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Mutations in the gene Granulin (GRN) reduce levels of progranulin (PGRN) and result in the 

neurodegenerative diseases frontotemporal dementia (FTD) and neuronal ceroid lipofuscinosis. PGRN 

has been implicated in high level functions like neurite outgrowth, neuronal survival, and inflammation 

while its molecular function is hypothesized to occur in the lysosome. Accordingly, GRN is highly 

expressed in neurons and microglia. GRN-deficiency is marked by increased inflammation, lysosome 

dysfunction, and recently, dysfunction in lipid metabolism and catabolism. Various models are used to 

study these different features of GRN-deficiency. Here, I compare proteomic datasets from Grn WT and 

KO mouse embryonic fibroblasts (MEFs) and GRN WT and KO induced pluripotent stem cell-derived 

microglia (iPSC-microglia). Despite little overlap of proteins significant in both cell types, several 

pathways are significantly overrepresented in multiple genotype/cell model combinations like pathways 

containing “organelle” and “cellular response to stress.” Additionally, each subset identifies unique 

features of GRN-pathology, and each cell type offers protein targets to pursue. Overall, these analyses 

support the hypothesis that GRN pathology is driven by dysfunction in lysosomal lipid metabolism and 

catabolism resulting in the accumulation of lipids. Altogether, these analyses identify unique features of 

GRN-deficiency and support the use of MEFs as a model to study lipid accumulation in FTD and iPSC-

microglia as a model for studying inflammation and possibly lipid droplet formation in FTD. 
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Introduction 
 

Frontotemporal dementia (FTD) is a leading cause of dementia in people under the age of 60 with 

a median survival 8-9 years after diagnosis [1] and no existing cure. Heterozygous mutations in the 

granulin gene (GRN) are responsible for 25% of familial FTD cases [2-4]. FTD due to GRN mutations is 

characterized by intraneuronal protein inclusions positive for ubiquitin and transactive response DNA-

binding protein 43 (TDP-43), a diagnostic hallmark of FTD [5, 6]. Homozygous GRN mutations cause 

neuronal ceroid lipofuscinosis (NCL) subtype 11 [7, 8], a neurodegenerative lysosomal storage disease. 

NCL is characterized by the lysosomal accumulation of lipofuscin, an autofluorescent and undegraded 

accumulation of proteins, lipids, and metals [9]. GRN mutations result in decreased levels of progranulin 

(PGRN) with heterozygous mutations producing a 50-75% decrease in PGRN while homozygous 

mutations result in complete ablation of PGRN [10-12]. FTD and NCL due to GRN-mutations share 

several pathological features suggesting common underlying mechanisms that lead to different clinical 

presentations based on the degree of GRN-deficiency [7]. 

PGRN is a secreted glycoprotein that consists of 7.5 individual 6 kDa granulin domains [13-15]. 

In the brain, PGRN is most heavily expressed in neurons and microglia [16] and is implicated in neuronal 

survival, neurite outgrowth, and inflammation [17-19]. PGRN is trafficked to the lysosome via the sortilin 

receptor [20-22] or via co-trafficking with prosaposin (PSAP) [23]. PGRN has been purported to bind to 

lysosomal proteins cathepsin D (CTSD) [24-27], β-hexosaminidase-A (HexA) [28], and β-

glucocerebrosidase (GBA) [29, 30], but its molecular function remains unknown. 

Various models have been used to study FTD-GRN including five unique Grn-/- mouse models, 

several immortalized cell lines, and patient tissue and patient-derived cell lines [31]. Overall, GRN-

deficiency is neuropathologically marked by astrogliosis, microgliosis, neuronal cell death [32], as well as 

the accumulation of lipofuscin, TDP-43, p62, and ubiquitin [32-36]. Models of GRN-deficiency also 

demonstrate marked lysosome dysfunction including altered lysosomal enzyme activity and changes to 
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lysosome protein expression [24, 27-30, 36-41], and more recently, changes to lipid metabolism and 

catabolism [42-45]. 

Different FTD-GRN models allow researchers to study different features of GRN-related 

pathology. In this work, I compare two models of GRN-deficiency using quantitative proteomic analysis. 

We submitted 3 replicates of Grn wild-type (WT) and Grn knockout (KO) mouse embryonic fibroblasts 

(MEFs) to label-free quantification liquid chromatography tandem mass spectrometry (LFQ LC-MS/MS) 

to identify novel protein and biological pathway targets. Separately, collaborators independently 

submitted 5 and 4 replicates, respectively, of GRN WT and KO induced pluripotent stem cell-derived 

microglia (iPSC-microglia) lines to LFQ LC-MS/MS. Here, I analyze and compare both datasets using 

differential expression analysis and pathway overrepresentation analysis. 

Results 
 

Data Imputation 
 

LFQ intensity values were obtained from raw counts using the MaxLFQ algorithm. Given the 

apparent homogeneity of variances within subsets and similar medians (Figures 1-4), neither 

normalization nor variance-stabilizing transformations were pursued. 4.96% of values in the MEF data 

were missing found in 525 of 3990 proteins total (Figure 5). The MEF WT subset had 3.14% of values 

missing while the MEF KO subset had 2.41% of values missing. 121 proteins were completely missing in 

the MEF WT subset, and 53 proteins were completely missing in MEF KO subset. 11.84% of values in 

the iPSC-microglia data were missing. These missing values were found across 1072 of 3316 proteins 

total (Figure 5). The iPSC-microglia WT subset had 8.52% of values missing while the iPSC-microglia 

KO subset had 10.01% of values missing. 22 proteins were completely missing in the iPSC-microglia WT 

subset while 171 proteins were completely missing in the iPSC-microglia KO subset.  
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Each subset of data (i.e., MEF WT, MEF KO, iPSC WT, iPSC KO) was imputed using a random 

forest algorithm implemented in the MissForest R package [46]. The random forest algorithm was found 

to be the highest performing method in a comparative study of the effect of multiple imputation methods 

on label-free proteomics data including at dataset from immune cells [47]. Regardless, the accuracy of the 

