

Distribution Agreement

In presenting this dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I agree that the Library of the

University shall make it available for inspection and circulation in

accordance with its regulations governing materials of this type. I agree that

permission to copy from, or to publish, this dissertation may be granted by

the professor under whose direction it was written, or in his absence, by the

Dean of the Graduate School when such copying or publication is solely for

scholarly purposes and does not involve financial gain. It is understood, that

any copying from, or publication of, this dissertation which involves

potential financial gain will not be allowed without written permission.

Signature

_________________________ ________________________

Haowei Wang Date

A Single Molecule Study of Two Bacteriophage

Epigenetic Switches

By

Haowei Wang

Doctor of Philosophy

Physics

Advisor: Dr. Laura Finzi

Approved for the Department by:

Advisor

Dr. David Dunlap

Committee Member

Dr. Kurt Warncke

Committee Member

Dr. Keith Berland

Committee Member

Dr. Ivan Rasnik

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D. Dean of the Graduate School

Date

A Single Molecule Study of Two

Bacteriophage Epigenetic Switches

By

Haowei Wang

B.S., University of Science and Technology of China

China, 1998

Advisor

Laura Finzi, Ph. D.

An Abstract of

A Dissertation submitted to the Faculty of the

James T. Laney Graduate School Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Physics

2011

Abstract

A Single Molecule Study of Two Bacteriophage

Epigenetic Switches

By Haowei Wang

Epigenetic switches allow organisms to evolve into different states by

activating/repressing different sets of genes without mutations of the underlying DNA

sequence. The study of epigenetic switches is very important to understand the

mechanism of human development, the origin of cancer, mental illness and fundamental

processes such as gene regulation.

The coliphage λ epigenetic switch, which allows switching from lysogeny to lysis, has

been studied for more than 50 years as a paradigm, and has recently received renewed

attention. Atomic force microscopy (AFM) was used here to show that the λ repressor

oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the

basis of the λ switch. This study also provides support for the idea that specifically bound

repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers

robustness to the switch.

186 is a member of a different coliphage family. One of the major differences between

the two coliphage families is that lambda phages can be induced to switch from the

lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which

186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is

characterized by AFM and tethered particle motion (TPM). To expedite analysis of the

AFM data, MatLab codes were written to automate the laborious, manual tracing

procedures. The programs automatically recognize DNA segments and protein particles

in an image, in order to measure the DNA length and position of bound particles as well

as their height, diameter and volume. Application of these algorithms greatly improved

the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric

wheels, which induce DNA wrapping and different kinds of DNA looping producing

various conformations of nucleoprotein complexes. Information about the dynamics of

DNA wrapping and looping on 186 CI particles was also obtained by TPM.

A Single Molecule Study of Two

Bacteriophage Epigenetic Switches

By

Haowei Wang

B.S., University of Science and Technology of China

China, 1998

Advisor

Laura Finzi, Ph. D.

A dissertation submitted to the Faculty of the

James T. Laney Graduate School Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Physics

2011

Acknowledgements

I owe my deepest gratitude to my advisor, Prof. Laura Finzi, for her generous

encouragement, guidance and support throughout my academic study. These pages would

be impossible without her kind mentorship and friendship over my five years of long stay.

I sincerely thank Dr. David Dunlap for the kindness advising and patient teaching during

my research.

I am heartily thankful to my Ph.D. advising committee members: Dr. Kurt Warncke, Dr.

Keith Berland and Dr. Ivan Ransik for their encouraging words, thoughtful criticism,

time and attendance to my annual meetings.

I am grateful to my two previous coworkers, Dr. Chiara Zurla and Dr. Carlo Manzo.

They greatly helped me mastering a variety of lab techniques and developing critical

thinking with constructive discussions during my first years of research in the lab.

I would like to thank the group members, Dr. Qing Shao, Dr. Sachin Goyal, Leila Afjehi-

Sada for their thoughtful discussions and suggestions.

I was fortunate benefit from the support of our great collaborators Dr. Iann Dodd and Dr,

Keith Shearwin not only for generously supplying proteins and DNA plasmids, but for

their guidance and attentive comments to my results and analyses.

Many thanks also to the undergraduate students who worked with me, Andrew Robinson,

Simon Yohannes, Nathan Cho, Il Kyu and John Mack. They helped me greatly in

experiments and image analysis and did a great job.

I would also like to thank my parents and my girlfriend Sherry. Although they do not

quite understand what I am doing, they always support me. They encouraged me when I

felt low.

I owe much to my advisors in China, Prof. Yinmei Li and Prof. Liren Lou. They are the

first people who lead me into this field of research and taught me a lot in my early time of

scientific research.

I received guidance and assistance from many more people and friends over the years. It

is impossible to list and thank them all. This dissertation is dedicated to all of them as

well.

Table of Contents

Chapter 1 Introduction ..1

 §1.1 Epigenetic switches ..2

 §1.2 Prophage and the λ epigenetic switch ...4

 §1.3 The 186 prophage ..7

 §1.3.1 Transcriptional interference ...7

 §1.3.2 Coliphage 186 ..9

 §1.3.3 Chromatin and DNA wrapping ...11

Chapter 2 AFM Studies of λ Repressor Oligomers Securing DNA Loops13

 §2.1 Background ...14

 §2.2 Material and method ...17

 §2.2.1 Material ..17

 §2.2.2 DNA contour length on mica surface ..19

 §2.3 Result and discussion ...21

 §2.3.1 DNA contour length measured by AFM ..21

 §2.3.2 Specific binding to operator sites ..23

 §2.3.3 Weak affinity for the OR3 operator site ...25

 §2.3.4 Multiple operators may recruit dimers ..26

 §2.3.5 Loop equilibrium ..28

 §2.3.6 Volume calibration ..29

 §2.3.7 Loop closures are prevalently dodecamers ...33

 §2.3.8 Alternative loop closures ..35

 §2.3.9 Conclusion ..38

Chapter 3 AFM and TPM Studies of DNA wrapping and looping of phage 18640

 §3.1 Background and introduction ..41

 §3.2 Material and method ..43

 §3.2.1 AFM sample preparation ...43

 §3.2.2 TPM sample preparation ...45

 §3.2.3 Measurement of wheel diameter ..46

 §3.3 Result and discussion ..49

 §3.3.1 Conformation of basic model ...49

 §3.3.1.1 The 186 repressor and its assembling ...49

 §3.3.1.2 CI regulated mechanism ..54

 §3.3.2 Pseudo site on FL ..59

 §3.3.3 Asymmetric DNA wrapping on pR region ...61

 §3.3.4 DNA wrapping/unwrapping ..62

 §3.3.5 TPM study of DNA wrapping and looping ...62

 §3.3.6 DNA looping ...67

 §3.3.7 Other CI binding forms and non-specific binding75

Chapter 4 Automated DNA segmentation and protein recognition from AFM images

 §4.1 Background77

 §4.2 Method and algorithm..79

 §4.2.1 Filtering..79

 §4.2.2 Threshold and segmentation ...80

 §4.2.3 Thinning and selection of DNA skeleton83

 §4.2.4 DNA length estimation87

 §4.3 Application and programming88

 §4.3.1 DNA tracing88

 §4.3.2 Masking and interactive modifying90

 §4.3.3 DNA contour length measuring.. ..95

 §4.3.4 Automatic particle analysis on DNA or surface97

 §4.3.5 Auto-analysis of DNA protein interaction101

 §4.3.6 Data conversion..103

 §4.4 Discussion103

References 104

Appendices .110

 Appendix A AFM studies of λ repressor oligomers securing DNA loops111

 Appendix B The lambda bacteriophage epigenetic switch: new insight from single-

molecule microscopy ..119

 Appendix C A missing link between transcription factors and nucleosomes: the

bacteriophage 186 CI repressor wraps and loops DNA139

 Appendix D Matlab code for protein particle measurement and simulation148

 Appendix E Matlab code for automated tracing and DNA protein analysis programs

 155

List of Figures

Chapter 1: Introduction

Figure 1.1 Life cycle of the prophage and the formation of a lysogen5

Figure 1.2 CI protein and phage DNA interaction..7

Figure 1.3 Three promoter arrangements that lead to transcriptional interference8

Figure 1.4 X-ray crystallography revealed 186 CTD ..10

Figure 1.5 X-ray crystal structure of the nuceosome ...12

Chapter 2: AFM Studies of Repressor Oligomers Securing DNA Loops

Figure 2.1 Schematic representation of non-specific binding nucleation15

Figure 2.2 Schematic drawing of an AFM ...16

Figure 2.3 300 simulated 1500 bp polymer chain ...19

Figure 2.4 Measured DNA basepair rise ..21

Figure 2.5 AFM images of λ CI and DNA ..23

Figure 2.6 AFM measurement of the position of CI particles ..25

Figure 2.7 Pairs of CI particles bound to adjacent sites ...27

Figure 2.8 Loop ratio under different CI concentration ..29

Figure 2.9 AFM measurements of the volume of CI protein particles30

Figure 2.10 AFM measurements of the volume of lac repressor31

Figure 2.11 AFM protein volume calibration ...31

Figure 2.12 Oligomerization of CI secring DNA loops ..33

Figure 2.13 Volume of particles securing DNA loops ..35

Figure 2.14 Specifically bound protein particles ..37

Chapter 3: AFM and TPM Study of DNA Wrapping and Looping of Phage 186

Figure 3.1 Three groups of binding sites on 186 ...41

Figure 3.2 Schemetic drawing of TPM ...43

Figure 3.3 AFM tip effects ...44

Figure 3.4 A cross section of the image of a DNA molecule ...47

Figure 3.5 Cross section of different shape particles ...48

Figure 3.6 X-ray crystal structure of 14mer wheel of 186 CTD50

Figure 3.7 Diameter of 186 particles..51

Figure 3.8 AFM volume calibration for 186 ..53

Figure 3.9 Schemetic representation of 186 repressor-DNA interaction55

Figure 3.10 Frequency distribution histogram of 186 wheel location56

Figure 3.11 186 wheel positioning at FL ...60

Figure 3.12 DNA coverage of 186 particles on pR ..61

Figure 3.13 TPM calibration curve ...64

Figure 3.14 Frequency distribution of TPM data ...65

Figure 3.15 Frequency distribution of TPM data ...66

Figure 3.16 TPM trajectory ..66

Figure 3.17 Frequency distribution of TPM data (wild type) ..67

Figure 3.18 Frequency distribution of TPM data ..72

Figure 3.19 Frequency distribution of TPM data ...73

Figure 3.20 Frequency distribution histogram of occupancy ..74

Figure 3.21 AFM images of 186 wt DNA with 300nm CI ..75

Chapter 4: Automated DNA Segmentation and Protein Recognition from AFM

Images

Figure 4.1 The background of AFM images ...79

Figure 4.2 Frequency distribution of z values ..80

Figure 4.3 Zoomed view of the tail of fig. 4.2 ..81

Figure 4.4 An original AFM image ...82

Figure 4.5 Identification of critical pixels ..84

Figure 4.6 One process of thinning ..84

Figure 4.7 Working flow of the thinning process ...85

Figure 4.8 The process of thinning ..85

Figure 4.9 DNA skeleton ...86

Figure 4.10 Interface of masking program. ..90

Figure 4.11 Delete subfunction ..91

Figure 4.12 Connect subfunction ...92

Figure 4.13 The two DNA connection ...93

Figure 4.14 User interface of a segment length measurement ...94

Figure 4.15 Calculating the length of a part in the DNA segment94

Figure 4.16 Dialog box for DNA length measurement ..95

Figure 4.17 Contour length of 1934 bp DNA ...96

Figure 4.18 Contour length of 1500 bp polymer chain ..96

Figure 4.19 User interface panel of the particle analysis program98

Figure 4.20 Output of particle analysis program ...100

Figure 4.21 Saved excel data of particle analysis ..101

Figure 4.22 Distribution histogram of protein binding position102

List of Tables

Chapter 1: Introduction

Chapter 2: AFM Studies of Repressor Oligomers Securing DNA Loops

Table 2.1 Precentages of CI-mediated loops ...28

Table 2.2 Segment length for DNA loops ...38

Chapter 3: AFM and TPM Study of DNA Wrapping and Looping of Phage 186

Table 3.1 Statistics on the interaction between 186 and wt DNA57

Table 3.2 Calibration data of TPM ..63

Table 3.3 Statistics on the interaction between 186 CI and delta Pr mutation68

Table 3.4 Statistical result of interaction on FL+pRFR- mutation69

Table 3.5 Condensed statistical result of Tab. 3.4 ...69

Chapter 4: Automated DNA Segmentation and Protein Recognition from AFM

Images

Table 4.1 Meausred DAN contour length with different estimator87

Table 4.2 Comparison of different tracing methods on DNA images97

1 | P a g e

Chapter 1

Introduction

2 | P a g e

§ 1.1. Epigenetic switches

The Greek prefix epi- in epigenetic implies aspects “in addition to” genetics.

According to the classical definition given by Ptashne and Gann [1] (p100), an

epigenetic switch is the change of gene expression states which can be inherited, and

maintained even though the signal that initiated that change is absent. In other words,

an organism can evolve into different states by activate or repress different sets of

genes thanks to epigenetic switches even if there is no mutation in the underlying

DNA sequence and the environment is the same.

Scientists suspect epigenetic changes may represent a form of memory that allows

organisms to remember their experience [2]. Reversible phenotype variability of

epigenetic changes may provide a pathway for short-tem adaptation of species. For

example, vernalization is the process by which plants flower only after having

experienced a period of cold temperature and is the result of a epigenetic mechanism

[3]. Transgenerational epigenetic inheritance is also observed in humans [4].

Different epigenetic features can be associated to different mutation rates. Indeed,

organisms may control the mutation rate of particular genes epigenetically [5].

Furthermore, some epigenetic features are heritable from one generation to another

when a DNA mutation takes place in the sperm or egg cell of an individual [6]. This

indicates how epigenetic switches may affect adaptation and evolution. Similarly,

epigenetic switches could be related to the differences between identical human twins

[7].

 Cellular differentiation in eukaryotes is another example of epigenetic switches.

Totipotent stem cells develop into various pluripotent cell lines and finally transform

3 | P a g e

to fully differentiated cells during morphogenesis without any change of their gene

sequences [8].

Currently, epigenetic modifications explicitly include some current field of

research like DNA methylation and chromatin remodeling [9, 10], RNA interference

[11, 12], prions [13] etc.. The importance of epigenetic marking on the development

and failure of cloned sheep and bovines is well proved by several works [14-16]. The

development of some human disorders also involve epigenetic effects [17, 18]. In the

particular case of the Angelman syndrome and Prader-Willi syndrome, patients will

develop different syndromes depending on the genomic imprinting inherited from

their parents even though the syndrome is caused by same genetic mutation [17]. It is

also reported that many agents that disturb the structural development of embryos or

fetuses (for example, cleft lip or two headed new born creatures) affect the fetus by

epigenetic mechanisms [19]. In addition, abnormal DNA methylation is also detected

when a benign proliferation develops into an invasive cancer [20].

According to these findings, the study of epigenetic switches is important to

understand the mechanism of human development, the origins of cancer, mental

illness, as well as fundamental processes such as gene regulation etc. In 2008, the

National Institutes of Health announced more than $190 million funding for a new

epigenomics initiative. According to past NIH Director Elias A. Zerhouni,

“Epigenomics-based research is now a central issue in biology.”

4 | P a g e

§ 1.2. The prophage and the λ epigenetic switch

Prophage is a state of coexistence of the host genome and the phage genome.

Once a coliphage such as λ infects an Escherichia coli bacterium, it needs to make a

decision between two developmental modes. Sometimes, the coliphage takes a lytic

developmental pathway. In this case, various phage genes are turned on so that the

phage genome is extensively replicated and new phage proteins are synthesized. After

approximately 45 minutes, the cell lyses and releases about 100 new phages as

illustrated in figure 1.1. Other times, the bacteriophage can go into a lysogenic state

by inserting its genome into the bacterium‟s genome to form a lysogen. Once a

lysogen is formed, all the phage genes except one are repressed and the cell becomes

immune to other phages.

In a lysogen, the cell can grow and divide with the phage genome and the

prophage passively replicates with the host cell. The cell can stay in this lysogenic

state for a very long time until it is induced by some environmental change such as

UV irradiation or starvation. For example, when a lysogen is irradiated by UV light

virtually all the lysogen will switch to a lytic response, lyse the cell and produce a

new crop of phages.

5 | P a g e

Figure 1.1: Life cycle of the prophage and the formation of a lysogen. Once a coliphage

infects a bacteria, it can make a decision between lytic and lysogenetic responses. In the

lytic response, the phage reproduces itself causing the lysis of the host, and releasing about

100 new phages (virulent reproduction pathway). In the lysogenic response, the phage

inserts its genome into the cell and represses most of its genes to form a prophage. The

prophage state is inheritable (quiescent reproduction pathway) and will be stable until

changes in the environment stimulate the prophage to switch to a lytic response.

λ is one of the most comprehensively studied bacteriophages. The relationship

between phage λ and its host Escbericbia coli is the archetype model system for the

investigation of many fundamental biological processes, especially gene regulation

[21].

The epigenetic switch between lysogeny and lysis in bacteriophage λ is controlled

by one sole protein named  repressor, or CI. The function of CI in the cell was

established more than twenty years ago [22, 23]. CI maintains lysogeny by preventing

transcription of multiple phage early genes such as N, cro, O, P and Q which are

necessary for lytic development. It has already been understood that the establishment

and maintenance of a lysogen require repression of both the pL and pR promoters that

6 | P a g e

are controlled by CI [21]. Furthermore, the evidence that CI affects transcription of

pRM, the promoter that encodes CI, has been well described in 1981 [22].

The different roles of the CI binding sites in gene regulation have already been

well examined in previous works [21, 24]. After dimerization, CI protein can bind on

six binding sites cooperatively. It is believed that a CI dimer binding on OR1 will turn

off the transcription of pR, but have no effect on pRM. Also, pL can be turned off by

a CI dimer bound to OL1 without any other effect. However, if a CI dimer is bound to

OR1, a second will cooperatively bind to OR2. CI binding on OR2 stimulates

transcription from PRM. This leads to an over-expression of CI and eventually would

prevent the lysogen to efficiently switch to lytic growth when necessary. Experiments

conducted only on the OR region of λ DNA had showed that CI on OR3 represses PRM

and provides a mechanism of negative auto-regulation which would allow control of

CI concentration. However, OR3 is a very weak site and can only be occupied at non-

physiological concentrations of CI [21].

Since the two CI binding sites OL and OR are separated by a couple of thousands

of base pairs, a long range cooperative mechanism involving DNA looping was

demonstrated in 2005 and 2006 [24, 25]. According to this looping mechanism, the

CI protein in its dimeric form can regulate three different promoters by binding to six

different binding sites of the DNA in different ways as illustrated in figure 1.2. The

protein binding on OL1-2 and OR1-2 sites can interact face-to-face and form a DNA

loop. In this way, it stably represses transcription from pR and pL. It also brings OL3,

which is a strong binding site to face OR3 as indicated in figure 1.2. Therefore, the CI

dimer binding on OL3 can stabilize a CI dimer on OR3 via a protein-protein interaction

7 | P a g e

and pRM is turned off at a physiological CI concentration. The first evidence of CI-

mediated DNA loop formation and breakdown was provided in vitro in the Finzi lab

[25-27].

Figure 1.2: CI protein and phage DNA interaction. There are six different CI binding sites

named OR 1,2,3 and OL 1,2,3 on the phage DNA through which transcription of three promoters

(pR, pRM, pL) can be regulated (a). The model predicts that CI dimers may mediate DNA

looping (b).

§ 1.3. The 186 bacteriophage

§ 1.3.1 Transcriptional interference

Transcription of one gene may interrupt the transcription of a neighboring gene in

cis. This „promoter occlusion‟ was first found in prokaryotes [28] and later named

„transcriptional interference‟ [29]. It provides a new mechanism of gene regulation,

especially for the not-well-studied function of untranslated RNAs [29, 30].

8 | P a g e

Transcriptional interference is widely found in coliphage [31], yeast [32], mammals

[33] and drosophila [30, 34], and is used in the research of human diseases like cancer

[35] and HIV [36, 37], and in strategies for drug development.

Normally, in transcriptional interference a strong promoter suppresses another

weaker promoter. The three promoter arrangements that lead to transcriptional

interference are illustrated in figure 1.3. They are: convergent promoters like the lytic

and lysogenic promoters of coliphage 186 [31]; tandem promoters, like the yeast

SRG1 and SER3 promoters [38] and overlapping promoters such as the aroP P1 and

P3 promoters of E. coli [39].

Figure 1.3: Three promoter arrangements that lead to transcriptional interference. The two

gray bars on the line represent two promoters on DNA. The arrows represent the direction

of transcription. In the convergent case, RNA polymerase transcribing from one promoter

will impact the polymerase sitting on or trascripting from the other promoter and kick it

away. When the two promoters are in tandem, the RNA polymerase transcribing from the

back promoter may approach andremove the RNAP on the other promoter. If two

promoters overlap, RNA polymerase binding on one promoter will sterically prevent

another RNAP from binding on the other promoter.

Based on these three promoter structural arrangements, five transcriptional

interference mechanisms are demonstrated by Shearwin in 2005 [29]. When the two

9 | P a g e

promoters are overlapping, occupancy of RNA polymerase on one promoter will

preclude another polymerase from binding on the other promoter. A bound

polymerase (but not transcribing) can be kicked off the DNA by a polymerase which

is transcribing in the opposite direction from a different promoter. Polymerase

binding at a given promoter can be prevented by another enzyme who had started

from another promoter located either in a convergent or tandem geometry. Two

transcribing polymerases may collide, and both leave the DNA. Finally, a tightly

bound RNAP can act as a roadblock if it does not fall off the DNA by a transcribing

RNAP.

§ 1.3.2 Coliphage 186

Many coliphages exist in lysogenic hosts as prophages rather than free phage

particles [40]. These phages can be roughly divided into inducible/noninducible

groups by the ability to switch from a lysogenic growth to lytic growth under UV

induction. The family of bacteriophages to which λ belongs consists of all inducible

phages because they can all switch from lysogeny to a lytic response after

exposure to UV light. As a member of the P2 family, coliphage 186 provides a

noninducible counterpoint to λ phage [41]. Although 186 is almost unrelated to λ in

DNA sequence [42], the lifecycles are almost the same [31]. Both phages maintain a

genetic switch between lytic and lysogenic growth with one sole protein named in

both cases CI. 186 CI, the lysogenic repressor of the186 phage, is not sequence-

related to λ CI even though they have very similar structure [31]. 186 CI and λ CI

10 | P a g e

both have one C terminal domain and one N terminal domain linked by a free peptide

linker. Both of them bind to DNA with NTD and interact with other molecules of

repressor with CTD. Unlike in the case of λ DNA, the 186 DNA contains three strong

binding sites at pR and two flanking sites FL, FR [43]. Therefore, although 186 CI

and λ CI can regulate transcription of their own gene both positively and negatively,

depending on repressor concentration, their mechanisms must be very different.

X-ray studies show that the CTD of 186 repressor can form a wheel of seven

dimers (fig. 1.4) [41]. Therefore, it is reasonable to suspect that the intact protein may

also form a heptamer of dimers in nature. Even though the protein concentration for

crystallographic studies is approximately 20 times higher than in normal bulk

experiments [41], the idea of a wheel shaped repressor oligomer is intriguing. It could

bind cooperatively to the multiple binding sites at pR and induce DNA wrapping and

looping which, in turn, could explain how 186 can positively and negatively regulate

the production of its repressor and maintain the lysogenic state [31].

Figure 1.4: X-ray crystallography [41] revealed that 186 CTD can assemble into wheel-like

particles. Each particle contains seven dimers. The wheel is approximately 102Å in

diameter and 57 Å thick according to X-ray crystallography.

11 | P a g e

§ 1.3.3 Chromatin and DNA wrapping

Organismal genomes seldom exist as naked DNA. Their DNA is often bound by

other proteins such as HU, IHF or histone proteins. In eukaryotes, DNA often wraps

on histone proteins to form nucleosomes (fig.1.5) and chromatin. It is believed that

the main function of chromatin is to package DNA to fit in the small volume of the

cell nucleus. These nucleoprotein complexes can also strengthen the DNA during

mitosis or meiosis and prevent DNA damage. In the 1980‟s, alternations of chromatin

composition, structure and function were noticed and related to aging [44, 45]. In the

past 20 years, more evidence that chromatin structure determines transcriptional

control were presented [46]. For example, gene silencing in eukaryotes has been

found to be related to DNA methylation [47].

 The remodeling of chromatin provides a platform for gene silencing and

activation [46]. If the hypothesis that DNA can wrap on the wheel-like particle of 186

repressor is correct, there might be functional similarities between DNA wrapped

around the histone octamers and DNA wrapped around the186 heptamer. Therefore,

the study of DNA wrapping and unwrapping the 186 wheels may serve as a

simplified model for chromatin remodeling.

12 | P a g e

Figure 1.5: X-ray crystal structure of the nucleosome. (PDB: 3AV1) [48]. DNA wraps

around histone proteins by 1.67 turns.

13 | P a g e

Chapter 2

AFM Studies of λ Repressor

Oligomers Securing DNA Loops
1

1
 This work was published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009

Bentham Science Publishers.

14 | P a g e

§ 2.1. Background

Prophage λ regulates repressor transcription by looping [21]. When a lysogen is

formed, the phage DNA is looped by head-to-head interaction between CI tetramers

binding respectively on two group of specific sites OR1-2 and OL1-2 separated by 2.3 bp

[24-27] (fig. 1.2). The occupancy of OR 1&2 will repress all lytic genes and stimulate

the expression of the CI protein itself. Once the DNA loop is formed, the CI dimer

binding at OL3 site may help another CI dimer to bind at OR3, a weaker binding site,

by head-to-head interaction. Thus, the transcription of CI protein is turned off and CI

concentration is maintained at a level such that the lysogenic state can be maintained

and the prophage can still switch to a lytic response if needed [21].

This looping model well explains the mechanism of the phage λ‟s genetic switch.

However, some recent work indicated that nonspecific interactions between CI and

DNA may play a role in the formation of dynamic loop [49]. In particular, a dimer

bound at either of the O3 operators could interact “side-by-side” with an adjacent

dimer bound non-specifically. In principle, the OL and OR regions may function as a

seeding spots for extensive CI oligomerization and loop closure [50-52] (fig. 2.1).

15 | P a g e

Figure 2.1: Schematic representation of non-specific binding nucleation. The solid circles

on DNA (solid lines) are strong binding sites (OL1-3, OR1&2). The hollow circle is the weaker

site OR3. CI dimers (blue boxes) first bind on O1&2 sites and loop the DNA with head-to-

head interaction. After that, the CI dimer binding on OL3 can help another dimer binding to

OR3 [21]. Because the two dimers binding on O3 sites do not have neighbor CIs to interact

side-by-side, it is proposed that they can help other two dimers to bind non-specifically [49].

Further CI oligomerization may then occur inside the loop (light blue boxes) [50-52].

 Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a

powerful microscopy technique where a probe is scanned on a surface to obtain its

topographical profile [53]. The probe is constituted by a tip with a very sharp end.

The tip is mounted on a soft cantilever which carries a mirror on its back side (fig.

2.2). Once the tip is approaching the surface, van der Waals forces will act on it

before it contacts the surface. Thus, the cantilever will be bent to an angle that can be

detected by the reflection of the laser beam shining on the back side of the cantilever.

This optical detection of the change in force of interaction between tip and surface

can provide the topography of the surface over which the sample is deposited [54].

AFM imaging is commonly achieved in “contact” mode.

16 | P a g e

Figure 2.2: Schematic drawing of an AFM [54]. A very sharp tip is attached at the bottom

of a cantilever (yellow). The sample (orange spot) is put onto a piezoelectric ceramics

(gray). A laser beam (red) is reflected by a mirror on the top of the cantilever and reflected

to the detector (blue circle). The small change of distance between the sample and the tip

will bend the cantilever and successively change the angle of reflected laser beam.

AFM can also produce images of the sample in “tapping” mode. In this case, the

cantilever is driven by a piezo motor and made oscillate according to its resonance

frequency. The oscillation range is then recorded by the detector. When the tip

approaches the surface, its oscillation will be disturbed by the surface-tip interaction

and the oscillation range will be changed also. Commonly, the height of the sample is

controlled by another piezo motor so that the oscillation is kept within a constant

range when scanning. Therefore, the voltage changes applied on the second piezo

reflect the curvature of the sample surface. Using this method, the 3-D profile of the

sample can be reconstructed. Compared to the contact mode, the tapping mode

significantly decreases the damage done to the surface by lowering the force applied

on it. Therefore, all the images in this study were obtained in tapping mode.

17 | P a g e

Unlike tethered particle microscopy (TPM) or magnetic tweezers (MT), the

ability of AFM to obtain the 3-D topographic description of the sample surface can be

used to directly visualize the structure of the protein-DNA complex and provide

information that TPM and MT cannot.

§ 2.2. Materials and methods

§ 2.2.1 Material

1555 bp DNA fragments were produced by PCR amplification of segments of

plasmids pDL944 and pDL965 using 5'-CGCAATTAATGTGAGTTAGCTCACTCA

TTAGGCACCCCAGGC-3' and 5'-GCATTGCTTATCAATTTGTTGCAACGAACA

GGTCACTATCAGTC-3' as forward and reverse primers. These fragments contained

wild-type or mutant lambda operator regions (OL and OR), respectively. The distance

between the midpoints of operator sites OL3 and OR3 was 393 bp. pDL965 contains

CC to AT mutations in OL3 and OR3, which abrogate CI binding [55]. PCR using the

same plasmid templates was also used to generate 505 or 392 bp DNA fragments that

contained only one group of binding sites (OR or OL).

732 bp DNA fragment containing two high affinity lac operators Oid (5‟-

TGTGAGCGCTCACA-3‟) and O1 (5‟-AATTGTGAGCGGATAACAATT-3‟) [17,

18] separated by 70 bp was provided by Opher Gileadi (Quantomix Ltd, Rehovot,

Israel). It was produced by PCR using the plasmid pOid-O1 from the Müller-Hill

laboratory as a template and 5‟-GCCACCTCTGACTTAAGCGTCG-3‟ and 5‟-

TTGAGGGGACGTCGACAGTATC-3‟ as forward and reverse primers.

18 | P a g e

Another 1584 bp DNA fragment was cut from pBluescript plasmid with two

restriction enzymes: Xma I and Ngo MIV (New England Biolabs. Ipswich, MA). This

fragment does not contain any lambda CI sites.

The wild-type CI protein (7.25 µg/µl) was purified from pEA305 in the laboratory

of Sankar Adhya. 20 nM CI and 2 to 4 nM DNA were gently mixed in a buffer

containing 50 mM HEPES, 150 mM NaCl and 0.1 mM EDTA (pH 7.0) and incubated

at RT for 10 min. Shortly before deposition, a 10 µl drop of 0.1 µg/ml poly-L-

ornithine (1 kDa MW, product #P5666, Sigma-Aldrich, St. Louis, MO) was incubated

on freshly cleaved mica for one minute at RT. The poly-Lornithine- coated mica was

then washed with 0.4 ml HPLC water and dried with compressed air. Then 5 µl of the

solution containing DNA and protein was quickly diluted with 40 µl of buffer, and a

10 µl droplet of this solution was deposited on the poly-L-ornithine-coated mica and

incubated for one minute at RT. The droplet was rinsed away with 0.4 ml HPLC

water and dried gently with compressed air. The sample was left overnight in a

dessicator at RT before imaging.

In the study about loop probability, 50-200 nM his-tag wild-type lambda CI were

incubated with 1 nM wild-type lambda DNA. 92 µM his-tag CI were a kind gift from

Keith Shearwin.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital

Instrument, Santa Barbara, CA) operated in tapping mode using a 50-60 mV

oscillation amplitude of uncoated, etched silicon tips with a resonance frequency of

19 | P a g e

75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of 1×1 µm
2
 were scanned at a

rate of 1.2 Hz and a resolution of 512×512 pixels.
2

AFM raw images cannot be analyzed directly for two reasons: first, because

images are generated by scanning in successive lines, and there could be an offset

between successive scan lines; second, because the piezoelectric motor response is

not perfectly linear, the image surface is often bowing even if the sample surface is

flat. After filtering, these two effects can be removed and DNA molecules may be

interactively traced with NeuronJ [56], a plug-in function for ImageJ [57]. The

volume of protein particles are measured with a basal threshold about 0.08 nm above

the background. The base value in following measurement was then calculated as the

mean value of all pixels below this threshold. For each isolated protein particles, the

sum of the pixel heights above the base within the area of the particle protruding

above the basal threshold was calculated as its volume. A second “DNA” threshold

was selected just above the DNA to cut off the DNA from DNA bound protein

particles. Therefore, only pixels protruding above the “DNA” threshold were

considered as a part of the particles. The Matlab routine which performs this analysis

can be found in appendix D and E.

§ 2.2.2 DNA contour length on mica surface

In order to localize the specific location of CI binding on DNA, the position of the

protein particles on the DNA revealed by the AFM images needs to be measured

accurately. First of all, since the AFM images are obtained by scanning a tip over the

2
 This section was published in Current Pharmaceutical Biotechnology (2009, Vol. 10, P 494-501) by ©

2009 Bentham Science Publishers.

20 | P a g e

sample surface, the shape and size of the tip will smooth and enlarge the DNA fiber

and make it appear wider. For the same reason, a DNA molecule that follows a zigzag

contour might be smoothed during imaging and its overall contour length might be

underestimated.

On the other hand, measured DNA contour lengths may be overestimated because

of pixilation. The DNA fibers are recorded in AFM images as quantified pixels

instead of continues smooth curvatures. Therefore, some extra zigzags might be

introduced and DNA contour length can be estimated in this process. Different DNA

length estimators are available to balance the overestimation and underestimation

factors due to the effects described above. [58-60].

Furthermore, the dried mica surface is very different from the natural aqueous

cellular environment. It is suspected that DNA dried on mica may experience a partial

transformation from B to A-form [58]. This conformational change would alone

cause the DNA adsorbed and dried on mica to shorten since the A-form helix has a

shorter helical pitch than that of the B helix.

Because of these considerations, simulated DNA polymer chains were used to

evaluate the effect of tracing. A matlab routine was used to generate 300 polymer

chains with two different persistence lengths (25 nm, 53 nm). Each polymer chain

contains 1500 0.34 nm long segments, corresponding to 1500 bp B-form DNA. Then

a virtual tip with a 2.7 nm radius end was used to scan the simulated DNA. The

scanning signals were quantized into 512×512 pixel images and supplemented with

random noise (Fig. 2.3). The final images were saved in tiff files which is the same

format as that of real AFM images. The matlab codes of simulation (hundreds.m) and

21 | P a g e

image construction (imageG.m) can be found in appendix C. Then the images were

traced and measured exactly the same way as normal AFM images.

Figure 2.3: 300 simulated 1500 bp polymer chain (left) and one example of simulated

image of one polymer chain. Unlike the real DNA, the length of simulated polymer chains

is well known and is not affected by the sample preparation. Tracing such polymer chains

from simulated images can give an estimate of the error that is introduced by the tracing

process.

Finally, DNA segments with different number of basepairs were used to

determine the exact ratio between length and the base pair rise.

§ 2.3. Result and discussion

§ 2.3.1 DNA contour length measured by AFM.

The base pair rise was measured from experimental or simulated images (fig.2.4).

The simulated images show a decrease of measured contour length when DNA

persistence length decreases from 53 nm to 25 nm. Because softer DNA, with a

shorter persistence length, meanders more on the surface than a stiffer molecule, it

22 | P a g e

contains more bends that will be smoothed by the AFM tip. Therefore, it is not

surprising that softer DNA will looks shorter than stiffer DNA. The DNA fragment

obtained by digestion with restriction enzymes gave a 0.322 nm/bp rise. While,

measuring the distance between two protein particles sitting on two specific binding

sites separated by 461 bp gave a rise of 0.33 nm/bp; 1555 bp long DNA, produced by

PCR reaction, gave a rise of 0.327 nm/bp. All these values are 1.5-2.4% shorter than

that found for the 53 nm persistence length simulation. Since the well accepted DNA

persistence length in such condition is between 45 nm and 55 nm from different

studies [61, 62], there might be some the extra shortening of DNA rise per base pair.

