Distribution Agreement

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I agree that the Library of the University shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish, this dissertation may be granted by the professor under whose direction it was written, or in his absence, by the Dean of the Graduate School when such copying or publication is solely for scholarly purposes and does not involve financial gain. It is understood, that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission.

Signature

A Single Molecule Study of Two Bacteriophage Epigenetic Switches
 By
 Haowei Wang

Doctor of Philosophy
Physics
Advisor: Dr. Laura Finzi
Approved for the Department by:

Advisor

Dr. David Dunlap
Committee Member

Dr. Kurt Warncke
Committee Member

Dr. Keith Berland
Committee Member

Dr. Ivan Rasnik
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D. Dean of the Graduate School

A Single Molecule Study of Two
 Bacteriophage Epigenetic Switches

By

Haowei Wang
B.S., University of Science and Technology of China

China, 1998

Advisor
Laura Finzi, Ph. D.

An Abstract of
A Dissertation submitted to the Faculty of the
James T. Laney Graduate School Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics

Abstract
 A Single Molecule Study of Two Bacteriophage Epigenetic Switches

By Haowei Wang

Epigenetic switches allow organisms to evolve into different states by activating/repressing different sets of genes without mutations of the underlying DNA sequence. The study of epigenetic switches is very important to understand the mechanism of human development, the origin of cancer, mental illness and fundamental processes such as gene regulation.

The coliphage λ epigenetic switch, which allows switching from lysogeny to lysis, has been studied for more than 50 years as a paradigm, and has recently received renewed attention. Atomic force microscopy (AFM) was used here to show that the λ repressor oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the basis of the λ switch. This study also provides support for the idea that specifically bound repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers robustness to the switch.

186 is a member of a different coliphage family. One of the major differences between the two coliphage families is that lambda phages can be induced to switch from the lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which 186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is characterized by AFM and tethered particle motion (TPM). To expedite analysis of the AFM data, MatLab codes were written to automate the laborious, manual tracing procedures. The programs automatically recognize DNA segments and protein particles in an image, in order to measure the DNA length and position of bound particles as well as their height, diameter and volume. Application of these algorithms greatly improved the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric wheels, which induce DNA wrapping and different kinds of DNA looping producing various conformations of nucleoprotein complexes. Information about the dynamics of DNA wrapping and looping on 186 CI particles was also obtained by TPM.

A Single Molecule Study of Two
 Bacteriophage Epigenetic Switches

By

Haowei Wang
B.S., University of Science and Technology of China
China, 1998
Advisor
Laura Finzi, Ph. D.

A dissertation submitted to the Faculty of the
James T. Laney Graduate School Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Physics

Acknowledgements

I owe my deepest gratitude to my advisor, Prof. Laura Finzi, for her generous encouragement, guidance and support throughout my academic study. These pages would be impossible without her kind mentorship and friendship over my five years of long stay. I sincerely thank Dr. David Dunlap for the kindness advising and patient teaching during my research.
I am heartily thankful to my Ph.D. advising committee members: Dr. Kurt Warncke, Dr. Keith Berland and Dr. Ivan Ransik for their encouraging words, thoughtful criticism, time and attendance to my annual meetings.
I am grateful to my two previous coworkers, Dr. Chiara Zurla and Dr. Carlo Manzo. They greatly helped me mastering a variety of lab techniques and developing critical thinking with constructive discussions during my first years of research in the lab.
I would like to thank the group members, Dr. Qing Shao, Dr. Sachin Goyal, Leila AfjehiSada for their thoughtful discussions and suggestions.

I was fortunate benefit from the support of our great collaborators Dr. Iann Dodd and Dr, Keith Shearwin not only for generously supplying proteins and DNA plasmids, but for their guidance and attentive comments to my results and analyses.

Many thanks also to the undergraduate students who worked with me, Andrew Robinson, Simon Yohannes, Nathan Cho, Il Kyu and John Mack. They helped me greatly in experiments and image analysis and did a great job.

I would also like to thank my parents and my girlfriend Sherry. Although they do not quite understand what I am doing, they always support me. They encouraged me when I felt low.

I owe much to my advisors in China, Prof. Yinmei Li and Prof. Liren Lou. They are the first people who lead me into this field of research and taught me a lot in my early time of scientific research.

I received guidance and assistance from many more people and friends over the years. It is impossible to list and thank them all. This dissertation is dedicated to all of them as well.

Table of Contents

Chapter 1 Introduction 1
§1.1 Epigenetic switches 2
$\S 1.2$ Prophage and the λ epigenetic switch 4
§1.3 The 186 prophage 7
§1.3.1 Transcriptional interference 7
§1.3.2 Coliphage 186 9
§1.3.3 Chromatin and DNA wrapping 11
Chapter 2 AFM Studies of λ Repressor Oligomers Securing DNA Loops 13
§2.1 Background 14
§2.2 Material and method 17
§2.2.1 Material 17
§2.2.2 DNA contour length on mica surface 19
§2.3 Result and discussion 21
§2.3.1 DNA contour length measured by AFM 21
§2.3.2 Specific binding to operator sites 23
§2.3.3 Weak affinity for the $\mathrm{O}_{\mathrm{R} 3}$ operator site 25
§2.3.4 Multiple operators may recruit dimers 26
§2.3.5 Loop equilibrium 28
§2.3.6 Volume calibration 29
§2.3.7 Loop closures are prevalently dodecamers 33
§2.3.8 Alternative loop closures 35
§2.3.9 Conclusion 38
Chapter 3 AFM and TPM Studies of DNA wrapping and looping of phage 186 40
§3.1 Background and introduction 41
§3.2 Material and method 43
§3.2.1 AFM sample preparation 43
§3.2.2 TPM sample preparation 45
§3.2.3 Measurement of wheel diameter 46
§3.3 Result and discussion 49
§3.3.1 Conformation of basic model 49
§3.3.1.1 The 186 repressor and its assembling 49
§3.3.1.2 CI regulated mechanism 54
§3.3.2 Pseudo site on FL 59
§3.3.3 Asymmetric DNA wrapping on pR region 61
§3.3.4 DNA wrapping/unwrapping 62
§3.3.5 TPM study of DNA wrapping and looping 62
§3.3.6 DNA looping 67
§3.3.7 Other CI binding forms and non-specific binding 75
Chapter 4 Automated DNA segmentation and protein recognition from AFM images
§4.1 Background 77
§4.2 Method and algorithm 79
§4.2.1 Filtering 79
§4.2.2 Threshold and segmentation 80
§4.2.3 Thinning and selection of DNA skeleton 83
§4.2.4 DNA length estimation 87
§4.3 Application and programming 88
§4.3.1 DNA tracing 88
§4.3.2 Masking and interactive modifying 90
§4.3.3 DNA contour length measuring 95
§4.3.4 Automatic particle analysis on DNA or surface 97
§4.3.5 Auto-analysis of DNA protein interaction 101
§4.3.6 Data conversion 103
§4.4 Discussion 103
References 104
Appendices 110
Appendix A AFM studies of λ repressor oligomers securing DNA loops 111
Appendix B The lambda bacteriophage epigenetic switch: new insight from single-molecule microscopy119
Appendix C A missing link between transcription factors and nucleosomes: thebacteriophage 186 CI repressor wraps and loops DNA 139
Appendix D Matlab code for protein particle measurement and simulation 148
Appendix E Matlab code for automated tracing and DNA protein analysis programs

List of Figures

Chapter 1: Introduction

Figure 1.1 Life cycle of the prophage and the formation of a lysogen 5
Figure 1.2 CI protein and phage DNA interaction 7
Figure 1.3 Three promoter arrangements that lead to transcriptional interference 8
Figure 1.4 X-ray crystallography revealed 186 CTD 10
Figure 1.5 X-ray crystal structure of the nuceosome 12
Chapter 2: AFM Studies of Repressor Oligomers Securing DNA Loops
Figure 2.1 Schematic representation of non-specific binding nucleation 15
Figure 2.2 Schematic drawing of an AFM 16
Figure 2.3300 simulated 1500 bp polymer chain 19
Figure 2.4 Measured DNA basepair rise 21
Figure 2.5 AFM images of $\lambda \mathrm{CI}$ and DNA 23
Figure 2.6 AFM measurement of the position of CI particles 25
Figure 2.7 Pairs of CI particles bound to adjacent sites 27
Figure 2.8 Loop ratio under different CI concentration 29
Figure 2.9 AFM measurements of the volume of CI protein particles 30
Figure 2.10 AFM measurements of the volume of lac repressor 31
Figure 2.11 AFM protein volume calibration 31
Figure 2.12 Oligomerization of CI secring DNA loops 33
Figure 2.13 Volume of particles securing DNA loops 35
Figure 2.14 Specifically bound protein particles 37

Chapter 3: AFM and TPM Study of DNA Wrapping and Looping of Phage 186

Figure 3.1 Three groups of binding sites on 186 ... 41
Figure 3.2 Schemetic drawing of TPM .. 43
Figure 3.3 AFM tip effects ... 44
Figure 3.4 A cross section of the image of a DNA molecule ... 47
Figure 3.5 Cross section of different shape particles ... 48
Figure 3.6 X-ray crystal structure of 14mer wheel of 186 CTD 50
Figure 3.7 Diameter of 186 particles.. 51
Figure 3.8 AFM volume calibration for 186 .. 53
Figure 3.9 Schemetic representation of 186 repressor-DNA interaction 55
Figure 3.10 Frequency distribution histogram of 186 wheel location 56
Figure 3.11186 wheel positioning at FL ... 60
Figure 3.12 DNA coverage of 186 particles on pR .. 61
Figure 3.13 TPM calibration curve .. 64
Figure 3.14 Frequency distribution of TPM data ... 65
Figure 3.15 Frequency distribution of TPM data ... 66
Figure 3.16 TPM trajectory .. 66
Figure 3.17 Frequency distribution of TPM data (wild type) .. 67
Figure 3.18 Frequency distribution of TPM data .. 72
Figure 3.19 Frequency distribution of TPM data ... 73
Figure 3.20 Frequency distribution histogram of occupancy .. 74
Figure 3.21 AFM images of 186 wt DNA with 300nm CI .. 75

Chapter 4: Automated DNA Segmentation and Protein Recognition from AFM Images

Figure 4.1 The background of AFM images 79
Figure 4.2 Frequency distribution of z values 80
Figure 4.3 Zoomed view of the tail of fig. 4.2 81
Figure 4.4 An original AFM image 82
Figure 4.5 Identification of critical pixels 84
Figure 4.6 One process of thinning 84
Figure 4.7 Working flow of the thinning process 85
Figure 4.8 The process of thinning 85
Figure 4.9 DNA skeleton 86
Figure 4.10 Interface of masking program. 90
Figure 4.11 Delete subfunction 91
Figure 4.12 Connect subfunction 92
Figure 4.13 The two DNA connection 93
Figure 4.14 User interface of a segment length measurement 94
Figure 4.15 Calculating the length of a part in the DNA segment 94
Figure 4.16 Dialog box for DNA length measurement 95
Figure 4.17 Contour length of 1934 bp DNA 96
Figure 4.18 Contour length of 1500 bp polymer chain 96
Figure 4.19 User interface panel of the particle analysis program 98
Figure 4.20 Output of particle analysis program 100
Figure 4.21 Saved excel data of particle analysis 101
Figure 4.22 Distribution histogram of protein binding position 102

List of Tables

Chapter 1: Introduction

Chapter 2: AFM Studies of Repressor Oligomers Securing DNA Loops

Table 2.1 Precentages of CI-mediated loops 28
Table 2.2 Segment length for DNA loops 38
Chapter 3: AFM and TPM Study of DNA Wrapping and Looping of Phage 186
Table 3.1 Statistics on the interaction between 186 and wt DNA 57
Table 3.2 Calibration data of TPM 63
Table 3.3 Statistics on the interaction between 186 CI and delta Pr mutation 68
Table 3.4 Statistical result of interaction on FL+pRFR- mutation 69
Table 3.5 Condensed statistical result of Tab. 3.4 69
Chapter 4: Automated DNA Segmentation and Protein Recognition from AFM Images
Table 4.1 Meausred DAN contour length with different estimator 87
Table 4.2 Comparison of different tracing methods on DNA images 97

Chapter 1

Introduction

§ 1.1. Epigenetic switches

The Greek prefix epi- in epigenetic implies aspects "in addition to" genetics. According to the classical definition given by Ptashne and Gann [1] (p100), an epigenetic switch is the change of gene expression states which can be inherited, and maintained even though the signal that initiated that change is absent. In other words, an organism can evolve into different states by activate or repress different sets of genes thanks to epigenetic switches even if there is no mutation in the underlying DNA sequence and the environment is the same.

Scientists suspect epigenetic changes may represent a form of memory that allows organisms to remember their experience [2]. Reversible phenotype variability of epigenetic changes may provide a pathway for short-tem adaptation of species. For example, vernalization is the process by which plants flower only after having experienced a period of cold temperature and is the result of a epigenetic mechanism [3]. Transgenerational epigenetic inheritance is also observed in humans [4]. Different epigenetic features can be associated to different mutation rates. Indeed, organisms may control the mutation rate of particular genes epigenetically [5]. Furthermore, some epigenetic features are heritable from one generation to another when a DNA mutation takes place in the sperm or egg cell of an individual [6]. This indicates how epigenetic switches may affect adaptation and evolution. Similarly, epigenetic switches could be related to the differences between identical human twins [7].

Cellular differentiation in eukaryotes is another example of epigenetic switches. Totipotent stem cells develop into various pluripotent cell lines and finally transform
to fully differentiated cells during morphogenesis without any change of their gene sequences [8].

Currently, epigenetic modifications explicitly include some current field of research like DNA methylation and chromatin remodeling [9, 10], RNA interference [11, 12], prions [13] etc.. The importance of epigenetic marking on the development and failure of cloned sheep and bovines is well proved by several works [14-16]. The development of some human disorders also involve epigenetic effects [17, 18]. In the particular case of the Angelman syndrome and Prader-Willi syndrome, patients will develop different syndromes depending on the genomic imprinting inherited from their parents even though the syndrome is caused by same genetic mutation [17]. It is also reported that many agents that disturb the structural development of embryos or fetuses (for example, cleft lip or two headed new born creatures) affect the fetus by epigenetic mechanisms [19]. In addition, abnormal DNA methylation is also detected when a benign proliferation develops into an invasive cancer [20].

According to these findings, the study of epigenetic switches is important to understand the mechanism of human development, the origins of cancer, mental illness, as well as fundamental processes such as gene regulation etc. In 2008, the National Institutes of Health announced more than $\$ 190$ million funding for a new epigenomics initiative. According to past NIH Director Elias A. Zerhouni, "Epigenomics-based research is now a central issue in biology."

§ 1.2. The prophage and the λ epigenetic switch

Prophage is a state of coexistence of the host genome and the phage genome. Once a coliphage such as λ infects an Escherichia coli bacterium, it needs to make a decision between two developmental modes. Sometimes, the coliphage takes a lytic developmental pathway. In this case, various phage genes are turned on so that the phage genome is extensively replicated and new phage proteins are synthesized. After approximately 45 minutes, the cell lyses and releases about 100 new phages as illustrated in figure 1.1. Other times, the bacteriophage can go into a lysogenic state by inserting its genome into the bacterium's genome to form a lysogen. Once a lysogen is formed, all the phage genes except one are repressed and the cell becomes immune to other phages.

In a lysogen, the cell can grow and divide with the phage genome and the prophage passively replicates with the host cell. The cell can stay in this lysogenic state for a very long time until it is induced by some environmental change such as UV irradiation or starvation. For example, when a lysogen is irradiated by UV light virtually all the lysogen will switch to a lytic response, lyse the cell and produce a new crop of phages.

Figure 1.1: Life cycle of the prophage and the formation of a lysogen. Once a coliphage infects a bacteria, it can make a decision between lytic and lysogenetic responses. In the lytic response, the phage reproduces itself causing the lysis of the host, and releasing about 100 new phages (virulent reproduction pathway). In the lysogenic response, the phage inserts its genome into the cell and represses most of its genes to form a prophage. The prophage state is inheritable (quiescent reproduction pathway) and will be stable until changes in the environment stimulate the prophage to switch to a lytic response.
λ is one of the most comprehensively studied bacteriophages. The relationship between phage λ and its host Escbericbia coli is the archetype model system for the investigation of many fundamental biological processes, especially gene regulation [21].

The epigenetic switch between lysogeny and lysis in bacteriophage λ is controlled by one sole protein named λ repressor, or CI. The function of CI in the cell was established more than twenty years ago [22,23]. CI maintains lysogeny by preventing transcription of multiple phage early genes such as N , cro, O, P and Q which are necessary for lytic development. It has already been understood that the establishment and maintenance of a lysogen require repression of both the pL and pR promoters that
are controlled by CI [21]. Furthermore, the evidence that CI affects transcription of pRM, the promoter that encodes CI, has been well described in 1981 [22].

The different roles of the CI binding sites in gene regulation have already been well examined in previous works [21, 24]. After dimerization, CI protein can bind on six binding sites cooperatively. It is believed that a CI dimer binding on $O_{R I}$ will turn off the transcription of pR , but have no effect on pRM . Also, pL can be turned off by a CI dimer bound to $O_{L l}$ without any other effect. However, if a CI dimer is bound to $O_{R 1}$, a second will cooperatively bind to $O_{R 2}$. CI binding on $O_{R 2}$ stimulates transcription from P_{RM}. This leads to an over-expression of CI and eventually would prevent the lysogen to efficiently switch to lytic growth when necessary. Experiments conducted only on the O_{R} region of λ DNA had showed that CI on $O_{R 3}$ represses P_{RM} and provides a mechanism of negative auto-regulation which would allow control of CI concentration. However, $O_{R 3}$ is a very weak site and can only be occupied at nonphysiological concentrations of CI [21].

Since the two CI binding sites O_{L} and O_{R} are separated by a couple of thousands of base pairs, a long range cooperative mechanism involving DNA looping was demonstrated in 2005 and 2006 [24, 25]. According to this looping mechanism, the CI protein in its dimeric form can regulate three different promoters by binding to six different binding sites of the DNA in different ways as illustrated in figure 1.2. The protein binding on $O_{L l-2}$ and $O_{R I-2}$ sites can interact face-to-face and form a DNA loop. In this way, it stably represses transcription from pR and pL . It also brings $O_{L 3}$, which is a strong binding site to face $O_{R 3}$ as indicated in figure 1.2. Therefore, the CI dimer binding on $O_{L 3}$ can stabilize a CI dimer on $O_{R 3}$ via a protein-protein interaction
and pRM is turned off at a physiological CI concentration. The first evidence of CImediated DNA loop formation and breakdown was provided in vitro in the Finzi lab [25-27].

a

Figure 1.2: CI protein and phage DNA interaction. There are six different CI binding sites named $O_{R 1,2,3}$ and $O_{L 1,2,3}$ on the phage DNA through which transcription of three promoters ($\mathrm{pR}, \mathrm{pRM}, \mathrm{pL}$) can be regulated (a). The model predicts that CI dimers may mediate DNA looping (b).

§ 1.3. The 186 bacteriophage

§ 1.3.1 Transcriptional interference

Transcription of one gene may interrupt the transcription of a neighboring gene in cis. This 'promoter occlusion' was first found in prokaryotes [28] and later named 'transcriptional interference' [29]. It provides a new mechanism of gene regulation, especially for the not-well-studied function of untranslated RNAs [29, 30].

Transcriptional interference is widely found in coliphage [31], yeast [32], mammals [33] and drosophila [30, 34], and is used in the research of human diseases like cancer [35] and HIV [36, 37], and in strategies for drug development.

Normally, in transcriptional interference a strong promoter suppresses another weaker promoter. The three promoter arrangements that lead to transcriptional interference are illustrated in figure 1.3. They are: convergent promoters like the lytic and lysogenic promoters of coliphage 186 [31]; tandem promoters, like the yeast SRG1 and SER3 promoters [38] and overlapping promoters such as the aroP P1 and P3 promoters of E. coli [39].

Figure 1.3: Three promoter arrangements that lead to transcriptional interference. The two gray bars on the line represent two promoters on DNA. The arrows represent the direction of transcription. In the convergent case, RNA polymerase transcribing from one promoter will impact the polymerase sitting on or trascripting from the other promoter and kick it away. When the two promoters are in tandem, the RNA polymerase transcribing from the back promoter may approach andremove the RNAP on the other promoter. If two promoters overlap, RNA polymerase binding on one promoter will sterically prevent another RNAP from binding on the other promoter.

Based on these three promoter structural arrangements, five transcriptional interference mechanisms are demonstrated by Shearwin in 2005 [29]. When the two
promoters are overlapping, occupancy of RNA polymerase on one promoter will preclude another polymerase from binding on the other promoter. A bound polymerase (but not transcribing) can be kicked off the DNA by a polymerase which is transcribing in the opposite direction from a different promoter. Polymerase binding at a given promoter can be prevented by another enzyme who had started from another promoter located either in a convergent or tandem geometry. Two transcribing polymerases may collide, and both leave the DNA. Finally, a tightly bound RNAP can act as a roadblock if it does not fall off the DNA by a transcribing RNAP.

§ 1.3.2 Coliphage 186

Many coliphages exist in lysogenic hosts as prophages rather than free phage particles [40]. These phages can be roughly divided into inducible/noninducible groups by the ability to switch from a lysogenic growth to lytic growth under UV induction. The family of bacteriophages to which λ belongs consists of all inducible phages because they can all switch from lysogeny to a lytic response after exposure to UV light. As a member of the P2 family, coliphage 186 provides a noninducible counterpoint to λ phage [41]. Although 186 is almost unrelated to λ in DNA sequence [42], the lifecycles are almost the same [31]. Both phages maintain a genetic switch between lytic and lysogenic growth with one sole protein named in both cases CI. 186 CI, the lysogenic repressor of the 186 phage, is not sequencerelated to λ CI even though they have very similar structure [31]. 186 CI and $\lambda \mathrm{CI}$
both have one C terminal domain and one N terminal domain linked by a free peptide linker. Both of them bind to DNA with NTD and interact with other molecules of repressor with CTD. Unlike in the case of λ DNA, the 186 DNA contains three strong binding sites at pR and two flanking sites FL, FR [43]. Therefore, although 186 CI and λ CI can regulate transcription of their own gene both positively and negatively, depending on repressor concentration, their mechanisms must be very different.

X-ray studies show that the CTD of 186 repressor can form a wheel of seven dimers (fig. 1.4) [41]. Therefore, it is reasonable to suspect that the intact protein may also form a heptamer of dimers in nature. Even though the protein concentration for crystallographic studies is approximately 20 times higher than in normal bulk experiments [41], the idea of a wheel shaped repressor oligomer is intriguing. It could bind cooperatively to the multiple binding sites at pR and induce DNA wrapping and looping which, in turn, could explain how 186 can positively and negatively regulate the production of its repressor and maintain the lysogenic state [31].

Figure 1.4: X-ray crystallography [41] revealed that 186 CTD can assemble into wheel-like particles. Each particle contains seven dimers. The wheel is approximately $102 \AA$ in diameter and $57 \AA$ thick according to X-ray crystallography.

§ 1.3.3 Chromatin and DNA wrapping

Organismal genomes seldom exist as naked DNA. Their DNA is often bound by other proteins such as HU, IHF or histone proteins. In eukaryotes, DNA often wraps on histone proteins to form nucleosomes (fig.1.5) and chromatin. It is believed that the main function of chromatin is to package DNA to fit in the small volume of the cell nucleus. These nucleoprotein complexes can also strengthen the DNA during mitosis or meiosis and prevent DNA damage. In the 1980 's, alternations of chromatin composition, structure and function were noticed and related to aging [44, 45]. In the past 20 years, more evidence that chromatin structure determines transcriptional control were presented [46]. For example, gene silencing in eukaryotes has been found to be related to DNA methylation [47].

The remodeling of chromatin provides a platform for gene silencing and activation [46]. If the hypothesis that DNA can wrap on the wheel-like particle of 186 repressor is correct, there might be functional similarities between DNA wrapped around the histone octamers and DNA wrapped around the 186 heptamer. Therefore, the study of DNA wrapping and unwrapping the 186 wheels may serve as a simplified model for chromatin remodeling.

Figure 1.5: X-ray crystal structure of the nucleosome. (PDB: 3AV1) [48]. DNA wraps around histone proteins by 1.67 turns.

Chapter 2

AFM Studies of λ Repressor Oligomers Securing DNA Loops ${ }^{1}$

[^0]
§ 2.1. Background

Prophage λ regulates repressor transcription by looping [21]. When a lysogen is formed, the phage DNA is looped by head-to-head interaction between CI tetramers binding respectively on two group of specific sites $O_{R 1-2}$ and $O_{L l-2}$ separated by 2.3 bp [24-27] (fig. 1.2). The occupancy of $O_{R 1 \nless 2}$ will repress all lytic genes and stimulate the expression of the CI protein itself. Once the DNA loop is formed, the CI dimer binding at $O_{L 3}$ site may help another CI dimer to bind at $O_{R 3}$, a weaker binding site, by head-to-head interaction. Thus, the transcription of CI protein is turned off and CI concentration is maintained at a level such that the lysogenic state can be maintained and the prophage can still switch to a lytic response if needed [21].

This looping model well explains the mechanism of the phage λ 's genetic switch. However, some recent work indicated that nonspecific interactions between CI and DNA may play a role in the formation of dynamic loop [49]. In particular, a dimer bound at either of the O_{3} operators could interact "side-by-side" with an adjacent dimer bound non-specifically. In principle, the O_{L} and O_{R} regions may function as a seeding spots for extensive CI oligomerization and loop closure [50-52] (fig. 2.1).

Figure 2.1: Schematic representation of non-specific binding nucleation. The solid circles on DNA (solid lines) are strong binding sites ($O_{L l-3}, O_{R 1 \& 2}$). The hollow circle is the weaker site $O_{R 3}$. CI dimers (blue boxes) first bind on $O_{I \nless 2}$ sites and loop the DNA with head-tohead interaction. After that, the CI dimer binding on $O_{L 3}$ can help another dimer binding to $O_{R 3}$ [21]. Because the two dimers binding on O_{3} sites do not have neighbor CIs to interact side-by-side, it is proposed that they can help other two dimers to bind non-specifically [49]. Further CI oligomerization may then occur inside the loop (light blue boxes) [50-52].

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a powerful microscopy technique where a probe is scanned on a surface to obtain its topographical profile [53]. The probe is constituted by a tip with a very sharp end. The tip is mounted on a soft cantilever which carries a mirror on its back side (fig. 2.2). Once the tip is approaching the surface, van der Waals forces will act on it before it contacts the surface. Thus, the cantilever will be bent to an angle that can be detected by the reflection of the laser beam shining on the back side of the cantilever. This optical detection of the change in force of interaction between tip and surface can provide the topography of the surface over which the sample is deposited [54]. AFM imaging is commonly achieved in "contact" mode.

Figure 2.2: Schematic drawing of an AFM [54]. A very sharp tip is attached at the bottom of a cantilever (yellow). The sample (orange spot) is put onto a piezoelectric ceramics (gray). A laser beam (red) is reflected by a mirror on the top of the cantilever and reflected to the detector (blue circle). The small change of distance between the sample and the tip will bend the cantilever and successively change the angle of reflected laser beam.

AFM can also produce images of the sample in "tapping" mode. In this case, the cantilever is driven by a piezo motor and made oscillate according to its resonance frequency. The oscillation range is then recorded by the detector. When the tip approaches the surface, its oscillation will be disturbed by the surface-tip interaction and the oscillation range will be changed also. Commonly, the height of the sample is controlled by another piezo motor so that the oscillation is kept within a constant range when scanning. Therefore, the voltage changes applied on the second piezo reflect the curvature of the sample surface. Using this method, the 3-D profile of the sample can be reconstructed. Compared to the contact mode, the tapping mode significantly decreases the damage done to the surface by lowering the force applied on it. Therefore, all the images in this study were obtained in tapping mode.

Unlike tethered particle microscopy (TPM) or magnetic tweezers (MT), the ability of AFM to obtain the 3-D topographic description of the sample surface can be used to directly visualize the structure of the protein-DNA complex and provide information that TPM and MT cannot.

§ 2.2. Materials and methods

§ 2.2.1 Material

1555 bp DNA fragments were produced by PCR amplification of segments of plasmids pDL944 and pDL965 using 5'-CGCAATTAATGTGAGTTAGCTCACTCA TTAGGCACCCCAGGC-3' and 5'-GCATTGCTTATCAATTTGTTGCAACGAACA GGTCACTATCAGTC-3' as forward and reverse primers. These fragments contained wild-type or mutant lambda operator regions (O_{L} and O_{R}), respectively. The distance between the midpoints of operator sites $O_{L 3}$ and $O_{R 3}$ was 393 bp . pDL965 contains $C C$ to $A T$ mutations in $O_{L 3}$ and $O_{R 3}$, which abrogate CI binding [55]. PCR using the same plasmid templates was also used to generate 505 or 392 bp DNA fragments that contained only one group of binding sites (O_{R} or O_{L}).

732 bp DNA fragment containing two high affinity lac operators Oid (5'-TGTGAGCGCTCACA-3') and O1 (5'-AATTGTGAGCGGATAACAATT-3') [17, 18] separated by 70 bp was provided by Opher Gileadi (Quantomix Ltd, Rehovot, Israel). It was produced by PCR using the plasmid $p \mathrm{Oid}-O_{1}$ from the Müller-Hill laboratory as a template and 5^{\prime} 'GCCACCTCTGACTTAAGCGTCG-3' and 5'-TTGAGGGGACGTCGACAGTATC-3' as forward and reverse primers.

Another 1584 bp DNA fragment was cut from pBluescript plasmid with two restriction enzymes: Xma I and Ngo MIV (New England Biolabs. Ipswich, MA). This fragment does not contain any lambda CI sites.

The wild-type CI protein $(7.25 \mu \mathrm{~g} / \mu \mathrm{l})$ was purified from pEA305 in the laboratory of Sankar Adhya. 20 nM CI and 2 to 4 nM DNA were gently mixed in a buffer containing 50 mM HEPES, 150 mM NaCl and 0.1 mM EDTA (pH 7.0) and incubated at RT for 10 min . Shortly before deposition, a $10 \mu \mathrm{l}$ drop of $0.1 \mu \mathrm{~g} / \mathrm{ml}$ poly-Lornithine (1 kDa MW, product \#P5666, Sigma-Aldrich, St. Louis, MO) was incubated on freshly cleaved mica for one minute at RT. The poly-Lornithine- coated mica was then washed with 0.4 ml HPLC water and dried with compressed air. Then $5 \mu \mathrm{l}$ of the solution containing DNA and protein was quickly diluted with $40 \mu \mathrm{l}$ of buffer, and a $10 \mu \mathrm{l}$ droplet of this solution was deposited on the poly-L-ornithine-coated mica and incubated for one minute at RT. The droplet was rinsed away with 0.4 ml HPLC water and dried gently with compressed air. The sample was left overnight in a dessicator at RT before imaging.

In the study about loop probability, $50-200 \mathrm{nM}$ his-tag wild-type lambda CI were incubated with 1 nM wild-type lambda DNA. $92 \mu \mathrm{M}$ his-tag CI were a kind gift from Keith Shearwin.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital Instrument, Santa Barbara, CA) operated in tapping mode using a $50-60 \mathrm{mV}$ oscillation amplitude of uncoated, etched silicon tips with a resonance frequency of

75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of $1 \times 1 \mu \mathrm{~m}^{2}$ were scanned at a rate of 1.2 Hz and a resolution of 512×512 pixels. ${ }^{2}$

AFM raw images cannot be analyzed directly for two reasons: first, because images are generated by scanning in successive lines, and there could be an offset between successive scan lines; second, because the piezoelectric motor response is not perfectly linear, the image surface is often bowing even if the sample surface is flat. After filtering, these two effects can be removed and DNA molecules may be interactively traced with NeuronJ [56], a plug-in function for ImageJ [57]. The volume of protein particles are measured with a basal threshold about 0.08 nm above the background. The base value in following measurement was then calculated as the mean value of all pixels below this threshold. For each isolated protein particles, the sum of the pixel heights above the base within the area of the particle protruding above the basal threshold was calculated as its volume. A second "DNA" threshold was selected just above the DNA to cut off the DNA from DNA bound protein particles. Therefore, only pixels protruding above the "DNA" threshold were considered as a part of the particles. The Matlab routine which performs this analysis can be found in appendix D and E .

§ 2.2.2 DNA contour length on mica surface

In order to localize the specific location of CI binding on DNA, the position of the protein particles on the DNA revealed by the AFM images needs to be measured accurately. First of all, since the AFM images are obtained by scanning a tip over the

[^1]sample surface, the shape and size of the tip will smooth and enlarge the DNA fiber and make it appear wider. For the same reason, a DNA molecule that follows a zigzag contour might be smoothed during imaging and its overall contour length might be underestimated.

On the other hand, measured DNA contour lengths may be overestimated because of pixilation. The DNA fibers are recorded in AFM images as quantified pixels instead of continues smooth curvatures. Therefore, some extra zigzags might be introduced and DNA contour length can be estimated in this process. Different DNA length estimators are available to balance the overestimation and underestimation factors due to the effects described above. [58-60].

Furthermore, the dried mica surface is very different from the natural aqueous cellular environment. It is suspected that DNA dried on mica may experience a partial transformation from B to A -form [58]. This conformational change would alone cause the DNA adsorbed and dried on mica to shorten since the A-form helix has a shorter helical pitch than that of the B helix.

Because of these considerations, simulated DNA polymer chains were used to evaluate the effect of tracing. A matlab routine was used to generate 300 polymer chains with two different persistence lengths ($25 \mathrm{~nm}, 53 \mathrm{~nm}$). Each polymer chain contains 15000.34 nm long segments, corresponding to 1500 bp B-form DNA. Then a virtual tip with a 2.7 nm radius end was used to scan the simulated DNA. The scanning signals were quantized into 512×512 pixel images and supplemented with random noise (Fig. 2.3). The final images were saved in tiff files which is the same format as that of real AFM images. The matlab codes of simulation (hundreds.m) and
image construction (imageG.m) can be found in appendix C. Then the images were traced and measured exactly the same way as normal AFM images.

Figure 2.3: 300 simulated 1500 bp polymer chain (left) and one example of simulated image of one polymer chain. Unlike the real DNA, the length of simulated polymer chains is well known and is not affected by the sample preparation. Tracing such polymer chains from simulated images can give an estimate of the error that is introduced by the tracing process.

Finally, DNA segments with different number of basepairs were used to determine the exact ratio between length and the base pair rise.

§ 2.3. Result and discussion

§ 2.3.1 DNA contour length measured by AFM.

The base pair rise was measured from experimental or simulated images (fig.2.4). The simulated images show a decrease of measured contour length when DNA persistence length decreases from 53 nm to 25 nm . Because softer DNA, with a shorter persistence length, meanders more on the surface than a stiffer molecule, it
contains more bends that will be smoothed by the AFM tip. Therefore, it is not surprising that softer DNA will looks shorter than stiffer DNA. The DNA fragment obtained by digestion with restriction enzymes gave a $0.322 \mathrm{~nm} / \mathrm{bp}$ rise. While, measuring the distance between two protein particles sitting on two specific binding sites separated by 461 bp gave a rise of $0.33 \mathrm{~nm} / \mathrm{bp} ; 1555 \mathrm{bp}$ long DNA, produced by PCR reaction, gave a rise of $0.327 \mathrm{~nm} / \mathrm{bp}$. All these values are $1.5-2.4 \%$ shorter than that found for the 53 nm persistence length simulation. Since the well accepted DNA persistence length in such condition is between 45 nm and 55 nm from different studies [61, 62], there might be some the extra shortening of DNA rise per base pair. Some researcher attributed this part of shortening to partial B- to A- transformation because despite all the other effects, the measured DNA basepair rise is in still shorter than pure B-DNA ($0.34 \mathrm{~nm} / \mathrm{bp}$) $[58,63]$). In summary, our measured DNA length is underestimated compared to the DNA in aqueous conditions.

Figure 2.4: Measured DNA basepair rise from simulated polymer chain and real DNA. From left to right: simulated polymer chain with 53 nm persistence length ($0.335 \mathrm{~nm} / \mathrm{bp}$); simulated polymer chain with 25 nm persistence length ($0.326 \mathrm{~nm} / \mathrm{bp}$); 1584 bp DNA cut by restriction enzyme ($0.322 \mathrm{~nm} / \mathrm{bp}$); distance between protein particles binding on O_{L} and O_{R} site on O_{3} lambda DNA, the two binding sites are separated by $461 \mathrm{bp}(0.33 \mathrm{~nm} / \mathrm{bp})$; 1555 bp lambda DNA produced by PCR ($0.327 \mathrm{~nm} / \mathrm{bp}$); B-DNA from crystal structure ($0.34 \mathrm{~nm} / \mathrm{bp}$).

§ 2.3.2 Specific binding to operator sites.

In real experiments, DNA segments containing different numbers of binding sites are incubated with protein and imaged by AFM (fig. 2.5). And, the positions of CI particles along unlooped DNA were measured. Schematic diagrams of the molecules along with the positions of the right and left operator regions were showed in figure 2.6. The positions of the center of bound CI particles on DNA containing both wildtype operator regions were measured by tracing and put into histograms of frequency distributions (Fig. 2.5, upper center and left; Fig. 2.6, middle-left). The vast majority of particles centralized near the O_{R} and O_{L} regions 118 and 265 nm from one end of the molecules and non specific bindings were very rare.

Figure 2.5: AFM images of $\lambda \mathrm{CI}$ and DNA: (upper left) 1555 bp DNA containing O_{L} and O_{R}, (upper center and right) CI protein bound to 1555 bp DNA, (middle row) CI- mediated loops in 1555 bp DNA, (bottom left) CI bound to DNA containing $O_{L l, 2 \& 3}$ (wild type), (bottom center) CI protein bound to DNA containing $O_{L 1 \& 2}\left(O_{3-}\right)$, (bottom right) lac repressor bound to $O_{i d}$ and O_{l} containing DNA. The black bar represents $100 \mathrm{~nm} .^{3}$

[^2]

Figure 2.6: AFM measurements of the positions of CI particles bound to DNA. A schematic (upper) of the DNA construct with O_{L} and O_{R} operators. Histograms (lower) show the AFM measurements of the position of CI particles bound to different DNA fragments with wild-type and $O_{3 \text { - operators as indicated. }{ }^{4}}$

§ 2.3.3 Weak affinity for the $\boldsymbol{O}_{R 3}$ operator site

The noticeably broader peak at O_{L} is explained by cooperative binding of two CI dimers on adjacent operator sites; with consequent formation of tetramers occupying either operators 1 and 2 or 2 and 3 . This is not likely to happen at the O_{R} region because the experimentally determined affinities of the operator sites [64] indicates

[^3]that the affinity of CI dimers for $O_{R 3}$ is much weaker than that for $O_{R 1}$ and $O_{R 2}$. Experiments that abrogated the binding of CI dimers to $O_{L 3}$ and $O_{R 3}$ with DNA mutation $\left(O_{3}\right)$ in the third binding sites supported this interpretation. Similar to the wild-type DNA, CI binding to the O_{R} region of O_{3}. DNA established a narrow peak at 119 nm (Fig. 2.5, bottom-left). In agreement with this interpretion is also the finding that the peak corresponding to the binding of CI to the O_{L} region of O_{3}. DNA shifted to produce a narrow peak at 275 nm , reflecting the disappearance of cooperative binding of CI to $O_{L 2}$ and $O_{L 3}$.

Experiments with short fragments containing either O_{R} or O_{L} (Fig. 2.5, bottom left and center) were used to demonstrate the weak affinity for the $O_{R 3}$ site further. The histogram of particle locations on the wild-type O_{L}-containing fragment shows two peaks separated by 9.5 nm (Fig. 2.6, middle-center). This distance is slightly larger than the expected value for a tetramer bridging either sites $O_{L 1}$ and $O_{L 2}$ or $O_{L 2}$ and $O_{L 3}(20 \mathrm{bp}$ or 6.7 nm$)$. However, the peak which corresponds to the $O_{L 3}$ site (located at 47 nm), disappeared for DNA with the $O_{L 3}$. mutation (Fig. 2.6, bottomcenter) while the peak at $O_{R}(32 \mathrm{~nm})$ remained unchanged (Figure 2.6, compare middle-right and bottom-right). The simplest interpretation is that the occupancy of weak binding site $O_{R 3}$ does not significantly change with or without mutation while the strong $O_{L 3}$ binding was affected dramatically by a similar mutation.

§ 2.3.4 Multiple operators may recruit dimers

A few DNA molecules carrying small adjacent protein particles bound in positions that were commensurate with the O_{1} and O_{3} operator sites (Fig. 2.7) among the hundreds of molecules in the recorded topographs. The mean volume of these
particles was measured as $174 \mathrm{~nm}^{3}$, which could be identified as CI oligomers of 2-4 monomers based on the calibration that was performed and is described below. According to the DNA construct, the center-to-center distance from $O_{L 1}$ to $O_{L 3}$ is 44 bp , corresponding to 14.7 nm , and $47 \mathrm{bp}(15.7 \mathrm{~nm})$ for $O_{R 1}$ to $O_{R 3}$. Because the distance between pairs of adjacent particles was 15.4 and 14.0 nm for the O_{R} or O_{L} region respectively; the experiment revealed non-cooperative binding to the O_{l} and O_{3} sites. These experiments suggested that perhaps the presence of the third operator sites in each region can contribute in capturing CI dimers and thus help to secure a loop when a random collision between O_{R} and O_{L} occurs. However, it cannot be excluded that these species might be formed by broken looped molecules during deposition and washing in sample preparation.

Figure 2.7: Pairs of CI particles bound to adjacent ol and o3 sites were observed in AFM images (upper). The black bar represents 100 nm . (lower) The mean volume of these particles was $174 \pm 70 \mathrm{~nm}^{3} .{ }^{5}$

[^4]
§ 2.3.5 Looping equilibrium

Indeed, the deposition process for protein-DNA complex binding to the surface was reported to affect the measured equilibrium by distorting the 3D topology [65]. The slight helical shift between the O_{2} and O_{3} operator sites might add some threedimensionality to the loop structure. However 43.9 and 17.8% estimated looping probabilities were obtained from 884 and 354 molecules for wild-type and O_{3-} DNA, respectively, at a 50 nM concentration (Table 2.1) by scoring as either "looped" or "unlooped". The measured looping equilibrium suggested that the connection between molecular species in the AFM images and CI-mediated looping should be further characterized.

Table 2.1: Percentages of CI-mediated loops in wild-type and o3- DNA molecules visualized using AFM. ${ }^{6}$

	Wild-type 10 min incubation	o3- 10 min incubation
Number of	884	354
molecules	43.9%	17.6%
Looped		

Looping percentage under different CI concentration was studied with his-tag CI protein as well. Figure 2.8 shows that the loop percentage increases according to [C1]. The loop percentage increased with [CI]. Since the his-tag CI concentration was given in monomer, the activity of his-tag protein is a little lower than normal CI (37.8% looping with 100 nM CI monomer compared to 43.9% looping with 50 nM CI dimer).

[^5]

Figure 2.8: Loop ratio under different his-tag CI (monomer) concentration. The trend that loop percentage increases with CI concentration is proved by the curve.

§ 2.3.6 Volume calibration

Given the possibility for oligomerization of CI, the number of CI dimers securing a DNA loop may play an important role in the dynamics of loop formation. However, there are few experimental methods apart from direct visualization with which to determine this oligomerization on looped molecules. AFM is well suited for this type of analysis, since the volume of the particle at the closure of a DNA loop can be measured directly in the topographs. However, a calibration to relate the measured volume to the molecular weight, and hence the oligomerization, of the protein is essential. ${ }^{7}$

Several calibration curves have been produced previously for AFM images of proteins obtained in tapping mode both with silicon nitride [66] and etched silicon probes [67, 68]. Both the convolution of the probe shape and the compression that results from the tapping force affect the relationship, and linear fits to volume vs.

