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Abstract 
 
 

MULTIPLE IMPUTATION WITH MULTIVARIATE MODELS: AN EVALAUTION OF 
TWO CASE STUDIES 

 
 
 

By 
Mark Bounthavong 

 
 

The purpose of this thesis compared different methods for handling missing data with two 
observational studies as case studies in order to determine if there were any potential influence 
on the study results and conclusions.  
 
Both case studies used multivariate models to answer a specific hypothesis. The first 
retrospective cohort study (Case study 1) constructed logistic regression models to investigate 
the association between adherence and achievement of lipid panel changes (achieving a ≥25% 
reduction). The second retrospective cohort study (Case study 2) constructed a multiple linear 
regression model that investigated the association between drug (exenatide or liraglutide) and 
change in hemoglobin A1c (HbA1c) level. Multiple imputation (MI) method was compared to 
complete-case analysis (CCA) to determine the direction and magnitude of the parameter 
estimates for each case study.  
 
In Case study 1, the regression results for the crude, CCA, and MI methods were similar and did 
not vary significantly for LDL, HDL, and TC reduction of a ≥25% or greater from baseline. In 
Case study 2, results for the crude, CCA, and MI methods were similar and did not vary 
significantly for HbA1c reduction from baseline. 
 
Based on the results of this study, multiple imputation may not be beneficial since the 
conclusions remained unchanged. Researchers who are involved with multivariate models may 
consider using multiple imputation to address missing data. Multiple imputation could be 
presented alongside the results of the complete-case analysis; but this may seem redundant if 
there are no differences in study conclusions.  
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CHAPTER 1: INTRODUCTION 

 

1.1. INTRODUCTION AND RATIONALE 

In observational studies, epidemiologists are generally concerned about a study’s internal and 

external validity.1–5 External validity deals with extrapolation of a study's conclusion beyond the 

sample population to the general population; whereas, internal validity draws upon conclusions 

from the study population to the source population.2,3 Internal validity deals with three types of 

biases: information, confounding, and selection bias. Information bias refers to validity of 

classification and measurement.2,3 Classical confounding refers to factors that are associated with 

both the exposure and its dependent variable relationship, but are not in the causal pathway.2,3 

Selection bias refers to systematic errors in how the study population is distorted from the target 

population.2,3,5 Examples of selection bias includes “healthy worker effect,”5 membership bias,3 

incidence-prevalence bias,3 and missing data bias.6,7 Bias arises when patients with missing data 

are different from the study population; and precision is affected due to a decrease in sample 

size. This thesis examines the impact of missing data on the conclusions of observational studies.  

 

Depending on the amount, missing data in observational studies have been reported to cause bias 

and misinterpretation of the study findings. This becomes an inherent problem in regression 

models which is based on the assumption that data is valid and complete. Most studies in the 

clinical literature do not address the impact of missing data on conclusions generated from 

regression models.8,9 This neglect occurs despite the availability of statistical tools to properly 

address this problem. Several methods are available to handle missing data’s impact on the 

conclusions of regression models, each associated with advantages and disadvantages. The type 
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of missingness and the assumptions made by the investigator determine selection of missing data 

analysis method.  

 

Several guidelines are available for proper handling of missing data;10–15 but knowledge and 

understanding of differing circumstances and missing data patterns play a significant role in 

determining the selection of missing data analysis. According to the Strengthening the Reporting 

of Observational Studies in Epidemiology (STROBE) statement, the Methods section should 

include a strategy on how missing data will be handled.14,16 In addition, the Results section 

should have descriptive information on the number of subjects with missing data for each critical 

variable and, if possible, provide reasons for the missing data. Similarly, the Consolidated 

Standards of Reporting Trials (CONSORT) statement requires that missing data be addressed in 

order to maintain an intention-to-treat analysis. The CONSORT statement recommend using 

imputation methods based on data from other variables over simple imputation methods such as 

last observation carried forward for missing data that exceed a reasonable amount (e.g., 5% to 

10%).15  

 

A challenge with missing data analysis is the absence of a “true” or complete dataset often 

experienced in practice. This lack of a “true” dataset limits the investigator’s abilities to validate 

the results after missing data analysis has been applied. Consequently, this thesis can only make 

comparisons between missing data methods rather than provide validation.  

