemma of eating, ate, or eaten).

For example:

�	 = 	“"#$”
A part of speech is the syntactic category of an instance. An instance space is categorized by a

single part of speech, so all the instance must be of that part of speech. This is a constraint of

the model used primarily because different parts of speech (noun, verb) have completely

different types of contextual features that can’t be easily compared. For example:

	�	 = 	“&"�'”
 A context is all the contextual information of an instance – all of the information

associated with an instance that can be used to infer meaning. It may be defined as a set of

context features each of which represents one piece of information of the instance’s context.

 	 = 	 {)�,)�,)*, … }
 A meaning is the entire meaning conveyed by an instance in context – all the

information intentionally conveyed by the instance in context. It may be defined as a set of

18

meaning features. Verbs like swim and fly might share a meaning feature for “motion” but

differ in medium of motion “by water” or “by air.”

�	 = 	 {-�, -�, -*, … }
Meaning is latent or non-observable which makes identifying it difficult to say the least. Solving

this problem completely would theoretically also allow us to solve most tasks in Natural

Language Processing. Meaning will be discussed much more in depth in sections (4.2) and (4.3).

 Now that we have instance defined, I’ll discuss larger structures within the instance

space. All of the structures in this section are defined as sets of instances and subsets of the

instance space.

 A word, as I’ll define it in this model, is a set of all instances in an instance space that

share some lemma.

./ 	= 	 {� ∈ �12#)"	|	�	 = 	
}
Words in an instance space are disjoint and jointly exhaustive, simply meaning that every

instance is contained in exactly one word. Words are observable unlike other structures I will

discuss. A consequence of defining a word in this way is that this model does not distinguish

homonyms as separate words. Instead these will be treated as different senses of the same

word.

 A sense is a set of all instances in an instance space that have the same lemma and

share some aspect of meaning.

3/,4 =	 {	� ∈ �12#)"	|	�	 = 	
,- ⊆ �}

A sense is a subset of some word where all instances share some set of meaning features.

Senses do not necessarily have to be disjoint and can overlap. Since senses are defined in terms

19

of meaning features they are latent (although word sense disambiguation is a field dedicated to

finding senses).

 A category is a set of all instances in an instance space that share some aspect of

meaning.

 4 	= 	 {	� ∈ �12#)"	|	- ⊆ �	}
The words swim and fly might both be in the category of motion verbs. Given this definition, it

seems that senses and categories are extremely similar. A sense is simply the combined

restrictions of a word and a category. In fact, a sense is an intersection between a word and a

category.

3/,4 =	./ 	∩ 	 4

This tells us that identifying senses and identifying categories are very similar problems. So

unsupervised sense disambiguation might be reduced to unsupervised word categorization and

vice versa.

4.2 Understanding Meaning

 In this section, I’ll discuss in detail how we can conceptualize meaning in the instance

space model. As meaning is not directly observable, this section is written to outline a

theoretical approach to modelling and understanding lexical meaning. The next section

presents a more practical approach that is built on theory developed in this section. Meaning as

a property of words is a latent (non-observable) trait. In other words, a computer has no way of

identifying the meaning of a word or sentence just by reading. Solutions to this problem can

20

rely on supervised learning based on some annotated model of meaning or can approximate

meaning using context and relying on the strong relationship between context and meaning.

This project is built on the second approach. This section presents a theoretical structural

understanding of meaning and properties derived from meaning to better understand what we

are modelling. The next section will discuss how we approximate meaning and its derived

properties using context.

 In the last section, I defined the meaning of a word as a set of meaning features

(�	 = 	 {-�, -�, -*, … }). This actually makes a few assumptions about the nature of meaning.

1) This model assumes that meaning is compositional – can be broken into smaller

meanings.

2) This model assumes that discrete units of meaning exists, units that can’t be broken

down any further. These are what I've called meaning features.

 In terms of the way language is represented in the human brain, either of these

hypotheses might be true or might not. Usage based grammar is a linguistic theory famous for

hypothesizing that meaning is not separable into autonomous parts and actually exists as one

cognitive process (Langacker, 1987). But modelling meaning in this way is very convenient for a

theoretical model for two reasons. First, this allows us to relate word meanings in more than

one way. Instead of a single number representing the similarity, we could identify that a word is

similar to one word by one sub-meaning and to another word by another sub-meaning. So

swim might be related to walk based on motion and float based on the domain water. This is

something that for NLP applications, we would absolutely like to be able to do and something

humans seem to be quite good at, so it makes sense to design the model this way. We can

21

relate this to theories of de-compositionality of meaning that have been proposed by several

linguists studying semantics (Jackendoff, 1990; Katz & Fodor, 1963). Second, modelling meaning

in this way could allow us to identify what the discrete units of meaning are. Note that this does

not necessarily assume a finite set of meaning features in a language. While a corpus is by

nature finite and thus will have a finite (but very large) set of meaning features, language in

general is an open system and does not necessarily have to be limited in meaning in any way.

4.3 Properties of Words, Senses, and Categories

Next, allow me to discuss the nature of senses and categories and the relationships

between them. Note that a sense is simply a special subset of a category and all the conclusions

made about senses in this section apply equally well to categories in general. So how do we

divide words into senses? Based on the definition above, a sense can be pivoted on any

meaning feature or set of meaning features, in other words any aspect of meaning. So unlike

words, senses do not have to be disjoint because there can always be a set of instances that

meet the conditions of two different senses. Senses can also be hierarchical since within one

sense there can always be a more specific sense with the same conditions and additional ones.

There are several properties that are very useful for talking about subsets of an instance

space in general (words, senses, or categories). The size or magnitude of a subset is the number

of instances it contains as a fraction of the total space. If a word makes up 10% of the total

instances in a space, then its magnitude is 0.1. This provides a convenient measure of a word’s

(or sense’s or category’s) productivity – how much that word is used relative to general

language use.

22

Another characteristic important for this discussion is specificity. Specificity is one way

of measuring the amount meaning a group of instances contains. Specificity is the number of

meaning features held in common by an entire subset. For a sense or category, this will include

the meaning condition of that set but might also include other features that are possibly

entailed by that meaning. For a word, this is the meaning entailed by the word – held in

common by all senses and instances within the word. A word with several completely unrelated

senses will have a specificity of 0, which tells us that nothing can be said definitively about the

meaning of that word outside of context. Specificity gives a simple, but somewhat unhelpful,

measure of how much meaning a group of instances contains.

To define meaning more precisely, we can use a probabilistic distribution. Each subset

will be characterized by a meaning distribution Ω where each category is a combination of

meaning features. The distribution will return the proportionality of instances within the set

that have exactly that combination of meaning features.

78	 	 	= 	�(�|.)

This gives us a model for representing the meaning of a word or sense or category including all

of their variations in meaning. It also sets up convenient ways of comparing word meanings for

similarity which I will discuss below. The meaning distribution of a word (7) can be thought of

as the word level variant of the meaning of an instance (�). Whereas specificity measures the

amount of meaning necessarily entailed by the word, a meaning distribution contains

information on all the meanings of all the instances within the word. So while specificity is

greater for instances than for words, a meaning distribution contains more information the

greater the size of the magnitude.

23

There are also several linguistic categorizations of meaning and meaning relationships

for which we would like formal definitions in this model. We could measure the synonymy of

two instances as the overlap in meaning between the instances.

3�����-�	 = 	 |�� ∩��|
We can define the synonymy between two words (or senses or categories) as some metric of

distributional similarity between the meaning distributions of words.

3�����-�	 = 	1�-(7(�), 7(�))
The metric of similarity can be flexible. Any measure of similarity between two distributions

could work, and there are many different metrics of similarity provided by information theory,

statistics, and linear algebra (Jaccard, JS-divergense, cosine similarity, etc.). Note that we might

use a similar metric with some asymmetrical measure of similarity (such as KL-divergence) to

define hypernymy, where a word is a hypernym of another word if its meaning is a superset of

another word’s meaning.

 One last trait that would be very convenient to measure would be polysemy. Light

words such as do, have, and make carry little semantic content by themselves and can be used

in a wide variety of contexts to mean a wide variety of things. These words have a high rating of

polysemy. So measures of polysemy provide us with a metric for the number of senses a word

might have. We can define polysemy in terms of entropy over meaning features.

9(:) = −��(��) log �(��)
	

�
	

24

The expression �(-�) indicates the probability that an instance chosen at random contains the

meaning feature -�. �is a list of all possible meaning features in some group of instances. We

then get the following equation:

��
�1"-� = −��(-�) log �(-�)
	|8|

�
	

A high entropy indicates that the meaning distribution is spread over a large number of possible

meanings, so the word itself entails very little information. In contrast, a low entropy would

indicate that a small number of meanings are most likely and so the word itself specifies more

information.

 While the terms and definitions in this section are primarily theoretical because of the

abstract nature of meaning, the next section will explore more concrete ways of approximating

these metrics using context.