MissForest imputation algorithm was empirically tested on these data by artificially introducing missing 

values into each subset of data, imputing those values, and measuring the imputed values against the 

known values. The error metric used was normalized root mean square error (NRMSE) as measured by 

Oba et al. 2003. The following protocol was used. Proteins with actual missing values were filtered out of 

each subset producing the “filtered subset.” Then, randomly selected values were removed and left empty 

to induce missingness in each filtered subset. The number of values removed from each filtered subset 

was set to be identical to the actual proportion of missing values in the original subset (e.g., the MEF WT 

filtered subset had 3.14% of values removed to induce missingness). Those missing values were imputed 

back with the random forest algorithm. The estimated NRMSE supplied by the algorithm was collected, 

and the true NRMSE was calculated by comparing the imputed values to the original values. This 

protocol was performed twenty times for each subset across two “number of trees” hyperparameter 

settings (100 or 500 trees) which combined to produce forty total simulations per subset. Twenty 

simulations per subset per number of trees setting was chosen due to high computation times. 

Overall, the algorithm performed well with all median true error rates being less than 0.18 

(Supplemental Figure 1A). For reference, NRMSE values approaching 0 represent near perfect fits 

between estimated and true values while NRMSE values approaching 1.0 represent estimations being 

equivalent to a random guess [48]. Comparatively, the algorithm performed equally well on the MEF WT 

and MEF KO subsets while the iPSC-microglia KO subset had a much higher true error rate than the 

iPSC-microglia WT subset despite having only a 1.49% difference in number of values missing. There 

was no effect of the number of trees on error rate. The estimated error rate, which is supplied by the 



10 

 

MissForest() function, was strongly correlated with the true error rate (Supplemental Figure 1B) 

suggesting it can be used to infer the performance of the algorithm on the actual missing data. 

The random forest algorithm was used to impute the actual missing values in each subset. The 

“number of trees” hyperparameter setting was set to 100. Interestingly, estimated NRMSE values were 

much lower for the actual imputations compared to those of the simulations. The estimated NRMSE 

values for each subset were the following: 0.072 for MEF WT, 0.095 for MEF KO, 0.100 for iPSC-

microglia WT, and 0.064 for iPSC-microglia KO. Together, the strong correlation between the true 

NRMSE and estimated NRMSE rates in the simulation results (Supplemental Figure 1B) and the low 

estimated NRMSE rates during the actual imputation suggest that the random forest algorithm performed 

very well during the actual imputation. 

Differential Expression Analysis 
 

Differential expression analysis was performed between WT and KO MEFS and between WT 

and KO iPSC-microglia using Student’s T-tests with Benjamini-Hochberg False Discovery Rate (FDR) to 

correct for multiple comparisons. The proteomic analysis of the iPSC-microglia is tied to our 

collaborator’s RNA sequencing analysis using the same cell lines. Their analysis considered proteins 

significantly differentially expressed when they had an absolute log2 fold-change > 1 and an adjusted q-

value < 0.05. Therefore, the same criteria were used for both the WT and KO MEFs and the WT and KO 

iPSC-microglia. This resulted in 614 significant proteins in the MEFs (15.39% of proteins) and 264 

significant proteins in the iPSC-microglia (7.96% of proteins) (Figures 6-9). To note, proteins found 

exclusively in the WT or KO subset for each cell-type are included in the groups of significant proteins. 

To compare protein expression values for individual proteins found in both the MEF and iPSC-

microglia datasets, protein homologs were identified and converted to matching names using the gorth() 

function in gProfiler2. There were 2245 homologous proteins shared between the cell types out of the 

original 3990 in the MEFs and 3316 in the iPSC-microglia. Overall, there was no pairwise correlation of 
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log2 fold-change values between homologs; however, several proteins are found in only the WT or KO 

subset of one cell type while being found in both subsets of the other cell type (data not shown). 

Despite the relatively large overlap of proteins present in both datasets, only 23 proteins were 

significant in both differential expression analyses (Table 1). Moreover, of these 23 proteins, only 

translocator protein (TSPO) and metallothionein-1 (MT1) returned results from a PubMed fetch using 

queries Q_GRN1 and Q_FTD1 (See Methods: PubMed Fetching). TSPO is a biomarker for microglia 

activation [49] and is the target of several positron emission tomography (PET) ligands used to identify 

Alzheimer’s Disease, FTD, Parkinson’s Disease and other neuroinflammatory disorders [50]. TSPO is 

overexpressed in MEF KO although, interestingly, it is also overexpressed in iPSC-microglia WT. 

TSPO’s overexpression in iPSC-microglia WT conflicts with a report showing increased TSPO PET 

signal in both an FTD patient and Grn-/- mouse brain [51] as well as with literature which supports the 

idea that GRN-deficiency results in increased microglial activation [37, 38, 52-54]. MT1 is a metal-

binding protein that functions to detoxify heavy metals, maintain zinc and copper homeostasis, and 

scavenge free radicals [55]. Here, MT1 is overexpressed in both MEF KO and iPSC-microglia KO which 

supports another group’s findings of increased immunostaining for MT1 and MT2 in the brains of FTD 

patients [56]. To note, metallothionein-2 (MT2) is also overexpressed in MEF KO with a log2 fold-change 

of 3.16 (q = 0.00164).  

Pathway Overrepresentation Analysis 
 

Significant proteins in each subset were used to perform overrepresentation analysis (ORA) with 

the gProfiler2 R package [57]. ORA was performed testing for significant pathways in the Gene Ontology 

(GO) [58, 59], Kyoto Encyclopedia of Genes and Genomes (KEGG)  [60], Reactome (REAC) [61], and 

WikiPathways (WP) [62] databases. GO pathways with nominal p-values < 0.05 were pruned using 

REVIGO [63] which utilized the simRel formula to determine semantic similarity between GO terms 

[64]. The similarity coefficient threshold was set to 0.5 (considered allowing only “small” overlap). After 
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pruning, the ORA p-values were corrected for multiple comparisons using the Holm method for the 

MEFs and FDR for the iPSC-microglia. Pathways with p-values < 0.01 (MEFs) or q-values < 0.01 (iPSC-

microglia) were considered significant. While the FDR method is commonly used to adjust p-values 

following ORA [65], here the Holm method was chosen post hoc after seeing an extremely high number 

of significant pathways overrepresented in MEF WT and in MEF KO using FDR (data not shown).  