[^6]molecular weight calibrations have slopes ranging from 1.2 to 1.75 for probes with spring constants near $40 \mathrm{~N} / \mathrm{m}$ and area thresholds set low or at half-height. For the experiments reported here, lac repressor (lacI) was a convenient reference which maintains a tetrameric state both free and bound to the DNA [69] while free CI was expected to partition into a $7: 1$ ratio of monomeric and dimeric forms at a concentration of 20 nM . The distributions of protein particles measured for CI and lacI without DNA exhibited peaks at 75,150 and $320 \mathrm{~nm}^{3}$ (figs 2.9, 2.10, 2.11). For the etched silicon probes with a $3.5 \mathrm{~N} / \mathrm{m}$ spring constant that were used in these experiments, a calibration considering monomeric and dimeric CI and tetrameric lacI proteins deposited on poly-L-ornithine-coated-mica gave a slope of 1.9 (Fig 2.11). This higher value most likely reflects both the softer cantilever which reduces compression and the low threshold used to delimit the area of individual proteins. ${ }^{8}$

Figure 2.9: AFM measurements of the volume of CI protein particles free and bound to DNA. (A): volume of CI protein particles on mica surface. Fitting result disclosed that there are two peaks corresponding to CI monomer and dimer. (B): volume of CI protein particles binding on DNA. CI protein can only binding on DNA as dimers. Since two dimers binding on adjacent binding sites can interact with each other and thus stabilize each other, most of observed particles contain two dimers (or one tetramer). ${ }^{9}$

[^7]

Fig 2.10: AFM measurements of the volume of lac repressor protein particles alone (upper) and bound to DNA (lower). Lac repressors form a stable tetramer in solution or binding on DNA. ${ }^{10}$

Figure 2.11: AFM measurements of the volume of protein particles both free and bound to DNA. Standard deviations are indicated for all points. Linear regression of volume measurements of unbound lambda and lac repressor proteins (red squares) gave the calibration line (red). The volumes of CI protein particles were measured on unlooped (blue triangles) and looped (green circles) DNA and CI oligomerization values were assigned to the nearest dimer multiple using the calibration line. ${ }^{11}$

[^8]The volumes of lacI and CI oligomers bound to DNA were also measured. The lacI DNA contains two lac repressor binding sites, $O_{i d}$ and O_{I}. The specificity of particle binding was verified by tracing DNA segments as described for the CI data shown in Figure 2.5. The average volume of particles binding on linear DNA was 355 $\pm 73 \mathrm{~nm}^{3}$. Since lac repressor was expected to remain tetrameric in the conditions of the experiment (5 nM) [69], this volume was associated with an oligomer weighing 155 kDa . The difference between the measured volumes for protein free and bound to the DNA was about 30 nm which corresponds well to the volume of a segment of DNA the length of the lacI binding site, 21 bp .

The average volume of CI particles on unlooped DNA measured $259 \mathrm{~nm}^{3}$. Employing the calibration curve and considering that the molecular weight of CI monomer is $26-28 \mathrm{kDa}[70,71]$ indicated that the average particles in the experiment could have corresponded to CI tetramers ($240 \mathrm{~nm}^{3}$ from the calibration curve). Of course the standard deviation of these measurements was larger than those of lac repressor, because the λ operator regions contain three adjacent binding sites, so that several stoichiometries of CI binding were possible. In fact some higher molecular weight particles were observed that are difficult to reconcile with the idea that a looped DNA scaffold is required to promote "head-to-head" binding between CI tetramers to give octamers [72, 73]. One interpretation is that the specific binding nucleated adjacent non-specific binding. ${ }^{12}$

[^9]
§ 2.3.7 Loop closures prevalently contains nonspecific binding dimers

Similarly large volume, high molecular weight CI particles were commonly found securing looped DNA molecules. In figure 2.12, the lower panel shows measurements of DNA segments corresponding to the length: from one end to the O_{R} site, of the loop, and from O_{L} to the other end of the DNA. The narrowly distributed measurements and the good correspondence with the expected values based on the DNA construct indicated loops secured by specifically bound CI. The volumes of these CI particles were distributed as shown in the upper panel of figure 2.12. The red curve exhibits three central peaks in the distribution that roughly correspond to oligomers of (from right to left): 6-8, 10-12, and 14-16. This interpretation was developed using the calibration shown in figure 2.11 and assigning molecular weights to the nearest multiple of a dimer, since CI binds DNA as a dimer. The rightmost and leftmost peaks were negligibly small and were not considered further. ${ }^{13}$

Figure 2.12: Oligomerization of CI securing DNA loops. (upper) AFM measurements of the volumes of single CI particles securing DNA loops. (lower) The lengths of segments in the looped DNA correspond well with those expected from the design of the construct. ${ }^{14}$

[^10]Oligomers of 10-12 monomers were observed most frequently securing loop closures. Such oligomers would nearly or fully saturate the operator sites in the juxtaposed $o L$ and $o R$ regions and are consistent with the loop stabilization conferred by "ocamer+tetramer" protein binding found using modeling of tethered particle motion data [55]. A significant number of oligomers of 6-8 monomers were also observed at loop closures, but very little tetrameric CI, which corresponds well with the weaker loop stabilization afforded by these oligomers that probably lacked contacts between $o 3$ regions [55]. Oligomers of more than 12 monomers constituted a minor fraction which suggested that CI specifically bound to operators in one region might nucleate adjacent binding of non-specifically bound CI. These additional CI dimers might further stabilize the closure through interaction with corresponding dimers from the opposite region. ${ }^{15}$

Experiments of different CI concentration also disclosed that the average particle volume increase with the CI concentration (fig. 2.13). This result indicated that population of large protein-DNA complexes (10-12mer or higher oligmer) increase when CI concentration goes higher and higher.

[^11]34 \| a ge

Figure 2.13: Volume of particles securing DNA loops under different his-tag CI concentration. The wide distribution of measured volume under each CI concentration indicates the particles may differ from each other by the number of dimers inside them. The average volume constantly increasing with [CI] tells the DNA loop can grab more CI dimers under higher CI concentration.

§ 2.3.8 Alternative loop closures

A small number of DNA loops (3.2\%) contained two adjacent CI particles (Fig 2.14). The average volume of these particles was $425 \mathrm{~nm}^{3}$ which identified them as CI octamers. By tracing the DNA in a subset of particularly distinct two-particleloops (Tab. 2.2), two conformer types were established. One type was modeled with directly juxtaposed operators in which one octamer apparently included four specifically bound dimers at O_{1} and O_{2} (or O_{2} and O_{3}), and another consisting of two specifically bound CI dimers at O_{3} (or O_{l}) flanked by two non-specifically bound dimers to form a second octamer (Fig 2.14c). Whether non-specifically bound dimers preferentially flanked O_{1} or O_{3} could not be determined. The other type of conformers was modeled with staggered O_{R} and O_{L} regions leaving $O_{R 3}$ unoccupied (Fig 2.14b)
and CI oligomers bridging non-specific sites adjacent to $O_{R I}$. Table 2.2 shows the results of measuring segments in these looped molecules as schematically shown in Figure 2.14d. For such a small number of cases, statistically significant differences could not be established, but, as suggested by the schematic diagrams, segments a and e were longer in the directly juxtaposed conformation while c was longer in the staggered conformation. These few conformers might represent early intermediates in the looping process that result from collisions between O_{L} and O_{R} regions that are nearly saturated with CI dimers. Such intermediates may include CI tetramers that bind "semi-specifically" between $O_{L 1}$ and a non-specific site adjacent to $O_{R 1}$. Subsequent shifting to create complete juxtaposition of all of the specific operators would be expected to increase the stability of the loop and sterically repress the CI promoter, $P_{R M}$, near $O_{R 3 .}{ }^{16}$

[^12]

Figure 2.14: Specifically bound protein particles may nucleate adjacent semi-specific binding to secure DNA loops. (a) A small number of DNA loops were secured by two CI particles. Possible CI binding to (b) directly juxtaposed or (c) staggered $O L$ and $O R$ regions. (d) Labeled segments of looped DNA molecules secured by two CI particles. Scale bar represents $100 \mathrm{~nm} .{ }^{17}$

[^13]Table 2.2: Segment lengths (nm) for DNA loops secured by two protein particles (shown in
Fig 6). ${ }^{18}$

Segment	a	b	c	d	e
Directly juxtaposed operators					
expected	129.0	14.0	125.7	13.0	237.5
1	126.8	20.2	113.7	19.6	233.4
2	127.1	14.1	123.2	16.5	238.4
3	125.2	11.7	113.0	13.6	221.8
4	125.3	20.0	117.9	17.7	222.6
5	124.0	19.5	104.3	20.4	231.2
mean	125.7	17.1	114.4	17.6	229.5
Staggered operators					
expected	116.8	14.7	142.2	14.7	230.0
6	116.1	18.5	123.7	15.9	223.1
7	119.3	16.5	130.9	18.0	231.1

§ 2.3.9 Conclusions

The study described above supports the idea that CI binding to O_{3} operators greatly stabilizes looping of λ DNA fragments. Overwhelmingly specific binding was exhibited by 50 nM CI protein to the λ operator sites. The intrinsic order of this binding, $O_{L 1}>O_{R 1}>O_{L 3}>O_{L 2}>O_{R 2}>O_{R 3},[74,75]$ changes to $O_{R 1} \sim O_{L 1} \sim O_{R 2} \sim O_{L 2}>$ $O_{L 3}>O_{R 3}$ when cooperative interactions are considered, and this cooperative ranking was reflected in measurements of the positions measured for CI particles on unlooped DNA that shifted slightly upon mutation of the $O_{L 3}$ but not the $O_{R 3}$ operators. Measuring protein particle volumes with AFM probes having small spring constants reduced the compression of protein particles reported by others to give an accurate calibration that facilitated the analysis of CI oligomers securing DNA loops. In

[^14]addition, the strong affinity of the polyamine-coated mica for DNA preserved the looped-unlooped equilibrium of the DNA-protein complexes. Volume measurements of these protein particles showed that DNA loops were stabilized most frequently by CI oligomers of 10-12, less frequently by oligomers of 6-8 and occasionally by oligomers of 14-16 that likely include non-specifically bound CI. This underscores the important role of the O_{3} binding sites in loop stabilization. Finally, rare observations of dimers bound to adjacent operators, and adjacent CI octamers securing specific loops suggest that the tripartite binding sites in the operator regions enhance the targeting of CI to promote efficient looping and transcriptional repression at low protein concentrations. ${ }^{19}$

This work was published [76] in Current Pharmaceutical Biotechnology (2009, Vol. $10, P 494-501$) and a reprint of the paper is reported in Appendix A. Results of this work is also included by a book chapter (appendix B).

[^15]
Chapter 3

AFM and TPM Study of DNA Wrapping and Looping of Phage 186

§ 3.1 Background and introduction

Coliphage 186 is a counterpoint to inducible phage λ because the two phages are not evolutionally related but developed similar life cycles in evolution [31, 42]. The hypothesis that 186 repressor (or 186 CI) can assemble into wheels of 14 monomers around which DNA partially or fully wraps may explain many in vivo experimental results including how 186 CI regulates both positively and negatively its own transcription [41]. A schematic drawing of the 186 major control region is showed in fig. 3.1. According to this model, the 186 CI wheel will first bind to the strongest binding site pR at low concentration to turn off all the lytic transcriptions. Repression of pR will permit transcription from pL (which leads to 186 CI) by inhibiting transcriptional interference between pR and pL . However, pL transcription cannot easily occur if the CI wheel is bound at pR . This is because pL is only about 60 bp from pR and the wheel contains seven dimers, one of which can occupy pL and repress it $[31,43]$. This problem can be alleviated by the two flanking site FL and FR. When the CI concentration is low, these two flanking site can compete with pL by interacting with the 186 wheel bound at pR inducing a loop in the DNA. In this case, pL will be left unoccupied and free for RNAP to bind [31].

Figure 3.1: Three groups of binding sites are involved in the regulation of the genetic switch between transcription of the lysogenic promoter (pL, production of 186 CI repressor) and that of the lytic promoter (pR).

In response to a severe DNA damage, LexA, a repressor, will be removed so that DNA polymerase will be produced to repair the damage. However, the removal of LexA will also release the transcription of Tum, a phage protein. Since Tum protein is an antirepressor that can prevent 186 CI to bind, the pR will be derepressed and the prophage will irreversibly undertake a lytic response [77].

The efficient switching from the lysogenic state to lytic state requires a well regulated CI concentration so that a little amount of Tum protein can remove all possible CI binding on pR region. In prophage 186, when the CI protein concentration is too high, FL and FR will be occupied by different CI particles. In this case, FL and FR can no longer compete with pL for the wheel bound at pR , so pL will be occupied by a free dimer in the wheel at pR . As a consequence, transcription of CI will be turned off and CI concentration will be kept at a level such that not only the lysogenic state can be maintained but also the phage can efficiently switch to a lytic response if needed [31].

However, there was no direct evidence supporting the existence of wheel-like particles of 186 CI before. Furthermore, analytical ultracentrifugation-sedimentation experiments showed that 186 CI monomer can form dimers, tetramers to octamers but not 14 mer [42]. Therefore, the structure of the 186 CI-DNA nucleoprotein complexes needs to be characterized by AFM and tethered particle microscopy (TPM) in order to, then, understand the mechanism of the 186 epigenetic switch. For a brief description of AFM, please go to § 2.1, page 13.

Tethered particle motion (TPM) was first described in 1991 [78] (Fig. 3.2). In this technique, microbeads are tethered to the surface by polymer chains such as DNA.

Therefore, their Brownian motion is limited by the tether. Once the protein or other factors interact with the DNA and shorten its length by looping or wrapping, the Brownian motion range of the beads will become smaller. Using optical microscopy, and tracking the motion of the microbeads, the formation-breakdown of DNA loops and wraps can be observed $[25,79]$.

Figure 3.2: Schematic drawing of TPM [27]. Micro beads are tethered on the surface by DNA. Once protein interacts with the DNA by looping or wrapping, the tether length will be shorted and the Brownian motion range of beads will decrease. Therefore, DNA shortening can be measured by observation of beads Brownian motion with a microscope.

§ 3.2 Material and method

§ 3.2.1 AFM sample preparation.

1584 bp-long DNA fragments were produced by cutting plasmids derived from pBluescript containing wild type 186 operators (FL, FR, pR, pL) with two restriction enzymes: NgoMIV and XmaI (New England BioLabs). The digestion product was isolated and purified (QIAGEN gel purification kit). The position of the midpoint of each operator from one end was: $178 \mathrm{bp} / 56.7 \mathrm{~nm}(\mathrm{FL}), 484 \mathrm{bp} / 154.9 \mathrm{~nm}$ (baricenter
of pR . In particular, $463 \mathrm{bp} / 148.2 \mathrm{~nm}(\mathrm{pR} 1)$, $484 \mathrm{bp} / 154.9 \mathrm{~nm}(\mathrm{pR} 2)$, $505 \mathrm{bp} / 161.6$ $\mathrm{nm}(\mathrm{pR} 3)), 567 \mathrm{bp} / 181.4 \mathrm{~nm}(\mathrm{pL})$ and $857 \mathrm{bp} / 274.2 \mathrm{~nm}(\mathrm{FR})$.

The following forward and reverse primers were used to amplify various DNA fragments as follows: 5'-TTACCGGAGAAGGAGAAGCA-3' and 5'-ATTAATG CAGCTGGCACGAC-3' (524 bp-long DNA containing only FL), and Biotin5'-CTTTCTTGCAGCCTTTACGG-3' and 5'-TTTACAAATGCTTCTCCTTCTCC-3' (528 bp-long DNA containing just pR and pL).

Wild-type 186 CI repressor was prepared and purified as described previously [80]. The protein was diluted to the desired final concentration ($5 \mathrm{nM}, 50$ and 100 nM) in the presence of 1 nM DNA in a buffer containing 50 mM HEPES, 150 mM NaCl and 0.1 mM EDTA (pH 7.0). All steps were conducted at $\mathrm{T}_{\text {room }}$. The mixture was incubated for 20 min . The biotin-labelled DNA fragment was incubated in a mixture containing also $1 \mu \mathrm{~g} / \mathrm{ml}$ streptavidin. Shortly before deposition, a $10 \mu \mathrm{l}$ drop of 0.01 $\mu \mathrm{g} / \mathrm{ml}$ poly-L-ornithine (1 kDa MW, Sigma-Aldrich, St. Louis, MO) was incubated on freshly cleaved mica for one minute. The poly-L-ornithine-coated mica was then washed with 0.4 ml HPLC water and dried with compressed air. Then, $10 \mu \mathrm{l}$ of the solution containing DNA and protein were deposited on the poly-L-ornithine-coated mica and incubated for one minute. The droplet was rinsed with 0.4 ml HPLC water and dried gently with compressed air. The sample was left overnight in a desiccator before imaging.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital Instrument, Santa Barbara, CA) operated in tapping mode using uncoated, etched silicon tips (MirkoMasch, San Jose, CA). The oscillation amplitude was $50-60 \mathrm{mV}$
with a resonance frequency of 75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of $1 \times 1 \mu \mathrm{~m}^{2}$ were scanned at a rate of 1.2 Hz and with a resolution of 512×512 pixels. After filtering images to remove scan line offsets and bowing, DNA molecules were interactively traced with NeuronJ [81], a plug-in function for ImageJ [57].

§ 3.2.2 TPM sample preparation:

The following primers: 5 ' TCC AGA GGC GCC GGG GGG TTC GTG CAC ACA G and 5'TGGTAACCTAGGTAAACAAATAGGGGTTCCGCGCAC were used to amplify by PCR the 186 region contained in pBluescript. pDL611[25] and the PCR product were then digested with EcoR1 and Pst1 in order to insert by ligation the 186 region from pBluescript into pDL611.The preparation of pDL 611 fragment contains 186 relevant fragment was done by Chiara Zurla in our group. The final 1898 bp-long wt or mutated TPM tether was obtained by PCR using this modified plasmid and the following 5^{\prime} end biotin and digoxigenin-labeled oligos:

Biotin-5'-CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC3' and dig-5'GCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAG TC-3'

The FL- or FR- DNA fragments contained mutated FL or FR operators to prevent CI binding. In $\triangle \mathrm{pR}$ DNA the region containing the pR binding sites was replaced with an equally long, but unrelated DNA.

The TPM microchamber and experiment were prepared and run as previously described [82-84]. In brief, the glass surface of a microscope flowchamber was coated with biotin-BSA and incubated with streptavidin. DNA tethers were labeled with anti-
digoxigenin-coated beads with a diameter of $0.48 \mu \mathrm{~m}$ (Indicia Diagnostics, Oullins, France). Interaction of the 186 CI protein with DNA was monitored as a reduction in the amplitude of the Brownian motion of the bead as previously described [79, 82, 85, 86].

§ 3.2.3 Measurement of wheel diameter

When the SFM probe crosses over an object on the surface, it will be raised up by the object. The trajectory of the probe is decided by the curvature of the object and the probe (Fig. 3.3). The manufacturer only tells that the radius of the tip is less than 10 nm , therefore the probe size needs to be estimated with other method before experiments.

Figure 3.3: AFM tip scan through a DNA. The dark gray blob represents an AFM tip. When the tip scanning through a DNA (light gray circle), the movement of the tip will be recorded by AFM (red curve). This curve is a mixture of tip effect and the diameter of DNA cross section.

If one looks at the bottom of the tip as a sphere, when the probe is scanning cross rod like DNA, the trajectory of the sphere center will be a mixture of straight lines
and a circle as showed in figure 3.3. The radius of the red circle is the sum of the sphere radius and the radius of the DNA. The height of the trajectory is equal to the DNA diameter.

Let the radius of the tip be R and the radius of the DNA be r , then the relationship between DNA half-height-width and the radius of the tip and DNA can be derived from figure 3.3 with a method similar to Miller's [87]:

$$
(\mathrm{R}+\mathrm{r})^{2}-\mathrm{R}^{2}=(\mathrm{W} / 2)^{2}
$$

Where W is half-height-width of the peak of a DNA.
The half-height-width is 5.06 nm which is calculated by fitting the image data of a DNA cross section (fig. 3.4) with a Gaussian function. Using this equation, the radius of a typical AFM probe can be estimated as: 2.7 nm .

Figure 3.4: A cross section of the image of a DNA molecule obtained by AFM. The width of the center peak is much larger than the DNA diameter because of the effect of the tip. The half-height-width is 5.06 nm which is calculated by fitting the data with a Gaussian function.

The effect of the AFM tip is not only decided by the tip size but also by the shape of the particle itself. Using the calculated diameter of the AFM tip, two different types of particles are simulated. Figure 3.5A shows the cross section of a particle with a half ellipsoid shape (showed in gray) and a conic shape particle (brown). Comparing the 3-D AFM-revealed topography of real protein particles (fig 3.5D) with the two simulated particles, the shape of real particles can be found in between ellipsoid and conic shape (showed in green). Therefore, the simulated particle of two shapes can serve as upper and lower boundary for the estimation of real particles.

Figure 3.5: (A) Cross section of different shape particles: half ellipsoid (gray) and conic shape (brown). The real particle is expected in between of the two shapes (green) (B) virtual 3-D topography of a conic shape particle scanned by AFM tip. (C) virtual 3-D topography of a half ellipsoid particle scanned by AFM tip. (D) AFM topography of a real particle of 186 repressor.

The diameter of CTD wheel is 10.2 nm according to X-ray crystallography [41] (fig. 1.4). If the NTDs were added to the CTD wheel, the diameter should be estimated as 15 nm . Therefore, 7.1 nm radius conic and half-ellipsoid particles were simulated and scanned by a fake AFM tip. The simulated 3-D topology shows that the cross section at 17% of particle height of virtual scanned topography has the same diameter compare to original particle for conic shape particles. For half ellipsoid particles, this cross section appeared at 45% of particle height. Therefore, the cross section at 31% particle height (average of 17% and 45%) was believed to best present the real size of particles in experiment. Since the average particle height measured from AFM is 3.5 nm , the cross section should be 1.1 nm high. In order to get the error of particle diameter estimation, this 1.1 nm threshold is applied on conic particle and half ellipsoid particle respectively. The cross section diameter is 10.8 nm for the conic particle and 16.1 nm for the half ellipsoid. Given the particle diameter is 14.2 nm , the error of the diameter measurement should be about $\pm 3 \mathrm{~nm}$.

§ 3.3. Result and discussion

§ 3.3.1 Confirmation of basic model

§ 3.3.1.1 The 186 repressor wheel and its assembing.

The 186 bacteriophage repressor, 186 CI, binds to DNA as a dimer, and it was suggested to assemble into oligomers of dimer, tetramer and octamer in solution [88]. A more recent crystallographic study showed that the CTD of 186 CI assembles into a wheel of seven dimers (hereafter referred to as the 186 heptamer) [89] (Fig. 1.4, 3.6). This led to the hypothesis that the whole protein, including the NTD DNA-binding
domain, may too form wheel-shaped heptamers. However, the existence of 186 heptamer was not supported by the study of sedimentation equilibrium [80] although it can provide a good explanation of 186 genetic switch [90]. Therefore, AFM was used to image 186 CI free, as well as bound to 1584 bp-long DNA fragments to characterize its shape and dimension in vitro. The image data were analyzed with matlab program discussed in § 4.3.4.

The diameter of 186 CTD 14mer wheel and the length of one 186 NTD can be measured from protein data bank structure (10.2 nm for 14 mer and 2.4 nm for one NTD, Fig. 3.6). Therefore, the diameter of a whole 186 wheel can be estimated around 15 nm .

Figure 3.6: X-ray crystal structure of 14 mer wheel of 186 CTD (left, PDB ID: 2FKD) and of 186 dimer (right, PDB ID: 2FJR). The CTDs of 186 repressor can interact with each other and form wheels contain seven dimers each.

The results, summarized in figure 3.7 strongly support the idea that the protein oligomerizes to form wheel-shaped heptamers. Furthermore, comparison of diameter with or without DNA disclosed that assembling of 186 heptamer needs facility of DNA.

Figure 3.7: First row: left, mutated 186 repressor with wild type DNA; right, wild type 186 repressor with wild type DNA, most of particles binding onto the DNA. Second row, the histogram of particle diameter of mutated 186 repressor. Last row, the histogram of particle diameter of wild type 186 repressor and wild type DNA.

The left image in the first row of figure 3.7 was obtained with 186 repressors carrying a mutation on NTD. This mutated protein cannot bind to DNA but are still able to interact with each other because protein-protein interaction relies on CTD only [42, 91]. The histogram of diameter was made from 6632 particles. The main peak of the histogram located at $13.3 \pm 2.0 \mathrm{~nm}$. This peak is obviously smaller than 186 heptamer wheels and agrees with the study of sedimentation equilibrium [80] that 186 CI exist in solution mainly in dimer-tetramer-octamer but not higher oligomers.

However, the histogram contains a tiny tail on the right side of main peak. The center of this tail can be fitted out at $19.4 \pm 2.4 \mathrm{~nm}$, which can be possibly addressed to 186 heptamer. On the other hand, if wild type 186 CI was incubated with its DNA (Fig. 3.7, upper right), the main peak of the diameter histogram (987 particles) shifts significantly to $19.8 \pm 1.7 \mathrm{~nm}$ and most of the particles were found on DNA. This result clearly showed that interaction between protein and DNA can significantly help the protein assembling to high order oligomers.

Furthermore, the volume of the big wheels imaged by AFM was measured and compared to a calibration curve previously obtained [76] (Figure 3.8). This volume analysis is consistent with the idea that the wheels may be composed of seven dimers. Finally, since such wheels are very abundant in the images obtained using only 50 nM CI, which is a much lower than the 1100 nM estimated for the lysogen, it is likely that 186 CI associates into a heptamer at an early stage after infection and that this state of assembly is robust through the host cell division.

Figure 3.8: AFM measurement of CI volume. The particle volume of wheel-like particles measured by AFM (pink diamond and cyan cross) falls on the calibration curve of volume vs. molecular weight obtained using from left to right : lambda CI monomer (25 kD), lambda CI dimer(50 kD), nucleosome (108 kD) and lac repressor $(150 \mathrm{kD}$) (blue diamond) [76].

In conclusion, the wheel-like particles of 186 repressors are observed both on the surface and the DNA directly. The volume and size of parts of the bind and unbound 186 particles are measured larger than an octamer and close to a 186 heptamer wheel under physiological concentration. Since the ability of 186 repressor to form a 186 heptamer wheel was approved by X-ray crystal structure and comparing to other high order multimers, the wheel-like 186 heptamer has some kind of advantage because the extra protein-protein interaction inside the wheel, the research strongly support that 186 repressor interact with DNA as a wheel-like 14mer particle under physiological condition .

The shift of histogram peak disclosed that the interaction between 186 repressor and DNA can help protein assembling into high order oligomers. There are too possible pathways for this kind of facility. The DNA can either shift the oligomerzation equilibrium to the right side by grabbing 186 heptamer wheels from solution or assemble heptamer wheels around the specific binding sites directly. No matter what mechanism is preferred, this experimental result perfectly connects the gap between the study of sedimentation equilibrium [80] and 186 mechanism [90].

§ 3.3.1.2 CI regulatory mechanism

A 186 heptamer may bind cooperatively to multiple operators [89, 91, 92], giving rise to physiologically relevant nucleoprotein complexes with different structure and conformation, and with different impact on the 186 transcriptional regulatory network. Indeed, the fact that lysogeny maintenance requires repression of pR and tight control of transcription from pL , and that pR and pL face one another, suggests that different nucleoprotein species may be in equilibrium in different repressor concentration regimes, so that the probability of pL being unoccupied decreases with increasing CI concentration [92]. Figure 3.9 shows the possible species and equilibria that have been suggested, together with AFM images confirming the existence of these complexes.

Figure 3.9: Schematic representation of the linear, wt, 1584 bp -long DNA fragment used for AFM imaging in the absence of repressor (1). The full dots represent specific binding sites for the 186 repressor, while the empty dots identify pseudo sites. Schematic representation of the nucleoprotein complexes (2-8) which could co-exist in equilibrium with the AFM images that support their occurrence. As the concentration of repressor increases, complexes with more than one wheel bound to DNA (6-8) may become more probable.

Understanding the 186 regulatory mechanism requires characterization of the specific interaction of the 186 wheel with the operators FL, pR, and FR and quantification of the probability of occurrence of each species. Thus a statistical analysis of the AFM images acquired was performed. Figure 3.10 shows that the
occupancy of the operators ranks as follows: $\mathrm{pR}>\mathrm{FL}>\mathrm{FR}$, independently of the DNA conformation that the protein mediated.

FL pR FR

Figure 3.10: Frequency distribution histogram of the measured location of 186 wheels along the DNA molecules measured by AFM. Left-to-right, the peaks agree well with the expected position for the FL, pR and FR sites.

Table 3.1 reports the distribution of the nucleoprotein complexes found. The images reveal that the 186 wheel may interact with DNA either by wrapping or by looping it.

Table 3. 1: Statistics on the interaction between 186 CI and $w t$ DNA

Type	Figure	Number	\%	Type	Figure	Number	\%
FR-pR loop		7	2.2	FR-pR loop		11	3.5
$\begin{aligned} & \text { FR-pR } \\ & \text { loop } \\ & \text { w/ FL } \end{aligned}$		5	1.6	$\begin{gathered} \text { FL-pR } \\ \text { loop w/ } \\ \text { FR } \end{gathered}$		2	0.6
$\begin{gathered} \text { FL-FR } \\ \text { loop } \\ \mathrm{w} / \mathrm{pR} \end{gathered}$		69	21.9	FR-FL loop		4	1.3
$\begin{gathered} \hline \hline \mathrm{FL}+ \\ \mathrm{pR} \end{gathered}$		66	21.0	FR +FL		3	1.0
$\begin{gathered} \hline \mathrm{FR}+ \\ \mathrm{pR} \end{gathered}$		20	6.3				
$\begin{gathered} \hline \text { FL } \\ \text { only } \end{gathered}$		5	1.6	pR only		88	27.9
3 particl es		27	8.6	No particle		8	2.5
total		315	100				

Condensed table:

Shortening type	Shortening (bp)	Percentage
Big loop between FL and FR	678	23.2%
Small loop between pR and FL (or FR)	307 or 371	8.0%
3 particles wrapping (fully or partially)	Less than 600	8.6%
2 particles (fully or partially)	Less than 400	28.2%
1 particles (fully or partially)	200 or less	29.5%

When there is no CI protein in solution, pL is always repressed by the strong promoter pR by transcriptional interference. This is because, as explained in § 1.3.1., RNAP which may bind at pL will be quickly removed by the RNAP from the frequently activated strong pR promoter (Fig. 3.9. case 1). When CI concentration is low, CI will first bind on the strong promoter pR and turn off the transcriptional interference of pL by repressing pR . However, the seven dimers within a wheel-like particle can cover not only three binding sites of pR but also pL region simultaneously, by way of DNA wrapping. Since pL is both the promoter fortranscription of CI and a binding site for the same protein, regulation of CI concentration will depend on which nucleoprotein complexes are near, or involve, pL (Fig. 3.9). At first one may think that the vicinity of pR would lead to constant repression of pL , however, the two flanking sites FL and FR attenuate such repression. Either of these two sites can interact with the particle on pR and loop the DNA. In this case, the wheel would no longer occupy pL (Fig.3.9, case 2\&5). This would favor transcription, and production of more CI protein. When CI concentration is high, both flanking sites can be occupied by other wheel-like particles. Therefore, the competition between flanking sites and pL is dampened, pL will be mostly occupied by the particle sitting on pR and the production of CI protein will be repressed (Fig. 3.9, case $6,7 \& 8$). This mechanism provides an explanation for how the 186 prophage
can regulate CI concentration to a level that allows maintenance of lysogeny, and keeps the ability to switch to a lytic response efficiently with a little amount of Tum protein [77].

§ 3.3.2 Pseudo sites on FL

The DNase I footprinting experiment shows the region that DNA interaction with FL is relatively bigger than others[93]. The wheel higher affinity for FL than for FR is also revealed in figure 3.10. Therefore, a weaker binding site (or a pseudo site) and its cooperativity between FL is prospected. In agreement with previous DNAse digestions [93], closer analysis of the complexes at FL, performed on $524 \mathrm{bp} / 167.7$ nm-long DNA fragments containing only this operator, revealed the presence of a pseudo site on the side away from pR (Fig. 3.11). The distance from each end of the DNA to the point of contact with the wheel was measured. The distribution of the lengths of free DNA measured on each end of the bound wheel is shown in figure 3.11. Given the position of FL in the synthesized DNA fragment (Fig 3.11, top), these histograms show that FL and an adjacent pseudo site in the direction away from pR were always occupied. Each distribution shows two peaks separated by about 10 nm . This corresponds to the footprint of one dimer in the wheel since it is close to one seventh of the perimeter of the 186 heptamer. The left histogram shows that the free DNA on the left of the bound wheel was, in average, either 9.4 or 20.0 nm long. Since FL was centered in this DNA fragment 25 nm from the end in the direction of pR (left end in the diagram in Fig 3.11), the peak values indicate that one dimer of the wheel binds at FL, leaving approximately 20 nm of free DNA to the left. However, the next 10 nm of this free DNA may bind dynamically to the next dimer in the wheel. On the
other hand, the right histogram in figure 3.11 shows that the free DNA on the right of the bound wheel was, in average, either 122 or 132 nm long. FL was centered 150.6 nm from the end of the DNA fragment away from pR (right end in the diagram in Fig 3.11). Thus, the peak values indicate that two dimers of the wheel bind both FL and an adjacent pseudo site, leaving approximately 132 nm of free DNA to the right. Ten more nm of this free DNA may bind dynamically to yet the next dimer in the wheel leaving 122 nm free. On the basis of these observations it is suggested that a pseudo site for binding of the 186 repressor exists next to FL on the side away from pR. Note also that DNA binding to successive dimers around the wheel leads to its wrapping by DNA.

Figure 3.11: 186 wheel positioning at FL. A short DNA fragment containing only FL was incubated with 186 CI and imaged by AFM. The distance from each end of the fragment to the point of attachment to the wheel was measured and histogrammed. Top: schematic representation of the DNA fragment used showing FL and its distance from each end of the fragment. The solid arrow shows the direction to the pR and FR sites. Bottom left. Distribution of the lengths of free DNA, before binding point, measured from the end nearest to pR. Bottom right. Distribution of the lengths of free DNA, before binding point, measured from the end far from pR. Each peak in these histograms is assigned to a DNA wrapping conformation shown in the associated cartoon.

§ 3.3.3 Asymmetric DNA wrapping on pR region

Asymmetric DNA wrapping on the 186 wheel was also observed in $528 \mathrm{bp} / 179$ nm-long DNA fragments that contained only pR (Fig 3.12). Here, the wheel is not centered on pR because it most often occupies a pseudo site, containing pL , as well. This is consistent with the idea that the protein bound at pR will repress pL leading to 186 CI negative autoregulation, unless competition from distal sites frees the repressor promoter [90].

Figure 3.12: Top: Schematic representation of the DNA fragment used. The biotin-labelled DNA was incubated with both the 186 repressor and $1 \mu \mathrm{~g} / \mathrm{ml}$ streptavidin to identify the end of the DNA fragment close to pL. Center: Distribution of measured DNA lengths from the streptavidin labeled end to the point of contact between DNA and the protein wheel. Bottom: Distribution of lengths from the other end. The (purple) dash lines indicate the center of pR and pL . The solid lines indicate the region spanned by the three pR operators. The DNA between the peaks in each histogram is occupied by the protein.

§ 3.3.4 DNA wrapping/unwrapping

AFM imaging of 1584 bp-long fragments of wt 186 DNA containing all binding sites showed that the degree of wrapping of DNA around the wheel depends on the operator. The 186 wheel bound at pR is most often found to be fully wrapped by DNA (Fig 3.9, species 2, 3, 6 and 7), while at FL and FR may be more often only partially wrapped such that the DNA going in does not cross over the DNA coming out of the wheel (Fig 3.9, species 7 and Table 3.1). However, the wheel may also mediate a loop between either FL or FR and pR (Fig 3.9, species 4 and Table 3.1). Furthermore, in the presence of a wheel already wrapped at pR , a second wheel may bridge FL and FR (Fig 3.9, species 6 and Table 3.1).

§ 3.3.5 TPM study of DNA wrapping and looping

In AFM imaging, the DNA and protein are deposited onto a poly-ornythin coated mica surface and washed with HPLC water. During this process, DNA-protein complexes may be washed away or may dissociate. Therefore, TPM experiments were carried out to provide complementary information on the interaction between 186 CI and its DNA. Furthermore, TPM experiment can provide information of dynamic looping and wrapping compare to solidly fixed AFM sample.

In TPM experiments, micro beads are tethered to the surface of a microscope flow-chamber by single DNA molecules. Therefore, the Brownian motion range of the beads is limited by the tether length. Before a real experiment is run, a calibration curve of the average $\mathrm{x}-\mathrm{y}$ displacement $(\langle\rho \perp\rangle)$ as a function of DNA tether length was made to address the DNA shortening. Table 3.2 shows the calibration data obtained
with five DNA segments: 186 wild type (1898 bp), 944 fragment (1555 bp), 1051 fragments ($225 \mathrm{bp}, 1064 \mathrm{bp}$ and 2974 bp). The bead diameter is 479 nm . The measured $<\rho>$ and DNA length are fitted by the equation obtained from Monte Carlo simulation [25, 49] (fig. 3.13). Using this curve, DNA shortening due to looping and wrapping can be studied quantitatively and information of looping/wrapping dynamics can be revealed.

Table 3.2. Calibration data of TPM experiment.

DNA length (bp)	Average of $\langle\rho>(\mathrm{nm})$	STD of $\langle\rho>(\pm \mathrm{nm})$
225	117.66	5.7
1064	210.94	7
1555	247.34	6.7
1898	270.22	3.7
2974	322.42	8.2

Figure 3.13: TPM calibration curve. Measuring the Brownian motion of particles with well known tether length provides the relationship between tether length and the x-y range of Brownian motion < $\rho>$. Fitting measured < $\rho>$ with simulation model (J. Phys. Chem. B, 2006, 110, 17260-17267) provides a calibration curve correlating < ρ > and tether contour length.

The fully wrapped conformation at pR was observed also by TPM using $1898 \mathrm{bp}-$ long $\mathrm{FL}^{-} \mathrm{pRpLFR}{ }^{-}$DNA tethers. Comparing to control data, addition of repressor in the microchamber caused an immediate and stable decrease of the TPM signal, ρ_{\perp}, by 12.2 nm (Fig 3.14) which corresponds, according to a calibration curve obtained in identical buffer conditions (Fig 3.13), to a shortening of the DNA tether of 210 bp . This is the decrease expected for a full wrapping event assuming that each 186 dimer binds 10 nm of DNA and that a heptamer will therefore wrap approximately 70 nm or 210 bp of DNA. This assumption is justified by the structural information available (see above) and by the AFM study on the DNA fragment containing only FL described above.

Figure 3.14: Frequency distribution of TPM data for 1898 bp-long 186 DNA tethers containing the wt binding sites as well as mutated sites. When only pR is present, < $\rho>$ decreases by 12.2 nm . This corresponds to approx. a 210 bp shortening in DNA tether which is consistent with a fully wrap at pR . Here, as well as in all following measurements $[C I]=50 \mathrm{nM}$ and DNA tethers were 1898 bp in length.

Interestingly, TPM assays performed on 1898 bp-long DNA tethers containing only the FL site (FL. Δ pRpL.FR- DNA) showed a similarly stable shortening of about 11.3 nm (Fig 3.15). In this case too, the TPM traces recorded did not show transitions between the wrapped and unwrapped conformations as shown by the representative traces (Fig 3.16), their associated frequency distribution histograms, and by the frequency distribution of the average TPM signal for each of the beads analyzed for the FL. Δ pRpL.FR- DNA tethers in the absence and in the presence of 50 nM 186 CI (Fig 3.15).

Figure 3.15: When only FL is present, $\langle\rho\rangle$ decreases by 11.3 nm . This shortening is close to that of the DNA fragments containing pR site only and could also correspond to a full wrapping event at FL.

Without protein

$$
[\mathrm{Cl}]=50 \mathrm{nM}
$$

Figure 3.16: TPM trajectory of a representative FL- pR FR- DNA tether. The histogram of $\langle\rho>$ contains only one peak after adding 186 CI . The trajectory does not have any transition on $\langle\rho\rangle$.

Wild type DNA (Fig. 3.17) shows two main peaks consistent with a conformational state where DNA fully wraps around one wheel, and one where a second wheel mediates a loop between FR and FL (species 6 in Fig.3.9). Most often these states are stable for the duration of the measurements, but transitions may be observed between the wrapped and looped configurations. Notice, however, that the distribution is broad and probably includes all the species observed by AFM imaging.

Fig 3.17: Wild type DNA in the presence of protein shows a peak consistent with a conformational state where DNA fully wraps around one wheel, and a peak where a second wheel mediates a loop between FR and FL (species 6 in Fig.3.9). Most often these states are stable for the duration of the measurements, but transitions may be observed between the wrapped and looped configurations (bimodal histogram). Notice, however, that the distribution is broad and probably includes all the species observed by AFM imaging.

§ 3.3.6 DNA looping

Although wrapping seems to be preferred (Tab 3.1), AFM images revealed the presence of nucleoprotein complexes including wheel-mediated DNA looping (Fig 3.9, species 4 and 6). These complexes were classified and their relative weight was
measured for wt $\mathrm{DNA}\left(\mathrm{FL}^{+} \mathrm{pR}^{+} \mathrm{FR}^{+}\right)$, as well as for $\mathrm{FL}^{+} \mathrm{pR}^{+} \mathrm{FR}^{-}$, where the FR site was mutated, and for $\mathrm{FL}^{+} \Delta \mathrm{pR} \mathrm{FR}^{+}$, where the pR sequence was replaced with a sequence of equal length that did not bind 186 CI. The results of this statistical analysis are reported in Tables 3.1-5. In all cases, DNA wrapping around the repressor is more common than repressor mediated looping.

Table 3.3: Statistics on the interaction between 186 CI and FL+ delta pR FR+

Only one particle					
FL	23	27.7\%	FR	12	14.4\%
Nonspecific	26	31.3\%			
Two particles					
FL \& FR	2	2.4\%	Two nonspecific	2	2.4\%
FR \& nonspecific	1	1.2\%	FL \& nonspecific	4	4.8\%
Three particles					
FL, FR and one nonspecific	1	1.2\%	FL and two nonspecific	1	1.2\%
One loop					
FL-FR loop	4	4.8\%	Two nonspec. loop	4	4.8\%
FR- nonspecific loop	1	1.2\%	FL-nonspec. loop	1	1.2
One loop and one particle			Total		
FL- nonspecific loop + one nonspecific particle	1	1.2\%	83		

Table 3.4: Statistical result of interaction on FL+pRFR- mutation.

Binding Location	Number of Molecules	Percentage of Molecules
No proteins bound	99	9.25%
Only pR site	673	62.90%
Only FL site	18	1.68%
Two particles FL and pR sites	224	20.93%
One particle Loop with FL and pR	45	1.21%
Nonspecific Binding	11	100.00%
TOTAL:	1070	

Table 3.5: Statistical result of interaction on FL+ $\mathrm{pR}+\mathrm{FR}-$ mutation.

No particle	9.25%		Only pR	62.90%
Nonspecific	1.03%			
Total	10.28%			
Only Fl	1.68%	Two particles FL and pR sites	20.93%	
One particle Loop with FL and pR	4.21%			
		Total	25.14%	

Tables $3.4 \& 3.5$ show a statistical analysis of AFM images of the DNA fragment carrying only the FL and pR sites. According to the Boltzmann distribution, the ratio between different states, S, in equilibrium depends only on the free energy of each
state. If the CI wheel binds to pR and FL independently, the free energy of the state where both sites are occupied ($\Delta \mathrm{G}_{\mathrm{pR}, \mathrm{FL}}$) should be the sum of free energy changes associated with the formation of each of the other two states: the state with only one wheel bound at $\mathrm{pR}\left(\Delta \mathrm{G}_{\mathrm{pR}}\right)$ and the state with only one wheel at FL ($\left.\Delta \mathrm{G}_{\mathrm{FL}}\right)$. Therefore, the population of four states ($S 1$: no protein; $S 2$: only pR occupied; $S 3$: only FL occupied; $S 4$: pR and FL both occupied) will be related as follows:

$$
S 1 / S 2=S 3 / S 4
$$

However, $\mathrm{S} 1 / \mathrm{S} 2$ calculated from table 3.5 is 0.16 and $\mathrm{S} 3 / \mathrm{S} 4$ is 0.07 . Since $\mathrm{S} 1 / \mathrm{S} 2$ is more than two times bigger than S3/S4, cooperativity may exist between FL and pR.