 

The purpose of this thesis is to compare different methods for handing missing data with two 

observational studies17,18 in order to determine if there were any potential influence on the study 
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results and conclusions. Although there is a lack of a “true” dataset to compare the results to, 

side-by-side comparison of different missing data approaches with the published outcomes has 

the potential to provide different conclusions from what was originally reported.  

 

1.2. PROBLEM STATEMENT 

Missing data in observational studies have an elevated potential for bias that may invalidate the 

results of a study.6,19–21 Considered a nuisance, mainly because it is not the primary statistical 

focus, missing data may introduce serious problems of validity and bias that challenge the 

outcome of a study if left unaddressed.6,19,20 Oftentimes, this discussion is excluded from the 

statistical plan or underreported.8,9  

 

Specific methods have been developed to address missing data bias; however, limitations based 

on the data availability and experience with these methods limit their general utilization and 

integration in published manuscripts. Most studies that evaluate missing data usually perform a 

descriptive analysis comparing patients with complete data and patients with missing data. 

However, advanced but complex techniques are available that yield more information while 

handling missing data. Two studies8,9 provide a discussion of this issue in their review of the 

literature. Wood, et al.8 reviewed randomized trials between July and December 2001 from BMJ, 

JAMA, Lancet and New England Journal of Medicine and reported that 89% of studies (total 

number of studies, 71) reviewed had partial or missing data and 92% used complete-case 

analysis to handle missing data. Sterne, et al.9 evaluated 59 studies that had applied multiple 

imputation (MI) from 2002 to 2007 in BMJ, JAMA, Lancet and New England Journal of 

Medicine. Sterne, et al.9 reported that seven studies presented the impact of multiple imputation 
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and complete-case analysis, 36 studies presented information about the amount of missing data, 

22 defined the number of imputations performed, and five studies compared the distribution of 

key variables with and without missing data. In both these reviews, there were deficiencies on 

the explanation and influence of missing data on the conclusions of individual studies.  

 

In epidemiologic or clinical research involving the collection or extraction of data, missing 

observations are an inherent problem. Even under the best conditions, missing observations are 

often unavoidable occurrences that require additional investment in time and resources by the 

investigator(s). Causes of missing observations are numerous and include: study design 

(longitudinal versus post-test), participant characteristics (refusal to respond and cognitive level), 

measurement characteristics (length of the questionnaire, instrument failure, and instrument 

validity), data collection conditions (obstacles such as time constraints and weather/season), data 

management (transfer, input, and security), and random chance.6,22  

 

Strategies that have been developed to handle missing data are grounded on assumptions about 

the pattern of missing data. There are several types of missing data that should be carefully 

addressed prior to developing any strategy for handling missing data. The proportion of missing 

data on critical variables should be evaluated. Variables with 1% missing data should not bias the 

study; however, variables with 20% missing data would need to be addressed for potential bias. 

According to the Rubin and Little,6 5% missing data on a variable of interest may need to be 

addressed using some form of missing data analysis method. Once the proportion of missing data 

has been determined to bias the results, the pattern of missingness should be examined. 

Determining the type of missing data is based on the knowledge of the pattern of missingness. 
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Methods for handling missing data are dependent on a balance between complexity of the 

procedure and its efficiency. Not every study will require a complex method when a single 

imputation method is efficient. Taken together, the proportion of missing data in a variable of 

interest, type of data, and preference of the investigator determine the missing data analysis 

method used for a given project.  

 

1.2.1. Missing data mechanisms: 

Missing data mechanism describes the relationship between missingness and values of variables 

in the data matrix. Assume that a (𝑛  ×  𝐾) rectangular dataset without missing values where n 

denotes the rows or cases and K denotes the variables or columns, with i-th 

row  𝑦! = (𝑦!!,𝑦!!,𝑦!!,… ,𝑦!"). Let 𝑌 = (𝑦!"), where 𝑦!" represents the value of the variable 𝑌! 

for subject i. In the presence of missing data, the missing data indicator matrix is defined as 

𝑀 = (𝑚!"), such that 𝑚!" = 1 if 𝑦!"is missing and 𝑚!" = 0 if 𝑦!"is not missing. Therefore, M 

represents the pattern of missing data in the dataset (or the missing data indicator matrix).  