There were 169 significant pathways in the MEF WT subset, 84 in the MEF KO subset, 112 in 

the iPSC-microglia WT subset, and 38 in the iPSC-microglia KO subset. Despite pruning the GO 

pathways, there was still a large level of redundancy within the GO terms. For several figures and tables, 

GO terms that exist at level two of their hierarchies were removed to reduce this redundancy and 

highlight more specific significant pathways as well as pathways from other source databases. Pathways 

from the other databases were not filtered out using the level two criterium. Importantly, this does not 

impact the p-value adjustment which was performed prior to this step, and the full lists of significant 

pathways are available in the supplement. 

Several significant pathways were shared between the different subsets (Table 2 and 

Supplemental Table 1). Unsurprisingly, the pathways “Intracellular membrane-bounded organelle,” 

“intracellular organelle,” “organelle membrane,” and “vacuole” were shared between at least two of the 

subsets, partially represented by the known association between lysosome dysfunction and FTD and 

autophagic dysfunction and FTD [66]. To note, “lysosome” and “vesicle” were also significant terms in 

both iPSC-microglia WT and iPSC-microglia KO (Supplemental Table 1). Several proteins that 

constitute these pathways have reported connections to FTD or GRN-deficiency in the literature. Table 3 

lists proteins that constituted at least one of the significant pathways “intracellular membrane-bounded 

organelle,” “intracellular organelle,” “organelle membrane,” and “vacuole” and returned at least one 

result from a PubMed fetch using either queries Q_FTD1 or Q_GRN2 (See Methods: PubMed Fetching). 

Two well-known examples are lysosomal cysteine proteases cathepsin Z (CTSZ) and cathepsin B (CTSB) 

which are reported to be upregulated and to show altered enzymatic activity in GRN-deficiency [36, 38, 
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67]. These data agree with the literature showing CTSZ to be significantly upregulated in MEF KO and 

showing CTSB to be significantly upregulated in iPSC KO. A newer example is CYLD lysine 63 

deubiquitinase (CYLD) for which a recently discovered mutation p.M719V has been reported as 

causative for FTD and amyotrophic lateral sclerosis (ALS) [68]. The mutation results in hyperactive 

CYLD, a reduction in autophagosome fusion to lysosomes, and increased cytoplasmic accumulation of 

TDP-43 and fused-in-sarcoma [68, 69]. In these data, CYLD is only found in the MEF KO condition. 

“Cellular response to stress” is shared by MEF WT, MEF KO, and iPSC-microglia WT but not 

iPSC-microglia KO. This is most interesting for the iPSC-microglia which, being an immune cell model, 

respond to signals of cellular stress and engage in either proinflammatory or anti-inflammatory actions 

depending on the stimulus [70]. This term’s significance in solely iPSC-microglia WT but not iPSC-

microglia KO highlights the downregulation of proteins in this pathway in GRN-deficiency. One of these 

proteins is interferon regulatory factor 3 (IRF3), a transcription factor that reduces neuroinflammation 

through activating response genes to suppress class II major histocompatibility complex activity, decrease 

proinflammatory cytokines, and increase anti-inflammatory cytokines [71]. Interestingly, TSPO is also a 

gene contributing to this pathway in iPSC-microglia WT.  

Figures 10-13 show the top twenty pathways for each subset ordered by significance after 

filtering out GO terms at level 2. These figures highlight some unique pathways overrepresented in 

different subsets in addition to pathways shared with other subsets.  

The MEF WT subset showed several significant pathways related to cholesterol metabolism and 

biosynthesis and lipid metabolism across multiple databases, indicating that GRN-deficiency results in 

decreased expression of proteins involved in cholesterol and lipid dynamics. This is supported by findings 

showing increases in total cholesterol and triglycerides (TGs) in the blood of FTD patients [43, 72-74] 

along with a finding showing increases in TGs with concomitant decreases in digycerides (DGs) and 

altered levels of cholesterol esters in Grn KO MEFs [42]. Evers et al. 2017 also found that cases of FTD 

due to GRN mutations could be distinguished from non-GRN related FTD, Alzheimer’s disease, and 
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controls by the lipidomic signature of postmortem human brain tissue. One group found that aged or 

ovalbumin-challenged Grn-/- mice showed neuronal accumulation of GM2 ganglioside lipids [28], a 

subgroup of sphingolipids and substrates of HexA [75]. Complementing the accumulation of lipid 

species, models of GRN-deficiency demonstrate reduced levels of lipid metabolism and lipid catabolism 

proteins [42, 67] and reduced lysosomal glycosphingolipid enzyme activity [30, 41, 76, 77]. 

Notable proteins constituting the cholesterol-related pathways represented in the MEF WT subset 

include 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and low-density lipoprotein receptor 

(LDLR). HMGCS1 is an enzyme involved in a rate-limiting step of the isoprenoid pathway [78] while 

LDLR is a surface receptor that binds extracellular cholesterol and traffics it to the lysosome [79]. 

Interestingly, their mRNAs are bound by TDP-43, and cytoplasmic accumulation of TDP-43 has been 

found to reduce expression of HMGCS1 and cause LDLR to co-aggregate with TDP-43 in 

oligodendrocytes of FTD patients, resulting in disruption in cholesterol biosynthesis and uptake [80]. 