Some researcher attributed this part of shortening to partial B- to A- transformation

because despite all the other effects, the measured DNA basepair rise is in still shorter

than pure B-DNA (0.34 nm/bp) [58, 63]). In summary, our measured DNA length is

underestimated compared to the DNA in aqueous conditions.

23 | P a g e

Figure 2.4: Measured DNA basepair rise from simulated polymer chain and real DNA.

From left to right: simulated polymer chain with 53 nm persistence length (0.335 nm/bp);

simulated polymer chain with 25 nm persistence length (0.326 nm/bp); 1584 bp DNA cut

by restriction enzyme (0.322 nm/bp); distance between protein particles binding on OL and

OR site on O3- lambda DNA, the two binding sites are separated by 461 bp (0.33 nm/bp);

1555 bp lambda DNA produced by PCR (0.327 nm/bp); B-DNA from crystal structure

(0.34 nm/bp).

§ 2.3.2 Specific binding to operator sites.

In real experiments, DNA segments containing different numbers of binding sites

are incubated with protein and imaged by AFM (fig. 2.5). And, the positions of CI

particles along unlooped DNA were measured. Schematic diagrams of the molecules

along with the positions of the right and left operator regions were showed in figure

2.6. The positions of the center of bound CI particles on DNA containing both wild-

type operator regions were measured by tracing and put into histograms of frequency

distributions (Fig. 2.5, upper center and left; Fig. 2.6, middle-left). The vast majority

of particles centralized near the OR and OL regions118 and 265 nm from one end of

the molecules and non specific bindings were very rare.

0.31

0.32

0.33

0.34

0.35

53 nm PL

25 nm PL

Enzym Cut

Protein LB

Lambda

Pure B

Length per base pair (nm/bp)

24 | P a g e

Figure 2.5: AFM images of  CI and DNA: (upper left) 1555 bp DNA containing OL and

OR , (upper center and right) CI protein bound to 1555 bp DNA, (middle row) CI- mediated

loops in 1555 bp DNA , (bottom left) CI bound to DNA containing OL1,2&3 (wild type),

(bottom center) CI protein bound to DNA containing OL1&2 (O3-), (bottom right) lac

repressor bound to Oid and O1 containing DNA. The black bar represents 100 nm.
3

3
 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

25 | P a g e

Figure 2.6: AFM measurements of the positions of CI particles bound to DNA. A

schematic (upper) of the DNA construct with OL and OR operators. Histograms (lower)

show the AFM measurements of the position of CI particles bound to different DNA

fragments with wild-type and O3- operators as indicated.
4

§ 2.3.3 Weak affinity for the OR3 operator site

The noticeably broader peak at OL is explained by cooperative binding of two CI

dimers on adjacent operator sites; with consequent formation of tetramers occupying

either operators 1 and 2 or 2 and 3. This is not likely to happen at the OR region

because the experimentally determined affinities of the operator sites [64] indicates

4
 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

26 | P a g e

that the affinity of CI dimers for OR3 is much weaker than that for OR1 and OR2 .

Experiments that abrogated the binding of CI dimers to OL3 and OR3 with DNA

mutation (O3-) in the third binding sites supported this interpretation. Similar to the

wild-type DNA, CI binding to the OR region of O3- DNA established a narrow peak at

119 nm (Fig. 2.5, bottom-left). In agreement with this interpretion is also the finding

that the peak corresponding to the binding of CI to the OL region of O3- DNA shifted

to produce a narrow peak at 275 nm, reflecting the disappearance of cooperative

binding of CI to OL2 and OL3.

 Experiments with short fragments containing either OR or OL (Fig. 2.5, bottom

left and center) were used to demonstrate the weak affinity for the OR3 site further.

The histogram of particle locations on the wild-type OL-containing fragment shows

two peaks separated by 9.5 nm (Fig. 2.6, middle-center). This distance is slightly

larger than the expected value for a tetramer bridging either sites OL1 and OL2 or OL2

and OL3 (20 bp or 6.7 nm). However, the peak which corresponds to the OL3 site

(located at 47 nm), disappeared for DNA with the OL3- mutation (Fig. 2.6, bottom-

center) while the peak at OR (32 nm) remained unchanged (Figure 2.6, compare

middle-right and bottom-right). The simplest interpretation is that the occupancy of

weak binding site OR3 does not significantly change with or without mutation while

the strong OL3 binding was affected dramatically by a similar mutation.

§ 2.3.4 Multiple operators may recruit dimers

 A few DNA molecules carrying small adjacent protein particles bound in

positions that were commensurate with the O1 and O3 operator sites (Fig. 2.7) among

the hundreds of molecules in the recorded topographs. The mean volume of these

27 | P a g e

particles was measured as 174 nm
3
, which could be identified as CI oligomers of 2-4

monomers based on the calibration that was performed and is described below.

According to the DNA construct, the center-to-center distance from OL1 to OL3 is 44

bp, corresponding to 14.7 nm, and 47 bp (15.7 nm) for OR1 to OR3. Because the

distance between pairs of adjacent particles was 15.4 and 14.0 nm for the OR or OL

region respectively; the experiment revealed non-cooperative binding to the O1 and

O3 sites. These experiments suggested that perhaps the presence of the third operator

sites in each region can contribute in capturing CI dimers and thus help to secure a

loop when a random collision between OR and OL occurs. However, it cannot be

excluded that these species might be formed by broken looped molecules during

deposition and washing in sample preparation.

Figure 2.7: Pairs of CI particles bound to adjacent o1 and o3 sites were observed in AFM

images (upper). The black bar represents 100 nm. (lower) The mean volume of these

particles was 174 ± 70 nm
3
.

5

5
 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

28 | P a g e

§ 2.3.5 Looping equilibrium

Indeed , the deposition process for protein-DNA complex binding to the surface

was reported to affect the measured equilibrium by distorting the 3D topology [65].

The slight helical shift between the O2 and O3 operator sites might add some three-

dimensionality to the loop structure. However 43.9 and 17.8% estimated looping

probabilities were obtained from 884 and 354 molecules for wild-type and O3- DNA,

respectively, at a 50 nM concentration (Table 2.1) by scoring as either “looped” or

“unlooped”. The measured looping equilibrium suggested that the connection

between molecular species in the AFM images and CI-mediated looping should be

further characterized.

Table 2.1: Percentages of CI-mediated loops in wild-type and o3- DNA molecules

visualized using AFM.
6

Wild-type 10

min incubation

o3- 10 min

incubation

Number of

molecules
884 354

% Looped 43.9% 17.6%

Looping percentage under different CI concentration was studied with his-tag CI

protein as well. Figure 2.8 shows that the loop percentage increases according to [CI].

The loop percentage increased with [CI]. Since the his-tag CI concentration was

given in monomer, the activity of his-tag protein is a little lower than normal CI

(37.8% looping with 100 nM CI monomer compared to 43.9% looping with 50 nM

CI dimer).

6
 This table was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

29 | P a g e

Figure 2.8: Loop ratio under different his-tag CI (monomer) concentration. The trend that

loop percentage increases with CI concentration is proved by the curve.

§ 2.3.6 Volume calibration

Given the possibility for oligomerization of CI, the number of CI dimers securing

a DNA loop may play an important role in the dynamics of loop formation. However,

there are few experimental methods apart from direct visualization with which to

determine this oligomerization on looped molecules. AFM is well suited for this type

of analysis, since the volume of the particle at the closure of a DNA loop can be

measured directly in the topographs. However, a calibration to relate the measured

volume to the molecular weight, and hence the oligomerization, of the protein is

essential.
7

Several calibration curves have been produced previously for AFM images of

proteins obtained in tapping mode both with silicon nitride [66] and etched silicon

probes [67, 68]. Both the convolution of the probe shape and the compression that

results from the tapping force affect the relationship, and linear fits to volume vs.

7
 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200

Lo
o

p
 r

at
io

[CI] (nM)

30 | P a g e

molecular weight calibrations have slopes ranging from 1.2 to 1.75 for probes with

spring constants near 40 N/m and area thresholds set low or at half-height. For the

experiments reported here, lac repressor (lacI) was a convenient reference which

maintains a tetrameric state both free and bound to the DNA [69] while free CI was

expected to partition into a 7:1 ratio of monomeric and dimeric forms at a

concentration of 20 nM. The distributions of protein particles measured for CI and

lacI without DNA exhibited peaks at 75, 150 and 320 nm
3
 (figs 2.9, 2.10, 2.11). For

the etched silicon probes with a 3.5 N/m spring constant that were used in these

experiments, a calibration considering monomeric and dimeric CI and tetrameric lacI

proteins deposited on poly-L-ornithine-coated-mica gave a slope of 1.9 (Fig 2.11).

This higher value most likely reflects both the softer cantilever which reduces

compression and the low threshold used to delimit the area of individual proteins.
8

A B

Figure 2.9: AFM measurements of the volume of CI protein particles free and bound to

DNA. (A): volume of CI protein particles on mica surface. Fitting result disclosed that there

are two peaks corresponding to CI monomer and dimer. (B): volume of CI protein particles

binding on DNA. CI protein can only binding on DNA as dimers. Since two dimers binding

on adjacent binding sites can interact with each other and thus stabilize each other, most of

observed particles contain two dimers (or one tetramer).
9

8
 The paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers
9
 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

31 | P a g e

Fig 2.10: AFM measurements of the volume of lac repressor protein particles alone (upper)

and bound to DNA (lower). Lac repressors form a stable tetramer in solution or binding on

DNA.
10

Figure 2.11: AFM measurements of the volume of protein particles both free and bound to

DNA. Standard deviations are indicated for all points. Linear regression of volume

measurements of unbound lambda and lac repressor proteins (red squares) gave the

calibration line (red). The volumes of CI protein particles were measured on unlooped (blue

triangles) and looped (green circles) DNA and CI oligomerization values were assigned to

the nearest dimer multiple using the calibration line.
11

10

 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by

© 2009 Bentham Science Publishers
11

 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by

© 2009 Bentham Science Publishers

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400

Molecular weight (kDa)

Vo
lum

e
(n

m3)

free protein

linear regression

unlooped

looped

32 | P a g e

The volumes of lacI and CI oligomers bound to DNA were also measured. The

lacI DNA contains two lac repressor binding sites, Oid and O1. The specificity of

particle binding was verified by tracing DNA segments as described for the CI data

shown in Figure 2.5. The average volume of particles binding on linear DNA was 355

± 73 nm
3
. Since lac repressor was expected to remain tetrameric in the conditions of

the experiment (5 nM) [69], this volume was associated with an oligomer weighing

155 kDa. The difference between the measured volumes for protein free and bound to

the DNA was about 30 nm which corresponds well to the volume of a segment of

DNA the length of the lacI binding site, 21 bp.

The average volume of CI particles on unlooped DNA measured 259 nm
3
.

Employing the calibration curve and considering that the molecular weight of CI

monomer is 26-28 kDa [70, 71] indicated that the average particles in the experiment

could have corresponded to CI tetramers (240 nm
3
 from the calibration curve). Of

course the standard deviation of these measurements was larger than those of lac

repressor, because the λ operator regions contain three adjacent binding sites, so that

several stoichiometries of CI binding were possible. In fact some higher molecular

weight particles were observed that are difficult to reconcile with the idea that a

looped DNA scaffold is required to promote “head-to-head” binding between CI

tetramers to give octamers [72, 73]. One interpretation is that the specific binding

nucleated adjacent non-specific binding.
12

12

 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers

33 | P a g e

§ 2.3.7 Loop closures prevalently contains nonspecific binding dimers

Similarly large volume, high molecular weight CI particles were commonly found

securing looped DNA molecules. In figure 2.12, the lower panel shows measurements

of DNA segments corresponding to the length: from one end to the OR site, of the

loop, and from OL to the other end of the DNA. The narrowly distributed

measurements and the good correspondence with the expected values based on the

DNA construct indicated loops secured by specifically bound CI. The volumes of

these CI particles were distributed as shown in the upper panel of figure 2.12. The red

curve exhibits three central peaks in the distribution that roughly correspond to

oligomers of (from right to left): 6-8, 10-12, and 14-16. This interpretation was

developed using the calibration shown in figure 2.11 and assigning molecular weights

to the nearest multiple of a dimer, since CI binds DNA as a dimer. The rightmost and

leftmost peaks were negligibly small and were not considered further.
13

Figure 2.12: Oligomerization of CI securing DNA loops. (upper) AFM measurements of

the volumes of single CI particles securing DNA loops. (lower) The lengths of segments in

the looped DNA correspond well with those expected from the design of the construct.
14

13

 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers
14

 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by

© 2009 Bentham Science Publishers

34 | P a g e

Oligomers of 10-12 monomers were observed most frequently securing loop

closures. Such oligomers would nearly or fully saturate the operator sites in the

juxtaposed oL and oR regions and are consistent with the loop stabilization conferred

by “ocamer+tetramer” protein binding found using modeling of tethered particle

motion data [55]. A significant number of oligomers of 6-8 monomers were also

observed at loop closures, but very little tetrameric CI, which corresponds well with

the weaker loop stabilization afforded by these oligomers that probably lacked

contacts between o3 regions [55]. Oligomers of more than 12 monomers constituted a

minor fraction which suggested that CI specifically bound to operators in one region

might nucleate adjacent binding of non-specifically bound CI. These additional CI

dimers might further stabilize the closure through interaction with corresponding

dimers from the opposite region.
15

Experiments of different CI concentration also disclosed that the average particle

volume increase with the CI concentration (fig. 2.13). This result indicated that

population of large protein-DNA complexes (10-12mer or higher oligmer) increase

when CI concentration goes higher and higher.

15

 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers

35 | P a g e

Figure 2.13: Volume of particles securing DNA loops under different his-tag CI

concentration. The wide distribution of measured volume under each CI concentration

indicates the particles may differ from each other by the number of dimers inside them. The

average volume constantly increasing with [CI] tells the DNA loop can grab more CI

dimers under higher CI concentration.

§ 2.3.8 Alternative loop closures

A small number of DNA loops (3.2%) contained two adjacent CI particles (Fig

2.14). The average volume of these particles was 425 nm
3
 which identified them as

CI octamers. By tracing the DNA in a subset of particularly distinct two-particle-

loops (Tab. 2.2), two conformer types were established. One type was modeled with

directly juxtaposed operators in which one octamer apparently included four

specifically bound dimers at O1 and O2 (or O2 and O3), and another consisting of two

specifically bound CI dimers at O3 (or O1) flanked by two non-specifically bound

dimers to form a second octamer (Fig 2.14c). Whether non-specifically bound dimers

preferentially flanked O1 or O3 could not be determined. The other type of conformers

was modeled with staggered OR and OL regions leaving OR3 unoccupied (Fig 2.14b)

0

200

400

600

800

1000

1200

50 100 150 200

V
o

lu
m

e
 (

n
m

^3
)

[CI] (nM)

36 | P a g e

and CI oligomers bridging non-specific sites adjacent to OR1. Table 2.2 shows the

results of measuring segments in these looped molecules as schematically shown in

Figure 2.14d. For such a small number of cases, statistically significant differences

could not be established, but, as suggested by the schematic diagrams, segments a and

e were longer in the directly juxtaposed conformation while c was longer in the

staggered conformation. These few conformers might represent early intermediates in

the looping process that result from collisions between OL and OR regions that are

nearly saturated with CI dimers. Such intermediates may include CI tetramers that

bind “semi-specifically” between OL1 and a non-specific site adjacent to OR1.

Subsequent shifting to create complete juxtaposition of all of the specific operators

would be expected to increase the stability of the loop and sterically repress the CI

promoter, PRM, near OR3.
16

16

 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10, P 494-501)

by © 2009 Bentham Science Publishers.

37 | P a g e

Figure 2.14: Specifically bound protein particles may nucleate adjacent semi-specific

binding to secure DNA loops. (a) A small number of DNA loops were secured by two CI

particles. Possible CI binding to (b) directly juxtaposed or (c) staggered OL and OR regions.

(d) Labeled segments of looped DNA molecules secured by two CI particles. Scale bar

represents 100 nm.
17

17

 This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by

© 2009 Bentham Science Publishers

(a)

(d)

(c) (b)

38 | P a g e

Table 2.2: Segment lengths (nm) for DNA loops secured by two protein particles (shown in

Fig 6).
18

Segment

DNA molecule

a

b

c

d

e

Directly juxtaposed operators

expected 129.0 14.0 125.7 13.0 237.5

1 126.8 20.2 113.7 19.6 233.4

2 127.1 14.1 123.2 16.5 238.4

3 125.2 11.7 113.0 13.6 221.8

4 125.3 20.0 117.9 17.7 222.6

5 124.0 19.5 104.3 20.4 231.2

mean 125.7 17.1 114.4 17.6 229.5

Staggered operators

expected 116.8 14.7 142.2 14.7 230.0

6 116.1 18.5 123.7 15.9 223.1

7 119.3 16.5 130.9 18.0 231.1

§ 2.3.9 Conclusions

The study described above supports the idea that CI binding to O3 operators

greatly stabilizes looping of λ DNA fragments. Overwhelmingly specific binding was

exhibited by 50 nM CI protein to the λ operator sites. The intrinsic order of this

binding, OL1 > OR1> OL3> OL2 > OR2 > OR3, [74, 75] changes to OR1~OL1~OR2~OL2 >

OL3 > OR3 when cooperative interactions are considered, and this cooperative ranking

was reflected in measurements of the positions measured for CI particles on unlooped

DNA that shifted slightly upon mutation of the OL3 but not the OR3 operators.

Measuring protein particle volumes with AFM probes having small spring constants

reduced the compression of protein particles reported by others to give an accurate

calibration that facilitated the analysis of CI oligomers securing DNA loops. In

18

 This table was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by ©

2009 Bentham Science Publishers

39 | P a g e

addition, the strong affinity of the polyamine–coated mica for DNA preserved the

looped-unlooped equilibrium of the DNA-protein complexes. Volume measurements

of these protein particles showed that DNA loops were stabilized most frequently by

CI oligomers of 10-12, less frequently by oligomers of 6-8 and occasionally by

oligomers of 14-16 that likely include non-specifically bound CI. This underscores

the important role of the O3 binding sites in loop stabilization. Finally, rare

observations of dimers bound to adjacent operators, and adjacent CI octamers

securing specific loops suggest that the tripartite binding sites in the operator regions

enhance the targeting of CI to promote efficient looping and transcriptional repression

at low protein concentrations.
19

This work was published [76] in Current Pharmaceutical Biotechnology (2009,

Vol. 10,P 494-501) and a reprint of the paper is reported in Appendix A. Results of

this work is also included by a book chapter (appendix B).

19

 This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501)

by © 2009 Bentham Science Publishers

40 | P a g e

Chapter 3

AFM and TPM Study of DNA

Wrapping and Looping of Phage 186

41 | P a g e

§ 3.1 Background and introduction

Coliphage 186 is a counterpoint to inducible phage λ because the two phages are

not evolutionally related but developed similar life cycles in evolution [31, 42]. The

hypothesis that 186 repressor (or 186 CI) can assemble into wheels of 14 monomers

around which DNA partially or fully wraps may explain many in vivo experimental

results including how 186 CI regulates both positively and negatively its own

transcription [41]. A schematic drawing of the 186 major control region is showed in

fig. 3.1. According to this model, the 186 CI wheel will first bind to the strongest

binding site pR at low concentration to turn off all the lytic transcriptions. Repression

of pR will permit transcription from pL (which leads to 186 CI) by inhibiting

transcriptional interference between pR and pL. However, pL transcription cannot

easily occur if the CI wheel is bound at pR. This is because pL is only about 60 bp

from pR and the wheel contains seven dimers, one of which can occupy pL and

repress it [31, 43]. This problem can be alleviated by the two flanking site FL and FR.

When the CI concentration is low, these two flanking site can compete with pL by

interacting with the 186 wheel bound at pR inducing a loop in the DNA. In this case,

pL will be left unoccupied and free for RNAP to bind [31].

Figure 3.1: Three groups of binding sites are involved in the regulation of the genetic

switch between transcription of the lysogenic promoter (pL, production of 186 CI repressor)

and that of the lytic promoter (pR).

42 | P a g e

In response to a severe DNA damage, LexA, a repressor, will be removed so that

DNA polymerase will be produced to repair the damage. However, the removal of

LexA will also release the transcription of Tum, a phage protein. Since Tum protein is

an antirepressor that can prevent 186 CI to bind, the pR will be derepressed and the

prophage will irreversibly undertake a lytic response [77].

The efficient switching from the lysogenic state to lytic state requires a well

regulated CI concentration so that a little amount of Tum protein can remove all

possible CI binding on pR region. In prophage 186, when the CI protein

concentration is too high, FL and FR will be occupied by different CI particles. In this

case, FL and FR can no longer compete with pL for the wheel bound at pR, so pL will

be occupied by a free dimer in the wheel at pR. As a consequence, transcription of CI

will be turned off and CI concentration will be kept at a level such that not only the

lysogenic state can be maintained but also the phage can efficiently switch to a lytic

response if needed [31].

However, there was no direct evidence supporting the existence of wheel-like

particles of 186 CI before. Furthermore, analytical ultracentrifugation-sedimentation

experiments showed that 186 CI monomer can form dimers, tetramers to octamers but

not 14mer [42]. Therefore, the structure of the 186 CI-DNA nucleoprotein complexes

needs to be characterized by AFM and tethered particle microscopy (TPM) in order to,

then, understand the mechanism of the 186 epigenetic switch. For a brief description

of AFM, please go to § 2.1, page 13.

Tethered particle motion (TPM) was first described in 1991 [78] (Fig. 3.2). In this

technique, microbeads are tethered to the surface by polymer chains such as DNA.

43 | P a g e

Therefore, their Brownian motion is limited by the tether. Once the protein or other

factors interact with the DNA and shorten its length by looping or wrapping, the

Brownian motion range of the beads will become smaller. Using optical microscopy,

and tracking the motion of the microbeads, the formation-breakdown of DNA loops

and wraps can be observed [25, 79].

Figure 3.2: Schematic drawing of TPM [27]. Micro beads are tethered on the surface by

DNA. Once protein interacts with the DNA by looping or wrapping, the tether length will

be shorted and the Brownian motion range of beads will decrease. Therefore, DNA

shortening can be measured by observation of beads Brownian motion with a microscope.

§ 3.2 Material and method

§ 3.2.1 AFM sample preparation.

1584 bp-long DNA fragments were produced by cutting plasmids derived from

pBluescript containing wild type 186 operators (FL, FR, pR, pL) with two restriction

enzymes: NgoMIV and XmaI (New England BioLabs). The digestion product was

isolated and purified (QIAGEN gel purification kit). The position of the midpoint of

each operator from one end was: 178 bp/56.7 nm (FL), 484 bp/154.9 nm (baricenter

44 | P a g e

of pR. In particular, 463 bp/148.2 nm (pR1), 484 bp/154.9 nm (pR2), 505 bp/161.6

nm (pR 3)), 567 bp/181.4 nm (pL) and 857 bp/274.2 nm (FR).

The following forward and reverse primers were used to amplify various DNA

fragments as follows: 5‟-TTACCGGAGAAGGAGAAGCA-3‟ and 5‟-ATTAATG

CAGCTGGCACGAC-3‟ (524 bp-long DNA containing only FL), and Biotin5‟-

CTTTCTTGCAGCCTTTACGG-3‟ and 5‟-TTTACAAATGCTTCTCCTTCTCC-3‟

(528 bp-long DNA containing just pR and pL).

Wild-type 186 CI repressor was prepared and purified as described previously

[80]. The protein was diluted to the desired final concentration (5 nM, 50 and 100 nM)

in the presence of 1 nM DNA in a buffer containing 50 mM HEPES, 150 mM NaCl

and 0.1 mM EDTA (pH 7.0). All steps were conducted at Troom. The mixture was

incubated for 20 min. The biotin-labelled DNA fragment was incubated in a mixture

containing also 1µg/ml streptavidin. Shortly before deposition, a 10 μl drop of 0.01

μg/ml poly-L-ornithine (1 kDa MW, Sigma-Aldrich, St. Louis, MO) was incubated

on freshly cleaved mica for one minute. The poly-L-ornithine-coated mica was then

washed with 0.4 ml HPLC water and dried with compressed air. Then, 10 l of the

solution containing DNA and protein were deposited on the poly-L-ornithine-coated

mica and incubated for one minute. The droplet was rinsed with 0.4 ml HPLC water

and dried gently with compressed air. The sample was left overnight in a desiccator

before imaging.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital

Instrument, Santa Barbara, CA) operated in tapping mode using uncoated, etched

silicon tips (MirkoMasch, San Jose, CA). The oscillation amplitude was 50-60 mV

45 | P a g e

with a resonance frequency of 75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas

of 1×1 μm
2

were scanned at a rate of 1.2 Hz and with a resolution of 512×512 pixels.

After filtering images to remove scan line offsets and bowing, DNA molecules were

interactively traced with NeuronJ [81], a plug-in function for ImageJ [57].

§ 3.2.2 TPM sample preparation:

The following primers: 5' TCC AGA GGC GCC GGG GGG TTC GTG CAC

ACA G and 5'TGGTAACCTAGGTAAACAAATAGGGGTTCCGCGCAC were

used to amplify by PCR the 186 region contained in pBluescript. pDL611[25] and the

PCR product were then digested with EcoR1 and Pst1 in order to insert by ligation

the 186 region from pBluescript into pDL611.The preparation of pDL 611 fragment

contains 186 relevant fragment was done by Chiara Zurla in our group. The final

1898 bp-long wt or mutated TPM tether was obtained by PCR using this modified

plasmid and the following 5‟ end biotin and digoxigenin-labeled oligos:

Biotin-5‟-CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC-

3' and dig-5‟GCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAG

TC-3'

The FL- or FR- DNA fragments contained mutated FL or FR operators to prevent

CI binding. In ∆pR DNA the region containing the pR binding sites was replaced

with an equally long, but unrelated DNA.

 The TPM microchamber and experiment were prepared and run as previously

described [82-84]. In brief, the glass surface of a microscope flowchamber was coated

with biotin-BSA and incubated with streptavidin. DNA tethers were labeled with anti-

46 | P a g e

digoxigenin-coated beads with a diameter of 0.48 m (Indicia Diagnostics, Oullins,

France). Interaction of the 186 CI protein with DNA was monitored as a reduction in

the amplitude of the Brownian motion of the bead as previously described [79, 82, 85,

86].

§ 3.2.3 Measurement of wheel diameter

When the SFM probe crosses over an object on the surface, it will be raised up by

the object. The trajectory of the probe is decided by the curvature of the object and

the probe (Fig. 3.3). The manufacturer only tells that the radius of the tip is less than

10 nm, therefore the probe size needs to be estimated with other method before

experiments.

Figure 3.3: AFM tip scan through a DNA. The dark gray blob represents an AFM tip.

When the tip scanning through a DNA (light gray circle), the movement of the tip will be

recorded by AFM (red curve). This curve is a mixture of tip effect and the diameter of DNA

cross section.

If one looks at the bottom of the tip as a sphere, when the probe is scanning cross

rod like DNA, the trajectory of the sphere center will be a mixture of straight lines

47 | P a g e

and a circle as showed in figure 3.3. The radius of the red circle is the sum of the

sphere radius and the radius of the DNA. The height of the trajectory is equal to the

DNA diameter.

Let the radius of the tip be R and the radius of the DNA be r, then the relationship

between DNA half-height-width and the radius of the tip and DNA can be derived

from figure 3.3 with a method similar to Miller‟s [87]:

(R+r)
2
-R

2
=(W/2)

2

Where W is half-height-width of the peak of a DNA.

The half-height-width is 5.06 nm which is calculated by fitting the image data of a

DNA cross section (fig. 3.4) with a Gaussian function. Using this equation, the radius

of a typical AFM probe can be estimated as: 2.7 nm.

Figure 3.4: A cross section of the image of a DNA molecule obtained by AFM. The width

of the center peak is much larger than the DNA diameter because of the effect of the tip.

The half-height-width is 5.06 nm which is calculated by fitting the data with a Gaussian

function.

48 | P a g e

The effect of the AFM tip is not only decided by the tip size but also by the shape

of the particle itself. Using the calculated diameter of the AFM tip, two different

types of particles are simulated. Figure 3.5A shows the cross section of a particle with

a half ellipsoid shape (showed in gray) and a conic shape particle (brown).

Comparing the 3-D AFM-revealed topography of real protein particles (fig 3.5D)

with the two simulated particles, the shape of real particles can be found in between

ellipsoid and conic shape (showed in green). Therefore, the simulated particle of two

shapes can serve as upper and lower boundary for the estimation of real particles.

A B

C D

Figure 3.5: (A) Cross section of different shape particles: half ellipsoid (gray) and conic

shape (brown). The real particle is expected in between of the two shapes (green) (B)

virtual 3-D topography of a conic shape particle scanned by AFM tip. (C) virtual 3-D

topography of a half ellipsoid particle scanned by AFM tip. (D) AFM topography of a real

particle of 186 repressor.

49 | P a g e

The diameter of CTD wheel is 10.2 nm according to X-ray crystallography [41]

(fig. 1.4). If the NTDs were added to the CTD wheel, the diameter should be

estimated as 15 nm. Therefore, 7.1 nm radius conic and half-ellipsoid particles were

simulated and scanned by a fake AFM tip. The simulated 3-D topology shows that the

cross section at 17% of particle height of virtual scanned topography has the same

diameter compare to original particle for conic shape particles. For half ellipsoid

particles, this cross section appeared at 45% of particle height. Therefore, the cross

section at 31% particle height (average of 17% and 45%) was believed to best present

the real size of particles in experiment. Since the average particle height measured

from AFM is 3.5 nm, the cross section should be 1.1 nm high. In order to get the error

of particle diameter estimation, this 1.1 nm threshold is applied on conic particle and

half ellipsoid particle respectively. The cross section diameter is 10.8 nm for the

conic particle and 16.1 nm for the half ellipsoid. Given the particle diameter is 14.2

nm, the error of the diameter measurement should be about ±3 nm.

§ 3.3. Result and discussion

§ 3.3.1 Confirmation of basic model

§ 3.3.1.1 The 186 repressor wheel and its assembing.

The 186 bacteriophage repressor, 186 CI, binds to DNA as a dimer, and it was

suggested to assemble into oligomers of dimer, tetramer and octamer in solution [88].

A more recent crystallographic study showed that the CTD of 186 CI assembles into a

wheel of seven dimers (hereafter referred to as the 186 heptamer) [89] (Fig. 1.4, 3.6).

This led to the hypothesis that the whole protein, including the NTD DNA-binding

50 | P a g e

domain, may too form wheel-shaped heptamers. However, the existence of 186

heptamer was not supported by the study of sedimentation equilibrium [80] although

it can provide a good explanation of 186 genetic switch [90]. Therefore, AFM was

used to image 186 CI free, as well as bound to 1584 bp-long DNA fragments to

characterize its shape and dimension in vitro. The image data were analyzed with

matlab program discussed in § 4.3.4.

The diameter of 186 CTD 14mer wheel and the length of one 186 NTD can be

measured from protein data bank structure (10.2 nm for 14mer and 2.4 nm for one

NTD, Fig. 3.6). Therefore, the diameter of a whole 186 wheel can be estimated

around 15 nm.

Figure 3.6: X-ray crystal structure of 14mer wheel of 186 CTD (left, PDB ID: 2FKD) and

of 186 dimer (right, PDB ID: 2FJR). The CTDs of 186 repressor can interact with each

other and form wheels contain seven dimers each.

The results, summarized in figure 3.7 strongly support the idea that the protein

oligomerizes to form wheel-shaped heptamers. Furthermore, comparison of diameter

with or without DNA disclosed that assembling of 186 heptamer needs facility of

DNA.

51 | P a g e

 Unbound particles Bound particles

Figure 3.7: First row: left, mutated 186 repressor with wild type DNA; right, wild type 186

repressor with wild type DNA, most of particles binding onto the DNA. Second row, the

histogram of particle diameter of mutated 186 repressor. Last row, the histogram of particle

diameter of wild type 186 repressor and wild type DNA.

52 | P a g e

The left image in the first row of figure 3.7 was obtained with 186 repressors

carrying a mutation on NTD. This mutated protein cannot bind to DNA but are still

able to interact with each other because protein-protein interaction relies on CTD only

[42, 91]. The histogram of diameter was made from 6632 particles. The main peak of

the histogram located at 13.3 ± 2.0 nm. This peak is obviously smaller than 186

heptamer wheels and agrees with the study of sedimentation equilibrium [80] that 186

CI exist in solution mainly in dimer-tetramer-octamer but not higher oligomers.

However, the histogram contains a tiny tail on the right side of main peak. The

center of this tail can be fitted out at 19.4 ± 2.4 nm, which can be possibly addressed

to 186 heptamer. On the other hand, if wild type 186 CI was incubated with its DNA

(Fig. 3.7, upper right), the main peak of the diameter histogram (987 particles) shifts

significantly to 19.8 ± 1.7 nm and most of the particles were found on DNA. This

result clearly showed that interaction between protein and DNA can significantly help

the protein assembling to high order oligomers.

Furthermore, the volume of the big wheels imaged by AFM was measured and

compared to a calibration curve previously obtained [76] (Figure 3.8). This volume

analysis is consistent with the idea that the wheels may be composed of seven dimers.

Finally, since such wheels are very abundant in the images obtained using only 50

nM CI, which is a much lower than the 1100 nM estimated for the lysogen, it is likely

that 186 CI associates into a heptamer at an early stage after infection and that this

state of assembly is robust through the host cell division.

53 | P a g e

Figure 3.8: AFM measurement of CI volume. The particle volume of wheel-like particles

measured by AFM (pink diamond and cyan cross) falls on the calibration curve of volume

vs. molecular weight obtained using from left to right : lambda CI monomer (25 kD),

lambda CI dimer(50 kD), nucleosome (108 kD) and lac repressor(150 kD) (blue diamond)

[76].

In conclusion, the wheel-like particles of 186 repressors are observed both on the

surface and the DNA directly. The volume and size of parts of the bind and unbound

186 particles are measured larger than an octamer and close to a 186 heptamer wheel

under physiological concentration. Since the ability of 186 repressor to form a 186

heptamer wheel was approved by X-ray crystal structure and comparing to other high

order multimers, the wheel-like 186 heptamer has some kind of advantage because

the extra protein-protein interaction inside the wheel, the research strongly support

that 186 repressor interact with DNA as a wheel-like 14mer particle under

physiological condition .

0

100

200

300

400

500

600

700

800

0 100 200 300 400

V
o

lu
m

e
(n

m
^
3

)

Molecular Weight (kDa)

186 CI unbound

14mer

186 CI bound

14mer

54 | P a g e

The shift of histogram peak disclosed that the interaction between 186 repressor

and DNA can help protein assembling into high order oligomers. There are too

possible pathways for this kind of facility. The DNA can either shift the

oligomerzation equilibrium to the right side by grabbing 186 heptamer wheels from

solution or assemble heptamer wheels around the specific binding sites directly. No

matter what mechanism is preferred, this experimental result perfectly connects the

gap between the study of sedimentation equilibrium [80] and 186 mechanism [90].

§ 3.3.1.2 CI regulatory mechanism

A 186 heptamer may bind cooperatively to multiple operators [89, 91, 92], giving

rise to physiologically relevant nucleoprotein complexes with different structure and

conformation, and with different impact on the 186 transcriptional regulatory network.

Indeed, the fact that lysogeny maintenance requires repression of pR and tight control

of transcription from pL, and that pR and pL face one another, suggests that different

nucleoprotein species may be in equilibrium in different repressor concentration

regimes, so that the probability of pL being unoccupied decreases with increasing CI

concentration [92]. Figure 3.9 shows the possible species and equilibria that have

been suggested, together with AFM images confirming the existence of these

complexes.