 

Let 𝑌 = (𝑦!") denote the complete data matrix and 𝑀 = (𝑚!") denote the missing data indicator 

matrix. The basic missing data mechanism is based on the conditional distribution of the missing 

data indicator (M) given the data (Y) or 

𝑓(𝑀|𝑌,𝜙), 

where 𝜙 denotes unknown parameters or the relationship of M to Y.  

 

There are three main types of missing data mechanisms in observational studies. A description of 

each type is provided below according to Rubin’s missing data classification system.7  
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1.2.1.1. Missing Completely At Random (MCAR): 

Missing completely at random (MCAR) is an extreme example of missing observations that 

occur through randomness.6,19 In order words, MCAR represents ‘true’ randomness of missing 

data. Missing data under the MCAR assumption underlies that no other variables in the model or 

the dataset has an influence on the missing observations. This includes the outcome data as well 

as other potential confounders in the model. Therefore, 

𝑓 𝑀 𝑌,𝜙 = 𝑓(𝑀|𝜙) for all Y (Yobs and Ymis) and 𝜙, 

such that the missingness does not depend on the values of the observed (Yobs) and unobserved 

values (Ymis) of Y. Of note, MCAR does not result in bias estimates and is considered 

“ignorable.”6,19 

 

Identification of MCAR is performed using a statistical test developed by Little.23 based on a null 

distribution that is asymptomatically chi-squared. Therefore, if P<0.05, then the data is not 

MCAR.  

 

1.2.1.2. Missing At Random (MAR): 

Missing at random (MAR) is based on the assumption that missingness is conditioned on the 

observed values (Yobs) in the dataset, but not on the unobserved values (Ymis).6,19 Unlike MCAR 

where the pattern of missingness is not dependent on the observed values (Yobs) and the 

unobserved values (Ymis), MAR requires the assumption that the data is dependent only on the 

observed values (Yobs) and not the unobserved values (Ymis) of Y. Therefore,  

𝑓 𝑀 𝑌,𝜙 = 𝑓(𝑀|𝑌!"#,𝜙) for all Ymis and 𝜙, 
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such that missingness only depends on the observed values (Yobs) and not on the unobserved 

values (Ymis) of Y.  

 

This is the most commonly encountered scenario in practice. The MAR assumption justifies the 

analysis for several missing data analyses methods (e.g., multiple imputation, Bayesian 

estimation, and maximum likelihood estimation). MAR can be referred to as “ignorable” missing 

data because the values that are used to make conclusions for the missing observations ‘ignore’ 

the unobserved values (Ymis) of Y.  

 

1.2.1.3. Not Missing At Random (NMAR): 

Not missing at random (NMAR) or missing not at random (MNAR) is based on the assumption 

that it is not possible to make estimations about the missing observations from the known values 

in the dataset. 6,19 This is also known as “non-ignorable” data. Therefore,  

𝑓 𝑀 𝑌,𝜙 = 𝑓(𝑀|𝑌!"#,𝜙) for all Yobs and 𝜙, 

such that the missingness depends on the unobserved values (𝑌!"#) and maybe depends on the 

observed values (𝑌!"#) of Y. In other words, NMAR requires that the assumption of the 

missingness be conditioned on the unobserved values (Ymis) of Y; however, it does not 

necessarily need to be conditioned on the observed values (Yobs) of Y. The actual relationship 

between M and Ymis is unknown because the unobserved values are not available.6  

 

The selection of a method for handling missing data is dependent on the type of missing data 

encountered (MCAR, MAR, and NMAR). Little23 provides a test to determine if the missing data 

mechanism is MCAR or not; however, there are no statistical tests to differentiate between MAR 
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and NMAR. It is also important to note that it is impossible to know the relationship between M 

and the unobserved values (Ymis) of Y. In these situations, sensitivity analysis would need to be 

performed.6,19,22  

 

1.2.2.  Consequences of missing data mechanisms: 

If data is assumed to be MCAR, then simple complete-case analysis could be performed. In 

complete-case analysis (case-wise deletion or list-wise deletion), data with missing values for 

any variable are dropped from the final analysis. Analysis is limited to only those subjects or 

data that are not missing. In other words, any missing value for any variable is excluded and the 

sample size is reduced. This approach is only appropriate if the data is MCAR; however, it is 

highly unlikely that missing observations follow an MCAR pattern. Therefore, epidemiologists 

are more likely to assume MAR. 