In solution, 186 repressor-mediated looping versus wrapping was investigated by TPM. After addition of repressor to wt 186 DNA, most of the tethers adopted either one of two conformations, characterized by an average decrease in $\left\langle\rho_{\perp}\right\rangle$ of 14.5 nm (most probable) and 37.0 nm , each, which correspond to a shortening of the DNA tether of approx 250 bp and 580 bp , respectively (Fig 3.17). The 250 bp shortening is greater than the one associated with a full wrapping event. Thus, it could result from a wrapping event at the strong pR sites and a partial wrapping at one of the flanking sites as well as from a looping event between pR and either FL or FR. In this respect, notice that the histogram is quite broad. The 580 bp shortening may be interpreted as due to the wrapping of the DNA around three wheels bound one to each operator (FL, pR and FR) or to the formation of a loop between FL and FR, since the distance between the centers of these two operators is 678 bp . The difference between 678 bp and 580 bp can be explained by experimental error and the diameter of 186 wheel-
like particle (20 nm , which may be looked as 60 bp long DNA tether). Notice that in this looped state, a second wheel may be bound at pR , but would not cause a detectable TPM signal. Out of 31 molecules that were analyzed, only 5 displayed just one or two transitions between the two states in 20 min of observation, but never back to the free DNA state. Their frequency histogram was, therefore, bimodal. Although TPM measurements did not show all the nucleoprotein complexes revealed by AFM, one should notice that the TPM histograms are quite broad, and it is possible that several nucleoprotein complexes, including the loop between pR and one of the flanking sites, coexist in equilibrium, without being clearly resolved by TPM.

TPM measurements performed on DNA tethers containing only FL and pR (Fig 3.18), showed a 14.5 nm decrease in $\left\langle\rho_{\perp}\right\rangle$, corresponding to 245 bp shortening of the DNA tether. This shortening, as already discussed for the wt case, may be interpreted as due to a full wrapping event, probably at pR (will take around 210 bp). Even if FL contains less binding sites than pR (fig. 3.1), a particle bound at FL may stillbe partially wrapped by DNA. This would explain why this shortening observed with this fragment is bigger than the one observed for the fragment containing only pR site. The broad TPM frequency distribution histogram may also be consistent with a loop which was dynamically forming and breaking between FL and pR. This loop would consume some 300 bp of DNA if the two binding sites came in direct contact, but the wheel would reduce the observed shortening. Indeed, three of $44 \mathrm{FL}^{+} \mathrm{pRpLFR}{ }^{-}$DNA tethers display two peaks, one at 18.9 nm and the other at 0 , respectively, and can be explained by the transition between the looped and the unlooped DNA at FL and pR.

Figure 3.18: In the absence of FR, many DNA tethers are stably shortened by $\sim 245 \mathrm{bp}$ (\sim 14.5 nm in $\langle\rho\rangle$), which is consistent with a loop between FL and pR (including the size of the 186 wheel). Some of the tethers display brief transitions back to the unlooped or partially wrapped state (shoulder at 0 nm). The broad distribution of measured reductions in < $\rho>$ may result from tethers where the DNA wraps around the 186 repressor (supported by AFM, see Table 3) either at pR or at FL.

TPM of FL $+\Delta \mathrm{pR}$ FR + DNA was also performed (Fig 3.19). These molecules are not expected to bind the 186 wheel at pR. DNA tethers which displayed just one peak after addition of repressor could be separated into two groups. One group of molecules showed an average decrease in $\left\langle\rho_{\perp}\right\rangle$ of 24.9 nm , corresponding to 410 bp shortening of DNA tether.

Figure 3.19: When the binding sites at pR are deleted, the tether shortening observed cluster into two groups: one consistent with one wrapping event and another which could include both two wrapping events and a FL-FR loop.

The 410 bp shortening is unexpected because there is no known pair of binding sites which can cause this shortening. Since the ratio between 186 monomer to DNA is $50: 1$, one wheel needs 14 monomers to form, and there is a complex equilibrium between several protein oligomerization states, one DNA may in average only have 2-3 wheels. If there is not pR, FL and FR may always be occupied and prevent loop formation by just one wheel bound both at FL and FR. Therefore, this shortening may come from two full or partial wrapping on FL and FR respectively. The other group of data shows an average 7.0 nm decrease of $\left\langle\rho_{\perp}\right\rangle$, which, considering the standard deviation of the data, can be due to a single wheel fully wrapped at FR or FL. Once again, TPM seems to reveal fewer nucleoprotein complexes than AFM. In particular, the loop between the two flanking sites was not distinctly detected in the TPM
measurements performed on this mutated 186 DNA fragment, and the proportion between one wrapped and two wrapped wheels is not the same as in the AFM images despite the similar DNA/repressor concentration ratio in the two types of measurements.

The overall interpretation of all these observations should not neglect to consider the possible role of nonspecific binding. An occupancy analysis, performed on the AFM images of the FL+ $\Delta \mathrm{pR}$ FR + DNA (Fig 3.20), revealed several weaker binding sites, which may play a role in shaping the equilibria between the nucleoprotein complexes involving FL, pR and FR. Indeed, DNA loops between a specific and a nonspecific site were observed by AFM in the absence of pR (Table 3.3). Therefore, the histograms of TPM signals may be broadened also by transient interactions with nonspecific sites which may have the physiological role of facilitating and/or stabilizing specific interactions that regulate the 186 bacteriophage genetic switch.

Fig 3.20: Frequency distribution histogram of the location occupied by the 186 repressor wheel on FL $+\Delta \mathrm{pR}$ FR + DNA in the presence of 50 nM 186 CI , as detected by AFM imaging. The two major peaks belong to the specific sites FR and FL. The small peaks indicate other locations where the wheel was found. At these weak binding sites, the protein either wrapped DNA or bridged the site to FR/L via looping.

§ 3.3.7 Other CI binding forms and non-specific binding

The 186 repressor can bind non-specifically, just as many prokaryotic repressors and probably most transcriptional factors. This ability is clear from the analysis of AFM images of the beads-on-a-string fiber that 186 DNA forms in the presence of 300 nM repressor (Fig 3.21). Non specific binding is eliminated when using 186 CI mutant. AFM imaging also showed there is some kind of non specific interaction between wild type protein and non-related DNA (lambda) or the FL- delta pR-pL FRDNA.

Figure 3.21: AFM image of 186 wt DNA in the presence of 300 nM 186 repressor. The way that DNA wraps on the 186 wheels resembles strongly that in which DNA wraps histones in chromatin. The study of the interaction between DNA and 186repressor might serve as a model of how DNA wrap and flutter on such kind of particles. Scale bar: 100 nm .

Chapter 4

Automated DNA Segmentation and Protein Recognition from AFM Images

§ 4.1. Background

AFM can visualize protein-DNA complexes by scanning a solid surface where these are adsorbed. Although the AFM lack the ability to identify the atoms and chemical bonds of bio-molecules, this technique is widely used because convenience sample preparation and nanometer resolution. For example, AFM can visualize the formation and changing of the DNA loop associate with RSC and study its ability to modify DNA structure [94]; imaging RNAP transcribing ds-DNA in solution can be used to measure properties such as transcription rate and DNA dissociation [95]. Furthermore, by measuring the curvature and end-to-end distance of DNA deposited onto mica surface with AFM was already used to study the stiffness of DNA molecules under different condition[96].

In most of studies, DNA images obtained by AFM need to be transformed into skeleton by tracing process before measuring. The most direct way of tracing is to point out the DNA skeleton from image point-by-point. This time consuming process can be improved by interactively tracing computer algorithm [59, 61, 97]. In those algorithms, a set of "seed points" are provided by user experience with a mouse. The program then successively connects these points with traces that best fit the DNA skeleton according to local cost function of each pixel around[97]. These semiautomatic tracing methods greatly improved the efficiency and accuracy of DNA tracing [97]. However, there are two drawbacks to this kind of method. First, since the DNA skeleton need to be outlined by the experimenter, this process is still very time consuming, especially when a large data set is needed for statistical analysis. Second, because the selection of the points of the DNA skeleton is made by hand and
subjective, the operator bias may affect the data. Thus, an automated segmentation program is useful to improve the efficiency and minimize artifacts.

The thnning procedure derived from the work of Brugal and Chassery [98] is one of the mostly used automated tracing methods [99-101]. It first transforms the image into a bi-color map with a threshold. The next process, iteratively removes pixels from the edge of DNA segments, if the removal of the pixel does not severe the segment. This process will repeat until no more pixels can be taken out. This procedure is relatively efficient and leaves behind DNA skeletons only one pixel wide [100]. Then, the computer can easily trace the one-pixel wide skeleton from one end to the other. Finally, sets of pixel coordinates representing DNA traces are generated for later analysis.

Although fully automated tracing algorithms are very efficient and reproducible, the heterogeneity of the sample often prevents their implementation [102]. Bound proteins and the image noise can both affect the accuracy of the DNA skeleton identification. In particular, long DNA fragments often follow a complex contour with several cross-over points. This requires significant user inputs to be identified, and reduce the efficiency of these algorithms [97].

Given this challenge, a group of matlab programs were developed to improve the efficiency of automated analysis of DNA-protein AFM images. The program can automatically recognize short DNA segments and protein particles, measure the DNA molecules length, and find the position of bound particles. The program can also automatically calculate the particle height, diameter and volume. Even complexes with no simple shape may be analyzed, using a variation of the program where
complicated contours may be rebuilt from the tracing of different segments by the user. Finally, the program is easy to modify and constitute a convenient toolbox for AFM image analysis.

§ 4.2. Method and algorithm

§ 4.2.1 Filtering

Although AFM can provide a good signal to noise ratio compared to other techniques, the images acquired by AFM cannot be fed directly to a program. Because the response of the piezoelectric motors is not perfectly linear, the background in the AFM images is not always flat (fig. 4.1).

A
B

Figure 4.1: The background of AFM images may not flat. A), raw data of a test image. The middle of the image is higher than the edge. B), after 3rd order polynomial flattening, the image become flat.

Fortunately, software available with the AFM instrument provides a flattening algorithm. This allows fitting the surface with a third order polynomial function. Subtracting it from the background of the image provides a flat background.

§ 4.2.2 Threshold and segmentation

Two methods can be used to segment images: one is based on the difference in gray level; the other is based on the discontinuity in grey levels between foreground and background. Because the discontinuity that marks the edge of DNA fragments is rounded by the AFM tip during imaging, DNA can only be differentiated from the background based on the difference in grey level between foreground and background.

In this method, a certain threshold of gray level needs to be decided to recognize DNA and proteins from the whole image. All the image pixels with a gray level below the threshold are set to zero. Normally this threshold is calculated through an adjustable ratio between background level and the height of the DNA.

To minimize the possibility that different DNA segments cross over, the DNA concentration used was limited to the nM range. Since over 90% of the pixels are background in any given AFM image, the background level can be approximated by the mean value of all the pixels in the image (Fig. 4.2).

Figure 4.2: Frequency distribution of the z value of all pixels in a 512×512 AFM image of DNA and protein particles deposited on polyornithine coated mica. Only very few of the pixels belong to DNA or protein particles. These give rise to the tail on the right side which has a big Z value.

Two methods are used to extract the DNA height from the image. The first method is to fit the sudden drop in height in the histogram tail. Figure 4.3 is the zoomed view of the right side of the tail in figure 4.2. The significant decrease of the distribution can be used to calculate DNA height.

Figure 4.3: Zoomed view of the tail of fig. 4.2. Because there are much less pixels belong to protein blobs (which is higher than DNA height) than DNA, there is a significant decrease (red arrow) of number of pixels at the height of DNA. This sudden drop can be used to identify the height of DNA in AFM image.

This sudden drop can be fitted with a straight line. The DNA height is then calculated by the intercept of the straight line and x axis. This algorithm is very accurate in yielding the DNA height in the AFM images. However, if the image quality is not very good, the tracing program might not go to completion because the program has a hard time finding a value for the DNA height. Therefore, a second "back-up" algorithm was developed. This backup method uses the mean maximum value of each row as DNA height. Because DNA molecules are long, nearly every row of image data contains parts of at least one DNA molecule. On the contrary, the
protein blobs are rare and globular and are found in just a few rows of image data. Therefore, the maximum value of each row will mostly represents the height of DNA and only rarely the height of protein blobs (fig. 4.4 a).

Therefore, the average of row maxima will likely be close to DNA height. Although this method is not very accurate, it is robust because it does not use any fitting. If the fitting method fails to give a DNA height, this algorithm will be activated so that a value for the height of DNA height may always be obtained.

Figure 4.4: An original AFM image. (A); question dialog of parameter modification where "BASE" represents the calculated background and "OVERWHELM" represents the DNA height (B); background contributions to the image are eliminated by setting all the pixels below background to zero (C); All pixels below DNA height were set to zero. Only protein particles were left on the image (D).

After calculating background value and DNA height, images and a question dialog will appear as showed in figure 4.4. Fig 4.4 A shows the original AFM image after flattening. Figure 4.4 C is the effect of cutting background off. In figure 4.4 C , all the pixels with a value below BASE are set to zero. In figure 4.4D, all the pixels below OVERWHELM are set to zero, which means there are only protein blobs left on the image. DNA and background disappear. The program also provides a question dialog for the user to change the BASE and OVERWHELM parameters.

Once the BASE and OVERWHELM values are decided, the program will calculated the threshold value as follows:
THRESHOLD = BASE+(OVERWHELM-BASE)×0.3

The 0.3 value is an experimental value set in the program which may be changed depending on the application. Then, the program will transfer the real image into a binary map by setting all the pixels above threshold to one and those below threshold to zero.

§ 4.2.3 Thinning and selection of the DNA skeleton

A thinning process was used to abstract the DNA skeleton from the image. This process narrows the DNA trace by taking away pixels from the edge of the DNA. The pixels were removed from four directions respectively. If the removal of one pixel will break the segment into two parts, this pixel will be preserved as a critical pixel. Figure 4.5 shows examples of pixels that will be removed/kept. Iterative steps are performed until all the pixels left are critical and the skeleton is obtained.

Figure 4.5: Identification of critical pixels. The red pixels in the upper row will be removed during thinning. The red pixels in the lower row are considered critical pixels and preserved because the removal will break the segment into two parts.

Figure 4.6 shows how pixels are removed from the left edge of the image. In order to guarantee that the skeleton follows the axis of the DNA molecule, pixels need to be removed from all four directions sequentially.

Figure 4.6: One process of thinning. Left: the original binary map of DNA segment. Right: after one step of thinning, the pixels on the left edge (green) are removed from the map.

In order to do this, the image was rotated 90 degree after each round of elimination. In each elimination cycle, the pixels are always removed from the left. In this way, the program code is simplified and efficiency of execution is improved.

Figure 4.7 shows the working flow of the thinning process.

Figure 4.7: Working flow of the thinning process. Instead of removing pixels from all four directions (left, up, right and down), the pixels are removed only from the left and the image is rotated 90 degrees after each removal. After four rounds of pixel removal, the image will be set back to the original orientation. This procedure can decrease the complexity of coding and increase the code efficiency.

After several cycles of pixel elimination, the DNA skeletons are extracted from the image successfully. Figure 4.8 shows a whole cycle of pixel elimination.

Figure 4.8: The process of thinning. From up left, center, right to lower left and center, pixels are removed from the binary map and the DNA image become thinner and thinner. Image rotates 90 degree between every two images. Lower right is the final image after thinning. Only DNA skeletons are left.

In some cases, different segments along a DNA molecule may cross over. Currently, the program lacks the ability to follow the DNA contour through these intersection points. Thus, it simply removes the pixel inside the intersection and breaks the segment into several parts. These broken segments can be reconnected by the user later.

This thinning process will remove pixels from all four directions of the fragment until the skeleton is only one pixel in width. Therefore, some pixels may be removed from both ends of the fragment. Since the DNA traces were broadened by the tip as described in $\S 3.2 .3$, the two effects are likely to compensate each other and no action was taken to try to correct for them.

After thinning process, the binary map is converted into narrow DNA skeletons (Fig. 4.9). Then the program reads the $x-y$ coordinates of each pixel in the DNA skeletons.

Figure 4.9: DNA skeletons were generated by thinning. Blue pixels in the middle of DNA images represent the one-pixel-width skeleton of the DNA. After thinning, the coordinates of DNA skeleton can be easily found and saved in txt files.

§ 4.2.4 DNA length estimation

The length estimator is also a sub function of the program. In many applications, the resolution is limited by AFM tips and short scale kinks and bending may not be reflected in the image. This introduced an underestimation of DNA contour length [99]. On the other hand, the pixelization of the image may result in a shift of the skeleton with respect to the central axis of individual DNA molecules. Therefore, the DNA contour length is often overestimated by commonly used methods such as Freeman estimation[103].

In this study, five different DNA length estimators were used and compared on a set of simulated DNA molecules (Tab. 4.1).

Table 4.1: Measured DNA contour length with different estimators

Simulated 1500 bp DNA, 520 nm long.

Method	Contour length(nm)	Standard deviation(nm)	Error (nm)
Freeman	531	5.573	21
MPO	525.1	27.79	15.1
Kulpa	504.1	5.193	5.9
Corner chain	504.2	4.634	5.8
Step two	502.9	4.284	7.1

Most of these estimators are $\left(\mathrm{n}_{\mathrm{e}}, \mathrm{n}_{\mathrm{o}}, \mathrm{n}_{\mathrm{c}}\right)$-based estimators. When the next pixel only has one coordinate (x or y) different from the previous pixel, the segment between two pixels is looked as even. If both coordinates (x and y) are different from
the previous pixel in the DNA skeleton, the segment is looked as odd. If the moving from one pixel to the next there is an odd to even or even to odd transition, the segment is treated as a corner. $\left(\mathrm{n}_{\mathrm{e}}, \mathrm{n}_{\mathrm{o}}, \mathrm{n}_{\mathrm{c}}\right)$ represents the number of even, odd and corner segments in one DNA segment.

The freeman estimator was introduced by Freeman in 1970 [104]. It calculates the distance between neighbor pixels and adds them together. Therefore, the total length is given by:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{F}}=1.0 \mathrm{n}_{\mathrm{c}}+1.414 \mathrm{n}_{\mathrm{o}} \tag{Eq.4.2}
\end{equation*}
$$

The MPO estimator [105] was proved to be very accurate for straight segments. The formula used by the MPO estimator is:

$$
\begin{equation*}
L_{M P O}=\sqrt{\left(n_{e}+n_{o}\right)^{2}+n_{e}^{2}} \tag{Eq.4.3}
\end{equation*}
$$

The Kulpa estimator derives from the Freeman estimator and includes derived coefficients for the even and odd pixels to minimize the error [106].

$$
\begin{equation*}
\mathrm{L}_{\mathrm{K}}=0.948 \mathrm{n}_{\mathrm{c}}+1.343 \mathrm{n}_{\mathrm{o}} \tag{Eq.4.4}
\end{equation*}
$$

The corner chain estimator includes the effect of corner [107] and the formula is:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{C}}=0.980 \mathrm{n}_{\mathrm{e}}+1.406 \mathrm{n}_{\mathrm{o}}-0.091 \mathrm{n}_{\mathrm{c}} \tag{Eq.4.5}
\end{equation*}
$$

The last estimator is called "step two" estimator. In this estimator, the distances between every two successive pixels are calculated and put together. Although this estimator only uses half of the coordinate on the DNA skeleton, it is a fast and easy one to estimate the DNA contour length from skeleton and keep a similar accuracy.

Results of different estimators are showed in table 4.1. The Freeman and MPO estimator over estimated the DNA length by $3-4 \%$. The MPO estimator has the
largest standard deviation. The other three estimators have similar errors. All five estimators are included into a subfunction of the program and users can choose any of them by activating appropriate codes. Users are free to use any other estimators by inserting their codes or replace the whole subfunction. The current software uses the "step two" estimator because of its advantages in coding and testing.

§ 4.3. Application and programming

§ 4.3.1 DNA tracing

The tracing program asks the user to select one or multiple files. After this file selection, the program will read data with a sub function named "readimage.m". This sub function can read AFM image data and convert them into a matlab matrix.

The only requirement for this sub function is that the returned data must be a double precision $n \times n$ matrix. Therefore, if the user wants to work with other types of data or image, this sub function can be easily replaced by a customized one.

Tracing results will be saved into txt files which will be named as "*tr.txt" where "*" is the original filename of the data file.

An example of such a data file is showed below:

```
6548177
```

-1 1
3256
3157

3877
3976
-1 0

The first line of the data contains the background (BASE) value and the calculated DNA height (OVERWHELM) value. Every segment starts with [-1 trace ID] where trace ID is a positive number for the program to identify every segment in
each image. The following data are the x and y coordinates of every pixel in the trace. The last line $[-10]$ indicates the end of one segment.

The matlab code of the tracing program can be found in appendix E (tracing.m).

§ 4.3.2 Masking and interactive modification

After segmentation, the coordinates of the DNA skeletons were saved. It is useful to visualize the DNA traces together with the AFM images. Therefore, a program was made to do this and allow the user interactively delete unwanted traces or connect unexpectedly broken traces. This program also provides a function that allows the user to select a part or the whole segments and measure its length.

The interface of the masking routine is showed in fig 4.10. The DNA skeleton is visualized in red and superimposed (masked) on the original AFM image. This masking routine provides to functions: delete and connect.

Figure 4.10: Interface of masking program. This program allows users to review DNA traces obtained by the tracing program. Furthermore, users can delete bad traces or connect broken traces together with the program. The program also allows users to select a DNA trace or a part of it and measure the contour length.

Once the delete function was chosen, matlab will ask the user to select a trace with the mouse. Then the selected trace highlighted in yellow and a dialog window will ask if the user really wants to delete the trace (Fig. 4.11). If the user chooses 'Yes', the selected trace will be removed from the data.

Figure 4.11:. Delete sub-function. A DNA trace was selected by a click of the mouse. Then the user can delete the trace by clicking "Yes".

When connect function is chosen, matlab will ask the user to choose two segments with the mouse. Then the program zooms in the trace region and the ends of two segments are highlighted differently (Fig. 4.12). Then the user can choose a connection in the list dialog.

Figure 4.12: Connect sub-function. The user first selects two traces by clicking the mouse. Then the four ends of two DNA skeletons will be labeled by a circle, diamond, triangle and square respectively. The user can choose the way that two traces to be connected.

After selection, matlab will connect the two ends with a yellow line (Fig. 4.13). If the user is satisfied with the connection, the matlab routine will connect the two traces together and the user can move on to the next operation or image.

Figure 4.13: The two DNA tracing are connected by a yellow line. The user can select "Yes" if he agree with the connection and wants to save it. Otherwise, the user can click "No" and redo the connection.

The mask program also provides a convenient way to get the length of a whole segment or one part of it. Once a segment is selected, the program will calculate the length of the segment in both nanometers and basepairs (fig. 4.14). The mask routine also allows the user to calculate the length of a segment between two points (fig. 4.15).

The matlab code of the mask program can be found in appendix E (maskM.m and maskM.fig).

Figure 4.14: User interface of a segment length measurement. A DNA trace was selected and the contour length was displayed on the dialog.

Figure 4.15: Calculating the length of a part in the DNA segment. The user can select a part of one DNA trace by clicking on start and end points. The program will then calculate the DNA length between the two points and display it in the dialog.

§ 4.3.3 DNA contour length

Negative controls are an important part of most experiments. A typical negative control in a DNA AFM study is the measurement of the DNA contour length. Other times this is the object of the study itself because it reveals DNA conformational changes [58]. Therefore, a matlab routine was developed to measure the contour length from DNA skeleton obtained by tracing program.

The program asks the user to input three parameters in a question dialog (Fig. 4.16). The expected length is the expected DNA length calculated knowing the number of basepairs. Because most PCR products contain lots of short fragments or broken DNA segments, AFM samples often contains DNA fragments much shorter than what expected. Therefore, the user can establish the minimum acceptable length. Any DNA segment shorter than this lower bound will be thrown away. Occasionally, there will be few extremely long molecules (traces). They may come from broken plasmids. Although such long traces are very rare, they will offset the program calculation of histogram bin size. Therefore, the user can remove those extremely long traces with an upper bound.

Figure 4.16: Dialog box for the measurement of the DNA contour length. The lower bound is calculated by multiplying the expected DNA length by the lower bound number provided by the user. DNA traces shorter than this lower bound will not be considered. The upper bound is calculated in a similar way and DNA traces longer than the upper bound will be disregarded.

Then, the program will ask to select one or multiple trace files and will calculate the contour length of all the traces in the selected files. The result will be displayed as a histogram and kept in a matlab array (Fig. 4.17, 4.18) for further analysis.

Figure 4.17: DNA contour length of 1394 bp DNA segments. Gaussian fitting shows the DNA length is $415 \pm 16 \mathrm{~nm}$.

Figure 4.18: Contour length of simulated 1500 bp-long simulated DNA. The peak centered at $505 \pm 4.3 \mathrm{~nm}$.

Two types of images were traced by the program to test it. Figure 4.17 is the histogram of the measurement on AFM images of 1394 bp-long DNA deposited on mica surface. Figure 4.18 is the histogram of the measurement on images of 1500 bplong simulated DNA. The contour length and standard deviation were obtained by fitting the histogram with a Gaussian curve. The final results are summarized in table 4.2.

Table 4.2: Comparison of different tracing methods on DNA images acquired by AFM

DNA segments	Original	Neuron J tracing	Automated tracing program
1394 bp real DNA	$1394 \times 0.32=446 \mathrm{~nm}$	$420.4 \pm 9.1 \mathrm{~nm}$, from $*$	$415 \pm 16 \mathrm{~nm}$, from 182 molecules
1500 bp simulated DNA, 300 molecules	$1500 \times 0.34=520 \mathrm{~nm}$	$502.5 \pm 5.6 \mathrm{~nm}$	$505 \pm 4.3 \mathrm{~nm}$

*: The $0.32 \mathrm{~nm} / \mathrm{bp}$ comes from the tracing of 1584-long, enzyme cut 186 DNA traced with Neuron J.

The matlab code of segment length measurement can be found in appendix E (lengthC.m).

§ 4.3.4 Automated measurement of particles on the surface or on a DNA

molecule

Protein particle size and volume are important properties that can be assessed by AFM [108-111]. The volume and size of particles sitting on the mica surface or binding to a DNA can be used to determine the protein molecular weight [111], enzyme dimerization[112] and non specific protein-DNA interactions [76].

Because of that, a matlab routine was written to identify and analyze the particles sitting on the surface or binding to a DNA.

Figure 4.19 shows the interface panel of this particle analysis program. There are twelve parameters in this panel which can be either changed or used as a default. Following are the definitions of those parameters:

Figure 4.19: User interface panel of the particle analysis program. Users can select to analyze free particles on the surface or only look at the particles binding to a DNA molecule. The values on the left are parameters of imaging. The values on the right are parameters that will be used for analysis purposes.
"Image size" is the size of one AFM image. In our experiments, this value is often equal to 1000 nm which means one image covers $1000 \mathrm{~nm} \times 1000 \mathrm{~nm}$ of the sample. "X-Y scale" is the number of pixels on each line or row of image. In our experiments, it is 512 .
" Z range" is the range of values used to quantize the height of each pixel. In our experiments, this number is equal to $65536\left(2^{16}\right)$.
"Z scale" is the scale factor of AFM imaging. In our experiment, this value is 8.0 nm .
"Threshold" is the value the program uses to separate the particles from the background.
"Cross section" is the height of a selected cross section. It can be given s the real height or a percentage of the maximum height. If the percentage value is equal to zero, the program will automatically use the real height. The particle diameter will be calculated from the cross section given by this parameter.
"Max height" is the maximum height of the particles that should be considered.
"Min height" is the minimum height of the particles that should be considered.
"Max size" is the maximum area that a particle will cover. If a particle covers more than this size, it will be interpreted as an aggregate of two or more particles and will be thrown away by the program.
"Min size" is the minimum area size below which the particle will be discarded.
"Margin" is the parameter that is used to exclude particles are too close to the image edge.

The user can also choose if to analyze free particles or particles bound to DNA with an interface panel. If the user selects bound particles, the program will automatically disregard particles which do not contact DNA.

After setting these parameters, the user can open one or multiple files by clicking the "Open Files" button and click "Analysis" button to start the analysis.

The program will display the final result in figures as showed in figure 4.20. In the upper left panel, the particles identified by the program were labeled in red. The
lower left panel shows the original AFM figure. The right upper figure is the histogram of the particle diameters. The middle lower panel is the histogram of particle heights. The lower right panel is the histogram of particle volume.

Figure 4.20: Output of particle analysis program. Top left: red blobs are particles identified by the program. Lower left: original AFM image. Top right: the histogram of particle diameter. Lower middle: the histogram of particle height. Lower right: the histogram of particle volume.

The user can also save the data by clicking the "Save Data" button. The program will then save all the data and parameters in an excel file as showed in figure 4.21.

Figure 4.21: Saved excel data of particle analysis. Left figure is the data in columns. The right figure is the working sheet of parameters.

Matlab code of particle measurement can be found in appendix E (ParticleAnalysis.m, ParticleAnalysis.fig).

§ 4.3.5 Protein-DNA interactions

In some studies, DNA binding proteins such as repressors or RNAP are incubated with DNA before they are deposited onto the mica. In such experiments, DNA may bind, wrap or even loop on these protein particles [65, 76]. Currently, there is no automatic recognition tool for identifying protein-DNA complexes.

Starting from my tracing program, a program that can group DNA skeletons with particles that contact them was developed. The program starts from one trace and groups all the other traces and particles that contact the first trace either directly or
through another particle. Looking at these groups is helpful to characterize the interaction between proteins and DNA segments. After that, the traces and particles can be put into different statistics according to their interaction (binding, looping or wrapping).

Figure 4.22 represents one example of automatic protein-DNA complex analysis. Here images of short fragments containing binding site for lambda repressor were analyzed by the program. The program analyzed over 200 molecules in about 20 minutes, and gave a histogram of the position at which the protein particle contacts the DNA. The result gives the expected position in a much faster time than it would have been possible through a manual analysis.

Figure 4.22: Result of protein binding position analysis from over 200 molecules. The histogram represents the DNA length from one end to the particle. The expected value is 34 nm according to the DNA sequence. The fitting result centered at 35 nm .

Matlab code can be found in appendix E (GroupAnalysis.m).

§ 4.3.6 Data conversion

Since a lot of previous work was done with NeuronJ, a matlab routine was made to convert auto-tracing data to NeuronJ data format. This Matlab code can be found in appendix E (ConvertJ.m).

§ 4.4. Discussion

AFM is a very powerful technique in the study of biomacromolecules such as protein and DNA. But it is often very time consuming to analyze the images quantitatively. A large number of observations are needed to support a hypothesis or a conclusion. Yet, manual analysis is too slow. Here a toolbox of image analysis programs was developed based on matlab that automate a good part of the analysis and increase considerably its efficiency. This will be of great help to our lab and hopefully to many others.

References:

1. Ptashne, M.a.G., A., Genes and Signals. 2002, New York: Cold Spring Harbor Laboratory.
2. Bird, A., Perceptions of epigenetics. Nature, 2007. 447: p. 3.
3. Amasino, R., Vernalization, Competence, and the Epigenetic Memory of Winter. The Plant Cell, 2004. 16: p. 8.
4. Marcus E Pembrey, L.O.B., Gunnar Kaati, Soren Edvinsson, Kate Northstone, Michael Sjostrom, Jean Golding and the ALSPAC Study Team, Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, 2006. 14:
p. 8.
5. Verstrepen, O.J.R.a.K.J., Timescales of Genetic and Epigenetic Inheritance. Cell, 2007. 128: p. 14.
6. Chandler, V.L., Paramutation: From Maize to Mice. Cell, 2007. 128: p. 5.
7. Zachary A Kaminsky, T.T., Sun-Chone Wang, Carolyn Ptak, Gabriel H T Oh, Albert H C Wong, Laura A Feldcamp, Carl Virtanen, Jonas Halfvarson, Curt Tysk, Allan F McRae, Peter M Visscher, Grant W Montgomery, Irving I Gottesman, Nicholas G Martin and Art Petronis, DNA methylation profiles in monozygotic and dizygotic twins. Genetics, 2009. 41: p. 6.
8. Reik, W., Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007. 447: p. 8.
9. Ptashne, M., On the use of the word "epigenetic". Current Biology, 2007. 17(7): p. 4.
10. Ian B. Dodd, M.A.M., Kim Sneppen, and Genevieve Thon, Theoretical Analysis of Epigenetic Cell Meomory by Nucleosome Modification. Cell, 2007. 129: p. 10.
11. Wassenegger, M., The Role of the RNAi Machinery in Heterochromatin Formation. Cell, 2005. 122: p. 4.
12. Ingela Djupedal, K.E., Epigenetics: heterochromatin meets RNAi. Cell Research, 2009. 19: p. 14.
13. Edmunds, A.Y.a.W.J., Epigenetic inheritance and prions. Journal of Evolutionary Biology, 1998. 11: p. 2.
14. William M. Rideout III, K.E., Rudolf Jaenisch, Nuclear Cloning and Epigenetic Reprogramming of the Genome. Science, 2001. 293: p. 6.
15. Paul A. De Sousa, T.K., Linda Harkness, Lorraine E. Young, Simon K. Walker, and lan Wilmut, Evaluation of Gestational Deficiencies in Cloned Sheep Fetuses and Placentae. Biology of Reproduction, 2001. 65: p. 8.
16. Fatima Santos, V.Z., Miodrag Stojkovic, Antoine Peters, Thomas Jenuwein, Eckhard Wolf, Wolf Reik, and Wendy Dean, Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos. Current Biology, 2003. 13: p. 6.
17. J.H.M. Knoll, R.D.N., R.E. Magenis, J.M. Graham Jr., M. Lanlande, S.A. Latt, Angelman and Prader-Willi Syndromes Share a Common Chromosome 15 Deletion but Differ in Parental Origin of the Deletion. American Journal of Medical Genetics, 1989. 32: p. 6.
18. Jacqueline R Engel, A.S., Antonita Harper, Michael J Higgins, Mitsuo Oshimura, Wolf Reik, Paul N Schofield, Eamonn R Maher, Epigenotype-phenotype correlations in Beckwithwiedemann syndrom. Journal of Medical Genetics, 2000. 37: p. 6.
19. Jack B. Bishop, K.L.W., Richard A. Sloane, Genetic toxicities of human teratogens. Mutation Research, 1997. 396: p. 35.
20. Esteller, M., Epigenetics in Cancer. The New England Journal of Medicine, 2008. 358: p. 12.
21. Ptashne, M., A genetic switch : phage lambda revisited. 3rd ed. 2004, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. xiv, 154 p.
22. Johnson, A.D., et al., lambda Repressor and cro--components of an efficient molecular switch. Nature, 1981. 294(5838): p. 217-23.
23. Ptashne, M., Repressors. Trends in Biochemical Sciences, 1984. 9(4): p. 142-145.
24. Oppenheim, A.B., et al., Switches in bacteriophage lambda development. Annu Rev Genet, 2005. 39: p. 409-29.
25. Zurla, C., et al., Novel tethered particle motion analysis of CI protein-mediated DNA looping in the regulation of bacteriophage lambda. Journal of Physics-Condensed Matter, 2006. 18(14): p. S225-S234.
26. Lia, G., et al., Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(20): p. 11373-11377.
27. Beausang, J.F., et al., DNA looping kinetics analyzed using diffusive hidden Markov model. Biophysical Journal, 2007. 92(8): p. L64-L66.
28. Adhya, S. and M. Gottesman, Promoter Occlusion - Transcription through a Promoter May Inhibit Its Activity. Cell, 1982. 29(3): p. 939-944.
29. Shearwin, K.E., B.P. Callen, and J.B. Egan, Transcriptional interference - a crash course. Trends in Genetics, 2005. 21(6): p. 339-345.
30. Mazo, A., et al., Transcriptional interference: an unexpected layer of complexity in gene regulation. Journal of Cell Science, 2007. 120(16): p. 2755-2761.
31. Dodd, I.B., K.E. Shearwin, and K. Sneppen, Modelling transcriptional interference and DNA looping in gene regulation. Journal of Molecular Biology, 2007. 369(5): p. 12001213.
32. Rocco, V., B. Demassy, and A. Nicolas, The Saccharomyces-Cerevisiae Arg4 Initiator of Meiotic Gene Conversion and Its Associated Double-Strand DNA Breaks Can Be Inhibited by Transcriptional Interference. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(24): p. 12068-12072.
33. Eszterhas, S.K., et al., Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Molecular and Cellular Biology, 2002. 22(2): p. 469-479.
34. Corbin, V. and T. Maniatis, Role of Transcriptional Interference in the DrosophilaMelanogaster Adh Promoter Switch. Nature, 1989. 337(6204): p. 279-282.
35. Minuzzo, M., et al., Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(12): p. 6780-6784.
36. Lenasi, T., X. Contreras, and B.M. Peterlin, Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host \& Microbe, 2008. 4(2): p. 123133.
37. Eggermont, J. and N.J. Proudfoot, Poly(a) Signals and Transcriptional Pause Sites Combine to Prevent Interference between Rna Polymerase-li Promoters. Embo Journal, 1993. 12(6): p. 2539-2548.
38. Martens, J.A., L. Laprade, and F. Winston, Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature, 2004. 429(6991): p. 571-574.
39. Wang, P.X., et al., Demonstration that the TyrR protein and RNA polymerase complex formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major
promoter, P1, of the aroP gene of Escherichia coli. Journal of Bacteriology, 1998. 180(20): p. 5466-5472.
40. Ackermann, H.W., Frequency of morphological phage descriptions in the year 2000. Archives of Virology, 2001. 146(5): p. 843-857.
41. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate genetic switch. Molecular Cell, 2006. 21(5): p. 605-615.
42. Shearwin, K.E., I.B. Dodd, and J.B. Egan, The helix-turn-helix motif of the coliphage 186 immunity repressor binds to two distinct recognition sequences. Journal of Biological Chemistry, 2002. 277(5): p. 3186-3194.
43. Dodd, I.B. and J.B. Egan, DNA binding by the coliphage 186 repressor protein CI. Journal of Biological Chemistry, 1996. 271(19): p. 11532-11540.
44. Medvedev, Z.A., M.N. Medvedeva, and H.M. Crowne, Age-Related-Changes of the Pattern of Non-Histone Proteins in Active and Condensed Fractions of Mouse-Liver Chromatin and Hepato-Carcinoma. Experientia, 1984. 40(11): p. 1282-1284.
45. Thakur, M.K., Age-Related-Changes in the Structure and Function of Chromatin - a Review. Mechanisms of Ageing and Development, 1984. 27(3): p. 263-286.
46. Wolffe, A.P. and D. Guschin, Chromatin structural features and targets that regulate transcription. Journal of Structural Biology, 2000. 129(2-3): p. 102-122.
47. Bird, A.P. and A.P. Wolffe, Methylation-induced repression - Belts, braces, and chromatin. Cell, 1999. 99(5): p. 451-454.
48. Tachiwana, H., et al., Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 6): p. 578-83.
49. Zurla, C., et al., Direct demonstration and quantification of long-range DNA looping by the lambda bacteriophage repressor. Nucleic Acids Res, 2009. 37(9): p. 2789-95.
50. Bakk, A. and R. Metzler, In vivo non-specific binding of lambda Cl and Cro repressors is significant. Febs Letters, 2004. 563(1-3): p. 66-68.
51. Bakk, A. and R. Metzler, Nonspecific binding of the OR repressors Cl and Cro of bacteriophage lambda. Journal of Theoretical Biology, 2004. 231(4): p. 525-33.
52. Senear, D.F. and R. Batey, Comparison of Operator-Specific and Nonspecific DNA-Binding of the Lambda-Ci Repressor - [Kc1] and Ph Effects. Biochemistry, 1991. 30(27): p. 66776688.
53. Giessibl, F.J., Advances in atomic force microscopy. Reviews of Modern Physics, 2003. 75(3): p. 949-983.
54. Hinterdorfer, P. and Y.F. Dufrene, Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 2006. 3(5): p. 347355.
55. Zurla, C., et al., Direct demonstration and quantification of long-range DNA looping by the \{lambda\} bacteriophage repressor. Nucleic Acids Res, 2009.
56. Meijering, E., et al., Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A, 2004. 58A(2): p. 167-176.
57. Rasband, W.S., Image J. 2008.
58. Rivetti, C. and S. Codeluppi, Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B- to A-form transition on mica. Ultramicroscopy, 2001. 87(1-2): p. 55-66.
59. Marek, J., et al., Interactive measurement and characterization of DNA molecules by analysis of AFM images. Cytometry Part A, 2005. 63A(2): p. 87-93.
60. Ficarra, E., et al., Automated DNA fragments recognition and sizing through AFM image processing. Information Technology in Biomedicine, IEEE Transactions on, 2005. 9(4): p. 508-517.
61. Rivetti, C., M. Guthold, and C. Bustamante, Scanning Force Microscopy of DNA Deposited onto Mica: EquilibrationversusKinetic Trapping Studied by Statistical Polymer Chain Analysis. Journal of Molecular Biology, 1996. 264(5): p. 919-932.
62. Podesta, A., et al., Positively charged surfaces increase the flexibility of DNA. Biophysical Journal, 2005. 89(4): p. 2558-2563.
63. Claudio Rivetti, S.C., Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B- to A-form transition on mica. Ultramicroscopy, 2001. 87: p. 12.
64. Koblan, K.S. and G.K. Ackers, Site-specific enthalpic regulation of DNA transcription at bacteriophage lambda OR. Biochemistry, 1992. 31(1): p. 57-65.
65. Yang, Y., et al., Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res, 2005. 33(13): p. 4322-34.
66. Schneider, S.W., et al., Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch, 1998. 435(3): p. 362-7.
67. Neaves, K.J., et al., Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids Res, 2009. 37(6): p. 2053-63.
68. Ratcliff, G.C. and D.A. Erie, A novel single-molecule study to determine protein--protein association constants. J Am Chem Soc, 2001. 123(24): p. 5632-5.
69. Brenowitz, M.H.a.M., Comparison of the DNA Association Kinetics of the Lac Repressor Tetramer, Its Dimeric Mutant Lac ladi and the Native Dimeric Gal Repressor. The Journal of Biological Chemistry, 1997. 272(August 29): p. 5.
70. Burz, D.S., et al., Self-assembly of bacteriophage lambda cl repressor: effects of singlesite mutations on the monomer-dimer equilibrium. Biochemistry, 1994. 33(28): p. 8399405.
71. Maniatis, T. and M. Ptashne, Multiple repressor binding at the operators in bacteriophage Iambda. Proc Natl Acad Sci U S A, 1973. 70(5): p. 1531-5.
72. Dodd, I.B., et al., Octamerization of lambda Cl repressor is needed for effective repression of P-RM and efficient switching from lysogeny. Genes \& Development, 2001. 15(22): p. 3013-3022.
73. Dodd, I.B., et al., Cooperativity in long-range gene regulation by the lambda Cl repressor. Genes Dev, 2004. 18(3): p. 344-54.
74. Koblan, K.S. and G.K. Ackers, Site-Specific Enthalpic Regulation Of Dna-Transcription At Bacteriophage-Lambda Or. Biochemistry, 1992. 31(1): p. 57-65.
75. Senear, D.F., et al., Energetics Of Cooperative Protein Dna Interactions - Comparison Between Quantitative Deoxyribonuclease Footprint Titration And Filter Binding. Biochemistry, 1986. 25(23): p. 7344-7354.
76. Wang, H., Finzi, L., Lewis, D. and Dunlap, D., AFM studies of the Cl oligomers that secure DNA loops. J. Pharmaceutical Biotechnology, 2009. 10: p. 494-501.
77. Shearwin, K.E., A.M. Brumby, and J.B. Egan, The Tum protein of coliphage 186 is an antirepressor. Journal of Biological Chemistry, 1998. 273(10): p. 5708-5715.
78. Schafer, D.A., et al., Transcription by Single Molecules of Rna-Polymerase Observed by Light-Microscopy. Nature, 1991. 352(6334): p. 444-448.
79. Nelson, P.C., et al., Tethered particle motion as a diagnostic of DNA tether length. Journal of Physical Chemistry B, 2006. 110(34): p. 17260-17267.
80. Shearwin, K.E. and J.B. Egan, Purification and self-association equilibria of the lysislysogeny switch proteins of coliphage 186. J Biol Chem, 1996. 271(19): p. 11525-31.
81. E. Meijering, M.J., J. C. Sarria, P. Steiner, H. Hirling, and M. Unser, Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry A, 2004. 58: p. 9.
82. Dunlap, D., et al., Probing DNA topology with Tethered particle Motion, in Methods in Molecular biology: Single-Molecule Analysis: Methods and Protocols, E.J.G. Peterman and G. Wuite, Editors, Humana Press.
83. Finzi, L. and D. Dunlap, Single-molecule studies of DNA architectural changes induced by regulatory proteins. Methods Enzymol, 2003. 370: p. 369-78.
84. Zurla, C., Manzo, C, Dunlap, DD, Lewis, DEA, Adhya, S, Finzi, L, Direct Demonstration and Quantification of Long-Range DNA looping by the Lambda Bacteriophage Repressor. Nucleic Acids Res, 2009. 37: p. 2789-2795.
85. Finzi, L. and D.D. Dunlap, Single-molecule approaches to structure, kinetics and thermodynamics of transcriptional regulatory nucleoprotein complexes". J. Biol. Chem., 2010. 285: p. 18973-18978.
86. Manzo, C. and L. Finzi, Quantitative analysis of DNA looping kinetics from tethered particle motion experiments, in Methods In Enzymology: Molecule Tools, Part B: SuperResolution, Particle Tracking, Multiparameter, and Force Based Methods, N.G. Walter, Editor. 2010, Academic Press, Elsevier. p. 199-220.
87. Miller, R., J. Vesenka, and E. Henderson, Tip Reconstruction for the Atomic Force Microscope. SIAM Journal on Applied Mathematics, 1995. 55(5): p. 1362-1371.
88. Egan, K.E.S.a.J.B., Purification and self-association equilibria of the lysis-lysogeny switch proteins of coliphage 186. The Journal of Biological Chemistry, 1996. 271(May 10): p. 7.
89. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate genetic switch. Mol Cell, 2006. 21(5): p. 605-15.
90. Ian B. Dodd, K.E.S.a.K.S., Modelling transcriptional interference and DNA looping in gene regulation. J. Mol. Biol., 2007. 369: p. 14.
91. Egan, I.B.D.a.J.B., Action at a distance in Cl repressor regulation of the bacteriophage 186 genetic switch. Molecular Microbiology, 2002. 45(3): p. 14.
92. Dodd, I.B., K.B. Shearwin, and K. Sneppen, Modelling transcriptional interference and DNA looping in gene regulation. Journal Of Molecular Biology, 2007. 369(5): p. 12001213.
93. Egan, I.B.D.a.J.B., DNA binding by the coliphage 186 repressor protein CI. The Journal of Biological Chemistry, 1996. 271(May 10): p. 9.
94. Lia, G., et al., Direct Observation of DNA Distortion by the RSC Complex. Molecular Cell, 2006. 21(3): p. 417-425.
95. Kasas, S., et al., Escherichia coli RNA Polymerase Activity Observed Using Atomic Force Microscopyt. Biochemistry, 1997. 36(3): p. 461-468.
96. Podestà, A., et al., Positively Charged Surfaces Increase the Flexibility of DNA. Biophysical Journal, 2005. 89(4): p. 2558-2563.
97. Barrett, W.A. and E.N. Mortensen, Interactive live-wire boundary extraction. Medical Image Analysis, 1997. 1(4): p. 331-341.
98. Brugal, G. and J.M. Chassery, [A new image-processing system designed for densitometry and pattern analysis of microscopic specimen. Application to the
automated recognition and counting of cells in the various phases of the mitotic cycle (author's transl)]. Histochemistry, 1977. 52(3): p. 241-58.
99. Sanchez-Sevilla, A., et al., Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy, 2002. 92(34): p. 151-158.
100. Spisz, T.S., et al., Automated sizing of DNA fragments in atomic force microscope images. Med Biol Eng Comput, 1998. 36(6): p. 667-72.
101. Ficarra, E., et al., Automated DNA fragments recognition and sizing through AFM image processing. IEEE Trans Inf Technol Biomed, 2005. 9(4): p. 508-17.
102. Rivetti, C., DNA contour length measurements as a tool for the structural analysis of DNA and nucleoprotein complexes. Methods Mol Biol, 2011. 749: p. 235-54.
103. Rivetti, C., A simple and optimized length estimator for digitized DNA contours. Cytometry Part A, 2009. 75A(10): p. 854-861.
104. Lipkin, B.S. and A. Rosenfeld. Picture processing and psychopictorics. New York: Academic Press.
105. Dorst, L. and A.W.M. Smeulders, Length estimators for digitized contours. Computer Vision, Graphics, and Image Processing, 1987. 40(3): p. 311-333.
106. Kulpa, Z., Area and perimeter measurement of blobs in discrete binary pictures. Computer Graphics and Image Processing, 1977. 6(5): p. 434-451.
107. Vossepoel, A.M. and A.W.M. Smeulders, Vector code probability and metrication error in the representation of straight lines of finite length. Computer Graphics and Image Processing, 1982. 20(4): p. 347-364.
108. Rio, D.C., et al., Analysis of P element transposase protein-DNA interactions during the early stages of transposition. Journal of Biological Chemistry, 2007. 282(39): p. 2900229012.
109. Minh, P.N.L., et al., Insights into the architecture and stoichiometry of Escherichia coli PepA•DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Research, 2009. 37(5): p. 14631476.
110. Yang, Y., H. Wang, and D.A. Erie, Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods, 2003. 29(2): p. 175-187.
111. Erie, D.A. and G.C. Ratcliff, A novel single-molecule study to determine protein-protein association constants. Journal of the American Chemical Society, 2001. 123(24): p. 56325635.
112. Henderson, R.M., et al., Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids Research, 2009. 37(6): p. 2053-2063.