4.4 Context to Meaning

 This section discusses the idea of approximating meaning using context within the

instance space model. Section (5.2) will give a more detailed discussion of how we accomplish

this with the LDA-based models in this paper. Meaning, senses, and categories are all non-

observable properties of language. If there were a computational way of accessing aspects of

meaning directly from text, this would solve most of the problems in NLP and much of

semantics as a linguistic study. But much of the information of meaning can be approximated

by substituting for context. Given the strong relationship between word meaning and word

25

context, much of the probabilistic structure of word meaning is, theoretically, very similar to

the probabilistic structure of context. So we can assign a distribution Λ as follows:

Λ?	 	 	= 	�(|.)

We can then use Λ as an approximation for Ω and substitute this new distribution in the metrics

noted above such as polysemy and synonymy. Similarly, categories and senses could be defined

in terms of context features instead of meaning features.

 For the work in this paper, we treat each verb as a collection of context features which

are modelled probabilistically but not as a single distribution. Instead, we hypothesize latent

categories of context features and infer these using LDA as a model. This allows us to treat each

verb as a composition of categories of features. These categories can be thought of as

analogous to the term category that earlier we defined in terms of meaning. The next section

will explain LDA and how we use it to model verbs.

5 Latent Dirichlet Allocation (Beyond Topic

Modelling)

In this paper we present two main methods for verb similarity and clustering along with

several other previously used methods for comparison. The first method we present in this

paper is the use of Latent Dirichlet Allocation (LDA) to identify thematic categories of verb

context features, to group verbs into soft clusters (topics), and to define similarities between

verbs based on vectors taken from verb proportionality in each topic. The second method

presented in this paper is an extension of LDA that we call Recursive LDA which is the use of

LDA to categorize verbs just as described above, but done iteratively in a search across multiple

26

topic splits to develop hierarchical categories of features. This section will outline both of these

algorithms and discuss motivations given the characteristics of verbs and context that we are

attempting to model. This section will also relate these algorithms to the instance space model

discussed in the last section. For this project, we used an implementation of LDA in the MALLET

library written by Andrew McCallum and David Mimno.

5.1 A Probabilistic Graphical Model of Documents

and Topics

Latent Dirichlet Allocation is a hierarchical graphical model designed for inferring latent

thematic categories called topics (Blei et al., 2003). LDA’s traditional use is topic modelling but

it presents a framework that is useful for identifying latent structure in many domains and

applications. LDA has been modified to incorporate syntactic features (Boyd-Graber & Blei,

2008; Griffiths et al., 2004), it has been used to model selectional preferences (Ritter et al.,

2010), and it has been modified to work as a language model (Wallach, 2008). The LDA model

starts with three major components. LDA models a set of documents which is a collection of

words or features. Features are like word instances in that two features can have the same

name but are still considered separate features. Features are observed variables, but each

feature is assumed to have some latent topic assignment. Topics are hidden thematic

categories of related features. Each feature is assigned one topic. A document then has some

percentage of each topic based on the number of features with that topic assignment. The

function of LDA is to identify these topic assignments, to calculate the proportionality of topics

in each document, and to calculate how much a given feature name is associated with a given

27

topic. In topic modelling, a document is written text, features are words in each document, and

topics are themes of the documents. In our model, we will represent each verb as a document

containing context features instead of words. This will be described in more detail in section

(5.2).

LDA models all of this information using a number of probability distributions with

dependencies between, and then it uses some method of Bayesian inference such as Gibbs

sampling or variational Bayesian methods to estimate the values of these distributions. This

model will be explained thoroughly in this section.

I will discuss LDA’s name after I have explained LDA’s model when it will make more

sense. Here is the diagram of LDA as a graphical model:

Figure 4. LDA Graphical Model

I will discuss each of these variables. Bear in mind that these terms come from topic modelling

but they can be generalized to any of the many applications of LDA.

D	–	Number	of	documents	
K	–	Number	of	topics	
V	–	Number	of	vocabulary	terms	

28

N	–	Length	of	a	given	document	in	words	
Lowercase letters represent indices in these ranges (d is the index for a document in the range

1	…	D). A plate in a graphical model designated by some number X	indicates that there are X	

copies of all variables inside that plate. So the variable designated K	represents the K	topics

with K	copies of the variable ϕk.	The	D	plate	represents	D	documents	and	the	N	plate	

represents	a	single	document	with	N	positions.	Arrows	represent	dependencies.
At the center of the model is the variable Wd,n	which represents the nth word in the dth

document.	Wd,n	is the only observable variable in the model.	Wd,n	is an integer value between 1

and	V.	Wd,n	represents a word, but it is identified by a number that is an index in the list of

vocabulary.

.`,� = & ∈ [1, b]	

The variable Zd,n	is the topic assignment of the nth word in the dth document.	Zd,n	has

an integer value between 1 and K, which is an index to the topic of assigned to Wd,n.	

e`,� = f ∈ [1, g]	

Each document is composed of some proportionality of each topic. We can model this with a

latent probability distribution θd. The	variable	θd contains the document-topic

proportionalities. It is a list of D distributions over K. θd for some document d is a distribution of

topics. θd,k for some document d and some topic k returns the proportion of document d that is

topic k. (Some document might be 95% about quantum physics and only 2% percent about

baseball). The following equation formalizes the dependency of Zd,n	on θd showing that Zd,n	is

sampled from θd:

i`,jk,l = �(e`,�|θ`)

29

Each	topic	has	some	probability	of	producing	each	word.	ϕk contains the topic-word

probabilities. ϕk is a list of K distributions over V. ϕk for some topic k is a probability

distribution of all vocabulary terms. ϕk,v for some topic k and some word v returns the

probability of topic k producing word v. (The topic baseball will be much more likely to produce

words like homerun and inning than the topic quantum physics). A given topic Zd,n is more likely

to produce certain words than others. These likelihoods are specified by ϕk. So Wd,n	is

dependent on both Zd,n and ϕk. The following equation formalizes this dependency:

njk,l,ok,l = �(.`,�|e`,�, np)

Both θd and ϕk are distributions over a set of mutually exclusive categories. So it makes

sense to model these as categorical distributions with Zd,n	and Wd,n	being sampled from them:

e`,�~	 #$"����)#
�(i`)

.`,�~	 #$"����)#
r(njk,l)

 Of course, these distributions are latent. We have to have some way of inferring them

using the data we have. The solution to this is to sample θd and ϕk each from another

distribution. To do this, we will use Dirichlet distributions:

s(��, … , �p; u�, … , up) =
v(∑ u�����)
∏ v(u�)����

x��yz{�
�

���

The Dirichlet distribution is the conjugate prior of categorical distributions. Given two

distributions X and Y, X is a conjugate prior of Y if within the definition of Bayes Rule

�(u|i) = �(i|u)�(u)
�(i)

X can be used as a prior p(α) that when multiplied by the likelihood function p(θ|α) produces Y

which is a posterior P(θ|α) in the same family as A. This mathematical property makes it

30

convenient to use conjugate priors to model other distributions. A Dirichlet distribution can

produce the probability of a categorical distribution having a given set of probabilities. A

Dirichlet is like a probability distribution of distributions.

 We can sample θd and ϕk from two Dirichlet distributions parameterized by variables α

and β (each of which is a vector of values):

i`~	���)ℎ
"$�(u)
np~	���)ℎ
"$r(~)

The variables α and β control the Dirichlet distributions’ shapes, affecting the probability of

particular sets of probabilities appearing in θd and ϕk. You can think of the Dirichlet

distributions as our hypothesis bias when approaching problems using LDA. We can choose α

and β assign certain arrangements of probabilities to be more or less likely, and then we infer

other distributions from data and the assigned structure of the model. The advantage of

choosing α and β is that we can make distributions sparse. For example, we might like each

document to have only one major topic most of the time.

 So LDA’s name, Latent Dirichlet Allocation, means allocating Dirichlet distributions in

order to infer latent distributions.

 Now the entire model is set up. The last step is to use some algorithm of Bayesian

inference to estimate the distributions we want to find. A common example of a Bayesian

inference algorithm used for LDA is Gibbs sampling, also called a Monte Carlo Markov Chain

(MCMC). In Gibbs sampling, one variable is estimated at a time in terms of the current values of

all the other variables. This is done iteratively in a random process that eventually produces

31

approximately correct values for variables being estimated. Collapsed Gibbs sampling, a faster

version of Gibbs sampling, for LDA gives the following equation:

��e`,� = f�e({`�),.`,� = &,.({`�), u� ∝ (#ep`,({`�) + up)
#.�

p,({`�) + ~�
#.	p +∑ ~�r��� − 1

(where # indicates counts. Ex. #.	 p is the number of words assigned to topic k)

We can use the equation above over a large set of data to estimate Zd,n	and	use	values	to	

estimate	the	distributions	θd and ϕk.