55 | P a g e

Figure 3.9: Schematic representation of the linear, wt, 1584 bp-long DNA fragment used

for AFM imaging in the absence of repressor (1). The full dots represent specific binding

sites for the 186 repressor, while the empty dots identify pseudo sites. Schematic

representation of the nucleoprotein complexes (2-8) which could co-exist in equilibrium

with the AFM images that support their occurrence. As the concentration of repressor

increases, complexes with more than one wheel bound to DNA (6-8) may become more

probable.

Understanding the 186 regulatory mechanism requires characterization of the

specific interaction of the 186 wheel with the operators FL, pR, and FR and

quantification of the probability of occurrence of each species. Thus a statistical

analysis of the AFM images acquired was performed. Figure 3.10 shows that the

56 | P a g e

occupancy of the operators ranks as follows: pR > FL > FR, independently of the

DNA conformation that the protein mediated.

Figure 3.10: Frequency distribution histogram of the measured location of 186 wheels

along the DNA molecules measured by AFM. Left-to-right, the peaks agree well with the

expected position for the FL, pR and FR sites.

Table 3.1 reports the distribution of the nucleoprotein complexes found. The

images reveal that the 186 wheel may interact with DNA either by wrapping or by

looping it.

57 | P a g e

Table 3. 1: Statistics on the interaction between 186 CI and wt DNA

Type Figure Number % Type Figure Number %

FR-pR
loop

7 2.2 FR-pR
loop

11 3.5

FR-pR
loop
w/ FL

5 1.6 FL-pR
loop w/

FR

2 0.6

FL-FR
loop

w/ pR

69 21.9 FR-FL
loop

4 1.3

FL +
pR

66 21.0 FR +FL

3 1.0

FR +
pR

20 6.3

FL
only

5 1.6 pR only

88 27.9

3
particl

es

27 8.6 No
particle

 8 2.5

total 315 100

58 | P a g e

Condensed table:

Shortening type Shortening (bp) Percentage

Big loop between FL and FR 678 23.2%

Small loop between pR and FL
(or FR)

307 or 371 8.0%

3 particles wrapping (fully or
partially)

Less than 600 8.6%

2 particles (fully or partially) Less than 400 28.2%

1 particles (fully or partially) 200 or less 29.5%

When there is no CI protein in solution, pL is always repressed by the strong

promoter pR by transcriptional interference. This is because, as explained in § 1.3.1.,

RNAP which may bind at pL will be quickly removed by the RNAP from the

frequently activated strong pR promoter (Fig. 3.9. case 1). When CI concentration is

low, CI will first bind on the strong promoter pR and turn off the transcriptional

interference of pL by repressing pR. However, the seven dimers within a wheel-like

particle can cover not only three binding sites of pR but also pL region

simultaneously, by way of DNA wrapping. Since pL is both the promoter

fortranscription of CI and a binding site for the same protein, regulation of CI

concentration will depend on which nucleoprotein complexes are near, or involve, pL

(Fig. 3.9). At first one may think that the vicinity of pR would lead to constant

repression of pL, however, the two flanking sites FL and FR attenuate such repression.

Either of these two sites can interact with the particle on pR and loop the DNA. In

this case, the wheel would no longer occupy pL (Fig.3.9, case 2&5). This would favor

transcription, and production of more CI protein. When CI concentration is high, both

flanking sites can be occupied by other wheel-like particles. Therefore, the

competition between flanking sites and pL is dampened, pL will be mostly occupied

by the particle sitting on pR and the production of CI protein will be repressed (Fig.

3.9, case 6, 7&8). This mechanism provides an explanation for how the 186 prophage

59 | P a g e

can regulate CI concentration to a level that allows maintenance of lysogeny, and

keeps the ability to switch to a lytic response efficiently with a little amount of Tum

protein [77].

§ 3.3.2 Pseudo sites on FL

The DNase I footprinting experiment shows the region that DNA interaction with

FL is relatively bigger than others[93]. The wheel higher affinity for FL than for FR

is also revealed in figure 3.10. Therefore, a weaker binding site (or a pseudo site) and

its cooperativity between FL is prospected. In agreement with previous DNAse

digestions [93], closer analysis of the complexes at FL, performed on 524 bp/167.7

nm-long DNA fragments containing only this operator, revealed the presence of a

pseudo site on the side away from pR (Fig. 3.11). The distance from each end of the

DNA to the point of contact with the wheel was measured. The distribution of the

lengths of free DNA measured on each end of the bound wheel is shown in figure

3.11. Given the position of FL in the synthesized DNA fragment (Fig 3.11, top), these

histograms show that FL and an adjacent pseudo site in the direction away from pR

were always occupied. Each distribution shows two peaks separated by about 10 nm.

This corresponds to the footprint of one dimer in the wheel since it is close to one

seventh of the perimeter of the 186 heptamer. The left histogram shows that the free

DNA on the left of the bound wheel was, in average, either 9.4 or 20.0 nm long. Since

FL was centered in this DNA fragment 25 nm from the end in the direction of pR (left

end in the diagram in Fig 3.11), the peak values indicate that one dimer of the wheel

binds at FL, leaving approximately 20 nm of free DNA to the left. However, the next

10 nm of this free DNA may bind dynamically to the next dimer in the wheel. On the

60 | P a g e

other hand, the right histogram in figure 3.11 shows that the free DNA on the right of

the bound wheel was, in average, either 122 or 132 nm long. FL was centered 150.6

nm from the end of the DNA fragment away from pR (right end in the diagram in Fig

3.11). Thus, the peak values indicate that two dimers of the wheel bind both FL and

an adjacent pseudo site, leaving approximately 132 nm of free DNA to the right. Ten

more nm of this free DNA may bind dynamically to yet the next dimer in the wheel

leaving 122 nm free. On the basis of these observations it is suggested that a pseudo

site for binding of the 186 repressor exists next to FL on the side away from pR. Note

also that DNA binding to successive dimers around the wheel leads to its wrapping by

DNA.

Figure 3.11: 186 wheel positioning at FL. A short DNA fragment containing only FL was

incubated with 186 CI and imaged by AFM. The distance from each end of the fragment to

the point of attachment to the wheel was measured and histogrammed. Top: schematic

representation of the DNA fragment used showing FL and its distance from each end of the

fragment. The solid arrow shows the direction to the pR and FR sites. Bottom left.

Distribution of the lengths of free DNA, before binding point, measured from the end

nearest to pR. Bottom right. Distribution of the lengths of free DNA, before binding point,

measured from the end far from pR. Each peak in these histograms is assigned to a DNA

wrapping conformation shown in the associated cartoon.

9.4nm

20.0nm

132nm

122nm

FL
Pseudo

site
FL

Pseudo

site
FL

Pseudo

site
FL

Pseudo

site

Far end Near end

61 | P a g e

§ 3.3.3 Asymmetric DNA wrapping on pR region

Asymmetric DNA wrapping on the 186 wheel was also observed in 528 bp/179

nm-long DNA fragments that contained only pR (Fig 3.12). Here, the wheel is not

centered on pR because it most often occupies a pseudo site, containing pL, as well.

This is consistent with the idea that the protein bound at pR will repress pL leading to

186 CI negative autoregulation, unless competition from distal sites frees the

repressor promoter [90].

Figure 3.12: Top: Schematic representation of the DNA fragment used. The biotin-labelled

DNA was incubated with both the 186 repressor and 1 µg/ml streptavidin to identify the

end of the DNA fragment close to pL. Center: Distribution of measured DNA lengths from

the streptavidin labeled end to the point of contact between DNA and the protein wheel.

Bottom: Distribution of lengths from the other end. The (purple) dash lines indicate the

center of pR and pL. The solid lines indicate the region spanned by the three pR operators.

The DNA between the peaks in each histogram is occupied by the protein.

62 | P a g e

§ 3.3.4 DNA wrapping/unwrapping

AFM imaging of 1584 bp-long fragments of wt 186 DNA containing all binding

sites showed that the degree of wrapping of DNA around the wheel depends on the

operator. The 186 wheel bound at pR is most often found to be fully wrapped by

DNA (Fig 3.9, species 2, 3, 6 and 7), while at FL and FR may be more often only

partially wrapped such that the DNA going in does not cross over the DNA coming

out of the wheel (Fig 3.9, species 7 and Table 3.1). However, the wheel may also

mediate a loop between either FL or FR and pR (Fig 3.9, species 4 and Table 3.1).

Furthermore, in the presence of a wheel already wrapped at pR, a second wheel may

bridge FL and FR (Fig 3.9, species 6 and Table 3.1).

§ 3.3.5 TPM study of DNA wrapping and looping

In AFM imaging, the DNA and protein are deposited onto a poly-ornythin coated

mica surface and washed with HPLC water. During this process, DNA-protein

complexes may be washed away or may dissociate. Therefore, TPM experiments

were carried out to provide complementary information on the interaction between

186 CI and its DNA. Furthermore, TPM experiment can provide information of

dynamic looping and wrapping compare to solidly fixed AFM sample.

In TPM experiments, micro beads are tethered to the surface of a microscope

flow-chamber by single DNA molecules. Therefore, the Brownian motion range of

the beads is limited by the tether length. Before a real experiment is run, a calibration

curve of the average x-y displacement (<ρ┴>) as a function of DNA tether length was

made to address the DNA shortening. Table 3.2 shows the calibration data obtained

63 | P a g e

with five DNA segments: 186 wild type (1898 bp), 944 fragment (1555 bp), 1051

fragments (225 bp, 1064 bp and 2974 bp). The bead diameter is 479 nm. The

measured <ρ> and DNA length are fitted by the equation obtained from Monte Carlo

simulation [25, 49] (fig. 3.13). Using this curve, DNA shortening due to looping and

wrapping can be studied quantitatively and information of looping/wrapping

dynamics can be revealed.

Table 3.2. Calibration data of TPM experiment.

DNA length (bp) Average of <ρ> (nm) STD of <ρ> (± nm)

225 117.66 5.7

1064 210.94 7

1555 247.34 6.7

1898 270.22 3.7

2974 322.42 8.2

64 | P a g e

Figure 3.13: TPM calibration curve. Measuring the Brownian motion of particles with well

known tether length provides the relationship between tether length and the x-y range of

Brownian motion <ρ>. Fitting measured <ρ> with simulation model (J. Phys. Chem. B,

2006, 110, 17260-17267) provides a calibration curve correlating <ρ> and tether contour

length.

The fully wrapped conformation at pR was observed also by TPM using 1898 bp-

long FL
–
pRpLFR

–
DNA tethers. Comparing to control data, addition of repressor in

the microchamber caused an immediate and stable decrease of the TPM signal, ρ⊥ , by

12.2 nm (Fig 3.14) which corresponds, according to a calibration curve obtained in

identical buffer conditions (Fig 3.13), to a shortening of the DNA tether of 210 bp.

This is the decrease expected for a full wrapping event assuming that each 186 dimer

binds 10 nm of DNA and that a heptamer will therefore wrap approximately 70 nm or

210 bp of DNA. This assumption is justified by the structural information available

(see above) and by the AFM study on the DNA fragment containing only FL

described above.

65 | P a g e

Figure 3.14: Frequency distribution of TPM data for 1898 bp-long 186 DNA tethers

containing the wt binding sites as well as mutated sites. When only pR is present, <ρ>

decreases by 12.2 nm. This corresponds to approx. a 210 bp shortening in DNA tether

which is consistent with a fully wrap at pR. Here, as well as in all following measurements

[CI] = 50 nM and DNA tethers were 1898 bp in length.

Interestingly, TPM assays performed on 1898 bp-long DNA tethers containing

only the FL site (FL.∆pRpL.FR- DNA) showed a similarly stable shortening of about

11.3 nm (Fig 3.15). In this case too, the TPM traces recorded did not show transitions

between the wrapped and unwrapped conformations as shown by the representative

traces (Fig 3.16), their associated frequency distribution histograms, and by the

frequency distribution of the average TPM signal for each of the beads analyzed for

the FL.∆pRpL.FR- DNA tethers in the absence and in the presence of 50 nM 186 CI

(Fig 3.15).

66 | P a g e

Figure 3.15: When only FL is present, <ρ> decreases by 11.3 nm. This shortening is close

to that of the DNA fragments containing pR site only and could also correspond to a full

wrapping event at FL.

Without protein [CI]=50 nM

Figure 3.16: TPM trajectory of a representative FL- pR FR- DNA tether. The histogram of

<ρ> contains only one peak after adding 186 CI. The trajectory does not have any transition

on <ρ>.

67 | P a g e

Wild type DNA (Fig. 3.17) shows two main peaks consistent with a

conformational state where DNA fully wraps around one wheel, and one where a

second wheel mediates a loop between FR and FL (species 6 in Fig.3.9). Most often

these states are stable for the duration of the measurements, but transitions may be

observed between the wrapped and looped configurations. Notice, however, that the

distribution is broad and probably includes all the species observed by AFM imaging.

Fig 3.17: Wild type DNA in the presence of protein shows a peak consistent with a

conformational state where DNA fully wraps around one wheel, and a peak where a second

wheel mediates a loop between FR and FL (species 6 in Fig.3.9). Most often these states are

stable for the duration of the measurements, but transitions may be observed between the

wrapped and looped configurations (bimodal histogram). Notice, however, that the

distribution is broad and probably includes all the species observed by AFM imaging.

§ 3.3.6 DNA looping

Although wrapping seems to be preferred (Tab 3.1), AFM images revealed the

presence of nucleoprotein complexes including wheel-mediated DNA looping (Fig

3.9, species 4 and 6). These complexes were classified and their relative weight was

68 | P a g e

measured for wt DNA (FL
+
 pR

+
 FR

+
), as well as for FL

+
 pR

+
 FR

–
, where the FR site

was mutated, and for FL
+
 ΔpR FR

+
, where the pR sequence was replaced with a

sequence of equal length that did not bind 186 CI. The results of this statistical

analysis are reported in Tables 3.1-5. In all cases, DNA wrapping around the

repressor is more common than repressor mediated looping.

Table 3.3: Statistics on the interaction between 186 CI and FL+ delta pR FR+

Only one particle

FL 23 27.7% FR 12 14.4%

Nonspecific 26 31.3%

Two particles

FL & FR 2 2.4% Two

nonspecific

2 2.4%

FR &

nonspecific

1 1.2% FL &

nonspecific

4 4.8%

Three particles

FL, FR and

one

nonspecific

1 1.2% FL and two

nonspecific

1 1.2%

One loop

FL-FR loop 4 4.8% Two

nonspec.

loop

4 4.8%

FR-

nonspecific

loop

1 1.2% FL-nonspec.

loop

1 1.2

One loop and one particle Total

FL-

nonspecific

loop + one

nonspecific

particle

1 1.2% 83

69 | P a g e

Table 3.4: Statistical result of interaction on FL+pRFR- mutation.

Binding Location Number of Molecules Percentage of Molecules

No proteins bound 99 9.25%

Only pR site 673 62.90%

Only FL site 18 1.68%

Two particles FL and pR

sites

224 20.93%

One particle Loop with FL

and pR

45 4.21%

Nonspecific Binding 11 1.03%

TOTAL: 1070 100.00%

Table 3.5: Statistical result of interaction on FL+ pR+FR-mutation.

No particle 9.25% Only pR 62.90%

Nonspecific 1.03%

Total 10.28%

Only Fl 1.68% Two particles FL and pR

sites

20.93%

One particle Loop with FL

and pR

4.21%

Total 25.14%

Tables 3.4&3.5 show a statistical analysis of AFM images of the DNA fragment

carrying only the FL and pR sites. According to the Boltzmann distribution, the ratio

between different states, S, in equilibrium depends only on the free energy of each

file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Tables.docx

70 | P a g e

state. If the CI wheel binds to pR and FL independently, the free energy of the state

where both sites are occupied (ΔGpR,FL) should be the sum of free energy changes

associated with the formation of each of the other two states: the state with only one

wheel bound at pR (ΔGpR) and the state with only one wheel at FL (ΔGFL). Therefore,

the population of four states (S1: no protein; S2: only pR occupied; S3: only FL

occupied; S4: pR and FL both occupied) will be related as follows:

S1/ S2 = S3/ S4

However, S1/S2 calculated from table 3.5 is 0.16 and S3/S4 is 0.07. Since S1/S2

is more than two times bigger than S3/S4, cooperativity may exist between FL and

pR.

In solution, 186 repressor-mediated looping versus wrapping was investigated by

TPM. After addition of repressor to wt 186 DNA, most of the tethers adopted either

one of two conformations, characterized by an average decrease in <ρ⊥> of 14.5 nm

(most probable) and 37.0 nm, each, which correspond to a shortening of the DNA

tether of approx 250 bp and 580 bp, respectively (Fig 3.17). The 250 bp shortening is

greater than the one associated with a full wrapping event. Thus, it could result from a

wrapping event at the strong pR sites and a partial wrapping at one of the flanking

sites as well as from a looping event between pR and either FL or FR. In this respect,

notice that the histogram is quite broad. The 580 bp shortening may be interpreted as

due to the wrapping of the DNA around three wheels bound one to each operator (FL,

pR and FR) or to the formation of a loop between FL and FR, since the distance

between the centers of these two operators is 678 bp. The difference between 678 bp

and 580 bp can be explained by experimental error and the diameter of 186 wheel-

71 | P a g e

like particle (20 nm, which may be looked as 60 bp long DNA tether). Notice that in

this looped state, a second wheel may be bound at pR, but would not cause a

detectable TPM signal. Out of 31 molecules that were analyzed, only 5 displayed just

one or two transitions between the two states in 20 min of observation, but never back

to the free DNA state. Their frequency histogram was, therefore, bimodal. Although

TPM measurements did not show all the nucleoprotein complexes revealed by AFM,

one should notice that the TPM histograms are quite broad, and it is possible that

several nucleoprotein complexes, including the loop between pR and one of the

flanking sites, coexist in equilibrium, without being clearly resolved by TPM.

TPM measurements performed on DNA tethers containing only FL and pR (Fig

3.18), showed a 14.5 nm decrease in <ρ⊥>, corresponding to 245 bp shortening of the

DNA tether. This shortening, as already discussed for the wt case, may be interpreted

as due to a full wrapping event, probably at pR (will take around 210 bp). Even if FL

contains less binding sites than pR (fig. 3.1), a particle bound at FL may stillbe

partially wrapped by DNA. This would explain why this shortening observed with

this fragment is bigger than the one observed for the fragment containing only pR site.

The broad TPM frequency distribution histogram may also be consistent with a loop

which was dynamically forming and breaking between FL and pR. This loop would

consume some 300 bp of DNA if the two binding sites came in direct contact, but the

wheel would reduce the observed shortening. Indeed, three of 44 FL
+
pRpLFR

–
DNA

tethers display two peaks, one at 18.9 nm and the other at 0, respectively, and can be

explained by the transition between the looped and the unlooped DNA at FL and pR.

72 | P a g e

Figure 3.18: In the absence of FR, many DNA tethers are stably shortened by ～245 bp (～

14.5 nm in <ρ>), which is consistent with a loop between FL and pR (including the size of

the 186 wheel). Some of the tethers display brief transitions back to the unlooped or

partially wrapped state (shoulder at 0 nm). The broad distribution of measured reductions in

<> may result from tethers where the DNA wraps around the 186 repressor (supported by

AFM, see Table 3) either at pR or at FL.

TPM of FL+ ΔpR FR+ DNA was also performed (Fig 3.19). These molecules are

not expected to bind the 186 wheel at pR. DNA tethers which displayed just one peak

after addition of repressor could be separated into two groups. One group of

molecules showed an average decrease in <ρ⊥ > of 24.9 nm, corresponding to 410 bp

shortening of DNA tether.

73 | P a g e

Figure 3.19: When the binding sites at pR are deleted, the tether shortening observed

cluster into two groups: one consistent with one wrapping event and another which could

include both two wrapping events and a FL-FR loop.

The 410 bp shortening is unexpected because there is no known pair of binding

sites which can cause this shortening. Since the ratio between 186 monomer to DNA

is 50:1, one wheel needs 14 monomers to form, and there is a complex equilibrium

between several protein oligomerization states, one DNA may in average only have

2-3 wheels. If there is not pR, FL and FR may always be occupied and prevent loop

formation by just one wheel bound both at FL and FR. Therefore, this shortening may

come from two full or partial wrapping on FL and FR respectively. The other group

of data shows an average 7.0 nm decrease of <ρ⊥ >, which, considering the standard

deviation of the data, can be due to a single wheel fully wrapped at FR or FL. Once

again, TPM seems to reveal fewer nucleoprotein complexes than AFM. In particular,

the loop between the two flanking sites was not distinctly detected in the TPM

74 | P a g e

measurements performed on this mutated 186 DNA fragment, and the proportion

between one wrapped and two wrapped wheels is not the same as in the AFM images

despite the similar DNA/repressor concentration ratio in the two types of

measurements.

The overall interpretation of all these observations should not neglect to consider

the possible role of nonspecific binding. An occupancy analysis, performed on the

AFM images of the FL+ ΔpR FR+ DNA (Fig 3.20), revealed several weaker binding

sites, which may play a role in shaping the equilibria between the nucleoprotein

complexes involving FL, pR and FR. Indeed, DNA loops between a specific and a

nonspecific site were observed by AFM in the absence of pR (Table 3.3). Therefore,

the histograms of TPM signals may be broadened also by transient interactions with

nonspecific sites which may have the physiological role of facilitating and/or

stabilizing specific interactions that regulate the 186 bacteriophage genetic switch.

Fig 3.20: Frequency distribution histogram of the location occupied by the 186 repressor

wheel on FL+ ΔpR FR+ DNA in the presence of 50 nM 186 CI, as detected by AFM

imaging. The two major peaks belong to the specific sites FR and FL. The small peaks

indicate other locations where the wheel was found. At these weak binding sites, the protein

either wrapped DNA or bridged the site to FR/L via looping.

75 | P a g e

§ 3.3.7 Other CI binding forms and non-specific binding

The 186 repressor can bind non-specifically, just as many prokaryotic repressors

and probably most transcriptional factors. This ability is clear from the analysis of

AFM images of the beads-on-a-string fiber that 186 DNA forms in the presence of

300 nM repressor (Fig 3.21). Non specific binding is eliminated when using 186 CI

mutant. AFM imaging also showed there is some kind of non specific interaction

between wild type protein and non-related DNA (lambda) or the FL- delta pR-pL FR-

DNA.

Figure 3.21: AFM image of 186 wt DNA in the presence of 300 nM 186 repressor. The

way that DNA wraps on the 186 wheels resembles strongly that in which DNA wraps

histones in chromatin. The study of the interaction between DNA and 186repressor might

serve as a model of how DNA wrap and flutter on such kind of particles. Scale bar: 100 nm.

76 | P a g e

Chapter 4

Automated DNA Segmentation and

Protein Recognition from AFM

Images

77 | P a g e

§ 4.1. Background

AFM can visualize protein-DNA complexes by scanning a solid surface where

these are adsorbed. Although the AFM lack the ability to identify the atoms and

chemical bonds of bio-molecules, this technique is widely used because convenience

sample preparation and nanometer resolution. For example, AFM can visualize the

formation and changing of the DNA loop associate with RSC and study its ability to

modify DNA structure [94]; imaging RNAP transcribing ds-DNA in solution can be

used to measure properties such as transcription rate and DNA dissociation [95].

Furthermore, by measuring the curvature and end-to-end distance of DNA deposited

onto mica surface with AFM was already used to study the stiffness of DNA

molecules under different condition[96].

In most of studies, DNA images obtained by AFM need to be transformed into

skeleton by tracing process before measuring. The most direct way of tracing is to

point out the DNA skeleton from image point-by-point. This time consuming process

can be improved by interactively tracing computer algorithm [59, 61, 97]. In those

algorithms, a set of “seed points” are provided by user experience with a mouse. The

program then successively connects these points with traces that best fit the DNA

skeleton according to local cost function of each pixel around[97]. These

semiautomatic tracing methods greatly improved the efficiency and accuracy of DNA

tracing [97]. However, there are two drawbacks to this kind of method. First, since

the DNA skeleton need to be outlined by the experimenter, this process is still very

time consuming, especially when a large data set is needed for statistical analysis.

Second, because the selection of the points of the DNA skeleton is made by hand and

78 | P a g e

subjective, the operator bias may affect the data. Thus, an automated segmentation

program is useful to improve the efficiency and minimize artifacts.

The thnning procedure derived from the work of Brugal and Chassery [98] is one

of the mostly used automated tracing methods [99-101]. It first transforms the image

into a bi-color map with a threshold. The next process, iteratively removes pixels

from the edge of DNA segments, if the removal of the pixel does not severe the

segment. This process will repeat until no more pixels can be taken out. This

procedure is relatively efficient and leaves behind DNA skeletons only one pixel wide

[100]. Then, the computer can easily trace the one-pixel wide skeleton from one end

to the other. Finally, sets of pixel coordinates representing DNA traces are generated

for later analysis.

Although fully automated tracing algorithms are very efficient and reproducible,

the heterogeneity of the sample often prevents their implementation [102]. Bound

proteins and the image noise can both affect the accuracy of the DNA skeleton

identification. In particular, long DNA fragments often follow a complex contour

with several cross-over points. This requires significant user inputs to be identified,

and reduce the efficiency of these algorithms [97].

Given this challenge, a group of matlab programs were developed to improve the

efficiency of automated analysis of DNA-protein AFM images. The program can

automatically recognize short DNA segments and protein particles, measure the DNA

molecules length, and find the position of bound particles. The program can also

automatically calculate the particle height, diameter and volume. Even complexes

with no simple shape may be analyzed, using a variation of the program where

79 | P a g e

complicated contours may be rebuilt from the tracing of different segments by the

user. Finally, the program is easy to modify and constitute a convenient toolbox for

AFM image analysis.

§ 4.2. Method and algorithm

§ 4.2.1 Filtering

Although AFM can provide a good signal to noise ratio compared to other

techniques, the images acquired by AFM cannot be fed directly to a program.

Because the response of the piezoelectric motors is not perfectly linear, the

background in the AFM images is not always flat (fig. 4.1).

A B

Figure 4.1: The background of AFM images may not flat. A), raw data of a test image. The

middle of the image is higher than the edge. B), after 3rd order polynomial flattening, the

image become flat.

 Fortunately, software available with the AFM instrument provides a flattening

algorithm. This allows fitting the surface with a third order polynomial function.

Subtracting it from the background of the image provides a flat background.

80 | P a g e

§ 4.2.2 Threshold and segmentation

Two methods can be used to segment images: one is based on the difference in

gray level; the other is based on the discontinuity in grey levels between foreground

and background. Because the discontinuity that marks the edge of DNA fragments is

rounded by the AFM tip during imaging, DNA can only be differentiated from the

background based on the difference in grey level between foreground and background.

In this method, a certain threshold of gray level needs to be decided to recognize

DNA and proteins from the whole image. All the image pixels with a gray level

below the threshold are set to zero. Normally this threshold is calculated through an

adjustable ratio between background level and the height of the DNA.

To minimize the possibility that different DNA segments cross over, the DNA

concentration used was limited to the nM range. Since over 90% of the pixels are

background in any given AFM image, the background level can be approximated by

the mean value of all the pixels in the image (Fig. 4.2).

Figure 4.2: Frequency distribution of the z value of all pixels in a 512×512 AFM image of

DNA and protein particles deposited on polyornithine coated mica. Only very few of the

pixels belong to DNA or protein particles. These give rise to the tail on the right side which

has a big Z value.

81 | P a g e

Two methods are used to extract the DNA height from the image. The first

method is to fit the sudden drop in height in the histogram tail. Figure 4.3 is the

zoomed view of the right side of the tail in figure 4.2. The significant decrease of the

distribution can be used to calculate DNA height.

Figure 4.3: Zoomed view of the tail of fig. 4.2. Because there are much less pixels belong

to protein blobs (which is higher than DNA height) than DNA, there is a significant

decrease (red arrow) of number of pixels at the height of DNA. This sudden drop can be

used to identify the height of DNA in AFM image.

This sudden drop can be fitted with a straight line. The DNA height is then

calculated by the intercept of the straight line and x axis. This algorithm is very

accurate in yielding the DNA height in the AFM images. However, if the image

quality is not very good, the tracing program might not go to completion because the

program has a hard time finding a value for the DNA height. Therefore, a second

“back–up” algorithm was developed. This backup method uses the mean maximum

value of each row as DNA height. Because DNA molecules are long, nearly every

row of image data contains parts of at least one DNA molecule. On the contrary, the

82 | P a g e

protein blobs are rare and globular and are found in just a few rows of image data.

Therefore, the maximum value of each row will mostly represents the height of DNA

and only rarely the height of protein blobs (fig. 4.4 a).

Therefore, the average of row maxima will likely be close to DNA height.

Although this method is not very accurate, it is robust because it does not use any

fitting. If the fitting method fails to give a DNA height, this algorithm will be

activated so that a value for the height of DNA height may always be obtained.

A B

C D

Figure 4.4: An original AFM image. (A); question dialog of parameter modification where

“BASE” represents the calculated background and “OVERWHELM” represents the DNA

height (B); background contributions to the image are eliminated by setting all the pixels

below background to zero (C); All pixels below DNA height were set to zero. Only protein

particles were left on the image (D).

83 | P a g e

After calculating background value and DNA height, images and a question

dialog will appear as showed in figure 4.4. Fig 4.4 A shows the original AFM image

after flattening. Figure 4.4C is the effect of cutting background off. In figure 4.4C, all

the pixels with a value below BASE are set to zero. In figure 4.4D, all the pixels

below OVERWHELM are set to zero, which means there are only protein blobs left

on the image. DNA and background disappear. The program also provides a question

dialog for the user to change the BASE and OVERWHELM parameters.

Once the BASE and OVERWHELM values are decided, the program will

calculated the threshold value as follows:

THRESHOLD = BASE+(OVERWHELM-BASE)×0.3 [Eq. 4.1]

The 0.3 value is an experimental value set in the program which may be changed

depending on the application. Then, the program will transfer the real image into a

binary map by setting all the pixels above threshold to one and those below threshold

to zero.

§ 4.2.3 Thinning and selection of the DNA skeleton

A thinning process was used to abstract the DNA skeleton from the image. This

process narrows the DNA trace by taking away pixels from the edge of the DNA. The

pixels were removed from four directions respectively. If the removal of one pixel

will break the segment into two parts, this pixel will be preserved as a critical pixel.

Figure 4.5 shows examples of pixels that will be removed/kept. Iterative steps are

performed until all the pixels left are critical and the skeleton is obtained.

84 | P a g e

Figure 4.5: Identification of critical pixels. The red pixels in the upper row will be removed

during thinning. The red pixels in the lower row are considered critical pixels and preserved

because the removal will break the segment into two parts.

Figure 4.6 shows how pixels are removed from the left edge of the image. In

order to guarantee that the skeleton follows the axis of the DNA molecule, pixels

need to be removed from all four directions sequentially.

Figure 4.6: One process of thinning. Left: the original binary map of DNA segment. Right:

after one step of thinning, the pixels on the left edge (green) are removed from the map.

In order to do this, the image was rotated 90 degree after each round of

elimination. In each elimination cycle, the pixels are always removed from the left. In

this way, the program code is simplified and efficiency of execution is improved.

Figure 4.7 shows the working flow of the thinning process.

85 | P a g e

Figure 4.7: Working flow of the thinning process. Instead of removing pixels from all four

directions (left, up, right and down), the pixels are removed only from the left and the

image is rotated 90 degrees after each removal. After four rounds of pixel removal, the

image will be set back to the original orientation. This procedure can decrease the

complexity of coding and increase the code efficiency.

After several cycles of pixel elimination, the DNA skeletons are extracted from

the image successfully. Figure 4.8 shows a whole cycle of pixel elimination.

Figure 4.8: The process of thinning. From up left, center, right to lower left and center,

pixels are removed from the binary map and the DNA image become thinner and thinner.

Image rotates 90 degree between every two images. Lower right is the final image after

thinning. Only DNA skeletons are left.

86 | P a g e

In some cases, different segments along a DNA molecule may cross over.

Currently, the program lacks the ability to follow the DNA contour through these

intersection points. Thus, it simply removes the pixel inside the intersection and

breaks the segment into several parts. These broken segments can be reconnected by

the user later.

This thinning process will remove pixels from all four directions of the fragment

until the skeleton is only one pixel in width. Therefore, some pixels may be removed

from both ends of the fragment. Since the DNA traces were broadened by the tip as

described in §3.2.3, the two effects are likely to compensate each other and no action

was taken to try to correct for them.

After thinning process, the binary map is converted into narrow DNA skeletons

(Fig. 4.9). Then the program reads the x-y coordinates of each pixel in the DNA

skeletons.

Figure 4.9: DNA skeletons were generated by thinning. Blue pixels in the middle of DNA

images represent the one-pixel-width skeleton of the DNA. After thinning, the coordinates

of DNA skeleton can be easily found and saved in txt files.

87 | P a g e

§ 4.2.4 DNA length estimation

The length estimator is also a sub function of the program. In many applications,

the resolution is limited by AFM tips and short scale kinks and bending may not be

reflected in the image. This introduced an underestimation of DNA contour length

[99]. On the other hand, the pixelization of the image may result in a shift of the

skeleton with respect to the central axis of individual DNA molecules. Therefore, the

DNA contour length is often overestimated by commonly used methods such as

Freeman estimation[103].

In this study, five different DNA length estimators were used and compared on a

set of simulated DNA molecules (Tab. 4.1).

Table 4.1: Measured DNA contour length with different estimators

Simulated 1500 bp DNA, 520 nm long.

Method Contour length(nm) Standard deviation(nm) Error (nm)

Freeman 531 5.573 21

MPO 525.1 27.79 15.1

Kulpa 504.1 5.193 5.9

Corner chain 504.2 4.634 5.8

Step two 502.9 4.284 7.1

Most of these estimators are (ne, no, nc)-based estimators. When the next pixel

only has one coordinate (x or y) different from the previous pixel, the segment

between two pixels is looked as even. If both coordinates (x and y) are different from

88 | P a g e

the previous pixel in the DNA skeleton, the segment is looked as odd. If the moving

from one pixel to the next there is an odd to even or even to odd transition, the

segment is treated as a corner. (ne, no, nc) represents the number of even, odd and

corner segments in one DNA segment.

The freeman estimator was introduced by Freeman in 1970 [104]. It calculates the

distance between neighbor pixels and adds them together. Therefore, the total length

is given by:

LF=1.0nc+1.414no [Eq. 4.2]

The MPO estimator [105] was proved to be very accurate for straight segments.

The formula used by the MPO estimator is:

22)(eoeMPO nnnL  [Eq. 4.3]

The Kulpa estimator derives from the Freeman estimator and includes derived

coefficients for the even and odd pixels to minimize the error [106].

LK=0.948nc+1.343no [Eq. 4.4]

The corner chain estimator includes the effect of corner [107] and the formula is:

LC=0.980ne+1.406no-0.091nc [Eq. 4.5]

The last estimator is called “step two” estimator. In this estimator, the distances

between every two successive pixels are calculated and put together. Although this

estimator only uses half of the coordinate on the DNA skeleton, it is a fast and easy

one to estimate the DNA contour length from skeleton and keep a similar accuracy.

Results of different estimators are showed in table 4.1. The Freeman and MPO

estimator over estimated the DNA length by 3-4%. The MPO estimator has the

89 | P a g e

largest standard deviation. The other three estimators have similar errors. All five

estimators are included into a subfunction of the program and users can choose any of

them by activating appropriate codes. Users are free to use any other estimators by

inserting their codes or replace the whole subfunction. The current software uses the

“step two” estimator because of its advantages in coding and testing.

§ 4.3. Application and programming

§ 4.3.1 DNA tracing

The tracing program asks the user to select one or multiple files. After this file

selection, the program will read data with a sub function named “readimage.m”. This

sub function can read AFM image data and convert them into a matlab matrix.

The only requirement for this sub function is that the returned data must be a

double precision n×n matrix. Therefore, if the user wants to work with other types of

data or image, this sub function can be easily replaced by a customized one.