 

1.3. THEORETICAL FRAMEWORK 

This thesis will present two theoretical frameworks for handing missing data: (1) Simple (or ad 

hoc) methods and (2) Complex methods. Simple methods incorporate single imputation methods 

that result in an easy and quick approach to missing data. However, they are limited by artificial 

decrease in variance and; therefore, an artificial increase in precision. Complex methods include 

multiple imputation (MI) and maximum likelihood (ML) estimation. They provide a valid and 

robust approach by reducing bias and introducing uncertainty estimators.  

 

1.3.1. Simple methods (ad hoc) 

1.3.1.1. Complete-case analysis: 
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Complete-case analysis has the advantage of being easy to perform and is the default setting for 

most statistical software (e.g., SPSS and SAS). However, it is can be associated with biased 

estimates that invariably occur as each subject is excluded from analysis due to missing values 

for any of the parameters.6,19  

 

Subjects with complete data may be different from subjects with incomplete data. Hence, a 

separate analysis to investigate potential differences between the two is necessary to adjust for 

missingness. This can be accomplished by creating a missing data indicator (M) for complete and 

incomplete cases or dummy variables. Regression models can control for the presence of missing 

data and compare estimates to determine the extent of their influence. Although not statistically 

sound, this method provides differential risk of bias if the parameter estimates deviate from the 

base-case analysis.  

 

1.3.1.2. Available-case analysis: 

Unlike complete-case analysis, available-case analysis excludes data only if the variable of 

interest has missing values. For example, if a cohort with 100 patients was evaluated and there 

were 12 missing values for age, 5 missing values for gender, and 7 missing values for ethnicity, 

the final analysis will use the balance of patients with the complete data for each variable. Hence, 

82 patients will be used to analyze the mean age, 95 patients will be used to analyze the gender, 

and 93 patients will be used to count ethnicity. Ultimately, when presenting the demographic 

table, the number of patients analyzable for each variable may be different each time an analysis 

is performed.  
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In complete-case analysis, subjects with any missing data are eliminated. Conversely, with 

available-case analysis, subjects are considered for analysis if they have data for any of the 

variables of interest. As a result, various sample sizes for each variable analyzed are possible. In 

our above example, age, gender, and ethnicity corresponded with a sample size of 82, 95, and 93, 

respectively. This may be useful in order to maximize sample size for some of the variables in a 

univariate analysis resulting in higher efficiency relative to complete-case analysis method. 

However, in regression models, subjects with missing data will ultimately be excluded through 

the complete-case analysis method resulting in a reduction in precision and increased potential 

for bias.  

 

1.3.1.3. Single imputation: 

Imputation with a single value in place of a missing value is a basic approach to handling 

missing data.6,19 The critical element with this method involves the choice of a plausible value to 

account for the missing observation. Multiple methods for single imputation exists that include 

using the mean or median, parameter estimates from regression models, stochastic regression 

method, hot and cold deck procedures, and missing data indicator variable (M).  

 

Single imputation method involving the mean and median require replacement of all missing 

values with either the mean or median of the variable or parameter of interest. The mean and 

median are estimated from the observed data (Yobs), which is then inserted for all missing values. 