5.2 LDA with Verbs and Context

 Section (5.1) outlined the general model of Latent Dirichlet Allocation. This section will

discuss how we used LDA in this paper to model verb context and verb similarities.

 We model verbs as documents and context features as words based on the model

described above. We treat each verb as a collection of context features. We choose some

number of topics to test (these can be tested experimentally). The topics are categories of

context features. LDA assigns words that often appear together to the same topics. So using

this method, we can group context features together into coherent categories of related

features. In other words, features that commonly appear in the same verbs are grouped

together more commonly. These categories can be said to correlate with verb classes. Since

each verb is composed of multiple topics, they may instead be the components that determine

verb classes. Upon observation of the groups formed, this second conclusion seems more likely.

 The distribution ϕk represents the different topics or categories and their likelihood to

produce any given context feature. The distribution θd represents all of the verbs and what

proportionality of each verb is assigned to each topic. As an example, when LDA is run on

32

syntactic features split into three major groups – transitive, intransitive, and clause

complementizing syntactic features. Each verb then is composed of some proportionality of

each group. We can treat each verbs topic proportions as a vector with length equal to the

number of topics. We calculate similarities between verbs using Pearson correlation:

� = ∑ (�� − �)(�� − �)����
�∑ (�� − �)����� �∑ (�� − �)�����

(where � = �
�∑ ������ and � = �

�∑ ������)

 A number of metrics for similarity can be used in the same way. Pearson performed the

best for us experimentally. Once there is a measure of similarity for each pair of verbs, we can

produce a verb space. Appendix B contains a few example pictures of this space projected into

3 dimensional space.

5.3 Recursive LDA

As an extension of LDA, we also test a model in which LDA is run iteratively, first on all

verbs and then within each topic, to produce a hierarchical structure of verb classes. This could

be compared to Hierarchical LDA (hLDA), but is performed in a tree search instead of a

distributional process (Blei et al., 2010). A fundamental drawback of LDA is that the number of

topics must be chosen in advance. Algorithms that attempt to get around this obstacle are

called non-parametric approaches to LDA. Another limitation of LDA is that it assumes a finite

set of separate unrelated topics. However, many descriptions of verb classes including Levin’s

(1993) involve a tree-like structure, where small groups that are related to each other form

larger groups.

33

With this in mind, we hypothesize that the total verb space can be divided into a small

number of categories and within each semantic category, verbs relate to each other forming

more specific categories. To model this, we run LDA on all verbs with 2 topics. We then divide

the verbs into 2 sets where each verb is assigned to the topic with the highest proportionality.

Then within each new set of verbs each of which represents a category, we run LDA again using

the same features on the smaller set of verbs. This allows us to model smaller categories based

on relationships between verbs in a single category. In addition to running LDA with 2 topics,

which produces the general tree structure, we also at each partition run LDA with 4 topics.

These are used as substitutes of the 2 topic solutions when computing similarity to counter

problems of data sparsity. We do this iteratively to produce a tree-like structure of verb-

categories. We can model this procedure with the following algorithm.

��(b"�'1, �ℎ"$#, g):
 (�ℎ�1	2����#-	$#f"1	#1	��2�$:
 b"�'1	– 	#	
�1$	�s)�

")$���1	�s	s"#$��"1

 �ℎ"$#	– 	-#$���	�s	&"�'	&	'�	$�2�)	f, &"�' − $�2�)	2��2��$���1	i` 	$�	'"	s�

"�	��	'�	��	
 g	– 	��-'"�	�s	$�2�)1

 �ℎ"	2����#-	�1"1	��''1	1#-2
���	$�	#22����-#$"	i`

 '�	�$"�#$�&"
�	1#-2
���	s"#$��"1

 #��	�"$���1	&#
�"1	��	$ℎ"	&#��#'
"	�ℎ"$#)

�")��1�&"_��(b"�'1, �ℎ"$#, �$"�#$���):
 (2"�s��-	�")��1�&"	��	��$�
	�"1��"�	��-'"�

 �s	�$"�#$���1	�)
 �s	�$"�#$���	 > 	�:
 �"$���

 "��	�s

34

 (2"�s��-	��	��$ℎ	4	$�2�)1	#��	1#&"	��$2�$)
 ��(b"�'1, �ℎ"$#, 4)
 ���$"(�ℎ"$#)
 (2"�s��-	��	��$ℎ	2	$�2�)1	#��	1#&"	��$2�$)
 ��(b"�'1, �ℎ"$#, 2)
 ���$"(�ℎ"$#)
 (�1"	$�2�)	12
�$	$�	��&��"	&"�'1	#��	���	�")��1�&"	��	#�#��	��	"#)ℎ

 �"�	1"$	�s	&"�'1)	
 b"�'1’	 = 	∅

 b"�'1′′	 = 	∅

 s��	&	��	|b"�'1|:
 �s	�ℎ"$#	[&][0] 	>= 	0.5:
 b"�'1’	 = 	b"�'1’	 ∪ 	b"�'1[&]
 "
1":
 b"�'1′′	 = 	b"�'1′′	 ∪ 	b"�'1[&]
 "��	�s

 "��	s��

 �")��1�&"_��(b"�'1’, �ℎ"$#, �$"�#$��� + 1)
 �")��1�&"_��(b"�'1’, �ℎ"$#, �$"�#$��� + 1)

To compute a similarity matrix, we can add similarities from each topic from each level

in the tree. The results for Recursive LDA given in this paper are based on constituency syntactic

features.

6 Methodology

This section will outline our methods of acquiring and processing data. It will discuss the

corpus used in this project, how we obtained the list of 3,000 verbs to model, our two methods

35

of parsing sentences for syntactic features, and what types of features are used in our

experiments.

6.1 Corpus

New York Times

The Corpus used in this project is a resource from New York Times. It consists of twenty

years of New York Times articles from 1987 to 2007. This corpus includes over a million articles

including news articles, stock summaries, etc.

Words: 853,753,166

Sentences: 42,833,581

(We have a second larger corpus of Wikipedia articles with 60,000,000 sentences that will be

used in future research.)

6.2 List of Verb

The experiments in this paper are based on a list of 3,000 English verbs. The ideal is to

have a list of verbs that make up the majority of verb use in English. Parsing our corpus and

compiling a list of every word labeled as a verb, produces a list of about 50,000 “verbs”.

Actually, most of these are errors and noise – words that were incorrectly labeled by the parser

because they did not fit well with any particular part of speech. For example, one early decision

36

in our process of choosing verbs was to eliminate words that begin with “#” because a large

number of interjective hashtags were showing up in our list of verbs.

To refine this list to 3,000 we place a number of constrains on the verbs to use. The first

step in this process is that verbs are lemmatized (ate and eaten are changed to eat). We only

consider verb strings that start with an alphabetic character followed by one or more

alphabetic characters and hyphens (“[A-Za-z][A-Za-z]+”). So verb strings must be at least two

characters long, start with a letter, and consist completely of letters and hyphens.

The main constraint that we place on verbs is to include only the top 99% of verb mass.

We include the most frequent verbs that make up 99% of verb use. The majority of verbs in the

list of 50,000 are infrequent enough that they make up only 1% of verb use. The other 99% is

made up of a smaller number of about 3,049 verbs. After this step, a small number of verbs

were removed by hand to fix small labeling errors. The most important change is that the verb

be was removed because this single verb requires a massive amount of memory to process and

analyze. The complete list of verbs can be found in Appendix A.

6.3 Parsing Approaches

Given the need for syntactic information as context features, this project relies on two

different syntactic parsers. Experiments (1), (2), and (3) in this paper use constituency parsing

and experiments (4), (5), and (6) use dependency parsing for syntactic features of context. In

this paper, we will compare results from data from each parser to see if either approach is

more informative.

37

Constituency syntactic trees come from Phrase Structure Grammar, a theory of syntax

developed by Noam Chomsky (1957). Our constituency parser is provided by Stanford. We use

the Factored English Parser, which is a lexicalized syntactic parser (Klein & Manning, 2003).

Figure 5. Constituency tree

 Phrase structure grammar and constituency parsing have the intention of breaking

sentences into hierarchical autonomously functioning phrases called constituents. Each non-

terminal in the tree is a phrase node representing the constituent of all the words that are

descendants of that node. Constituency trees identify different types of phrases with different

identifiers and include rules of how different types of phrases can combine with each other.

Constituency trees are most oriented to describe the formation of new sentences and rules

thereof. Phrase structure grammar has been able to explain many phenomena of syntax using

constituency tree models such as X-bar and others.