Appendices

110 | P a g e

Appendix A: AFM Studies of λ Repressor Oligomers Securing DNA Loops

AFM Studies of $\boldsymbol{\lambda}$ Repressor Oligomers Securing DNA Loops

Haowei Wang ${ }^{1}$, Laura Finzi ${ }^{1}$, Dale E. A. Lewis ${ }^{2}$ and David Dunlap ${ }^{3, *}$
${ }^{1}$ Physics Department, Emory University, Atlanta, GA, USA; ${ }^{2}$ Laboratory of Molecular Biology, NCI, NIH, Bethesda, MD, USA and ${ }^{3}$ Department of Cell Biology, Emory Univers ity School of Medicine, Atlanta, GA, USA

Abstract

Large, cooperative assemblies of proteins that wrap and/or loop genomic DNA may "epigenetically" shift configurational equilibria that determine developmental pathways. Such is the case of the λ bacteriophage which may exhibit virulent (lytic) or quiescent (lysogenic) growth. The lysogenic state of λ prophages is maintained by the λ repressor (CI), which binds to tripartite operator sites in each of the O_{L} and O_{R} control regions located about 2.3 kbp apart on the phage genome and represses lytic promoters. Dodd and collaborators have suggested that an initial loop formed by interaction between CI bound at O_{R} and O_{L} provides the proper scaffold for additional CI binding to attenuate the $P_{R M}$ promoter and avoid over production of CI. Recently, the looping equilibrium as a function of CI concentration was measured using tethered particle motion analysis, but the oligomerization of CI in looped states could not be determined. Scanning force microscopy has now been used to probe these details directly. An equilibrium distribution of looped and unlooped molecules confined to a plane was found to be commensurate to that for tethered molecules in solution, and the occupancies of specific operator sites for several looped and unlooped conformations were determined. Some loops appeared to be sealed by oligomers of 6-8, most by oligomers of 10-12, and a few by oligomers of 14-16.

Keywords: Lambda repressor, DNA looping, Atomic force microscopy.

INTRODUCTION

From viruses to humans, transcription is regulated by proteins that bind the DNA. It is becoming increasingly clear that, in most cases, genes are controlled by large, cooperative assemblages of proteins that wrap and loop the DNA. These protein-induced configurational changes often represent real "epigenetic switches" in which shifting the equilibrium towards one configuration versus the other commits the system to one developmental pathway instead of another. Such is the case of the λ bacteriophage and, it is suspected, of most temperate bacteriophages which may adopt a quiescent lifestyle (the lysogenic growth) or a virulent lifestyle (the lytic growth). After infection, repressor protein often binds to multipartite operators and mediate cooperative, long-range interactions which repress the lytic genes maintaining a stable lysogenic state, until adverse environmental conditions (DNA damage, poisoning, starvation, etc) induce a cascade of events that leads to repressor dissociation from the double helix and efficient switch to lysis. The λ epigenetic switch is not only a paradigm of transcriptional regulation, but is also at the basis of our understanding of phage lysogeny [1].

The lysogenic state of λ prophages is maintained by the λ repressor, or CI protein [2]. During lysogeny, dimers of CI bind to the O_{L} and O_{R} control regions, located about 2.3 kbp apart on the phage genome and repress the P_{L} and P_{R}, promoters for the lytic genes. Each control region contains three binding sites for CI, $O_{L} 1, O_{L} 2, O_{L} 3$ and $O_{R} 1, O_{R} 2, O_{R} 3$ [3-5]. CI binds to these operators with an intrinsic affinity $O_{L} 1>$

[^16]$O R 1>O_{L} 3>O_{L} 2>O_{R} 2>O_{R} 3$ [6, 7]. By studying the $O L$ and $O R$ regions separately and in isolation from the rest of the λ chromosome [8], it was found that pairs of dimers interact when bound to adjacent or nearby operators, forming tetramers. These cooperative interactions improve the specificity and strength of CI binding to $O_{R} 1$ and $O_{R} 2$, and $O_{L} 1$ and $O_{L} 2$, respectively, so that the binding affinity ranking becomes $O_{R} 1>O_{L} l>O_{R} 2>O_{L} 2>O_{L} 3>O_{R} 3$. Biochemical and genetic studies have identified the contacts between amino acids in the C-terminal domain that mediate these interactions. These contacts have been confirmed from the crystal structure of the isolated CTD tetramer [9] and are thought to contribute significantly to the stability of lysogeny. Occupancy of $O_{R} 2$ by CI also activates transcription of the CI gene from the $P_{R M}$ promoter, constituting a positive auto-regulatory mechanism [10-12] to generate the amount of CI required for repression of the lytic genes, as described above. At very high concentrations, Cl was observed to also bind to $O_{R} 3$ and repress its own transcription from $P_{R M}$ [13]. This negative autoregulation has been suggested to be important to prevent excessive accumulation of repressor to facilitate efficient switching to lysis when necessary. However, such negative regulation did not seem possible at physiological concentrations and the role of both $O_{L} 3$ and $O_{R} 3$ remained controversial.

Recently, it was suggested that CI molecules bind cooperatively not only to adjacent sites, but also to sites separated by over 2000 bp in the λ genome, inducing a regulatory loop in the phage DNA. This led to the hypothesis that the loop is first formed by interaction between two tetramers bound at $O_{R} 1-O_{R} 2$ and $O_{L} 1-O_{L} 2$, respectively. This octamer-mediated loop brings $O_{L} 3$ and $O_{R} 3$ into jux taposition and favors their occupancy by CI dimers which can interact "head-to-head" in a long-range cooperative fashion, and lead to a CI oc-
tamer+tetramer-mediated loop. According to this hypothesis, the loop provides the right scaffold for CI binding to weak $O_{R} 3$ at lysogenic concentrations [3, 14, 15] and effective repression of $P_{R M}$.

To evaluate this hypothesis, the stoichiometry of CI securing the regulatory loop in wild-type lambda DNA is a fundamental piece of information that has not been previously reported. We used atomic force microscopy, AFM, to image the CI-mediated loop and characterize the looping probability and the stoichiometry of the protein closure. Solutions of DNA and repressor were deposited on a flat, positively charged surface, rinsed and dried, and imaged using scanning force microscopy. In the resulting topographs, discrete bumps corresponding almost exclusively to specifically bound protein were found on both looped and unlooped DNA molecules. A looping equilibrium commensurate with that measured using tethered particle motion was measured as well as the volumes of individual protein particles securing loops between O_{L} and O_{R}. Virtually no CI tetramers were found to secure DNA loops. Instead higher order oligomers of 6-8 and especially 10-12 accounted for the majority of the CI particles associated with DNA loops. The data are consistent with the model in which multipartite operators collect CI dimers that multimerize to stabilize loops formed through random encounters between O_{L} and O_{R}.

MATERIALS AND METHODS

1555 bp DNA fragments were produced by PCR amplification of segments of plasmids pDL944 and pDL965 using 5'-CGCAATTAATGTGAGTTAGCTCACTCATTAGGCA CCCCAGGC- 3 ' and 5'-GCATTGCTTATCAATTTGTTGC AACGAACAGGTCACTATCAGTC-3' as forward and reverse primers. These fragments contained respectively wildtype or mutant lambda operator regions (O_{L} and O_{R}) and including the associated promoters $P_{L}, P_{R M}$ and P_{R}. The distance between the midpoints of operator sites $O_{L} 3$ and $O_{R} 3$ was 393 bp. pDL965 contains $C C$ to $A T$ mutations in $O_{L} 3$ and $O_{R} 3$, which abrogate CI binding (Lewis et al. manuscript in preparation and [16]). PCR using the same plasmid templates was also used to generate 505 or 392 bp DNA fragments that contained only one group of binding sites (O_{R} or O_{L}).

Another 732 bp DNA fragment containing two high affinity lac operators $O_{k i}$ (5'-TGTGAGCGCTCACA-3') and O1 (5'-AATTGTGAGCGGATAACAATT-3') [17, 18] separated by 70 bp was provided by Opher Gileadi (Quantomix Ltd, Rehovot, Israel). It was produced by PCR using the plasmid pOid-O1 from the Müller-Hill laboratory as a template and 5'-GCCACCTCTGACTTAAGCGTCG-3' and 5'-TTGAGGGGACGTCGACAGTATC-3' as forward and reverse primers.

The wild-type CI protein $(7.25 \mu \mathrm{~g} / \mu \mathrm{l})$ was purified from pEA305 in the laboratory of Sankar Adhya. 20 nM CI and 2 to 4 nM DNA were gently mixed in a buffer containing 50 mM HEPES, 150 mM NaCl and 0.1 mM EDTA (pH 7.0) and incubated at RT for 10 min . Shortly before deposition, a $10 \mu \mathrm{l}$ drop of $0.1 \mu \mathrm{~g} / \mathrm{ml}$ poly-L-ornithine (1 kDa MW , product \#P5666, Sigma-Aldrich, St. Louis, MO) was incubated on freshly cleaved mica for one minute at RT. The poly-L-ornithine-coated mica was then washed with 0.4 ml HPLC
water and dried with compressed air. Then $5 \mu 1$ of the solution containing DNA and protein was quickly diluted with 40 $\mu 1$ of buffer, and a $10 \mu 1$ droplet of this solution was deposited on the poly-L-ornithine-coated mica and incubated for one minute at RT. The droplet was rinsed away with 0.4 ml HPLC water and dried gently with compressed air. The sample was left overnight in a dessicator at RT before imaging.

Images were acquired with a NanoScope MultiMode AFM microscope (Digital Instrument, Santa Barbara, CA) operated in tapping mode using a $50-60 \mathrm{mV}$ oscillation amplitude of uncoated, etched silicon tips with a resonance frequency of 75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of $1 \times 1 \mu^{2}$ were scanned at a rate of 1.2 Hz and a resolution of 512×512 pixels.

After filtering images to remove scan line offsets and bowing, DNA molecules were interactively traced with NeuronJ [19], a plug-in function for ImageJ [20]. To measure the volume of protein particles, a basal threshold was established above (typically 0.08 nm) the background. The mean value of all pixels below this threshold was calculated and used as the base for the measurement. The volumes of isolated protein particles were determined as the sum of the pixel heights above the base within the area of the particle protruding above the basal threshold. For DNA-bound protein particles, a second "DNA" threshold was chosen just above the DNA. The volume of protein particles was determined as the sum of the pixel heights above the base within the area of the particle protruding above the "DNA" threshold.

RESULTS AND DISCUSSION

Dried, 1555 bp-long DNA molecules (Fig. (1), upper and middle rows) containing both O_{L} and O_{R} averaged 510 nm in length in scanning force micrographs. The measured pitch of the DNA on poly-L-ornithine was therefore $0.327 \mathrm{~nm} / \mathrm{bp}$ which is quite close to that of the B-form structure [21].

Specific Binding to Operator Sites

To assay the specificity of CI binding, the positions of CI particles were measured along unlooped DNA. Fig. (2) shows schematic diagrams of the molecules used, along with the positions of the right and left operator regions. The positions of the center of bound CI particles were measured and frequency distributions are shown for DNA containing both wild-type operator regions (Fig. (1), upper center and left; Fig. (2), middle-left) . There was almost no non-specific binding with the vast majority of particles near the O_{L} and O_{R} regions located 118 or 265 nm from one end of each molecule.

Weak Affinity for the $\mathrm{O}_{\mathrm{R}} 3$ Operator Site

The peak at O_{L} was noticeably broader than that corresponding to O_{R}. It is well accepted that CI dimers on adjacent operator sites may bind cooperatively; two dimers could occupy either O 1 and O 2 or O 2 and O 3 . Given the experimentally determined affinities of the operator sites [22], this is likely to have occurred at O_{L} but not O_{R}, because the affinity of CI dimers for $O_{L} 3$ is greater than that for $O_{R} 3$. This interpretation was supported by experiments using DNA

Fig. (1). AFM images of CI and DNA: (upper left) 1555 bp DNA containing O_{L} and O_{R}, (upper middle and right) Cl protein bound to 1555 bp DNA, (middle row) CI- mediated loops in 1555 bp DNA, (bottom left) CI bound to DNA containing O_{L} (wild-type), (bottom center) CI protein bound to DNA containing $O_{L}(O 3-)$, (bottom right) lac repressor bound to $O_{i l}$ and $O l$ containing DNA. The white bar represents 100 nm .
with mutations in the third binding sites (O3-) that abrogated the binding of CI dimers to $O_{L} 3$ and $O_{R} 3$. As in the case of the wild-type DNA, CI binding to the O_{R} region of $O 3$ - DNA produced a narrow peak at 119 nm (Fig. (2), bottom-left). However, with respect to this peak, CI binding to the O_{L} region of O3-DNA shifted to give a narrow peak at 275 nm , in which the cooperative binding of CI to $O_{L} 2$ and $O_{L} 3$ seemed to have disappeared.

To further demonstrate the weak affinity for the $O_{R} 3$ site, experiments were done with short fragments containing either O_{R} or O_{L} (Fig. (1), bottom left and center). In histograms of particle locations on the wild-type O_{L} containing fragment, there are two peaks separated by 9.5 nm (Fig. (2), middle-center). This distance is slightly larger than the value expected for cooperatively bound dimers bridging either sites $O_{L} 1$ and $O_{L} 2$ or $O_{L} 2$ and $O_{L} 3(20 \mathrm{bp}$ or 6.7 nm$)$. However, the peak located at 47 nm , which corresponds to the $O_{L} 3$ site,
disappeared for DNA with the $O_{L} 3-$ mutation (Fig. (3), bot-tom-center) while the peak at $O_{R}(32 \mathrm{~nm})$ remained unchanged (Fig. (2), compare middle-right and bottom-right). The simplest interpretation is that no significant binding to $O_{R} 3$ occurred with or without mutation while $O_{L} 3$ binding was observed only for the wild-type operator.

Multiple Operators May Recruit Dimers

Among the hundreds of molecules in the recorded topographs, there were a few DNA molecules with small protein particles bound in adjacent positions that were commensurate with the distance between the $O 1$ and $O 3$ operator sites (Fig. (3)). Based on the calibration that was performed and is described below, these particles with a mean volume of 174 nm^{3} were identified as CI oligomers of 2-4 monomers. According to the DNA construct, the center-to-center distance from $O_{L} 1$ to $O_{L} 3$ is 44 bp which corresponds to 14.7 nm and

Fig. (2). AFM measurements of the positions of CI particles bound to DNA. Schematic diagrams of the DNA constructs with wild-type (open square) or $O 3$ - (black square) operators in the O_{L} and O_{R} regions appear just above histograms of the AFM-determined positions of CI particles bound to the indicated DNA fragments.
that for $O_{R} 1$ to $O_{R} 3$ is $47 \mathrm{bp}(15.7 \mathrm{~nm})$. Since the distance between pairs of adjacent particles found in the O_{R} or O_{L} region was 15.4 and 14.0 nm respectively, the experiment indicated non-cooperative binding of Cl the Ol and O 3 binding sites. These observations suggested that perhaps the presence of three operator sites in each region enhances the probability of capturing CI dimers such that sufficient numbers of proteins accumulate and stand ready to secure a loop when a random collision between O_{R} and O_{L} occurs. However, one cannot exclude that these species might have been looped molecules that did not survive deposition and washing during sample preparation.

Looping Equilibrium

Indeed, the deposition process was reported to affect the measured equilibrium for protein-DNA complexes with 3D topology that distorts upon binding to the surface [23]. Although the operator sites to which CI binds to secure the

DNA loop lie closely spaced, there is a slight helical shift between the left and right O 2 and O 3 operator sites. This might add some three-dimensionality to a looped structure. However scoring 884 or 354 molecules with specifically bound CI particles as either "looped" or "unlooped" for wildtype or O3-DNA at a 20 nM concentration of CI led to 43.9 and 17.8% estimated looping probabilities respectively (Table 1). These are fairly close to the 40 and 10% probabilities measured using tethered particle motion for wild-type DNA segments in the presence of the same low concentration of CI [16]. Successful measurement of the looping equilibrium suggested that the molecular species in the AFM images were relevant to CI-mediated looping and should be characterized further.

Volume Calibration

Given the possibility for oligomerization of CI, the number of CI dimers securing a DNA loop may play an impor-
tant role in the dynamics of loop formation. However, there are few experimental methods apart from direct visualization with which to determine this oligomerization on looped molecules. AFM is well suited for this type of analysis, since the volume of the particle at the closure of a DNA loop can be measured directly in the topographs. Of course a calibration to relate the measured volume to the molecular weight, and hence the oligomerization of the protein, is essential.

Fig. (3). Pairs of CI particles bound to adjacent $O_{R} I$ and $O_{R} 3$ sites were observed in AFM images (upper). The scale bar represents 100 nm . (lower) The mean volume of these particle was 174 ± 70 nm^{3}.

Several calibration curves have been produced previously for tapping mode images of proteins with both silicon nitride [24] and etched silicon probes [25, 26]. Both the convolution of the probe shape and the compression that results from the tapping force affect the relationship, and linear fits to volume

Table 1. Percentages of Cl-Mediated Loops in Wild-Type and O3- DNA Molecules Visualized Using AFM

	Wild-Type	O3
Number of molecules	884	354
\% Looped	43.9%	17.6%

vs. molecular weight calibrations have slopes ranging from 1.2 to 1.75 for probes with spring constants near $40 \mathrm{~N} / \mathrm{m}$ and area thresholds set low or at half-height. For the experiments reported here, lac repressor (lacI) was a convenient reference which maintains a tetrameric state both free and bound to the DNA [27] while free CI was expected to partition into a $7: 1$ ratio of monomeric and dimeric forms at a concentration of 20 nM . The distributions of protein particles measured for CI and lacI without DNA exhibited peaks at 75,150 and 320 nm^{3} (supplementary Figs. (S1 and S2)). For the etched silicon probes with a $3.5 \mathrm{~N} / \mathrm{m}$ spring constant that were used in these experiments, a calibration considering monomeric and dimeric CI and tetrameric lacI proteins deposited on poly-L-ornithine-coated-mica gave a slope of 1.9 (Fig. (4)). This higher value most likely reflects both the softer cantilever which reduces compression and the low threshold used to delimit the area of individual proteins.

Fig. (4). AFM measurements of the volume of protein particles both free and bound to DNA. Standard deviations are indicated for all points. Linear regression of volume measurements of unbound λ and lac repressor proteins (dark squares) gave the calibration line (dark). The volumes of CI protein particles were measured on unlooped (grey triangles) and looped (grey circles) DNA and CI oligomerization values were assigned to the nearest dimer multiple using the calibration line. Numerical values for the plot are given in supplementary Table S3.

The volumes of lacI and CI oligomers bound to DNA were also measured. The lacI DNA contains two lac repressor binding sites, $O_{i d}$ and $O 1$. The specificity of particle binding was verified by tracing DNA segments as described for the CI data shown in Fig. (2). The average volume of

AFM Studies of λ Repressor Oligomers Securing DNA Loops

particles binding on linear DNA was $355 \pm 73 \mathrm{~nm}^{3}$. Since $l a c$ repressor was expected to remain tetrameric in the conditions of the experiment (5 nM) [27], this volume was associated with an oligomer weighing 155 kDa . The difference between the measured volumes for protein free and bound to the DNA was about 30 nm which corresponds well to the volume of a segment of DNA as long as the lacl binding site, 21 bp.

The average volume of CI particles on unlooped DNA measured $259 \mathrm{~nm}^{3}$. Employing the calibration curve and considering that the molecular weight of CI monomer is 26$28 \mathrm{kDa}[28,29]$ indicated that the average particles in the experiment could have corresponded to CI tetramers (240 nm^{3} from the calibration curve). Of course the standard deviation of these measurements was larger than those of lac repressor, because the λ operator regions contain three adjacent binding sites, so that several stoichiometries of CI binding were possible. In fact some higher molecular weight particles were observed that are difficult to reconcile with the idea that a looped DNA scaffold is required to promote "head-to-head" binding between CI tetramers to give octamers $[14,30]$. One interpretation is that specific binding nucleated adjacent non-specific binding.

Loop Closures are Prevalently Oligomers 10-12

Similarly large volume, high molecular weight CI particles were commonly found securing looped DNA molecules. In Fig. (5), the lower panel shows measurements of DNA segments corresponding to the length: from one end to the O_{R} site, of the loop (OL-OR), and from O_{L} to the other end of the DNA. The narrowly distributed measurements and the good correspondence with the expected values based on the DNA construct indicated loops secured by specifically bound CI. The volumes of these CI particles were distributed as shown in the upper panel of Fig. (5). The curve exhibits three central peaks in the distribution that roughly correspond to oligomers of (from right to left): 6-8, 10-12, and 14-16. This interpretation was developed using the calibration shown in Fig. (4) and assigning molecular weights to the nearest multiple of a dimer, since CI binds DNA as a dimer. The rightmost and leftmost peaks were negligibly small and were not considered further.

Oligomers of 10-12 monomers were observed most frequently securing loop closures. Such oligomers would nearly or fully saturate the operator sites in the juxtaposed O_{L} and O_{R} regions and are consistent with the loop stabilization conferred by "octamer+tetramer" protein binding that was also found using modeling of tethered particle motion data [16]. A significant number of oligomers of 6-8 monomers were also observed at loop closures, but very little tetrameric CI, which corresponds well with the weaker loop stabilization afforded by oligomers lacking contacts between $O 3$ regions [16]. Oligomers of more than 12 monomers constituted a minor fraction which suggested that CI specifically bound to operators in one region might nucleate adjacent binding of non-specifically bound CI. These additional CI dimers might further stabilize the closure through interaction with corresponding dimers from the opposite region.

Fig. (5). Oligomerization of CI securing DNA loops. (upper) AFM measurements of the volumes of single CI particles securing DNA loops. (lower) The lengths of segments in the looped DNA correspond well with those expected from the design of the construct.

Alternative Loop Closures

A small number of DNA loops (3.2%) contained two adjacent CI particles (Fig. (6)). The average volume of these particles was $425 \mathrm{~nm}^{3}$ which identified them as CI octamers. By tracing the DNA in a subset of particularly distinct two-particle-loops, two types of conformer were established. One type was modeled with directly juxtaposed operators in which one octamer apparently included four specifically bound dimers at Ol and O 2 (or O 2 and O 3), and another consisting of two specifically bound CI dimers at O 3 (or Ol) flanked by two non-specifically bound dimers to form a second octamer (Fig. (6c)). Whether non-specifically bound dimers preferentially flanked $O 1$ or $O 3$ could not be determined. The other type of conformer was modeled with staggered O_{R} and O_{L} regions leaving $O_{R} 3$ unoccupied (Fig. (6b)) and CI oligomers bridging non-specific sites adjacent to $O_{R} 1$. Table 2 shows the results of measuring segments in these looped molecules as schematically shown in Fig. (6d). For such a small number of cases, statistically significant differences could not be established, but, as expected from the schematic diagrams, segments a and e were longer in the directly juxtaposed conformation while c was longer in the staggered conformation. These few conformers might represent early intermediates in the looping process that result from collisions between O_{L} and O_{R} regions that are nearly saturated with CI dimers. Such intermediates may include CI tetramers that bind "semi-specifically" between $O_{L} 1$ and a non-specific site adjacent to $O_{L} 1$. Subsequent shifting to create complete juxtaposition of all of the specific operators
would be expected to increase the stability of the loop and sterically repress the CI promoter, $P_{R M}$, near $O_{R} 3$.

CONCLUSIONS

The data in this report strongly support the idea that CI binding to $O 3$ operators greatly stabilizes looping of λ DNA fragments. Overwhelmingly specific binding was exhibited by 20 nM CI protein to the λ operator sites. The intrinsic order of this binding, $O_{L} l>O_{R} l>O_{L} 3>O_{L} 2>O_{R} 2>O_{R} 3,[6,7]$ changes to $O_{R} 1>O_{L} 1>O_{R} 2>O_{L} 2>O_{L} 3>O_{R} 3$ when cooperative interactions are considered, and this cooperative ranking was reflected in the slight shift of positions of CI particles on unlooped DNA upon mutation of the $O_{L} 3$ but not the $O_{R} 3$ operators. The strong affinity of the polyamine-coated mica for DNA preserved the looped-unlooped equilibrium of the DNA-protein complexes to permit relevant measurements of the protein oligomerization. The volumes of particles securing DNA loops corresponded most frequently to CI oligomers of 10-12, less often to oligomers of 6-8 and occasionally to oligomers of 14-16 that likely include nonspecifically bound CI. This underscores the important role of the $O 3$ binding sites in loop stabilization. Finally, rare observations of dimers bound to adjacent operators, and adjacent CI octamers securing specific loops suggest that the tripartite binding sites in the operator regions enhance the targeting of CI to promote efficient looping and transcriptional repression at low protein concentrations.

ACKNOWLEDGEMENTS

This work was supported by an Emory University graduate student scholarship (HW), Emory University (LF), and the laboratory of Sankar Adhya at the National Institutes of Health, National Cancer Institute and the Center for Cancer Research. We thank Chiara Zurla and Carlo Manzo for discussion and suggestions and William J. Dunn for assistance with image analysis.

Fig. (6). Specifically bound protein particles may nucleate adjacent semi-specific binding to secure DNA loops. (a) A small number of DNA loops were secured by two CI particles. Scale bar represents 100 nm . Possible models of CI binding to (b) staggered or (c) directly juxtaposed O_{L} and O_{R} regions. (d) Labeled segments of looped DNA molecules secured by two CI particles.

Table 2. Segment Lengths (nm) for DNA Loops Secured by Two Protein Particles (shown in Fig. 6)

Segment DNA molecule	a	b	c	d	e
Directly juxtaposed operators					
expected	129.0	14.0	125.7	13.0	237.5
1	126.8	20.2	113.7	19.6	233.4
2	127.1	14.1	123.2	16.5	238.4
3	125.2	11.7	113.0	13.6	221.8
4	125.3	20.0	117.9	17.7	222.6
5	124.0	19.5	104.3	20.4	231.2
mean	125.7	17.1	114.4	17.6	229.5
Staggered operators					
expected	116.8	14.7	142.2	14.7	230.0
6	116.1	18.5	123.7	15.9	223.1
7	119.3	16.5	130.9	18.0	231.1

AFM Studies of λ Repressor Oligomers Securing DNA Loops

Current Pharma ceutical Biotechnology, 2009, Vol. 10, No. 5501

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publishers Web site along with the published article.

REFERENCES

1] Ptashne, M. (1986) A Genetic Switch. Cell Press: Cambridge, MA.
[2] Ptashne, M. and Gann, A. (2004) Genes \& Signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
[3] Dodd, I.B; Shearwin, K.E.; Perkins, A.J.; Burr, T.; Hochschild, A. and Egan, J.B. (2004) Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev., 18(3), 344-354.
[4] Maniatis, T. and Ptashne, M. (1973) Multiple repressor binding at operators in bacteriophage-lambda - (Nuclease protection polynucleotide sizing pyrimidine tracts supercoils E. Coli). Proc. Natl. Acad Sci. USA, 70(5), 1531-1535.
[5] Oppenheim, A.B.; Kobiler, O.; Stavans, J.; Court, D.L. and Adhya, S. (2005) Switches in bacteriophage lambda development. Ann. Rev. Gene., 39, 409-429.
[6] Koblan, K.S. and Ackers, G.K. (1992) Site-specific enthalpic regulation of DNA-transcription at bacteriophage-lambda Or. Biochemistry, 31(1), 57-65.
[7] Senear, D.F.; Brenowitz M.; Shea, M.A. and Ackers, G.K. (1986) Energetics of cooperative protein DNA interactions - comparison between quantitative deoxyribonuclease footprint titration and filter binding. Biochemistry, 25(23), 7344-7354.
[8] Ptashne, M. (2004) A genetic Switch: Phage Lambda Revisited, 3rd ed: Cold Spring Harbor Laboratory Press, Cambridge, MA.
[9] Bell, C.E.; Frescura, P.; Hochschild, A. and Lewis, M. (2000) Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding. Cell, 101(7), $801-$ 811.
[10] Jain, D.; Nickels, B.E.; Sun, L.; Hochschild, A. and Darst, S.A. (2004) Structure of a ternary transcription activation complex. Mol., Cell, 13(1), 45-53.
[11] Meyer, B.J.; Maurer, R. and Ptashne, M. (1980) Gene-regulation at the right operator (Or) of bacteriophage-lambda .2. Orl, Or 2, and Or 3 - their roles in mediating the effects of repressor and cro. J. Mole. Biol., 139(2), 163-194.
[12] Nickels, B.E.; Dove, S.L.; Murakami, K.S.; Darst, S.A. and Hochschild, A. (2002) Protein-protein and protein-DNA interactions of sigma(70) region 4 involved in transcription activation by lambda cl. J. Mol. Biol., 324(1), 17-34.
[13] Maurer, R.; Meyer, B.J. and Ptashne, M. (1980) Gene-regulation at the right operator (Or) of bacteriophage-lambda. 1. Or3 and autogenous negative control by repressor. J. Mol. Biol., 139(2), 147161.
[14] Dodd, I.B.; Perkins, A.J.; Tsemitsidis, D. and Egan, J.B. (2001) Octamerization of lambda CI repressor is needed for effective repression of P-RM and efficient switching from lysogeny. Genes. Dev., 15(22), 3013-3022.
[15] Dodd, I.B.; Shearwin, K.E. and Egan, J.B. (2005) Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet Dev., 15(2), 145-152.
[16] Zurla, C.; Manzo, C.; Dunlap, D.; Lewis, D.E.; Adhya, S.; Finzi, L. (2009) Direct demonstration and quantification of long-range DNA looping by the \{lambda\} bacteriophage repressor. Nucleic Acids Res., 37(9), 2789-2795.
[17] Sadler, J.R.; Sasmor, H. and Betz, J.L. (1983) A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl. Acad. Sci. USA, 80(22), 6785-6789.
[18] Simons, A.; Tils, D.; von Wilcken-Bergmann, B. and Muller-Hill, B. (1984) Possible ideal lac operator: Escherichia coli lac operatorlike sequences from eukaryotic genomes lack the central G X C pair. Proc. Natl. Acad. Sci. USA, 81(6), 1624-1628.
[19] Meijering, E.; Jacob, M.; Sarria, J.C.; Steiner, P.; Hirling, H. and Unser, M. (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A, 58(2), 167-176.
[20] Abramoff, M.D.; Magelhaes, P.J. and Ram, S.J. (2004) Image processing with image. J. Biophoton. Inter., 11(7), 36-42.
[21] Claudio Rivetti, S.C. (2001) Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B-to A-form transition on mica. Ultramicroscopy, 87, 12.
[22] Koblan, K.S. and Ackers, G.K. (1992) Site-specific enthalpic regulation of DNA transcription at bacteriophage lambda OR. Biochemistry, 31(1), 57-65.
[23] Yang, Y.; Sass, L.E.; Du, C.; Hsieh, P. and Erie, D.A. (2005) Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res., 33(13), 4322-4334.
[24] Schneider, S.W.; Larmer, J.; Henderson, R.M. and Oberleithner, H. (1998) Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy. Pflugers Arch., 435(3), 362-367.
[25] Neaves, K.J.; Cooper, L.P.; White, J.H.; Carnally, S.M.; Dryden, D.T.; Edwardson, J.M. and Henderson, R.M. (2009) Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping. Nucleic Acids Res., 37(6), 2053-2063.
[26] Ratcliff, G.C. and Erie, D.A. (2001) A novel single-molecule study to determine protein--protein association constants. J. Am. Chem Soc, 123(24), 5632-5635.
[27] Hsieh, M. and Brenowit, M. (1997) Comparison of the DNA association kinetics of the lac repressor tetramer, its dimeric mutant lac iadi and the native dimeric gal repressor. J. Biol. Chem, 272(35), 22092-22096.
[28] Burz, D.S.; Beckett, D.; Benson, N. and Ackers, G.K. (1994) Selfassembly of bacteriophage lambda cI repressor: effects of singlesite mutations on the monomer-dimer equilibrium. Biochemistry, 33(28), 8399-8405.
[29] Maniatis, T. and Ptashne, M. (1973) Multiple repressor binding at the operators in bacteriophage lambda. Proc. Natl. Acad. Sci. USA, 70(5), 1531-1535.
[30] Dodd, I.B.; Shearwin, K.E.; Perkins, A.J.; Burr, T.; Hochschild, A. and Egan, J.B. (2004) Cooperativity in long-range gene regulation by the lambda CI repressor. Genes. Dev., 18(3), 344-354.

Received: April 24, 2009 Revised: April 27, $2009 \quad$ Accepted: April 27, 2009

Chapter 9
 DNA Looping in Prophage Lambda: New Insight from Single-Molecule Microscopy

Laura Finzi, Carlo Manzo, Chiara Zurla, Haowei Wang, Dale Lewis, Sankar Adhya, and David Dunlap

9.1 Introduction

The lambda (λ) bacteriophage epigenetic switch is a molecular mechanism that permits the quiescent (lysogenic) state of the bacteriophage to irreversibly switch to the virulent (lytic) state. After infection of its host, E. coli, λ, a temperate phage, most often grows lysogenically. The phage DNA integrates in the bacterial chromosome and is replicated along with it and transmitted to the bacterial progeny as a prophage. Lysogeny is very stable and yet, the switch to lysis is very efficient. Upon switching to lysis, the viral DNA is excised from the bacterial chromosome and the host machinery is used to produce viral progeny that is then released upon bursting of the host. The pathway to lysis is triggered in response to threats such as starvation, poisoning, or DNA damage.

The lysogenic state of λ prophages is maintained by the λ repressor, or CI protein [35]. During lysogeny, dimers of CI bind to the O_{L} and O_{R} control regions, located about 2.3 kbp apart on the phage genome (Fig. 9.1a) and repress P_{L} and P_{R}, promoters for the lytic genes. Each control region contains three binding sites for CI, $O_{L} 1, O_{L} 2$, $O_{L} 3$ and $O_{R} 1, O_{R} 2, O_{R} 3[11,26,33]$. CI binds to these operators with an intrinsic affinity $O_{L} I>O_{R} I>O_{L} 3>O_{L} 2>O_{R} 2>O_{R} 3$ [17, 38]. By studying the O_{L} and O_{R} regions separately and in isolation from the rest of the λ chromosome [34], it was found that pairs of dimers interact when bound to adjacent or nearby operators, forming tetramers (Fig. 9.1a). These cooperative interactions improve the specificity and strength of CI binding to $O_{R} 1$ and $O_{R} 2$, and $O_{L} 1$ and $O_{L} 2$, respectively, so that the order of binding affinity changes to $O_{R} I \sim O_{L} 1 \sim O_{R} 2 \sim O_{L} 2>O_{L} 3>O_{R} 3$. Biochemical and genetic studies have identified the contacts between amino acids in the C -terminal domain (CTD) that mediate these interactions. These contacts have been confirmed from the crystal structure of the isolated CTD tetramer [7] and are thought to

[^17]

Fig. 9.1 Model of CI regulation by long-range DNA looping proposed by Dodd et al. [11]. (a) CI dimers bound cooperatively at $O_{R} l$ and $O_{R} 2$ repress transcription at P_{R} while the dimer at $O_{R^{2}}^{2}$ also activates transcription from $P_{R M}$. The dimers bound cooperatively at $O_{L} 1$ and $O_{L} 2$ repress transcription at $p L$. (b) Tetramers of CI bound at O_{L} and O_{R} interact forming an octameric complex and a 2.3 kbp DNA loop. This higher-order complex facilitates cooperative binding of another pair of CI dimers at $O_{L} 3$ and $O_{R} 3$, resulting in the formation of another CI head-head tetramer and repression of transcription from $P_{\text {RM }}$
contribute considerably to the stability of lysogeny. Occupancy of $O_{R} 2$ by CI also activates transcription of the CI gene from the $P_{R M}$ promoter, giving CI a positive autoregulatory mechanism $[16,30,32]$ (Fig. 9.1a). This increases the level of CI to that required for repression of the lytic genes, as described above. At very high concentrations, CI was observed to also bind to $O_{R} 3$ and repress its own transcription from $P_{R M}$ [29]. This negative auto-regulation had been suggested to be important to prevent an excessive accumulation of repressor and facilitate efficient switching to lysis when necessary. However, such a negative regulation did not seem possible at physiological concentrations and the role of both $O_{L} 3$ and $O_{R} 3$ remained controversial. In particular, the conventional wisdom was that $O_{L} 3$ was an evolutionary vestige.

A few years ago, it was suggested that, in the context of the intact λ chromosome, CI molecules bind cooperatively not just to adjacent sites, but also to sites separated by thousands of base pairs, inducing a regulatory loop in the viral DNA [11]. Looping is widely used as a gene regulation mechanism [28] but, in most of the prokaryotic cases, the loop length is limited to few hundred base pairs. Therefore, looping is generally viewed as a way to increase the local protein concentration, that is, as a mechanism enhancing the ability of a repressor to bind to a weak operator site through the interaction with a second repressor molecule bound to a stronger operator nearby. Clearly, this is not the case of the λ switch since the large loop size would not produce a significant increase in the local concentration (less than one order of magnitude).