MEF KO cells only aggregate cytoplasmic TDP-43 in response to ubiquitin-proteosome system inhibition 

[81], however, and TDP-43 is not significantly differentially expressed in MEFs in these data. Therefore, 

TDP-43 pathology likely does not contribute to the reduced expression of HMGCS1 or LDLR in MEF 

KO in these data. The lysosomal lipid metabolizing enzymes lysosomal acid lipase (LIPA) and acid 

ceramidase (Asah-1), also known as acid sphingomyelinase-1 or N-acylsphingosine amidohydrolase-1, 

are both overexpressed in MEF WT. LIPA is crucial for hydrolyzing TGs and cholesterol esters [82] 

while Asah-1 digests glucosylceramide into glucosylsphingosine [83] and was recently found by us to be 

significantly decreased in Grn-/- mouse brain lysate [67]. In sum, these data and the literature strongly 

suggest that MEF KO cells model the accumulation of lipids that occurs in FTD. 

The MEF KO subset showed a unique motif of “metabolism” in its top overrepresented pathways 

across multiple databases with specific pathways relating to mitochondrial compartments or 

mitochondria-related functions. The GO cellular compartment “mitochondrion” pathway (Figure 6) even 

ranked as more significant than “organelle”-related pathways despite the known association between 
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GRN-deficiency and lysosome dysfunction [66]. Disruption of mitochondrial transport and mitochondrial 

activity is implicated in the pathogenesis of several other neurodegenerative diseases like Alzheimer’s 

disease, Parkinson’s disease, ALS, and Huntington’s disease [84]. Models of FTD due to mutations in c9 

open reading frame 72 (c9orf72), the most common type of familial FTD [85], demonstrate mitochondrial 

dysfunction [86], and mutations in TDP-43 have been found to disrupt mitochondrial fission and fusion 

dynamics, disrupt mitochondrial trafficking, and to affect overall cellular bioenergetics although the 

precise mechanism for this behavior is unknown [87, 88].  

Pertaining to FTD due to GRN mutations, recently Grn-/- mice showed reduced cerebral glucose 

metabolism as measured by fluorodeoxyglucose-µPET scan [51]. Additionally, primary cortical neurons 

from Grn-/- mice demonstrated increases in caspase-mediated apoptosis [81], the caspase system being 

one of the mitochondrial-driven methods of initiating apoptotic cell death in response to some cellular 

stressor [89]. Kleinberger et al. 2010 also showed both cytoplasmic accumulation of TDP-43 and 

increases in apoptosis in MEFs after ubiquitin-proteosome system inhibition. Indeed, “regulation of cell 

death,” “positive regulation of cell death,” and various stress response pathways are overrepresented in 

MEF KO. A notable gene overexpressed in MEF KO and constituting several of these pathways is Rab32 

(log2 fold-change = 3.15; q = 0.0245). Rab32 regulates apoptosis through the targeting of protein kinase A 

to mitochondrial and endoplasmic reticulum (ER) membranes and influencing calcium handling by the 

ER [90]. Bui et al. 2010 found overexpression of Rab32 to shorten neurite length, alter mitochondrial 

morphology, and accelerate apoptosis. Overall, these data are supported by the literature and suggest that 

MEF KO cells may model mitochondrial dysfunction present in FTD possibly through pathways that 

influence cell death.  

Pathways unique to the iPSC-microglia WT subset centered around RNA metabolism and 

processing, ribonucleoproteins, and nucleus-adjacent cellular compartments. These results indicate that 

proteins constituting these pathways are underrepresented in iPSC-microglia KO. In the literature, RNA 

metabolism dysfunction and altered ribonucleoprotein (RNP) dynamics are well-known features of ALS 
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and FTD [91]. Indeed, mutations in several RNA binding proteins including TDP-43, FUS, TATA-box 

binding protein associated factor-15, Ewing sarcoma breakpoint region-1, heterogenous nuclear 

ribonucleoproteins A1/A2, and Tia1 cytotoxic granule-associated RNA binding protein (TIA1) are linked 

to sporadic and familial cases of ALS and FTD. Mutations in these proteins result in their aggregation in 

their respective neuronal cell types [92]. These RNA binding proteins are recognized by proteins in the 

protein quality control (PQC) system like c9orf72, valosin-containing protein, p97, sequestosome-1 

(SQSTM1)/p62, nucleoporin 62, and optineurin-1 (OPTN1) which attempt to clear them [93]. 

Interestingly, mutations in these PQC system proteins also result in ALS and FTD, functionally 

connecting RNA metabolism and the PQC system under ALS and FTD [91]. Apart from TIA1 (Table 3), 

none of the above-mentioned RNA-binding proteins nor PQC proteins are significant in these data. 

However, the PQC system cooperates with and overlaps with autophagy [91, 94], which is known to be 

disrupted in GRN-deficiency [33, 67, 95]. In these data, proteins like ubiquitin specific peptidase-8, 

programmed cell death-11, ubiquitin conjugating enzyme E2 E1, and ubiquitin protein ligase E3C are 

upregulated in iPSC-microglia WT suggesting possible dysfunction in the PQC machinery in iPSC-

microglia KO. 

The role of RNA metabolism in FTD and ALS is largely driven cytoplasmic accumulation of 

TDP-43 which occurs with both mutations in TDP-43 and mutations in other RNA binding proteins [91]. 

TDP-43, as an RNA binding protein, plays a direct role in the splicing, translation, and degradation of 

mRNA [96, 97]. Pathological TDP-43 disrupts RNA processing and disrupts normal transport between 

the cytoplasm and the nucleus through sequestration of nucleoporins, RNPs, and other nucleocytoplasmic 

machinery [98, 99]. Pathological TDP-43 can be recruited to stress granules, which are membrane-less 

organelles that form naturally in response to stress to sequester RNA, RNPs, and other cytoplasmic 

proteins and are sites of RNA metabolism [100, 101]. The presence of TDP-43 or other RNA-binding 

proteins like TIA1, expressed roughly four times higher in iPSC-microglia KO (Table 3), in stress 

granules slows the disassembly of the stress granule and can lead to an aggregate-like state, shunting them 
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to the ubiquitin-proteosome system to be degraded [91]. Large stress granules can overwhelm the 

ubiquitin-proteosome system and fail to be degraded, inhibiting anterograde transport in neurons [102]. 