 Dependency syntactic trees come from dependency grammar theories of syntactic

structure. Dependency grammar is less concerned with the formation of phrases and instead is

38

concerned with syntactic relationships between words. In dependency grammar, there are no

phrase nodes. All the nodes in a dependency tree are words or the root node. Each word may

have dependents, which are syntactic arguments of that word represented as children. A

relation between a word and its dependents is named by the type of syntactic relationship. Our

dependency parser is provided by ClearNLP (Choi & McCallum, 2013).

Figure 6. Dependency Tree

Dependency grammar allows for specific naming of relationships between words which opens

the possibility for very specifically identified relationships. For many purposes in NLP, this

allows for very specific very easily accessible data compared to constituency parsing.

 While constituency trees and dependency trees are each more expressive in the

characteristic of language syntax that they are designed to convey, there is not much evidence

for which structure is a more accurate representation of the mechanisms of natural language

syntax in the human brain. The results in this paper comparing constituency and dependency

trees might indicate that one structure is more akin to a human meaning acquisition process in

39

terms of the type of syntactic information used. It might also be indicative of a better or more

efficient way of obtaining syntactic features for NLP applications like verb clustering.

6.4 Features

Experiments in this paper compare three different types of features. (1) Purely syntactic

features, (2) noun arguments including prepositions and markers for subject, direct object, and

indirect object, and (3) A combined set of features of both (1) and (2). Comparing these sets of

features can inform us which features are better for verb clustering tasks and also,

theoretically, give us insight into which features might be more useful in a human meaning

acquisition process. These features also look a bit different depending on whether they are

taken from our constituency parser or our dependency parser.

Table 1. Features

Feature Description Examples

F1 Constituency

Syntax

We consider only 3 nodes under the verb

phrase node (VP). A “0” designates that

there are fewer than 3 embedded phrase

nodes.

0_0_0, NP_0_0,

PP_PP_0, NP_PP_PP,

NP_ADVP_0

F2 Constituency

Lexical

We consider syntactic arguments (or

modifiers) of each verb. For any noun

argument, we include the string and any

syntactic relationship to the verb including

specific prepositions. We mark subjects as

“S:”, direct objects as “DO:”, and indirect

objects as “IO:”.

S:NP(john), S:NP(soap),

DO:NP(water),

PP(on_NP(behalf)),

ADVP

F3 Constituency

Syntax + Lexical

This feature set simply conjoins the sets of

F1 and F2.

0_0_0, NP_0_0,

PP_PP_0, S:NP(john),

S:NP(soap),

DO:NP(water)

40

F4 Dependency

Syntax

Each feature is the name of a syntactic

dependency. Each verb instance can have

several dependencies, so each of these

counts as a feature.

nsubj, dobj, iobj, prep,

agent, acomp, prt,

csubj, ccomp

F5 Dependency

Syntax + Lexical

For each dependency, if there is a noun

argument and or a preposition or particle,

we include it in the feature.

prt:up, prep:on:behalf,

dobj:water, attr,

nsubj:john

7 Experiments & Results

 This section lists the experiments in this paper and will introduce our evaluation task.

Also, this section will present results for all of the experiments tested for this paper and discuss

experiments that should be performed in the future based on these results. Conclusions will be

drawn in the next section.

7.1 List of Experiment

Experiment 1 - Syntax from Constituency Parsing

 Experiment (1) relies on Pearson correlation between topic associations from LDA (see

section 5.2) based on syntactic features from constituency parsing (see F1 in section 6.4).

Example features - 0_0_0, NP_0_0, NP_PP_PP, PP_PP_0

Experiment 2 - Lexical Arguments from Constituency Parsing

 Experiment (2) relies on LDA and Pearson correlation (see section 5.2) based on lexical

features from constituency parsing (see F2 in section 6.4).

41

Example features - S:NP(john), S:NP(soap), DO:NP(water), PP(on_NP(behalf)), ADVP

Experiment 3 - Syntax + Lexical Arguments from Constituency Parsing

 Experiment (3) relies on LDA and Pearson correlation (see section 5.2) based on

syntactic and lexical features from constituency parsing (see F3 in section 6.4).

Example features – 0_0_0, NP_0_0, PP_PP_0, S:NP(john), S:NP(soap), DO:NP(water)

Experiment 4 - Syntax from Dependency Parsing

 Experiment (4) uses syntactic features acquired from dependency parsing (see F4 in

section 6.4) modelled using LDA and Pearson correlation (see section 5.2).

Example features - nsubj, dobj, iobj, prep, agent, acomp, prt, csubj, ccomp

Experiment 5 - Syntax + Lexical Arguments from Dependency Parsing

 Experiment (5) uses syntactic features acquired from dependency parsing (see F5 in

section 6.4) modelled using LDA and Pearson correlation (see section 5.2).

Example features - prt:up, prep:on:behalf, dobj:water, attr, nsubj:john

Experiment 6 – Recursive LDA with Constituency Syntactic Features

 Experiment (6) is our test of Recursive LDA (see section 5.3) and is based on syntactic

features extracted from constituency parsing. These results are based off of two layers of

Recursive LDA.

Example features - 0_0_0, NP_0_0, NP_PP_PP, PP_PP_0

42

Experiment 7 – N-grams

 N-grams is a common and well-known statistical language model. In experiment (7), we

use features of unigrams, bigrams, and trigrams of words immediately following each verb. N-

grams is a fairly simple and easy model of word use, so we use it as a baseline.

Example Features – 3:far:more:water, 2:far:more, 1:far, 3:the:shape:of, 2:the:shape, 1:the

Experiment 8 – Word2Vec

 Word2Vec is on the cutting edge of statistical word models. While it takes the same

data-driven approach as n-grams, Word2Vec greatly improves on this approach. It uses skip-

grams instead of n-grams to obtain features which makes it possible to obtain more rich data

from the same text. It refines its massive sets of data using deep-learning, an unsupervised

method of machine learning used for finding salient features. Skip-gram features are similar to

n-grams, but in addition to the variable n, skip-grams have a variable indicating the number of

words that may be skipped.

Example features – 2-1:far:water, 2-2:the:is, 3-2:this:shape:has

7.2 Triad Evaluation Task

 All of our experiments are evaluated against a human intuition task we call a triad

evaluation task. This task is setup as follows: A single triad is composed of three verbs arranged

in a triangle.

43

Figure 7.Triad Task

 For each triad participants are asked to choose a verb at the bottom of the triad (B for

donate and C for exist) that is most similar in meaning to the verb at the top (give). Each

participant does this for 96 triads (288 total verbs). The evaluation results in this paper are

based on judgments of 29 participants. The same set of triads is used for each participant to

allow for an adequate amount of data. Once data has been gathered from this task, the results

can be compared to any similarity or distance matrix based on the same verbs. The similarity

matrix can be given a percentage of accuracy that is the percentage of triads that agree with

the matrix on which verb is closer.

 This allows us to test the verb similarities produced by any or our experiments against

human judgements, several constraints are placed on verbs chosen for each triad to generally

improve judgement reliability of the task. Verbs are chosen to be very close in frequency, to

have similar length, and to not start with the same letter as the top verb. This is to assure that

participants do not choose verbs by similarity in any of these arbitrary properties instead of

meaning.

44

7.3 Evaluation Results

 This section presents the evaluation of each experiment using our triad evaluation task

as described above. For experiments (1) to (5), we tested LDA with 3, 4, and 5 topics. Each

experiment was used to calculate similarities for 3,000 verbs which are listed in Appendix A.

The evaluation for each experiment is based on a sample of 288 verbs with judgements

gathered from 29 participants.

Table 2. Evaluation Results

3 topic 4 topic 5 topic

Constituency Parsing

Experiment 1.

Syntax

0.648936 0.613 0.564

Experiment 2.

Lexical

Arguments

0.62766 0.670213 0.606383

Experiment 3.

Syntax + Lexical

0.553191 0.574468 0.585106

Dependency Parsing

Experiment 4.

Syntax

0.583333 0.604167 0.635417

Experiment 5.

Syntax + Lexical

0.59375 0.591398 0.612903

Experiment 6.

Recursive LDA

0.614583

Experiment 7.

N-gram

0.57

Experiment 8.

Word2Vec

0.648352

45

Inter-rater

Reliability
0.739583

 Experiment (2), lexical features using constituency parsing, with 4 topics performed with

the best evaluation results out of all of our experiments with a rating of 0.67. Experiment (1)

with 3 topics tied with Word2Vec for the next best evaluation at 0.65. One interesting

observation we could make from this data is that combining syntactic and lexical features

seems to hurt evaluation ratings as opposed to keeping them separate.

Figure 8. Comparing Constituency Features

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

3 topics 4 topics 5 topics

Constituency Features

Syntax Lexical Syntax + Lexical

46

Figure 9. Comparing Dependency Features

 In both dependency and constituency based experiments, experiments with either

syntactic or lexical features evaluated better than experiments with syntactic and lexical

features combined.