Tracing results will be saved into txt files which will be named as “*tr.txt” where

“*” is the original filename of the data file.

An example of such a data file is showed below:

654 8177

-1 1

32 56

31 57

... ...

38 77

39 76

-1 0

The first line of the data contains the background (BASE) value and the

calculated DNA height (OVERWHELM) value. Every segment starts with [-1 trace

ID] where trace ID is a positive number for the program to identify every segment in

90 | P a g e

each image. The following data are the x and y coordinates of every pixel in the trace.

The last line [-1 0] indicates the end of one segment.

The matlab code of the tracing program can be found in appendix E (tracing.m).

§ 4.3.2 Masking and interactive modification

After segmentation, the coordinates of the DNA skeletons were saved. It is useful

to visualize the DNA traces together with the AFM images. Therefore, a program was

made to do this and allow the user interactively delete unwanted traces or connect

unexpectedly broken traces. This program also provides a function that allows the

user to select a part or the whole segments and measure its length.

The interface of the masking routine is showed in fig 4.10. The DNA skeleton is

visualized in red and superimposed (masked) on the original AFM image. This

masking routine provides to functions: delete and connect.

Figure 4.10: Interface of masking program. This program allows users to review DNA

traces obtained by the tracing program. Furthermore, users can delete bad traces or connect

broken traces together with the program. The program also allows users to select a DNA

trace or a part of it and measure the contour length.

91 | P a g e

Once the delete function was chosen, matlab will ask the user to select a trace

with the mouse. Then the selected trace highlighted in yellow and a dialog window

will ask if the user really wants to delete the trace (Fig. 4.11). If the user chooses

„Yes‟, the selected trace will be removed from the data.

Figure 4.11:. Delete sub-function. A DNA trace was selected by a click of the mouse. Then

the user can delete the trace by clicking “Yes”.

When connect function is chosen, matlab will ask the user to choose two

segments with the mouse. Then the program zooms in the trace region and the ends of

two segments are highlighted differently (Fig. 4.12). Then the user can choose a

connection in the list dialog.

92 | P a g e

Figure 4.12: Connect sub-function. The user first selects two traces by clicking the mouse.

Then the four ends of two DNA skeletons will be labeled by a circle, diamond, triangle and

square respectively. The user can choose the way that two traces to be connected.

After selection, matlab will connect the two ends with a yellow line (Fig. 4.13). If

the user is satisfied with the connection, the matlab routine will connect the two

traces together and the user can move on to the next operation or image.

93 | P a g e

Figure 4.13: The two DNA tracing are connected by a yellow line. The user can select “Yes”

if he agree with the connection and wants to save it. Otherwise, the user can click “No” and

redo the connection.

The mask program also provides a convenient way to get the length of a whole

segment or one part of it. Once a segment is selected, the program will calculate the

length of the segment in both nanometers and basepairs (fig. 4.14). The mask routine

also allows the user to calculate the length of a segment between two points (fig.

4.15).

The matlab code of the mask program can be found in appendix E (maskM.m and

maskM.fig).

94 | P a g e

Figure 4.14: User interface of a segment length measurement. A DNA trace was selected

and the contour length was displayed on the dialog.

Figure 4.15: Calculating the length of a part in the DNA segment. The user can select a part

of one DNA trace by clicking on start and end points. The program will then calculate the

DNA length between the two points and display it in the dialog.

95 | P a g e

§ 4.3.3 DNA contour length

Negative controls are an important part of most experiments. A typical negative

control in a DNA AFM study is the measurement of the DNA contour length. Other

times this is the object of the study itself because it reveals DNA conformational

changes [58]. Therefore, a matlab routine was developed to measure the contour

length from DNA skeleton obtained by tracing program.

The program asks the user to input three parameters in a question dialog (Fig.

4.16). The expected length is the expected DNA length calculated knowing the

number of basepairs. Because most PCR products contain lots of short fragments or

broken DNA segments, AFM samples often contains DNA fragments much shorter

than what expected. Therefore, the user can establish the minimum acceptable length.

Any DNA segment shorter than this lower bound will be thrown away. Occasionally,

there will be few extremely long molecules (traces). They may come from broken

plasmids. Although such long traces are very rare, they will offset the program

calculation of histogram bin size. Therefore, the user can remove those extremely

long traces with an upper bound.

Figure 4.16: Dialog box for the measurement of the DNA contour length. The lower bound

is calculated by multiplying the expected DNA length by the lower bound number provided

by the user. DNA traces shorter than this lower bound will not be considered. The upper

bound is calculated in a similar way and DNA traces longer than the upper bound will be

disregarded.

96 | P a g e

Then, the program will ask to select one or multiple trace files and will calculate

the contour length of all the traces in the selected files. The result will be displayed as

a histogram and kept in a matlab array (Fig. 4.17, 4.18) for further analysis.

Figure 4.17: DNA contour length of 1394 bp DNA segments. Gaussian fitting shows the

DNA length is 415±16 nm.

Figure 4.18: Contour length of simulated 1500 bp-long simulated DNA. The peak centered

at 505±4.3 nm.

97 | P a g e

Two types of images were traced by the program to test it. Figure 4.17 is the

histogram of the measurement on AFM images of 1394 bp-long DNA deposited on

mica surface. Figure 4.18 is the histogram of the measurement on images of 1500 bp-

long simulated DNA. The contour length and standard deviation were obtained by

fitting the histogram with a Gaussian curve. The final results are summarized in table

4.2.

Table 4.2: Comparison of different tracing methods on DNA images acquired by AFM

DNA segments Original Neuron J tracing Automated tracing

program

1394 bp real DNA 1394×0.32=446 nm

*

420.4±9.1 nm, from

224 molecules

415±16 nm, from

182 molecules

1500 bp simulated

DNA, 300

molecules

1500×0.34=520 nm 502.5±5.6 nm 505±4.3 nm

*: The 0.32 nm/bp comes from the tracing of 1584-long, enzyme cut 186 DNA traced

with Neuron J.

The matlab code of segment length measurement can be found in appendix E

(lengthC.m).

§ 4.3.4 Automated measurement of particles on the surface or on a DNA

molecule

Protein particle size and volume are important properties that can be assessed by

AFM [108-111]. The volume and size of particles sitting on the mica surface or

binding to a DNA can be used to determine the protein molecular weight [111],

enzyme dimerization[112] and non specific protein-DNA interactions [76].

98 | P a g e

Because of that, a matlab routine was written to identify and analyze the particles

sitting on the surface or binding to a DNA.

Figure 4.19 shows the interface panel of this particle analysis program. There are

twelve parameters in this panel which can be either changed or used as a default.

Following are the definitions of those parameters:

Figure 4.19: User interface panel of the particle analysis program. Users can select to

analyze free particles on the surface or only look at the particles binding to a DNA

molecule. The values on the left are parameters of imaging. The values on the right are

parameters that will be used for analysis purposes.

“Image size” is the size of one AFM image. In our experiments, this value is often

equal to 1000 nm which means one image covers 1000 nm×1000 nm of the sample.

“X-Y scale” is the number of pixels on each line or row of image. In our experiments,

it is 512.

“Z range” is the range of values used to quantize the height of each pixel. In our

experiments, this number is equal to 65536 (2
16

).

99 | P a g e

“Z scale” is the scale factor of AFM imaging. In our experiment, this value is 8.0

nm.

“Threshold” is the value the program uses to separate the particles from the

background.

“Cross section” is the height of a selected cross section. It can be given s the real

height or a percentage of the maximum height. If the percentage value is equal to zero,

the program will automatically use the real height. The particle diameter will be

calculated from the cross section given by this parameter.

“Max height” is the maximum height of the particles that should be considered.

“Min height” is the minimum height of the particles that should be considered.

“Max size” is the maximum area that a particle will cover. If a particle covers

more than this size, it will be interpreted as an aggregate of two or more particles and

will be thrown away by the program.

“Min size” is the minimum area size below which the particle will be discarded.

“Margin” is the parameter that is used to exclude particles are too close to the

image edge.

The user can also choose if to analyze free particles or particles bound to DNA

with an interface panel. If the user selects bound particles, the program will

automatically disregard particles which do not contact DNA.

After setting these parameters, the user can open one or multiple files by clicking

the “Open Files” button and click “Analysis” button to start the analysis.

The program will display the final result in figures as showed in figure 4.20. In

the upper left panel, the particles identified by the program were labeled in red. The

100 | P a g e

lower left panel shows the original AFM figure. The right upper figure is the

histogram of the particle diameters. The middle lower panel is the histogram of

particle heights. The lower right panel is the histogram of particle volume.

Figure 4.20: Output of particle analysis program. Top left: red blobs are particles identified

by the program. Lower left: original AFM image. Top right: the histogram of particle

diameter. Lower middle: the histogram of particle height. Lower right: the histogram of

particle volume.

The user can also save the data by clicking the “Save Data” button. The program

will then save all the data and parameters in an excel file as showed in figure 4.21.

101 | P a g e

Figure 4.21: Saved excel data of particle analysis. Left figure is the data in columns. The

right figure is the working sheet of parameters.

Matlab code of particle measurement can be found in appendix E

(ParticleAnalysis.m, ParticleAnalysis.fig).

§ 4.3.5 Protein-DNA interactions

In some studies, DNA binding proteins such as repressors or RNAP are incubated

with DNA before they are deposited onto the mica. In such experiments, DNA may

bind, wrap or even loop on these protein particles [65, 76]. Currently, there is no

automatic recognition tool for identifying protein-DNA complexes.

Starting from my tracing program, a program that can group DNA skeletons with

particles that contact them was developed. The program starts from one trace and

groups all the other traces and particles that contact the first trace either directly or

102 | P a g e

through another particle. Looking at these groups is helpful to characterize the

interaction between proteins and DNA segments. After that, the traces and particles

can be put into different statistics according to their interaction (binding, looping or

wrapping).

Figure 4.22 represents one example of automatic protein-DNA complex analysis.

Here images of short fragments containing binding site for lambda repressor were

analyzed by the program. The program analyzed over 200 molecules in about 20

minutes, and gave a histogram of the position at which the protein particle contacts

the DNA. The result gives the expected position in a much faster time than it would

have been possible through a manual analysis.

Figure 4.22: Result of protein binding position analysis from over 200 molecules. The

histogram represents the DNA length from one end to the particle. The expected value is 34

nm according to the DNA sequence. The fitting result centered at 35 nm.

Matlab code can be found in appendix E (GroupAnalysis.m).

103 | P a g e

§ 4.3.6 Data conversion

Since a lot of previous work was done with NeuronJ, a matlab routine was made

to convert auto-tracing data to NeuronJ data format. This Matlab code can be found in

appendix E (ConvertJ.m).

§ 4.4. Discussion

AFM is a very powerful technique in the study of biomacromolecules such as

protein and DNA. But it is often very time consuming to analyze the images

quantitatively. A large number of observations are needed to support a hypothesis or a

conclusion. Yet, manual analysis is too slow. Here a toolbox of image analysis

programs was developed based on matlab that automate a good part of the analysis

and increase considerably its efficiency. This will be of great help to our lab and

hopefully to many others.

104 | P a g e

References:

1. Ptashne, M.a.G., A., Genes and Signals. 2002, New York: Cold Spring Harbor Laboratory.
2. Bird, A., Perceptions of epigenetics. Nature, 2007. 447: p. 3.
3. Amasino, R., Vernalization, Competence, and the Epigenetic Memory of Winter. The

Plant Cell, 2004. 16: p. 8.
4. Marcus E Pembrey, L.O.B., Gunnar Kaati, Soren Edvinsson, Kate Northstone, Michael

Sjostrom, Jean Golding and the ALSPAC Study Team, Sex-specific, male-line
transgenerational responses in humans. European Journal of Human Genetics, 2006. 14:
p. 8.

5. Verstrepen, O.J.R.a.K.J., Timescales of Genetic and Epigenetic Inheritance. Cell, 2007.
128: p. 14.

6. Chandler, V.L., Paramutation: From Maize to Mice. Cell, 2007. 128: p. 5.
7. Zachary A Kaminsky, T.T., Sun-Chone Wang, Carolyn Ptak, Gabriel H T Oh, Albert H C

Wong, Laura A Feldcamp, Carl Virtanen, Jonas Halfvarson, Curt Tysk, Allan F McRae,
Peter M Visscher, Grant W Montgomery, Irving I Gottesman, Nicholas G Martin and Art
Petronis, DNA methylation profiles in monozygotic and dizygotic twins. Genetics, 2009.
41: p. 6.

8. Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian
development. Nature, 2007. 447: p. 8.

9. Ptashne, M., On the use of the word "epigenetic". Current Biology, 2007. 17(7): p. 4.
10. Ian B. Dodd, M.A.M., Kim Sneppen, and Genevieve Thon, Theoretical Analysis of

Epigenetic Cell Meomory by Nucleosome Modification. Cell, 2007. 129: p. 10.
11. Wassenegger, M., The Role of the RNAi Machinery in Heterochromatin Formation. Cell,

2005. 122: p. 4.
12. Ingela Djupedal, K.E., Epigenetics: heterochromatin meets RNAi. Cell Research, 2009. 19:

p. 14.
13. Edmunds, A.Y.a.W.J., Epigenetic inheritance and prions. Journal of Evolutionary Biology,

1998. 11: p. 2.
14. William M. Rideout III, K.E., Rudolf Jaenisch, Nuclear Cloning and Epigenetic

Reprogramming of the Genome. Science, 2001. 293: p. 6.
15. Paul A. De Sousa, T.K., Linda Harkness, Lorraine E. Young, Simon K. Walker, and Ian

Wilmut, Evaluation of Gestational Deficiencies in Cloned Sheep Fetuses and Placentae.
Biology of Reproduction, 2001. 65: p. 8.

16. Fatima Santos, V.Z., Miodrag Stojkovic, Antoine Peters, Thomas Jenuwein, Eckhard Wolf,
Wolf Reik, and Wendy Dean, Epigenetic Marking Correlates with Developmental
Potential in Cloned Bovine Preimplantation Embryos. Current Biology, 2003. 13: p. 6.

17. J.H.M. Knoll, R.D.N., R.E. Magenis, J.M. Graham Jr., M. Lanlande, S.A. Latt, Angelman
and Prader-Willi Syndromes Share a Common Chromosome 15 Deletion but Differ in
Parental Origin of the Deletion. American Journal of Medical Genetics, 1989. 32: p. 6.

18. Jacqueline R Engel, A.S., Antonita Harper, Michael J Higgins, Mitsuo Oshimura, Wolf Reik,
Paul N Schofield, Eamonn R Maher, Epigenotype-phenotype correlations in Beckwith-
wiedemann syndrom. Journal of Medical Genetics, 2000. 37: p. 6.

19. Jack B. Bishop, K.L.W., Richard A. Sloane, Genetic toxicities of human teratogens.
Mutation Research, 1997. 396: p. 35.

105 | P a g e

20. Esteller, M., Epigenetics in Cancer. The New England Journal of Medicine, 2008. 358: p.
12.

21. Ptashne, M., A genetic switch : phage lambda revisited. 3rd ed. 2004, Cold Spring Harbor,
N.Y.: Cold Spring Harbor Laboratory Press. xiv, 154 p.

22. Johnson, A.D., et al., lambda Repressor and cro--components of an efficient molecular
switch. Nature, 1981. 294(5838): p. 217-23.

23. Ptashne, M., Repressors. Trends in Biochemical Sciences, 1984. 9(4): p. 142-145.
24. Oppenheim, A.B., et al., Switches in bacteriophage lambda development. Annu Rev

Genet, 2005. 39: p. 409-29.
25. Zurla, C., et al., Novel tethered particle motion analysis of CI protein-mediated DNA

looping in the regulation of bacteriophage lambda. Journal of Physics-Condensed Matter,
2006. 18(14): p. S225-S234.

26. Lia, G., et al., Supercoiling and denaturation in Gal repressor/heat unstable nucleoid
protein (HU)-mediated DNA looping. Proceedings of the National Academy of Sciences
of the United States of America, 2003. 100(20): p. 11373-11377.

27. Beausang, J.F., et al., DNA looping kinetics analyzed using diffusive hidden Markov model.
Biophysical Journal, 2007. 92(8): p. L64-L66.

28. Adhya, S. and M. Gottesman, Promoter Occlusion - Transcription through a Promoter
May Inhibit Its Activity. Cell, 1982. 29(3): p. 939-944.

29. Shearwin, K.E., B.P. Callen, and J.B. Egan, Transcriptional interference - a crash course.
Trends in Genetics, 2005. 21(6): p. 339-345.

30. Mazo, A., et al., Transcriptional interference: an unexpected layer of complexity in gene
regulation. Journal of Cell Science, 2007. 120(16): p. 2755-2761.

31. Dodd, I.B., K.E. Shearwin, and K. Sneppen, Modelling transcriptional interference and
DNA looping in gene regulation. Journal of Molecular Biology, 2007. 369(5): p. 1200-
1213.

32. Rocco, V., B. Demassy, and A. Nicolas, The Saccharomyces-Cerevisiae Arg4 Initiator of
Meiotic Gene Conversion and Its Associated Double-Strand DNA Breaks Can Be Inhibited
by Transcriptional Interference. Proceedings of the National Academy of Sciences of the
United States of America, 1992. 89(24): p. 12068-12072.

33. Eszterhas, S.K., et al., Transcriptional interference by independently regulated genes
occurs in any relative arrangement of the genes and is influenced by chromosomal
integration position. Molecular and Cellular Biology, 2002. 22(2): p. 469-479.

34. Corbin, V. and T. Maniatis, Role of Transcriptional Interference in the Drosophila-
Melanogaster Adh Promoter Switch. Nature, 1989. 337(6204): p. 279-282.

35. Minuzzo, M., et al., Interference of transcriptional activation by the antineoplastic drug
ecteinascidin-743. Proceedings of the National Academy of Sciences of the United States
of America, 2000. 97(12): p. 6780-6784.

36. Lenasi, T., X. Contreras, and B.M. Peterlin, Transcriptional interference antagonizes
proviral gene expression to promote HIV latency. Cell Host & Microbe, 2008. 4(2): p. 123-
133.

37. Eggermont, J. and N.J. Proudfoot, Poly(a) Signals and Transcriptional Pause Sites
Combine to Prevent Interference between Rna Polymerase-Ii Promoters. Embo Journal,
1993. 12(6): p. 2539-2548.

38. Martens, J.A., L. Laprade, and F. Winston, Intergenic transcription is required to repress
the Saccharomyces cerevisiae SER3 gene. Nature, 2004. 429(6991): p. 571-574.

39. Wang, P.X., et al., Demonstration that the TyrR protein and RNA polymerase complex
formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major

106 | P a g e

promoter, P1, of the aroP gene of Escherichia coli. Journal of Bacteriology, 1998. 180(20):
p. 5466-5472.

40. Ackermann, H.W., Frequency of morphological phage descriptions in the year 2000.
Archives of Virology, 2001. 146(5): p. 843-857.

41. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate
genetic switch. Molecular Cell, 2006. 21(5): p. 605-615.

42. Shearwin, K.E., I.B. Dodd, and J.B. Egan, The helix-turn-helix motif of the coliphage 186
immunity repressor binds to two distinct recognition sequences. Journal of Biological
Chemistry, 2002. 277(5): p. 3186-3194.

43. Dodd, I.B. and J.B. Egan, DNA binding by the coliphage 186 repressor protein CI. Journal
of Biological Chemistry, 1996. 271(19): p. 11532-11540.

44. Medvedev, Z.A., M.N. Medvedeva, and H.M. Crowne, Age-Related-Changes of the
Pattern of Non-Histone Proteins in Active and Condensed Fractions of Mouse-Liver
Chromatin and Hepato-Carcinoma. Experientia, 1984. 40(11): p. 1282-1284.

45. Thakur, M.K., Age-Related-Changes in the Structure and Function of Chromatin - a
Review. Mechanisms of Ageing and Development, 1984. 27(3): p. 263-286.

46. Wolffe, A.P. and D. Guschin, Chromatin structural features and targets that regulate
transcription. Journal of Structural Biology, 2000. 129(2-3): p. 102-122.

47. Bird, A.P. and A.P. Wolffe, Methylation-induced repression - Belts, braces, and chromatin.
Cell, 1999. 99(5): p. 451-454.

48. Tachiwana, H., et al., Structures of human nucleosomes containing major histone H3
variants. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 6): p. 578-83.

49. Zurla, C., et al., Direct demonstration and quantification of long-range DNA looping by
the lambda bacteriophage repressor. Nucleic Acids Res, 2009. 37(9): p. 2789-95.

50. Bakk, A. and R. Metzler, In vivo non-specific binding of lambda CI and Cro repressors is
significant. Febs Letters, 2004. 563(1-3): p. 66-68.

51. Bakk, A. and R. Metzler, Nonspecific binding of the OR repressors CI and Cro of
bacteriophage lambda. Journal of Theoretical Biology, 2004. 231(4): p. 525-33.

52. Senear, D.F. and R. Batey, Comparison of Operator-Specific and Nonspecific DNA-Binding
of the Lambda-Ci Repressor - [Kc1] and Ph Effects. Biochemistry, 1991. 30(27): p. 6677-
6688.

53. Giessibl, F.J., Advances in atomic force microscopy. Reviews of Modern Physics, 2003.
75(3): p. 949-983.

54. Hinterdorfer, P. and Y.F. Dufrene, Detection and localization of single molecular
recognition events using atomic force microscopy. Nature Methods, 2006. 3(5): p. 347-
355.

55. Zurla, C., et al., Direct demonstration and quantification of long-range DNA looping by
the {lambda} bacteriophage repressor. Nucleic Acids Res, 2009.

56. Meijering, E., et al., Design and validation of a tool for neurite tracing and analysis in
fluorescence microscopy images. Cytometry Part A, 2004. 58A(2): p. 167-176.

57. Rasband, W.S., Image J. 2008.
58. Rivetti, C. and S. Codeluppi, Accurate length determination of DNA molecules visualized

by atomic force microscopy: evidence for a partial B- to A-form transition on mica.
Ultramicroscopy, 2001. 87(1-2): p. 55-66.

59. Marek, J., et al., Interactive measurement and characterization of DNA molecules by
analysis of AFM images. Cytometry Part A, 2005. 63A(2): p. 87-93.

107 | P a g e

60. Ficarra, E., et al., Automated DNA fragments recognition and sizing through AFM image
processing. Information Technology in Biomedicine, IEEE Transactions on, 2005. 9(4): p.
508-517.

61. Rivetti, C., M. Guthold, and C. Bustamante, Scanning Force Microscopy of DNA Deposited
onto Mica: EquilibrationversusKinetic Trapping Studied by Statistical Polymer Chain
Analysis. Journal of Molecular Biology, 1996. 264(5): p. 919-932.

62. Podesta, A., et al., Positively charged surfaces increase the flexibility of DNA. Biophysical
Journal, 2005. 89(4): p. 2558-2563.

63. Claudio Rivetti, S.C., Accurate length determination of DNA molecules visualized by
atomic force microscopy: evidence for a partial B- to A-form transition on mica.
Ultramicroscopy, 2001. 87: p. 12.

64. Koblan, K.S. and G.K. Ackers, Site-specific enthalpic regulation of DNA transcription at
bacteriophage lambda OR. Biochemistry, 1992. 31(1): p. 57-65.

65. Yang, Y., et al., Determination of protein-DNA binding constants and specificities from
statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res, 2005.
33(13): p. 4322-34.

66. Schneider, S.W., et al., Molecular weights of individual proteins correlate with molecular
volumes measured by atomic force microscopy. Pflugers Arch, 1998. 435(3): p. 362-7.

67. Neaves, K.J., et al., Atomic force microscopy of the EcoKI Type I DNA restriction enzyme
bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids Res, 2009.
37(6): p. 2053-63.

68. Ratcliff, G.C. and D.A. Erie, A novel single-molecule study to determine protein--protein
association constants. J Am Chem Soc, 2001. 123(24): p. 5632-5.

69. Brenowitz, M.H.a.M., Comparison of the DNA Association Kinetics of the Lac Repressor
Tetramer, Its Dimeric Mutant Lac Iadi and the Native Dimeric Gal Repressor. The Journal
of Biological Chemistry, 1997. 272(August 29): p. 5.

70. Burz, D.S., et al., Self-assembly of bacteriophage lambda cI repressor: effects of single-
site mutations on the monomer-dimer equilibrium. Biochemistry, 1994. 33(28): p. 8399-
405.

71. Maniatis, T. and M. Ptashne, Multiple repressor binding at the operators in
bacteriophage lambda. Proc Natl Acad Sci U S A, 1973. 70(5): p. 1531-5.

72. Dodd, I.B., et al., Octamerization of lambda CI repressor is needed for effective
repression of P-RM and efficient switching from lysogeny. Genes & Development, 2001.
15(22): p. 3013-3022.

73. Dodd, I.B., et al., Cooperativity in long-range gene regulation by the lambda CI repressor.
Genes Dev, 2004. 18(3): p. 344-54.

74. Koblan, K.S. and G.K. Ackers, Site-Specific Enthalpic Regulation Of Dna-Transcription At
Bacteriophage-Lambda Or. Biochemistry, 1992. 31(1): p. 57-65.

75. Senear, D.F., et al., Energetics Of Cooperative Protein Dna Interactions - Comparison
Between Quantitative Deoxyribonuclease Footprint Titration And Filter Binding.
Biochemistry, 1986. 25(23): p. 7344-7354.

76. Wang, H., Finzi, L., Lewis, D. and Dunlap, D., AFM studies of the CI oligomers that secure
DNA loops. J. Pharmaceutical Biotechnology, 2009. 10: p. 494-501.

77. Shearwin, K.E., A.M. Brumby, and J.B. Egan, The Tum protein of coliphage 186 is an
antirepressor. Journal of Biological Chemistry, 1998. 273(10): p. 5708-5715.

78. Schafer, D.A., et al., Transcription by Single Molecules of Rna-Polymerase Observed by
Light-Microscopy. Nature, 1991. 352(6334): p. 444-448.

108 | P a g e

79. Nelson, P.C., et al., Tethered particle motion as a diagnostic of DNA tether length.
Journal of Physical Chemistry B, 2006. 110(34): p. 17260-17267.

80. Shearwin, K.E. and J.B. Egan, Purification and self-association equilibria of the lysis-
lysogeny switch proteins of coliphage 186. J Biol Chem, 1996. 271(19): p. 11525-31.

81. E. Meijering, M.J., J. C. Sarria, P. Steiner, H. Hirling, and M. Unser, Design and Validation
of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry
A, 2004. 58: p. 9.

82. Dunlap, D., et al., Probing DNA topology with Tethered particle Motion, in Methods in
Molecular biology: Single-Molecule Analysis: Methods and Protocols, E.J.G. Peterman
and G. Wuite, Editors, Humana Press.

83. Finzi, L. and D. Dunlap, Single-molecule studies of DNA architectural changes induced by
regulatory proteins. Methods Enzymol, 2003. 370: p. 369-78.

84. Zurla, C., Manzo, C, Dunlap, DD, Lewis, DEA, Adhya, S, Finzi, L, Direct Demonstration and
Quantification of Long-Range DNA looping by the Lambda Bacteriophage Repressor.
Nucleic Acids Res, 2009. 37: p. 2789-2795.

85. Finzi, L. and D.D. Dunlap, Single-molecule approaches to structure, kinetics and
thermodynamics of transcriptional regulatory nucleoprotein complexes”. J. Biol. Chem.,
2010. 285: p. 18973-18978.

86. Manzo, C. and L. Finzi, Quantitative analysis of DNA looping kinetics from tethered
particle motion experiments, in Methods In Enzymology: Molecule Tools, Part B: Super-
Resolution, Particle Tracking, Multiparameter, and Force Based Methods, N.G. Walter,
Editor. 2010, Academic Press, Elsevier. p. 199-220.

87. Miller, R., J. Vesenka, and E. Henderson, Tip Reconstruction for the Atomic Force
Microscope. SIAM Journal on Applied Mathematics, 1995. 55(5): p. 1362-1371.

88. Egan, K.E.S.a.J.B., Purification and self-association equilibria of the lysis-lysogeny switch
proteins of coliphage 186. The Journal of Biological Chemistry, 1996. 271(May 10): p. 7.

89. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate
genetic switch. Mol Cell, 2006. 21(5): p. 605-15.

90. Ian B. Dodd, K.E.S.a.K.S., Modelling transcriptional interference and DNA looping in gene
regulation. J. Mol. Biol., 2007. 369: p. 14.

91. Egan, I.B.D.a.J.B., Action at a distance in CI repressor regulation of the bacteriophage
186 genetic switch. Molecular Microbiology, 2002. 45(3): p. 14.

92. Dodd, I.B., K.B. Shearwin, and K. Sneppen, Modelling transcriptional interference and
DNA looping in gene regulation. Journal Of Molecular Biology, 2007. 369(5): p. 1200-
1213.

93. Egan, I.B.D.a.J.B., DNA binding by the coliphage 186 repressor protein CI. The Journal of
Biological Chemistry, 1996. 271(May 10): p. 9.

94. Lia, G., et al., Direct Observation of DNA Distortion by the RSC Complex. Molecular Cell,
2006. 21(3): p. 417-425.

95. Kasas, S., et al., Escherichia coli RNA Polymerase Activity Observed Using Atomic Force
Microscopy†. Biochemistry, 1997. 36(3): p. 461-468.

96. Podestà, A., et al., Positively Charged Surfaces Increase the Flexibility of DNA. Biophysical
Journal, 2005. 89(4): p. 2558-2563.

97. Barrett, W.A. and E.N. Mortensen, Interactive live-wire boundary extraction. Medical
Image Analysis, 1997. 1(4): p. 331-341.

98. Brugal, G. and J.M. Chassery, [A new image-processing system designed for
densitometry and pattern analysis of microscopic specimen. Application to the

109 | P a g e

automated recognition and counting of cells in the various phases of the mitotic cycle
(author's transl)]. Histochemistry, 1977. 52(3): p. 241-58.

99. Sanchez-Sevilla, A., et al., Accuracy of AFM measurements of the contour length of DNA
fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy, 2002. 92(3-
4): p. 151-158.

100. Spisz, T.S., et al., Automated sizing of DNA fragments in atomic force microscope images.
Med Biol Eng Comput, 1998. 36(6): p. 667-72.

101. Ficarra, E., et al., Automated DNA fragments recognition and sizing through AFM image
processing. IEEE Trans Inf Technol Biomed, 2005. 9(4): p. 508-17.

102. Rivetti, C., DNA contour length measurements as a tool for the structural analysis of DNA
and nucleoprotein complexes. Methods Mol Biol, 2011. 749: p. 235-54.

103. Rivetti, C., A simple and optimized length estimator for digitized DNA contours.
Cytometry Part A, 2009. 75A(10): p. 854-861.

104. Lipkin, B.S. and A. Rosenfeld. Picture processing and psychopictorics. New York:
Academic Press.

105. Dorst, L. and A.W.M. Smeulders, Length estimators for digitized contours. Computer
Vision, Graphics, and Image Processing, 1987. 40(3): p. 311-333.

106. Kulpa, Z., Area and perimeter measurement of blobs in discrete binary pictures.
Computer Graphics and Image Processing, 1977. 6(5): p. 434-451.

107. Vossepoel, A.M. and A.W.M. Smeulders, Vector code probability and metrication error in
the representation of straight lines of finite length. Computer Graphics and Image
Processing, 1982. 20(4): p. 347-364.

108. Rio, D.C., et al., Analysis of P element transposase protein-DNA interactions during the
early stages of transposition. Journal of Biological Chemistry, 2007. 282(39): p. 29002-
29012.

109. Minh, P.N.L., et al., Insights into the architecture and stoichiometry of Escherichia coli
PepA•DNA complexes involved in transcriptional control and site-specific DNA
recombination by atomic force microscopy. Nucleic Acids Research, 2009. 37(5): p. 1463-
1476.

110. Yang, Y., H. Wang, and D.A. Erie, Quantitative characterization of biomolecular
assemblies and interactions using atomic force microscopy. Methods, 2003. 29(2): p.
175-187.

111. Erie, D.A. and G.C. Ratcliff, A novel single-molecule study to determine protein-protein
association constants. Journal of the American Chemical Society, 2001. 123(24): p. 5632-
5635.

112. Henderson, R.M., et al., Atomic force microscopy of the EcoKI Type I DNA restriction
enzyme bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids
Research, 2009. 37(6): p. 2053-2063.

110 | P a g e

Appendices

111 | P a g e

Appendix A: AFM Studies of λ Repressor Oligomers Securing DNA Loops

112 | P a g e

113 | P a g e

114 | P a g e

115 | P a g e

116 | P a g e

117 | P a g e

118 | P a g e

119 | P a g e

Appendix B: DNA Looping in Prophage Lambda:New Insight from Single-

Molecule Microscopy

120 | P a g e

121 | P a g e

122 | P a g e

123 | P a g e

124 | P a g e

125 | P a g e

126 | P a g e

127 | P a g e

128 | P a g e

129 | P a g e

130 | P a g e

131 | P a g e

132 | P a g e

133 | P a g e

134 | P a g e

135 | P a g e

136 | P a g e

137 | P a g e

138 | P a g e

139 | P a g e

Appendix C: 186 CI paper draft

A missing link between transcription factors and nucleosomes: the

bacteriophage 186 CI repressor wraps and loops DNA

Introduction

- Idea of a binding specificity continuum.

TFs: Small protein-DNA contact region, high specificity

Nucleosomes. Large protein-DNA contact region, low specificity

186 CI: Large protein-DNA contact region, high specificity

- Nucleosomes:

 Structure

 Wrapping/unwrapping of DNA

 Looping – when relocated

 Low sequence specificity

 ‘Sub-nucleosome’ binding: the H3-H4 tetramer

 Higher order structures: nucleosome-nucleosome interactions (e.g. 30 nm fibre)

- 186 CI:

 Structural model

 Biochemical info

 Regulatory model

140 | P a g e

- Approach/results

Materials and Methods

AFM sample preparation

1584 bp-long DNA fragments were produced by cutting plasmids derived from

pBluescript containing wild type 186 operators (FL, FR, pR, pL) with two restriction enzymes:

NgoMIV and XmaI (New England BioLabs). The digestion product was isolated and purified

(QIAGEN gel purification kit). The position of the midpoint of each operator from one end is:

178bp/56.7nm (FL), 484bp/154.9nm (baricenter of pR. In particular, 463bp/148.2nm (pR1),

484bp/154.9nm (pR2), 505bp/161.6nm (pR 3)), 567bp/181.4nm (pL) and 857bp/274.2nm (FR).

The following forward and reverse primers were used to amplify various DNA fragments

as follows: 5’-TTACCGGAGAAGGAGAAGCA-3’ and 5’-ATTAATGCAGCTGGCACGAC-3’(524 bp-long

DNA containing only FL), and Biotin5’-CTTTCTTGCAGCCTTTACGG-3’ and 5’-

TTTACAAATGCTTCTCCTTCTCC-3’ (528 bp-long DNA containing just pR and pL).

Wild-type 186 CI repressor was prepared and purified as described previously [1].

The protein was diluted to the desired final concentration (5nM, 50 and 100 nM) in the

presence of 1 nM DNA in a buffer containing 50 mM HEPES, 150 mM NaCl and 0.1

mM EDTA (pH 7.0). All steps were conducted at Troom. The mixture was incubated for

20 min. The biotin-labelled DNA fragment was incubated in a mixture containing also

1µg/ml streptavidin. Shortly before deposition, a 10 μl drop of 0.01 μg/ml poly-L-

ornithine (1 kDa MW, Sigma-Aldrich, St. Louis, MO) was incubated on freshly cleaved

mica for one minute. The poly-L-ornithine-coated mica was then washed with 0.4 ml

HPLC water and dried with compressed air. Then, 10 l of the solution containing DNA

and protein were deposited on the poly-L-ornithine-coated mica and incubated for one

minute. The droplet was rinsed with 0.4 ml HPLC water and dried gently with

compressed air. The sample was left overnight in a desiccator before imaging.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital

Instrument, Santa Barbara, CA) operated in tapping mode using uncoated, etched silicon

tips (MirkoMasch, San Jose, CA). The oscillation amplitude was 50-60 mV with a

resonance frequency of 75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of 1×1 μm
2

were scanned at a rate of 1.2 Hz and with a resolution of 512×512 pixels.