Whether PGRN’s implication in neurite outgrowth is explained by this mechanism remains to be 

determined. While TDP-43 is not significantly differentially expressed in the iPSC-microglia nor are there 

explicit “stress granule” pathways overrepresented in either subset, stress granules, RNA-related 

processes, and autophagy are tightly related in ALS and FTD. Given that stress granules can form in 

microglia [103], the future observation of stress granules in the iPSC-microglia cell model may explain 

the overrepresentation of several RNA-related pathways in the iPSC-microglia WT. 

 The iPSC-microglia KO subset enriched pathways related to the secretion of extracellular 

vesicles. The secretion of vesicles is a well-known phenomenon of several cell types including central 

nervous system cells like neurons, astrocytes, oligodendrocytes, and microglia, with these vesicles having 

been categorized into distinct subtypes based on their size and contents [104, 105]. Regardless of typical 

function, activated microglia shed more vesicles, often containing cytokines or other inflammatory 

markers. Additionally, lysosome dysfunction has been found to upregulate exocytosis and vesicle 

secretion in microglia [106]. The overrepresentation of secretion-related pathways in the iPSC-microglia 

KO is supported by literature suggesting that GRN-deficient microglia are more active, more 

inflammatory, and demonstrate lysosome dysfunction [37, 38, 51-54]. Moreover, culturing primary 

thalamic mouse neurons with conditioned media from Grn-/- microglia was sufficient to induce TDP-43 

granule formation, nuclear pore defects, and cell death in those neurons, operating primarily through 

complement proteins C1qA and C3 [107]. While these reports did not specifically mention secreted 

vesicles, they demonstrate that secreted complement proteins from Grn-deficient microglia are sufficient 

to induce FTD hallmarks. In these data, C1qA was not significantly differentially expressed in the iPSC-

microglia and C3 was not found, but complement protein C1qB, a similar subunit of C1q, was 

significantly higher in the iPSC-microglia KO (log2 fold-change = 1.62; q = 0.0109). Additionally, CTSB, 

a lysosomal enzyme commonly found in vesicles secreted from microglia [108], is upregulated in iPSC-
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microglia KO (log2 fold-change = 1.23; q = 0.00415). Altogether, the significant overrepresentation of 

“secretion”-related pathways along with the overrepresentation of “lysosome” and “lysosome”-adjacent 

pathways (Supplemental Table 1) indicates that the iPSC-microglia KO show lysosome dysfunction and 

increases in inflammation which is supported by the literature. 

  



19 

 

Conclusion 
 

 Overall, this work is a thorough effort to identify shared and unique features across different 

models of GRN-deficiency using quantitative proteomics. While some pathways are shared, and others 

are unique to specific subsets, these features converge to produce a holistic view of FTD due to GRN 

mutations.  

 These data, supported by the literature, suggest that GRN pathology is driven by dysfunction in 

lysosomal lipid metabolism and catabolism resulting in the accumulation of lipids. All subsets 

demonstrated evidence of lysosome dysfunction through the overrepresentation of lysosome-related 

pathways. These results are grounded by the fact that PGRN is trafficked to the lysosome [20-22] and 

purported to interact with several lysosomal proteins [23-29, 40]. Recent hypotheses center on the 

primary pathogenic mechanism of GRN-deficiency being decreased levels of lysosomal PSAP due to a 

loss in co-trafficking of PGRN and PSAP [77, 109]. Reduced lysosomal PSAP reduces saposin levels, the 

peptides making up PSAP [110], which are crucial cofactors for several glycosphingolipid metabolizing 

enzymes [111]. PGRN may also directly interact with cathepsin D (CTSD). The role of this interaction on 

lipid metabolism is unknown; however, mutations in the CTSD gene, like GRN, cause a subtype of NCL 

and result in the accumulation of lipofuscin [112], suggesting there may be a direct role. The reduction in 

lysosomal PGRN and PSAP in GRN-deficiency disrupts lysosomal proteolytic activity and results in the 

accumulation of lipids which indirectly affects other cellular processes. 

 This idea is supported by findings that lipid species are altered in GRN-deficient brain tissue and 

plasma [42, 43, 72-74], lipid metabolizing proteins show decreased expression [42, 67], and lipid-

digesting enzymes show decreased activity [30, 41, 76, 77]. Recently lipids, including glycerolipids (e.g., 

TGs, DGs), phospholipids, ceramides, and cholesterol esters, were found to accumulate in Grn-/- 

microglia in the form of lipid droplets (LDs) [45]. These Grn-/- microglia shared several features with 
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lipid droplet-accumulating microglia that occur with age, including altered lysosomal and immune-related 

gene expression and increased expression of cytokines both at baseline and in response to stress. 

 In these data, the MEF WT subset demonstrated the strongest association with lipid metabolism 

through its several cholesterol- and lipid-related pathways along with overexpression of proteins like 

LDLR, HMGCS1, Asah-1, and LIPA. While LDs are commonly degraded in peroxisomes or 

mitochondria, they can also be degraded through trafficking to lysosomes, a process call lipophagy [113, 

114]. Reduced lipophagy because of dysfunction in lysosomal lipid metabolism can seed the 

accumulation of lipids in the cell. Evers et al. 2017 found Grn KO MEFs to accumulate TGs and some 

cholesterol esters which are lipids commonly found in LDs. Lipid accumulation can disrupt mitochondrial 

function by increasing reactive oxygen species [45, 114, 115], which may correspond to the 

overrepresentation of mitochondria- and metabolic-related pathways as well as pathways like “regulation 

of cell death” and “regulation of response to oxidative stress” in the MEF KO subset (Figure 11). 