This apparent quandary can be rationalized by the mechanistic hypothesis that the λ loop first forms by the interaction between two tetramers bound at $O_{R} I-O_{R}{ }^{2}$ and $O_{L} I-O_{L}$, respectively. This octamer-mediated loop brings $O_{L} 3$ and $O_{R} 3$ into juxtaposition and favors their occupancy by CI dimers that can interact "head-tohead" in a cooperative fashion, leading to a DNA loop mediated by a CI octamer plus tetramer. According to this hypothesis, the loop provides the correct scaffold for CI binding to weak $O_{R} 3$ at lysogenic concentrations [9-11] and effective
repression of $P_{R M}$ (Fig. 9.1b). In vivo experiments also indicate that such a loop would increase repression from lytic P_{R} fourfold [11,37], with DNA looping stabilizing the lysogenic state. Thus, stability of the lysogenic state, effective repression of $P_{R M P}$ and efficient switching to lysis in λ may all depend on DNA looping. These considerations piqued the interest of several groups [1-3, 33, 39, 48] led Ptashne to revise the third edition of his book on the λ bacteriophage genetic switch by adding a chapter on the newly proposed CI-mediated long-range interaction and its physiological implications [34].

Here, we summarize new findings on λ repressor interaction with λ DNA. We describe how single-molecule experiments in our laboratories have produced direct evidence of CI-mediated λ DNA looping in vitro [47], the critical role of interactions between CI dimers bound at the O3 sites in loop stabilization, and the correlation between CI-mediated looping and activity of $P_{R M}$ (Sect. 9.2). Furthermore, the complex kinetics of both loop formation and breakdown lead to a postulated kinetic scheme in which nonspecific binding by CI plays a significant role (Sect. 9.3). Strategies for testing this kinetic hypothesis and some preliminary evidence are described at the end of Sect. 9.3, while the conclusions are discussed in Sect. 9.4. The studies provide significant evidence that the multi-operator arrangement found in λ is the minimum necessary to guarantee robust lysogeny (strong repression of lytic genes) and efficient switching to lysis and mechanistic details of how looping confers epigenetic flexibility to cells.

9.2 Loop Stability and Correlation with In Vitro Transcription

9.2.1 CI Mediated Looping

Single molecule techniques have proven to be powerful tools for dissecting proteininduced conformational changes in DNA, such as looping. In particular, using the tethered particle motion (TPM) technique, direct evidence of loop formation and breakdown by CI was provided [47, 48]. In TPM, a submicron-sized bead is tethered by a single DNA molecule to the glass surface of a microscope flow chamber. The bead's lateral displacement with respect to the tether point $\rho(t)=\sqrt{x^{2}(t)+y^{2}(t)}$ is recorded as function of time. The running average of the squared displacement over a suitable $(4 \mathrm{~s})$ time window $\left\langle\rho^{2}\right\rangle_{4 \mathrm{~s}}^{1 / 2}$, is a measurement of the amplitude of the Brownian motion of the bead. In the presence of looping events, this gives rise to a telegraph-like signal $[5,6,12,31]$ and allows loop detection and quantification (Fig. 9.2, right).

In order to reliably analyze the Brownian motion and interpret amplitude fluctuations in TPM measurements, experimental and theoretical methods have been developed and successfully applied in predicting the TPM signal for a broad range of DNA tether lengths $[5,27,31]$.

Fig. $9.2\left\langle\rho^{2}\right\rangle_{4 S}^{1 / 2}$ as a function of time for beads tethered by a DNA fragment where the regulatory regions are separated by $2,317 \mathrm{bp}$. Left: In the absence of CI (control experiment); Right: In the presence of 20 nM CI (monomer). All measurements are performed in 1 buffer ($10 \mathrm{mM} \mathrm{Tris-HCl}$ $\mathrm{pH} 7.4,200 \mathrm{mM} \mathrm{KCl}, 5 \%$ DMSO, 0.1 mM EDTA, 0.2 mM DTT, and $0.1 \mathrm{mg} / \mathrm{ml}$ a-casein). The length of the DNA tether is $3,477 \mathrm{bp}$

9.2.2 Dependence of Loop Probability/Stability on CI Concentration and Correlation to $P_{R M}$ Activity

It is now evident that strong stability of the lysogenic state, effective repression of $P_{R M}$, and efficient switching to lysis in λ all involve DNA looping, which regulates the amount of synthesized CI protein. Therefore, it is important to understand how looping depends on CI concentration, as this will yield insight into the robustness and sensitivity of the λ switch. With this goal, our laboratories have directly detected and thermodynamically characterized. CI-mediated dynamic loop formation [48]. Loop formation was previously found to be correlated with transcriptional regulation of P_{L}, P_{R}, and $P_{R M}$ at various CI concentrations in the physiological range, based on the estimated number of CI monomers per lysogen [33]. In vitro transcription assays at different CI concentrations (Dale A.E. Lewis, unpublished results; Fig. 9.3a) can be compared with a series of TPM experiments, collectively constituting a "looping titration" (Fig. 9.3b).

For the purpose of this discussion, there are two important features of the transcription results. First, transcription from the lytic promoters P_{L} and P_{R}, which is high at low CI concentrations, is reduced at 8 nM CI and is completely repressed at 20 nM CI. Second, CI transcription from $P_{R M}$ is a function of CI concentration, as expected from the model of positive/negative autoregulation described in Sect. 9.1. The assays indicate that transcription from $P_{R M}$, at a basal level for concentrations lower than 8 nM , increases up to maximal activation at 20 nM CI and is progressively repressed as the concentration of CI is increased further (Fig. 9.3a).

According to the model for $P_{R M}$ autoregulation, repression should result from $O_{R} 3$ occupation, which in turn results from loop formation and $O_{L} 3$ occupation. Therefore, the probability of loop formation should be an increasing function of CI concentration (Fig. 9.3a, left panel). In order to test this idea, TPM measurements

Fig. 9.3 (a) $P_{R M}$ transcription concentration dependence. Left, in vitro transcription assays showing the amount of transcripts from $P_{R=}$ and the lytic promoters P_{L} and P_{K}. Right, comparison of the trends of $P_{B M}$ activity. Experimental data for wt λ DNA (dots). Solid line is best fit for $w t ~ \lambda$ and dashed lines are simulated repression curves for $\mathrm{O3}^{-}$and $O_{t} 3^{-}$DNA. All data are normalized to the maximum repression value obtained for $\mathrm{O3}^{-}$DNA. (b) Dependence of DNA looping on CI concentration. Leff, probability distribution of the TPM signal observed for tethered beads (about 40 for each condition) in the presence of different CI concentrations. The left column refers to wt DNA, while the right column refers to $\mathrm{O3}^{-} \mathrm{DNA}$. The gray peaks represent the control measurements without CI. Right, loop probability as a function of CI concentration for wt λ (dots) and O3- DNA (squares). The lines are the result of the best fit performed as explained in [48]
on several hundred DNA-tethered beads were performed. Cumulative histograms representing the data from all these measurements at CI concentrations of 0,20 , 40,80 , and 170 nM are reported in the left panel of Fig. 9.3b. This figure shows that in the absence of CI, DNA is in the unlooped state only; just one peak appears in the frequency histogram (gray). These control measurements also show the high reproducibility of the TPM experiments. In the presence of CI, the histograms
show two peaks: one corresponding to the DNA unlooped state (higher amplitudes of Brownian motion) and the other to the looped conformation (lower amplitudes of Brownian motion). Note that the looped state, although not predominant, does occur at low CI concentrations. At 40 nM CI concentration, DNA molecules spend half of the time in the looped configuration and this correlates well with the partial repression of $P_{R M}$ observed in Fig. 9.3a. In the presence of 80 nM CI , the DNA is prevalently looped, as expected from in vitro transcription assays. However, even at 170 nM CI , the DNA is not always looped. This indicates that the dynamic nature of the system is modulated by CI concentration, but never completely disappears at physiological concentrations. Interestingly, the probability of loop formation as derived from the histograms (Fig. 9.3b, right panel) was described very well by an extension of the statistical thermodynamic model developed by Ackers et al. [17, 38]. In order to relate the measured loop probabilities to the microscopic configurations of CI bound to the six operator sites, 81 unlooped and 32 looped configurations were considered according to the scheme proposed by Anderson and Yang [1, 2]. The probability for each DNA-protein configuration was expressed as,

$$
\begin{equation*}
f i=\frac{\left[C I_{2}\right]^{T} \exp \left(-\Delta G_{i} / R T\right)}{\sum_{i}\left[C I_{2}\right]^{5} \exp \left(-\Delta G_{i} / R T\right)}, \tag{9.1}
\end{equation*}
$$

where ΔG_{i} is the sum of the free energies for binding, short range cooperativity, and looping of each configuration and s_{i} is the number of bound CI dimers $\left(\mathrm{CI}_{2}\right.$; Fig. 9.4). CI dimer concentration was calculated from the expression for the total concentration of CI:

$$
\begin{equation*}
[\mathrm{CI}]_{\mathrm{tox}}=\sqrt{\frac{\left[\mathrm{CI}_{2}\right]}{K_{\mathrm{d}}}}+2\left[\mathrm{CI}_{2}\right]+2 K_{\mathrm{NS}} l[\mathrm{DNA}]\left[\mathrm{CI}_{2}\right]+[\mathrm{DNA}] \sum_{i} s_{i} \cdot f_{i}, \tag{9.2}
\end{equation*}
$$

where K_{d} is the dimerization constant for CI [4], K_{NS} is the nonspecific binding constant [4], and l is the DNA length in base pairs (see Table 1 in [48]). The terms of this equation from left to right represent: CI monomers, CI dimers, nonspecifically bound, and specifically bound CI. The concentration-dependent loop probability was then calculated as:

$$
\begin{equation*}
\text { Loop probability }=\frac{\sum_{i-\Omega}^{113} f_{i}}{\sum_{i=1}^{113} f_{i}} \tag{9.3}
\end{equation*}
$$

in which the sum in the numerator runs over all the 32 looped configurations as in $[1,2]$ and is normalized by the sum of all the possible (looped and unlooped) configurations.

This thermodynamic analysis assumes that the loop can be secured either by a CI octamer or by an octamer plus a tetramer. The difference in free energy between these two looped species represents the tetramerization free energy $\Delta G_{\text {tetr* }}$.

Fig. 9.4 Illustration of the procedure used to calculate ΔG_{i} in a few representative cases. The free energy for each unlooped species was expressed as the sum of all the free energies for binding and short-range cooperativity, available from previous work [17, 38]. The free energy expression for the looped species also included the term $\Delta \mathrm{G}_{\text {oat }}$ and the tetramerization term, $\Delta \mathrm{G}_{\text {ete }}$ was added only for configurations in which two CI dimers not involved in the octamer were juxtaposed [2]. Using this model, the probability of looping was expressed as a function of CI concentration. The experimental data obtained with both wt λ and $\lambda . O 3$ - DNA were fitted simultaneously to estimate ΔG_{oct} and $\Delta G_{\text {vetr }}$

To quantitatively correlate the single molecule experiment with the transcription assay, the same statistical mechanical model described above and used in [48] was employed to test whether it could also describe in vitro transcription from $P_{R M}$ Measurements of mRNA levels were made from the digitized image of the gel shown in the left panel of Fig. 9.3a and are shown in the right panel of Fig. 9.3a. Since the $P_{R M}$ promoter is activated by occupancy of the O_{R}^{2} operator and it is repressed by the binding of a CI dimer to $O_{R} 3$ [29], the expression for transcription from $P_{R M}$ was as:
in which a basal transcription value was assigned to all the configurations except those having $O_{R} 2$ occupied (activated transcription) and those having $O_{R} 3$ occupied (repressed transcription). Although the effect of looping on the repression of transcription is still a matter of debate $[1,2,11,33]$, we assumed a two- to threefold $(\alpha=2-3)$ increase for the activated transcription in the looped state [1, 2]. In the fitting of this data, the activated transcription $p_{\text {act }}, \Delta G_{\text {oct }}$, and $\Delta G_{\text {tetr }}$ values were left as free parameters. The remarkable fit demonstrates that the model also accurately describes how transcription depends on CI concentration.

It must be noted that the in vitro transcription experiments were carried out on plasmids having a loop length of only $\sim 400 \mathrm{bp}$, whereas in the TPM experiment the wt loop region ($\sim 2,000 \mathrm{bp}$) was used. Since the free energy of loop formation also depends on the physical properties of DNA (loop length, supercoiling state, and persistence length), a direct comparison of the looping free energy $\Delta G_{\text {ot }}$ obtained in the
two cases is not possible. However, the lower value found for ΔG_{oct} in the transcription assay presumably reflects the reduced cost of looping due to plasmid supercoiling and shorter loop size. On the other hand, since tetramer formation takes place after loop closure, the value of $\Delta G_{\text {texr }}$ is not influenced by the loop length or the degree of supercoiling. Consequently, the values of $\Delta G_{\text {vetr }}$ determined in fitting the transcription assay $(-2.1 \mathrm{kcal} / \mathrm{mol})$ and the TPM-derived $\Delta G_{\text {ketr }}(-2.4 \mathrm{kcal} / \mathrm{mol})$ [48$]$ are very similar.

9.2.3 Role of the O3 Operators

If (1) the four sites $O_{L} 1, O_{L}^{2}$ and $O_{R} 1, O_{R}^{2}$ are occupied first and almost simultaneously because of strong and cooperative binding of CI, and (2) CI octamer-mediated loop formation is further secured by the "head-to-head" interaction of two dimers bound at the $O_{L}{ }^{3}$ and $O_{R}{ }^{3}$ operators, then mutation of the O3 operators should interfere with stable CI-mediated looping. This idea was tested with TPM experiments using DNA tethers containing mutated $O 3$ sites (O^{-}DNA) at four different CI concentrations (Fig. 9.3b). Details regarding these measurements are reported in [48]. First, it was verified that no loop formation was observed in $O_{L}{ }^{-} O_{R}{ }^{-} \mathrm{DNA}$, where all six λ operators had been mutated (Fig. 9.5, third panel). This indicated that the selected point mutations effectively abrogate specific CI binding to operators. Then the probability of loop formation in $\mathrm{O3}^{-}$DNA was found to be approximately 10% for all CI concentrations tested (Fig. 9.3b, middle panel). These results show that intact O 3 operators dramatically shift the equilibrium toward looping. According to the thermodynamic model, concentration-independent OB^{-}looping results from cooperative filling of all the remaining sites, even at low CI concentration [30]. Instead, in the wt DNA, concentration-driven occupancy of the O3 sites drives the formation of octamer-plus-tetramer-mediated loops with lower free energy than CI octamer-mediated loops.

Fig. 9.5 Histograms of the TPM signal measured for wt, OB^{-}and null DNA at various nanomolar concentrations of CI reveal that (left) looping increases with CI concentration for wild-type DNA, (middle) looping dramatically decreases when O3 operators are mutated, and (right) simultaneous mutations to all operators abrogates looping

9.2.4 CI Nonspecific Binding

The peak corresponding to the extended, unlooped state in the frequency distribution histograms of the TPM signal shifts toward smaller values of $\left\langle\rho^{2}\right\rangle_{4 \mathrm{~S}}^{1 / 2}$, as CI concentration increases (Figs. 9.3b and 9.5). This could have two different causes: poor temporal resolution preventing resolution of fast loop breakdown events and/or progressive DNA compaction due to bending associated with nonspecific binding of CI to the double helix. Typically, the system is sampled at 50 Hz , but filtering reduces the resolution to 4 s . Even using statistical methods that do not employ filtering (see below), shortening of the unlooped DNA occurs. Thus, the effect of increasing CI concentrations was compared on null ($O L^{-} O R^{-}$), wt and O3- DNA (Fig. 9.5). The peak corresponding to unlooped DNA shifted leftward in all cases, suggesting that nonspecific CI binding is significant and considerably shortens the DNA tether. Work from the Cox lab lends strong support to the idea that nonspecific CI binding may be significant [44].

Further evidence of nonspecific, CI-induced DNA bending was obtained stretching and relaxing single DNA molecules by means of magnetic tweezers. The force versus extension curves that were obtained with or without CI were markedly different (Fig. 9.6). In order to produce equivalent DNA extension, more force was necessary in the presence of CI, indicating that CI may induce bends or kinks in the DNA through binding or transient interactions with nearby dimers that bend the intervening DNA. The noteworthy hysteresis between the relaxation and stretching cycles may reveal interesting mechanistic details and is under investigation. Furthermore, quantification of the number of nonspecifically bound proteins is possible using the recent model proposed by Zhang and Marko [46], Liebesny et al. [50].

Fig. 9.6 DNA extension versus force for a wt, 11 kbp -long DNA molecule. Dots are averages of points from several pulling/relaxation cycles, in the absence of protein (black) and in the presence of 80 nM CI (blue and red). The solid curve is a worm-like-chain fit obtained assuming a persistence length for DNA of 52 nm . The arrows indicate that the experimental data were collected during stretching (blue) or relaxation of the DNA molecule (red)

Considering that CI mRNA is transcribed and translated close to $P_{R M}$, which likely produces a local concentration of CI dimers in excess with respect to the number of operators [33, 34], nonspecific binding may have physiological relevance, just as shown in the case of other proteins [14, 49].

9.3 Kinetics of CI-Mediated DNA Loop Formation and Breakdown

Kinetic analysis of formation and breakdown of the CI-mediated loop yields insight into the mechanism of looping and its regulatory effect on transcription. The kinetics of protein-induced loop formation and breakdown have been deduced from TPM data for a variety of simple systems [12, 40, 41]. In these studies, the TPM signal was analyzed using time filtering (averaging) of the raw data followed by thresholding to determine the state of the system. Then, the measured dwell times of each state were plotted as probability density functions and the average lifetime of the looped or unlooped state was determined. For such systems, characterized by a simple kinetics, a single (or at most a double) exponential function can fit the data satisfactorily. In this way, the rate constants for the looping and unlooping reactions have been obtained along with an estimate for the free energy of loop formation. Note, however, that in all these cases, time filtering of the raw data significantly impacts the time resolution of the measurements and the kinetic constants. Methods have been proposed to either correct for such a drawback [8,40,41] or determine the kinetic constants from the raw data $[8,36]$. These approaches, however, require the knowledge of the kinetic mechanism of the reaction being considered, and their application is limited to cases in which: (a) there is only a small number of discrete states separated by fixed energy barriers and (b) the kinetic rate constants connecting these states are independent [21].

An ideal method of data analysis should have the highest possible time resolution and should be independent of physical models. In addition, it should avoid user-adjustable parameters, such as filtering, that skew the raw data.

Therefore, an alternative approach to the analysis of TPM traces was devised by Manzo and Finzi [27] based on a method previously published for time traces exhibiting discrete jumps in intensity [45]. A generalized likelihood ratio test is first applied to determine the location of a TPM signal change point (cp). This test is applied recursively to an entire TPM trace, to identify all cps (transitions between different DNA configurations). Expectation-maximization (EM) clustering and the Bayesian information criterion are then used for accurate determination of the number of states accessible to the system. This procedure (cp-EM) allows objective and quantitative determination of TPM cps without the artificial time resolution limitations that arise from filtering and thresholding [45]. The applicability and performance of this analysis was tested on artificial TPM data assembled ad hoc from segments of TPM data acquired in the absence of CI (unlooped) interdispersed between segments of TPM data from a DNA molecule of overall length comparable to that expected for the looped lambda DNA. Subsequently, the cp-EM algorithm
was used to analyze TPM data for a lambda DNA molecule in the presence of CI. This analysis confirmed that CI interaction with its operators produces most likely two states, which were commensurate with the looped and unlooped DNA states. The ep-EM approach allowed determination of the looped and unlooped dwell time distributions with a much increased time resolution [27].

9.3.1 Analysis of the λ Loop Kinetics

The cp-EM method described above and in [27] was applied to the analysis of the kinetics of CI-mediated loop formation and breakdown. Interestingly, the probability distribution function (pdf) for the dwell times of the looped and unlooped DNA conformations (states) span several orders of magnitude and show nonexponential tails at long times (Figs. 9.7 and 9.8). In the case of λ DNA, it is reasonable to assume that the tripartite operator organization might lead to complex dynamics for loop formation and breakdown. Nevertheless, the discrete and Markovian nature of the kinetic system still predicts an exponential behavior for the pdfs.

We recall here that nonexponential decays have been reported for other physical systems such as ion channel currents [20, 22-25], quantum dot blinking time [13] and for fluorescence emission by green fluorescent protein [18, 19]. Notably, the dwell time determination by means of the filtering-threshold approach produced qualitatively similar results, excluding the possibility that artifacts might have been

Fig. 9.7 Kinetics of loop formation. Top: Probability distribution function obtained for the dwell times of the unlooped state of wt DNA (left) and O3-(right) in the presence of 40 nM CI. Lines are the result of fitting by a stretched exponential pdf. Bottom: Average time spent in the unlooped configuration. Wild type and O^{-}- data points are blue and red, respectively

Fig. 9.8 Kinetics of loop breakdown. Top: Probability distribution function obtained for the dwell times of the looped state of wt DNA (lefi) and $\mathrm{O3}^{-}$(right) in the presence of 40 nM CI. Lines show the power law behavior at large times. Bottom: Power law exponent m determined from fitting the longer lifetimes. Wild type and $\mathrm{O3}^{-}$data points are blue and red, respectively
introduced by the cp method. Also the fact that, even a single DNA molecule observed for a long time, exhibited looped and unlooped dwell times spanning several orders of magnitude (Fig. 9.9) ruled out the possibility that complex kinetics may arise from heterogeneous sample preparations.

To empirically describe the data, we tested several pdfs. We found that a stretched exponential form provided a satisfactory fitting for the probability distribution of the unlooped state dwell times at any tested CI concentration.

The stretched exponential distribution is expressed as:

$$
\begin{equation*}
\operatorname{pdf}_{\mathrm{str}}=c \frac{t^{c-1}}{t_{0}^{c}} \exp \left\{-\left(\frac{t}{t_{0}}\right)^{c}\right\} \tag{9.5}
\end{equation*}
$$

where the two adjustable parameter are the scale parameter t_{0} and the exponent c, the latter being smaller than one and giving an exponential distribution in the limit $c=1$. From these parameters, the mean time is obtained as:

$$
\begin{equation*}
\tau=\frac{t_{0}}{c} \Gamma\left(\frac{1}{c}\right) \tag{9.6}
\end{equation*}
$$

where $\Gamma(x)$ represents the gamma function. The upper panels of Fig. 9.7 show the fit of the data relative to both $w t$ and $\mathrm{O3}^{-}$DNA in the presence of 40 nM CI using the

Fig. 9.9 A TPM trace for a wt DNA molecule in the presence of 40 nM CL . The DNA is $3,477 \mathrm{bp}$ long
stretched exponential distribution function. Both fitting parameters t_{0} and c show dependence on CI concentration and are significantly sensitive to the type of DNA (data not shown). As a consequence, their mean unlooped times, τ, are similar, as shown in the lower panel of Fig. 9.7. For both $w t \lambda$ and $\mathrm{O3}^{-} \mathrm{DNA}, \tau$ decreases with CI concentration, although it does so more rapidly for the $w t \lambda$ than for the $\mathrm{O3}^{-}$DNA.

On the other hand, the dwell time distribution for the looped DNA state could not be fitted with a standard pdf; we observe, however, a power law decay at long times, resulting in a straight line on a $\log -\log$ plot. The power law pdf:

$$
\begin{equation*}
\mathrm{pdf}_{\mathrm{pl}} \propto t^{-\mathrm{m}} \tag{9.7}
\end{equation*}
$$

is sometimes referred as a "fractal" distribution since it reveals no characteristic size of the system, and therefore makes it impossible to extract a mean lifetime from the data. The $\log -\log$ plots of the looped time distribution for $w t \lambda$ and $O 3^{-}$DNA at 40 nM CI (Fig. 9.8, upper panels) show that, while the data from $\mathrm{O3}^{-}$DNA are well described by a power law function even at very short times, those from wt DNA are not. In both cases, however, the data for longer lifetimes are characterized by the exponent $\mathrm{m} \approx 2$ in all the experimental conditions tested (lower panel of Fig. 9.8).

9.3.2 Suggested Mechanism of Loop Formation and Breakdown and Role of Nonspecific Binding

The single-molecule experiments described in Sects. 9.2 and 9.3.1 highlight four important features of the λ regulatory loop: (1) the pivotal role of the $O 3$ sites in the thermodynamics of loop formation, (2) the concentration dependence of both loop formation and breakdown, (3) the presence of significant nonspecific CI binding even at low protein concentrations, which seems to bend or soften DNA and, finally, (4) the nonexponential kinetic behavior of both loop formation and breakdown. Taken together, these observations lead us to formulate the kinetic mechanism described below.

First, consider loop formation. The most direct information on this process is provided by the distribution of the lifetimes of the unlooped state, which indicates the
average time for loop formation. As mentioned previously, this distribution is described by a stretched exponential function and the average unlooped state lifetime varies with CI concentration and is affected by mutations of the O 3 sites (Fig. 9.7). According to the thermodynamic hypothesis that a CI octamer is the minimum requirement for loop formation $[2,11,48]$, which is then stabilized by an additional CI tetramer, the concentration dependence can simply be explained by the increase in the population of the loop-forming substates (i.e., those having at least two pairs of adjacent, specifically bound CI dimers) as the amount of CI increases.

Kinetic complexity may arise from nonspecific binding of CI to DNA. Indeed, our TPM and force spectroscopy measurements show ample evidence of nonspecific CI binding (see Sect. 9.2.4), and there is other evidence from the Cox group [44]. Nonspecifically bound CI dimers may shorten the DNA by bending or softening the double helix upon binding or through interaction with nearby dimers. The ensuing DNA bending could facilitate loop formation by reducing the elastic energy necessary for loop closure which, in turn, increases the encounter probability among the proteins bound at these two regions. The relevance of these effects would depend on the number of nonspecifically bound proteins in the loop region, n_{Ns}. The variation of the number of nonspecifically bound dimers would then generate a distribution of rate constants for loop formation (schematically represented by $k_{\mathrm{L}}\left(n_{\mathrm{NS}}\right)$ in Fig. 9.10) that could explain the observed stretched-exponential pdf. Note that nonspecific CI binding is likely to be relevant in vivo as well, since CI is produced in excess with respect to the number of operators [33].

In the case of loop breakdown kinetics, the distribution of the looped lifetimes also depends on CI concentration and on the presence of the $O 3$ sites, but cannot be described by a standard pdf. Moreover, the distribution of long dwell times shows a power law decay with an exponent which does not depend on the experimental conditions. According to the thermodynamic model described above [2, 48], the many possible looped substates can be grouped in two classes mediated by either four or six CI dimers, respectively. Each class will have a different breakdown rate. Consequently and in qualitative agreement with the experiments, the model predicts concentration-dependent loop breakdown kinetics and a simpler distribution in the case of $\mathrm{O3}^{-}$DNA in which octamer + tetramer loop cannot form. However, as for the distribution of unlooped lifetimes, the observed pdfs do not exhibit simple exponential behavior.

Nonspecific CI binding may contribute to the observed decay at long times. Indeed, nonspecifically bound CI dimers might interact through their CTD residues [7, 15] just as specifically bound dimers do. In particular, nonspecifically bound dimers within the loop may tetramerize $[7,15]$ to fortify the specific nucleoprotein complex that secures the loop. In Fig. 9.10, $k_{\mathrm{L}}\left(\mathrm{n}_{\mathrm{NS}}\right)$ and k_{U} represent the rate constants of loop formation and breakdown. If no additional nonspecifically bound proteins are present, $k_{\mathrm{L}}\left(\mathrm{n}_{\mathrm{Ns}}=0\right)$ is single valued and the kinetics of the system are exponential. In the presence of nonspecifically bound CI, the variation of n_{NS} broadens the distribution of $k_{\mathrm{L}}\left(\mathrm{n}_{\mathrm{NS}}\right)$. Any further tetramerization between these nonspecifically bound dimers would be dependent on their number n_{NS} and on their relative separation, ℓ, as schematically diagrammed in Fig. 9.10, where $k_{\mathrm{a}}\left(\mathrm{n}_{\mathrm{NS}}, \ell\right)$ represents a distribution of rate

Fig. 9.10 A hypothetical kinetic scheme for loop formation and breakdown. In addition to the CI dimers at the operator sites (blue), nonspecifically bound dimers may affect the rate of loop formation (green) by DNA bending and may strengthen the loop providing additional loop closure elements (red). For simplicity only the case of an octameric loop is sketched
constants for the association between additional, loop-stabilizing CI tetramers (red), and k_{d} is the rate constant for their dissociation. These manifold looped states would give rise to a continuous distribution of waiting times for the breakdown of the λ-mediated loop, producing a power law-like decay.

The model for loop formation and breakdown hypothesized here is based on two main ideas: the critical role of the $O 3$ sites and nonspecific CI binding. The latter might facilitate loop formation in this and other physiologically relevant proteininduced loops by decreasing the distance between the interacting sites, maintaining proximity of the specific regions, and by adding stabilizing protein-protein interactions. Indeed, CI has been estimated to be in excess with respect to the number of specific binding sites [33] and extra CI is thought to confer immunity against subsequent infection by additional phages [34].

This proposed mechanism of loop formation and breakdown by the CI repressor seems to be the simplest possible explanation that is consistent with and reconciles: (a) known biochemical data on CI/operator affinity and side-by-side cooperativity [17, 38], (b) in vivo transcription data [1], and (c) single-molecule data. This mechanism is also attractive because its key assumptions may easily be tested and the experiments should yield useful guidelines for similar loop-based, regulatory looping systems. Furthermore, we would like to draw the attention of the reader to the fact that, as pointed out by Vilar and Saiz [42], only a narrow range of looping free energies separates high-sensitivity activation and repression of the $P_{R M}$ promoter. In this sense, nonspecific binding might function as a concentration-sensitive mechanism for the fine tuning of the looping free energy.

9.3.3 Evidence in Support of the Kinetic Scheme

The kinetic model outlined above may be tested in at least two ways: First, a theoretical formulation of the distribution of rate constants produced by nonspecific binding could be derived and compared to the experimental pdfs. Second, the various possible looped and unlooped species and their dependence on CI concentration could be characterized using atomic force microscopy. This single-molecule technique can directly reveal the number of nonspecifically bound CI dimers and their interactions, and some evidence has already been obtained. Figure 9.11 shows AFM images of λ DNA without CI, λ DNA bound specifically by CI, and CI-mediated loops in λ DNA. Volume analysis of the CI particle at the loop closure in several such AFM images revealed that the size of the protein particle increased over time (Fig. 9.12) [43]. Together, these data suggest that as time passes additional proteins bind to stabilize loops.

Furthermore, AFM images of DNA molecules in the presence of 40 nM CI included a few DNA loops secured by adjacent protein complexes (Fig. 9.13). These species, reported also in [43], might represent those with additional nonspecific loop closures hypothesized in the kinetic model proposed in Sect. 9.3.2. More experimentation is necessary to confirm these hypotheses. Luckily, experimental and analytical methods are now available to interrogate simple epigenetic switches, such as lambda, and characterize the molecular mechanisms involved.

Fig. 9.11 Left column: DNA; center column: Cl bound at operators on unlooped DNA; right column: CI-mediated DNA looping. Scale bars represent 100 nm

Fig. 9.12 Histograms of particle volumes measured at the loop junction after incubating DNA with 20 nM CI for 10 min (left) or 1 h (right)

Fig. 9.13 AFM images in which the CI-mediated DNA loop is secured by two distinct protein particles. Scale bar: 100 nm

9.4 Conclusions

From viruses to humans, transcription is regulated by proteins that topologically constrain DNA. In most cases genes are controlled by large, cooperative assemblies of proteins that wrap and loop the DNA. These protein-induced conformational changes in the DNA often constitute real "epigenetic switches" whereby shifting the equilibrium towards one configuration or the other transcriptionally commits the system to one developmental pathway or another. Such is the case of the λ bacteriophage and,
perhaps, of most temperate bacteriophages that may proliferate either quiescently (lysogenic mode) or virulently (lytic mode). Most often following infection, the repressor protein, CI, binds to multipartite operators and mediates cooperative, longrange interactions that repress the lytic genes and maintain a stable lysogenic state, until adverse conditions (DNA damage, toxicity, starvation, etc.) induce a cascade of events that leads to the dissociation of CI from the double helix and efficient switching to lysis. This switch that alternatively stabilizes lysogeny or commits the λ bacteriophage to lytic reproduction [16] is a convenient, experimentally tractable epigenetic paradigm of transcriptional regulation. Due to the importance of λ as a model system not only for transcriptional regulation, but also for genetic networks, the underpinnings of this regulatory loop are important for understanding the sensitivity, stability and operation of such networks in epigenetics.

In this chapter, we have discussed new approaches to reveal details of the molecular mechanism of λ repressor-mediated looping. Single molecule observations have, first of all, provided direct evidence of CI-induced looping between the wild-type lambda operators. In addition, a titration of loop closure probability versus CI concentration combined with a thermodynamic model has substantially confirmed the hypothetical octamer + tetramer mechanism of CI-mediated regulation of lysogeny. Finally, kinetic analyses of the looping dynamics suggest an unsuspected, but in retrospect, logical role that non-specific binding of the CI protein likely plays in lysogenic regulation. In a short time single molecule experimentation has provided detailed insight into how long-range interactions may govern epigenetic switching and these mechanisms will be pertinent to a variety of other systems with multipartite operators and multi- or heteromeric protein assemblies [30].

Acknowledgments We would like to thank previous and current members of our groups whose research has facilitated these studies. We are also grateful to Haw Yang, who has provided reagents, analytical tools, and advice. The work described in this chapter was supported by the Italian Funding of Basic Research to LF and DDD, by the HFSP(RGP0050/2002-C) to L.F. and S.A., by the Intramural Research Program of the National Institutes of Health, National Cancer Institute and the Center for Cancer Research to S.A., by the Emory University Research Council and the NIH (RGM084070A) to LF.

References

1. Anderson L, Yang H (2008) A simplified model for lysogenic regulation through DNA looping. Conf Proc IEEE Eng Med Biol Soc 2008:607-610
2. Anderson LM, Yang H (2008) DNA looping can enhance lysogenic CI transcription in phage lambda. Proc Natl Acad Sci U S A 105(15):5827-5832
3. Atsumi S, Little JW (2006) Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach. Proc Natl Acad Sci USA 103(12): 4558-4563
4. Bakk A, Metzler R (2004) Nonspecific binding of the O-R repressors CI and Cro of bacteriophage lambda. J Theor Biol 231(4):525-533
5. Beausang JF, Zurla C, Finzi L, Sullivan L, Nelson PC (2007) Elementary simulation of tethered Brownian motion. Am J Phys 75:520-523
6. Beausang JF, Zurla C, Manzo C, Dunlap D, Finzi L, Nelson PC (2007) DNA looping kinetics analyzed using diffusive hidden Markov model. Biophys J 92(8):L64-L66
7. Bell CE, Frescura P, Hochschild A, Lewis M (2000) Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding. Cell 101(7):801-811
8. Colquhoun D, Sigworth FJ (1983) Fitting and statistical analysis of single channel recording. Plenum, New York
9. Dodd IB, Perkins AJ, Tsemitsidis D, Egan JB (2001) Octamerization of lambda CI repressor is needed for effective repression of P-RM and efficient switching from lysogeny. Genes Dev 15(22):3013-3022
10. Dodd IB, Shearwin KE, Egan JB (2005) Revisited gene regulation in bacteriophage lambda. Curr Opin Genet Dev 15(2):145-152
11. Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB (2004) Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev 18(3):344-354
12. Finzi L, Gelles J (1995) Measurement of lactose repressor-mediated loop formation and breakdown in single DNA-molecules. Science 267(5196):378-380
13. Frantsuzov P, Kuno M, Janko B, Marcus RA (2008) Universal emission intermittency in quantum dots, nanorods and nanowires. Nat Phys 4(5):519-522 [10.1038/nphys 1001]
14. Guerra RF, Imperadori L, Mantovani R, Dunlap DD, Finzi L (2007) DNA compaction by the nuclear factor-Y. Biophys J 93(1): 176-182
15. Hochschild A, Ptashne M (1988) Interaction at a distance between lambda-repressors disrupts gene activation. Nature 336(6197):353-357
16. Jain D, Nickels BE, Sun L, Hochschild A, Darst SA (2004) Structure of a ternary transcription activation complex. Mol Cell 13(1):45-53
17. Koblan KS, Ackers GK (1992) Site-specific enthalpic regulation of DNA-transcription at bacteriophage-lambda OR. Biochemistry 31(1):57-65
18. Leiderman P, Huppert D, Agmon N (2006) Transition in the temperature-dependence of gfp fluorescence: from proton wires to proton exit. Biophys J 90(3):1009-1018. doi:10.1529/ biophysj.105.069393
19. Leiderman P, Huppert D, Remington SJ, Tolbert LM, Solntsev KM (2008) The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chem Phys Lett 455(4-6):303-306. doi:10.1016/j.cplett.2008.02.079
20. Liebovitch LS (1989) Analysis of fractal ion channel gating kinetics - kinetic rates, energylevels, and activation-energies. Math Biosci 93(1):97-115
21. Liebovitch LS (1989) Testing fractal and Markov-models of ion channel kinetics. Biophys J 55(2):373-377
22. Liebovitch LS, Fischbarg J, Koniarek JP (1987) Ion channel kinetics - a model based on fractal scaling rather than multistate Markov-processes. Math Biosci 84(1):37-68
23. Liebovitch LS, Fischbarg J, Koniarek JP, Todorova I, Wang M (1987) Fractal model of ionchannel kinetics. Biochim Biophys Acta 896(2):173-180
24. Liebovitch LS, Sullivan JM (1987) Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal-neurons. Biophys J 52(6):979-988
25. Liebovitch LS, Toth TI (1991) Distributions of activation-energy barriers that produce stretched exponential probability-distributions for the time spent in each state of the 2 state reaction a-reversible-B. Bull Math Biol 53(3):443-455
26. Maniatis T, Ptashne M (1973) Multiple repressor binding at operators in bacteriophagelambda - (nuclease protection polynucleotide sizing pyrimidine tracts supercoils E. coli). Proc Natl Acad Sci U S A 70(5): 1531-1535
27. Manzo C, Finzi L (2010) Quantitative analysis of DNA looping kinetics from tethered particle motion experiments in Methods in Enzymology, volume 475 "Molecule Tools, Part B: SuperResolution, Particle Tracking, Multiparameter, and Force Based Methods", Ed. Nils G. Walter, pp 199-220.
28. Matthews KS (1992) DNA looping. Microbiol Rev 56(1):123-136
29. Maurer R, Meyer BJ, Ptashne M (1980) Gene-regulation at the right operator (Or) of bacteriophage-lambda.1. Or 3 and autogenous negative control by repressor. J Mol Biol 139(2): 147-161
30. Meyer BJ, Maurer R, Ptashne M (1980) Gene-regulation at the right operator (Or) of bacteriophage-lambda.2. Or1, Or2, and Or3 - their roles in mediating the effects of repressor and Cro. J Mol Biol 139(2):163-194
31. Nelson PC, Zurla C, Brogioli D, Beausang JF, Finzi L, Dunlap D (2006) Tethered particle motion as a diagnostic of DNA tether length. J Phys Chem B 110(34):17260-17267
32. Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A (2002) Protein-protein and protein-DNA interactions of sigma(70) region 4 involved in transcription activation by lambda cl. J Mol Biol 324(1):17-34
33. Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39:409-429
34. Ptashne M (2004) A genetic switch: phage lambda revisited, vol 3, 3rd edn. Cold Spring Harbor Laboratory, New York
35. Ptashne M, Gann A (2002) Genes and signals. Cold Spring Harbor Laboratory, New York
36. Qian $\mathrm{H}(2000)$ A mathematical analysis for the Brownian dynamics of a DNA tether. J Math Biol 41(4):331-340
37. Revet B, von Wilcken-Bergmann B, Bessert H, Barker A, Muller-Hill B (1999) Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Curr Biol 9(3):151-154
38. Senear DF, Brenowitz M, Shea MA, Ackers GK (1986) Energetics of cooperative proteinDNA interactions - comparison between quantitative deoxyribonuclease footprint titration and filter binding. Biochemistry 25(23):7344-7354
39. Stayrook S, Jaru-Ampornpan P, Ni J, Hochschild A, Lewis M (2008) Crystal structure of the lambda repressor and a model for pairwise cooperative operator binding. Nature 452(7190):1022-1025
40. van den Broek B, Vanzi F, Normanno D, Pavone FS, Wuite GJL (2006) Real-time observation of DNA looping dynamics of type IIE restriction enzymes NaeI and NarI. Nucleic Acids Res 34(1):167-174
41. Vanzi F, Broggio C, Sacconi L, Pavone FS (2006) Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion. Nucleic Acids Res 34(12):3409-3420
42. Vilar JMG, Saiz L (2005) DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Curr Opin Genet Dev 15(2):136-144
43. Wang H, Finzi L, Lewis D, Dunlap D (2009) AFM studies of the CI oligomers that secure DNA loops. J Pharm Biotechnol 10:494-501
44. Wang Y, Guo L, Golding I, Cox EC, Ong NP (2009) Quantitative transcription factor binding kinetics at the single-molecule level. Biophys J 96:609-620
45. Watkins LP, Yang H (2005) Detection of intensity change points in time-resolved singlemolecule measurements. J Phys Chem B 109(1):617-628
46. Zhang HY, Marko JF (2008) Maxwell relations for single-DNA experiments: monitoring protein binding and double-helix torque with force-extension measurements. Phys Rev E 77(3):031916.1-031916.9
47. Zurla C, Franzini A, Galli G, Dunlap DD, Lewis DEA, Adhya S et al (2006) Novel tethered particle motion analysis of CI protein-mediated DNA looping in the regulation of bacteriophage lambda. J Phys Condens Matter 18(14):S225-S234
48. Zurla C, Manzo C, Dunlap DD, Lewis DEA, Adhya S, Finzi L (2009) Direct demonstration and quantification of long-range DNA looping by the lambda bacteriophage repressor. Nucleic Acids Res 37:2789-2795
49. Zurla C, Samuely T, Bertoni G, Valle F, Dietler G, Finzi L et al (2007) Integration host factor alters LacI-induced DNA looping. Biophys Chem 128(2-3):245-252
50. Liebesny P, Goyal S, Dunlap D, Fereydoon family, Finz L, Fereydoon Family, Determination of the Number of Proteins Bound non-Specifically to DNA. JPCM (in press)

Appendix C: 186 CI paper draft

A missing link between transcription factors and nucleosomes: the bacteriophage 186 Cl repressor wraps and loops DNA

Introduction

- Idea of a binding specificity continuum.

TFs: Small protein-DNA contact region, high specificity
Nucleosomes. Large protein-DNA contact region, low specificity
186 CI: Large protein-DNA contact region, high specificity

- Nucleosomes:

Structure

Wrapping/unwrapping of DNA
Looping - when relocated
Low sequence specificity
'Sub-nucleosome' binding: the $\mathrm{H} 3-\mathrm{H} 4$ tetramer
Higher order structures: nucleosome-nucleosome interactions (e.g. 30 nm fibre)

- 186 CI:

Structural model
Biochemical info
Regulatory model

Materials and Methods

AFM sample preparation

1584 bp-long DNA fragments were produced by cutting plasmids derived from pBluescript containing wild type 186 operators ($F L, F R, \mathrm{pR}, \mathrm{pL}$) with two restriction enzymes: NgoMIV and Xmal (New England BioLabs). The digestion product was isolated and purified (QIAGEN gel purification kit). The position of the midpoint of each operator from one end is: $178 \mathrm{bp} / 56.7 \mathrm{~nm}$ (FL), 484bp/154.9nm (baricenter of pR. In particular, 463bp/148.2nm (pR1), $484 \mathrm{bp} / 154.9 \mathrm{~nm}$ (pR2), $505 \mathrm{bp} / 161.6 \mathrm{~nm}$ (pR 3)), $567 \mathrm{bp} / 181.4 \mathrm{~nm}$ (pL) and $857 \mathrm{bp} / 274.2 \mathrm{~nm}$ (FR).