After filtering images to remove scan line offsets and bowing, DNA molecules were

interactively traced with NeuronJ [2], a plug-in function for ImageJ [3].
TPM sample preparation:

1898 bp-long wt or mutated DNA segments were produced by PCR after inserting a

relevant fragment from pBluescript into pDL611 (ref). The following primers: 5' TCC

AGA GGC GCC GGG GGG TTC GTG CAC ACA G and

5'TGGTAACCTAGGTAAACAAATAGGGGTTCCGCGCAC
 were used to amplify by pcr the 186 region contained in pBluescript. pDL611 and the pcr

product were then digested with EcoR1 and Pst1 in order to insert by ligation the 186 region

141 | P a g e

from pBluescript into pDL611. The final TPM tether was obtained by pcr using this modified

plasmid and the following 5’ end biotin and digoxigenin-labeled oligos:

5'- bio-CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC-3' and 5'-dig-

GCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTC-3'

The FL- or FR- DNA fragments contained mutated FL or FR operators to prevent CI

binding. In ∆pR DNA the region containing the pR binding sites was replaced with an equally

long, but unrelated DNA.

 The TPM microchamber and experiment were prepared and run as previously described

[4-6]. In brief, the glass surface of a microscope flowchamber was coated with biotin-BSA and

incubated with streptavidin. DNA tethers were labeled with anti-digoxigenin-coated beads with

a diameter of 0.48 m (Indicia Diagnostics, Oullins, France). Interaction of the 186 CI protein

with DNA was monitored as a reduction in the amplitude of the Brownian motion of the bead as

previously described [4, 7-9].

Results

Confirmation of basic model

The repressor wheel.

The 186 bacteriophage repressor, 186 CI, binds to DNA as a dimer, and it was suggested

to assemble into a oligomer of 14 monomers in solution [10]. In support of this suggestion, a

crystallographic study showed that the CTD of 186 CI assembles into a wheel of seven dimers

(hereafter referred to as the 186 heptamer) [11]. This led to the hypothesis that the whole

protein, including the NTD DNA-binding domain, may too form wheel-shaped heptamers.

Therefore, AFM was used to image 186 CI free, as well as bound to 1584 bp-long DNA fragments

to characterize its shape and dimension. The results, summarized in Figure 1 strongly support

the idea that the protein oligomerizes to form wheel-shaped heptamers. Visual inspection of the

CI particles in the AFM images shows that not only they have a round shape, consistent with

that of a wheel (Figure 1, left), but also that the average particle diameter is close to the

diameter of a wheel composed of seven dimers, as estimated from the X-ray crystal structure of

the 186 CI CTD [11] (Figure 1, center). Furthermore, the volume of the wheels imaged by AFM

was measured and compared to a calibration curve previously obtained [12] (Figure 1, right).

Also this volume analysis is consistent with the idea that the wheels may be composed of seven

dimers. Finally, since such wheels are very abundant in the images obtained using only 50 nM CI,

which is a much lower than the 1100 nM estimated for the lysogen, it is likely that 186 CI

associates into a heptamer at an early stage after infection and that this state of assembly is

robust through the host cell division.

142 | P a g e

A 186 heptamer may bind cooperatively to multiple operators [11, 13, 14], giving rise to

physiologically relevant nucleoprotein complexes with different structure and conformation,

and with different impact on the 186 transcriptional regulatory network. Indeed, the fact that

lysogeny maintenance requires repression of pR and tight control of transcription from pL, and

that pR and pL face one another, suggests that different nucleoprotein species may be in

equilibrium in different repressor concentration regimes, so that the probability of pL being

unoccupied decreases with increasing CI concentration [13]. Figure 2 shows the possible species

and equilibria that have been suggested, together with AFM images confirming the existence of

these complexes.

Understanding the 186 regulatory mechanism requires characterization of the specific

interaction of the 186 wheel with the operators FL, pR, and FR and quantification of the

probability of occurrence of each species. Thus a statistical analysis of the AFM images acquired

was performed. Figure 3 shows that the occupancy of the operators ranks as follows: pR > FL >

FR, independently of the DNA conformation that the protein mediated. Table 1 reports the

distribution of the nucleoprotein complexes found. The images reveal that the 186 wheel may

interact with DNA either by wrapping or by looping it.

Pseudo sites

The wheel higher affinity for FL than for FR revealed in figure 3 may be explained by

cooperativity between FL and an adjacent pseudo site. In agreement with previous DNAse

digestions [15], closer analysis of the complexes at FL, performed on 524 bp/167.7 nm-long DNA

fragments containing only this operator, revealed the presence of a pseudo site on the side

away from pR (Figure 4). The distance from each end of the DNA to the point of contact with the

wheel was measured. The distribution of the length of free DNA measured on each end of the

bound wheel is shown in figure 4. FL is not centered in these DNA fragments and is closer to the

end that points in the direction of pR and FR (Figure 4, top). Thus, these histograms show that FL

and an adjacent pseudo site in the direction away from pR were always occupied. Each

distribution shows two peaks separated by about 10 nm. This corresponds to the footprint of

one dimer in the wheel since it is one seventh of the perimeter of the 186 heptamer. The left

histogram shows that the free DNA on the left of the bound wheel was, in average, either 9.4 or

20.0 nm long. Since FL was centered in this DNA fragment 25 nm from the end in the direction

of pR (short end in the diagram in figure 4), the peak values indicate that one dimer of the wheel

binds at FL, leaving approximately 20 nm of free DNA to the left. However, the next 10 nm of

this free DNA may bind dynamically to the next dimer in the wheel. On the other hand, the right

histogram in figure 4 shows that the free DNA on the right of the bound wheel was, in average,

either 122 or 132 nm long. FL was centered 150.6 nm from the end of the DNA fragment away

from pR (long end in the diagram in figure 4). Thus, the peak values indicate that two dimers of

the wheel bind both FL and an adjacent pseudo site, leaving approximately 132 nm of free DNA

to the right. Ten more nm of this free DNA may bind dynamically to yet the next dimer in the

143 | P a g e

wheel leaving 122 nm free. On the basis of these observations it is suggested that a pseudo site

for binding of the 186 repressor exists next to FL on the side away from pR. Note also that DNA

binding to successive dimers around the wheel leads to its wrapping by DNA.

Asymmetric DNA wrapping on the 186 wheel was also observed in 528 bp/179 nm-long DNA

fragments that contained only pR (Figure 5). Here, the wheel is not centered on pR because it

most often occupies a pseudo site, containing pL, as well. This is consistent with the idea that

the protein bound at pR will repress pL leading to 186 CI negative autoregulation, unless

competition from distal sites frees the repressor promoter [16].

DNA wrapping/unwrapping

AFM imaging of 1584 bp-long fragments of wt 186 DNA containing all binding sites

showed that the degree of wrapping of DNA around the wheel depends on the operator. The

186 wheel bound at pR is most often found to be fully wrapped by DNA (Figure 2, species 2, 3, 6

and 7), while at FL and FR may be more often only partially wrapped such that the DNA going in

does not cross over the DNA coming out of the wheel (Figure 2, species 7 and Table 1). However,

the wheel may also mediate a loop between either FL or FR and pR (Figure 2, species 4 and

Table 1). Furthermore, in the presence of a wheel already wrapped at pR, a second wheel may

bridge FL and FR (Figure 2, species 6 and Table 1).

The fully wrapped conformation at pR was observed also by TPM using 1898 bp-long FL–

.pRpL.FR– DNA tethers. Addition of repressor in the microchamber caused an immediate and

stable decrease of the TPM signal, ρ⊥ , by 12.2 nm (Figure 6A) which corresponds, according to a

calibration curve obtained in identical buffer conditions (Figure S1), to a shortening of the DNA

tether of 210 bp. This is the decrease expected for a full wrapping event assuming that each 186

dimer binds 10 nm of DNA and that a heptamer will therefore wrap approximately 70 nm or 210

bp of DNA. This assumption is justified by the structural information available (see above) and

by the AFM study on the DNA fragment containing only FL described above. Interestingly, TPM

assays performed on 1898 bp-long DNA tethers containing only the FL site (FL.∆pRpL.FR- DNA)

showed a similar stable shortening of about 11.3 nm (Figure 6B). In this case too, the TPM traces

recorded did not show transitions between the wrapped and unwrapped conformations as

shown by the representative traces (Figure S2), their associated frequency distribution

histograms, and by the frequency distribution of the average TPM signal for each of the beads

analyzed for the FL.∆pRpL.FR- DNA tethers in the absence and in the presence of 50 nM 186 CI

(Figure 6B).

DNA looping

144 | P a g e

Although wrapping seems to be preferred (Table 1), AFM images revealed the presence

of nucleoprotein complexes including wheel-mediated DNA looping (Figure 2, species 4 and 6).

These complexes were classified and their relative weight was measured for wt DNA (FL+ pR+

FR+), as well as for FL+ pR+ FR–, where the FR site was mutated, and for FL+ pR FR+, where the pR

sequence was replaced with a sequence of equal length that did not bind 186 CI. The results of

this statistical analysis are reported in Tables 1-4. In all cases, DNA wrapping around the

repressor is more common than repressor mediated looping. However less probable, the looped

species are likely to be physiologically relevant since the pR-FL (or –FR) loop may free pL for

transcription, while the FL-FR loop may free pR.

Tables 3&4 show a statistical analysis of AFM images of the DNA fragment carrying only

the FL and pR sites. According to the Boltzmann distribution, the ratio between different states,

S, in equilibrium depends only on the free energy of each state. If the CI wheel binds to pR and

FL independently, the free energy of the state where both sites are occupied (ΔGpR,FL) should be

the sum of free energy changes associated with the formation of each of the other two states:

the state with only one wheel bound at pR (ΔGpR) and the state with only one wheel at FL (Δ

GFL). Therefore, the population of four states (S1: no protein; S2: only pR occupied; S3: only FL

occupied; S4: pR and FL both occupied) will be related as follows:

S1/ S2 = S3/ S4

Since S4 is much higher than expected, cooperativity may exist between FL and pR which

reduces the free energy of S4. The same thing can be (cannot be) argued for FR and pR.

Therefore,....

In solution, 186 repressor-mediated looping versus wrapping was investigated by TPM. After

addition of repressor to wt 186 DNA, most of the tethers adopted either one of two

conformations, characterized by an average decrease in <ρ⊥> of 14.5 nm (most probable) and

37.0 nm, each, which correspond to a shortening of the DNA tether of approx 250 bp and 580

bp, respectively (Figure 6C). The 250 bp shortening is greater than the one associated with a full

wrapping event. Thus, it could result from a wrapping event at the strong pR sites and a partial

wrapping at one of the flanking sites as well as from a looping event between pR and either FL

or FR. In this respect, notice that the histogram is quite broad. The 580 bp shortening may be

interpreted as due to the wrapping of the DNA around three wheels bound one to each

operator (FL, pR and FR) or to the formation of a loop between FL and FR, since the distance

between the centers of these two operators is 678 bp. Notice that in this looped state, a second

wheel may be bound at pR, but would not cause a detectable TPM signal. Out of 31 molecules

that were analyzed, only 5 displayed just one or two transitions between the two states in 20

min of observation, but never back to the free DNA state. Their frequency histogram was,

therefore, bimodal. Although TPM measurements did not show all the nucleoprotein complexes

revealed by AFM, one should notice that the TPM histograms are quite broad, and it is possible

that several nucleoprotein complexes, including the loop between pR and one of the flanking

sites, coexist in equilibrium, without being clearly resolved by TPM.

file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Tables.docx
file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Tables.docx

145 | P a g e

TPM measurements performed on DNA tethers containing only FL and pR (Figure 6D),

showed a 14.5 nm decrease in <ρ⊥>, corresponding to 245 bp shortening of the DNA tether. This

shortening, as already discussed for the wt case, may be interpreted as due to a full wrapping

event, probably at pR, which is stronger than FL accompanied by a partial wrapping at FL.

However, the broad TPM frequency distribution histogram may also be consistent with a loop

which was dynamically forming and breaking between FL and pR. This loop would consume

some 300 bp of DNA if the two binding sites came in direct contact, but the wheel would reduce

the observed shortening. Indeed, three of 44 FL+.pRpL.FR– DNA tethers display two peaks, one at

18.9 nm and the other at 0, respectively, and can be explained by the transition between the

looped and the unlooped DNA at FL and pR.

TPM of FL+ ΔpR FR+ DNA was also performed (Figure 6E). These molecules are not expected

to bind the 186 wheel at pR. DNA tethers which displayed just one peak after addition of

repressor could be separated into two groups. One group showed an average decrease in <ρ⊥ >

of 24.9 nm, corresponding to 410 bp shortening of DNA tether. This may be consistent with two

fully wrapped wheels at FL and FR. This could happen since the ratio between 186 monomer to

DNA is 50:1, one wheel needs 14 monomers to form, and there is a complex equilibrium

between several protein oligomerization states which lowers the number of wheels in solution.

Therefore, in these conditions of CI concentration, one DNA may in average have 2-3 wheels. If

there is no pR, FL and FR may always be occupied. This would prevent loop formation by just

one wheel bound simultaneously at FL and at FR. However, this latter, looped conformation,

may be induced in some of the tethers and explain the broadness of the histogram.

Another group of DNA tethers showed an average 7.0 nm decrease of <ρ⊥ >, which, is

shorter than that expected for a full wrapping event, but, considering the standard deviation of

the data, could be due to a single wheel partially wrapped at FR or FL. Once again, TPM seems to

reveal fewer nucleoprotein complexes than AFM. In particular, the loop between the two

flanking sites was not distinctly detected in the TPM measurements performed on this mutated

186 DNA fragment, and the proportion between one wrapped and two wrapped wheels is not

the same as in the AFM images despite the similar DNA/repressor concentration ratio in the two

types of measurements.

The overall interpretation of all these observations should not neglect to consider the

possible role of nonspecific binding. An occupancy analysis, performed on the AFM images of

the FL+ ΔpR FR+ DNA (Figure 7), revealed several weaker binding sites, which may play a role in

shaping the equilibria between the nucleoprotein complexes involving FL, pR and FR. Indeed,

DNA loops between a specific and a nonspecific site were observed by AFM in the absence of pR

(Table 2). Therefore, the histograms of TPM signals may be broadened also by transient

interactions with nonspecific sites which may have the physiological role of facilitating and/or

stabilizing specific interactions that regulate the 186 bacteriophage genetic switch.

file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Figures.docx
file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Figures.docx

146 | P a g e

Other CI binding forms and non-specific binding

The 186 repressor can bind non-specifically, just as many prokaryotic repressors and probably

most transcriptional factors. This ability is clear from the analysis of AFM images of FL–

.pRpL.FR– and 186 CI nucleoprotein complexes (Figure 7) at 50 nM and from the beads-on-a-

string fiber that 186 DNA forms in the presence of 300 nM repressor (Figure 8). Non specific

binding is eliminated when using 186 CI mutant (Table 5). AFM imaging also showed there is

some kind of non specific interaction between wild type protein and non-related DNA (lambda)

or the FL- delta pR-pL FR- DNA.

Discussion (outline)

Several 186 DNA-repressor nucleoprotein complexes were revealed by AFM and TPM.

TPM measurements on several tethers showed that protein-induced DNA remodeling is stable.

Indeed transitions back to the DNA unbound were extremely rare. Also transitions between

wrapping and looping were rare. However, the collective histograms of several DNA tethers in

the presence of protein are broad and may represent several degrees of wrapping, where there

is only one binding site, and did not allow distinction of different species when multiple types of

multiprotein complexes were consistent with the observed shortening.

Pseudo sites play a role in stabilizing some of these complexes and, thus, in shaping the

relative equilibria.

Discussion of physiological relevance of these complexes.

...............................

Bibliography

1. Shearwin, K.E. and J.B. Egan, Purification and self-association equilibria of the lysis-

lysogeny switch proteins of coliphage 186. J Biol Chem, 1996. 271(19): p. 11525-31.

2. E. Meijering, M.J., J. C. Sarria, P. Steiner, H. Hirling, and M. Unser, Design and Validation

of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry

A, 2004. 58: p. 9.

3. Rasband, W.S., Image J. 2008.

file:///C:/Documents%20and%20Settings/lfinzi/My%20Documents/ufficio/documenti/Articoli/186/Figures_II.docx

147 | P a g e

4. Dunlap, D., et al., Probing DNA topology with Tethered particle Motion, in Methods in

Molecular biology: Single-Molecule Analysis: Methods and Protocols, E.J.G. Peterman

and G. Wuite, Editors, Humana Press.

5. Finzi, L. and D. Dunlap, Single-molecule studies of DNA architectural changes induced by

regulatory proteins. Methods Enzymol, 2003. 370: p. 369-78.

6. Zurla, C., Manzo, C, Dunlap, DD, Lewis, DEA, Adhya, S, Finzi, L, Direct Demonstration and

Quantification of Long-Range DNA looping by the Lambda Bacteriophage Repressor.

Nucleic Acids Res, 2009. 37: p. 2789-2795.

7. Finzi, L. and D.D. Dunlap, Single-molecule approaches to structure, kinetics and

thermodynamics of transcriptional regulatory nucleoprotein complexes”. J. Biol. Chem.,

2010. 285: p. 18973-18978.

8. Manzo, C. and L. Finzi, Quantitative analysis of DNA looping kinetics from tethered

particle motion experiments, in Methods In Enzymology: Molecule Tools, Part B: Super-

Resolution, Particle Tracking, Multiparameter, and Force Based Methods, N.G. Walter,

Editor. 2010, Academic Press, Elsevier. p. 199-220.

9. Nelson, P.C., et al., Tethered particle motion as a diagnostic of DNA tether length.

Journal Of Physical Chemistry B, 2006. 110(34): p. 17260-17267.

10. Egan, K.E.S.a.J.B., Purification and self-association equilibria of the lysis-lysogeny switch

proteins of coliphage 186. The Journal of Biological Chemistry, 1996. 271(May 10): p. 7.

11. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate

genetic switch. Mol Cell, 2006. 21(5): p. 605-15.

12. Wang, H., Finzi, L., Lewis, D. and Dunlap, D., AFM studies of the CI oligomers that secure

DNA loops. J. Pharmaceutical Biotechnology, 2009. 10: p. 494-501.

13. Dodd, I.B., K.B. Shearwin, and K. Sneppen, Modelling transcriptional interference and

DNA looping in gene regulation. Journal Of Molecular Biology, 2007. 369(5): p. 1200-

1213.

14. Egan, I.B.D.a.J.B., Action at a distance in CI repressor regulation of the bacteriophage

186 genetic switch. Molecular Microbiology, 2002. 45(3): p. 14.

15. Egan, I.B.D.a.J.B., DNA binding by the coliphage 186 repressor protein CI. The Journal of

Biological Chemistry, 1996. 271(May 10): p. 9.

16. Ian B. Dodd, K.E.S.a.K.S., Modelling transcriptional interference and DNA looping in gene

regulation. J. Mol. Biol., 2007. 369: p. 14.

148 | P a g e

Appendix D: Source code for measurement of blob volume from AFM

images and polymer chain and particle simulation

volum_C.m

001 % Mannually select particle region and calculate particle volume.
002
003 % Authur: Haowei Wang (hwang23@emory.edu)
004 % Last updated Sep. 10th, 2011
005
006 clear all
007 close all
008
009 % Set parameters.
010
011 z_scale=8.0;
012 pixel_area=(1000/512)^2;
013 v_result=rand(10,5); %#ok<NASGU>
014 v_result=0.0;
015
016 % Begin to proceed
017 for n=1:10
018 % Display file number
019 n
020 expand=input('Input filename: ', 's');
021 if expand=='100'
022 break;
023 end
024 % Read image data
025 image = readimage(strcat('44citks8.',expand));
026 pcolor(image);
027 shading flat
028
029 % Select the particle by mouse clicking
030 range_raw=ginput;
031 range = range_raw(end-1:end,:);
032 sub_image = image(range(1,2):range(2,2), range(1,1):range(2,1));
033 pcolor(sub_image);
034 shading flat
035
036 % Input the threshold for background, input '0' to end the changing
037 % (last selcetd value will be perserved).
038 bearing = -5000;
039 while bearing~=0
040 sub_i=sub_image;
041 bearing = input('Input Bearing: ');
042 if bearing~=0
043 bearing_f=bearing;
044 sub_i(sub_i<bearing)=bearing;
045 pcolor(sub_i);
046 shading flat
047 end
048 end
049 baseline=sub_image(:);
050 base=mean(baseline(baseline<bearing_f));

149 | P a g e

051
052 threshold = -5000;
053
054 % Input the threshold for DNA height, input '0' to end the changing
055 % (last selcetd value will be perserved).
056
057 while threshold~=0
058 sub_i=sub_image;
059 threshold = input('Input Threshold: ');
060 if threshold~=0
061 threshold_f=threshold;
062 sub_i(sub_i<threshold) = base;
063 pcolor(sub_i);
064 shading flat
065 end
066 end
067
068 % Eliminate pixels not belong to the particle.
069 sub_i=sub_image;
070 sub_i(sub_i<threshold_f)=base;
071 pcolor(sub_i);
072 shading flat
073 elimin=input('Eliminate? y=1,n=0: ');
074 while elimin==1
075 range_raw=ginput;
076 range = range_raw(end-1:end,:);
077 sub_i(range(1,2):range(2,2), range(1,1):range(2,1))=base;
078 pcolor(sub_i);
079 shading flat
080 elimin=input('Eliminate? y=1,n=0: ');
081 end
082
083 % Calculate volume, area and height
084 sub_i=sub_i-base;
085 volume=sum(sum(sub_i))*pixel_area*z_scale/65536;
086 v_result(n,4)=max(max(sub_i))*z_scale/65536;
087 v_result(n,5)=(threshold_f-base)*z_scale/65536;
088 sub_i(sub_i>0)=1;
089 area=sum(sum(sub_i))*pixel_area;
090 v_result(n,1)=str2double(expand);
091 v_result(n,2)=volume;
092 v_result(n,3)=area;
093 expand %#ok<NOPTS>
094 % result2: block volume;
095 % result3: block area;
096 % result4: the highest peak of the block;
097 % result5: the threshold, ie. the height of the DNA.
098 end

hundredsM.M

01 % This program simulates polymer chain with worm-like-chain model.
02 mNum=300;
03 length=1500;
04 data=zeros(length,2,mNum);
05 Dstd=sqrt(0.34/25);

150 | P a g e

06
07 for i=1:mNum
08
09 % Start point is set to (0,0)
10 data(1,1,i)=0;
11 data(1,2,i)=0;
12
13 % Initial the start direction
14 direction=rand*2.0*pi;
15 for j=2:length
16
17 % The polymer walk one step in each round following the direction
18 % provided by Worm-Like-Chain
19 data(j,1,i)=0.34*cos(direction)+data(j-1,1,i);
20 data(j,2,i)=0.34*sin(direction)+data(j-1,2,i);
21 direction=direction+normrnd(0,Dstd);
22 end
23
24 % Plot the simulated polymer.
25 plot(data(:,1,i),data(:,2,i));
26 hold on
27 end

imageG.m

01 % This program scans the simulated polymer chain with a virtual tip
02 % and convert it into 512*512 images.
03
04 close all
05 clear all
06
07 load data
08
09 range=65536;
10 zScale=8;
11 xyScale=512/1000;
12
13 rDNA=1.0;
14 rProbe=2.7;
15
16 % End of parameter initiation.
17
18 data=data*xyScale+256;
19 Ind=size(data);
20
21 AffectRange=8;
22
23 % Ind(3) is the total number of simulated polymers
24
25 for i=1:Ind(3)
26 image=zeros(512,512);
27
28 % The program looks at polymers one by one. Every polymers will be
29 % saved into a TIF file at the end.
30 % Ind(1) is the number of points inside each polymer chain.
31 % The program looks polymer chains as a group of points. Every

151 | P a g e

32 % point has a radius equal to rDNA. Detected height of each pixels
33 % will be recorded and the program picks the highest value to
34 % establish the topology of polymer.
35
36 for j=1:Ind(1)
37 center=round(data(j,:,i));
38 res=data(j,:,i)-center;
39 for k=-5:5
40 for l=-5:5
41 dis2=((k-res(1))^2+(l-res(2))^2)/xyScale^2;
42 height2=(rDNA+rProbe)^2-dis2;
43 if height2<0
44 height2=0;
45 end
46 height=sqrt(height2)-rProbe;
47
48 if image(center(1)+k,center(2)+l)<height
49 image(center(1)+k,center(2)+l)=height;
50 end
51 end
52 end
53 end
54
55 % Adding random noise.
56
57 image=image+rand(512)*0.4;
58 image=image*range/zScale;
59
60 % pcolor(image);
61 % shading flat
62 % hold on
63 % plot(data(:,2,i),data(:,1,i));
64
65 % Scaling to 256 degree of brightness.
66 MaxImage=max(max(image));
67 scaleImage=image*254/MaxImage;
68 Nimage=uint8(scaleImage);
69
70 % Saving TIF image.
71
72 imwrite(Nimage, strcat('Mole', int2str(i), '.tif'), 'ColorSpace', 'cielab', 'Compression',
'none');
73 end

ellipsoid.m

01 % This program simulates half-ellisoid particles and save it into
02 % TIF images.
03
04 % Authur: Haowei Wang (hwang23@emory.edu)
05 % Last updated Sep. 10th, 2011
06
07 close all
08 clear all

152 | P a g e

09
10 area=30;
11
12 range=65536;
13 zScale=8;
14 xyScale=512/1000;
15 rProbe=8.0;
16
17 % End of preparing parameters.
18
19 image=zeros(512,512);
20
21 for i=1:area
22 for j=1:area
23
24 % begin to calculate the height of the point
25 rParticle=9;
26 MaxHeight=4.5;
27 distance2=(15-i)^2+(15-j)^2;
28 if distance2<rParticle^2
29 heightP=MaxHeight/2+MaxHeight/2*sqrt(1-distance2/rParticle^2);
30 else heightP=0;
31 end
32 % calculate the height of the point
33
34 % begin to scan the point
35 PositionI=[i*512/1000, j*512/1000];
36 PositionP=round(PositionI);
37 res=PositionI-PositionP;
38 PositionP=PositionP+area;
39 for k=-5:5
40 for l=-5:5
41 dis2=((k-res(1))^2+(l-res(2))^2)/xyScale^2;
42 height2=(heightP+rProbe)^2-dis2;
43 if height2<0
44 height2=0;
45 end
46 height=sqrt(height2)-rProbe;
47
48 % The program only record the highest effect generated by pixels
49 % belong to a particle.
50 if image(PositionP(1)+k,PositionP(2)+l)<height
51 image(PositionP(1)+k,PositionP(2)+l)=height;
52 end
53 end
54 end

153 | P a g e

55 % end of scan
56 end
57 end
58
59 image=image+rand(512)*0.4;
60 image=image*range/zScale;
61
62 % Scaling to 256 degree of color
63
64 MaxImage=max(max(image));
65 scaleImage=image*254/MaxImage;
66 Nimage=uint8(scaleImage);
67
68 imwrite(Nimage, 'Mole.tif', 'ColorSpace', 'cielab', 'Compression', 'none');

slope.m

01 % This program simulate cornic particle and save it in TIF image
02 % for the study of particle diameter under AFM.
03
04 % Authur: Haowei Wang (hwang23@emory.edu)
05 % Last updated Sep. 10th, 2011
06 close all
07 clear all
08
09 area=30;
10
11 range=65536;
12 zScale=8;
13 xyScale=512/1000;
14
15
16 rProbe=2.5;
17
18 image=zeros(512,512);
19
20 for i=1:area
21 for j=1:area
22
23 % begin to calculate the height of the point
24 rParticle=7.1;
25 MaxHeight=3.5;
26 distance2=(15-i)^2+(15-j)^2;
27 if distance2<rParticle^2
28 heightP=MaxHeight/rParticle*(rParticle-sqrt(distance2));
29 else heightP=0;

154 | P a g e

30 end
31 % calculate the height of the point
32
33 % begin to scan the point
34 PositionI=[i*512/1000, j*512/1000];
35 PositionP=round(PositionI);
36 res=PositionI-PositionP;
37 PositionP=PositionP+area;
38 for k=-5:5
39 for l=-5:5
40 dis2=((k-res(1))^2+(l-res(2))^2)/xyScale^2;
41 height2=(heightP+rProbe)^2-dis2;
42 if height2<0
43 height2=0;
44 end
45 height=sqrt(height2)-rProbe;
46
47 % Keep the higher value for each pixels.
48 if image(PositionP(1)+k,PositionP(2)+l)<height
49 image(PositionP(1)+k,PositionP(2)+l)=height;
50 end
51 end
52 end
53 % end of scan
54 end
55 end
56
57 % Scaling to 256 degree of color;
58 image=image+rand(512)*0.1;
59 image=image*range/zScale;
60 MaxImage=max(max(image));
61 scaleImage=image*254/MaxImage;
62 Nimage=uint8(scaleImage);
63
64 imwrite(Nimage, 'Mole.tif', 'ColorSpace', 'cielab', 'Compression', 'none');
65 pcolor(image);
66 shading flat
67
68 figure
69 bar=1:61;
70 plot(bar,image(8:68,39));
71 subimage=image(20:80,20:80);
72 figure
73 surf(subimage);

155 | P a g e

Appendix E: Source code DNA protein analysis toolbox

tracing.m

001
002 % This program calculate the basal level(background) and overwhelm value
003 % (most of the case, DNA height).
004
005 % The file structure of traces contains all traces of each image. The first
006 % raw is [BASE OVERWHELM]. The tracing data are put as follow: the first
007 % row of every segment is [-1 traceID]; the last row is [-1 0]. Trace ID is
008 % a postive number generated by tracing program to identify each segments
009 % in one image.
010 % Tracing files are saved as *tr.txt, where * represents the original image
011 % filename.
012
013 % This program need subfunction "thresCal.m", please keep it in the same
014 % folder of the program.
015
016 % Authur: Haowei Wang (hwang23@emory.edu)
017 % Last updated Sep. 10th, 2011
018
019 clear all
020 close all
021
022 Button='Yes';
023
024 Auto='Yes';
025 % If Auto is set to 'Yes', then the program will not ask for parameters.
026
027 [filename, pathname, filterindex]=uigetfile('*.*', 'pick a file', 'Multiselect', 'on');
028
029 currentP=pwd;
030 path(path,currentP);
031
032 cd(pathname);
033
034 if iscell(filename)
035 fileNum=size(filename, 2);
036 else
037 fileNum=1;
038 end
039
040 minLength=10;
041
042 for traceN=1:fileNum
043 if fileNum==1
044 file=filename;
045 else
046 file=char(filename(traceN));
047 end
048 if ~isequal(file, 0)
049 IM = readimage(file);

156 | P a g e

050 trF=figure;
051 pcolor(IM);
052 shading flat
053 thresC=thresCal(IM);
054
055 if thresC.error==1
056 BASE=round(mean(mean(IM)));
057 OVERWHELM=round(mean(max(IM)));
058 else
059 BASE=round(thresC.base);
060 OVERWHELM=round(thresC.overwhelm);
061 end
062
063 % Set threshold for the background. All pixels below BASE will be
064 % considered as background
065
066 BASE=BASE+round((OVERWHELM-BASE)*0.08);
067
068 % Set up original value for threshold modification.
069 if Auto(1)=='Y'
070 BASE1=BASE;
071 OVERWHELM1=OVERWHELM;
072 else
073 BASE1=-1;
074 OVERWHELM1=-1;
075 end
076
077 % If 'Auto' is set to 'Yes' at the begining of the code, the program will
078 % skip this part of code and automatically trace all selected images with
079 % calculated threshods without asking user. Otherwise, the while loop below
080 % will be excuted and a question dialog will present so that the user can
081 % change and compare different sets of thresholds.
082
083 while true
084
085 if BASE==BASE1 && OVERWHELM==OVERWHELM1
086 break;
087 else
088 image=IM;
089 image(image<BASE)=BASE;
090 baseF=figure('position',[10 150 560 420]);
091 newp=pcolor(image);
092 title('BASE Cutting');
093 shading flat
094
095 overF=figure('position',[590 150 560 420]);
096 image=IM;
097 image(image<OVERWHELM)=BASE;
098 newp2=pcolor(image);
099 title('Overwhelming');
100 shading flat
101
102 def={num2str(BASE),num2str(OVERWHELM)};
103 prompt={'Enter new BASE:', 'Enter new OVERWHELM:'};
104 answer=inputdlg(prompt, 'Change parameter', 1, def);
105 BASE1=BASE;

157 | P a g e

106 OVERWHELM1=OVERWHELM;
107 BASE=str2double(char(answer(1)));
108 OVERWHELM=str2double(char(answer(2)));
109 close(baseF);
110 close(overF);
111 end
112 end
113 end
114
115 THRESHOLD=0.4; % set the default threshold value in percentage.
116 ReMax=1500; % the maximum number of points on one tracing
117 Record=zeros(ReMax,2);
118
119 % If the threshold is set to a very low number by mistake, the program will
120 % correct it with 30%
121
122 if (THRESHOLD<=0.05)||(THRESHOLD>=1)
123 THRESHOLD=0.3;
124 end
125 traceNum=0;
126 TracingWindow=zeros(1,2);
127
128 test{1}=[-1 -1 0; 0 -1 0; 0 0 0];
129 test{2}=[0 -1 -1; 0 -1 0; 0 0 0];
130 test{3}=[0 0 -1; 0 -1 -1; 0 0 0];
131 test{4}=[0 0 0; 0 -1 -1; 0 0 -1];
132 test{5}=[0 0 0; 0 -1 0; 0 -1 -1];
133 test{6}=[0 0 0; 0 -1 0; -1 -1 0];
134 test{7}=[0 -1 0; 0 -1 -1; 0 0 0];
135 test{8}=[0 0 0; 0 -1 -1; 0 -1 0];
136 %left test arrays
137
138 image=IM;
139 pcolor(image);
140 shading flat
141
142 Msize=size(image);
143 mask=zeros(Msize);
144
145 biColor=image;
146 biColor(biColor<(OVERWHELM-BASE)*THRESHOLD+BASE)=0;
147 % biColor(biColor>OVERWHELM)=0;
148 biColor(biColor>0)=1;
149
150 biColor(:,1)=0;
151 biColor(:,Msize(2))=0;
152 biColor(:,Msize(2)-1)=0;
153 biColor(1,:)=0;
154 biColor(Msize(1),:)=0;
155 biColor(Msize(1)-1,:)=0;
156 %clear the edge
157
158 modify=-1;
159
160 % Begin to thinning. 'modify' is set to zero at the beginning of each
161 % round. After each round modify is set to -n where n is the number of

158 | P a g e

162 % pixels removed in the round. The while-loop will excute untill there is
163 % no pixel removed in one round.
164
165 while (modify<0)
166 modify=0;
167
168 % The image matrix will rotate 90 degree in each round of this for-loop. By
169 % this mean, pixels will be removed ordially from each side of the image.
170 % After four round, the image will come back to origin direction.
171 for i=1:4
172
173 % Pick up pixels insde the image one by one and begin to test.
174 for j=2:Msize(2)-1
175 for k=2:Msize(1)-1
176
177 % The pixel has value and in the left edge of a blob will be tested for
178 % removal.
179 if (biColor(k,j)>0)
180 if(biColor(k,j-1)==0)
181
182 % Begin to test if the pixel can be removed. If the answer is yes, the
183 % relat position in mask will be set to '-1'.
184
185 around=biColor(k-1:k+1,j-1:j+1);
186 sumR=sum(sum(around));
187 if (sumR>3)
188 mask(k,j)=-1;
189 if (around(1,1)==1)
190 if (around(1,2)==0)
191 mask(k,j)=0;
192 end
193 end
194 if (around(1,2)==1)
195 if (around(1,1)+around(1,3)+around(2,3)==0)
196 mask(k,j)=0;
197 end
198 end
199 if (around(1,3)==1)
200 if(around(1,2)+around(2,3)==0)
201 mask(k,j)=0;
202 end
203 end
204 if (around(2,3)==1)
205 if(around(1,2)+around(1,3)+around(3,2)+around(3,3)==0)
206 mask(k,j)=0;
207 end
208 end
209 if (around(3,3)==1)
210 if (around(2,3)+around(3,2)==0)
211 mask(k,j)=0;
212 end
213 end
214 if (around(3,2)==1)
215 if (around(3,1)+around(2,3)+around(3,3)==0)
216 mask(k,j)=0;
217 end