Moreover, some lysosome-derived metabolites are transferred to the mitochondrial matrix to be used in 

the tricarboxylic acid cycle [116], so lysosome dysfunction that affects metabolite transfer to the 

mitochondria would also affect mitochondrial function. Altogether, this suggests that the primary 

dysfunctional phenotype in Grn KO MEFs is the dysregulation of lipid metabolism resulting in the 

accumulation of lipids and the disruption of both lysosomal and mitochondrial function. 

 Interestingly, these data also suggest that lipid metabolism plays a role in the iPSC-microglia 

model. While the primary feature of the iPSC-microglia KO subset is pathways related to secretion of 

vesicles, “regulation of lipid storage” is also a significant pathway being constituted by proteins like 

perilipin-2 (PLIN2) (log2 fold-change = 2.79; q = 0.0165) and carnitine palmitoyltransferase-1A (CPT1A) 

(log2 fold-change = 3.39; q = 0.0000188). PLIN2 is a LD surface protein and was found to be increased in 

aged lipid droplet-accumulating microglia and Grn-/- microglia [45] while CPT1A is a mitochondrial, 

fatty acid oxidation enzyme [117]. Their overexpression in iPSC-microglia KO may represent increased 

numbers of LD’s and a cellular response to increased lipid levels, respectively. Moreover, the 
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overrepresentation of secretion-related pathways may be an indication of an inflammatory state in the 

iPSC-microglia KO subset [105] possibly generated by lipid accumulation, a well-known phenomenon 

[44, 114]. The increase in vesicle secretion may be an attempt by the iPSC-microglia KO cells to secrete 

lipids and alleviate some of the burden. This is a strategy used by neurons to reduce the stress from toxic 

inclusions like amyloid-β plaque, tau, and mutant super oxide dismutase [104, 105] but also has been used 

by neurons to reduce the stress of lysosomal cholesterol accumulation in Niemann-Picks disease [118]. 

Cholesterol efflux is also a common mechanism to reduce inflammation in the cardiovascular system 

[119, 120].  

 Across the two cell types, there were several conserved significant pathways (Table 2; 

Supplemental Table 1). However, these pathways arose through different significant proteins as only 23 

proteins were significant between both cell types (Table 1). Many proteins are significant in one cell type 

but do not meet the significance criteria in the other cell type. Sometimes, these nonsignificant proteins 

have very low q-values but fail to meet the fold-change criterium, indicating less robust but perhaps 

meaningful expression differences. This occurred with some proteins known to be upregulated in GRN-

deficiency like CTSD which had a log2 fold-change of 0.734 (q = 0.000184) in the iPSC-microglia. 

Similarly, CTSB is reported to be upregulated in GRN-deficiency [121], but it did not meet the fold-

change criterium (|log2 fold-change| > 1.0) in the MEFs with a log2 fold-change of 0.354 (q = 0.0128).  

 Interestingly, some proteins are significant in one genotype of a cell model yet are significant in 

the opposite genotype of the other cell model (Table 1). This may be a result of a cell-type-specific 

difference, random chance, or even a spurious result of mass spectrometry methods such as a mis-

quantification of a peptide or the erroneous mapping of a peptide to a protein. CTSD is a topical example. 

Although it did not reach significance in either cell type, CTSD is trending in opposite directions between 

the two cell types with a log2 fold-change of 0.734 (q = 0.000184) in the iPSC-microglia and a log2 fold-

change of -0.869 (q = 0.000764) in the MEFs. Unpublished results from our lab (data not shown) along 

with literature [24, 27, 34, 37, 121] suggest that CTSD should be upregulated in MEF KO, contrasting 
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with these data. Regardless of the reasons why some proteins show opposing expression across the cell 

types, this feature of the data underscores the importance of verifying proteomic data in the lab. 

 Importantly, these analyses have some clear limitations. Firstly, they are limited by the relatively 

low number of replicates, having only three replicates per MEF genotype and only five replicates of 

iPSC-microglia WT and four replicates of iPSC-microglia KO. Secondly, they suffer from the typical 

limitations of ORA as opposed to a network-based analysis approach [122]. In ORA, proteins are 

designated as significant using some cutoff criteria, and then those proteins are used for ORA via a count-

based hypothesis test; here, I used Fisher’s Exact Test with exact rather than estimated p-values. This 

procedure eliminates proteins which may show small but meaningful differences between groups. 

Additionally, within the set of significant proteins, the fold-change values are ignored, and all proteins are 

treated equally without considering the implication of one protein being considerably more differentially 

expressed than another. Finally, ORA assumes both that each protein is independent of all other proteins 

and that each pathway is independent of other pathways.  

 Despite these limitations, this work produces insight into the pathology of FTD due to GRN-

deficiency through the analysis and comparison of two different cell models of GRN-deficiency. These 

results are corroborated by literature findings, and in turn, these analyses support the hypothesis that 

GRN-deficiency produces dysfunction in lysosomal lipid metabolism and catabolism resulting in the 

accumulation of lipids. This work is strengthened by the use of the random forest algorithm, strongly 

supported by the literature for these data [47], to impute missing values. Moreover, the accuracy of the 

algorithm was tested empirically and was found to be quite effective with all estimated error rates less 

than 0.11. 

Importantly, this work highlights the strengths of each cell model in studying GRN-deficiency. 

These data and the literature demonstrate that cholesterol and lipid metabolism are disrupted in Grn KO 

MEFs [42] (Figure 11). These results along with the fact that MEF cells endogenously synthesize most 

lipids [42] makes them an excellent candidate cell model for studying lipid metabolism and lipid 
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accumulation in GRN-deficiency. Additionally, these and future MEF proteomic data can be compared to 

other published proteomic datasets such as one from mouse liver lysosomes [123] or one from MEF 

lysosomes [124]. Microglia are a highly relevant cell type in FTD being the cell type that expresses the 

most PGRN in the CNS [16]. Moreover, microglia are suggested to play a crucial role in the pathogenesis 

of FTD [37, 38, 45, 54, 107]. These analyses identify pathways related to RNA dynamics and secretion of 

vesicles as being overrepresented in iPSC-microglia WT and iPSC-microglia KO, respectively, (Figure 

7) and pathways related to lysosome dysfunction being overrepresented in both (Supplemental Table 1). 