This has the potential of underestimating the variance and artificially improving the precision of 

the estimate. In addition, this will result in an increase in type I error (rejecting the null when the 

null hypothesis is true).6,19 
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Investigators may use regression analysis to determine a value for single imputation. Regression 

imputation provides values that may be considered reasonable because of multiple adjustments; 

however, it underestimates the variance. Similar to the mean and median imputation processes, 

regression imputation underestimates the variance, and artificially increases precision resulting 

in an increase in type I error. Moreover, regression imputation also assumes that the between-

imputation variance is zero due to the existence of only one value. Stochastic modeling addresses 

this concern by incorporating residual error with the predicted estimate.6,19  

 

Stochastic regression imputation adds variance to the predicted estimate by introducing 

uncertainty into the equation.6 However, this method is dependent on assumptions regarding the 

normality of the distribution. In addition, stochastic regression imputation fails to account for 

additional variance with other parameters; and thus, limits their utilization for single imputation.  

 

Similar to regression imputation, hot deck procedure replaces missing value with a single 

imputation that is reflective of a “similar” subject.6 For example, if a 64-year old white male was 

a diabetic, then another 64-year old white male with a missing value for diabetes status may also 

be a diabetic by virtue of similarity. This method assumes that patients are similar to some 

degree. Variation is underestimated and is limited to the ranges of the observed data. Ranges 

outside the observed data are not incorporated resulting in an underestimation of variance, an 

artificial increase in precision, and an increase in type I error. This method has utility when there 

are a large number of complete cases that is reflective of the source population.  
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Cold deck procedure requires the use of external data.19 Data from an external source are used to 

extract a single value to be used in the single imputation process for the dataset of interest. For 

example, complete data from another cohort investigation may be used to identify a single value 

to replace missing observations. The underlying assumption with cold deck procedure is that the 

external data is exactly the same or similar to the dataset of interest. Realistically, this may not 

be the case and differences between the datasets limit the use of the external data in the cold deck 

procedure. This procedure is generally not recommended.19  

 

In summary, single imputation methods are limited by an artificial reduction in variance and 

increase in precision; whereby, type I error is increased. However, complex and valid methods 

have been developed to address these limitations.  

 

1.3.2. Complex methods 

Although single imputation methods offer a simple and easy solution to address missing data, the 

increased potential for bias, artificial reduction in variance, and artificial increase in precision 

limit is utilization in missing data analysis. Moreover, practical reasoning implies that missing 

data requires more variation and complexity in addressing the effect of missing values on the 

base-case results and, ultimately, conclusions.  

 

Several complex methods have been investigated in the literature and include multiple 

imputation,6,12,22,24,25,25–28 maximum likelihood (ML) estimation,6,29–31 and inverse probability 

weighting (IPW).32,33 In this theoretical framework, the focus will be on multiple imputation. ML 

estimation is similar to logistic regression methods and will not be discussed in this thesis. 
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Rather, interest has been generated with multiple imputation methods because it requires less 

computational power to perform and achieves convergence quickly relative to the ML 

estimation.6,24,29–31,34 Unlike multiple imputation, ML estimation does not replace or input 

missing values.24,34 In addition, it is model specific and is sensitive to different statistical 

analysis; whereas, multiple imputation is not.24,34 The results from ML estimation is associated 

with similar and valid estimates comparable to multiple imputation and is an appropriate 

alternative missing data method.24,34  

 

IPW is another method that reduces bias due to missing data. An advantage of IPW is that it does 

not need to assume something about the distribution of X values; whereas, MI must make an 

assumption about the distribution.32,33 However, in terms of utilizing partially missing data, MI is 

able to do this to generate values for missing data; whereas, IPW is limited to complete cases.32,33 

Consequently, MI is generally more efficient that IPW.  

 

1.3.2.1. Multiple imputations: 

Multiple imputation uses the available observable values (Yobs) in order to generate correlations 

between observed values (Yobs) and missing values (Ymis) to predict the range of the most 

probable value for the missing data.6,22,24 Multiple imputation will generate a complete set of 

data (m) for the missing values. More than one dataset (m > 1) can be generated and then 

combined to give the investigator a final dataset (Figure 1). Generally, 5 to 10 datasets are 

created from multiple imputation and then combined for final analysis using Rubin’s method.35 

Multiple imputation allows the investigator to draw inference from the missing values and then 

generate point estimates with confidence intervals for the population rather than the individual.  
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The efficiency of using m > 1 is determined by 

1+ !
!