159 | P a g e

218 end
219 if (around(3,1)==1)
220 if (around(3,2)==0)
221 mask(k,j)=0;
222 end
223 end
224
225 if(sumR>4)
226 if (around(2,3)==0)
227 mask(k,j)=0;
228 end
229
230 end
231 % This part preserve the pixels that can break the skeleton if be removed
232 if sumR==4
233 AdjTest=around(1,1)*around(1,2)+around(1,2)*around(1,3);
234 AdjTest=AdjTest+around(1,3)*around(2,3)+around(2,3)*around(3,3);
235 AdjTest=AdjTest+around(3,3)*around(3,2)+around(3,2)*around(3,1);
236 if AdjTest==0
237 mask(k,j)=-1;
238 end
239 end
240
241 % This part removes the pixels split the skeleton
242
243 elseif (sumR==3)
244 for l=1:8
245 testAround=abs(around+test{l});
246 if (sum(sum(testAround))==0)
247 mask(k,j)=-1;
248 break;
249 end
250 end
251 end
252 % if (mask(k,j)==-1)
253 % around
254 % end
255
256 end
257
258 end
259 end
260 end
261
262 pcolor(biColor);
263 shading flat
264
265 % Add mask to biColor matrix to set the selected pixels to zeros (remove
266 % selected pixels).
267 biColor=biColor+mask;
268 modify=modify+sum(sum(mask));
269 Msize=Msize*[0 1; 1 0];
270 biColor=rot90(biColor);
271 mask=zeros(Msize);
272 % Rotate 90 degree to repeat
273 end

160 | P a g e

274 end
275
276 % Display tracing result.
277 image=image.*(1-biColor);
278
279 pcolor(image);
280 shading flat
281
282 % User can choose to save the traces or not here. If 'Auto' was set to
283 % 'Yes' at the beginning of the code, the program will skip the question
284 % dialog and save all traces automatically.
285 if Auto(1)=='N'
286 Button=questdlg('Save tracing?');
287 end
288 if Button(1)=='Y'
289 fd=fopen(strcat(file, 'tr.txt'), 'w');
290 fprintf(fd, '%d %d \n\r', round([BASE OVERWHELM]));
291
292 % The program will go through the whole image to look for a start end for
293 % traces.
294 for i=2:Msize(1)-1
295 for j=2:Msize(2)-1
296 if biColor(i,j)==1
297 around=biColor(i-1:i+1,j-1:j+1);
298 if sum(sum(around))==2
299 Record(1,1)=i;
300 Record(1,2)=j;
301 Record(1,:)=Record(1,:);
302 traceNum=traceNum+1;
303 m=2;
304 k=i;
305 l=j;
306 testNext=[1 2 3; 4 5 6; 7 8 9];
307 while (sum(sum(around))>1)
308 biColor(k,l)=0;
309 around(2,2)=0;
310 tNext=sum(sum(testNext.*around));
311
312 switch tNext
313 case 1
314 k=k-1; l=l-1;
315 case 2
316 k=k-1;
317 case 3
318 k=k-1; l=l+1;
319 case 4
320 l=l-1;
321 case 6
322 l=l+1;
323 case 7
324 k=k+1; l=l-1;
325 case 8
326 k=k+1;
327 case 9
328 k=k+1; l=l+1;
329 otherwise

161 | P a g e

330 % traceNum=traceNum-1;
331 Record=zeros(ReMax,2);
332 break;
333 end
334 Record(m,1)=k;
335 Record(m,2)=l;
336 Record(m,:)=Record(m,:);
337 m=m+1;
338 if m==ReMax
339 break;
340 end
341 around=biColor(k-1:k+1,l-1:l+1);
342 end
343 biColor(k,l)=0;
344 if m<minLength
345 traceNum=traceNum-1;
346 Record=zeros(ReMax,2);
347 elseif Record(1,1)+Record(1,2)==0
348 m=1;
349 else
350 fprintf(fd, '%d %d \n\r', -1, traceNum);
351 for n=1:ReMax
352 if Record(n,1)+Record(n,2)==0
353 fprintf(fd, '%d %d \n\r', -1, 0);
354 break;
355 end
356 fprintf(fd, '%d %d \n\r', Record(n,:));
357 end
358 Record=zeros(ReMax,2);
359 end
360 end
361 end
362 end
363 end
364 fclose(fd);
365 end
366 close(trF);
367 end
368 cd(currentP);

Readimage.m

01 % This function read images from AFM data and export it in a double-percision matrix.
02
03 % Authur: Haowei Wang (hwang23@emory.edu)
04 % Last updated Sep. 10th, 2011
05 function data = readimage(filename)
06
07 f = fopen(filename);
08 magnify=1;
09
10 % Read file head and find out scaling factor ('magnify').
11 while true
12 line=fgets(f);
13 if size(line,2)<13

162 | P a g e

14 continue;
15 end
16 if strcmp('\@Z magnify:', line(1:12))
17 n=size(line,2);
18 magnify=str2double(line(28:n));
19 break;
20 end
21 if strcmp(line, '*File list end')
22 break;
23 end
24 end
25 fseek(f, 0, 'bof');
26
27 fread(f, 40960, 'int8');
28
29 % Read data
30 data_unshaped = fread(f, 512*512, 'int16');
31
32 data=reshape(data_unshaped, 512, 512);
33
34 % Rotating and scaling
35
36 data=rot90(data)/magnify;
37 fclose(f);
38
39 % Codes above for data obtained by AFM. If the user wants to use other
40 % image file formate, simply replace the code above with users' code.
41
42 % NOTICE: the output data should be a square array of double. Otherwise,
43 % the program may not working.
44
45 % data=readtif(filename);

thresCal.m

01 % This function calculate thresholds for DNA tracing (BASE and OVERWHELM
02 % value).
03
04 % Authur: Haowei Wang (hwang23@emory.edu)
05 % Last updated Sep. 10th, 2011
06
07 function out=thresCal(dataM)
08
09 data=dataM(:);
10 out.base=mean(data);
11 out.error=0;
12
13 pr_V=data;
14 lower=min(pr_V);
15 upper=max(pr_V);
16 binS=round(sqrt(upper-lower)/1.2);
17 ave=mean(pr_V);
18 aLim=size(pr_V,1)/10;
19

163 | P a g e

20 % Put all pixels into a histogram by the height.
21
22 xout=[lower:binS:upper*1.2];
23 n=histc(pr_V,xout);
24 % bar(xout,n)
25 % hold on
26
27 % Fit the histogram with Gaussian curve. The center of the Gaussian will be
28 % the level of background.
29
30 try
31 cfun=fit(xout',n,'gauss1','Lower',[0 lower 0],'Upper',[aLim 2*ave-lower upper-ave]);
32 catch
33 out.error=1;
34 out.overwhelm=0;
35 return
36 end
37 % xout2=lower:1:upper*1.2;
38 % f2=feval(cfun,xout2');
39 % plot(xout2,(f2),'r-','Linewidth',2);
40
41 % hold off
42 % pause
43
44 if abs(cfun.b1-ave)>cfun.c1/1.5
45 out.error=1;
46 else
47
48 % Look for the range of main peak and cut it away.
49
50 lowBound=cfun.b1+cfun.c1*4;
51 if lowBound>=max(data)
52 out.error=1;
53 out.overwhelm=0;
54 return
55 end
56
57 pr_V=data(data>lowBound);
58 lower=min(pr_V);
59 upper=max(pr_V);
60
61 % Make another histogram of residue tail.
62 binS=sqrt(upper-lower)/1.2;
63 xout=lower:binS:upper*1.2;
64 n=histc(pr_V,xout);
65 % bar(xout,n)
66
67 % Look for the sudden drop point on the residue tail.
68 uppB=max(n);
69 n(n>uppB*0.5)=0;
70 [max1, i1]=max(n);
71 n(n>uppB*0.3)=0;
72 [max2,i2]=max(n);
73
74 % Fit the drop with linear regression and find out the intercetion on X
75 % axis. This is the value of OVERWHELM.

164 | P a g e

76 if i2<i1
77 out.error=1;
78 elseif max2>=max1
79 out.error=1;
80 else
81 i=(max1*i2-max2*i1)/(max1-max2);
82 out.overwhelm=binS*i+lowBound;
83 end
84 end

Mask.m

0001 % This program is written for modificating DNA traces generated by tracing
0002 % program. Users can use it to delete slected traces, connect traces
0003 % together and measure the segment length of a trace or a part of it.
0004
0005 % Authur: Haowei Wang (hwang23@emory.edu)
0006 % Last updated Sep. 10th, 2011
0007
0008 function varargout = maskM(varargin)
0009 % MASKM M-file for maskM.fig
0010 % MASKM, by itself, creates a new MASKM or raises the existing
0011 % singleton*.
0012 %
0013 % H = MASKM returns the handle to a new MASKM or the handle to
0014 % the existing singleton*.
0015 %
0016 % MASKM('CALLBACK',hObject,eventData,handles,...) calls the local
0017 % function named CALLBACK in MASKM.M with the given input arguments.
0018 %
0019 % MASKM('Property','Value',...) creates a new MASKM or raises the
0020 % existing singleton*. Starting from the left, property value pairs are
0021 % applied to the GUI before maskM_OpeningFcn gets called. An
0022 % unrecognized property name or invalid value makes property application
0023 % stop. All inputs are passed to maskM_OpeningFcn via varargin.
0024 %
0025 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
0026 % instance to run (singleton)".
0027 %
0028 % See also: GUIDE, GUIDATA, GUIHANDLES
0029
0030 % Edit the above text to modify the response to help maskM
0031
0032 % Last Modified by GUIDE v2.5 09-Aug-2011 11:44:28
0033
0034 % Begin initialization code - DO NOT EDIT
0035 gui_Singleton = 1;
0036 gui_State = struct('gui_Name', mfilename, ...
0037 'gui_Singleton', gui_Singleton, ...
0038 'gui_OpeningFcn', @maskM_OpeningFcn, ...
0039 'gui_OutputFcn', @maskM_OutputFcn, ...
0040 'gui_LayoutFcn', [] , ...
0041 'gui_Callback', []);
0042 if nargin && ischar(varargin{1})
0043 gui_State.gui_Callback = str2func(varargin{1});

165 | P a g e

0044 end
0045
0046 if nargout
0047 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
0048 else
0049 gui_mainfcn(gui_State, varargin{:});
0050 end
0051 % End initialization code - DO NOT EDIT
0052
0053
0054
0055 global filename pathname fileNum ImageID image traces lineW;
0056
0057
0058
0059 % --- Executes just before maskM is made visible.
0060 function maskM_OpeningFcn(hObject, eventdata, handles, varargin)
0061 % This function has no output args, see OutputFcn.
0062 % hObject handle to figure
0063 % eventdata reserved - to be defined in a future version of MATLAB
0064 % handles structure with handles and user data (see GUIDATA)
0065 % varargin command line arguments to maskM (see VARARGIN)
0066
0067 % Choose default command line output for maskM
0068 handles.output = hObject;
0069
0070 % Update handles structure
0071 guidata(hObject, handles);
0072
0073
0074
0075 % UIWAIT makes maskM wait for user response (see UIRESUME)
0076 % uiwait(handles.figure1);
0077
0078
0079 % --- Outputs from this function are returned to the command line.
0080 function varargout = maskM_OutputFcn(hObject, eventdata, handles)
0081 % varargout cell array for returning output args (see VARARGOUT);
0082 % hObject handle to figure
0083 % eventdata reserved - to be defined in a future version of MATLAB
0084 % handles structure with handles and user data (see GUIDATA)
0085
0086 % Get default command line output from handles structure
0087 varargout{1} = handles.output;
0088
0089
0090
0091 % --
0092 function FileMenu_Callback(hObject, eventdata, handles)
0093 % hObject handle to FileMenu (see GCBO)
0094 % eventdata reserved - to be defined in a future version of MATLAB
0095 % handles structure with handles and user data (see GUIDATA)
0096
0097
0098 % --
0099 function OpenMenuItem_Callback(hObject, eventdata, handles)

166 | P a g e

0100 % hObject handle to OpenMenuItem (see GCBO)
0101 % eventdata reserved - to be defined in a future version of MATLAB
0102 % handles structure with handles and user data (see GUIDATA)
0103
0104 % This function collects filenames that need to be looked at.
0105 % The function will read and display data of the first image also.
0106
0107 global filename CurrentP pathname fileNum ImageID image traces lineW traceFile
0108
0109 % lineW is the variable of line width that will be used in figures.
0110 lineW=2;
0111
0112 [filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
0113
0114 CurrentP=pwd;
0115 path(path,CurrentP);
0116 cd(pathname);
0117
0118 if iscell(filename)
0119 fileNum=size(filename, 2);
0120 else
0121 fileNum=1;
0122 end
0123 if fileNum==1
0124 traceFile=filename;
0125 else
0126 traceFile=char(filename(1));
0127 end
0128
0129 ImageID=1;
0130
0131 % Read data of the first image.
0132
0133 traces=readtr(traceFile);
0134 NameLength=size(traceFile, 2)-6;
0135 imageFile=traceFile(1:NameLength);
0136 image=readimage(imageFile);
0137 cla
0138 pcolor(image);
0139 shading flat
0140 title(gca, imageFile);
0141 N=size(traces.tr, 1);
0142
0143 traceP=zeros(2,2);
0144 k=1;
0145
0146 % Display traces of the first image.
0147
0148 for j=2:N
0149 if traces.tr(j,1)==-1
0150 if traces.tr(j,2)==0
0151 hold on
0152 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
0153 traceP=zeros(2,2);
0154 k=1;
0155 end

167 | P a g e

0156 else
0157 traceP(k,:)=traces.tr(j,:);
0158 k=k+1;
0159 end
0160 end
0161
0162
0163
0164 % --
0165 function PrintMenuItem_Callback(hObject, eventdata, handles)
0166 % hObject handle to PrintMenuItem (see GCBO)
0167 % eventdata reserved - to be defined in a future version of MATLAB
0168 % handles structure with handles and user data (see GUIDATA)
0169 printdlg(handles.figure1)
0170
0171 % --
0172 function CloseMenuItem_Callback(hObject, eventdata, handles)
0173 % hObject handle to CloseMenuItem (see GCBO)
0174 % eventdata reserved - to be defined in a future version of MATLAB
0175 % handles structure with handles and user data (see GUIDATA)
0176
0177 % This function closes the program and all images.
0178
0179 global CurrentP;
0180 selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...
0181 ['Close ' get(handles.figure1,'Name') '...'],...
0182 'Yes','No','Yes');
0183 if strcmp(selection,'No')
0184 return;
0185 end
0186 cd(CurrentP);
0187 clear all;
0188 close all;
0189
0190
0191
0192 % --- Executes on selection change in popupmenu1.
0193 function popupmenu1_Callback(hObject, eventdata, handles)
0194 % hObject handle to popupmenu1 (see GCBO)
0195 % eventdata reserved - to be defined in a future version of MATLAB
0196 % handles structure with handles and user data (see GUIDATA)
0197
0198 % Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
0199 % contents{get(hObject,'Value')} returns selected item from popupmenu1
0200
0201
0202 % --- Executes during object creation, after setting all properties.
0203 function popupmenu1_CreateFcn(hObject, eventdata, handles)
0204 % hObject handle to popupmenu1 (see GCBO)
0205 % eventdata reserved - to be defined in a future version of MATLAB
0206 % handles empty - handles not created until after all CreateFcns called
0207
0208 % Hint: popupmenu controls usually have a white background on Windows.
0209 % See ISPC and COMPUTER.
0210 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

168 | P a g e

0211 set(hObject,'BackgroundColor','white');
0212 end
0213
0214 set(hObject, 'String', {'plot(rand(5))', 'plot(sin(1:0.01:25))', 'bar(1:.5:10)',
'plot(membrane)', 'surf(peaks)'});
0215
0216
0217 % --- Executes on button press in pushbutton4.
0218 function pushbutton4_Callback(hObject, eventdata, handles)
0219 % hObject handle to pushbutton4 (see GCBO)
0220 % eventdata reserved - to be defined in a future version of MATLAB
0221 % handles structure with handles and user data (see GUIDATA)
0222
0223
0224 % --- Executes on button press in pushbutton5.
0225 function pushbutton5_Callback(hObject, eventdata, handles)
0226 % hObject handle to pushbutton5 (see GCBO)
0227 % eventdata reserved - to be defined in a future version of MATLAB
0228 % handles structure with handles and user data (see GUIDATA)
0229
0230
0231 % --
0232 function Operation_Callback(hObject, eventdata, handles)
0233 % hObject handle to Operation (see GCBO)
0234 % eventdata reserved - to be defined in a future version of MATLAB
0235 % handles structure with handles and user data (see GUIDATA)
0236
0237
0238 % --
0239 function Delete_Callback(hObject, eventdata, handles)
0240 % hObject handle to Delete (see GCBO)
0241 % eventdata reserved - to be defined in a future version of MATLAB
0242 % handles structure with handles and user data (see GUIDATA)
0243
0244 % This function allows user to select and delete traces from current images
0245 % displayed on screen.
0246
0247 global traces image lineW;
0248 input=round(ginput(1));
0249 inp(1)=input(2);
0250 inp(2)=input(1);
0251
0252 % FindTr will look at the traces and find out the trace been clicked by the
0253 % user.
0254
0255 tr=FindTr(inp);
0256
0257 % trace.N=0;
0258 % trace.N2=0;
0259 % trace.ID=0;
0260 % trace.start=zeros(1,2);
0261 % trace.end=zeros(1,2);
0262 if tr.N==0
0263 msgbox('Cannot find the trace.', 'Error', 'warn');
0264 else
0265

169 | P a g e

0266 % Display selected trace and ask user if the traces should be deleted or
0267 % not.
0268
0269 traceP=traces.tr(tr.N+1:tr.N2-1,:);
0270 hold on
0271 plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
0272
0273 button=questdlg('Delete this tracing?', 'Delete');
0274
0275 % Delete the trace.
0276
0277 if button(1)=='Y'
0278 tracesT=traces.tr;
0279 traces.tr=zeros(2,2);
0280 N=size(tracesT,1);
0281 add=1;
0282 j=1;
0283 for i=1:N
0284 if add==1 && tracesT(i,2)==tr.ID && tracesT(i,1)<0
0285 add=0;
0286 end
0287 if add==0 && tracesT(i,2)==0 && tracesT(i,1)<0
0288 add=1;
0289 continue;
0290 end
0291
0292 if add==1
0293 traces.tr(j,:)=tracesT(i,:);
0294 j=j+1;
0295 end
0296 end
0297
0298 % plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 2);
0299
0300 cla
0301 pcolor(image);
0302 shading flat
0303
0304 traceP=zeros(2,2);
0305 k=1;
0306 N=size(traces.tr,1);
0307
0308 for j=2:N
0309 if traces.tr(j,1)==-1 || j==N
0310 hold on
0311 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
0312 traceP=zeros(2,2);
0313 k=1;
0314 continue;
0315 else
0316 traceP(k,:)=traces.tr(j,:);
0317 k=k+1;
0318 end
0319 end
0320 end
0321 end

170 | P a g e

0322
0323
0324
0325
0326
0327 % --
0328 function Connect_Callback(hObject, eventdata, handles)
0329 % hObject handle to Connect (see GCBO)
0330 % eventdata reserved - to be defined in a future version of MATLAB
0331 % handles structure with handles and user data (see GUIDATA)
0332
0333 % This function allows user to select two traces and connect them together.
0334
0335 global traces image lineW
0336
0337 % trace.N=0;
0338 % trace.N2=0;
0339 % trace.ID=0;
0340 % trace.start=zeros(1,2);
0341 % trace.end=zeros(1,2);
0342
0343 select=zeros(1,2);
0344 tr1.N=0;
0345 tr1.N2=0;
0346 tr1.ID=0;
0347 tr1.start=zeros(1,2);
0348 tr1.end=zeros(1,2);
0349 tr2=tr1;
0350
0351 % User selects two traces that needs to be connected.
0352
0353 while sum(select)<2
0354 if select(1)==0
0355 msgbox('Select the first trace.');
0356 pause
0357 input=ginput(1);
0358 inp(1)=input(2);
0359 inp(2)=input(1);
0360
0361 % FindTr is a function to look for the trace been clicked by user.
0362 tr1=FindTr(inp);
0363 if tr1.N==0
0364 msgbox('Cannot find the trace.', 'Error', 'warn');
0365 pause
0366 elseif tr2.ID==tr1.ID
0367 msgbox('Two traces cannot be the same.', 'Error', 'warn');
0368 pause
0369 else
0370 traceP=traces.tr(tr1.N+1:tr1.N2-1,:);
0371 hold on
0372 plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
0373 select(1)=1;
0374 end
0375 end
0376 if select(2)==0
0377 msgbox('Select the second trace.');

171 | P a g e

0378 pause
0379 input=ginput(1);
0380 inp(1)=input(2);
0381 inp(2)=input(1);
0382 tr2=FindTr(inp);
0383 if tr2.N==0
0384 msgbox('Cannot find the trace.', 'Error', 'warn');
0385 pause
0386 elseif tr2.ID==tr1.ID
0387 msgbox('Two traces cannot be the same.', 'Error', 'warn');
0388 pause
0389 else
0390 traceP2=traces.tr(tr2.N+1:tr2.N2-1,:);
0391 hold on
0392 plot(traceP2(:,2),traceP2(:,1),'Color', 'yellow', 'LineWidth', 2);
0393 select(2)=1;
0394 end
0395 end
0396 end
0397
0398 % Look for the minimal range contains the two selected traces.
0399
0400 lower(1)=min(min(traceP(:,1)), min(traceP2(:,1)))-2;
0401 if lower(1)<0
0402 lower(1)=0;
0403 end
0404 lower(2)=min(min(traceP(:,2)), min(traceP2(:,2)))-2;
0405 if lower(2)<0
0406 lower(2)=0;
0407 end
0408 higher(1)=max(max(traceP(:,1)), max(traceP2(:,1)))+2;
0409 if higher(1)>size(image,1)
0410 higher(1)=size(image,1);
0411 end
0412 higher(2)=max(max(traceP(:,2)), max(traceP2(:,2)))+2;
0413 if higher(2)>size(image,2)
0414 higher(2)=size(image,2);
0415 end
0416
0417 % Zoom in to the minimal range contains two selected traces and label four
0418 % ends of two traces with different marker and color.
0419
0420 subimage=image(lower(1):higher(1), lower(2):higher(2));
0421
0422 fig1=figure;
0423 pcolor(subimage);
0424 shading flat
0425 tsStart1=tr1.start-lower+1;
0426 tsStart2=tr2.start-lower+1;
0427 tsEnd1=tr1.end-lower+1;
0428 tsEnd2=tr2.end-lower+1;
0429 hold on
0430 scatter(tsStart1(2),tsStart1(1), 'd','filled', 'MarkerEdgeColor','green', 'LineWidth', lineW);
0431 hold on
0432 scatter(tsEnd1(2),tsEnd1(1), 'o','filled', 'MarkerEdgeColor', 'cyan', 'LineWidth', lineW);
0433 hold on

172 | P a g e

0434 scatter(tsStart2(2), tsStart2(1), 's','filled', 'MarkerEdgeColor', 'magenta', 'LineWidth',
lineW);
0435 hold on
0436 scatter(tsEnd2(2), tsEnd2(1), '>','filled', 'MarkerEdgeColor', 'red', 'LineWidth', lineW);
0437
0438 op={'Diamond to square', 'Diamond to triangle', 'Circle to square', 'Circle to triangle'};
0439
0440 cnx=[0 0];
0441 cny=[0 0];
0442
0443 % Display a multiple choice dialog so that the user can choose the way of
0444 % connection.
0445 % The loop will be excuted until the user is satisfied with the connection.
0446
0447 while true
0448 [Selection, ok]=listdlg('PromptString', 'Select a connection', 'SelectionMode',
'single','ListString', op);
0449 if ok==0
0450 break;
0451 end
0452
0453 insert=zeros(2);
0454 insertN=1;
0455
0456 % Connection.
0457
0458 switch Selection
0459 case 1
0460 cnx(1)=tsStart1(2);
0461 cnx(2)=tsStart2(2);
0462 cny(1)=tsStart1(1);
0463 cny(2)=tsStart2(1);
0464 hold on
0465 plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
0466
0467 while true
0468 if cnx(1)==cnx(2) && cny(1)==cny(2)
0469 break;
0470 end
0471
0472 disx=cnx(2)-cnx(1);
0473 disy=cny(2)-cny(1);
0474 if disx==0
0475 if disy>0
0476 cny(1)=cny(1)+1;
0477 else
0478 cny(1)=cny(1)-1;
0479 end
0480 else
0481 tanD=disy/disx;
0482 if disy>0
0483 if disx>0
0484 if tanD<0.414
0485 cnx(1)=cnx(1)+1;
0486 elseif tanD>2.414
0487 cny(1)=cny(1)+1;

173 | P a g e

0488 else
0489 cny(1)=cny(1)+1;
0490 cnx(1)=cnx(1)+1;
0491 end
0492 else
0493 if tanD>-0.414
0494 cnx(1)=cnx(1)-1;
0495 elseif tanD<-2.414
0496 cny(1)=cny(1)+1;
0497 else
0498 cnx(1)=cnx(1)-1;
0499 cny(1)=cny(1)+1;
0500 end
0501 end
0502 else %disy<0
0503 if disx>0
0504 if tanD>-0.414
0505 cnx(1)=cnx(1)+1;
0506 elseif tanD<-2.414
0507 cny(1)=cny(1)-1;
0508 else
0509 cny(1)=cny(1)-1;
0510 cnx(1)=cnx(1)+1;
0511 end
0512 else
0513 if tanD<0.414
0514 cnx(1)=cnx(1)-1;
0515 elseif tanD>2.414
0516 cny(1)=cny(1)-1;
0517 else
0518 cnx(1)=cnx(1)-1;
0519 cny(1)=cny(1)-1;
0520 end
0521 end
0522 end
0523 end
0524 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
0525 insertN=insertN+1;
0526 end
0527 traceAll=[flipud(traceP2); flipud(insert); traceP];
0528
0529 case 2
0530 cnx(1)=tsStart1(2);
0531 cnx(2)=tsEnd2(2);
0532 cny(1)=tsStart1(1);
0533 cny(2)=tsEnd2(1);
0534 hold on
0535 plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
0536 while true
0537 if cnx(1)==cnx(2) && cny(1)==cny(2)
0538 break;
0539 end
0540
0541 disx=cnx(2)-cnx(1);
0542 disy=cny(2)-cny(1);
0543 if disx==0

174 | P a g e

0544 if disy>0
0545 cny(1)=cny(1)+1;
0546 else
0547 cny(1)=cny(1)-1;
0548 end
0549 else
0550 tanD=disy/disx;
0551 if disy>0
0552 if disx>0
0553 if tanD<0.414
0554 cnx(1)=cnx(1)+1;
0555 elseif tanD>2.414
0556 cny(1)=cny(1)+1;
0557 else
0558 cny(1)=cny(1)+1;
0559 cnx(1)=cnx(1)+1;
0560 end
0561 else
0562 if tanD>-0.414
0563 cnx(1)=cnx(1)-1;
0564 elseif tanD<-2.414
0565 cny(1)=cny(1)+1;
0566 else
0567 cnx(1)=cnx(1)-1;
0568 cny(1)=cny(1)+1;
0569 end
0570 end
0571 else %disy<0
0572 if disx>0
0573 if tanD>-0.414
0574 cnx(1)=cnx(1)+1;
0575 elseif tanD<-2.414
0576 cny(1)=cny(1)-1;
0577 else
0578 cny(1)=cny(1)-1;
0579 cnx(1)=cnx(1)+1;
0580 end
0581 else
0582 if tanD<0.414
0583 cnx(1)=cnx(1)-1;
0584 elseif tanD>2.414
0585 cny(1)=cny(1)-1;
0586 else
0587 cnx(1)=cnx(1)-1;
0588 cny(1)=cny(1)-1;
0589 end
0590 end
0591 end
0592 end
0593 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
0594 insertN=insertN+1;
0595 end
0596 traceAll=[traceP2; flipud(insert); traceP];
0597 case 3
0598 cnx(1)=tsEnd1(2);
0599 cnx(2)=tsStart2(2);

175 | P a g e

0600 cny(1)=tsEnd1(1);
0601 cny(2)=tsStart2(1);
0602 hold on
0603 plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
0604 while true
0605 if cnx(1)==cnx(2) && cny(1)==cny(2)
0606 break;
0607 end
0608
0609 disx=cnx(2)-cnx(1);
0610 disy=cny(2)-cny(1);
0611 if disx==0
0612 if disy>0
0613 cny(1)=cny(1)+1;
0614 else
0615 cny(1)=cny(1)-1;
0616 end
0617 else
0618 tanD=disy/disx;
0619 if disy>0
0620 if disx>0
0621 if tanD<0.414
0622 cnx(1)=cnx(1)+1;
0623 elseif tanD>2.414
0624 cny(1)=cny(1)+1;
0625 else
0626 cny(1)=cny(1)+1;
0627 cnx(1)=cnx(1)+1;
0628 end
0629 else
0630 if tanD>-0.414
0631 cnx(1)=cnx(1)-1;
0632 elseif tanD<-2.414
0633 cny(1)=cny(1)+1;
0634 else
0635 cnx(1)=cnx(1)-1;
0636 cny(1)=cny(1)+1;
0637 end
0638 end
0639 else %disy<0
0640 if disx>0
0641 if tanD>-0.414
0642 cnx(1)=cnx(1)+1;
0643 elseif tanD<-2.414
0644 cny(1)=cny(1)-1;
0645 else
0646 cny(1)=cny(1)-1;
0647 cnx(1)=cnx(1)+1;
0648 end
0649 else
0650 if tanD<0.414
0651 cnx(1)=cnx(1)-1;
0652 elseif tanD>2.414
0653 cny(1)=cny(1)-1;
0654 else
0655 cnx(1)=cnx(1)-1;

176 | P a g e

0656 cny(1)=cny(1)-1;
0657 end
0658 end
0659 end
0660 end
0661 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
0662 insertN=insertN+1;
0663 end
0664 traceAll=[traceP; insert; traceP2];
0665 otherwise
0666 cnx(1)=tsEnd1(2);
0667 cnx(2)=tsEnd2(2);
0668 cny(1)=tsEnd1(1);
0669 cny(2)=tsEnd2(1);
0670 hold on
0671 plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
0672 while true
0673 if cnx(1)==cnx(2) && cny(1)==cny(2)
0674 break;
0675 end
0676
0677 disx=cnx(2)-cnx(1);
0678 disy=cny(2)-cny(1);
0679 if disx==0
0680 if disy>0
0681 cny(1)=cny(1)+1;
0682 else
0683 cny(1)=cny(1)-1;
0684 end
0685 else
0686 tanD=disy/disx;
0687 if disy>0
0688 if disx>0
0689 if tanD<0.414
0690 cnx(1)=cnx(1)+1;
0691 elseif tanD>2.414
0692 cny(1)=cny(1)+1;
0693 else
0694 cny(1)=cny(1)+1;
0695 cnx(1)=cnx(1)+1;
0696 end
0697 else
0698 if tanD>-0.414
0699 cnx(1)=cnx(1)-1;
0700 elseif tanD<-2.414
0701 cny(1)=cny(1)+1;
0702 else
0703 cnx(1)=cnx(1)-1;
0704 cny(1)=cny(1)+1;
0705 end
0706 end
0707 else %disy<0
0708 if disx>0
0709 if tanD>-0.414
0710 cnx(1)=cnx(1)+1;
0711 elseif tanD<-2.414

177 | P a g e

0712 cny(1)=cny(1)-1;
0713 else
0714 cny(1)=cny(1)-1;
0715 cnx(1)=cnx(1)+1;
0716 end
0717 else
0718 if tanD<0.414
0719 cnx(1)=cnx(1)-1;
0720 elseif tanD>2.414
0721 cny(1)=cny(1)-1;
0722 else
0723 cnx(1)=cnx(1)-1;
0724 cny(1)=cny(1)-1;
0725 end
0726 end
0727 end
0728 end
0729 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
0730 insertN=insertN+1;
0731 end
0732 traceAll=[traceP; insert; flipud(traceP2)];
0733 end
0734
0735 % Ask user if the conncetion is correct or not.
0736
0737 button= questdlg('Do you want to keep the connection?');
0738
0739 if button(1)=='Y'
0740 close(fig1)
0741 N=size(traces.tr,1);
0742 traceLabel=[-1 tr1.ID; traceAll; -1 0];
0743 minN=min(tr1.N, tr2.N);
0744 minN2=min(tr1.N2, tr2.N2);
0745 maxN=max(tr1.N, tr2.N);
0746 maxN2=max(tr1.N2, tr2.N2);
0747 traceT=[traces.tr(1:minN,:); traceLabel; traces.tr(minN2:maxN,:);
traces.tr(maxN2:N,:)];
0748 traces.tr=traceT;
0749
0750 cla
0751 pcolor(image);
0752 shading flat
0753 N=size(traces.tr, 1);
0754 traceP=zeros(2,2);
0755 k=1;
0756 for j=2:N
0757 if traces.tr(j,1)==-1 || j==N
0758 hold on
0759 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 1);
0760 traceP=zeros(2,2);
0761 k=1;
0762 continue;
0763 else
0764 traceP(k,:)=traces.tr(j,:);
0765 k=k+1;
0766 end

178 | P a g e

0767 end
0768
0769 break;
0770 end
0771
0772 button= questdlg('Do you want to redo connection on same molecules?');
0773
0774 if button(1)=='N'
0775 close(fig1);
0776 break;
0777 end
0778 cla
0779 pcolor(subimage);
0780 shading flat
0781 hold on
0782 scatter(tsStart1(2),tsStart1(1), 'd','filled', 'MarkerEdgeColor','green', 'LineWidth', 1);
0783 hold on
0784 scatter(tsEnd1(2),tsEnd1(1), 'o','filled', 'MarkerEdgeColor', 'cyan', 'LineWidth', 1);
0785 hold on
0786 scatter(tsStart2(2), tsStart2(1), 's','filled', 'MarkerEdgeColor', 'magenta', 'LineWidth',
1);
0787 hold on
0788 scatter(tsEnd2(2), tsEnd2(1), '>','filled', 'MarkerEdgeColor', 'red', 'LineWidth', 1);
0789
0790 end
0791
0792 %
0793 % % plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 2);
0794 %
0795 % cla
0796 % pcolor(image);
0797 % shading flat
0798 %
0799
0800
0801
0802
0803 % --
0804 function NextImage_Callback(hObject, eventdata, handles)
0805 % hObject handle to NextImage (see GCBO)
0806 % eventdata reserved - to be defined in a future version of MATLAB
0807 % handles structure with handles and user data (see GUIDATA)
0808
0809 % This function will ask the user to save the modified traces or not and
0810 % move on to the nexe image.
0811
0812 global filename fileNum ImageID image traces lineW traceFile
0813
0814 if iscell(filename)
0815 fileNum=size(filename, 2);
0816 else
0817 fileNum=1;
0818 end
0819
0820 if fileNum==1
0821 traceFile=filename;