 The inter-rater reliability is our measure of how well one human participant did when

their judgement was compared to that of the judgements of the other 28 participants. Inter-

rater reliability gives us a measure of how much participants in the evaluation task agreed with

each other. It also provides an upper bound on evaluations of verb similarity algorithms.

Theoretically, no verb similarity matrix from any experiment should perform better than 0.74,

the value of the inter-rater reliability, on our evaluation task.

8 Conclusions

 Although the data presented in this section took a significant amount of time and

resources to collect, these experiments represent a small set of testable features and

parameters. These results show that the right arrangement of linguistic context features

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

3 topics 4 topics 5 topics

Dependency Features

Syntax Syntax + Lexical

47

modelled probabilistically with LDA can outperform leading statistical models such as

Word2Vec, with still much room for improvement. The best results presented in this paper

come from experiment (2) using lexical features from constituency parsing and LDA with 4

topics. This evaluation outperforms Word2Vec which is tied for the second best results.

Recursive LDA, while it may present a viable method of producing hierarchical verb classes,

evaluated in the mid-range of our experiments. One observation we could is that conjoining

syntactic and lexical features is counter-productive according to the results we have. Our

experiments which modelled only syntactic features or only lexical features performed better

than our experiments with combined features. This suggests that to be able to utilize multiple

types of features, we have a strong motivation to develop more viable models for combining

these features. Our future research in word modelling and verb clustering will take this insight

into account.

9 Future Work

 The work presented in this paper is the preliminary findings and models created in the

Verbiverse project. In the future, we intend to expand this work to include metrics for the

informitivity of a wide variety of features. We also plan to test our models for application in

word sense disambiguation tasks. When the Verbiverse project was created, we set out with

the goal of expanding on this framework to other parts of speech. The Nouniverse, the

Prepiverse, and the Adjectiverse are strong possibilities with the Verbiverse as groundwork.

During the development of these projects, we plan on developing metrics of informitivity for

48

each kind of context information. We plan to develop this both for future NLP applications and

to further test which types of context might be part of the human meaning acquisition process.

49

Bibliography

[1] Blei, D. M., Griffiths, T. L., & Jordan, M. I. (2010). The nested Chinese restaurant process and

Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1–30.

[2] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine

Learning Research, 3:993–1,022.

[3] Boyd-Graber, J., & Blei, D. M. (2008). Syntactic topic models. In Proceedings of the 22nd Annual

Conference on Neural Information Processing Systems (NIPS-08), pages 185–192, Vancouver.

[4] Brown, R. (1957). "Linguistic Determinism and the Part of Speech."

[5] Choi, J., & McCallum, A. (2013). Transition-based Dependency Parsing with Selectional

Branching, Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (ACL'13), 1052-1062, Sofia, Bulgaria.

[6] Chomsky, N. (1957). Syntactic Structures. Mouton de Gruyter, Berlin.

[7] Dang, H. T. (2004). Investigations into the Role of Lexical Semantics in Word Sense

Disambiguation. PhD thesis, CIS, University of Pennsylvania.

[8] Dinu, G., & Lapata, M. (2010). Measuring distributional similarity in context. In Proceedings of

the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP-10), pages

1,162–1,172, Cambridge, MA.

[9] Frith, J. R. (1957). A Synopsis of Linguistic Theory 1930-1955. In Studies in Linguistic Analysis.

Oxford Philological Society, Oxford.

[10] Griffiths, T. L., Steyvers, M., Blei, D. M., & Tenenbaum, J. B. (2004). Integrating topics and

syntax. In Proceedings of the 18th Annual Conference on Neural Information Processing

Systems (NIPS-04), pages 537–544, Vancouver.

[11] Harris, Z. (1954). Distributional structure. Word, 10(23):146–162.

50

[12] Jackendoff, R. (1990). Semantic Structures. Cambridge, MA: MIT Press.

[13] Joanis, E., Stevenson, S., & James, D. (2008). A general feature space for automatic verb

classification. Natural Language Engineering.

[14] Katz, J. J., & Fodor, J. A. (1963). The stucture of a semantic theory. Language, 39(2):170–210.

[15] Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2006). Extending VerbNet with Novel Verb

Classes. In Proceedings of 5th international conference on Language Resources and Evaluation.

Genova, Italy.

[16] Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2008). A Large-Scale Classification of English

Verbs. In the Journal of Language Resources and Evaluation. 42(1). 21-40.

[17] Kipper-Schuler, K. (2005). VerbNet: A broadcoverage, comprehensive verb lexicon. Ph.D.

thesis, University of Pennsylvania, Philadelphia, PA, June.

[18] Langacker, R. W. (1987). Foundations of Cognitive Grammar, Volume I, Theoretical

Prerequisites. Stanford, California: Stanford University Press.

[19] Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago, IL.

[20] Li, B. & Brew, C. (2008). Which are the best features for automatic verb classification. In ACL-

08.

[21] Matsuo, Y., Sakaki, T., Uchiyama, K., & Ishizuka, M. (2006). Graph-based word clustering using

a Web search engine. In Proceedings of the 2006 Conference on Empirical Methods in Natural

Language Processing, pages 542–550, Sydney.

[22] Merlo, P., & Stevenson, S., (2001). Automatic Verb Classification Based on Statistical

Distributions of Argument Structure. Computational Linguistics. 27: 3, 373-408.

[23] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word

Representations in Vector Space. In Proceedings of Workshop at ICLR.

51

[24] Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word

Representations. In Proceedings of NAACL HLT.

[25] Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM,

38(11):39–41.

[26] Naigles, L. (1990). "Children Use Syntax to Learn Verb Meaning". Journal of Child Language 17:

357–374.

[27] Reichart, R., & Korhonen, A. (2013). Improved Lexical Acquisition through DPP-based Verb

Clustering. In Proceedings of ACL 2013, Sofia, Bulgaria.

[28] Ritter, A., & Etzioni, O. (2010). A latent dirichlet allocation method for selectional preferences.

In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

(ACL-10), pages 424–434, Uppsala.

[29] Schulte im Walde, S. (2006). Experiments on the automatic induction of german semantic verb

classes. Computational Linguistics, 32(2):159–194.

[30] Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining FrameNet, VerbNet and

WordNet for robust semantic parsing. In Proceedings of CICLING.

[31] Soja, N. (1992). "Inferences about the meanings of nouns: the relationship between perception

and syntax."

[32] Stevenson, S., & Joanis, E. (2003). Semi-Supervised Verb Class Discovery Using Noisy Features.

Proceedings of the Conference on Computational Natural Language Learning (CoNLL-2003), 71-

78. Edmonton, Alberta, May-June.

[33] Sun, L., & Korhonen, A. (2009). Improving Verb Clustering with Automatically Acquired

Selectional Preferences. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP). Singapore.

52

[34] Sun, L., & Korhonen, A. (2011). Hierarchical verb clustering using graph factorization. In

EMNLP-11.

[35] Sun, L., Korhonen, A., & Krymolowski, Y. (2008). Verb Class Discovery from Rich Syntactic Data.

In Proceedings of the 9th International Conference on Intelligent Text Processing and

Computational Linguistics. Haifa, Israel.

[36] Sun, L., McCarthy, D., & Korhonen, A. (2013). Diathesis alternation approximation for verb

clustering. In Proceedings of ACL 2013, Sofia, Bulgaria.

[37] Swier, S., & Stevenson, S. (2004). Unsupervised semantic role labelling. In EMNLP-04.

[38] Vlachos, A., Korhonen, A., & Ghahramani, Z. (2009). Unsupervised and constrained Dirichlet

process mixture models for verb clustering. In Proceedings of the EACL-09 Workshop on

Geometrical Models of Natural Language Semantics (GEMS-09), pages 74–82, Athens.

[39] Wallach, H. M. (2008). Structured topic models for language. Ph.D. thesis, University of

Cambridge.

[40] Zapirain, B., Agirre, E., & Marquez, L. (2008). Robustness and generalization of role sets:

PropBank vs. VerbNet. In Proc. of ACL.

[41] Zhou, G., Zhao, J., Liu, K., & Cai, L. (2011). Exploiting Web-derived selectional preference to

improve statistical dependency parsing. In Proceedings of ACL-11, pages 1,556–1,565, Portland,

OR.