!!
, 

where 𝛾 is the proportion of missing values for the parameter to be estimated.20,24,35 Efficiency is 

inversely related to 𝛾; where the increase in 𝛾 results in a decrease in efficiency (Table 1). 

 

Figure 1. Multiple imputation of m = 5 datasets.

 
 

At approximately 5 multiple imputations, the efficiency ranges from 85% to 98% with 𝛾 ranging 

from 0.9 to 0.1, respectively. In situations where the proportion of missing data is high, high 

efficiency can still be achieved with 3 to 5 imputed datasets. Therefore, it is unnecessary to 

increase the number of imputation datasets beyond m > 5.   
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Table 1. Efficiency of multiple imputations relative to proportion of missing values.  

Number of 
imputations (m) 

Proportion of missing data (𝛾) 
0.1 0.3 0.5 0.7 0.9 

3 0.968 0.909 0.857 0.811 0.769 
5 0.980 0.943 0.909 0.877 0.847 

10 0.990 0.971 0.952 0.935 0.917 
20 0.995 0.985 0.976 0.966 0.957 

 

Multiple imputation uses Bayesian methods to generate posterior probability for the parameter 

estimate using a specified prior distribution with the likelihood function.6,24,35 The target 

variable, which contains the unobserved value (Ymis), is dependent on the available observed 

value (Yobs) on Y. Predictive distribution for Ymis is generated using Markov chain Monte Carlo 

(MCMC) simulations [P(Ymis | Yobs)], an iterative process that ends when the posterior 

distribution of Ymis stabilizes and converges.6,24 This iterative process generates predictive Ymis 

for each subject resulting in different estimates for the missing values. Each dataset has n number 

of Ymis that are imputed using MCMC process which results in a single dataset. As m number of 

dataset is created, they can be combined for use in statistical analysis. The Bayesian process is 

determined as follows: 

𝑃 𝑄 𝑌!"# = 𝑃 𝑄 𝑌!"#,𝑌!"# 𝑃 𝑌!"# 𝑌!"# 𝑑𝑌!"#, 

where 𝑃 𝑄 𝑌!"#  is the actual posterior distribution of Q and 𝑃 𝑌!"# 𝑌!"#  is the posterior 

predictive distribution of Ymis given Yobs.20,24 The likelihood function is denoted by 

𝑃 𝑄 𝑌!"#,𝑌!"# . 

 

Datasets are combined by averaging the parameter estimates (𝑄!) over m number of datasets: 

𝑄! = !
!

𝑄!!
!!! , 

where 𝑄! is the point estimate generated from each of the i-th imputed dataset.20,24,35  
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The within-imputation variance or variability (Um) is determined by the following: 

𝑈! = !
!

𝑈!!
!!! , 

where 𝑈! is the average within-imputation variance for m imputations and 𝑈! is the variance for 

each i-th imputed dataset.  

 

The between-imputation variance or variability (𝐵!) is determined by the following: 

𝐵! = !
!!!

(𝑄! − 𝑄!)!!
!!! , 

where (𝑄! − 𝑄!)! represents the difference between the predicted point estimate from each of 

the i-th imputed dataset (𝑄!)  and the average predicted point estimate over m number of datasets 

(𝑄!).  

 

The total variance or variability (Tm) is determined by combining the within-imputation variance 

(Um) and the between-imputation variance (Bm): 

 

𝑇! = 𝑈! + 1+ !
!

𝐵!, 

where 𝑈! is the average within-imputation variance for m imputations. Overall standard error 

(SE) is the square root of 𝑇!.  

 

Confidence bands or intervals at the 95% level (95% CI) are determined using the following: 

𝑄! ± 𝑡!(
!
!
)𝑇!

!/!, 
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where 𝑡!(
!
!
) represents that upper and lower confidence bounds as determined by 100(!

!
). For a 

95% confidence interval with lower and upper bounds of 2.5% and 97.5%, respectively, 𝑡!(
!
!
)= 

1.96.  