Additionally, the upregulation of PLIN-2 and the overrepresentation of the “regulation of lipid storage” 

pathway in iPSC-microglia KO suggest that lipid accumulation may occur in this subset. These data 

suggest future endeavors using this model should include determining the effect of conditioned media 

from iPSC-microglia KO on other cell types and include the study of stress granules or lipid droplets in 

iPSC-microglia KO.  
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Methods 
 

Cell pellet digestion.  

Three replicates of MEF Grn WT and Grn KO cells were lysed 300 µL of urea lysis buffer (8 M urea, 10 

mM Tris, 100 mM NaH2PO4, pH 8.5), including 3 µL (100x stock) HALT(-EDTA) protease and 

phosphatase inhibitor cocktail (Pierce) was added to the cell pellets. Samples were sonicated (Sonic 

Dismembrator, Fisher Scientific) 3 times for 5 sec each with 5 sec intervals of rest at 25% amplitude to 

disrupt nucleic acids and were subsequently centrifuged at 4° C. Protein concentration was determined by 

the bicinchoninic acid (BCA) method, and samples were frozen in aliquots at -80 °C. Protein 

homogenates (100 µg) were treated with 1 mM dithiothreitol (DTT) at room temperature for 30 min, 

followed by 5 mM iodoacetimide at room temperature for 30 min in the dark. Protein samples were 

digested with 1:100 (w/w) lysyl endopeptidase (Wako) at room temperature for overnight. Next day, 

samples were diluted with 50 mM NH4HCO3 to a final concentration of less than 2 M urea and were 

further digested overnight with 1:50 (w/w) trypsin (Promega) at room temperature. Resulting peptides 

were desalted with HLB column (Waters) and were dried under vacuum. 

Five replicates of GRN WT iPSC-derived microglia and four replicates of GRN KO iPSC-derived 

microglia were lysed in urea lysis buffer (8M urea, 100 mM NaHPO4, pH 8.5), including 5 uL (100x 

stock) HALT protease and phosphatase inhibitor cocktail (Pierce) by repeated pipetting. Protein 

supernatants were transferred to new 1.5 mL Eppendorf tubes and sonicated (Sonic Dismembrator, Fisher 

Scientific) 3 times for 5 s with 15 s intervals of rest at 30% amplitude to disrupt nucleic acids and 

subsequently vortexed.  Protein concentration was determined by the bicinchoninic acid (BCA) method, 

and samples were frozen in aliquots at −80°C.  The samples (100ug) were then treated with 1 mM (final 

concentration) dithiothreitol (DTT) at 25°C for 30 minutes.  This was followed by 5 mM (final 

concentration) iodoacetimide (IAA) at 25°C for 30 minutes in the dark. The samples were then digested 

with 1:100 (w/w) lysyl endopeptidase (Wako) at 25°C for 4 hours and then diluted with 50 mM 

NH4HCO3 to a final concentration of less than 2M urea.  Trypsin (Promega) was added at 1:50 (w/w) 

and digestion was allowed to proceed overnight. Resulting peptides were desalted with a Sep-Pak C18 

column (Waters) and dried under vacuum. 

MS data acquisition.  

The data acquisition by LC-MS/MS protocol was adapted from a published procedure [125] and was 

performed by the Integrated Proteomics Core Facility at Emory University for both cell types.  

MEF-derived peptides were resuspended in 100 µL loading buffer (0.1% trifluoroacetic acid). Peptide 

mixtures (2 uL) were separated on a self-packed C18 (1.9 µm, Dr. Maisch, Germany) fused silica column 

(30 cm x 75 µm internal diameter (ID); New Objective, Woburn, MA) attached to an EASY-nLC™ 1200 

system and were monitored on a Q-Exactive HF-X Mass Spectrometer (ThermoFisher Scientific, San 

Jose, CA). Elution was performed over a 90 min gradient at a rate of 300 nL/min (buffer A: 0.1% formic 

acid in water, buffer B: 0.1 % formic acid in acetonitrile): The gradient started with 1% buffer B, went to 

7% in 3 minutes, then increased from 7% to 35% in 67 minutes, then to 90% within 5 minutes and finally 

staying at 90% for 15 minutes. The mass spectrometer cycle was programmed to collect one full MS scan 

followed by 20 data dependent MS/MS scans. The MS scans (400-1600 m/z range, 3x106 AGC target, 

100 ms maximum ion time) were collected at a resolution of 120,000 at m/z 200 in profile mode. The 

HCD MS/MS spectra (1.6 m/z isolation width, 30% collision energy, 1x105 AGC target, 86 ms maximum 

ion time) were acquired at a resolution of 7,500 at m/z 200. Dynamic exclusion was set to exclude 
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previously sequenced precursor ions for 20 seconds within a 10-ppm window. Precursor ions with 

unassigned, and +7, or higher charge states were excluded from sequencing. 

iPSC-microglia-derived dried peptides were reconstituted in 100 uL of loading buffer (0.1% formic acid, 

0.03% TFA, 1% acetonitrile).  Each sample (2uL) was loaded onto and eluted from a self-packed C18 

fused silica column (25 cm x 75 uM internal diameter (ID); New Objective, Woburn, MA) driven by 

Thermo Easy-nLc 1200 ultra-high liquid chromatography system coupled to a Fusion Lumos mass 

spectrometer (ThermoFisher Scientific, San Jose, CA). Elution was performed over a 120-minute gradient 

at a rate of 250nl/min with buffer B ranging from 3% to 35% (buffer A: 0.1% formic acid in water, buffer 

B: 0.1 % formic in 80% acetonitrile). The mass spectrometer cycle was programmed to collect at the top 

speed for 3 second cycles with higher-energy collision dissociation (HCD) fragmentation. The MS scans 

(200-1500 m/z range, 400,000 AGC, 50 ms maximum ion time) were collected at a resolution of 120,000 

at m/z 200 in profile mode by the orbitrap while the HCD MS/MS spectra were captured by the ion trap 

(0.7 m/z isolation width, 30% collision energy, 10,000 AGC target, 35 ms maximum ion time) in centroid 

mode. Dynamic exclusion was set to exclude previous sequenced precursor ions for 20 seconds within a 

10-ppm window.  