The following forward and reverse primers were used to amplify various DNA fragments as follows: 5'-TTACCGGAGAAGGAGAAGCA-3' and 5'-ATTAATGCAGCTGGCACGAC-3'(524 bp-long DNA containing only FL), and Biotin5'-CTTTCTTGCAGCCTTTACGG-3' and 5'-

TTTACAAATGCTTCTCCTTCTCC-3' (528 bp-long DNA containing just pR and pl).
Wild-type 186 CI repressor was prepared and purified as described previously [1]. The protein was diluted to the desired final concentration ($5 \mathrm{nM}, 50$ and 100 nM) in the presence of 1 nM DNA in a buffer containing 50 mM HEPES, 150 mM NaCl and 0.1 mM EDTA (pH 7.0). All steps were conducted at $\mathrm{T}_{\text {room }}$. The mixture was incubated for 20 min . The biotin-labelled DNA fragment was incubated in a mixture containing also $1 \mu \mathrm{~g} / \mathrm{ml}$ streptavidin. Shortly before deposition, a $10 \mu \mathrm{l}$ drop of $0.01 \mu \mathrm{~g} / \mathrm{ml}$ poly-Lornithine (1 kDa MW, Sigma-Aldrich, St. Louis, MO) was incubated on freshly cleaved mica for one minute. The poly-L-ornithine-coated mica was then washed with 0.4 ml HPLC water and dried with compressed air. Then, $10 \mu \mathrm{l}$ of the solution containing DNA and protein were deposited on the poly-L-ornithine-coated mica and incubated for one minute. The droplet was rinsed with 0.4 ml HPLC water and dried gently with compressed air. The sample was left overnight in a desiccator before imaging. Images were acquired with a NanoScope MultiMode AFM microscope (Digital Instrument, Santa Barbara, CA) operated in tapping mode using uncoated, etched silicon tips (MirkoMasch, San Jose, CA). The oscillation amplitude was $50-60 \mathrm{mV}$ with a resonance frequency of 75 kHz (NSC18, MirkoMasch, San Jose, CA). Areas of $1 \times 1 \mu \mathrm{~m}^{2}$ were scanned at a rate of 1.2 Hz and with a resolution of 512×512 pixels. After filtering images to remove scan line offsets and bowing, DNA molecules were interactively traced with NeuronJ [2], a plug-in function for ImageJ [3]. TPM sample preparation:

1898 bp-long wt or mutated DNA segments were produced by PCR after inserting a relevant fragment from pBluescript into pDL611 (ref). The following primers: 5' TCC AGA GGC GCC GGG GGG TTC GTG CAC ACA G and 5'TGGTAACCTAGGTAAACAAATAGGGGTTCCGCGCAC
were used to amplify by pcr the 186 region contained in pBluescript. pDL611 and the pcr product were then digested with EcoR1 and Pst1 in order to insert by ligation the 186 region
from pBluescript into pDL611. The final TPM tether was obtained by pcr using this modified plasmid and the following 5^{\prime} end biotin and digoxigenin-labeled oligos:

5'- bio-CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGC-3' and 5'-dig-GCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTC-3'

The FL- or FR- DNA fragments contained mutated FL or FR operators to prevent CI binding. In $\Delta p R$ DNA the region containing the $p R$ binding sites was replaced with an equally long, but unrelated DNA.

The TPM microchamber and experiment were prepared and run as previously described [4-6]. In brief, the glass surface of a microscope flowchamber was coated with biotin-BSA and incubated with streptavidin. DNA tethers were labeled with anti-digoxigenin-coated beads with a diameter of $0.48 \mu \mathrm{~m}$ (Indicia Diagnostics, Oullins, France). Interaction of the 186 Cl protein with DNA was monitored as a reduction in the amplitude of the Brownian motion of the bead as previously described [4, 7-9].

Results

Confirmation of basic model

The repressor wheel.

The 186 bacteriophage repressor, 186 Cl , binds to DNA as a dimer, and it was suggested to assemble into a oligomer of 14 monomers in solution [10]. In support of this suggestion, a crystallographic study showed that the CTD of 186 Cl assembles into a wheel of seven dimers (hereafter referred to as the 186 heptamer) [11]. This led to the hypothesis that the whole protein, including the NTD DNA-binding domain, may too form wheel-shaped heptamers. Therefore, AFM was used to image 186 Cl free, as well as bound to 1584 bp-long DNA fragments to characterize its shape and dimension. The results, summarized in Figure 1 strongly support the idea that the protein oligomerizes to form wheel-shaped heptamers. Visual inspection of the Cl particles in the AFM images shows that not only they have a round shape, consistent with that of a wheel (Figure 1, left), but also that the average particle diameter is close to the diameter of a wheel composed of seven dimers, as estimated from the X-ray crystal structure of the 186 CI CTD [11] (Figure 1, center). Furthermore, the volume of the wheels imaged by AFM was measured and compared to a calibration curve previously obtained [12] (Figure 1, right). Also this volume analysis is consistent with the idea that the wheels may be composed of seven dimers. Finally, since such wheels are very abundant in the images obtained using only 50 nM Cl , which is a much lower than the 1100 nM estimated for the lysogen, it is likely that 186 Cl associates into a heptamer at an early stage after infection and that this state of assembly is robust through the host cell division.

A 186 heptamer may bind cooperatively to multiple operators [11, 13, 14], giving rise to physiologically relevant nucleoprotein complexes with different structure and conformation, and with different impact on the 186 transcriptional regulatory network. Indeed, the fact that lysogeny maintenance requires repression of pR and tight control of transcription from pL , and that $p R$ and $p L$ face one another, suggests that different nucleoprotein species may be in equilibrium in different repressor concentration regimes, so that the probability of pL being unoccupied decreases with increasing Cl concentration [13]. Figure 2 shows the possible species and equilibria that have been suggested, together with AFM images confirming the existence of these complexes.

Understanding the 186 regulatory mechanism requires characterization of the specific interaction of the 186 wheel with the operators $F L, p R$, and $F R$ and quantification of the probability of occurrence of each species. Thus a statistical analysis of the AFM images acquired was performed. Figure 3 shows that the occupancy of the operators ranks as follows: pR > FL > FR, independently of the DNA conformation that the protein mediated. Table 1 reports the distribution of the nucleoprotein complexes found. The images reveal that the 186 wheel may interact with DNA either by wrapping or by looping it.

Pseudo sites

The wheel higher affinity for FL than for FR revealed in figure 3 may be explained by cooperativity between FL and an adjacent pseudo site. In agreement with previous DNAse digestions [15], closer analysis of the complexes at FL, performed on $524 \mathrm{bp} / 167.7 \mathrm{~nm}$-long DNA fragments containing only this operator, revealed the presence of a pseudo site on the side away from pR (Figure 4). The distance from each end of the DNA to the point of contact with the wheel was measured. The distribution of the length of free DNA measured on each end of the bound wheel is shown in figure 4. FL is not centered in these DNA fragments and is closer to the end that points in the direction of pR and FR (Figure 4, top). Thus, these histograms show that FL and an adjacent pseudo site in the direction away from pR were always occupied. Each distribution shows two peaks separated by about 10 nm . This corresponds to the footprint of one dimer in the wheel since it is one seventh of the perimeter of the 186 heptamer. The left histogram shows that the free DNA on the left of the bound wheel was, in average, either 9.4 or 20.0 nm long. Since FL was centered in this DNA fragment 25 nm from the end in the direction of $p R$ (short end in the diagram in figure 4), the peak values indicate that one dimer of the wheel binds at FL, leaving approximately 20 nm of free DNA to the left. However, the next 10 nm of this free DNA may bind dynamically to the next dimer in the wheel. On the other hand, the right histogram in figure 4 shows that the free DNA on the right of the bound wheel was, in average, either 122 or 132 nm long. FL was centered 150.6 nm from the end of the DNA fragment away from pR (long end in the diagram in figure 4). Thus, the peak values indicate that two dimers of the wheel bind both FL and an adjacent pseudo site, leaving approximately 132 nm of free DNA to the right. Ten more nm of this free DNA may bind dynamically to yet the next dimer in the
wheel leaving 122 nm free. On the basis of these observations it is suggested that a pseudo site for binding of the 186 repressor exists next to FL on the side away from pR. Note also that DNA binding to successive dimers around the wheel leads to its wrapping by DNA.

Asymmetric DNA wrapping on the 186 wheel was also observed in $528 \mathrm{bp} / 179 \mathrm{~nm}$-long DNA fragments that contained only pR (Figure 5). Here, the wheel is not centered on pR because it most often occupies a pseudo site, containing pL, as well. This is consistent with the idea that the protein bound at pR will repress pL leading to 186 Cl negative autoregulation, unless competition from distal sites frees the repressor promoter [16].

DNA wrapping/unwrapping

AFM imaging of 1584 bp-long fragments of wt 186 DNA containing all binding sites showed that the degree of wrapping of DNA around the wheel depends on the operator. The 186 wheel bound at pR is most often found to be fully wrapped by DNA (Figure 2, species 2, 3, 6 and 7), while at FL and FR may be more often only partially wrapped such that the DNA going in does not cross over the DNA coming out of the wheel (Figure 2, species 7 and Table 1). However, the wheel may also mediate a loop between either FL or FR and pR (Figure 2, species 4 and Table 1). Furthermore, in the presence of a wheel already wrapped at pR , a second wheel may bridge FL and FR (Figure 2, species 6 and Table 1).

The fully wrapped conformation at pR was observed also by TPM using 1898 bp-long FL^{-} .pRpL.FR DNA tethers. Addition of repressor in the microchamber caused an immediate and stable decrease of the TPM signal, ρ_{\perp}, by 12.2 nm (Figure 6A) which corresponds, according to a calibration curve obtained in identical buffer conditions (Figure S1), to a shortening of the DNA tether of 210 bp . This is the decrease expected for a full wrapping event assuming that each 186 dimer binds 10 nm of DNA and that a heptamer will therefore wrap approximately 70 nm or 210 bp of DNA. This assumption is justified by the structural information available (see above) and by the AFM study on the DNA fragment containing only FL described above. Interestingly, TPM assays performed on 1898 bp-long DNA tethers containing only the FL site (FL. $\Delta \mathrm{pRpL} . \mathrm{FR}$ - DNA) showed a similar stable shortening of about 11.3 nm (Figure 6B). In this case too, the TPM traces recorded did not show transitions between the wrapped and unwrapped conformations as shown by the representative traces (Figure S2), their associated frequency distribution histograms, and by the frequency distribution of the average TPM signal for each of the beads analyzed for the FL. Δ pRpL.FR- DNA tethers in the absence and in the presence of 50 nM 186 Cl (Figure 6B).

DNA looping

Although wrapping seems to be preferred (Table 1), AFM images revealed the presence of nucleoprotein complexes including wheel-mediated DNA looping (Figure 2, species 4 and 6). These complexes were classified and their relative weight was measured for wt DNA ($\mathrm{FL}^{+} \mathrm{pR}^{+}$ $F R^{+}$), as well as for $\mathrm{FL}^{+} \mathrm{pR}^{+} \mathrm{FR}^{-}$, where the FR site was mutated, and for $\mathrm{FL}^{+} \Delta \mathrm{pRFR}{ }^{+}$, where the pR sequence was replaced with a sequence of equal length that did not bind 186 CI . The results of this statistical analysis are reported in Tables 1-4. In all cases, DNA wrapping around the repressor is more common than repressor mediated looping. However less probable, the looped species are likely to be physiologically relevant since the pR-FL (or -FR) loop may free pL for transcription, while the FL-FR loop may free pR.

Tables $3 \& 4$ show a statistical analysis of AFM images of the DNA fragment carrying only the FL and pR sites. According to the Boltzmann distribution, the ratio between different states, S, in equilibrium depends only on the free energy of each state. If the Cl wheel binds to pR and $F L$ independently, the free energy of the state where both sites are occupied ($\Delta \mathrm{G}_{\mathrm{pR}, \mathrm{FL}}$) should be the sum of free energy changes associated with the formation of each of the other two states: the state with only one wheel bound at $\mathrm{pR}\left(\Delta \mathrm{G}_{\mathrm{pR}}\right)$ and the state with only one wheel at FL (Δ G_{FL}). Therefore, the population of four states (S1: no protein; S2: only pR occupied; S3: only FL occupied; S4: pR and FL both occupied) will be related as follows:

$$
S 1 / S 2=S 3 / S 4
$$

Since $S 4$ is much higher than expected, cooperativity may exist between $F L$ and $p R$ which reduces the free energy of $S 4$. The same thing can be (cannot be) argued for FR and pR. Therefore,....

In solution, 186 repressor-mediated looping versus wrapping was investigated by TPM. After addition of repressor to wt 186 DNA, most of the tethers adopted either one of two conformations, characterized by an average decrease in $\left\langle\rho_{\perp}>\right.$ of 14.5 nm (most probable) and 37.0 nm , each, which correspond to a shortening of the DNA tether of approx 250 bp and 580 bp, respectively (Figure 6C). The 250 bp shortening is greater than the one associated with a full wrapping event. Thus, it could result from a wrapping event at the strong pR sites and a partial wrapping at one of the flanking sites as well as from a looping event between PR and either FL or FR. In this respect, notice that the histogram is quite broad. The 580 bp shortening may be interpreted as due to the wrapping of the DNA around three wheels bound one to each operator (FL, pR and FR) or to the formation of a loop between FL and FR, since the distance between the centers of these two operators is 678 bp . Notice that in this looped state, a second wheel may be bound at pR, but would not cause a detectable TPM signal. Out of 31 molecules that were analyzed, only 5 displayed just one or two transitions between the two states in 20 \min of observation, but never back to the free DNA state. Their frequency histogram was, therefore, bimodal. Although TPM measurements did not show all the nucleoprotein complexes revealed by AFM, one should notice that the TPM histograms are quite broad, and it is possible that several nucleoprotein complexes, including the loop between pR and one of the flanking sites, coexist in equilibrium, without being clearly resolved by TPM.

TPM measurements performed on DNA tethers containing only FL and pR (Figure 6D), showed a 14.5 nm decrease in $\left\langle\rho_{\perp}\right\rangle$, corresponding to 245 bp shortening of the DNA tether. This shortening, as already discussed for the wt case, may be interpreted as due to a full wrapping event, probably at pR, which is stronger than FL accompanied by a partial wrapping at FL. However, the broad TPM frequency distribution histogram may also be consistent with a loop which was dynamically forming and breaking between FL and pR. This loop would consume some 300 bp of DNA if the two binding sites came in direct contact, but the wheel would reduce the observed shortening. Indeed, three of $44 \mathrm{FL}^{+}$.pRpL. FR^{-}DNA tethers display two peaks, one at 18.9 nm and the other at 0 , respectively, and can be explained by the transition between the looped and the unlooped DNA at FL and pR.

TPM of FL+ $\Delta p R$ FR+ DNA was also performed (Figure 6E). These molecules are not expected to bind the 186 wheel at pR. DNA tethers which displayed just one peak after addition of repressor could be separated into two groups. One group showed an average decrease in < $\rho_{\perp}>$ of 24.9 nm , corresponding to 410 bp shortening of DNA tether. This may be consistent with two fully wrapped wheels at FL and FR. This could happen since the ratio between 186 monomer to DNA is $50: 1$, one wheel needs 14 monomers to form, and there is a complex equilibrium between several protein oligomerization states which lowers the number of wheels in solution. Therefore, in these conditions of CI concentration, one DNA may in average have 2-3 wheels. If there is no pR, FL and FR may always be occupied. This would prevent loop formation by just one wheel bound simultaneously at FL and at FR. However, this latter, looped conformation, may be induced in some of the tethers and explain the broadness of the histogram.

Another group of DNA tethers showed an average 7.0 nm decrease of $\left\langle\rho_{\perp}\right\rangle$, which, is shorter than that expected for a full wrapping event, but, considering the standard deviation of the data, could be due to a single wheel partially wrapped at FR or FL. Once again, TPM seems to reveal fewer nucleoprotein complexes than AFM. In particular, the loop between the two flanking sites was not distinctly detected in the TPM measurements performed on this mutated 186 DNA fragment, and the proportion between one wrapped and two wrapped wheels is not the same as in the AFM images despite the similar DNA/repressor concentration ratio in the two types of measurements.

The overall interpretation of all these observations should not neglect to consider the possible role of nonspecific binding. An occupancy analysis, performed on the AFM images of the FL+ $\Delta \mathrm{pR}$ FR+ DNA (Figure 7), revealed several weaker binding sites, which may play a role in shaping the equilibria between the nucleoprotein complexes involving FL, pR and FR. Indeed, DNA loops between a specific and a nonspecific site were observed by AFM in the absence of $p R$ (Table 2). Therefore, the histograms of TPM signals may be broadened also by transient interactions with nonspecific sites which may have the physiological role of facilitating and/or stabilizing specific interactions that regulate the 186 bacteriophage genetic switch.

Other Cl binding forms and non-specific binding

The 186 repressor can bind non-specifically, just as many prokaryotic repressors and probably most transcriptional factors. This ability is clear from the analysis of AFM images of FL^{-} .Δ pRpL.FR ${ }^{-}$and 186 Cl nucleoprotein complexes (Figure 7) at 50 nM and from the beads-on-astring fiber that 186 DNA forms in the presence of 300 nM repressor (Figure 8). Non specific binding is eliminated when using 186 Cl mutant (Table 5). AFM imaging also showed there is some kind of non specific interaction between wild type protein and non-related DNA (lambda) or the FL- delta pR-pL FR- DNA.

Discussion (outline)

Several 186 DNA-repressor nucleoprotein complexes were revealed by AFM and TPM. TPM measurements on several tethers showed that protein-induced DNA remodeling is stable. Indeed transitions back to the DNA unbound were extremely rare. Also transitions between wrapping and looping were rare. However, the collective histograms of several DNA tethers in the presence of protein are broad and may represent several degrees of wrapping, where there is only one binding site, and did not allow distinction of different species when multiple types of multiprotein complexes were consistent with the observed shortening.

Pseudo sites play a role in stabilizing some of these complexes and, thus, in shaping the relative equilibria.

Discussion of physiological relevance of these complexes.

Bibliography

1. Shearwin, K.E. and J.B. Egan, Purification and self-association equilibria of the lysislysogeny switch proteins of coliphage 186. J Biol Chem, 1996. 271(19): p. 11525-31.
2. E. Meijering, M.J., J. C. Sarria, P. Steiner, H. Hirling, and M. Unser, Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images. Cytometry A, 2004. 58: p. 9.
3. Rasband, W.S., Image J. 2008.
4. Dunlap, D., et al., Probing DNA topology with Tethered particle Motion, in Methods in Molecular biology: Single-Molecule Analysis: Methods and Protocols, E.J.G. Peterman and G. Wuite, Editors, Humana Press.
5. Finzi, L. and D. Dunlap, Single-molecule studies of DNA architectural changes induced by regulatory proteins. Methods Enzymol, 2003. 370: p. 369-78.
6. Zurla, C., Manzo, C, Dunlap, DD, Lewis, DEA, Adhya, S, Finzi, L, Direct Demonstration and Quantification of Long-Range DNA looping by the Lambda Bacteriophage Repressor. Nucleic Acids Res, 2009. 37: p. 2789-2795.
7. Finzi, L. and D.D. Dunlap, Single-molecule approaches to structure, kinetics and thermodynamics of transcriptional regulatory nucleoprotein complexes". J. Biol. Chem., 2010. 285: p. 18973-18978.
8. Manzo, C. and L. Finzi, Quantitative analysis of DNA looping kinetics from tethered particle motion experiments, in Methods In Enzymology: Molecule Tools, Part B: SuperResolution, Particle Tracking, Multiparameter, and Force Based Methods, N.G. Walter, Editor. 2010, Academic Press, Elsevier. p. 199-220.
9. Nelson, P.C., et al., Tethered particle motion as a diagnostic of DNA tether length. Journal Of Physical Chemistry B, 2006. 110(34): p. 17260-17267.
10. Egan, K.E.S.a.J.B., Purification and self-association equilibria of the lysis-lysogeny switch proteins of coliphage 186. The Journal of Biological Chemistry, 1996. 271(May 10): p. 7.
11. Pinkett, H.W., et al., The structural basis of cooperative regulation at an alternate genetic switch. Mol Cell, 2006. 21(5): p. 605-15.
12. Wang, H., Finzi, L., Lewis, D. and Dunlap, D., AFM studies of the CI oligomers that secure DNA loops. J. Pharmaceutical Biotechnology, 2009. 10: p. 494-501.
13. Dodd, I.B., K.B. Shearwin, and K. Sneppen, Modelling transcriptional interference and DNA looping in gene regulation. Journal Of Molecular Biology, 2007. 369(5): p. 12001213.
14. Egan, I.B.D.a.J.B., Action at a distance in Cl repressor regulation of the bacteriophage 186 genetic switch. Molecular Microbiology, 2002. 45(3): p. 14.
15. Egan, I.B.D.a.J.B., DNA binding by the coliphage 186 repressor protein CI. The Journal of Biological Chemistry, 1996. 271(May 10): p. 9.
16. Ian B. Dodd, K.E.S.a.K.S., Modelling transcriptional interference and DNA looping in gene regulation. J. Mol. Biol., 2007. 369: p. 14.
```
Appendix D: Source code for measurement of blob volume from AFM
images and polymer chain and particle simulation
volum_C.m
0 0 1 ~ \% ~ M a n n u a l l y ~ s e l e c t ~ p a r t i c l e ~ r e g i o n ~ a n d ~ c a l c u l a t e ~ p a r t i c l e ~ v o l u m e .
0 0 2
0 0 3
0 0 4
0 0 5
006
0 0 7
0 0 8
0 0 9
0 1 0
0 1 1
0 1 2
0 1 3
0 1 4
0 1 5
0 1 6 ~ \% ~ B e g i n ~ t o ~ p r o c e e d ~
017 for n=1:10
018
0 1 9
0 2 0
0 2 1
0 2 2
0 2 3
0 2 4
0 2 5
026
0 2 7
028
0 2 9
030
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
036
0 3 7
0 3 8
0 3 9
```

threshold = -5000;
% Input the threshold for DNA height, input '0' to end the changing
% (last selcetd value will be perserved).
while threshold~=0
sub_i=sub_image;
threshold = input('Input Threshold: ');
if threshold ~=0
threshold_f=threshold;
sub_i(sub_i<threshold) = base;
pcolor(sub_i);
shading flat
end
end
% Eliminate pixels not belong to the particle.
sub_i=sub_image;
sub_i(sub_i<threshold_f)=base;
pcolor(sub_i);
shading flat
elimin=input('Eliminate? y=1,n=0: ');
while elimin==1
range_raw=ginput;
range = range_raw(end-1 :end,:);
sub_i(range(1,2):range(2,2), range(1,1):range(2,1))=base;
pcolor(sub_i);
shading flat
elimin=input('Eliminate? y=1,n=0: ');
end
% Calculate volume, area and height
sub_i=sub_i-base;
volume=sum(sum(sub_i))*pixel_area*z_scale/65536;
v_result(n,4)=max(max(sub_i))*z_scale/65536;
v_result(n,5)=(threshold_f-base)*z_scale/65536;
sub_i(sub_i>0)=1;
area=sum(sum(sub_i))*pixel_area;
v_result(n,1)=str2double(expand);
v_result(n,2)=volume;
v_result(n,3)=area;
expand %\#ok<NOPTS>
% result2: block volume;
% result3: block area;
% result4: the highest peak of the block;
% result5: the threshold, ie. the height of the DNA.
end

```

\section*{hundredsM.M}

01 \% This program simulates polymer chain with worm-like-chain model.
02 mNum=300;
03 length=1500;
04 data=zeros(length,2,mNum);
05 Dstd=sqrt(0.34/25);

06
07
08
```

for i=1:mNum
% Start point is set to (0,0)
data(1,1,i)=0;
data(1,2,i)=0;
% Initial the start direction
direction=rand*2.0*pi;
for j=2:length
% The polymer walk one step in each round following the direction
% provided by Worm-Like-Chain
data(j,1,i)=0.34*cos(direction)+data(j-1,1,i);
data(j,2,i)=0.34*sin(direction)+data(j-1,2,i);
direction=direction+normrnd(0,Dstd);
end
% Plot the simulated polymer.
plot(data(:,1,i),data(:,2,i));
hold on
end

```
imageG.m
    \% This program scans the simulated polymer chain with a virtual tip
    \(\%\) and convert it into 512*512 images.
    close all
    clear all
    load data
    range \(=65536\);
    zScale=8;
    xyScale=512/1000;
    rDNA=1.0;
    rProbe=2.7;
    \% End of parameter initiation.
    data=data*xyScale+256;
    Ind=size(data);
    AffectRange=8;
    \(\% \operatorname{Ind}(3)\) is the total number of simulated polymers
    for \(\mathrm{i}=1: \operatorname{Ind}(3)\)
        image=zeros(512,512);
    \% The program looks at polymers one by one. Every polymers will be
    \% saved into a TIF file at the end.
    \% Ind(1) is the number of points inside each polymer chain.
    \% The program looks polymer chains as a group of points. Every
'none');
73 end
ellipsoid.m
01 \% This program simulates half-ellisoid particles and save it into
02 \% TIF images.
03
04 \% Authur: Haowei Wang (hwang23@emory.edu)
05 \% Last updated Sep. 10th, 2011
06
07 close all
08 clear all

09
10
11
12
13
14
15
16
17
18
19
20
21
```

area=30;
range=65536;
zScale=8;
xyScale=512/1000;
rProbe=8.0;
% End of preparing parameters.
image=zeros(512,512);
for i=1:area
for j=1:area
% begin to calculate the height of the point
rParticle=9;
MaxHeight=4.5;
distance2=(15-i)^2+(15-j)^2;
if distance2<rParticle^2
heightP=MaxHeight/2+MaxHeight/2*sqrt(1-distance2/rParticle^2);
else heightP=0;
end
% calculate the height of the point
% begin to scan the point
Positionl=[i*512/1000, j*512/1000];
PositionP=round(Positionl);
res=Positionl-PositionP;
PositionP=PositionP+area;
for k=-5:5
for l=-5:5
dis2=((k-res(1))^2+(l-res(2))^2)/xyScale^2;
height2=(heightP+rProbe)^2-dis2;
if height2<0
height2=0;
end
height=sqrt(height2)-rProbe;
% The program only record the highest effect generated by pixels
% belong to a particle.
if image(PositionP(1)+k,PositionP(2)+l)<height
image(PositionP(1)+k,PositionP(2)+l)=height;
end
end
end

```
```

55 % end of scan

slope.m

\% This program simulate cornic particle and save it in TIF image
$\%$ for the study of particle diameter under AFM.

```
% Authur: Haowei Wang (hwang23@emory.edu)
```

\% Last updated Sep. 10th, 2011
close all
clear all
area=30;
range $=65536$;
zScale=8;
xyScale=512/1000;
rProbe=2.5;
image=zeros(512,512);
for $\mathrm{i}=1$:area
for $\mathrm{j}=1$:area
\% begin to calculate the height of the point
rParticle=7.1;
MaxHeight=3.5;
distance2=(15-i)^2+(15-j) ${ }^{\wedge} 2$;
if distance2<rParticle^2
heightP=MaxHeight/rParticle*(rParticle-sqrt(distance2));
else height $P=0$;
end
\% calculate the height of the point
\% begin to scan the point
Positionl=[i*512/1000, j*512/1000];
PositionP=round(Positionl);
res=Positionl-PositionP;
PositionP=PositionP+area;
for $\mathrm{k}=-5$:5
for $1=-5: 5$
dis2=((k-res(1))^2+(l-res(2))^^2)/xyScale^2;
height2=(heightP+rProbe)^2-dis2;
if height2<0
height2=0;
end
height=sqrt(height2)-rProbe;
\% Keep the higher value for each pixels. if image(PositionP(1)+k,PositionP(2)+l)<height image(Position P(1)+k,PositionP(2)+1)=height;
end
end
end
\% end of scan
end
end
\% Scaling to 256 degree of color;
image=image+rand (512)*0.1;
image=image*range/zScale;
MaxImage=max(max(image));
scaleImage=image*254/MaxImage;
Nimage=uint8(scalelmage);
imwrite(Nimage, 'Mole.tif', 'ColorSpace', 'cielab', 'Compression', 'none');
pcolor(image);
shading flat
figure
bar=1:61;
plot(bar,image(8:68,39));
subimage=image(20:80,20:80);
figure
surf(subimage);

Appendix E: Source code DNA protein analysis toolbox

```
tracing.m
```

```
\% This program calculate the basal level(background) and overwhelm value \% (most of the case, DNA height).
\% The file structure of traces contains all traces of each image. The first \% raw is [BASE OVERWHELM]. The tracing data are put as follow: the first \(\%\) row of every segment is [-1 traceID]; the last row is [-1 0 ]. Trace ID is \(\%\) a postive number generated by tracing program to identify each segments \% in one image.
\% Tracing files are saved as *tr.txt, where * represents the original image \% filename.
\% This program need subfunction "thresCal.m", please keep it in the same \% folder of the program.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
clear all
close all
Button='Yes';
Auto='Yes';
\% If Auto is set to 'Yes', then the program will not ask for parameters.
[filename, pathname, filterindex]=uigetfile('*.*', 'pick a file', 'Multiselect', 'on');
currentP=pwd;
path(path,currentP);
cd(pathname);
if iscell(filename) fileNum=size(filename, 2);
else
fileNum=1;
end
minLength=10;
for traceN=1:fileNum if fileNum==1
file=filename; else
file=char(filename(traceN));
end
if ~isequal(file, 0)
IM = readimage(file);
```

 trF=figure;
    ```

051
052 053
054
055
056
057
058
059
060
```

 pcolor(IM);
 shading flat
 thresC=thresCal(IM);
 if thresC.error==1
 BASE=round(mean(mean(IM)));
 OVERWHELM=round(mean(max(IM)));
 else
 BASE=round(thresC.base);
 OVERWHELM=round(thresC.overwhelm);
 end
 % Set threshold for the background. All pixels below BASE will be
% considered as background
BASE=BASE+round((OVERWHELM-BASE)*0.08);
% Set up original value for threshold modification.
if Auto(1)=='Y'
BASE1=BASE;
OVERWHELM1=OVERWHELM;
else
BASE1=-1;
OVERWHELM1=-1;
end
% If 'Auto' is set to 'Yes' at the begining of the code, the program will
% skip this part of code and automatically trace all selected images with
% calculated threshods without asking user. Otherwise, the while loop below
% will be excuted and a question dialog will present so that the user can
% change and compare different sets of thresholds.
while true
if BASE==BASE1 \&\& OVERWHELM==OVERWHELM1
break;
else
image=IM;
image(image<BASE)=BASE;
baseF=figure('position',[10 150 560 420]);
newp=pcolor(image);
title('BASE Cutting');
shading flat
overF=figure('position',[590 150 560 420]);
image=IM;
image(image<OVERWHELM)=BASE;
newp2=pcolor(image);
title('Overwhelming');
shading flat
def={num2str(BASE),num2str(OVERWHELM)};
prompt={'Enter new BASE:', 'Enter new OVERWHELM:'};
answer=inputdlg(prompt, 'Change parameter', 1, def);
BASE1=BASE;

```
```

 OVERWHELM1=OVERWHELM;
 BASE=str2double(char(answer(1)));
 OVERWHELM=str2double(char(answer(2)));
 close(baseF);
 close(overF);
 end
 end
 end
 THRESHOLD=0.4; % set the default threshold value in percentage.
 ReMax=1500; % the maximum number of points on one tracing
 Record=zeros(ReMax,2);
 % If the threshold is set to a very low number by mistake, the program will
% correct it with 30%
if (THRESHOLD<=0.05)|(THRESHOLD>=1)
THRESHOLD=0.3;
end
traceNum=0;
TracingWindow=zeros(1,2);
test{1}=[-1-1 0; 0-1 0; 0000];
test{2}=[0-1-1;0-1 0; 0000];
test{3}=[000-1;0
test{4}=[0000;0}0-1-1;000-1]
test{5}=[0 0 0; 0-1 0; 0-1-1];
test{6}=[0 0 0; 0-1 0; -1-1 1)];
test{7}=[0-1 0; 0-1-1;000];
test{8}=[0 0 0; 0-1-1; 0-1 0];
%left test arrays
image=IM;
pcolor(image);
shading flat
Msize=size(image);
mask=zeros(Msize);
biColor=image;
biColor(biColor<(OVERWHELM-BASE)*THRESHOLD+BASE)=0;
% biColor(biColor>OVERWHELM)=0;
biColor(biColor>0)=1;
biColor(:,1)=0;
biColor(:,Msize(2))=0;
biColor(:,Msize(2)-1)=0;
biColor(1,:)=0;
biColor(Msize(1),:)=0;
biColor(Msize(1)-1,:)=0;
%clear the edge
modify=-1;
% Begin to thinning. 'modify' is set to zero at the beginning of each
% round. After each round modify is set to -n where n is the number of

```
\% pixels removed in the round. The while-loop will excute untill there is \(\%\) no pixel removed in one round.
```

while (modify<0)
modify=0;

```
\% The image matrix will rotate 90 degree in each round of this for-loop. By
\% this mean, pixels will be removed ordially from each side of the image.
\% After four round, the image will come back to origin direction.
for \(\mathrm{i}=1: 4\)
\% Pick up pixels insde the image one by one and begin to test.
\[
\begin{aligned}
& \text { for } \mathrm{j}=2: \mathrm{Msize}(2)-1 \\
& \text { for } \mathrm{k}=2: \operatorname{Msize}(1)-1
\end{aligned}
\]
\% The pixel has value and in the left edge of a blob will be tested for \% removal.
```

if (biColor(k,j)>0)
if(biColor(k,j-1)==0)

```
\% Begin to test if the pixel can be removed. If the answer is yes, the
\(\%\) relat position in mask will be set to '- 1 '.
```

around=biColor(k-1:k+1,j-1:j+1);
sumR=sum(sum(around));
if (sumR>3)
mask(k,j)=-1;
if (around(1,1)==1)
if (around(1,2)==0)
mask(k,j)=0;
end
end
if (around(1,2)==1)
if (around}(1,1)+\operatorname{around}(1,3)+\operatorname{around}(2,3)==0
mask(k,j)=0;
end
end
if (around(1,3)==1)
if(around(1,2)+around(2,3)==0)
mask(k,j)=0;
end
end
if (around(2,3)==1)
if(around(1,2)+around(1,3)+around(3,2)+around(3,3)==0)
mask(k,j)=0;
end
end
if (around(3,3)==1)
if (around(2,3)+around(3,2)==0)
mask(k,j)=0;
end
end
if (around(3,2)==1)
if (around(3,1)+around(2,3)+around(3,3)==0)
mask(k,j)=0;
end

```

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
```

 end
 if (around}(3,1)==1
 if (around(3,2)==0)
 mask(k,j)=0;
 end
 end
 if(sumR>4)
 if (around(2,3)==0)
 mask(k,j)=0;
 end
 end
 % This part preserve the pixels that can break the skeleton if be removed
 if sumR==4
 AdjTest=around(1,1)*around(1,2)+around(1,2)*around(1,3);
 AdjTest=AdjTest+around(1,3)*around(2,3)+around(2,3)*around(3,3);
 AdjTest=AdjTest+around(3,3)*around(3,2)+around(3,2)*around(3,1);
 if AdjTest==0
 mask(k,j)=-1;
 end
 end
 % This part removes the pixels split the skeleton
 elseif (sumR==3)
 for I=1:8
 testAround=abs(around+test{l});
 if (sum(sum(testAround))==0)
 mask(k,j)=-1;
 break;
 end
 end
 end
 if (mask(k,j)==-1)
 around
 end
 end
 end
 end
 end
 pcolor(biColor);
 shading flat
 % Add mask to biColor matrix to set the selected pixels to zeros (remove
 % selected pixels).
 biColor=biColor+mask;
 modify=modify+sum(sum(mask));
 Msize=Msize*[0 1; 1 0];
 biColor=rot90(biColor);
 mask=zeros(Msize);
 % Rotate }90\mathrm{ degree to repeat
 end
    ```

274
```

end

```
\% Display tracing result. image=image.*(1-biColor);
pcolor(image);
shading flat
\% User can choose to save the traces or not here. If 'Auto' was set to
\% 'Yes' at the beginning of the code, the program will skip the question
\% dialog and save all traces automatically.
if Auto(1)=='N' Button=questdlg('Save tracing?');
end
if Button(1)=='Y'
\(\mathrm{fd}=\mathrm{fopen}(\) strcat(file, 'tr.txt'), 'w');
fprintf(fd, '\%d \%d \n\r', round([BASE OVERWHELM]));
\% The program will go through the whole image to look for a start end for \% traces.
for \(\mathrm{i}=2\) :Msize(1)-1
for \(\mathrm{j}=2: M \operatorname{lize}(2)-1\)
if biColor \((\mathrm{i}, \mathrm{j})==1\)
around=biColor(i-1:i+1,j-1:j+1);
if sum(sum(around)) \(==2\)
Record \((1,1)=i\);
Record \((1,2)=j\);
\(\operatorname{Record}(1,:)=\operatorname{Record}(1,:)\);
traceNum=traceNum+1;
\(\mathrm{m}=2\);
\(\mathrm{k}=\mathrm{i}\);
I=j;
testNext=[1 2 3; 45 6; 78 9];
while (sum(sum(around)) \(>1\) )
biColor(k,l)=0;
around (2,2) \(=0\);
tNext=sum(sum(testNext.*around));
switch tNext
case 1
\(\mathrm{k}=\mathrm{k}-1\); \(\mathrm{l}=\mathrm{l}-1\);
case 2
k=k-1;
case 3
\(\mathrm{k}=\mathrm{k}-1\); \(\mathrm{l}=\mathrm{l}+1\);
case 4
I=I-1;
case 6
I=I +1 ;
case 7
\(k=k+1\); l=l-1;
case 8
\(k=k+1\);
case 9
\(\mathrm{k}=\mathrm{k}+1\); \(\mathrm{l}=\mathrm{l}+1\);
otherwise
```

%
traceNum=traceNum-1;
Record=zeros(ReMax,2);
break;
end
Record(m,1)=k;
Record(m,2)=l;
Record(m,:)=Record(m,:);
m=m+1;
if m==ReMax
break;
end
around=biColor(k-1:k+1,l-1:l+1);
end
biColor(k,l)=0;
if m<minLength
traceNum=traceNum-1;
Record=zeros(ReMax,2);
elseif Record(1,1)+Record(1,2)==0
m=1;
else
fprintf(fd, '%d %d \n\r', -1, traceNum);
for n=1:ReMax
if Record(n,1)+Record(n,2)==0
fprintf(fd, '%d %d \n\r', -1, 0);
break;
end
fprintf(fd, '%d %d \n\r', Record(n,:));
end
Record=zeros(ReMax,2);
end
end
end
end
end
fclose(fd);
end
close(trF);
end
cd(currentP);

```

\section*{Readimage.m}
```

% This function read images from AFM data and export it in a double-percision matrix.
% Authur: Haowei Wang (hwang23@emory.edu)
% Last updated Sep. 10th, }201
function data = readimage(filename)
f = fopen(filename);
magnify=1;
% Read file head and find out scaling factor ('magnify').
while true
line=fgets(f);
if size(line,2)<13

```

Page
```

 continue;
 end
 if stromp('\@Z magnify:', line(1:12))
 n=size(line,2);
 magnify=str2double(line(28:n));
 break;
 end
 if stromp(line, '*File list end')
 break;
 end
 end
fseek(f, 0, 'bof');
fread(f, 40960, 'int8');
% Read data
data_unshaped = fread(f, 512*512, 'int16');
data=reshape(data_unshaped, 512, 512);
% Rotating and scaling
data=rot90(data)/magnify;
fclose(f);
% Codes above for data obtained by AFM. If the user wants to use other
% image file formate, simply replace the code above with users' code.
% NOTICE: the output data should be a square array of double. Otherwise,
% the program may not working.
% data=readtif(filename);

```

\section*{thresCal.m}
\% This function calculate thresholds for DNA tracing (BASE and OVERWHELM
\% value).
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function out=thresCal(dataM)
data=dataM(:);
out.base=mean(data);
out.error=0;
pr_V=data;
lower=min(pr_V);
upper=max(pr_V);
binS=round(sqrt(upper-lower)/1.2);
ave=mean(pr_V);
aLim=size(pr_V,1)/10;
\% Put all pixels into a histogram by the height.
xout=[lower:binS:upper*1.2];
n=histc(pr_V,xout);
\% bar(xout,n)
\% hold on
\% Fit the histogram with Gaussian curve. The center of the Gaussian will be \% the level of background.
```

try
cfun=fit(xout',n,'gauss1','Lower',[0 lower 0],'Upper',[aLim 2*ave-lower upper-ave]);
catch
out.error=1;
out.overwhelm=0;
return
end
% xout2=lower:1:upper*1.2;
% f2=feval(cfun,xout2');
% plot(xout2,(f2),'r-','Linewidth',2);
% hold off
% pause
if abs(cfun.b1-ave)>cfun.c1/1.5
out.error=1;
else
% Look for the range of main peak and cut it away.
lowBound=cfun.b1+cfun.c1*4;
if lowBound>=max(data)
out.error=1;
out.overwhelm=0;
return
end
pr_V=data(data>lowBound);
lower=min(pr_V);
upper=max(pr_V);
% Make another histogram of residue tail.
binS=sqrt(upper-lower)/1.2;
xout=lower:binS:upper*1.2;
n=histc(pr_V,xout);
% bar(xout,n)
% Look for the sudden drop point on the residue tail.
uppB=max(n);
n(n>uppB*0.5)=0;
[max1, i1]=max(n);
n(n>uppB*0.3)=0;
[max2,i2]=max(n);
% Fit the drop with linear regression and find out the intercetion on X
% axis. This is the value of OVERWHELM.

```
```

 if i2<i1
 out.error=1;
 elseif max2>=max1
 out.error=1;
 else
 i=(max1*i2-max2*i1)/(max1-max2);
 out.overwhelm=binS*i+lowBound;
 end
 end

```

\section*{Mask.m}

0001 \% This program is written for modificating DNA traces generated by tracing
0002 \% program. Users can use it to delete slected traces, connect traces
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function varargout \(=\) maskM (varargin)
\% MASKM M-file for maskM.fig
\% MASKM, by itself, creates a new MASKM or raises the existing
\% singleton*.
\% \(\quad \mathrm{H}=\) MASKM returns the handle to a new MASKM or the handle to
\% the existing singleton*.
\% MASKM('CALLBACK',hObject,eventData,handles,...) calls the local \% function named CALLBACK in MASKM.M with the given input arguments.
\% MASKM('Property' 'Value' ) creates a new MASKM or raises the
\% existing singleton*. Starting from the left, property value pairs are
\% applied to the GUI before maskM_OpeningFcn gets called. An
\% unrecognized property name or invalid value makes property application
\% stop. All inputs are passed to maskM_OpeningFcn via varargin.

\section*{\% Ge Guioptin on Guider Toas menu. Chow}
\% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one \% instance to run (singleton)".
\%
\% See also: GUIDE, GUIDATA, GUIHANDLES
\% Edit the above text to modify the response to help maskM
\% Last Modified by GUIDE v2.5 09-Aug-2011 11:44:28
\% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @maskM_OpeningFcn, ...
'gui_OutputFcn', @maskM_OutputFcn,...
'guii_LayoutFcn', [] , ...
'gui_Callback', []];
if nargin \&\& ischar(varargin\{1\})
gui_State.gui_Callback = str2func(varargin\{1\});
```

end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
global filename pathname fileNum ImageID image traces lineW;
% --- Executes just before maskM is made visible.
function maskM_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to maskM (see VARARGIN)
% Choose default command line output for maskM
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes maskM wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = maskM_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%
function FileMenu_Callback(hObject, eventdata, handles)
% hObject handle to FileMenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%
function OpenMenultem_Callback(hObject, eventdata, handles)

```

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
\% hObject handle to OpenMenultem (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
\% This function collects filenames that need to be looked at.
\% The function will read and display data of the first image also.
global filename CurrentP pathname fileNum ImageID image traces lineW traceFile
\% lineW is the variable of line width that will be used in figures.
lineW=2;
[filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
CurrentP=pwd;
path(path,CurrentP);
cd(pathname);
if iscell(filename)
    fileNum=size(filename, 2);
else
    fileNum=1;
end
if fileNum==1
    traceFile=filename;
else
    traceFile=char(filename(1));
end
ImageID=1;
\% Read data of the first image.
traces=readtr(traceFile);
NameLength=size(traceFile, 2)-6;
imageFile=traceFile(1:NameLength);
image=readimage(imageFile);
cla
pcolor(image);
shading flat
title(gca, imageFile);
\(\mathrm{N}=\) size(traces.tr, 1);
traceP=zeros(2,2);
\(\mathrm{k}=1\);
\% Display traces of the first image.
for \(\mathrm{j}=2\) : N
    if traces.tr(j,1)==-1
        if traces. \(\operatorname{tr}(\mathrm{j}, 2)==0\)
                hold on
                plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
                traceP=zeros(2,2);
                \(\mathrm{k}=1\);
        end
```