 

Several assumptions are required in order for multiple imputation process to be valid. First, the 

pattern of missing values must be “ignorable” which is achieved when the missing data 

mechanism is MCAR or MAR.6,35 The variables in the multivariate model must have a normal 

distribution; however, multiple imputation is robust to violation of this assumption.6 The dataset 

must also follow an item non-response pattern where all subjects contain some observed values 

(Yobs) of Y.21 If the dataset has unit nonresponse patterns where the subjects or groups of subjects 

have none of the observed values (Yobs) of Y, then the multiple imputation procedure will not be 

suitable.21  

 

1.4. PURPOSE STATEMENT 

The aim of this investigation was to determine the impact of missing data on published findings 

by comparing simple (ad hoc) procedures to a complex method, multiple imputation. This will be 

illustrated in case studies where the methods will be applied to two observational studies by 

Watanabe, et al.17 and Bounthavong, et al.18  

 

1.5. RESEARCH QUESTION 

We focus this discussion on multivariate models as the principal example for performing these 

methods. The methods discussed will be demonstrated on two cases that were recently 

published.17,36 Specific research questions include: 
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1. Do missing data have an impact on the base-case results of the previously published work 

by Watanabe, et al?17 

H0: There is no difference in odds ratio between the results of the missing data analyses 

and published work by Watanabe, et al.17 

Ha: There is a difference in odds ratio between the results of the missing data analyses 

and published work by Watanabe, et al.17 

 

2. Do missing data have an impact on the base-case results of the previously published work 

by Bounthavong, et al?18  

H0: There is no difference in point estimates between the results of the missing data 

analyses and published work by Bounthavong, et al.18 

Ha: There is a difference in point estimates between the results of the missing data 

analyses and published work by Bounthavong, et al.18 

 

1.6. SIGNIFICANCE STATEMENT 

Missing data analysis is an integral part of statistical analysis for any epidemiologic study. 

However, peer-review reports continue to neglect this critical validation step in statistical 

analysis.8,9 This research will highlight the importance of missing data analysis and its impact on 

published reports that did not evaluate the influence of missing observations. The methods 

demonstrated in this research will demonstrate how investigators can salvage data in order to 

increase statistical power and confirm their initial findings. The outcome of this study will also 

illustrate how different missing data methods can report different results while improving 

precision of the parameter estimates of the multivariate models. More importantly, this research 
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will also provide SAS codes for other researchers to use in their studies in order to produce 

research reports that address the problems of missing observations.  

 

1.7. DEFINITION OF TERMS 

Table 2. Definition of terms. 
Term Definition 

Available-case analysis Simple method for performing missing data analysis. Cases where data is available 
are used resulting in different sample sizes.  

CI Confidence Interval 

Complete-case analysis Simple method for performing missing data analysis. Only complete cases are 
included in any statistical analysis.  

Complex methods Higher order methods that require significant computations such as multiple 
imputation and maximum likelihood estimation.  

Dataset or data matrix (Y) The dataset that is used for the initial research analysis. This dataset could have 
complete observations or missing observations.  

EMA European Medicines Agency 
IRB Institutional Review Board 

Maximum likelihood (ML) estimation Complex method for performing missing data analysis. ML relies on the probability 
model and is model specific.  

Missing At Random (MAR) Missing data mechanism describing a situation where the missing data indicator is 
conditioned upon the observed values of the dataset. 

Missing Completely At Random 
(MCAR) 

Missing data mechanism describing a situation where the missing data indicator is 
not conditioned upon the observed values of the dataset. 

Missing data indicator (M) Dummy variables used in a dataset with missing values to indicate that there are 
missing observations.  

Missing observations Missing data, values, or cells denoted as Ymis. 

Multiple imputation (MI) Iterative process using Markov chain Monte Carlo simulations to degenerate values 
based on the observed data.  

Not Missing At Random (NMAR) 
Missing data mechanism describing a situation where the missing data indicator is 
conditioned upon the unobserved values of the dataset; and possibly the observed 
values of the dataset. 

Observed values Data that is present in a dataset denoted as Yobs. 
OR Odds Ratio 
PCORI Patient Centered Outcomes Research Institute.  