MaxQuant:  

Label-free quantification analysis was adapted from a published procedure [125]. MEF spectra were 

searched using the search engine Andromeda, integrated into MaxQuant (v. 1.6.1.0), against Mouse 

UniProt database (54,518 target sequences). Methionine oxidation (+15.9949 Da), asparagine and 

glutamine deamidation (+0.9840 Da) and protein N-terminal acetylation (+42.0106 Da) were variable 

modifications (up to five allowed per peptide); cysteine was assigned as fixed carbamidomethyl 

modification (+57.0215 Da). Only fully tryptic peptides with up to two miscleavages were considered in 

the database search. A precursor mass tolerance of ±20 ppm was applied before mass accuracy calibration 

and ±4.5 ppm after internal MaxQuant calibration. Other search settings included a maximum peptide 

mass of 6,000 Da, a minimum peptide length of six residues and 0.05-Da tolerance for high resolution 

MS/MS scans. The FDR for peptide spectral matches, proteins and site decoy fraction was set to 1%. 

Quantification settings were as follows: match full MS1 peaks between runs; use a 0.7-min retention time 

match window after an alignment function was found with a 20-min retention time search space. The 

LFQ algorithm in MaxQuant was used for protein quantitation. The quantitation method considered only 

razor and unique peptides for protein level quantitation. 

iPSC-microglia spectra were processed through the MaxQuant pipeline (version 1.6.1.0) and searched 

against a Homo sapiens UniProt database supplemented with ApoE and Aβ specific sequences (90303 

sequences downloaded April 2015). Search parameters included fully tryptic trypsin enzyme specificity 

with an allowance of 2 miscleavages, ±20 ppm precursor ion tolerance, 0.6 Da product ion tolerance, 

dynamic modifications for oxidized methionine (+15.9949 Da), asparagine and glutamine deamidation 

(+0.9840 Da), and static modification of carbamidomethylated cysteines (+57.0215 Da). All FDR settings 

were kept at the default of 1%, and “match between runs” was on. 

Imputation 

Data had missing values imputed using a random forest algorithm implemented in the R package 

MissForest [46].  

The random forest algorithm was tested for accuracy empirically for each subset (MEF WT, MEF KO, 

iPSC-microglia WT, iPSC-microglia KO) using NRMSE as the error metric [48]. The following protocol 

was used. Proteins with actual missing values were filtered out of each subset producing the “filtered 



26 

 

subset.” Then, each filtered subset had missing values artificially introduced at a proportion identical to 

the actual proportion of missing values in that original subset. Those missing values were imputed back 

with the random forest algorithm using ten iterations maximum, number of trees hyperparameter set to 

100 or 500 trees, and bootstrap sampling a number of samples equal to the number of replicates. The 

estimated NRMSE, supplied by the algorithm, was collected and the true NRMSE was calculated 

comparing the imputed values to the original values. This protocol was performed twenty times for each 

subset and number of trees hyperparameter setting (100 or 500 trees) combination to produce forty total 

simulations per subset. Twenty simulations per subset per number of trees setting was chosen due to high 

computation times.  

Following empirical testing of the random forest algorithm, each subset was imputed using the number of 

trees hyperparameter set to 100, ten iterations maximum, and bootstrap sampling a number of samples 

equal to the number of replicates. 

Differential Expression Analysis  

Differential expression was tested using unpaired T-tests assuming equal variances on proteins between 

MEF WT and MEF KO and between iPSC-microglia WT and iPSC-microglia KO. The p-values were 

corrected for multiple comparisons using FDR. P-value correction was performed separately for each cell-

type. Significant proteins were those with a log2 fold-change > 1.0 and a q-value < 0.05.  

Overrepresentation Analysis and GO Pruning 

Overrepresentation analysis was performed on significantly different proteins using the R package 

gProfiler2 [57]. The Gene Ontology database used was updated as of 5/1/21.  

The returned Gene Ontology pathways were filtered for nominal p-values of < 0.05 and then submitted 

for pruning using REVIGO [63]. The nominal p-values of those pathways were also submitted to weight 

the importance of pathways during the pruning process. REVIGO pruned GO pathways based on their 

semantic similarity using the SimRel formula [64] and the number of shared genes that constitute the 

pathway. Pathways sharing greater than 50% of genes with another more significant pathway were 

pruned. If the p-values for two pathways were close, the more general term was removed unless the terms 

were in a parent-child relationship in which case the child was removed.  

The resulting unpruned pathways had their p-values corrected for multiple comparisons using the Holm 

method for the MEFs and the FDR method for the iPSC-microglia. Pathways were considered significant 

if they had a p-value < 0.01 for MEFs or a q-value < 0.01 for iPSC-microglia.  

PubMed Fetching 

The package easyPubMed [126] was used to help identify associations between proteins of interest and 

FTD or GRN. Protein names of interest (e.g., proteins that constituted a particular significant pathway) 

were prepended to a PubMed query to create a unique query of each protein and that query. The 

fetch_pubmed_ids() and get_pubmed_data() functions were used to identify papers and pull their PubMed 

identifiers.  

Queries referenced in this manuscript are in the table below where “protein” represents the protein name. 

Name Query String 

Q_GRN1 "protein AND granulin" 

Q_GRN2 “protein AND granulin[Title]” 

Q_FTD1 "protein AND ((frontotemporal dementia[Title]) OR (frontotemporal lobar 
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dementia[Title]))" 
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