0156
0157
0158
0 1 5 9
0 1 6 0
0 1 6 1
0 1 6 2
0163
0164
0165
0166
0167
0168
0169
0170
0 1 7 1
0172
0173
0174
0175
0176
0177
0178
0 1 7 9
0 1 8 0
0 1 8 1
0182
0 1 8 3
0184
0185
0186
0187
0188
0189
0 1 9 0
0 1 9 1
0192
0 1 9 3
0194
0195
0196
0197
0 1 9 8
0 1 9 9
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
% ---
function PrintMenultem_Callback(hObject, eventdata, handles)
% hObject handle to PrintMenultem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
printdlg(handles.figure1)
% --
function CloseMenultem_Callback(hObject, eventdata, handles)
% hObject handle to CloseMenultem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% This function closes the program and all images.
global CurrentP;
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...
['Close ' get(handles.figure1,'Name') '...'],...
'Yes','No','Yes');
if strcmp(selection,'No')
return;
end
cd(CurrentP);
clear all;
close all;
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

```

0211
0212
0213
0214
set(hObject,'BackgroundColor','white');
end
set(hObject, 'String', \{'plot(rand(5))', 'plot(sin(1:0.01:25))', 'bar(1:.5:10)', 'plot(membrane)', 'surf(peaks)'\});
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
\% --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) \% hObject handle to pushbutton4 (see GCBO) \% eventdata reserved - to be defined in a future version of MATLAB \% handles structure with handles and user data (see GUIDATA)
\% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
\% hObject handle to pushbutton5 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\(\%\) handles structure with handles and user data (see GUIDATA)

function Operation_Callback(hObject, eventdata, handles)
\% hObject handle to Operation (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)

function Delete_Callback(hObject, eventdata, handles)
\% hObject handle to Delete (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
\% This function allows user to select and delete traces from current images
\% displayed on screen.
global traces image lineW;
input=round(ginput(1));
\(\operatorname{inp}(1)=\operatorname{input}(2)\);
\(\operatorname{inp}(2)=\) input(1);
\% FindTr will look at the traces and find out the trace been clicked by the \% user.
tr=FindTr(inp);
\% trace. \(\mathrm{N}=0\);
\% trace. N2=0;
\% trace.ID=0;
\% trace.start=zeros(1,2);
\% trace.end=zeros(1,2);
if tr . \(\mathrm{N}==0\)
msgbox('Cannot find the trace.', 'Error', 'warn');
else

0266
0267 0268 0269 0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
\% Display selected trace and ask user if the traces should be deleted or \% not.
traceP=traces.tr(tr.N+1:tr.N2-1,:);
hold on
plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
button=questdlg('Delete this tracing?', 'Delete');
\% Delete the trace.
if button(1)=='Y'
tracesT=traces.tr;
traces.tr=zeros(2,2);
\(\mathrm{N}=\) size(traces \(\mathrm{T}, 1\) );
add=1;
\(\mathrm{j}=1\);
for \(\mathrm{i}=1: \mathrm{N}\)
if \(\operatorname{add}==1\) \&\& traces \(T(\mathrm{i}, 2)==\) tr.ID \& \& traces \(\mathrm{T}(\mathrm{i}, 1)<0\) add=0;
end
if add \(==0\) \&\& traces \(T(i, 2)==0 \& \& \operatorname{traces} T(i, 1)<0\) add=1; continue;
end
if add==1
traces.tr(j,:)=tracesT(i,:); \(j=j+1\);
end
end
\% plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 2);
cla
pcolor(image);
shading flat
traceP=zeros(2,2);
\(\mathrm{k}=1\);
\(N=\) size(traces.tr,1);
for \(\mathrm{j}=2: \mathrm{N}\)
if traces. \(\operatorname{tr}(\mathrm{j}, 1)==-1| | \mathrm{j}==\mathrm{N}\) hold on plot(traceP(:,2), traceP(:,1),'Color', 'red', 'LineWidth', lineW); traceP=zeros(2,2);
\(\mathrm{k}=1\); continue;
else
```

 traceP(k,:)=traces.tr(j,:);
    ```
                \(k=k+1\);
            end
        end
    end
end
```

%
function Connect_Callback(hObject, eventdata, handles)
% hObject handle to Connect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% This function allows user to select two traces and connect them together.
global traces image lineW
% trace.N=0;
% trace.N2=0;
% trace.ID=0;
% trace.start=zeros(1,2);
% trace.end=zeros(1,2);
select=zeros(1,2);
tr1.N=0;
tr1.N2=0;
tr1.ID=0;
tr1.start=zeros(1,2);
tr1.end=zeros(1,2);
tr2=tr1;
% User selects two traces that needs to be connected.
while sum(select)<2
if select(1)==0
msgbox('Select the first trace.');
pause
input=ginput(1);
inp(1)=input(2);
inp(2)=input(1);
% FindTr is a function to look for the trace been clicked by user.
tr1=FindTr(inp);
if tr1.N==0
msgbox('Cannot find the trace.', 'Error', 'warn');
pause
elseif tr2.ID==tr1.ID
msgbox('Two traces cannot be the same.', 'Error', 'warn');
pause
else
traceP=traces.tr(tr1.N+1:tr1.N2-1,:);
hold on
plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
select(1)=1;
end
end
if select(2)==0
msgbox('Select the second trace.');

```
        pause
        input=ginput(1);
        \(\operatorname{inp}(1)=\) input(2);
        inp(2)=input(1);
        tr2=FindTr(inp);
        if \(\mathrm{tr} 2 . \mathrm{N}==0\)
        msgbox('Cannot find the trace.', 'Error', 'warn');
        pause
        elseif tr2.ID==tr1.ID
            msgbox('Two traces cannot be the same.', 'Error', 'warn');
            pause
        else
            traceP2=traces.tr(tr2.N+1:tr2.N2-1,:);
            hold on
            plot(traceP2(:,2),traceP2(:,1),'Color', 'yellow', 'LineWidth', 2);
            select(2)=1;
        end
        end
end
\% Look for the minimal range contains the two selected traces.
lower(1) \(=\min (\min (\operatorname{traceP}(:, 1)), \min (\operatorname{traceP} 2(:, 1)))-2\);
if lower(1)<0
    lower(1)=0;
end
lower(2) \(=\min (\min (\operatorname{traceP}(:, 2))\), \(\min (\operatorname{traceP} 2(:, 2)))-2\);
if lower(2)<0
    lower(2)=0;
end
higher(1)=max(max(traceP(:,1)), max(traceP2(:,1)))+2;
if higher(1)>size(image,1)
    higher(1)=size(image, 1);
end
higher(2) \(=\max (\max (\operatorname{traceP}(:, 2)), \max (\operatorname{traceP} 2(:, 2)))+2\);
if higher(2)>size(image,2)
    higher(2)=size(image,2);
end
\% Zoom in to the minimal range contains two selected traces and label four
\% ends of two traces with different marker and color.
subimage=image(lower(1):higher(1), lower(2):higher(2));
fig1=figure;
pcolor(subimage);
shading flat
tsStart1=tr1.start-lower+1;
tsStart2=tr2.start-lower+1;
tsEnd1 =tr1.end-lower+1;
tsEnd2=tr2.end-lower+1;
hold on
scatter(tsStart1(2),tsStart1(1), 'd','filled', 'MarkerEdgeColor','green', 'LineWidth', lineW);
hold on
scatter(tsEnd1(2),tsEnd1(1), 'o','filled', 'MarkerEdgeColor', 'cyan', 'LineWidth', lineW);
hold on

0434 scatter(tsStart2(2), tsStart2(1), 's','filled', 'MarkerEdgeColor', 'magenta', 'LineWidth',
lineW);
0435 hold on
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
'single','ListString', op);
0449 if ok==0
0450 break;
0451
end
0452
0453
0454
0455
0456
0457
0458
switch Selection
0459 case 1
\(0460 \quad \operatorname{cnx}(1)=\) tsStart1 (2);
\(0461 \quad \operatorname{cnx}(2)=\) tsStart2(2);
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
    scatter(tsEnd2(2), tsEnd2(1), '>','filled', 'MarkerEdgeColor', 'red', 'LineWidth', lineW);
    \(\mathrm{op}=\{\) 'Diamond to square', 'Diamond to triangle', 'Circle to square', 'Circle to triangle'\};
    cnx=[00];
    cny=[00];
    \% Display a multiple choice dialog so that the user can choose the way of
    \% connection.
    \% The loop will be excuted until the user is satisfied with the connection.
    while true
        [Selection, ok]=listdlg('PromptString', 'Select a connection', 'SelectionMode',
    insert=zeros(2);
    insertN=1;
    \% Connection.
                cny(1)=tsStart1 (1);
                    cny(2)=tsStart2(1);
                    hold on
                plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
                    while true
                        if \(\operatorname{cnx}(1)==\operatorname{cnx}(2) \& \& \operatorname{cny}(1)==\operatorname{cny}(2)\)
                        break;
                end
                disx=cnx(2)-cnx(1);
                disy=cny(2)-cny(1);
                if \(\operatorname{dis} x==0\)
                        if disy>0
                        \(\operatorname{cny}(1)=\operatorname{cny}(1)+1\);
                    else
                    cny(1)=cny(1)-1;
                    end
                    else
                    tanD=disy/disx;
                    if disy>0
                    if dis \(x>0\)
                                    if \(\tan D<0.414\)
                                    \(\operatorname{cnx}(1)=c n x(1)+1\);
                                    elseif \(\operatorname{tanD}>2.414\)
                                    cny(1)=cny(1)+1;
```

0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0 5 0 0
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0 5 3 0
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543

```
```

 else
    ```
                else
                    cny(1)=cny(1)+1;
                    cny(1)=cny(1)+1;
                    cnx(1)=cnx(1)+1;
                    cnx(1)=cnx(1)+1;
                        end
                        end
                else
                else
                        if tanD>-0.414
                        if tanD>-0.414
                cnx(1)=cnx(1)-1;
                cnx(1)=cnx(1)-1;
                    elseif tanD<-2.414
                    elseif tanD<-2.414
                    cny(1)=cny(1)+1;
                    cny(1)=cny(1)+1;
                    else
                    else
                    cnx(1)=cnx(1)-1;
                    cnx(1)=cnx(1)-1;
                    cny(1)=cny(1)+1;
                    cny(1)=cny(1)+1;
                end
                end
                end
                end
            else %disy<0
            else %disy<0
                if disx>0
                if disx>0
                        if tanD>-0.414
                        if tanD>-0.414
                        cnx(1)=cnx(1)+1;
                        cnx(1)=cnx(1)+1;
                        elseif tanD<-2.414
                        elseif tanD<-2.414
                                cny(1)=cny(1)-1;
                                cny(1)=cny(1)-1;
                        else
                        else
                            cny(1)=cny(1)-1;
                            cny(1)=cny(1)-1;
                        cnx(1)=cnx(1)+1;
                        cnx(1)=cnx(1)+1;
                        end
                        end
        else
        else
                        if tanD<0.414
                        if tanD<0.414
                        cnx(1)=cnx(1)-1;
                        cnx(1)=cnx(1)-1;
                        elseif tanD>2.414
                        elseif tanD>2.414
                        cny(1)=cny(1)-1;
                        cny(1)=cny(1)-1;
                        else
                        else
                            cnx(1)=cnx(1)-1;
                            cnx(1)=cnx(1)-1;
                                    cny(1)=cny(1)-1;
                                    cny(1)=cny(1)-1;
                    end
                    end
                end
                end
            end
            end
        end
        end
        insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
        insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
        insertN=insertN+1;
        insertN=insertN+1;
    end
    end
    traceAll=[flipud(traceP2); flipud(insert); traceP];
    traceAll=[flipud(traceP2); flipud(insert); traceP];
case 2
case 2
    cnx(1)=tsStart1(2);
    cnx(1)=tsStart1(2);
    cnx(2)=tsEnd2(2);
    cnx(2)=tsEnd2(2);
    cny(1)=tsStart1(1);
    cny(1)=tsStart1(1);
    cny(2)=tsEnd2(1);
    cny(2)=tsEnd2(1);
    hold on
    hold on
    plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
    plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
    while true
    while true
        if cnx(1)==cnx(2) && cny(1)==cny(2)
        if cnx(1)==cnx(2) && cny(1)==cny(2)
            break;
            break;
        end
        end
        disx=cnx(2)-cnx(1);
        disx=cnx(2)-cnx(1);
        disy=cny(2)-cny(1);
        disy=cny(2)-cny(1);
        if disx==0
```

 if disx==0
    ```
173 | P a g e

0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
```

 if disy>0
 cny(1)=cny(1)+1;
 else
 cny(1)=cny(1)-1;
 end
 else
 tanD=disy/disx;
 if disy>0
 if disx>0
 if tanD<0.414
 cnx(1)=cnx(1)+1;
 elseif tanD>2.414
 cny(1)=cny(1)+1;
 else
 cny(1)=cny(1)+1;
 cnx(1)=cnx(1)+1;
 end
 else
 if tanD>-0.414
 cnx(1)=cnx(1)-1;
 elseif tanD<-2.414
 cny(1)=cny(1)+1;
 else
 cnx(1)=cnx(1)-1;
 cny(1)=cny(1)+1;
 end
 end
 else %disy<0
 if disx>0
 if tanD>-0.414
 cnx(1)=cnx(1)+1;
 elseif tanD<-2.414
 cny(1)=cny(1)-1;
 else
 cny(1)=cny(1)-1;
 cnx(1)=cnx(1)+1;
 end
 else
 if tanD<0.414
 cnx(1)=cnx(1)-1;
 elseif tanD>2.414
 cny(1)=cny(1)-1;
 else
 cnx(1)=cnx(1)-1;
 cny(1)=cny(1)-1;
 end
 end
 end
 end
 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
 insertN=insertN+1;
 end
 traceAll=[traceP2; flipud(insert); traceP];
 case 3
cnx(1)=tsEnd1(2);
cnx(2)=tsStart2(2);

```
```

0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0 6 3 0
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655

```
```

cny(1)=tsEnd1(1);

```
cny(1)=tsEnd1(1);
cny(2)=tsStart2(1);
cny(2)=tsStart2(1);
hold on
hold on
plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
while true
while true
    if cnx(1)==cnx(2) && cny(1)==cny(2)
    if cnx(1)==cnx(2) && cny(1)==cny(2)
        break;
        break;
    end
    end
    disx=cnx(2)-cnx(1);
    disx=cnx(2)-cnx(1);
    disy=cny(2)-cny(1);
    disy=cny(2)-cny(1);
    if disx==0
    if disx==0
        if disy>0
        if disy>0
            cny(1)=cny(1)+1;
            cny(1)=cny(1)+1;
        else
        else
            cny(1)=cny(1)-1;
            cny(1)=cny(1)-1;
        end
        end
    else
    else
        tanD=disy/disx;
        tanD=disy/disx;
        if disy>0
        if disy>0
            if disx>0
            if disx>0
                if tanD<0.414
                if tanD<0.414
                        cnx(1)=cnx(1)+1;
                        cnx(1)=cnx(1)+1;
            elseif tanD>2.414
            elseif tanD>2.414
                cny(1)=cny(1)+1;
                cny(1)=cny(1)+1;
                    else
                    else
                        cny(1)=cny(1)+1;
                        cny(1)=cny(1)+1;
                    cnx(1)=cnx(1)+1;
                    cnx(1)=cnx(1)+1;
                    end
                    end
            else
            else
                if tanD>-0.414
                if tanD>-0.414
                cnx(1)=cnx(1)-1;
                cnx(1)=cnx(1)-1;
                    elseif tanD<-2.414
                    elseif tanD<-2.414
                cny(1)=cny(1)+1;
                cny(1)=cny(1)+1;
                    else
                    else
                    cnx(1)=cnx(1)-1;
                    cnx(1)=cnx(1)-1;
                    cny(1)=cny(1)+1;
                    cny(1)=cny(1)+1;
                end
                end
            end
            end
        else %disy<0
        else %disy<0
            if disx>0
            if disx>0
                    if tanD>-0.414
                    if tanD>-0.414
                cnx(1)=cnx(1)+1;
                cnx(1)=cnx(1)+1;
                    elseif tanD<-2.414
                    elseif tanD<-2.414
                cny(1)=cny(1)-1;
                cny(1)=cny(1)-1;
            else
            else
                                    cny(1)=cny(1)-1;
                                    cny(1)=cny(1)-1;
                                    cnx(1)=cnx(1)+1;
                                    cnx(1)=cnx(1)+1;
            end
            end
        else
        else
                    if tanD<0.414
                    if tanD<0.414
                    cnx(1)=cnx(1)-1;
                    cnx(1)=cnx(1)-1;
            elseif tanD>2.414
            elseif tanD>2.414
                cny(1)=cny(1)-1;
                cny(1)=cny(1)-1;
                    else
                    else
                    cnx(1)=cnx(1)-1;
```

 cnx(1)=cnx(1)-1;
    ```
175 | P a g e

0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
```

 cny(1)=cny(1)-1;
 end
 end
 end
 end
 insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
 insertN=insertN+1;
 end
 traceAll=[traceP; insert; traceP2];
 otherwise
cnx(1)=tsEnd1(2);
cnx(2)=tsEnd2(2);
cny(1)=tsEnd1(1);
cny(2)=tsEnd2(1);
hold on
plot(cnx, cny, 'Color', 'yellow', 'LineWidth', 2);
while true
if cnx(1)==cnx(2) \&\& cny(1)==cny(2)
break;
end
disx=cnx(2)-cnx(1);
disy=cny(2)-cny(1);
if disx==0
if disy>0
cny(1)=cny(1)+1;
else
cny(1)=cny(1)-1;
end
else
tanD=disy/disx;
if disy>0
if disx>0
if tanD<0.414
cnx(1)=cnx(1)+1;
elseif tanD>2.414
cny(1)=cny(1)+1;
else
cny(1)=cny(1)+1;
cnx(1)=cnx(1)+1;
end
else
if tanD>-0.414
cnx(1)=cnx(1)-1;
elseif tanD<-2.414
cny(1)=cny(1)+1;
else
cnx(1)=cnx(1)-1;
cny(1)=cny(1)+1;
end
end
else %disy<0
if disx>0
if tanD>-0.414
cnx(1)=cnx(1)+1;
elseif tanD<-2.414

```

0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
traces.tr(maxN2:N,:)];
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
```

$0747 \quad$ traceT=[traces.tr(1:minN,:); traceLabel; traces.tr(minN2:maxN,:);
0748 traces.tr=traceT;
cny(1)=cny(1)-1;
else
cny(1)=cny(1)-1;
cnx(1)=cnx(1)+1;
end
else
if tanD<0.414
cnx(1)=cnx(1)-1;
elseif tanD>2.414
cny(1)=cny(1)-1;
else
cnx(1)=cnx(1)-1;
cny(1)=cny(1)-1;
end
end
end
end
insert(insertN,:)=[cny(1)+lower(1)-1 cnx(1)+lower(2)-1];
insertN=insertN+1;
end
traceAll=[traceP; insert; flipud(traceP2)];
end
% Ask user if the conncetion is correct or not.
button= questdlg('Do you want to keep the connection?');
if button(1)=='Y'
close(fig1)
N=size(traces.tr,1);
traceLabel=[-1 tr1.ID; traceAll; -1 0];
minN=min(tr1.N, tr2.N);
minN2=min(tr1.N2, tr2.N2);
maxN=max(tr1.N, tr2.N);
maxN2=max(tr1.N2, tr2.N2);
traces.tr=traceT;
cla
pcolor(image);
shading flat
N=size(traces.tr, 1);
traceP=zeros(2,2);
k=1;
for j=2:N
if traces.tr(j,1)==-1 || j==N
hold on
plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 1);
traceP=zeros(2,2);
k=1;
continue;
else
traceP(k,:)=traces.tr(j,:);
k=k+1;
end

```

0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
1);

0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
end
break;
end
button= questdlg('Do you want to redo connection on same molecules?');
if button(1)=='N'
close(fig1);
break;
end
cla pcolor(subimage);
shading flat
hold on
scatter(tsStart1(2),tsStart1(1), 'd','filled', 'MarkerEdgeColor','green', 'LineWidth', 1);
hold on
scatter(tsEnd1(2),tsEnd1(1), 'o','filled', 'MarkerEdgeColor', 'cyan', 'LineWidth', 1); hold on scatter(tsStart2(2), tsStart2(1), 's','filled', 'MarkerEdgeColor', 'magenta', 'LineWidth',
hold on
scatter(tsEnd2(2), tsEnd2(1), '>','filled', 'MarkerEdgeColor', 'red', 'LineWidth', 1);
end
\%
\% \% plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', 2);
\%
\% cla
\% pcolor(image);
\% shading flat
\%
\%
function Nextlmage_Callback(hObject, eventdata, handles)
\% hObject handle to Nextlmage (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
\% This function will ask the user to save the modified traces or not and
\% move on to the nexe image.
global filename fileNum ImageID image traces lineW traceFile
if iscell(filename)
fileNum=size(filename, 2);
else
fileNum=1;
end
if fileNum==1
traceFile=filename;

0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
```

else
traceFile=char(filename(ImageID));
end
%save new tracing
Button=questdlg('Save new tracing?');
if Button(1)=='Y'
fd=fopen(traceFile, 'w');
fprintf(fd, '%d %d \n\r', traces.BASE, traces.OVERWHELM);
N=size(traces.tr,1);
for i=1:N
fprintf(fd, '%d %d \n\r', traces.tr(i,:));
end
fclose(fd);
end
% Loading the next image. If current image is the last one, the program
% will display a warning.
if ImageID >= fileNum
msgbox(strcat(traceFile, ' is the last image.'), 'Last image', 'warn');
else
ImageID=ImageID+1;
traceFile=char(filename(ImageID));
traces=readtr(traceFile);
NameLength=size(traceFile, 2)-6;
imageFile=traceFile(1:NameLength);
image=readimage(imageFile);
cla
pcolor(image);
shading flat
title(gca, imageFile);
N=size(traces.tr, 1);
traceP=zeros(2,2);
k=1;
for j=2:N
if traces.tr(j,1)==-1 || j==N
hold on
plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
traceP=zeros(2,2);
k=1;
continue;
else
traceP(k,:)=traces.tr(j,:);
k=k+1;
end
end
end
% Function of looking for traces been clicked by the user.

```
```

0878
0879
0880
0881
0882
0883
0 8 8 4
0885
0886
0887
0888
0 8 8 9
0 8 9 0
0891
0892
0893
0894
0895
0896
0897
0898
0899
0 9 0 0
0 9 0 1
0902
0903
0904
0905
0906
0907
0908
0 9 0 9
0 9 1 0
0 9 1 1
0 9 1 2
0 9 1 3
0 9 1 4
0915
0916
0917
0 9 1 8
0 9 1 9
0 9 2 0
0 9 2 1
0 9 2 2
0923
0 9 2 4
0925
0926
0927
0928
0 9 2 9
0 9 3 0
0 9 3 1
0 9 3 2
0 9 3 3

```
```

function trace = FindTr(Input)

```
function trace = FindTr(Input)
global traces;
global traces;
trace.N=0;
trace.N=0;
trace.N2=0;
trace.N2=0;
trace.ID=0;
trace.ID=0;
trace.start=zeros(1,2);
trace.start=zeros(1,2);
trace.end=zeros(1,2);
trace.end=zeros(1,2);
N=size(traces.tr,1);
N=size(traces.tr,1);
for i=1:N
for i=1:N
    test=abs(traces.tr(i,:)-Input);
    test=abs(traces.tr(i,:)-Input);
    if sum(test)<=5
    if sum(test)<=5
                for j=i:-1:1
                for j=i:-1:1
                    if traces.tr(j,1)== -1
                    if traces.tr(j,1)== -1
                    trace.N=j;
                    trace.N=j;
                    trace.ID=traces.tr(j,2);
                    trace.ID=traces.tr(j,2);
                    trace.start=traces.tr(j+1,:);
                    trace.start=traces.tr(j+1,:);
                    break;
                    break;
                    end
                    end
            end
            end
            for j=i:N
            for j=i:N
            if traces.tr(j,1)== -1
            if traces.tr(j,1)== -1
                trace.N2=j;
                trace.N2=j;
                    trace.end=traces.tr(j-1,:);
                    trace.end=traces.tr(j-1,:);
                    break;
                    break;
                    end
                    end
        end
        end
    end
    end
end
end
%
%
function SegmentLength_Callback(hObject, eventdata, handles)
function SegmentLength_Callback(hObject, eventdata, handles)
% hObject handle to SegmentLength (see GCBO)
% hObject handle to SegmentLength (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% handles structure with handles and user data (see GUIDATA)
% This function allows user to select a trace or a part of it and measure
% This function allows user to select a trace or a part of it and measure
% the DNA length of selected segment.
% the DNA length of selected segment.
global traces image traceFile lineW
global traces image traceFile lineW
% Display a zoom in figure to improve the convinence of trace selection.
% Display a zoom in figure to improve the convinence of trace selection.
hf=figure('Position',[100 200 900 700]);
hf=figure('Position',[100 200 900 700]);
lengthP=0;
lengthP=0;
while true
while true
    pcolor(image);
    pcolor(image);
    shading flat
    shading flat
    title(gca, traceFile);
    title(gca, traceFile);
    hold on
    hold on
    Closel='n';
    Closel='n';
    k=1;
    k=1;
    traceP=zeros(2);
    traceP=zeros(2);
    N=size(traces.tr,1);
```

 N=size(traces.tr,1);
    ```

0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
    for \(\mathrm{j}=2: \mathrm{N}\)
    if \(\operatorname{traces} \cdot \operatorname{tr}(\mathrm{j}, 1)==-1 \| j==\mathrm{N}\)
            hold on
                plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
                traceP=zeros(2,2);
            \(\mathrm{k}=1\);
            continue;
        else
            traceP(k,:)=traces.tr(j,:);
            \(k=k+1\);
        end
    end
    input=round(ginput(1));
    \(\operatorname{inp}(1)=\) input(2);
    \(\operatorname{inp}(2)=\) input(1);
    \% Look for the selected trace.
    \(\operatorname{tr}=\) Find \(\operatorname{Tr}(\) inp \() ;\)
    \% trace. \(\mathrm{N}=0\);
    \% trace. \(\mathrm{N} 2=0\);
    \% trace. ID=0;
    \% trace.start=zeros(1,2);
    \% trace.end=zeros(1,2);
    if tr . \(\mathrm{N}==0\)
            msgbox('Cannot find the trace.', 'Error', 'warn');
        else
            traceP=traces.tr(tr.N+1:tr.N2-1,:);
            hold on
            plot(traceP(:,2),traceP(:,1),'Color', 'yellow', 'LineWidth', 2);
    \% Calculate the segment length of selected trace. SegLength is a subfuntion
    \% calculate the length of a set of coordinates.
            lengthC=SegLength(traceP);
            length=lengthC*1000/512;
            basepair=length/0.32;
    \% User can choose to select next trace or break current traces and continue
    \% with a part of the segment.
    while true
        qust=strcat('Segment length is:', num2str(length),'nm;_',
num2str(basepair),'basepairs. Measure next segment?');
0979 button=questdlg(qust, 'Measure', 'Break/Add it up', 'Next segment', 'Close
image', 'Close image');
0980 if button(1)=='C'
0981 Closel='y';
0982
                        break;
0983
0984 elseif button(1)=='B'
0985 button=questdlg('Break or Add it up?', 'Sub function', 'Break', 'Add it up',
'Break');
0986
181 | P a g e

0987 \% Add in selection will keep current measurement into a buffer and display
0988 \% it. The user can then select another segment and add it with the buffered
0989
0990
0991
0992
0993
0994
num2str(lengthPn/0.32), 'basepairs. Clear it?');
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
\% value.
    if button(1)=='A'
    length \(P=\) length \(P+l e n g t h C ;\)
    length \(P n=\) length \(P^{*} 1000 / 512\);
    qust=strcat('Current sum is:', num2str(lengthPn),'nm;_',
(lengthPn/0.32),'basepairs. Clear it?');
    button=questdlg(qust, 'Sum', 'Yes', 'No', 'No');
    if button \((1)==' Y\) '
        length \(P=0\);
        button=questdlg('Go to next image?', 'End of sum', 'Yes', 'No', 'No');
        if button(1)=='Y'
                    Closel='y';
            end
    end
    break;
    \% Start to break current trace. The user will select the start and end
    \% point of the segment which is interested.
            else
        hold off
        pcolor(image);
        shading flat
            title(gca, traceFile);
        hold on
        plot(traceP(:,2),traceP(:,1),'Color', 'red', 'LineWidth', lineW);
        maxy=size(image,1);
        maxx=size(image,2);
        lowy=min(traceP(:, 1))-10;
        lowx=min(traceP(:,2))-10;
        upy \(=\max (\operatorname{traceP}(:, 1))+10\);
        upx=max(traceP(:,2))+10;
        lowy=max([1 lowy]);
        lowx=max([1 lowx]);
        upy=min([maxy upy]);
        \(u p x=\min ([\operatorname{maxx} u p x])\);
    \% Zoom in to the segment needs to be break down.
        set(gca, 'XLim', [lowx upx], 'YLim', [lowy upy]);
        while true
    \% Look for the break point.
    breakp=round(ginput(2));
    inb(:,1)=breakp(:,2);
    inb(:,2)=breakp(:,1);
    bro=1;
    brop=[00];
    test1=zeros(2,1);
    test2=zeros(2,1);
    for \(\mathrm{j}=1\) :size(traceP,1)
```

 test1(j)=sum(abs(traceP(j,:)-inb(1,:)));
 test2(j)=sum(abs(traceP(j,:)-inb(2,:)));
 end
 [a brop(1)]=min(test1);
 [a brop(2)]=min(test2);
 if brop(1)==brop(2)
 brop=[0 0];
 bro=0;
 end
 if bro==1
 break;
 else
 msgbox('Cannot find the break points.', 'Error', 'warn');
 pause
 end
 end
 % Display the breaking result.
 traceP2=traceP(min(brop):max(brop),:);
 lengthC=SegLength(traceP2);
 length=lengthC*1000/512;
 basepair=length/0.32;
 hold off
 pcolor(image);
 shading flat
 title(gca, traceFile);
 hold on
 plot(traceP2(:,2),traceP2(:,1),'Color', 'yellow', 'LineWidth', 2);
 set(gca, 'XLim', [lowx upx], 'YLim', [lowy upy]);
 end
 else
 break;
 end
 end
 hold off
 if Closel=='y'
 break;
 end
 end
 end
 close(hf);
    ```

\section*{SegLength.m}
\% This function calculate the segment length of a set of coordinates.
\% User can choose different method of calculating by active different part \% of codes.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function length \(=\) SegLength(traceP)
\% Original algorithm

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
```

step=2;
Cstep=0;
prevP=traceP(1,:);
n=size(traceP,1);
length=0;
for j=2:n
if Cstep==step || j==n
length=length+sqrt((traceP(j,1)-prevP(1))^2+(traceP(j,2)-prevP(2))^2);
prevP=traceP(j,:);
Cstep=0;
else
Cstep=Cstep+1;
end
end
% End of original algorithm
% Freeman estimator
% prevP=traceP(1,:);
% n=size(traceP,1);
% length=0;
% for j=1:1:n
% if sum(abs(traceP(j,:)-prevP))>1
% length=length+1.414;
% else
% length=length+1;
% end
% prevP=traceP(j,:);
% end
% End of Freeman estimator
% MPO estimator
% prevP=traceP(1,:);
% n=size(traceP,1);
% ne=0;
% no=0;
% for j=1:1:n
% if sum(abs(traceP(j,:)-prevP))>1
% no=no+1;
% else
% ne=ne+1;
% end
% prevP=traceP(j,:);
% end
%
% length=sqrt((ne+no)^^+ne^^2);
% End of MPO estimator
% Kulpa estimator
% prevP=traceP(1,:);

```
```

0 6 7

```

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
```

% n=size(traceP,1);
% ne=0;
% no=0;
% for j=1:1:n
% if sum(abs(traceP(j,:)-prevP))>1
% no=no+1;
% else
ne=ne+1;
end
%
% prevP=traceP(j,:);
% end
%
% length=0.948*ne+1.343*no;
% End of Kulpa estimator
% Corner chain estimator
% prevP=traceP(1,:);
% n=size(traceP,1);
% ne=0;
% no=0;
% nc=0;
% prev=0;
% for j=1:1:n
% if sum(abs(traceP(j,:)-prevP))>1
% % id is 1
% no=no+1;
% if prev==2
% nc=nc+1;
% end
% prev=1;
% else
% % id is 2
% ne=ne+1;
% if prev==1
% nc=nc+1;
% end
% prev=2;
% end
% prevP=traceP(j,:);
% end
%
% length=0.98*ne+1.406*no-0.091*nc;
% End of Corner chain estimator

```

\section*{lengthC.m}
\% This program calculate the total contour length of each tracing.
\% The final result will be saved into an array named final.
004 \% The algorithm is defined in subfunction "SegLength.m". Please keep it in
005 \% the same folder of the program.
006 \% The subfunction of "readtr.m" is also needed by this program.
\% Users can test different algorithm by change "SegLength.m" \% The upper and lower threshold are used to eliminate broken DNA and bad \% tracing.
\% An overview of all tracing and images obtained by tracing program are
\% suggested. It will be great helpful to delete bad images and tracing file
\% before using this program.
\% User can make change on image parameters below in the code.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
clear all
close all
\% Change parameters here: xyScale is the real length of one side of a
\% square image in nanometer. imagesize is number of pixels of one line/row \% of the images.
xyScale=1000;
imagesize=512;
\% End of changing parameters.
\% Asking user to decide the threshold of segment selection. DNA traces
\% longer than maximum (decided by upper bound) or shorter than minimum \% (deciced by lower bound) will not be considered.
def=\{num2str(160),num2str(0.8), num2str(2.0) \(\}\);
prompt=\{'Expected DNA length (nm):', 'Lower bound:', 'Upper bound'\};
answer=inputdlg(prompt, 'Change parameter', 1, def);
eLength=str2double(char(answer(1)));
cutoff=str2double(char(answer(2)));
upperB=str2double(char(answer(3)));
[filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
CurrentP=pwd;
path(path,CurrentP);
cd(pathname);
if iscell(filename)
fileNum=size(filename, 2);
else
fileNum=1;
end
\(\mathrm{fn}=1\);
length=zeros(2,1);
\% This loop looks at selected images one after another.
for \(i=1\) :fileNum
if fileNum==1 traceFile=filename;
else traceFile=char(filename(i));
```

 end
    ```
    traces=readtr(traceFile);
    traceFile
    prevP=[00; 0 ;
    \(\mathrm{k}=1\);
    n=size(traces.tr,1);
    traceP=zeros(2);
    \% This loop goes through all traces inside current image and calculate the
    \% length.
    \% Calculated length will be put into an array named final1.
        for \(j=2: n\)
            if traces. \(\operatorname{tr}(\mathrm{j}, 1)==-1\)
                if traces. \(\operatorname{tr}(\mathrm{j}, 2)>0\)
                    traceP=zeros(2);
                    \(\mathrm{k}=1\);
                else
                    length(fn)=SegLength(traceP);
                    \(f n=f n+1\);
                end
            else
                traceP(k,:)=traces.tr(j,:);
                \(k=k+1\);
            end
        end
    \% Traces longer or shorter than thresholds will be disgarded.
        final1=length(length>eLength*imagesize/xyScale*cutoff);
        final=final1(final1<eLength*imagesize/xyScale*upperB);
end
\% Convert length into nanometers.
pr_V=final*xyScale/imagesize;
\% Prepare histograms.
lower=min(pr_V);
upper=max(pr_V);
\% binS=2;
eStd=std(pr_V);
binS=eStd/15;
aLim=size(pr_V,1)/20;
xout=lower:binS:upper*1.2;
n=histc(pr_V,xout);
    [nmax ni]=max(n);
    bar(xout,n)
    hold on
    \% Fitting with Gaussian curve and display.

119

xout2=lower:1:upper*1.2;
f2=feval(cfun, xout2');
plot(xout2,(f2),'r-','Linewidth',2);
cd(pwd);

\section*{ParticleAnalysis.m}

001 \% This program look for particles bound or unbound by DNA molecules and
002
\% calculates volume, crosssection and height of every molecules.
003
004
005
006
007
008
009
010
011
012 \%PARTICLEANALYSIS M-file for ParticleAnalysis.fig
\% This program need these subfunctions: addit.m, readtr.m, readimage.m, \% findtr.m.
\% Please keep them in the same folder of the program.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function varargout = ParticleAnalysis(varargin)
013 \% PARTICLEANALYSIS, by itself, creates a new PARTICLEANALYSIS or raises the
existing
014 \% singleton*.
015 \%
\(016 \quad \% \quad \mathrm{H}=\) PARTICLEANALYSIS returns the handle to a new PARTICLEANALYSIS or the handle to
017 \% the existing singleton*.
018 \%
019 \% PARTICLEANALYSIS('Property','Value',...) creates a new PARTICLEANALYSIS
using the
020 \% given property value pairs. Unrecognized properties are passed via
021 \% varargin to ParticleAnalysis_OpeningFcn. This calling syntax produces a
022 \% warning when there is an existing singleton*.
023 \%
024 \% PARTICLEANALYSIS('CALLBACK') and
PARTICLEANALYSIS('CALLBACK',hObject,...) call the
025 \% local function named CALLBACK in PARTICLEANALYSIS.M with the given input
026 \% arguments.
027 \%
028 \% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
029 \% instance to run (singleton)".
030 \%
031 \% See also: GUIDE, GUIDATA, GUIHANDLES
032
033
034
035
036
037
038
039
040
\% Edit the above text to modify the response to help ParticleAnalysis
\% Last Modified by GUIDE v2.5 02-Sep-2011 09:48:10
\% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
```

 'gui_OpeningFcn', @ParticleAnalysis_OpeningFcn, ...
 'gui_OutputFcn', @ParticleAnalysis_OutputFcn,...
 'gui_LayoutFcn', [], ...
 'gui_Callback', [];
 if nargin \&\& ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfon(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before ParticleAnalysis is made visible.
function ParticleAnalysis_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin unrecognized PropertyName/PropertyValue pairs from the
% command line (see VARARGIN)
% Choose default command line output for ParticleAnalysis
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes ParticleAnalysis wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = ParticleAnalysis_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in calculate.
function calculate_Callback(hObject, eventdata, handles)
% hObject handle to calculate (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% This function select files that need to be analyzed.
% If the file type is set to 'Free particles', the program will open AFM
% data directly; otherwise, it will open tracing files instead.