179 | P a g e

0822 else
0823 traceFile=char(filename(ImageID));
0824 end
0825
0826 %save new tracing
0827 Button=questdlg('Save new tracing?');
0828
0829 if Button(1)=='Y'
0830 fd=fopen(traceFile, 'w');
0831 fprintf(fd, '%d %d \n\r', traces.BASE, traces.OVERWHELM);
0832 N=size(traces.tr,1);
0833 for i=1:N
0834 fprintf(fd, '%d %d \n\r', traces.tr(i,:));
0835 end
0836 fclose(fd);
0837 end
0838
0839 % Loading the next image. If current image is the last one, the program
0840 % will display a warning.
0841
0842 if ImageID >= fileNum
0843 msgbox(strcat(traceFile, ' is the last image.'), 'Last image', 'warn');
0844 else
0845 ImageID=ImageID+1;
0846 traceFile=char(filename(ImageID));
0847 traces=readtr(traceFile);
0848 NameLength=size(traceFile, 2)-6;
0849 imageFile=traceFile(1:NameLength);
0850 image=readimage(imageFile);
0851 cla
0852 pcolor(image);
0853 shading flat
0854 title(gca, imageFile);
0855
0856 N=size(traces.tr, 1);
0857
0858 traceP=zeros(2,2);
0859 k=1;
0860
0861 for j=2:N
0862 if traces.tr(j,1)==-1 || j==N
0863 hold on
0864 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
0865 traceP=zeros(2,2);
0866 k=1;
0867 continue;
0868 else
0869 traceP(k,:)=traces.tr(j,:);
0870 k=k+1;
0871 end
0872 end
0873 end
0874
0875
0876 % Function of looking for traces been clicked by the user.
0877

180 | P a g e

0878 function trace = FindTr(Input)
0879 global traces;
0880 trace.N=0;
0881 trace.N2=0;
0882 trace.ID=0;
0883 trace.start=zeros(1,2);
0884 trace.end=zeros(1,2);
0885
0886 N=size(traces.tr,1);
0887 for i=1:N
0888 test=abs(traces.tr(i,:)-Input);
0889 if sum(test)<=5
0890 for j=i:-1:1
0891 if traces.tr(j,1)== -1
0892 trace.N=j;
0893 trace.ID=traces.tr(j,2);
0894 trace.start=traces.tr(j+1,:);
0895 break;
0896 end
0897 end
0898 for j=i:N
0899 if traces.tr(j,1)== -1
0900 trace.N2=j;
0901 trace.end=traces.tr(j-1,:);
0902 break;
0903 end
0904 end
0905 end
0906 end
0907
0908
0909 % --
0910 function SegmentLength_Callback(hObject, eventdata, handles)
0911 % hObject handle to SegmentLength (see GCBO)
0912 % eventdata reserved - to be defined in a future version of MATLAB
0913 % handles structure with handles and user data (see GUIDATA)
0914
0915 % This function allows user to select a trace or a part of it and measure
0916 % the DNA length of selected segment.
0917
0918 global traces image traceFile lineW
0919
0920 % Display a zoom in figure to improve the convinence of trace selection.
0921
0922 hf=figure('Position',[100 200 900 700]);
0923
0924 lengthP=0;
0925 while true
0926 pcolor(image);
0927 shading flat
0928 title(gca, traceFile);
0929 hold on
0930 CloseI='n';
0931 k=1;
0932 traceP=zeros(2);
0933 N=size(traces.tr,1);

181 | P a g e

0934 for j=2:N
0935 if traces.tr(j,1)==-1 || j==N
0936 hold on
0937 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
0938 traceP=zeros(2,2);
0939 k=1;
0940 continue;
0941 else
0942 traceP(k,:)=traces.tr(j,:);
0943 k=k+1;
0944 end
0945 end
0946
0947 input=round(ginput(1));
0948 inp(1)=input(2);
0949 inp(2)=input(1);
0950
0951 % Look for the selected trace.
0952
0953 tr=FindTr(inp);
0954
0955 % trace.N=0;
0956 % trace.N2=0;
0957 % trace.ID=0;
0958 % trace.start=zeros(1,2);
0959 % trace.end=zeros(1,2);
0960 if tr.N==0
0961 msgbox('Cannot find the trace.', 'Error', 'warn');
0962 else
0963 traceP=traces.tr(tr.N+1:tr.N2-1,:);
0964 hold on
0965 plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
0966
0967 % Calculate the segment length of selected trace. SegLength is a subfuntion
0968 % calculate the length of a set of coordinates.
0969
0970 lengthC=SegLength(traceP);
0971 length=lengthC*1000/512;
0972 basepair=length/0.32;
0973
0974 % User can choose to select next trace or break current traces and continue
0975 % with a part of the segment.
0976
0977 while true
0978 qust=strcat('Segment length is:', num2str(length),'nm;_',
num2str(basepair),'basepairs. Measure next segment?');
0979 button=questdlg(qust, 'Measure', 'Break/Add it up', 'Next segment', 'Close
image', 'Close image');
0980 if button(1)=='C'
0981 CloseI='y';
0982 break;
0983
0984 elseif button(1)=='B'
0985 button=questdlg('Break or Add it up?', 'Sub function', 'Break', 'Add it up',
'Break');
0986

182 | P a g e

0987 % Add in selection will keep current measurement into a buffer and display
0988 % it. The user can then select another segment and add it with the buffered
0989 % value.
0990
0991 if button(1)=='A'
0992 lengthP=lengthP+lengthC;
0993 lengthPn=lengthP*1000/512;
0994 qust=strcat('Current sum is:', num2str(lengthPn),'nm;_',
num2str(lengthPn/0.32),'basepairs. Clear it?');
0995 button=questdlg(qust, 'Sum', 'Yes', 'No', 'No');
0996 if button(1)=='Y'
0997 lengthP=0;
0998 button=questdlg('Go to next image?', 'End of sum', 'Yes', 'No', 'No');
0999 if button(1)=='Y'
1000 CloseI='y';
1001 end
1002 end
1003 break;
1004
1005 % Start to break current trace. The user will select the start and end
1006 % point of the segment which is interested.
1007
1008 else
1009 hold off
1010 pcolor(image);
1011 shading flat
1012 % title(gca, traceFile);
1013 hold on
1014 plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
1015 maxy=size(image,1);
1016 maxx=size(image,2);
1017 lowy=min(traceP(:,1))-10;
1018 lowx=min(traceP(:,2))-10;
1019 upy=max(traceP(:,1))+10;
1020 upx=max(traceP(:,2))+10;
1021 lowy=max([1 lowy]);
1022 lowx=max([1 lowx]);
1023 upy=min([maxy upy]);
1024 upx=min([maxx upx]);
1025
1026 % Zoom in to the segment needs to be break down.
1027
1028 set(gca, 'XLim', [lowx upx], 'YLim', [lowy upy]);
1029
1030 while true
1031
1032 % Look for the break point.
1033
1034 breakp=round(ginput(2));
1035 inb(:,1)=breakp(:,2);
1036 inb(:,2)=breakp(:,1);
1037 bro=1;
1038 brop=[0 0];
1039 test1=zeros(2,1);
1040 test2=zeros(2,1);
1041 for j=1:size(traceP,1)

183 | P a g e

1042 test1(j)=sum(abs(traceP(j,:)-inb(1,:)));
1043 test2(j)=sum(abs(traceP(j,:)-inb(2,:)));
1044 end
1045 [a brop(1)]=min(test1);
1046 [a brop(2)]=min(test2);
1047
1048 if brop(1)==brop(2)
1049 brop=[0 0];
1050 bro=0;
1051 end
1052 if bro==1
1053 break;
1054 else
1055 msgbox('Cannot find the break points.', 'Error', 'warn');
1056 pause
1057 end
1058 end
1059
1060 % Display the breaking result.
1061
1062 traceP2=traceP(min(brop):max(brop),:);
1063 lengthC=SegLength(traceP2);
1064 length=lengthC*1000/512;
1065 basepair=length/0.32;
1066 hold off
1067 pcolor(image);
1068 shading flat
1069 title(gca, traceFile);
1070 hold on
1071 plot(traceP2(:,2),traceP2(:,1),'Color', 'yellow', 'LineWidth', 2);
1072 set(gca, 'XLim', [lowx upx], 'YLim', [lowy upy]);
1073 end
1074 else
1075 break;
1076 end
1077 end
1078 hold off
1079 if CloseI=='y'
1080 break;
1081 end
1082 end
1083 end
1084 close(hf);

SegLength.m

001 % This function calculate the segment length of a set of coordinates.
002 % User can choose different method of calculating by active different part
003 % of codes.
004
005 % Authur: Haowei Wang (hwang23@emory.edu)
006 % Last updated Sep. 10th, 2011
007
008 function length = SegLength(traceP)
009
010 % Original algorithm

184 | P a g e

011
012 step=2;
013 Cstep=0;
014 prevP=traceP(1,:);
015 n=size(traceP,1);
016 length=0;
017 for j=2:n
018 if Cstep==step || j==n
019 length=length+sqrt((traceP(j,1)-prevP(1))^2+(traceP(j,2)-prevP(2))^2);
020 prevP=traceP(j,:);
021 Cstep=0;
022 else
023 Cstep=Cstep+1;
024 end
025 end
026
027 % End of original algorithm
028
029 % Freeman estimator
030
031 % prevP=traceP(1,:);
032 % n=size(traceP,1);
033 % length=0;
034 % for j=1:1:n
035 % if sum(abs(traceP(j,:)-prevP))>1
036 % length=length+1.414;
037 % else
038 % length=length+1;
039 % end
040 % prevP=traceP(j,:);
041 % end
042
043 % End of Freeman estimator
044
045 % MPO estimator
046
047 % prevP=traceP(1,:);
048 % n=size(traceP,1);
049 % ne=0;
050 % no=0;
051 % for j=1:1:n
052 % if sum(abs(traceP(j,:)-prevP))>1
053 % no=no+1;
054 % else
055 % ne=ne+1;
056 % end
057 % prevP=traceP(j,:);
058 % end
059 %
060 % length=sqrt((ne+no)^2+ne^2);
061
062 % End of MPO estimator
063
064 % Kulpa estimator
065
066 % prevP=traceP(1,:);

185 | P a g e

067 % n=size(traceP,1);
068 % ne=0;
069 % no=0;
070 % for j=1:1:n
071 % if sum(abs(traceP(j,:)-prevP))>1
072 % no=no+1;
073 % else
074 % ne=ne+1;
075 % end
076 %
077 % prevP=traceP(j,:);
078 % end
079 %
080 % length=0.948*ne+1.343*no;
081
082 % End of Kulpa estimator
083
084 % Corner chain estimator
085
086 % prevP=traceP(1,:);
087 % n=size(traceP,1);
088 % ne=0;
089 % no=0;
090 % nc=0;
091 % prev=0;
092 % for j=1:1:n
093 % if sum(abs(traceP(j,:)-prevP))>1
094 % % id is 1
095 % no=no+1;
096 % if prev==2
097 % nc=nc+1;
098 % end
099 % prev=1;
100 % else
101 % % id is 2
102 % ne=ne+1;
103 % if prev==1
104 % nc=nc+1;
105 % end
106 % prev=2;
107 % end
108 % prevP=traceP(j,:);
109 % end
110 %
111 % length=0.98*ne+1.406*no-0.091*nc;
112
113 % End of Corner chain estimator

lengthC.m

001
002 % This program calculate the total contour length of each tracing.
003 % The final result will be saved into an array named final.
004 % The algorithm is defined in subfunction "SegLength.m". Please keep it in
005 % the same folder of the program.
006 % The subfunction of "readtr.m" is also needed by this program.

186 | P a g e

007 % Users can test different algorithm by change "SegLength.m"
008 % The upper and lower threshold are used to eliminate broken DNA and bad
009 % tracing.
010 % An overview of all tracing and images obtained by tracing program are
011 % suggested. It will be great helpful to delete bad images and tracing file
012 % before using this program.
013 % User can make change on image parameters below in the code.
014
015 % Authur: Haowei Wang (hwang23@emory.edu)
016 % Last updated Sep. 10th, 2011
017
018 clear all
019 close all
020
021 % Change parameters here: xyScale is the real length of one side of a
022 % square image in nanometer. imagesize is number of pixels of one line/row
023 % of the images.
024
025 xyScale=1000;
026 imagesize=512;
027
028 % End of changing parameters.
029
030 % Asking user to decide the threshold of segment selection. DNA traces
031 % longer than maximum (decided by upper bound) or shorter than minimum
032 % (deciced by lower bound) will not be considered.
033
034 def={num2str(160),num2str(0.8), num2str(2.0)};
035 prompt={'Expected DNA length (nm):', 'Lower bound:', 'Upper bound'};
036 answer=inputdlg(prompt, 'Change parameter', 1, def);
037 eLength=str2double(char(answer(1)));
038 cutoff=str2double(char(answer(2)));
039 upperB=str2double(char(answer(3)));
040
041 [filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
042
043 CurrentP=pwd;
044 path(path,CurrentP);
045 cd(pathname);
046
047 if iscell(filename)
048 fileNum=size(filename, 2);
049 else
050 fileNum=1;
051 end
052
053 fn=1;
054 length=zeros(2,1);
055
056 % This loop looks at selected images one after another.
057
058 for i=1:fileNum
059 if fileNum==1
060 traceFile=filename;
061 else
062 traceFile=char(filename(i));

187 | P a g e

063 end
064 traces=readtr(traceFile);
065 traceFile
066
067 prevP=[0 0];
068 k=1;
069 n=size(traces.tr,1);
070 traceP=zeros(2);
071
072 % This loop goes through all traces inside current image and calculate the
073 % length.
074 % Calculated length will be put into an array named final1.
075
076 for j=2:n
077 if traces.tr(j,1)==-1
078 if traces.tr(j,2)>0
079 traceP=zeros(2);
080 k=1;
081 else
082 length(fn)=SegLength(traceP);
083 fn=fn+1;
084 end
085 else
086 traceP(k,:)=traces.tr(j,:);
087 k=k+1;
088 end
089 end
090
091 % Traces longer or shorter than thresholds will be disgarded.
092
093 final1=length(length>eLength*imagesize/xyScale*cutoff);
094 final=final1(final1<eLength*imagesize/xyScale*upperB);
095
096 end
097
098 % Convert length into nanometers.
099
100 pr_V=final*xyScale/imagesize;
101
102 % Prepare histograms.
103
104 lower=min(pr_V);
105 upper=max(pr_V);
106 % binS=2;
107 eStd=std(pr_V);
108
109 binS=eStd/15;
110 aLim=size(pr_V,1)/20;
111
112 xout=lower:binS:upper*1.2;
113 n=histc(pr_V,xout);
114 [nmax ni]=max(n);
115 bar(xout,n)
116 hold on
117
118 % Fitting with Gaussian curve and display.

188 | P a g e

119
120 cfun=fit(xout',n,'gauss1','Lower',[0 0 0],'Upper',[nmax 2*ni*binS+lower upper-lower])
121
122 xout2=lower:1:upper*1.2;
123 f2=feval(cfun,xout2');
124 plot(xout2,(f2),'r-','Linewidth',2);
125
126
127 cd(pwd);

ParticleAnalysis.m

001 % This program look for particles bound or unbound by DNA molecules and
002 % calculates volume, crosssection and height of every molecules.
003
004 % This program need these subfunctions: addit.m, readtr.m, readimage.m,
005 % findtr.m.
006 % Please keep them in the same folder of the program.
007
008 % Authur: Haowei Wang (hwang23@emory.edu)
009 % Last updated Sep. 10th, 2011
010
011 function varargout = ParticleAnalysis(varargin)
012 %PARTICLEANALYSIS M-file for ParticleAnalysis.fig
013 % PARTICLEANALYSIS, by itself, creates a new PARTICLEANALYSIS or raises the
existing
014 % singleton*.
015 %
016 % H = PARTICLEANALYSIS returns the handle to a new PARTICLEANALYSIS or
the handle to
017 % the existing singleton*.
018 %
019 % PARTICLEANALYSIS('Property','Value',...) creates a new PARTICLEANALYSIS
using the
020 % given property value pairs. Unrecognized properties are passed via
021 % varargin to ParticleAnalysis_OpeningFcn. This calling syntax produces a
022 % warning when there is an existing singleton*.
023 %
024 % PARTICLEANALYSIS('CALLBACK') and
PARTICLEANALYSIS('CALLBACK',hObject,...) call the
025 % local function named CALLBACK in PARTICLEANALYSIS.M with the given input
026 % arguments.
027 %
028 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
029 % instance to run (singleton)".
030 %
031 % See also: GUIDE, GUIDATA, GUIHANDLES
032
033 % Edit the above text to modify the response to help ParticleAnalysis
034
035 % Last Modified by GUIDE v2.5 02-Sep-2011 09:48:10
036
037 % Begin initialization code - DO NOT EDIT
038 gui_Singleton = 1;
039 gui_State = struct('gui_Name', mfilename, ...
040 'gui_Singleton', gui_Singleton, ...

189 | P a g e

041 'gui_OpeningFcn', @ParticleAnalysis_OpeningFcn, ...
042 'gui_OutputFcn', @ParticleAnalysis_OutputFcn, ...
043 'gui_LayoutFcn', [], ...
044 'gui_Callback', []);
045 if nargin && ischar(varargin{1})
046 gui_State.gui_Callback = str2func(varargin{1});
047 end
048
049 if nargout
050 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
051 else
052 gui_mainfcn(gui_State, varargin{:});
053 end
054 % End initialization code - DO NOT EDIT
055
056
057 % --- Executes just before ParticleAnalysis is made visible.
058 function ParticleAnalysis_OpeningFcn(hObject, eventdata, handles, varargin)
059 % This function has no output args, see OutputFcn.
060 % hObject handle to figure
061 % eventdata reserved - to be defined in a future version of MATLAB
062 % handles structure with handles and user data (see GUIDATA)
063 % varargin unrecognized PropertyName/PropertyValue pairs from the
064 % command line (see VARARGIN)
065
066 % Choose default command line output for ParticleAnalysis
067 handles.output = hObject;
068
069 % Update handles structure
070 guidata(hObject, handles);
071
072 % UIWAIT makes ParticleAnalysis wait for user response (see UIRESUME)
073 % uiwait(handles.figure1);
074
075
076 % --- Outputs from this function are returned to the command line.
077 function varargout = ParticleAnalysis_OutputFcn(hObject, eventdata, handles)
078 % varargout cell array for returning output args (see VARARGOUT);
079 % hObject handle to figure
080 % eventdata reserved - to be defined in a future version of MATLAB
081 % handles structure with handles and user data (see GUIDATA)
082
083 % Get default command line output from handles structure
084 varargout{1} = handles.output;
085
086
087 % --- Executes on button press in calculate.
088 function calculate_Callback(hObject, eventdata, handles)
089 % hObject handle to calculate (see GCBO)
090 % eventdata reserved - to be defined in a future version of MATLAB
091 % handles structure with handles and user data (see GUIDATA)
092
093 % This function select files that need to be analyzed.
094 % If the file type is set to 'Free particles', the program will open AFM
095 % data directly; otherwise, it will open tracing files instead.
096

190 | P a g e

097 global analyT FileType filename pathname
098
099 FileType=analyT;
100
101 if FileType(1)=='F'
102 str='*.*';
103 else
104 str='*.txt';
105 end
106
107 [filename, pathname, filterindex]=uigetfile(str, 'pick a file', 'Multiselect', 'on');
108
109 CurrentP=pwd;
110 path(path,CurrentP);
111 cd(pathname);
112
113
114 % --- Executes on button press in reset.
115 function reset_Callback(hObject, eventdata, handles)
116 % hObject handle to reset (see GCBO)
117 % eventdata reserved - to be defined in a future version of MATLAB
118 % handles structure with handles and user data (see GUIDATA)
119
120 % This function will look at particles through images and do the
121 % calculation.
122
123 global imageP analyP FileType filename data biColor
124
125 if iscell(filename)
126 fileNum=size(filename, 2);
127 else
128 fileNum=1;
129 end
130
131 final=zeros(3);
132 fn=1;
133
134 % THRESHOLD=1.0; % Set the threshold for elimination of DNA.
135 % AreaSize=10; % Blobs contain less than this number of pixles will not be counted.
136 % imageSize=512;
137
138 zScale=imageP.zScale/imageP.zRange;
139 xyScale=imageP.xyScale/imageP.ImageSize;
140
141 for i=1:fileNum
142 if fileNum==1
143 traceFile=filename;
144 else
145 traceFile=char(filename(i));
146 end
147
148 % Display the filename of current image.
149
150 traceFile
151
152 % For bound particle analysis, the program will read both traces and image

191 | P a g e

153 % data; otherwise, only images data are read.
154
155 if FileType(1)=='B'
156
157 % Read traces.
158
159 traces=readtr(traceFile);
160 NameLength=size(traceFile, 2)-6;
161
162 % Reconstruct image filename
163
164 imageFile=traceFile(1:NameLength);
165 else
166 NameLength=size(traceFile, 2);
167 if traceFile(NameLength-2)~='0'
168 continue;
169 end
170 imageFile=traceFile;
171 end
172
173 % Read image data
174
175 image=readimage(imageFile);
176 ImageSize=size(image,1);
177
178 % Set background level for analysis. For bound particle, the background
179 % level is read out from tracing file. For unbound particle analysis, the
180 % backgroud level is calculated by averaging.
181
182 if FileType(1)=='B'
183 basel=traces.BASE;
184 else
185 basel=mean(mean(image));
186 end
187
188 image=image-basel;
189
190 % Use threshold to cut particle pixels from the image.
191
192 biColor=image;
193 biColor(biColor<analyP.threshold/zScale)=0;
194 biColor(biColor>0)=1;
195 biColor(1,:)=0;
196 biColor(ImageSize,:)=0;
197 biColor(:,1)=0;
198 biColor(:,ImageSize)=0;
199
200 blobs=zeros(2);
201 blobsI=1;
202 bID=1;
203 blobsT=zeros(2);
204
205 % This part looks for the area of each blobs
206
207 for m=1:ImageSize
208 for n=1:ImageSize

192 | P a g e

209 if biColor(m,n)==1
210
211 % The addit function will start from one point and look for all points
212 % belong to the same particle and put coordinates into one array.
213
214 blobsT=addit(m,n);
215
216 % Particles smaller than the minimum value will be disregarded.
217
218 if size(blobsT,1)>analyP.MinSize*xyScale^2
219 blobs(blobsI,:)=[-1 bID];
220 lowerx=min(blobsT(:,1));
221 lowery=min(blobsT(:,2));
222 upperx=max(blobsT(:,1));
223 uppery=max(blobsT(:,2));
224 blobs(blobsI+1,:)=[lowerx lowery];
225 blobs(blobsI+2,:)=[upperx uppery];
226 blobs(blobsI+3,:)=[-1 0];
227 blobsI=blobsI+3;
228 nextI=blobsI+size(blobsT,1);
229 blobs(blobsI+1:nextI,:)=blobsT;
230 blobsI=nextI+1;
231 bID=bID+1;
232 blobsT=zeros(2);
233 end
234 end
235 end
236 end
237
238 % Display particles found by program.
239
240 if i==1
241 figure('Position',[10 500 400 300]);
242 pcolor(image)
243 shading flat
244 hold on
245 plot(blobs(:,2)', blobs(:,1)', 'LineStyle', 'none', 'Color', 'red', 'Marker', '.',
'MarkerSize',2);
246 figure('Position',[10 50 400 300]);
247 pcolor(image)
248 shading flat
249 end
250
251
252 % The maskB matrix saved all found particles. The value of every pixels is
253 % set to the particle ID instead of real heigth.
254
255 maskB=zeros(ImageSize);
256 for j=1:size(blobs,1)
257 if blobs(j,1)==-1
258 if blobs(j,2)>0
259 bID=blobs(j,2);
260 blobs(j+1,1)=0;
261 blobs(j+2,1)=0;
262 end
263 else

193 | P a g e

264 if blobs(j,1)>0
265 maskB(blobs(j,1), blobs(j,2))=bID;
266 end
267 end
268 end
269
270 trID=0;
271 trN=1;
272
273 % For analyzing bound particles, only particles overlap with one or more
274 % DNA traces will be find out and considered.
275
276 if FileType(1)=='B'
277 maskT=maskB;
278 for j=1:size(traces.tr,1)
279 if traces.tr(j,1)>0
280 if maskT(traces.tr(j,1), traces.tr(j,2))>0
281 trID(trN)=maskT(traces.tr(j,1), traces.tr(j,2));
282 trN=trN+1;
283 maskT(maskT==trID(trN-1))=0;
284 end
285 end
286 end
287 else
288 maxID=max(max(maskB));
289 for j=1:maxID
290 maskT=maskB;
291 maskT(maskT~=j)=0;
292 if sum(sum(maskT))==0
293 continue;
294 end
295 trID(trN)=j;
296 trN=trN+1;
297 end
298 end
299
300 maskT=maskB;
301
302 for j=1:size(trID,2)
303 maskT=maskB;
304 IM=image;
305 tID=trID(j);
306 maskT(maskT~=tID)=0;
307 maskT=maskT/tID;
308 IM=IM.*maskT;
309 Bheight=max(max(IM));
310
311 % Eliminate blobs too high or too low
312 if Bheight<analyP.MinHeight/zScale
313 continue;
314 end
315
316 if Bheight>analyP.MaxHeight/zScale
317 continue;
318 end
319

194 | P a g e

320 % Eliminate blobs too big or too small
321
322 if sum(sum(maskT))>analyP.MaxSize*xyScale^2
323 continue;
324 end
325
326 if sum(sum(maskT))<analyP.MinSize*xyScale^2
327 continue;
328 end
329
330
331 % Blobs too close to the edge will not be considered in.
332
333 si=size(IM,1);
334 xEdge1=IM(1:analyP.margin,:);
335 xEdge2=IM(si-analyP.margin+1:si,:);
336 yEdge1=IM(:,1:analyP.margin);
337 yEdge2=IM(:, si-analyP.margin+1:si);
338 sumE=sum(sum(xEdge1+xEdge2))+sum(sum(yEdge1+yEdge2));
339 if sumE>0
340 continue;
341 end
342
343 % Calculate volume diameter;
344 % IM is the deduced image contains only one particle.
345 % Bheight is the maximum height of the particle.
346
347 volume=sum(sum(IM));
348
349 if analyP.CrossSectionP>0.1 && analyP.CrossSectionP<100
350 CrossSection=Bheight*analyP.CrossSectionP/100;
351 else
352 CrossSection=analyP.CrossSection/zScale;
353 end
354
355 IM(IM<CrossSection)=0;
356 IM(IM>0)=1;
357 CroSec=sum(sum(IM));
358 dia=2*sqrt(CroSec/3.14);
359 dia=dia/xyScale;
360 final(fn,1)=dia;
361 final(fn,2)=Bheight*zScale;
362 final(fn,3)=volume*zScale/xyScale/xyScale;
363 fn=fn+1;
364 end
365 end
366
367 data=final;
368
369 % Display figure of diameter distribution.
370
371 figure('Position',[400 500 400 300]);
372
373 pr=final(:,1);
374 pr_V=pr(pr>0);
375 xout=0:0.5:max(pr_V)*1.2;

195 | P a g e

376 n=histc(pr_V,xout)/size(pr_V,1);
377 bar(xout,n)
378 title('Blobs Diameter');
379 xlabel('Blobs Diameter (nm)');
380 ylabel('Percentage');
381
382 % Display figure of height distribution.
383
384 figure('Position',[400 50 400 300]);
385 pr=final(:,2);
386 pr_V=pr(pr>0);
387 xout=0:0.5:max(pr_V)*1.2;
388 n=histc(pr_V,xout)/size(pr_V,1);
389 bar(xout,n)
390 title('Blobs Height');
391 xlabel('Blobs Height (nm)');
392 ylabel('Percentage');
393
394 % Display figure of volume distribution.
395
396 figure('Position',[800 50 400 300]);
397
398 pr=final(:,3);
399 pr_V=pr(pr>0);
400 xout=0:10:max(pr_V)*1.2;
401 n=histc(pr_V,xout)/size(pr_V,1);
402 bar(xout,n)
403 title('Blobs Volume');
404 xlabel('Blobs Volume (nm^3)');
405 ylabel('Percentage');
406
407
408 % imageP.ImageSize
409 % imageP.xyScale
410 % imageP.zRange
411 % imageP.zScale
412 %
413 % analyP.threshold
414 % analyP.CrossSection
415 % analyP.MaxHeight
416 % analyP.MinHeight
417 % analyP.MaxSize
418 % analyP.MinSize
419 % analyP.margin
420
421 imageP
422 analyP
423
424
425
426 % --- Executes when selected object is changed in unitgroup.
427 function unitgroup_SelectionChangeFcn(hObject, eventdata, handles)
428 % hObject handle to the selected object in unitgroup
429 % eventdata structure with the following fields (see UIBUTTONGROUP)
430 % EventName: string 'SelectionChanged' (read only)
431 % OldValue: handle of the previously selected object or empty if none was selected

196 | P a g e

432 % NewValue: handle of the currently selected object
433 % handles structure with handles and user data (see GUIDATA)
434
435 % This function allows user to choose analyze free particles or particles
436 % bound by DNA traces.
437 % AnalyT is 'Free' or 'Bound'.
438
439 global analyT
440 analyT=get(hObject, 'string');
441
442
443 % --- Executes on button press in pushbutton9.
444 function pushbutton9_Callback(hObject, eventdata, handles)
445 % hObject handle to pushbutton9 (see GCBO)
446 % eventdata reserved - to be defined in a future version of MATLAB
447 % handles structure with handles and user data (see GUIDATA)
448
449 % This function will save the analyzing data into excel files.
450
451 global filename data pathname imageP analyP FileType
452
453 % Generating filename for excel.
454
455 if iscell(filename)
456 fileNum=size(filename, 2);
457 else
458 fileNum=1;
459 end
460
461 if fileNum==1
462 File=filename;
463 else
464 File=char(filename(1));
465 end
466
467 for i=1:size(File,2)
468 if File(i)=='.'
469 break;
470 end
471 end
472
473 putfile=[File(1:i-1), '.xls'];
474 cd(pathname);
475
476 [filep, pathp, filterindex]=uiputfile(putfile, 'Save data');
477
478 % Saving file head.
479
480 wdata={'Diameter (nm)', 'Height (nm)', 'Volume (nm^3)', FileType};
481 xlswrite(filep, wdata, 1);
482
483 % Saving data
484
485 xlswrite(filep, data, 1, 'A2');
486
487 % Saving parameters.

197 | P a g e

488
489 d={'Image Size', imageP.ImageSize; 'X-Y Scale', imageP.xyScale; 'Z Range',
imageP.zRange; 'Z Scale', imageP.zScale; 'Threshold', analyP.threshold; 'Cross Section',
analyP.CrossSection; 'Cross Section %', analyP.CrossSectionP;
490 'Max Height', analyP.MaxHeight; 'Min Height', analyP.MinHeight; 'Max Size',
analyP.MaxSize; 'Min Size', analyP.MinSize; 'Margin', analyP.margin};
491
492 xlswrite(filep, d, 2, 'C1');
493
494
495 % Functions below are used to set all parameters used in analysis. More
496 % information about the parameters can be found in the mannual.
497
498 function density_Callback(hObject, eventdata, handles)
499 % hObject handle to density (see GCBO)
500 % eventdata reserved - to be defined in a future version of MATLAB
501 % handles structure with handles and user data (see GUIDATA)
502 global imageP
503 str=get(hObject, 'string');
504 imageP.ImageSize=str2double(str);
505
506 % Hints: get(hObject,'String') returns contents of density as text
507 % str2double(get(hObject,'String')) returns contents of density as a double
508
509
510 % --- Executes during object creation, after setting all properties.
511 function density_CreateFcn(hObject, eventdata, handles)
512 % hObject handle to density (see GCBO)
513 % eventdata reserved - to be defined in a future version of MATLAB
514 % handles empty - handles not created until after all CreateFcns called
515 global imageP
516 % Hint: edit controls usually have a white background on Windows.
517 % See ISPC and COMPUTER.
518 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
519 set(hObject,'BackgroundColor','white');
520 end
521
522 str=get(hObject, 'string');
523 imageP.ImageSize=str2double(str);
524
525
526
527 function edit7_Callback(hObject, eventdata, handles)
528 % hObject handle to edit7 (see GCBO)
529 % eventdata reserved - to be defined in a future version of MATLAB
530 % handles structure with handles and user data (see GUIDATA)
531 global imageP
532
533 str=get(hObject, 'string');
534 imageP.xyScale=str2double(str);
535
536 % Hints: get(hObject,'String') returns contents of edit7 as text
537 % str2double(get(hObject,'String')) returns contents of edit7 as a double
538
539

198 | P a g e

540 % --- Executes during object creation, after setting all properties.
541 function edit7_CreateFcn(hObject, eventdata, handles)
542 % hObject handle to edit7 (see GCBO)
543 % eventdata reserved - to be defined in a future version of MATLAB
544 % handles empty - handles not created until after all CreateFcns called
545 global imageP
546 % Hint: edit controls usually have a white background on Windows.
547 % See ISPC and COMPUTER.
548 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
549 set(hObject,'BackgroundColor','white');
550 end
551 str=get(hObject, 'string');
552 imageP.xyScale=str2double(str);
553
554
555 function edit8_Callback(hObject, eventdata, handles)
556 % hObject handle to edit8 (see GCBO)
557 % eventdata reserved - to be defined in a future version of MATLAB
558 % handles structure with handles and user data (see GUIDATA)
559 global imageP
560
561 str=get(hObject, 'string');
562 imageP.zRange=str2double(str);
563
564 % Hints: get(hObject,'String') returns contents of edit8 as text
565 % str2double(get(hObject,'String')) returns contents of edit8 as a double
566
567
568 % --- Executes during object creation, after setting all properties.
569 function edit8_CreateFcn(hObject, eventdata, handles)
570 % hObject handle to edit8 (see GCBO)
571 % eventdata reserved - to be defined in a future version of MATLAB
572 % handles empty - handles not created until after all CreateFcns called
573 global imageP
574 % Hint: edit controls usually have a white background on Windows.
575 % See ISPC and COMPUTER.
576 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
577 set(hObject,'BackgroundColor','white');
578 end
579 str=get(hObject, 'string');
580 imageP.zRange=str2double(str);
581
582
583 function edit9_Callback(hObject, eventdata, handles)
584 % hObject handle to edit9 (see GCBO)
585 % eventdata reserved - to be defined in a future version of MATLAB
586 % handles structure with handles and user data (see GUIDATA)
587 global imageP
588
589
590 str=get(hObject, 'string');
591 imageP.zScale=str2double(str);
592
593 % Hints: get(hObject,'String') returns contents of edit9 as text

199 | P a g e

594 % str2double(get(hObject,'String')) returns contents of edit9 as a double
595
596
597 % --- Executes during object creation, after setting all properties.
598 function edit9_CreateFcn(hObject, eventdata, handles)
599 % hObject handle to edit9 (see GCBO)
600 % eventdata reserved - to be defined in a future version of MATLAB
601 % handles empty - handles not created until after all CreateFcns called
602
603 global imageP
604
605 % Hint: edit controls usually have a white background on Windows.
606 % See ISPC and COMPUTER.
607 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
608 set(hObject,'BackgroundColor','white');
609 end
610
611 str=get(hObject, 'string');
612 imageP.zScale=str2double(str);
613
614
615 function edit10_Callback(hObject, eventdata, handles)
616 % hObject handle to edit10 (see GCBO)
617 % eventdata reserved - to be defined in a future version of MATLAB
618 % handles structure with handles and user data (see GUIDATA)
619 global analyP
620
621
622 str=get(hObject, 'string');
623 analyP.threshold=str2double(str);
624
625 % Hints: get(hObject,'String') returns contents of edit10 as text
626 % str2double(get(hObject,'String')) returns contents of edit10 as a double
627
628
629 % --- Executes during object creation, after setting all properties.
630 function edit10_CreateFcn(hObject, eventdata, handles)
631 % hObject handle to edit10 (see GCBO)
632 % eventdata reserved - to be defined in a future version of MATLAB
633 % handles empty - handles not created until after all CreateFcns called
634 global analyP
635 % Hint: edit controls usually have a white background on Windows.
636 % See ISPC and COMPUTER.
637 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
638 set(hObject,'BackgroundColor','white');
639 end
640
641 str=get(hObject, 'string');
642 analyP.threshold=str2double(str);
643
644
645 function edit11_Callback(hObject, eventdata, handles)
646 % hObject handle to edit11 (see GCBO)
647 % eventdata reserved - to be defined in a future version of MATLAB

200 | P a g e

648 % handles structure with handles and user data (see GUIDATA)
649 global analyP
650
651 str=get(hObject, 'string');
652 analyP.CrossSection=str2double(str);
653
654 % Hints: get(hObject,'String') returns contents of edit11 as text
655 % str2double(get(hObject,'String')) returns contents of edit11 as a double
656
657
658 % --- Executes during object creation, after setting all properties.
659 function edit11_CreateFcn(hObject, eventdata, handles)
660 % hObject handle to edit11 (see GCBO)
661 % eventdata reserved - to be defined in a future version of MATLAB
662 % handles empty - handles not created until after all CreateFcns called
663
664 global analyP
665 % Hint: edit controls usually have a white background on Windows.
666 % See ISPC and COMPUTER.
667 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
668 set(hObject,'BackgroundColor','white');
669 end
670
671 str=get(hObject, 'string');
672 analyP.CrossSection=str2double(str);
673
674
675 function edit12_Callback(hObject, eventdata, handles)
676 % hObject handle to edit12 (see GCBO)
677 % eventdata reserved - to be defined in a future version of MATLAB
678 % handles structure with handles and user data (see GUIDATA)
679 global analyP
680
681 str=get(hObject, 'string');
682 analyP.MaxHeight=str2double(str);
683 % Hints: get(hObject,'String') returns contents of edit12 as text
684 % str2double(get(hObject,'String')) returns contents of edit12 as a double
685
686
687 % --- Executes during object creation, after setting all properties.
688 function edit12_CreateFcn(hObject, eventdata, handles)
689 % hObject handle to edit12 (see GCBO)
690 % eventdata reserved - to be defined in a future version of MATLAB
691 % handles empty - handles not created until after all CreateFcns called
692 global analyP
693 % Hint: edit controls usually have a white background on Windows.
694 % See ISPC and COMPUTER.
695 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
696 set(hObject,'BackgroundColor','white');
697 end
698
699 str=get(hObject, 'string');
700 analyP.MaxHeight=str2double(str);
701

201 | P a g e

702
703
704 function edit13_Callback(hObject, eventdata, handles)
705 % hObject handle to edit13 (see GCBO)
706 % eventdata reserved - to be defined in a future version of MATLAB
707 % handles structure with handles and user data (see GUIDATA)
708 global analyP
709
710 str=get(hObject, 'string');
711 analyP.MinHeight=str2double(str);
712
713
714 % Hints: get(hObject,'String') returns contents of edit13 as text
715 % str2double(get(hObject,'String')) returns contents of edit13 as a double
716
717
718 % --- Executes during object creation, after setting all properties.
719 function edit13_CreateFcn(hObject, eventdata, handles)
720 % hObject handle to edit13 (see GCBO)
721 % eventdata reserved - to be defined in a future version of MATLAB
722 % handles empty - handles not created until after all CreateFcns called
723 global analyP
724
725 % Hint: edit controls usually have a white background on Windows.
726 % See ISPC and COMPUTER.
727 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
728 set(hObject,'BackgroundColor','white');
729 end
730
731 str=get(hObject, 'string');
732 analyP.MinHeight=str2double(str);
733
734
735
736 function edit14_Callback(hObject, eventdata, handles)
737 % hObject handle to edit14 (see GCBO)
738 % eventdata reserved - to be defined in a future version of MATLAB
739 % handles structure with handles and user data (see GUIDATA)
740 global analyP
741
742 str=get(hObject, 'string');
743 analyP.MaxSize=str2double(str);
744
745 % Hints: get(hObject,'String') returns contents of edit14 as text
746 % str2double(get(hObject,'String')) returns contents of edit14 as a double
747
748
749 % --- Executes during object creation, after setting all properties.
750 function edit14_CreateFcn(hObject, eventdata, handles)
751 % hObject handle to edit14 (see GCBO)
752 % eventdata reserved - to be defined in a future version of MATLAB
753 % handles empty - handles not created until after all CreateFcns called
754 global analyP
755
756 % Hint: edit controls usually have a white background on Windows.