53

Appendix A (List of 3,000 Verbs)

A

abandon, abate, abbreviate, abdicate, abduct, abet, abide, abolish, abort, abound, absolve, absorb,

abstain, abuse, abut, accede, accelerate, accent, accentuate, accept, access, acclaim, accommodate,

accompany, accomplish, accord, accost, account, accredit, accrue, accumulate, accuse, accustom,

achieve, acknowledge, acquaint, acquiesce, acquire, acquit, act, activate, adapt, add, addict, address,

adhere, adjoin, adjourn, adjust, administer, admire, admit, admonish, adopt, adore, adorn, advance,

advertise, advise, advocate, affect, affiliate, affirm, affix, afflict, afford, age, aggravate, agitate, agree,

aid, ail, aim, air, alarm, alert, alienate, align, allay, allege, alleviate, allocate, allot, allow, allude, ally,

alter, alternate, amass, amaze, ambush, amend, amount, amplify, amputate, amuse, analyze, anchor,

anger, angle, animate, annex, announce, annoy, annul, anoint, answer, antagonize, anticipate,

apologize, appal, appeal, appear, appease, applaud, apply, appoint, apportion, appraise, appreciate,

apprehend, approach, appropriate, approve, approximate, arch, argue, arise, arm, arouse, arraign,

arrange, array, arrest, arrive, articulate, ascend, ascertain, ascribe, ask, aspire, assail, assassinate,

assault, assemble, assert, assess, assign, assimilate, assist, associate, assuage, assume, assure, astonish,

54

attach, attack, attain, attempt, attend, attest, attract, attribute, auction, audit, audition, augment,

authorize, autograph, automate, avenge, average, avert, avoid, await, awake, awaken, award

B

back, backfire, baffle, bag, bail, bait, bake, balance, balk, ban, band, bang, banish, bank, bankrupt,

baptize, bar, bare, bargain, barge, bark, barricade, base, bash, bask, bat, bathe, batter, battle, bead,

beam, bear, beat, beckon, become, bed, befall, befit, befriend, beg, beget, begin, behave, behold,

believe, belittle, belong, belt, bemoan, bench, bend, benefit, bequeath, berate, beset, besiege, best,

bestow, bet, betray, better, beware, bewilder, bicycle, bid, bill, bind, bite, black, blacken, blame, blanket,

blast, blaze, bleach, bleed, blend, bless, blind, blindfold, blink, blister, block, bloom, blossom, blow,

bludgeon, blunt, blur, board, boast, bog, boil, bolster, bolt, bomb, bombard, bond, boo, book, boom,

boost, boot, border, bore, borrow, botch, bother, bottle, bottom, bounce, bound, bow, bowl, box,

boycott, brace, brag, braid, branch, brand, brandish, brave, breach, break, breathe, breed, brew, bribe,

bridge, brief, brighten, bring, broadcast, broaden, broker, brood, brown, browse, bruise, brush, bubble,

buck, buckle, bud, budget, bug, build, bulge, bulldoze, bully, bump, bundle, buoy, burden, burgeon, burn,

burrow, burst, bury, bus, bust, buttress, buy, buzz, bypass

C

calculate, calibrate, call, calm, camouflage, camp, campaign, can, cancel, cap, capitalize, capitulate,

captivate, capture, care, carry, cart, carve, cascade, cash, cast, castigate, catalog, catalogue, catapult,

catch, categorize, cater, cause, caution, cave, cease, cede, celebrate, cement, censor, censure, center,

certify, chain, chair, chalk, challenge, champion, change, channel, chant, characterize, charge, charm,

chart, charter, chase, chastise, chat, cheat, check, cheer, cherish, chew, chide, chill, chip, choke, choose,

chop, choreograph, christen, chronicle, churn, circle, circulate, circumvent, cite, claim, clamp, clap,

clarify, clash, clasp, classify, claw, clean, cleanse, clear, click, climb, clinch, cling, clip, clock, clog, clone,

close, clothe, club, cluster, clutch, coach, coalesce, coast, coat, coax, cock, code, codify, coerce, coexist,

coil, coin, coincide, collaborate, collapse, collect, collide, colonize, color, comb, combat, combine, come,

comfort, command, commandeer, commemorate, commence, commend, comment, commercialize,

commission, commit, communicate, commute, compare, compel, compensate, compete, compile,

complain, complement, complete, complicate, compliment, comply, compose, compost, compound,

comprehend, compress, comprise, compromise, compute, conceal, concede, conceive, concentrate,

concern, conclude, concoct, concur, condemn, condense, condition, condone, conduct, confer, confess,

confide, configure, confine, confirm, confiscate, conflict, conform, confound, confront, confuse,

congratulate, congregate, conjure, connect, conquer, consent, conserve, consider, consign, consist,

console, consolidate, conspire, constitute, constrain, constrict, construct, construe, consult, consume,

consummate, contact, contain, contaminate, contemplate, contend, contest, continue, contract,

contradict, contrast, contribute, contrive, control, convene, converge, converse, convert, convey, convict,

convince, cook, cool, cooperate, coordinate, cope, co-produce, copy, copyright, corner, correct, correlate,

correspond, corroborate, corrupt, cost, costume, cough, counsel, count, counter, counteract, couple,

course, court, cover, covet, crack, craft, cram, cramp, crank, crash, crave, crawl, create, credit, creep,

crest, cripple, criticize, critique, crop, cross, crouch, crowd, crown, cruise, crumble, crusade, crush, cry,

55

crystallize, cull, culminate, cultivate, curb, cure, curl, curry, curse, curtail, curve, cushion, customize, cut,

cycle

D

dabble, damage, damn, damp, dampen, dance, dangle, dare, darken, dart, dash, date, dawn, dazzle,

deal, debate, debilitate, debunk, decay, deceive, decide, decimate, decipher, deck, declare, declassify,

decline, decode, decompose, deconstruct, decorate, decrease, decree, decry, dedicate, deduct, deem,

deepen, default, defeat, defect, defend, defer, define, deflate, deflect, defraud, defuse, defy, degenerate,

degrade, delay, delegate, delete, deliberate, delight, delineate, deliver, delve, demand, demean,

demolish, demonstrate, demoralize, demote, denigrate, denominate, denote, denounce, deny, depart,

depend, depict, deplete, deplore, deploy, deport, depose, deposit, depress, deprive, derail, deride, derive,

descend, describe, desert, deserve, design, designate, desire, despair, despise, destabilize, destine,

destroy, detach, detail, detain, detect, deter, deteriorate, determine, detest, detonate, detract, devalue,

devastate, develop, deviate, devise, devolve, devote, devour, diagnose, dial, dictate, die, differ,

differentiate, diffuse, dig, digest, digitize, dilute, dim, diminish, dine, dip, direct, disable, disagree,

disallow, disappear, disappoint, disapprove, disarm, disavow, disband, disburse, discard, discern,

discharge, discipline, disclose, disconnect, discontinue, discount, discourage, discover, discredit,

discriminate, discuss, disdain, disenfranchise, disgruntle, disguise, dish, dishearten, disillusion,

disintegrate, dislike, dislocate, dislodge, dismantle, dismay, dismiss, disorient, disparage, dispatch,

dispel, dispense, disperse, displace, display, dispose, disprove, dispute, disqualify, disregard, disrupt,

dissect, disseminate, dissent, dissipate, dissolve, dissuade, distance, distil, distinguish, distort, distract,

distress, distribute, distrust, disturb, ditch, dive, diverge, diversify, divert, divest, divide, divorce, divulge,

do, dock, document, dodge, dog, dominate, don, donate, doom, dope, dot, double, doubt, douse, down,

downgrade, download, downplay, downsize, draft, drag, drain, dramatize, drape, draw, dread, dream,

dredge, drench, dress, dribble, drift, drill, drink, drip, drive, droop, drop, drown, drug, drum, dry, dub,

duck, duel, dump, dupe, duplicate, dust, dwarf, dwell, dwindle, dye

E

earmark, earn, ease, eat, echo, eclipse, edge, edit, educate, effect, eject, eke, elaborate, elapse, elect,

electrify, elevate, elicit, eliminate, elude, email, emanate, embark, embarrass, embed, embellish,

embezzle, emblazon, embody, embolden, embrace, embroider, embroil, emerge, emigrate, emit,

emphasize, employ, empower, empty, emulate, enable, enact, enamor, encapsulate, encase, enchant,

encircle, enclose, encode, encompass, encounter, encourage, encroach, encrust, end, endanger, endear,

endorse, endow, endure, energize, enforce, engage, engender, engineer, engrave, engross, engulf,

enhance, enjoy, enlarge, enlighten, enlist, enliven, enrage, enrich, enrol, enroll, enshrine, enslave, ensue,

ensure, entail, entangle, enter, entertain, enthral, entice, entitle, entrance, entrench, entrust, entwine,

envelop, envision, envy, epitomize, equal, equate, equip, eradicate, erase, erect, erode, err, erupt,

escalate, escape, eschew, escort, espouse, establish, estimate, etch, evacuate, evade, evaluate,

evaporate, even, evict, evidence, evoke, evolve, exacerbate, exact, exaggerate, exalt, examine,

exasperate, excavate, exceed, excel, exchange, excise, excite, exclaim, exclude, excuse, execute,

exemplify, exempt, exercise, exert, exhaust, exhibit, exhort, exhume, exile, exist, exit, exonerate, expand,

expect, expedite, expel, expend, experience, experiment, expire, explain, explode, exploit, explore, export,