```
global analyT FileType filename pathname
FileType=analyT;
if FileType(1)=='F'
        str='*.'';
else
        str='*.txt';
end
[filename, pathname, filterindex]=uigetfile(str, 'pick a file', 'Multiselect', 'on');
CurrentP=pwd;
path(path,CurrentP);
cd(pathname);
\% --- Executes on button press in reset.
function reset_Callback(hObject, eventdata, handles)
\% hObject handle to reset (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
\% This function will look at particles through images and do the
\% calculation.
global imageP analyP FileType filename data biColor
if iscell(filename)
        fileNum=size(filename, 2);
else
        fileNum=1;
end
final=zeros(3);
fn=1;
\% THRESHOLD=1.0; \% Set the threshold for elimination of DNA.
\% AreaSize=10; \% Blobs contain less than this number of pixles will not be counted.
\% imageSize=512;
zScale=imageP.zScale/imageP.zRange;
xyScale=imageP.xyScale/imageP.ImageSize;
for \(\mathrm{i}=1\) :fileNum
        if fileNum==1
            traceFile=filename;
        else
            traceFile=char(filename(i));
        end
    \% Display the filename of current image.
        traceFile
    \% For bound particle analysis, the program will read both traces and image
\% data; otherwise, only images data are read.
```

 if FileType(1)=='B'
 % Read traces.
traces=readtr(traceFile);
NameLength=size(traceFile, 2)-6;
% Reconstruct image filename
imageFile=traceFile(1:NameLength);
else
NameLength=size(traceFile, 2);
if traceFile(NameLength-2)~='0'
continue;
end
imageFile=traceFile;
end
% Read image data
image=readimage(imageFile);
ImageSize=size(image,1);
% Set background level for analysis. For bound particle, the background
% level is read out from tracing file. For unbound particle analysis, the
% backgroud level is calculated by averaging.
if FileType(1)=='B'
basel=traces.BASE;
else
basel=mean(mean(image));
end
image=image-basel;
% Use threshold to cut particle pixels from the image.
biColor=image;
biColor(biColor<analyP.threshold/zScale)=0;
biColor(biColor>0)=1;
biColor(1,:)=0;
biColor(ImageSize,:)=0;
biColor(:,1)=0;
biColor(:,ImageSize)=0;
blobs=zeros(2);
blobsl=1;
bID=1;
blobsT=zeros(2);
% This part looks for the area of each blobs
for m=1:ImageSize
for n=1:ImageSize

```
```

if biColor (m,n)==1

```
\% The addit function will start from one point and look for all points
\% belong to the same particle and put coordinates into one array.
```

 blobsT=addit(m,n);
    ```
\% Particles smaller than the minimum value will be disregarded.
```

if size(blobsT,1)>analyP.MinSize*xyScale^2

```
blobs(blobsl,:)=[-1 bID];
lowerx=min(blobsT(:,1));
lowery=min(blobsT(:,2));
upperx=max(blobsT(:,1));
uppery=max(blobsT(:,2));
blobs(blobsl+1,:)=[lowerx lowery];
blobs(blobsl+2,:)=[upperx uppery];
blobs(blobsl+3,:)=[-1 0\(]\);
blobsl=blobsl+3;
nextl=blobsl+size(blobsT,1);
blobs(blobsl+1:nextl,:)=blobsT;
blobsl=nextl+1;
bID=bID+1;
                    blobsT=zeros(2);
end end
end
end
\% Display particles found by program.
if \(i==1\)
figure('Position',[10 500400 300]); pcolor(image)
shading flat hold on plot(blobs(:,2)', blobs(:,1)', 'LineStyle', 'none', 'Color', 'red', 'Marker', '.', 'MarkerSize',2);
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
figure('Position',[10 50400 300]);
pcolor(image)
shading flat
end
\% The maskB matrix saved all found particles. The value of every pixels is \% set to the particle ID instead of real heigth.
```

maskB=zeros(ImageSize);
for j=1:size(blobs,1)
if blobs(j,1)==-1
if blobs(j,2)>0
bID=blobs(j,2);
blobs(j+1,1)=0;
blobs(j+2,1)=0;
end
else

```
```

 if blobs(j,1)>0
 maskB(blobs(j,1), blobs(j,2))=bID;
 end
 end
 end
 trlD=0;
 trN=1;
 % For analyzing bound particles, only particles overlap with one or more
% DNA traces will be find out and considered.
if FileType(1)=='B'
maskT=maskB;
for j=1 :size(traces.tr,1)
if traces.tr(j,1)>0
if maskT(traces.tr(j,1), traces.tr(j,2))>0
trlD(trN)=maskT(traces.tr(j,1), traces.tr(j,2));
trN=trN+1;
maskT(maskT==trlD (trN-1))=0;
end
end
end
else
maxID=max(max(maskB));
for j=1:maxID
maskT=maskB;
maskT(maskT~=j)=0;
if sum(sum(maskT))==0
continue;
end
trID (trN)=j;
trN=trN+1;
end
end
maskT=maskB;
for j=1:size(trID,2)
maskT=maskB;
IM=image;
tID=trID(j);
maskT(maskT~=tID)=0;
maskT=maskT/tID;
IM=IM.*maskT;
Bheight=max(max(IM));
% Eliminate blobs too high or too low
if Bheight<analyP.MinHeight/zScale
continue;
end
if Bheight>analyP.MaxHeight/zScale
continue;
end

```
\% Eliminate blobs too big or too small
        if sum(sum(maskT))>analyP.MaxSize*xyScale^2
        continue;
        end
        if sum(sum(maskT))<analyP.MinSize*xyScale^2
        continue;
    end
\% Blobs too close to the edge will not be considered in.
    si=size(IM,1);
    xEdge1=IM(1:analyP.margin,:);
    xEdge2=IM(si-analyP.margin+1:si,:);
    yEdge1=IM(:,1:analyP.margin);
    yEdge2=IM(:, si-analyP.margin+1:si);
    sumE=sum(sum(xEdge1+xEdge2))+sum(sum(yEdge1+yEdge2));
    if sumE>0
        continue;
        end
\% Calculate volume diameter;
\% IM is the deduced image contains only one particle.
\% Bheight is the maximum height of the particle.
        volume=sum(sum(IM));
        if analyP.CrossSectionP>0.1 \& \& analyP.CrossSectionP<100
            CrossSection=Bheight*analyP.CrossSectionP/100;
        else
            CrossSection=analyP.CrossSection/zScale;
        end
        \(\mathrm{IM}(\mathrm{IM}<\) CrossSection \()=0\);
        \(\mathrm{IM}(\mathrm{IM}>0)=1\);
        CroSec=sum(sum(IM));
        dia=2*sqrt(CroSec/3.14);
        dia=dia/xyScale;
        final(fn,1)=dia;
        final(fn,2)=Bheight*zScale;
        final(fn,3)=volume*zScale/xyScale/xyScale;
        \(\mathrm{fn}=\mathrm{fn}+1\);
        end
end
data=final;
\% Display figure of diameter distribution.
figure('Position',[400 500400 300]);
pr=final(: \(: 1\) );
pr_V=pr(pr>0);
xout=0:0.5:max(pr_V)*1.2;
```

n=histc(pr_V,xout)/size(pr_V,1);
bar(xout,n)
title('Blobs Diameter');
xlabel('Blobs Diameter (nm)');
ylabel('Percentage');
% Display figure of height distribution.
figure('Position',[400 50 400 300]);
pr=final(:,2);
pr_V=pr(pr>0);
xout=0:0.5:max(pr_V)*1.2;
n=histc(pr_V,xout)/size(pr_V,1);
bar(xout,n)
title('Blobs Height');
xlabel('Blobs Height (nm)');
ylabel('Percentage');
% Display figure of volume distribution.
figure('Position',[800 50 400 300]);
pr=final(:,3);
pr_V=pr(pr>0);
xout=0:10:max(pr_V)*1.2;
n=histc(pr_V,xout)/size(pr_V,1);
bar(xout,n)
title('Blobs Volume');
xlabel('Blobs Volume (nm^3)');
ylabel('Percentage');
% imageP.ImageSize
% imageP.xyScale
% imageP.zRange
% imageP.zScale
%
% analyP.threshold
% analyP.CrossSection
% analyP.MaxHeight
% analyP.MinHeight
% analyP.MaxSize
% analyP.MinSize
% analyP.margin
imageP
analyP

```
\% --- Executes when selected object is changed in unitgroup.
function unitgroup_SelectionChangeFcn(hObject, eventdata, handles)
\% hObject handle to the selected object in unitgroup
\% eventdata structure with the following fields (see UIBUTTONGROUP)
\% EventName: string 'SelectionChanged' (read only)
\% OldValue: handle of the previously selected object or empty if none was selected
\% NewValue: handle of the currently selected object
\% handles structure with handles and user data (see GUIDATA)
\% This function allows user to choose analyze free particles or particles
\% bound by DNA traces.
\% AnalyT is 'Free' or 'Bound'.
global analyT
analyT=get(hObject, 'string');
\% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, handles)
\% hObject handle to pushbutton9 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
\% This function will save the analyzing data into excel files.
global filename data pathname imageP analyP FileType
\% Generating filename for excel.
if iscell(filename)
    fileNum=size(filename, 2);
else
    fileNum=1;
end
if fileNum==1
    File=filename;
else
    File=char(filename(1));
end
for \(\mathrm{i}=1\) :size (File,2)
    if File(i)=='.'
        break;
    end
end
putfile=[File(1:i-1), '.xls'];
cd(pathname);
[filep, pathp, filterindex]=uiputfile(putfile, 'Save data');
\% Saving file head.
wdata=\{'Diameter (nm)', 'Height (nm)', 'Volume (nm^3)', FileType\};
xlswrite(filep, wdata, 1);
\% Saving data
xlswrite(filep, data, 1, 'A2');
\% Saving parameters.
d=\{'Image Size', imageP.ImageSize; 'X-Y Scale', imageP.xyScale; 'Z Range', imageP.zRange; 'Z Scale', imageP.zScale; 'Threshold', analyP.threshold; 'Cross Section', analyP.CrossSection; 'Cross Section \%', analyP.CrossSectionP;
490 'Max Height', analyP.MaxHeight; 'Min Height', analyP.MinHeight; 'Max Size', analyP.MaxSize; 'Min Size', analyP.MinSize; 'Margin', analyP.margin\};
491
492
493
494
495
496
497
498
499
500
501
502
503 str=get(hObject, 'string');
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518 if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
519 set(hObject,'BackgroundColor','white');
520 end
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
```

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global imageP
str=get(hObject, 'string');
imageP.xyScale=str2double(str);
% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as a double

```
```

540 % --- Executes during object creation, after setting all properties.
541 function edit7_CreateFcn(hObject, eventdata, handles)
542 % hObject handle to edit7 (see GCBO)
5 4 3 ~ \% ~ e v e n t d a t a ~ r e s e r v e d ~ - ~ t o ~ b e ~ d e f i n e d ~ i n ~ a ~ f u t u r e ~ v e r s i o n ~ o f ~ M A T L A B ~
5 4 4 ~ \% ~ h a n d l e s ~ e m p t y ~ - ~ h a n d l e s ~ n o t ~ c r e a t e d ~ u n t i l ~ a f t e r ~ a l l ~ C r e a t e F c n s ~ c a l l e d ~
5 4 5 ~ g l o b a l ~ i m a g e P
546
547
548 if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
549 set(hObject,'BackgroundColor','white');
550 end
551 str=get(hObject, 'string');
552 imageP.xyScale=str2double(str);
55
554
555 function edit8_Callback(hObject, eventdata, handles)
556 % hObject handle to edit8 (see GCBO)
557
558
559
560
561
562
563
564
565
566
567
568
5 6 9
5 7 1 ~ \% ~ e v e n t d a t a ~ r e s e r v e d ~ - ~ t o ~ b e ~ d e f i n e d ~ i n ~ a ~ f u t u r e ~ v e r s i o n ~ o f ~ M A T L A B ~
5 7 2 ~ \% ~ h a n d l e s ~ e m p t y ~ - ~ h a n d l e s ~ n o t ~ c r e a t e d ~ u n t i l ~ a f t e r ~ a l l ~ C r e a t e F c n s ~ c a l l e d ~
5 7 3 ~ g l o b a l ~ i m a g e P
574 % Hint: edit controls usually have a white background on Windows.
5 7 5 ~ \% ~ S e e ~ I S P C ~ a n d ~ C O M P U T E R .
576 if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
577 set(hObject,'BackgroundColor','white');
578 end
579 str=get(hObject, 'string');
580 imageP.zRange=str2double(str);
581
582
5 8 3
54
585
586
587
588
5 8 9
5 9 0
591
5 9 2
593
function edit9_Callback(hObject, eventdata, handles)
% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global imageP
str=get(hObject, 'string');
imageP.zScale=str2double(str);
% Hints: get(hObject,'String') returns contents of edit9 as text

```

594 \% str2double(get(hObject,'String')) returns contents of edit9 as a double

595
596
597
598
599
600
601
602
603
604
605
606
607
get(0,'defaultUicontrolBackgroundColor'))
608 set(hObject,'BackgroundColor','white');
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
get( 0 ,'defaultUicontrolBackgroundColor'))
638 set(hObject,'BackgroundColor','white');
639
640
641
642
643
644
645 function edit11_Callback(hObject, eventdata, handles)
646 \% hObject handle to edit11 (see GCBO)
647 \% eventdata reserved - to be defined in a future version of MATLAB
```

648 % handles structure with handles and user data (see GUIDATA)
649
650
651
652
6 5 3
654
655
6 5 6
657
658
659
660
6 6 1
6 6 2
6 6 3
644
665
get(0,'defaultUicontrolBackgroundColor'))
668 set(hObject,'BackgroundColor','white');
69
6 7 0
6 7 1
6 7 2
6 7 3
674
675
676
677
6 7 8
6 7 9
6 8 0
6 8 1
682
683
64
68
6 8 6
687
688
6 8 9
690
6 9 1
6 9 2
6 9 3
6 9 4
695 if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
696 set(hObject,'BackgroundColor','white');
6 9 7
6 9 8
6 9 9
7 0 0
global analyP
str=get(hObject, 'string');
analyP.CrossSection=str2double(str);
% Hints: get(hObject,'String') returns contents of edit11 as text
% str2double(get(hObject,'String')) returns contents of edit11 as a double
% --- Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit11 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
global analyP
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'),
end
str=get(hObject, 'string');
analyP.CrossSection=str2double(str);
function edit12_Callback(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global analyP
str=get(hObject, 'string');
analyP.MaxHeight=str2double(str);
% Hints: get(hObject,'String') returns contents of edit12 as text
% str2double(get(hObject,'String')) returns contents of edit12 as a double
% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
global analyP
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
end
str=get(hObject, 'string');
analyP.MaxHeight=str2double(str);

```
701
```

function edit13_Callback(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global analyP
str=get(hObject, 'string');
analyP.MinHeight=str2double(str);
% Hints: get(hObject,'String') returns contents of edit13 as text
% str2double(get(hObject,'String')) returns contents of edit13 as a double
% --- Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
global analyP
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
728 set(hObject,'BackgroundColor','white');

```
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

\section*{757 \% See ISPC and COMPUTER.}

758 if ispc \&\& isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
759 set(hObject,'BackgroundColor','white');
760 end
761
762 str=get(hObject, 'string');
763 analyP.MaxSize=str2double(str);
764

\section*{765}

766
767
768
769
function edit15_Callback(hObject, eventdata, handles)
\% hObject handle to edit15 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
global analyP
str=get(hObject, 'string');
analyP.MinSize=str2double(str);
\% Hints: get(hObject,'String') returns contents of edit15 as text
\% str2double(get(hObject,'String')) returns contents of edit15 as a double
\% --- Executes during object creation, after setting all properties.
function edit15_CreateFcn(hObject, eventdata, handles)
\% hObject handle to edit15 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles empty - handles not created until after all CreateFcns called global analyP
\% Hint: edit controls usually have a white background on Windows.
\% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
791 set(hObject,'BackgroundColor','white');
792 end
793
794
795
796
797
798
799
800
801
802 \% eventdata reserved - to be defined in a future version of MATLAB
803 \% handles structure with handles and user data (see GUIDATA)
804
805
806
807
        str=get(hObject, 'string');
        analyP.MinSize=str2double(str);
    function edit16_Callback(hObject, eventdata, handles)
    \% hObject handle to edit16 (see GCBO)
    \% handles structure with handles and user data (see GUIDATA)
    global analyP
    str=get(hObject, 'string');
    analyP.margin=str2double(str);
    \% Hints: get(hObject,'String') returns contents of edit16 as text

811 \% str2double(get(hObject,'String')) returns contents of edit16 as a double

812
813
814
815
816
817
818
819
820
821
822
823
824 get \((0\)
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
\% --- Executes during object creation, after setting all properties.
function edit16_CreateFcn(hObject, eventdata, handles)
\% hObject handle to edit16 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles empty - handles not created until after all CreateFcns called
global analyP
\% Hint: edit controls usually have a white background on Windows.
\% See ISPC and COMPUTER.
if ispc \&\& isequal(get(hObject,'BackgroundColor'),
efaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end
str=get(hObject, 'string');
analyP.margin=str2double(str);
\% --- If Enable == 'on', executes on mouse press in 5 pixel border.
\% --- Otherwise, executes on mouse press in 5 pixel border or over reset.
function reset_ButtonDownFcn(hObject, eventdata, handles)
\% hObject handle to reset (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\(\%\) handles structure with handles and user data (see GUIDATA)
\% Display analyzing parameters.
global image \(P\) analy \(P\)
imageP.ImageSize
imageP.xyScale
imageP.zRange
imageP.zScale
analyP.threshold
analyP.CrossSection
analyP.MaxHeight
analyP.MinHeight
analyP.MaxSize
analyP.MinSize
analyP.margin
\% --- Executes on button press in english.
function english_Callback(hObject, eventdata, handles)
\% hObject handle to english (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
global analyT
analy \(=\) =get(hObject, 'string');
\% Hint: get(hObject,'Value') returns toggle state of english
function edit17_Callback(hObject, eventdata, handles)
\% hObject handle to edit17 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles structure with handles and user data (see GUIDATA)
global analyP
str=get(hObject, 'string');
analyP.CrossSectionP=str2double(str);
\% Hints: get(hObject,'String') returns contents of edit17 as text
\(\% \quad\) str2double(get(hObject,'String')) returns contents of edit17 as a double
\% --- Executes during object creation, after setting all properties.
function edit17_CreateFcn(hObject, eventdata, handles)
\% hObject handle to edit17 (see GCBO)
\% eventdata reserved - to be defined in a future version of MATLAB
\% handles empty - handles not created until after all CreateFcns called
global analyP
    \% Hint: edit controls usually have a white background on Windows.
    \% See ISPC and COMPUTER.
917 if ispc \&\& isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
918 set(hObject,'BackgroundColor','white');
919 end
920

921 str=get(hObject, 'string');
922
analyP.CrossSectionP=str2double(str);

\section*{Addit.m}

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
\% This function look for all pixels belong to one particle. The function
\% start with a coordinate of one pixel (normally the pixel in the left top
\(\%\) site of the particle) and find out coordinates of all pixels belong to
\% the particle.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function data=addit( \(\mathrm{m}, \mathrm{n}\) )
global biColor
test=[m n];
blobsT=[m n];
bn=1;
biColor(m,n) \(=0\);
test \(=[000]\);
\(\mathrm{i}=1\);
while test \((1,1)>0\)
for \(\mathrm{j}=1\) :size(test, 1 ) \(\mathrm{x}=\) test( \(\mathrm{j}, 1\) ); \(\mathrm{y}=\) test \((\mathrm{j}, 2\) );
\% if \(x==0\)
\% test
\% j
testT
end
\% Put all neighbor pixels to the array and label them.
\% If all neighbor of a pixels have been looked at, the pixel itself will be \% moved out from the test array.
```

if biColor(x-1, y-1)==1

```
if biColor(x-1, y-1)==1
            testT(i,:)=[x-1, y-1];
            testT(i,:)=[x-1, y-1];
            i=i+1;
            i=i+1;
            biColor(x-1, y-1)=0;
            biColor(x-1, y-1)=0;
            blobsT(bn,:)=[x-1,y-1];
            blobsT(bn,:)=[x-1,y-1];
            bn=bn+1;
            bn=bn+1;
            end
            end
            if biColor( }x,y-1)==
            if biColor( }x,y-1)==
                testT(i,:)=[x, y-1];
                testT(i,:)=[x, y-1];
                i=i+1;
                i=i+1;
            biColor(x, y-1)=0;
            biColor(x, y-1)=0;
            blobsT(bn,:)=[x,y-1];
            blobsT(bn,:)=[x,y-1];
            bn=bn+1;
            bn=bn+1;
            end
            end
            if biColor( }x+1,y-1)==
```

 if biColor(}x+1,y-1)==
    ```
205 | P a g e
```

 testT(i,:)=[x+1,y-1];
    ```
            testT(i,:)=[x+1,y-1];
            i=i+1;
            i=i+1;
            biColor(x+1, y-1)=0;
            biColor(x+1, y-1)=0;
            blobsT(bn,:)=[x+1,y-1];
            blobsT(bn,:)=[x+1,y-1];
            bn=bn+1;
            bn=bn+1;
        end
        end
    if biColor( }\textrm{x}-1,\textrm{y})==
    if biColor( }\textrm{x}-1,\textrm{y})==
            testT(i,:)=[x-1,y];
            testT(i,:)=[x-1,y];
            i=i+1;
            i=i+1;
            biColor(x-1, y)=0;
            biColor(x-1, y)=0;
            blobsT(bn,:)=[x-1,y];
            blobsT(bn,:)=[x-1,y];
            bn=bn+1;
            bn=bn+1;
        end
        end
    if biColor( }x+1,y)==
    if biColor( }x+1,y)==
            testT(i,:)=[x+1, y];
            testT(i,:)=[x+1, y];
            i=i+1;
            i=i+1;
            biColor(x+1, y)=0;
            biColor(x+1, y)=0;
            blobsT(bn,:)=[x+1,y];
            blobsT(bn,:)=[x+1,y];
            bn=bn+1;
            bn=bn+1;
    end
    end
    if biColor(x-1, y+1)==1
    if biColor(x-1, y+1)==1
            testT(i,:)=[x-1, y+1];
            testT(i,:)=[x-1, y+1];
            i=i+1;
            i=i+1;
            biColor(x-1, y+1)=0;
            biColor(x-1, y+1)=0;
            blobsT(bn,:)=[x-1,y+1];
            blobsT(bn,:)=[x-1,y+1];
            bn=bn+1;
            bn=bn+1;
            end
            end
            if biColor(x,y+1)==1
            if biColor(x,y+1)==1
            testT(i,:)=[x, y+1];
            testT(i,:)=[x, y+1];
            i=i+1;
            i=i+1;
            biColor(x, y+1)=0;
            biColor(x, y+1)=0;
            blobsT(bn,:)=[x,y+1];
            blobsT(bn,:)=[x,y+1];
            bn=bn+1;
            bn=bn+1;
            end
            end
            if biColor(x+1, y+1)==1
            if biColor(x+1, y+1)==1
            testT(i,:)=[x+1,y+1];
            testT(i,:)=[x+1,y+1];
            i=i+1;
            i=i+1;
            biColor( }x+1,y+1)=0
            biColor( }x+1,y+1)=0
            blobsT(bn,:)=[x+1,y+1];
            blobsT(bn,:)=[x+1,y+1];
            bn=bn+1;
            bn=bn+1;
        end
        end
    end
    end
    test=testT;
    test=testT;
    i=1;
    i=1;
    testT=[0 0];
    testT=[0 0];
end
end
data=blobsT;
data=blobsT;
% if mask(m,n)==0;
% if mask(m,n)==0;
% blobsT(bn,:)=[m,n];
% blobsT(bn,:)=[m,n];
% mask(m,n)=-1;
% mask(m,n)=-1;
% bn=bn+1;
```

% bn=bn+1;

```
```

107 % around=[m-1 n-1;m n-1;m+1 n-1;m-1 n;m+1 n;m-1 n+1;m n+1;m+1 n+1];
108 % for i=1:8
109 % if biColor(around(i,1), around(i,2))==1 \&\& mask(around(i,1), around(i,2))==0
1 1 0 ~ \% ~ a d d i t (a r o u n d (i , 1) , ~ a r o u n d (i , 2)) ;
111 % end
112 % end
1 1 3 ~ \% ~ e n d ~

```

\section*{Findtr.m}

\section*{Readtr.m}

01 \% This function read coordinates of traced molecules from tracing file and
\% This function looking for trace segments according to trace ID.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function data=findTr(traces, trID)
traceP=zeros(2);
for \(\mathrm{i}=1\) :size(traces, 1 )
if traces \((\mathrm{i}, 1)==-1 \quad \& \& \operatorname{traces}(\mathrm{i}, 2)==\operatorname{trID}\)
            \(\mathrm{j}=1\);
            \(\mathrm{p}=\mathrm{i}+1\);
            while traces \((p, 2) \sim=0\)
                traceP(j,:)=traces(p,:);
                \(\mathrm{j}=\mathrm{j}+1\);
                \(p=p+1\);
            end
            break;
        end
end
data=traceP;
\% return a matrix of coordinates of tracing.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
function data \(=\) readtr(filename)
fd = fopen(filename);
data.tr=zeros(2,2);
\(\mathrm{i}=1\);
while feof(fd)==0
Dataln=fscanf(fd, '\%d \%d', 2);
if feof(fd)==1 break;
end
if \(i==1\) \& \& Dataln \((1)>0\) data.BASE=Dataln(1);
data.OVERWHELM=Dataln(2); continue;

22
23
24
25
26
27
28

\section*{GroupAnalysis.m}

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
end
data.tr(i,1)=Dataln(1);
data.tr(i,2)=Dataln(2);
\(\mathrm{i}=\mathrm{i}+1\);
end
fclose(fd);
\% This program group all contact particles and DNA traces together. \% User can define the rules to analys those groups.
\% The Group structure in each images contain three parts: Group.NoBlob is
\% an array of trace IDs that do not interact with any blobs. Group.tr and
\% Group.blobs are two 2*2 array. Each row of the arrays represents one \% group of blobs and tracings. For example, Group.tr(i,:) includes all the \% trace ID belong to i-th group; Group.blobs(i,:) includes all the blobs \% belong to i-th group.
\% The structure of traces contains all traces of each image. traces.BASE is
\% the basel of the image calculated by tracing program. traces.OVERWHELM \% is the overwhelming value which mostly represent the DNA height. \% traces.tr is an array of all traces. In traces.tr, the first row of each \% segment is [-1 traceID]; the last row is [-1 0]. Trace ID is a postive \% number generated by tracing program to identify each segments in one \% image.
\% Blob data are saved in an array named blobs. The data structure is: each
\% segment of data start with raw is [-1 blobID], the following two raw are
\% [lowerx, lowery; upperx, uppery] which corresponding to the range of the
\% blob. The following data are coordinates of every pixels blong to this
\% blob.
\% This program needs subfunctions below: readimage.m, readtr.m, \% relateData.m, addit.m, SegLength.m, findTr.m.
\% Please keep them in the same folder of the program.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
clear all
close all
global biColor mask ConDataT Group;
\% data structure of results
SegTail=zeros(2);
segTN=1;
\% end of data structure
THRESHOLD=1.4; \% Set the threshold for elimination of DNA.
AreaSize=10; \% Blobs contain less than this number of pixles will not be counted.
\% Prepare the filenames of images need to be analyzed.
[filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
CurrentP=pwd;
path(path,CurrentP);
cd(pathname);
if iscell(filename)
        fileNum=size(filename, 2);
else
        fileNum=1;
end
step=2;
Cstep=0;
final=zeros(2,1);
\(\mathrm{fn}=1\);
for \(i=1\) :fileNum
    if fileNum==1
        traceFile=filename;
    else
        traceFile=char(filename(i));
    end
    traces=readtr(traceFile);
\% Display filename of current image.
    traceFile
    NameLength=size(traceFile, 2)-6;
    imageFile=traceFile(1:NameLength);
    image=readimage(imageFile);
    ImageSize=size(image,1);
    biColor=image;
    biColor(biColor<(traces.OVERWHELM-traces.BASE)*THRESHOLD+traces.BASE)=0;
    biColor(biColor>0)=1;
    biColor(1,:)=0;
    biColor(ImageSize,:)=0;
    biColor(:,1)=0;
    biColor(:,ImageSize)=0;
    Modify=1;
    blobs=zeros(2);
    blobsl=1;
    bID=1;
    blobsT=zeros(2);
    mask=zeros(ImageSize);
    \% This part looks for the area of each blobs
    for \(m=1\) :ImageSize
        for \(\mathrm{n}=1\) :ImageSize
            if biColor( \(\mathrm{m}, \mathrm{n}\) )==1
```

102
103
104
105
106
107
108
1 0 9
110
111
112
113
114
115
116
1 1 7
118
119
120
121
122
123 % pcolor(image)
124 % shading flat
125 % hold on
126 % plot(blobs(:,2)', blobs(:,1)', 'LineStyle', 'none', 'Color', 'red', 'Marker', '.',
'MarkerSize',2);
127 % figure
128 % pcolor(image)
129 % shading flat
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
blobsT=addit(m,n);
if size(blobsT,1)>AreaSize
blobs(blobsl,:)=[-1 bID];
lowerx=min(blobsT(:,1));
lowery=min(blobsT(:,2));
upperx=max(blobsT(:,1));
uppery=max(blobsT(:,2));
blobs(blobsl+1,:)=[lowerx lowery];
blobs(blobsl+2,:)=[upperx uppery];
blobs(blobsl+3,:)=[-1 0];
blobsl=blobsl+3;
nextl=blobsl+size(blobsT,1);
blobs(blobsl+1:nextl,:)=blobsT;
blobsl=nextl+1;
bID=bID+1;
blobsT=zeros(2);
end
end
end
end
% The function relateData will generate a table of connection. The first
% line is trace ID, the other cells are blob ID that connect to the trace
% in same line.
ConData=relateData(traces.tr, blobs);
ConDataT=ConData;
% Put traces into different groups
Group.NoBlob=zeros(2,1);
gni=1;
for j=1 :size(ConData,1)
if ConDataT(j,1)~=0
if ConDataT(j,2)==0
Group.NoBlob(gni)=ConDataT(j,1);
gni=gni+1;
ConDataT(j,1)=0;
end
end
end
gni=1;
Group.tr=zeros(2);
Group.blobs=zeros(2);

```
group \(N=1\);
\% Put all related traces and blobs together. If trace a connect to blob b ;
\% blob b connect to trace \(\mathrm{a} \& \mathrm{c}\); blob d connect to trace c , the ID of trace
\(\% \mathrm{a}, \mathrm{c}\) and blob b, d will appear in same row of Group.tr and Group.blobs.
    while \(\operatorname{sum}(\operatorname{ConData} T(:, 1))>0\)
        test=1;
        \(\operatorname{tr} \mathrm{N}=1\);
        blobN=1;
        for \(\mathrm{j}=1\) :size(ConData,1)
            if ConDataT(j,1)~=0
                Group.tr(groupN,1)=ConDataT(j,1);
                \(\operatorname{tr} \mathrm{N}=\mathrm{tr} \mathrm{N}+1\);
                ConDataT(j,1)=0;
                for \(\mathrm{k}=2\) :size(ConData, 2)
                    if ConDataT(j,k)==0
                    ConDataT(j,:)=0;
                    break;
                    end
                    Group.blobs(groupN,blobN)=ConDataT(j,k);
                    ConDataT(j,k)=0;
                    blobN=blobN+1;
                end
                break;
            end
    end
    while test==1
        test=0;
        for \(\mathrm{j}=1\) :size(ConData,1)
            if ConDataT(j,1)~=0
                for \(\mathrm{k}=2\) :size(ConData,2)
                    for \(\mathrm{I}=1\) :size(Group.blobs, 2)
                    if ConDataT(j,k)==Group.blobs(groupN,I)
                        Group.tr(groupN,trN)=ConDataT(j,1);
                        \(\operatorname{trN}=\mathrm{tr} \mathrm{N}+1\);
                        blobTMP=ConDataT(j,:);
                    for \(m=2\) :size(blobTMP,2)
                        for \(\mathrm{n}=1\) :blobN-1
                                    addB=blobTMP(m);
                                    if addB==Group.blobs(groupN,n)
                                    addB=0;
                                    break;
                                    end
                                    end
                                    if addB>0
                                    Group.blobs(groupN, blobN)=addB;
                                    blobN=blobN+1;
                                    end
                            end
                            ConDataT(j,:)=0;
                    test=1;
                    break;
                    end
                    end

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
```

 if test==1
 break;
 end
 end
 end
 if test==1
 break;
 end
 end
 end
 groupN=groupN+1;
 end
 % Generate a mask of blobs
maskB=zeros(512);
blobsM=blobs;
bID=0;
for j=1 :size(blobs,1)
if blobsM(j,1)==-1
if blobsM(j,2)>0
bID=blobsM(j,2);
blobsM(j+1,1)=0;
blobsM(j+2,1)=0;
end
else
if blobsM(j,1)>0
maskB(blobsM(j,1), blobsM(j,2))=bID;
end
end
end
% analysis DNA contain only one blobs without loop
for j=1:size(Group.tr,1)
trJ=Group.tr(j,:);
trJN=trJ(trJ>0);
if size(trJN,2)>2
continue;
end
if size(trJN,2)==1
traceP=findTr(traces.tr, trJN);
if traceP(1,1)==0
continue;
end
if maskB(traceP(1,1), traceP(1,2))>0
continue;
end
Seg=zeros(2);
segN=1;
for k=1:size(traceP,1)
if maskB(traceP(k,1), traceP(k,2))>0
break;
end

```

269
```

 Seg(segN,:)=traceP(k,:);
 segN=segN+1;
 end
 if size(Seg,1)<3
 continue;
 end
 length1=SegLength(Seg);
 Seg=zeros(2);
 segN=1;
 for l=k:size(traceP,1)
 if maskB(traceP(1,1), traceP(1,2))>0
 continue;
 end
 Seg(segN,:)=traceP(I,:);
 segN=segN+1;
 end
 length2=SegLength(Seg);
 if size(Seg,1)<3
 continue;
 end
 if length1<2 || length2<2
 continue;
 end
 if length1<length2
 SegTail(segTN,:)=[length1 length2];
 segTN=segTN+1;
 else
 SegTail(segTN,:)=[length2 length1];
 segTN=segTN+1;
 end
 end
if size(trJN,2)==2
traceP1=findTr(traces.tr, trJN(1));
traceP2=findTr(traces.tr, trJN(2));
if traceP1(1,1)==0 || traceP2(1,1)==0
continue;
end
if maskB(traceP1(1,1), traceP1(1,2))>0
traceP=flipud(traceP1);
if maskB(traceP1(1,1), traceP1(1,2))>0
continue;
end
end
if maskB(traceP2(1,1), traceP2(1,2))>0
traceP=flipud(traceP2);
if maskB(traceP2(1,1), traceP2(1,2))>0
continue;
end
end
Seg=zeros(2);

```
213 | P a g e
```

 segN=1;
 traceP=traceP1;
 for k=1 :size(traceP,1)
 if maskB(traceP(k,1), traceP(k,2))>0
 break;
 end
 Seg(segN,:)=traceP(k,:);
 segN=segN+1;
 end
 if size(Seg,1)<3
 continue;
 end
 length1=SegLength(Seg);
 Seg=zeros(2);
 segN=1;
 traceP=traceP2;
 for k=1:size(traceP,1)
 if maskB(traceP(k,1), traceP(k,2))>0
 break;
 end
 Seg(segN,:)=traceP(k,:);
 segN=segN+1;
 end
 if size(Seg,1)<3
 continue;
 end
 length2=SegLength(Seg);
 if length1<2 || length2<2
 continue;
 end
 if length1<length2
 SegTail(segTN,:)=[length1 length2];
 segTN=segTN+1;
 else
 SegTail(segTN,:)=[length2 length1];
 segTN=segTN+1;
 end
 end
 end
 end
% Measure the segment length of the shorter tail and put them into a
% histogram.
SegTail=SegTail*}1000/512
Clength=SegTail(:,1)+SegTail(:,2);
for i=1:size(Clength,1);
if Clength(i)<116.8
SegTail(i,:)=0;
end
end
pr=SegTail(:,1);
pr_V=pr(pr>0);

```

381
382
383
384
385
386
387
388
389
20],'Upper',[30 2805003049050030780500301100500301400500\(]\) )
390 \%x2=[0:1:max(x1)];
391 xout2=[0:0.5:max(pr_V)*1.2];
392
393
xout=[0:2:max \(\left.\left(\text { pr_V }^{*}\right)^{*} 1.2\right]\);
\(\mathrm{n}=\mathrm{histc}(\) pr_V, xout);
\(\operatorname{bar}(x\) out, \(n\) )
hold on
\%ft=fittype('gauss4');
\%opt=fitoptions();
cfun=fit(xout',n,'gauss1','Lower',[0 0 2],'Upper',[1000 100 500])
\%cfun=fit(xout',n,'gauss2','Lower','[0 1002.5 0],'Upper','[8000 2.550080004 500])
\%cfun=fit(xout',n,'gauss5','Lower','[0 02002802004902007802001100
f2=feval(cfun,xout2');
plot(xout2,(f2),'r-','Linewidth',2);

\section*{RelateData.m}
```

% This function is written to find the relationship between particles and
% DNA traces. It will generate a connection table between traces and blobs.
% The first line of the table is trace ID. The other cells of the table are
% blob IDs. All blobs connect to the trace in the first cell of each row.
% If one blob connect to more than one trace, it will appear in different
% row.
% Authur: Haowei Wang (hwang23@emory.edu)
% Last updated Sep. 10th, }201
function data = relateData(traces, blobs)
trToB=zeros(2);
maskB=zeros(512);
bID=0;
for i=1:size(blobs,1)
if blobs(i,1)==-1
if blobs(i,2)>0
bID=blobs(i,2);
blobs(i+1,1)=0;
blobs(i+2,1)=0;
end
else
if blobs(i,1)>0
maskB(blobs(i,1), blobs(i,2))=bID;
end
end
end
trN=1;
for i=1:size(traces,1)
if traces(i,1)==-1
if traces(i,2)>0
trToB(trN,1)=traces(i,2);
trN=trN+1;
end
else
if maskB(traces(i,1), traces(i,2))>0

```
                bID=maskB(traces(i,1), traces(i,2));
                \(\mathrm{j}=2\);
                while \(\mathrm{j}<\) size(trToB,2)
                        if \(\operatorname{trToB}(\operatorname{trN}-1, \mathrm{j})==0\)
                    break;
                    end
                        if \(\operatorname{trToB}(\operatorname{trN}-1, \mathrm{j})==\mathrm{bID}\)
                        bID=0;
                    end
                        \(j=j+1 ;\)
                end
                if bID>0
                \(\operatorname{tr} \mathrm{ToB}(\operatorname{trN}-1, \mathrm{j})=\mathrm{bID}\);
                end
                end
        end
end
data=trToB;

\section*{ConvertJ.m}

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
\% This function convert DNA traces into NeuronJ version.
\% Authur: Haowei Wang (hwang23@emory.edu)
\% Last updated Sep. 10th, 2011
clear all
close all
\(\operatorname{dim}=512\);
dim=dim+1;
\% Get filenames of DNA traces.
[filename, pathname, filterindex]=uigetfile('*.txt', 'pick a file', 'Multiselect', 'on');
targetDir=uigetdir(pathname, 'Select target folder.');
CurrentP=pwd;
path(path,CurrentP);
if iscell(filename)
fileNum=size(filename, 2);
else
fileNum=1;
end
step=2;
Cstep=0;
final=zeros(2,1);
\(\mathrm{fn}=1\);
for \(\mathrm{i}=1\) :fileNum
if fileNum==1 traceFile=filename;
else traceFile=char(filename(i));
end
cd(pathname);
\% Read traces.
traces=readtr(traceFile);
\% Display filename of tracing.
traceFile
length=0;
prevP=[00];
newTr=zeros(2);
Lthres=45;
\(\mathrm{n}=\) size(traces.tr, 1 );
start=1;
sEnd=1;
for \(m=2: n\)
if \(\operatorname{traces} . \operatorname{tr}(m, 1)==-1\)
if \(\operatorname{traces} . \operatorname{tr}(m, 2)>0\) start=m; prevP=traces.tr(m+1,:);
end
if traces. \(\operatorname{tr}(m, 2)==0\)
sEnd=m;
sNum=sEnd-start+1;
\% Very short traces will not be disregarded.
if length>Lthres
pointN=size(newTr,1);
new \(\operatorname{Tr}(\) pointN+1:pointN+sNum,:)=traces.tr(start:sEnd,:);
end
length=0;
end
else
length=length+sqrt((traces.tr(m,1)-prevP(1))^2+(traces.tr(m,2)-prevP(2))^2);
prevP=traces.tr(m,:);
end
end
\(\mathrm{n}=\mathrm{size}(\mathrm{new} \operatorname{Tr}, 1)\);
\% Prepare head of NeuroJ file.
if \(n>4\)
I=size(traceFile,2);
traceJ=traceFile(1:l-6);
```

092
0 9 3
094
0 9 5
096
097
0 9 8
0 9 9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

```
```

traceJ(l-9)='_';

```
traceJ(l-9)='_';
cd(targetDir);
cd(targetDir);
fd=fopen(strcat(traceJ,'.ndf'), 'w');
fd=fopen(strcat(traceJ,'.ndf'), 'w');
fprintf(fd, '// NeuronJ Data File - DO NOT CHANGE\r');
fprintf(fd, '// NeuronJ Data File - DO NOT CHANGE\r');
fprintf(fd, '1.4.0\r');
fprintf(fd, '1.4.0\r');
fprintf(fd, '// Parameters\r');
fprintf(fd, '// Parameters\r');
fprintf(fd, '0\r');
fprintf(fd, '0\r');
fprintf(fd, '2.0\r');
fprintf(fd, '2.0\r');
fprintf(fd, '0.7\r');
fprintf(fd, '0.7\r');
fprintf(fd, '0\r');
fprintf(fd, '0\r');
fprintf(fd, '800\r');
fprintf(fd, '800\r');
fprintf(fd, '5\r');
fprintf(fd, '5\r');
fprintf(fd, '5\r');
fprintf(fd, '5\r');
fprintf(fd, '1\r');
fprintf(fd, '1\r');
fprintf(fd, '// Type names and colors\r');
fprintf(fd, '// Type names and colors\r');
fprintf(fd, 'Default\r');
fprintf(fd, 'Default\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, 'Axon\r');
fprintf(fd, 'Axon\r');
fprintf(fd, '7\r');
fprintf(fd, '7\r');
fprintf(fd, 'Dendrite\r');
fprintf(fd, 'Dendrite\r');
fprintf(fd, '1\r');
fprintf(fd, '1\r');
fprintf(fd, 'Primary\r');
fprintf(fd, 'Primary\r');
fprintf(fd, '7\r');
fprintf(fd, '7\r');
fprintf(fd, 'Secondary\r');
fprintf(fd, 'Secondary\r');
fprintf(fd, '1\r');
fprintf(fd, '1\r');
fprintf(fd, 'Tertiary\r');
fprintf(fd, 'Tertiary\r');
fprintf(fd, '8\r');
fprintf(fd, '8\r');
fprintf(fd, 'Type 06\r');
fprintf(fd, 'Type 06\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, 'Type 07\r');
fprintf(fd, 'Type 07\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, 'Type 08\r');
fprintf(fd, 'Type 08\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, 'Type 09\r');
fprintf(fd, 'Type 09\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, 'Type 10\r');
fprintf(fd, 'Type 10\r');
fprintf(fd, '4\r');
fprintf(fd, '4\r');
fprintf(fd, '// Cluster names\r');
fprintf(fd, '// Cluster names\r');
fprintf(fd, 'Default \r');
fprintf(fd, 'Default \r');
fprintf(fd, 'Cluster 01\r');
fprintf(fd, 'Cluster 01\r');
fprintf(fd, 'Cluster 02\r');
fprintf(fd, 'Cluster 02\r');
fprintf(fd, 'Cluster 03\r');
fprintf(fd, 'Cluster 03\r');
fprintf(fd, 'Cluster 04\r');
fprintf(fd, 'Cluster 04\r');
fprintf(fd, 'Cluster 05\r');
fprintf(fd, 'Cluster 05\r');
fprintf(fd, 'Cluster 06\r');
fprintf(fd, 'Cluster 06\r');
fprintf(fd, 'Cluster 07\r');
fprintf(fd, 'Cluster 07\r');
fprintf(fd, 'Cluster 08\r');
fprintf(fd, 'Cluster 08\r');
fprintf(fd, 'Cluster 09\r');
fprintf(fd, 'Cluster 09\r');
fprintf(fd, 'Cluster 10\r');
fprintf(fd, 'Cluster 10\r');
trN=1;
trN=1;
iCount=0;
iCount=0;
iSeg=3;
iSeg=3;
segNum=1;
```

segNum=1;

```
\% Put in trace data
        for \(\mathrm{j}=3\) :n
            if new \(\operatorname{Tr}(\mathrm{j}, 1)==-1\)
                if newTr(j,2)==0
                    if iCount \(\sim=0\)
                fprintf(fd, '\%dlr', newTr(j-1,2));
                    fprintf(fd, '\%d1r', dim-newTr(j-1,1));
                    iCount=0;
                    end
                    iSeg=3;
                    segNum=1;
                else
                    sstr=strcat('// Tracing N', num2str(trN), ' \(\backslash\) r');
                    fprint(f(fd, sstr);
                    fprintt(fd, [num2str(trN) 'lr']);
                    fprintf(fd, 'Olr');
                    fprint(fdd, 'Olr');
                    fprintf(fd, 'Defaultr');
                    trN=trN+1;
                end
            else
                if iSeg==3
                    sstr=strcat('// Segment_', num2str(segNum), ' of Tracing N', num2str(trN-1),
                    \(\operatorname{sstr}(11)={ }^{\prime}\) ';
                    fprintf(fd, sstr);
                    segNum=segNum+1;
                    iSeg=0;
                end
                if iCount==0
                    fprintf(fd, '\%dlr', newTr(j,2));
                    fprintf(fd, '\%dr', dim-newTr(j, 1));
                    iSeg=iSeg+1;
                end
                iCount=iCount+1;
                if iCount==4
                    iCount=0;
                end
            end
        end
        fprintf(fd, '// End of NeuronJ Data Filelr');
        fclose(fd);
        end
end
Imreverse.m

01 \% This program reverse color of TIF image and zoom out it to fit six images
02 \% into one page of word document.
03 \% The modified image will be saved as JPE files.
```

% Authur: Haowei Wang (hwang23@emory.edu)
% Last updated Sep. 10th, }201
clear all
close all
try
[filename, pathname, filterindex]=uigetfile('.tif', 'pick a file', 'Multiselect', 'on');
if ~ iscell(filename)
if filename(1)==0
clear all
close all
error('Cannot find any files.');
end
end
catch
clear all
close all
error('Cannot find any files.');
end
currentP=pwd;
path(path,currentP);
cd(pathname);
mkdir('reverse');
if iscell(filename)
fileNum=size(filename, 2);
else
fileNum=1;
end
for traceN=1:fileNum
if fileNum==1
file=filename;
else
file=char(filename(traceN));
end
if ~isequal(file, 0)
try
a=imread(file);
catch
continue;
end
writeout=imresize(255-a, 0.55);
fileR=file(1:size(file,2)-4);
cd('reverse');
imwrite(writeout, strcat('r_', fileR, '.jpg'));
cd(pathname);
end
end

```
```


[^0]: ${ }^{1}$ This work was published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers.

[^1]: ${ }^{2}$ This section was published in Current Pharmaceutical Biotechnology (2009, Vol. 10, P 494-501) by © 2009 Bentham Science Publishers.

[^2]: ${ }^{3}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^3]: ${ }^{4}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^4]: ${ }^{5}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^5]: ${ }^{6}$ This table was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^6]: ${ }^{7}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^7]: ${ }^{8}$ The paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers
 ${ }^{9}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^8]: ${ }^{10}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers
 ${ }^{11}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^9]: ${ }^{12}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^10]: ${ }^{13}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers
 ${ }^{14}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^11]: ${ }^{15}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^12]: ${ }^{16}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10, P 494-501) by © 2009 Bentham Science Publishers.

[^13]: ${ }^{17}$ This figure was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^14]: ${ }^{18}$ This table was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^15]: ${ }^{19}$ This paragraph was first published in Current Pharmaceutical Biotechnology (2009, Vol. 10,P 494-501) by © 2009 Bentham Science Publishers

[^16]: *Address correspondence to this author at the Emory University School of Medicine, Dept. of Cell Biology, Whitehead Bldg. Rm 475, Atlanta, Georgia 30322, USA; Tel: (404)727-3951; Fax: 404-727-6256;
 E-mail: ddunlap@emory.edu

[^17]: L. Finzi (凶) and D. Dunlap (凶)

 Cell Biology Department, Emory University, 615 Michael St., Atlanta, GA 30322, USA
 e-mail: lfinzi@physics.emory.edu