202 | P a g e

757 % See ISPC and COMPUTER.
758 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
759 set(hObject,'BackgroundColor','white');
760 end
761
762 str=get(hObject, 'string');
763 analyP.MaxSize=str2double(str);
764
765
766
767
768 function edit15_Callback(hObject, eventdata, handles)
769 % hObject handle to edit15 (see GCBO)
770 % eventdata reserved - to be defined in a future version of MATLAB
771 % handles structure with handles and user data (see GUIDATA)
772 global analyP
773
774 str=get(hObject, 'string');
775 analyP.MinSize=str2double(str);
776
777 % Hints: get(hObject,'String') returns contents of edit15 as text
778 % str2double(get(hObject,'String')) returns contents of edit15 as a double
779
780
781 % --- Executes during object creation, after setting all properties.
782 function edit15_CreateFcn(hObject, eventdata, handles)
783 % hObject handle to edit15 (see GCBO)
784 % eventdata reserved - to be defined in a future version of MATLAB
785 % handles empty - handles not created until after all CreateFcns called
786 global analyP
787
788 % Hint: edit controls usually have a white background on Windows.
789 % See ISPC and COMPUTER.
790 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
791 set(hObject,'BackgroundColor','white');
792 end
793
794 str=get(hObject, 'string');
795 analyP.MinSize=str2double(str);
796
797
798
799
800 function edit16_Callback(hObject, eventdata, handles)
801 % hObject handle to edit16 (see GCBO)
802 % eventdata reserved - to be defined in a future version of MATLAB
803 % handles structure with handles and user data (see GUIDATA)
804 global analyP
805
806 str=get(hObject, 'string');
807 analyP.margin=str2double(str);
808
809
810 % Hints: get(hObject,'String') returns contents of edit16 as text

203 | P a g e

811 % str2double(get(hObject,'String')) returns contents of edit16 as a double
812
813
814 % --- Executes during object creation, after setting all properties.
815 function edit16_CreateFcn(hObject, eventdata, handles)
816 % hObject handle to edit16 (see GCBO)
817 % eventdata reserved - to be defined in a future version of MATLAB
818 % handles empty - handles not created until after all CreateFcns called
819
820 global analyP
821
822 % Hint: edit controls usually have a white background on Windows.
823 % See ISPC and COMPUTER.
824 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
825 set(hObject,'BackgroundColor','white');
826 end
827
828 str=get(hObject, 'string');
829 analyP.margin=str2double(str);
830
831
832 % --- If Enable == 'on', executes on mouse press in 5 pixel border.
833 % --- Otherwise, executes on mouse press in 5 pixel border or over reset.
834 function reset_ButtonDownFcn(hObject, eventdata, handles)
835 % hObject handle to reset (see GCBO)
836 % eventdata reserved - to be defined in a future version of MATLAB
837 % handles structure with handles and user data (see GUIDATA)
838
839 % Display analyzing parameters.
840
841 global imageP analyP
842
843 imageP.ImageSize
844 imageP.xyScale
845 imageP.zRange
846 imageP.zScale
847
848 analyP.threshold
849 analyP.CrossSection
850 analyP.MaxHeight
851 analyP.MinHeight
852 analyP.MaxSize
853 analyP.MinSize
854 analyP.margin
855
856
857 % --- Executes on button press in english.
858 function english_Callback(hObject, eventdata, handles)
859 % hObject handle to english (see GCBO)
860 % eventdata reserved - to be defined in a future version of MATLAB
861 % handles structure with handles and user data (see GUIDATA)
862 global analyT
863 analyT=get(hObject, 'string');
864
865 % Hint: get(hObject,'Value') returns toggle state of english

204 | P a g e

866
867
868 % --- Executes during object creation, after setting all properties.
869 function unitgroup_CreateFcn(hObject, eventdata, handles)
870 % hObject handle to unitgroup (see GCBO)
871 % eventdata reserved - to be defined in a future version of MATLAB
872 % handles empty - handles not created until after all CreateFcns called
873
874
875 % --- Executes during object creation, after setting all properties.
876 function english_CreateFcn(hObject, eventdata, handles)
877 % hObject handle to english (see GCBO)
878 % eventdata reserved - to be defined in a future version of MATLAB
879 % handles empty - handles not created until after all CreateFcns called
880 global analyT
881 analyT=get(hObject, 'string');
882
883
884 % --- Executes on button press in si.
885 function si_Callback(hObject, eventdata, handles)
886 % hObject handle to si (see GCBO)
887 % eventdata reserved - to be defined in a future version of MATLAB
888 % handles structure with handles and user data (see GUIDATA)
889 global analyT
890 analyT=get(hObject, 'string');
891 % Hint: get(hObject,'Value') returns toggle state of si
892
893
894
895 function edit17_Callback(hObject, eventdata, handles)
896 % hObject handle to edit17 (see GCBO)
897 % eventdata reserved - to be defined in a future version of MATLAB
898 % handles structure with handles and user data (see GUIDATA)
899 global analyP
900
901 str=get(hObject, 'string');
902 analyP.CrossSectionP=str2double(str);
903
904 % Hints: get(hObject,'String') returns contents of edit17 as text
905 % str2double(get(hObject,'String')) returns contents of edit17 as a double
906
907
908 % --- Executes during object creation, after setting all properties.
909 function edit17_CreateFcn(hObject, eventdata, handles)
910 % hObject handle to edit17 (see GCBO)
911 % eventdata reserved - to be defined in a future version of MATLAB
912 % handles empty - handles not created until after all CreateFcns called
913 global analyP
914
915 % Hint: edit controls usually have a white background on Windows.
916 % See ISPC and COMPUTER.
917 if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
918 set(hObject,'BackgroundColor','white');
919 end
920

205 | P a g e

921 str=get(hObject, 'string');
922 analyP.CrossSectionP=str2double(str);

Addit.m

001 % This function look for all pixels belong to one particle. The function
002 % start with a coordinate of one pixel (normally the pixel in the left top
003 % site of the particle) and find out coordinates of all pixels belong to
004 % the particle.
005
006 % Authur: Haowei Wang (hwang23@emory.edu)
007 % Last updated Sep. 10th, 2011
008
009 function data=addit(m, n)
010
011 global biColor
012 test=[m n];
013 blobsT=[m n];
014 bn=1;
015 biColor(m,n)=0;
016 testT=[0 0];
017 i=1;
018
019
020 while test(1,1)>0
021 for j=1:size(test,1)
022 x=test(j,1);
023 y=test(j,2);
024 % if x==0
025 % test
026 % j
027 % testT
028 % end
029
030 % Put all neighbor pixels to the array and label them.
031 % If all neighbor of a pixels have been looked at, the pixel itself will be
032 % moved out from the test array.
033
034 if biColor(x-1, y-1)==1
035 testT(i,:)=[x-1, y-1];
036 i=i+1;
037 biColor(x-1, y-1)=0;
038 blobsT(bn,:)=[x-1,y-1];
039 bn=bn+1;
040 end
041
042 if biColor(x, y-1)==1
043 testT(i,:)=[x, y-1];
044 i=i+1;
045 biColor(x, y-1)=0;
046 blobsT(bn,:)=[x,y-1];
047 bn=bn+1;
048 end
049
050 if biColor(x+1, y-1)==1

206 | P a g e

051 testT(i,:)=[x+1, y-1];
052 i=i+1;
053 biColor(x+1, y-1)=0;
054 blobsT(bn,:)=[x+1,y-1];
055 bn=bn+1;
056 end
057
058 if biColor(x-1, y)==1
059 testT(i,:)=[x-1, y];
060 i=i+1;
061 biColor(x-1, y)=0;
062 blobsT(bn,:)=[x-1,y];
063 bn=bn+1;
064 end
065
066 if biColor(x+1, y)==1
067 testT(i,:)=[x+1, y];
068 i=i+1;
069 biColor(x+1, y)=0;
070 blobsT(bn,:)=[x+1,y];
071 bn=bn+1;
072 end
073
074 if biColor(x-1, y+1)==1
075 testT(i,:)=[x-1, y+1];
076 i=i+1;
077 biColor(x-1, y+1)=0;
078 blobsT(bn,:)=[x-1,y+1];
079 bn=bn+1;
080 end
081
082 if biColor(x, y+1)==1
083 testT(i,:)=[x, y+1];
084 i=i+1;
085 biColor(x, y+1)=0;
086 blobsT(bn,:)=[x,y+1];
087 bn=bn+1;
088 end
089
090 if biColor(x+1, y+1)==1
091 testT(i,:)=[x+1, y+1];
092 i=i+1;
093 biColor(x+1, y+1)=0;
094 blobsT(bn,:)=[x+1,y+1];
095 bn=bn+1;
096 end
097 end
098 test=testT;
099 i=1;
100 testT=[0 0];
101 end
102 data=blobsT;
103 % if mask(m,n)==0;
104 % blobsT(bn,:)=[m,n];
105 % mask(m,n)=-1;
106 % bn=bn+1;

207 | P a g e

107 % around=[m-1 n-1; m n-1; m+1 n-1; m-1 n; m+1 n; m-1 n+1; m n+1; m+1 n+1];
108 % for i=1:8
109 % if biColor(around(i,1), around(i,2))==1 && mask(around(i,1), around(i,2))==0
110 % addit(around(i,1), around(i,2));
111 % end
112 % end
113 % end

Findtr.m

01 % This function looking for trace segments according to trace ID.
02
03 % Authur: Haowei Wang (hwang23@emory.edu)
04 % Last updated Sep. 10th, 2011
05
06 function data=findTr(traces, trID)
07
08 traceP=zeros(2);
09
10 for i=1:size(traces,1)
11 if traces(i,1)==-1 && traces(i,2)==trID
12 j=1;
13 p=i+1;
14 while traces(p,2)~=0
15 traceP(j,:)=traces(p,:);
16 j=j+1;
17 p=p+1;
18 end
19 break;
20 end
21 end
22 data=traceP;

Readtr.m

01 % This function read coordinates of traced molecules from tracing file and
02 % return a matrix of coordinates of tracing.
03
04 % Authur: Haowei Wang (hwang23@emory.edu)
05 % Last updated Sep. 10th, 2011
06
07 function data = readtr(filename)
08 fd = fopen(filename);
09 data.tr=zeros(2,2);
10 i=1;
11
12 while feof(fd)==0
13 DataIn=fscanf(fd, '%d %d', 2);
14
15 if feof(fd)==1
16 break;
17 end
18 if i==1 && DataIn(1)>0
19 data.BASE=DataIn(1);
20 data.OVERWHELM=DataIn(2);
21 continue;

208 | P a g e

22 end
23 data.tr(i,1)=DataIn(1);
24 data.tr(i,2)=DataIn(2);
25 i=i+1;
26
27 end
28
29 fclose(fd);

GroupAnalysis.m

001 % This program group all contact particles and DNA traces together.
002 % User can define the rules to analys those groups.
003
004 % The Group structure in each images contain three parts: Group.NoBlob is
005 % an array of trace IDs that do not interact with any blobs. Group.tr and
006 % Group.blobs are two 2*2 array. Each row of the arrays represents one
007 % group of blobs and tracings. For example, Group.tr(i,:) includes all the
008 % trace ID belong to i-th group; Group.blobs(i,:) includes all the blobs
009 % belong to i-th group.
010
011 % The structure of traces contains all traces of each image. traces.BASE is
012 % the basel of the image calculated by tracing program. traces.OVERWHELM
013 % is the overwhelming value which mostly represent the DNA height.
014 % traces.tr is an array of all traces. In traces.tr, the first row of each
015 % segment is [-1 traceID]; the last row is [-1 0]. Trace ID is a postive
016 % number generated by tracing program to identify each segments in one
017 % image.
018
019 % Blob data are saved in an array named blobs. The data structure is: each
020 % segment of data start with raw is [-1 blobID], the following two raw are
021 % [lowerx, lowery; upperx, uppery] which corresponding to the range of the
022 % blob. The following data are coordinates of every pixels blong to this
023 % blob.
024
025 % This program needs subfunctions below: readimage.m, readtr.m,
026 % relateData.m, addit.m, SegLength.m, findTr.m.
027 % Please keep them in the same folder of the program.
028
029 % Authur: Haowei Wang (hwang23@emory.edu)
030 % Last updated Sep. 10th, 2011
031
032 clear all
033 close all
034
035 global biColor mask ConDataT Group;
036
037 % data structure of results
038 SegTail=zeros(2);
039 segTN=1;
040 % end of data structure
041
042 THRESHOLD=1.4; % Set the threshold for elimination of DNA.
043 AreaSize=10; % Blobs contain less than this number of pixles will not be counted.
044
045 % Prepare the filenames of images need to be analyzed.

209 | P a g e

046
047 [filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
048
049 CurrentP=pwd;
050 path(path,CurrentP);
051 cd(pathname);
052
053 if iscell(filename)
054 fileNum=size(filename, 2);
055 else
056 fileNum=1;
057 end
058 step=2;
059 Cstep=0;
060 final=zeros(2,1);
061 fn=1;
062
063 for i=1:fileNum
064 if fileNum==1
065 traceFile=filename;
066 else
067 traceFile=char(filename(i));
068 end
069 traces=readtr(traceFile);
070
071 % Display filename of current image.
072
073 traceFile
074
075 NameLength=size(traceFile, 2)-6;
076 imageFile=traceFile(1:NameLength);
077 image=readimage(imageFile);
078 ImageSize=size(image,1);
079
080
081 biColor=image;
082 biColor(biColor<(traces.OVERWHELM-traces.BASE)*THRESHOLD+traces.BASE)=0;
083 biColor(biColor>0)=1;
084 biColor(1,:)=0;
085 biColor(ImageSize,:)=0;
086 biColor(:,1)=0;
087 biColor(:,ImageSize)=0;
088
089 Modify=1;
090
091 blobs=zeros(2);
092 blobsI=1;
093 bID=1;
094 blobsT=zeros(2);
095 mask=zeros(ImageSize);
096
097 % This part looks for the area of each blobs
098
099 for m=1:ImageSize
100 for n=1:ImageSize
101 if biColor(m,n)==1

210 | P a g e

102 blobsT=addit(m,n);
103 if size(blobsT,1)>AreaSize
104 blobs(blobsI,:)=[-1 bID];
105 lowerx=min(blobsT(:,1));
106 lowery=min(blobsT(:,2));
107 upperx=max(blobsT(:,1));
108 uppery=max(blobsT(:,2));
109 blobs(blobsI+1,:)=[lowerx lowery];
110 blobs(blobsI+2,:)=[upperx uppery];
111 blobs(blobsI+3,:)=[-1 0];
112 blobsI=blobsI+3;
113 nextI=blobsI+size(blobsT,1);
114 blobs(blobsI+1:nextI,:)=blobsT;
115 blobsI=nextI+1;
116 bID=bID+1;
117 blobsT=zeros(2);
118 end
119 end
120 end
121 end
122
123 % pcolor(image)
124 % shading flat
125 % hold on
126 % plot(blobs(:,2)', blobs(:,1)', 'LineStyle', 'none', 'Color', 'red', 'Marker', '.',
'MarkerSize',2);
127 % figure
128 % pcolor(image)
129 % shading flat
130
131 % The function relateData will generate a table of connection. The first
132 % line is trace ID, the other cells are blob ID that connect to the trace
133 % in same line.
134
135 ConData=relateData(traces.tr, blobs);
136 ConDataT=ConData;
137
138 % Put traces into different groups
139
140 Group.NoBlob=zeros(2,1);
141
142 gni=1;
143
144 for j=1:size(ConData,1)
145 if ConDataT(j,1)~=0
146 if ConDataT(j,2)==0
147 Group.NoBlob(gni)=ConDataT(j,1);
148 gni=gni+1;
149 ConDataT(j,1)=0;
150 end
151 end
152 end
153 gni=1;
154
155 Group.tr=zeros(2);
156 Group.blobs=zeros(2);

211 | P a g e

157 groupN=1;
158
159 % Put all related traces and blobs together. If trace a connect to blob b;
160 % blob b connect to trace a & c; blob d connect to trace c, the ID of trace
161 % a, c and blob b, d will appear in same row of Group.tr and Group.blobs.
162
163 while sum(ConDataT(:,1))>0
164 test=1;
165 trN=1;
166 blobN=1;
167 for j=1:size(ConData,1)
168 if ConDataT(j,1)~=0
169 Group.tr(groupN,1)=ConDataT(j,1);
170 trN=trN+1;
171 ConDataT(j,1)=0;
172 for k=2:size(ConData, 2)
173 if ConDataT(j,k)==0
174 ConDataT(j,:)=0;
175 break;
176 end
177 Group.blobs(groupN,blobN)=ConDataT(j,k);
178 ConDataT(j,k)=0;
179 blobN=blobN+1;
180 end
181 break;
182 end
183 end
184
185 while test==1
186 test=0;
187 for j=1:size(ConData,1)
188 if ConDataT(j,1)~=0
189 for k=2:size(ConData,2)
190 for l=1:size(Group.blobs, 2)
191 if ConDataT(j,k)==Group.blobs(groupN,l)
192 Group.tr(groupN,trN)=ConDataT(j,1);
193 trN=trN+1;
194 blobTMP=ConDataT(j,:);
195 for m=2:size(blobTMP,2)
196 for n=1:blobN-1
197 addB=blobTMP(m);
198 if addB==Group.blobs(groupN,n)
199 addB=0;
200 break;
201 end
202 end
203 if addB>0
204 Group.blobs(groupN, blobN)=addB;
205 blobN=blobN+1;
206 end
207 end
208 ConDataT(j,:)=0;
209 test=1;
210 break;
211 end
212 end

212 | P a g e

213 if test==1
214 break;
215 end
216 end
217 end
218 if test==1
219 break;
220 end
221 end
222
223 end
224 groupN=groupN+1;
225 end
226
227 % Generate a mask of blobs
228
229 maskB=zeros(512);
230 blobsM=blobs;
231
232 bID=0;
233 for j=1:size(blobs,1)
234 if blobsM(j,1)==-1
235 if blobsM(j,2)>0
236 bID=blobsM(j,2);
237 blobsM(j+1,1)=0;
238 blobsM(j+2,1)=0;
239 end
240 else
241 if blobsM(j,1)>0
242 maskB(blobsM(j,1), blobsM(j,2))=bID;
243 end
244 end
245 end
246
247 % analysis DNA contain only one blobs without loop
248 for j=1:size(Group.tr,1)
249 trJ=Group.tr(j,:);
250 trJN=trJ(trJ>0);
251 if size(trJN,2)>2
252 continue;
253 end
254
255 if size(trJN,2)==1
256 traceP=findTr(traces.tr, trJN);
257 if traceP(1,1)==0
258 continue;
259 end
260 if maskB(traceP(1,1), traceP(1,2))>0
261 continue;
262 end
263 Seg=zeros(2);
264 segN=1;
265 for k=1:size(traceP,1)
266 if maskB(traceP(k,1), traceP(k,2))>0
267 break;
268 end

213 | P a g e

269 Seg(segN,:)=traceP(k,:);
270 segN=segN+1;
271 end
272 if size(Seg,1)<3
273 continue;
274 end
275 length1=SegLength(Seg);
276
277 Seg=zeros(2);
278 segN=1;
279 for l=k:size(traceP,1)
280 if maskB(traceP(1,1), traceP(1,2))>0
281 continue;
282 end
283 Seg(segN,:)=traceP(l,:);
284 segN=segN+1;
285 end
286 length2=SegLength(Seg);
287 if size(Seg,1)<3
288 continue;
289 end
290
291 if length1<2 || length2<2
292 continue;
293 end
294
295 if length1<length2
296 SegTail(segTN,:)=[length1 length2];
297 segTN=segTN+1;
298 else
299 SegTail(segTN,:)=[length2 length1];
300 segTN=segTN+1;
301 end
302 end
303
304 if size(trJN,2)==2
305 traceP1=findTr(traces.tr, trJN(1));
306 traceP2=findTr(traces.tr, trJN(2));
307 if traceP1(1,1)==0 || traceP2(1,1)==0
308 continue;
309 end
310 if maskB(traceP1(1,1), traceP1(1,2))>0
311 traceP=flipud(traceP1);
312 if maskB(traceP1(1,1), traceP1(1,2))>0
313 continue;
314 end
315 end
316
317 if maskB(traceP2(1,1), traceP2(1,2))>0
318 traceP=flipud(traceP2);
319 if maskB(traceP2(1,1), traceP2(1,2))>0
320 continue;
321 end
322 end
323
324 Seg=zeros(2);

214 | P a g e

325 segN=1;
326 traceP=traceP1;
327 for k=1:size(traceP,1)
328 if maskB(traceP(k,1), traceP(k,2))>0
329 break;
330 end
331 Seg(segN,:)=traceP(k,:);
332 segN=segN+1;
333 end
334 if size(Seg,1)<3
335 continue;
336 end
337 length1=SegLength(Seg);
338
339 Seg=zeros(2);
340 segN=1;
341 traceP=traceP2;
342 for k=1:size(traceP,1)
343 if maskB(traceP(k,1), traceP(k,2))>0
344 break;
345 end
346 Seg(segN,:)=traceP(k,:);
347 segN=segN+1;
348 end
349 if size(Seg,1)<3
350 continue;
351 end
352 length2=SegLength(Seg);
353
354 if length1<2 || length2<2
355 continue;
356 end
357
358 if length1<length2
359 SegTail(segTN,:)=[length1 length2];
360 segTN=segTN+1;
361 else
362 SegTail(segTN,:)=[length2 length1];
363 segTN=segTN+1;
364 end
365 end
366 end
367 end
368
369 % Measure the segment length of the shorter tail and put them into a
370 % histogram.
371
372 SegTail=SegTail*1000/512;
373 Clength=SegTail(:,1)+SegTail(:,2);
374 for i=1:size(Clength,1);
375 if Clength(i)<116.8
376 SegTail(i,:)=0;
377 end
378 end
379 pr=SegTail(:,1);
380 pr_V=pr(pr>0);

215 | P a g e

381 xout=[0:2:max(pr_V)*1.2];
382 n=histc(pr_V,xout);
383 bar(xout,n)
384 hold on
385 %ft=fittype('gauss4');
386 %opt=fitoptions();
387 cfun=fit(xout',n,'gauss1','Lower',[0 0 2],'Upper',[1000 100 500])
388 %cfun=fit(xout',n,'gauss2','Lower',[0 1 0 0 2.5 0],'Upper',[8000 2.5 500 8000 4 500])
389 %cfun=fit(xout',n,'gauss5','Lower',[0 0 20 0 280 20 0 490 20 0 780 20 0 1100
20],'Upper',[30 280 500 30 490 500 30 780 500 30 1100 500 30 1400 500])
390 %x2=[0:1:max(x1)]';
391 xout2=[0:0.5:max(pr_V)*1.2];
392 f2=feval(cfun,xout2');
393 plot(xout2,(f2),'r-','Linewidth',2);

RelateData.m

01 % This function is written to find the relationship between particles and
02 % DNA traces. It will generate a connection table between traces and blobs.
03 % The first line of the table is trace ID. The other cells of the table are
04 % blob IDs. All blobs connect to the trace in the first cell of each row.
05 % If one blob connect to more than one trace, it will appear in different
06 % row.
07
08 % Authur: Haowei Wang (hwang23@emory.edu)
09 % Last updated Sep. 10th, 2011
10
11 function data = relateData(traces, blobs)
12
13 trToB=zeros(2);
14 maskB=zeros(512);
15
16 bID=0;
17 for i=1:size(blobs,1)
18 if blobs(i,1)==-1
19 if blobs(i,2)>0
20 bID=blobs(i,2);
21 blobs(i+1,1)=0;
22 blobs(i+2,1)=0;
23 end
24 else
25 if blobs(i,1)>0
26 maskB(blobs(i,1), blobs(i,2))=bID;
27 end
28 end
29 end
30
31 trN=1;
32 for i=1:size(traces,1)
33 if traces(i,1)==-1
34 if traces(i,2)>0
35 trToB(trN,1)=traces(i,2);
36 trN=trN+1;
37 end
38 else
39 if maskB(traces(i,1), traces(i,2))>0

216 | P a g e

40 bID=maskB(traces(i,1), traces(i,2));
41 j=2;
42 while j<size(trToB,2)
43 if trToB(trN-1,j)==0
44 break;
45 end
46 if trToB(trN-1,j)==bID
47 bID=0;
48 end
49 j=j+1;
50 end
51 if bID>0
52 trToB(trN-1,j)=bID;
53 end
54 end
55 end
56 end
57 data=trToB;

ConvertJ.m

001 % This function convert DNA traces into NeuronJ version.
002
003 % Authur: Haowei Wang (hwang23@emory.edu)
004 % Last updated Sep. 10th, 2011
005
006 clear all
007 close all
008
009 dim=512;
010 dim=dim+1;
011
012 % Get filenames of DNA traces.
013
014 [filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
015
016 targetDir=uigetdir(pathname, 'Select target folder.');
017
018 CurrentP=pwd;
019 path(path,CurrentP);
020
021 if iscell(filename)
022 fileNum=size(filename, 2);
023 else
024 fileNum=1;
025 end
026 step=2;
027 Cstep=0;
028 final=zeros(2,1);
029 fn=1;
030
031 for i=1:fileNum
032 if fileNum==1
033 traceFile=filename;
034 else
035 traceFile=char(filename(i));

217 | P a g e

036 end
037
038 cd(pathname);
039
040 % Read traces.
041
042 traces=readtr(traceFile);
043
044 % Display filename of tracing.
045
046 traceFile
047
048 length=0;
049 prevP=[0 0];
050 newTr=zeros(2);
051 Lthres=45;
052
053 n=size(traces.tr,1);
054
055 start=1;
056 sEnd=1;
057
058 for m=2:n
059 if traces.tr(m,1)==-1
060 if traces.tr(m,2)>0
061 start=m;
062 prevP=traces.tr(m+1,:);
063 end
064 if traces.tr(m,2)==0
065 sEnd=m;
066 sNum=sEnd-start+1;
067
068 % Very short traces will not be disregarded.
069
070 if length>Lthres
071 pointN=size(newTr,1);
072 newTr(pointN+1:pointN+sNum,:)=traces.tr(start:sEnd,:);
073 end
074
075 length=0;
076
077 end
078 else
079 length=length+sqrt((traces.tr(m,1)-prevP(1))^2+(traces.tr(m,2)-prevP(2))^2);
080 prevP=traces.tr(m,:);
081 end
082 end
083
084
085 n=size(newTr,1);
086
087 % Prepare head of NeuroJ file.
088
089 if n>4
090 l=size(traceFile,2);
091 traceJ=traceFile(1:l-6);

218 | P a g e

092 traceJ(l-9)='_';
093
094 cd(targetDir);
095 fd=fopen(strcat(traceJ,'.ndf'), 'w');
096
097 fprintf(fd, '// NeuronJ Data File - DO NOT CHANGE\r');
098 fprintf(fd, '1.4.0\r');
099 fprintf(fd, '// Parameters\r');
100 fprintf(fd, '0\r');
101 fprintf(fd, '2.0\r');
102 fprintf(fd, '0.7\r');
103 fprintf(fd, '0\r');
104 fprintf(fd, '800\r');
105 fprintf(fd, '5\r');
106 fprintf(fd, '5\r');
107 fprintf(fd, '1\r');
108 fprintf(fd, '// Type names and colors\r');
109 fprintf(fd, 'Default\r');
110 fprintf(fd, '4\r');
111 fprintf(fd, 'Axon\r');
112 fprintf(fd, '7\r');
113 fprintf(fd, 'Dendrite\r');
114 fprintf(fd, '1\r');
115 fprintf(fd, 'Primary\r');
116 fprintf(fd, '7\r');
117 fprintf(fd, 'Secondary\r');
118 fprintf(fd, '1\r');
119 fprintf(fd, 'Tertiary\r');
120 fprintf(fd, '8\r');
121 fprintf(fd, 'Type 06\r');
122 fprintf(fd, '4\r');
123 fprintf(fd, 'Type 07\r');
124 fprintf(fd, '4\r');
125 fprintf(fd, 'Type 08\r');
126 fprintf(fd, '4\r');
127 fprintf(fd, 'Type 09\r');
128 fprintf(fd, '4\r');
129 fprintf(fd, 'Type 10\r');
130 fprintf(fd, '4\r');
131 fprintf(fd, '// Cluster names\r');
132 fprintf(fd, 'Default \r');
133 fprintf(fd, 'Cluster 01\r');
134 fprintf(fd, 'Cluster 02\r');
135 fprintf(fd, 'Cluster 03\r');
136 fprintf(fd, 'Cluster 04\r');
137 fprintf(fd, 'Cluster 05\r');
138 fprintf(fd, 'Cluster 06\r');
139 fprintf(fd, 'Cluster 07\r');
140 fprintf(fd, 'Cluster 08\r');
141 fprintf(fd, 'Cluster 09\r');
142 fprintf(fd, 'Cluster 10\r');
143
144 trN=1;
145 iCount=0;
146 iSeg=3;
147 segNum=1;

219 | P a g e

148
149 % Put in trace data
150
151 for j=3:n
152 if newTr(j,1)==-1
153 if newTr(j,2)==0
154 if iCount~=0
155 fprintf(fd, '%d\r', newTr(j-1,2));
156 fprintf(fd, '%d\r', dim-newTr(j-1,1));
157 iCount=0;
158 end
159 iSeg=3;
160 segNum=1;
161 else
162 sstr=strcat('// Tracing N', num2str(trN), ' \r');
163 fprintf(fd, sstr);
164 fprintf(fd, [num2str(trN) '\r']);
165 fprintf(fd, '0\r');
166 fprintf(fd, '0\r');
167 fprintf(fd, 'Default\r');
168 trN=trN+1;
169 end
170 else
171 if iSeg==3
172 sstr=strcat('// Segment_', num2str(segNum), ' of Tracing N', num2str(trN-1),
'\r');
173 sstr(11)=' ';
174 fprintf(fd, sstr);
175 segNum=segNum+1;
176 iSeg=0;
177 end
178
179 if iCount==0
180 fprintf(fd, '%d\r', newTr(j,2));
181 fprintf(fd, '%d\r', dim-newTr(j,1));
182 iSeg=iSeg+1;
183 end
184
185 iCount=iCount+1;
186
187 if iCount==4
188 iCount=0;
189 end
190
191 end
192 end
193 fprintf(fd, '// End of NeuronJ Data File\r');
194 fclose(fd);
195 end
196 end

Imreverse.m

01 % This program reverse color of TIF image and zoom out it to fit six images
02 % into one page of word document.
03 % The modified image will be saved as JPE files.

220 | P a g e

04
05 % Authur: Haowei Wang (hwang23@emory.edu)
06 % Last updated Sep. 10th, 2011
07
08 clear all
09 close all
10
11 try
12 [filename, pathname, filterindex]=uigetfile('.tif', 'pick a file', 'Multiselect', 'on');
13 if ~iscell(filename)
14 if filename(1)==0
15 clear all
16 close all
17 error('Cannot find any files.');
18 end
19 end
20 catch
21 clear all
22 close all
23 error('Cannot find any files.');
24 end
25 currentP=pwd;
26 path(path,currentP);
27 cd(pathname);
28 mkdir('reverse');
29
30 if iscell(filename)
31 fileNum=size(filename, 2);
32 else
33 fileNum=1;
34 end
35
36 for traceN=1:fileNum
37 if fileNum==1
38 file=filename;
39 else
40 file=char(filename(traceN));
41 end
42 if ~isequal(file, 0)
43 try
44 a=imread(file);
45 catch
46 continue;
47 end
48 writeout=imresize(255-a, 0.55);
49 fileR=file(1:size(file,2)-4);
50 cd('reverse');
51 imwrite(writeout, strcat('r_', fileR, '.jpg'));
52 cd(pathname);
53 end
54 end