56

expose, expound, express, extend, extinguish, extol, extort, extract, extradite, extrapolate, extricate,

exude, eye

F

fabricate, face, facilitate, factor, fade, fail, faint, fake, fall, falsify, falter, fan, fancy, fantasize, fare, farm,

fascinate, fashion, fast, fasten, father, fault, favor, fear, feast, feature, feed, feel, feign, fell, fence, fend,

ferment, ferry, fertilize, fetch, feud, field, fight, figure, file, fill, film, filter, finalize, finance, find, fine,

finish, fire, fish, fit, fix, fixate, flag, flank, flap, flare, flash, flatten, flatter, flaunt, flavor, flee, flesh, flex,

flick, fling, flip, flirt, float, flock, flood, floor, flop, flounder, flourish, flow, flower, fluctuate, flush, flutter,

fly, focus, foil, fold, follow, foment, fool, foot, forage, forbid, force, forecast, foreclose, foresee,

foreshadow, forestall, forfeit, forge, forget, forgive, forgo, form, formalize, formulate, forsake, fortify,

forward, foster, foul, found, founder, fracture, frame, freak, free, freeze, frequent, fret, frighten, front,

frown, frustrate, fry, fuel, fulfil, fulfill, fumble, function, fund, funnel, furnish, further, fuse

G

gag, gain, gallop, galvanize, gamble, gap, garner, garnish, gather, gauge, gaze, gear, generalize,

generate, get, give, glance, glaze, glean, glide, glimpse, glitter, glorify, gloss, glow, glue, gnaw, go, goad,

govern, grab, grace, grade, graduate, graft, grant, grapple, grasp, grate, gratify, gravitate, graze, greet,

grieve, grill, grind, grip, groom, gross, ground, group, grow, growl, guarantee, guard, guess, guide, gun,

gut

H

hack, hail, halt, halve, hammer, hamper, hamstring, hand, handcuff, handicap, handle, hang, happen,

harass, harbor, harden, hark, harm, harmonize, harness, harvest, hasten, hatch, hate, haul, haunt, have,

hawk, head, headline, heal, heap, hear, heat, heckle, hedge, heed, heighten, help, herald, herd, hesitate,

hew, hide, highlight, hijack, hike, hinder, hinge, hint, hire, hit, hitch, hoard, hoist, hold, hole, home,

homer, hone, honor, hook, hop, hope, horrify, hospitalize, host, hound, house, hover, howl, hug, hum,

humble, humiliate, hunt, hurl, hurry, hurt, hype

I

ice, identify, idle, idolize, ignite, ignore, illuminate, illustrate, imagine, imbue, imitate, immerse,

immigrate, immobilize, immortalize, impact, impair, impart, impeach, impede, impel, impersonate,

implant, implement, implicate, implode, implore, imply, import, impose, impound, impress, imprint,

imprison, improve, improvise, inaugurate, incapacitate, incarcerate, incense, incite, incline, include,

incorporate, increase, incriminate, incur, index, indicate, indict, induce, induct, indulge, industrialize,

infect, infer, infest, infiltrate, inflame, inflate, inflict, influence, inform, infringe, infuriate, infuse, ingest,

inhabit, inhale, inherit, inhibit, initiate, inject, injure, inquire, inscribe, insert, insinuate, insist, inspect,

inspire, instal, install, instigate, instil, institute, institutionalize, instruct, insulate, insult, insure, integrate,

intend, intensify, interact, intercede, intercept, interest, interfere, interlock, intern, interpret, interrogate,

interrupt, intersect, intersperse, intertwine, intervene, interview, interweave, intimidate, intrigue,

57

introduce, intrude, inundate, invade, invalidate, invent, invert, invest, investigate, invigorate, invite,

invoke, involve, iron, irritate, isolate, issue

J

jail, jam, jeopardize, jettison, jog, join, joke, journey, judge, juggle, jump, justify, jut, juxtapose

K

keep, key, kick, kidnap, kill, kiss, kneel, knit, knock, knot, know

L

label, labor, lace, lack, lag, lament, land, landscape, languish, lap, lapse, lash, last, latch, laud, laugh,

launch, launder, lay, layer, lead, leak, lean, leap, learn, lease, leave, lecture, legalize, legislate, legitimize,

lend, lengthen, lessen, let, letter, level, leverage, levy, liberalize, liberate, license, lick, lie, lift, light,

lighten, like, liken, limit, limp, line, linger, link, liquidate, list, listen, litigate, litter, live, load, loan, loathe,

lob, lobby, locate, lock, lodge, log, long, look, loom, loop, loosen, loot, lose, love, lower, lumber, lump,

lure, lurk

M

magnify, mail, maim, maintain, major, make, malfunction, man, manage, mandate, maneuver, manifest,

manipulate, manufacture, map, mar, march, marginalize, mark, market, marry, marshal, marvel, mash,

mask, masquerade, mass, massacre, master, mastermind, match, mate, materialize, matter, mature,

maximize, mean, meander, measure, meddle, mediate, meditate, meet, meld, melt, memorialize,

memorize, menace, mend, mention, mentor, merge, merit, mesh, mesmerize, mess, mete, migrate, milk,

mill, mimic, mind, mine, mingle, minimize, minister, mint, mire, mirror, mishandle, misidentify,

misinterpret, mislead, misplace, misrepresent, miss, misspell, mistake, mistreat, misunderstand, misuse,

mitigate, mix, mobilize, mock, model, moderate, modernize, modify, modulate, mold, molest, monitor,

monopolize, moor, mop, morph, motivate, motorize, mount, mourn, move, mow, multiply, murder,

muse, muster, mutate, mute, mutilate

N

nail, name, narrate, narrow, nationalize, navigate, near, necessitate, need, negate, neglect, negotiate,

neighbor, nest, nestle, net, neutralize, nickname, nod, nominate, notch, note, notice, notify, nourish,

nullify, number, nurse, nurture

O

obey, object, obligate, oblige, obliterate, obscure, observe, obsess, obstruct, obtain, occupy, occur,

offend, offer, officiate, offset, oil, omit, ooze, open, operate, oppose, oppress, opt, orbit, orchestrate,

ordain, order, organize, orient, originate, orphan, ostracize, oust, outdo, outfit, outgrow, outlast, outlaw,

58

outline, outlive, outnumber, outpace, outperform, outrage, outrun, outscore, outsource, outstrip,

outweigh, overcome, overestimate, overflow, overhaul, overhear, overheat, overlap, overload, overlook,

overpower, override, overrule, overrun, oversee, overshadow, overstate, overtake, overthrow, overturn,

overwhelm, owe, own

P

pace, pack, package, paddle, page, paint, pair, pan, panel, panic, parade, parallel, paralyze, paraphrase,

pardon, pare, park, parody, parole, parse, part, participate, partner, party, pass, paste, patch, patent,

patrol, patronize, pattern, pause, pave, pay, peak, peddle, peel, peer, peg, pelt, pen, penalize, penetrate,

pepper, perceive, perch, perfect, perform, perish, permeate, permit, perpetrate, perpetuate, persecute,

persevere, persist, personify, persuade, pertain, pervade, petition, phase, phone, photograph, phrase,

pick, picket, pickle, picture, piece, pierce, pile, pilot, pin, pinch, pinpoint, pioneer, pipe, pit, pitch, placate,

place, plague, plan, plant, plaster, plate, play, plead, please, pledge, plot, plow, pluck, plug, plummet,

plunder, plunge, ply, poach, pocket, point, poise, poison, poke, polarize, police, polish, politicize, poll,

pollute, ponder, pool, pop, popularize, populate, portray, pose, posit, position, possess, post, postpone,

pound, pour, power, practice, praise, pray, preach, precede, precipitate, preclude, predate, predecease,

predicate, predict, predominate, prefer, preoccupy, prepare, presage, prescribe, present, preserve,

preside, press, pressure, presume, pretend, prevail, prevent, preview, prey, price, pride, prime, print,

privatize, prize, probe, proceed, process, proclaim, procure, prod, produce, profess, profile, profit,

program, progress, prohibit, project, proliferate, prolong, promise, promote, prompt, promulgate,

pronounce, prop, propagate, propel, propose, prosecute, prosper, protect, protest, protrude, prove,

provide, provoke, prune, pry, publicize, publish, pull, pulsate, pulse, pump, punch, punctuate, puncture,

punish, punt, purchase, purge, purify, purport, pursue, push, put, puzzle

Q

quadruple, qualify, quantify, quarrel, quarterback, quash, quell, question, quicken, quiet, quilt, quip, quit,

quote

R

race, rack, radiate, radio, rage, raid, rail, rain, raise, rake, rally, ram, ramble, range, rank, ransack, rap,

rape, rat, rate, ratify, ration, rationalize, rattle, ravage, rave, raze, reach, react, read, ready, reaffirm,

realign, realize, reap, reappear, rear, rearrange, reason, reassemble, reassert, reassess, reassign,

reassure, rebel, rebound, rebuff, rebuild, rebuke, rebut, recall, recant, recapture, recast, recede, receive,

recess, recharge, recite, reckon, reclaim, recline, recognize, recoil, recommend, reconcile, reconfigure,

reconsider, reconstitute, reconstruct, reconvene, record, recount, recoup, recover, recreate, re-create,

recruit, rectify, recuperate, recur, recycle, red, redeem, redefine, redesign, redevelop, redirect, rediscover,

redistribute, redo, redress, reduce, reel, re-emerge, re-enter, re-establish, re-evaluate, re-examine, refer,

refill, refine, reflect, refocus, reform, refrain, refresh, refrigerate, refund, refurbish, refuse, refute, regain,

59

regard, register, regret, regroup, regulate, rehabilitate, rehearse, rehire, reign, reignite, reimburse, rein,

reinforce, reinstall, reinstate, reinterpret, reintroduce, reinvent, reinvigorate, reissue, reiterate, reject,

rejoice, rejoin, rejuvenate, rekindle, relate, relax, relay, release, relegate, relent, relieve, relinquish, relish,

relive, relocate, rely, remain, remake, remark, remarry, remedy, remember, remind, reminisce, remodel,

remove, rename, rend, render, renege, renegotiate, renew, renounce, renovate, rent, reopen, reorganize,

repackage, repaint, repair, repatriate, repay, repeal, repeat, repel, replace, replay, replenish, replicate,

reply, report, reposition, represent, repress, reprimand, reprint, reprise, reproduce, repudiate,

repurchase, repute, request, require, reroute, reschedule, rescind, rescue, research, resell, resemble,

resent, reserve, reset, resettle, reshape, reside, resign, resist, resolve, resonate, resort, respect, respond,

rest, restart, restate, restore, restrain, restrict, restructure, result, resume, resurface, resurrect,

resuscitate, retail, retain, retake, retaliate, retell, rethink, retire, retool, retort, retrace, retract, retrain,

retreat, retrieve, return, reunite, reuse, revamp, reveal, revel, revere, reverse, revert, review, revile,

revise, revisit, revitalize, revive, revoke, revolt, revolutionize, revolve, reward, rework, rewrite, rezone,

rhyme, rid, ride, ridicule, rig, right, ring, rinse, rip, ripen, rise, risk, rival, rivet, roam, roar, roast, rob, rock,

roll, room, root, rope, rot, rotate, round, rouse, rove, row, rub, ruin, rule, rumble, rumor, run, rupture,

rush, rust

S

sabotage, sack, sacrifice, sadden, saddle, safeguard, sag, sail, salt, salute, salvage, sample, sanction,

sandwich, sap, satirize, satisfy, saturate, save, saw, say, scale, scan, scar, scare, scatter, schedule, school,

scoff, scold, scoop, scorch, score, scorn, scour, scout, scramble, scrap, scrape, scratch, scream, screen,

screw, script, scroll, scrub, scrutinize, sculpt, sculpture, scuttle, seal, search, season, seat, secede, secure,

seduce, see, seed, seek, seem, seep, segregate, segue, seize, select, sell, send, sense, sentence, separate,

sequence, sequester, serve, service, set, settle, sever, sew, shade, shadow, shake, shame, shape, share,

sharpen, shatter, shave, shear, sheathe, shed, shell, shelter, shelve, shepherd, shield, shift, shimmer,

shine, ship, shock, shoot, shop, shore, short, shorten, shoulder, shout, shove, show, showcase, shower,

shred, shrink, shroud, shrug, shuffle, shun, shut, shutter, shuttle, shy, sicken, side, sideline, sift, sign,

signal, signify, silence, simmer, simplify, simulate, sing, single, sink, siphon, sit, situate, size, skate,

sketch, skew, ski, skim, skip, skirt, skyrocket, slam, slant, slap, slash, slate, slaughter, slay, sleep, slice,

slide, slip, slit, slope, slow, slug, slump, smack, smash, smear, smell, smile, smite, smoke, smooth,

smother, smuggle, snag, snap, snatch, sneak, sniff, snow, snub, soak, soar, sob, socialize, soften, solicit,

solidify, solve, soothe, sort, sound, sour, sow, space, span, spar, spare, spark, spawn, speak, spearhead,

specialize, specify, speculate, speed, spell, spend, spew, spice, spike, spill, spin, spiral, spit, splash, splice,

splinter, split, spoil, sponsor, sport, spot, spotlight, sprain, sprawl, spray, spread, spring, sprinkle, sprint,

sprout, spur, spurn, spy, squander, square, squash, squat, squeeze, stab, stabilize, stack, staff, stage,

stagger, stagnate, stain, stake, stalk, stall, stamp, stand, standardize, star, stare, start, startle, starve,

state, station, stave, stay, steal, steam, steep, steer, stem, step, stereotype, sterilize, stick, stiffen, stifle,

stigmatize, stimulate, sting, stipulate, stir, stitch, stock, stockpile, stoke, stomp, stone, stoop, stop, store,

storm, straddle, straighten, strain, strand, strangle, strap, stray, streak, stream, streamline, strengthen,

stress, stretch, strew, strike, string, strip, stripe, strive, stroke, stroll, structure, struggle, strut, stud,

study, stuff, stumble, stump, stun, stunt, style, stylize, stymie, subdivide, subdue, subject, submerge,

60

submit, subpoena, subscribe, subside, subsidize, substantiate, substitute, subtitle, subtract, subvert,

succeed, succumb, suck, sue, suffer, suffice, suffocate, suffuse, suggest, suit, sum, summarize, summon,

superimpose, supersede, supervise, supplant, supplement, supply, support, suppose, suppress, surf,

surface, surge, surmise, surmount, surpass, surprise, surrender, surround, survey, survive, suspect,

suspend, sustain, swallow, swamp, swap, swarm, sway, swear, sweat, sweep, sweeten, swell, swerve,

swim, swing, swipe, swirl, switch, swivel, swoop, symbolize, sympathize, synchronize, syndicate,

synthesize

T

tabulate, tack, tackle, tag, tail, tailor, taint, take, talk, tally, tame, tamper, tan, tangle, tap, tape, taper,

target, tarnish, taste, tattoo, taunt, tax, teach, team, tear, tease, teem, telephone, televise, tell, temper,

tempt, tend, tender, term, terminate, terrify, terrorize, test, testify, tether, texture, thank, thaw, theorize,

thicken, thin, think, thrash, thread, threaten, thrill, thrive, throw, thrust, thwart, tick, ticket, tie, tighten,

tile, tilt, time, tinge, tint, tip, tire, title, toast, toil, tolerate, tone, top, topple, torment, torture, toss, total,

touch, tour, tout, tow, tower, toy, trace, track, trade, traffic, trail, train, trample, transcend, transcribe,

transfer, transform, translate, transmit, transpire, transplant, transport, trap, trash, traumatize, travel,

traverse, tread, treasure, treat, trek, tremble, trespass, trick, trickle, trigger, trim, trip, triple, triumph,

trouble, trounce, trump, trust, try, tuck, tumble, tune, turn, tutor, tweak, twist, type, typify

U

uncover, undercut, underestimate, undergo, underlie, underline, undermine, underperform, underscore,

understand, understate, undertake, underwrite, undo, undulate, unearth, unfold, unify, unite, unleash,

unload, unlock, unravel, unseat, unveil, up, update, upgrade, uphold, uplift, uproot, upset, urge, urinate,

use, usher, usurp, utilize, utter

V

vacate, vacation, vaccinate, validate, value, vandalize, vanish, vanquish, vary, vault, veer, veil, vend,

vent, venture, verify, verse, vest, vet, veto, vibrate, victimize, videotape, vie, view, vilify, vindicate,

violate, visit, visualize, voice, void, volunteer, vomit, vote, vow

W

wade, wage, wager, wail, wait, waive, wake, walk, wall, wander, wane, want, war, ward, warm, warn,

warp, warrant, wash, waste, watch, water, wave, waver, wax, weaken, wean, wear, weather, weave,

wed, wedge, weed, weep, weigh, weight, welcome, weld, whale, wheel, whip, whisk, whisper, whistle,

widen, widow, wield, will, win, wind, wipe, wire, wish, withdraw, wither, withhold, withstand, witness,

wonder, woo, word, work, worry, worsen, worship, wound, wrap, wreak, wreck, wrest, wrestle, wrinkle,

write

61

Y

yearn, yell, yield

Z

zone, zoom

62

Appendix B (Verb Space Images)

Figure 10. Verb Space

63

Figure 11. Verb Classes from Recursive LDA

64

Figure 12. Think/Believe Verbs

Figure 13. Manner-of-Motion Verbs

Figure 14. Other Motion Verbs

65

Figure 15. Mental-State Verbs