Regression model 
Statistical model that performs either ordinary least square or maximum likelihood 
estimation to generate parameters estimates that regress to a particular dependent 
variable.  

RR Risk Ratio 

Simple methods Ad hoc methods for missing data analysis that include: complete-case analysis, 
available-case analysis, single imputation, and cold/hot deck methods. 

Single imputation Simple method for performing missing data analysis. Mean, median, or parameter 
estimation from regression method is inputted for missing values in a dataset. 

STROBE Strengthening the Reporting of Observational Studies in Epidemiology. 
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CHAPTER 2: REVIEW OF LITERATURE 

 

2.1. SYSTEMATIC REVIEW OF THE LITERATURE 

A literature search of the current peer-review publication was performed to identify studies that 

applied multiple imputation in a clinical or epidemiologic study. Articles were included in the 

review if there was a comparison of multiple imputation with other missing data analysis 

methods in a clinical or epidemiologic dataset. Articles were excluded from review if they 

focused on genetics, simulated missing data as opposed to having a dataset with missing data, 

used a longitudinal study design, evaluated survey responses or item-response theory, only used 

a Cox proportional hazards model, did not use multiple imputation, and did not evaluate human 

patients. A PubMed search using the following combination of key terms was performed for a 

date range from inception to July 13, 2013: “multiple,” “imputation,” and “regression,” and 

limited to “HUMAN” and “CLINICAL TRIALS.” The following is the Boolean search strategy 

used: 

 
(multiple[All Fields] AND imputation[All Fields] AND ("regression (psychology)"[MeSH 
Terms] OR ("regression"[All Fields] AND "(psychology)"[All Fields]) OR "regression 
(psychology)"[All Fields] OR "regression"[All Fields])) AND "humans"[MeSH Terms]) 
 

The purpose of this review was to evaluate the literature for examples where multiple imputation 

was compared to an alternative missing data analysis method. In particular, the focus of the 

review was on epidemiologic studies where multivariate regression models frameworks were 

applied. Multiple imputation has been used in longitudinal studies where missing data has been a 

common problem.  Longitudinal studies involve repeated measures of specific variables that are 

considered time-varying. However, this review was interested in examining how multiple 
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imputation is applied in multivariate regression models that did not involve time-varying 

predictors or repeated measures. Therefore, the examples that were identified included cohort 

studies that used a dependent variable that was either continuous or categorical with independent 

variables that were time-unvarying.  

 

2.2. RESULTS OF THE SYSTEMATIC REVIEW 

There were a total of 286 citations identified in the initial key word search. Abstract and title 

review eliminated 267 results. Of the 19 citations left for review, 14 studies were eliminated: 

eight were based on simulated missing data,21,37–43 three focused on genetic studies,44–46 two did 

not discuss multiple imputation,47,48 and one lacked comparison with complete-case analysis.49 

The remaining five studies24,41–43,49–53 focused on using multiple imputation in actual datasets 

with missing values that constructed multivariate regression models (Figure 2).   

 

A majority of studies included for review were based on retrospective studies;50,52–54 however, 

there was one based on a prospective study.51 All of the studies used multiple imputation and 

compared it to complete-case analysis. Two studies included missing indicator methods,51,53 one 

study examined regression imputation,53 and one study examined conditional/unconditional 

mean imputation.51  
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Figure 2. Flow diagram of the literature search. 

 
MI, multiple imputation 
CCA, complete case analysis 
 

2.2.1. Summary of results  

Yang, et al. investigated the use of multiple imputation in a retrospective cohort study with a 

total population of 74 subjects.52 In this case study, only 47 subjects had complete date available 

for the multiple linear regression model. The dependent variable was the number of visits a child 

made to a mental health service provider. Independent variables included age, child behavior 

score, functional assessment scale, depression inventory index, number of placements, years 

living with foster parents, number of case-worker home visits, benefits per month from the 

Department of Child and Family, foster parent education level, race (white or black) and gender. 

In the regression model using complete-case analysis, being white (T44=2.66, P=0.01) and 

number of case-worker home visits (T44=2.62, P=0.01) were significant predictors of the number 
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of visits to a mental health service provider identified using step-wise reverse selection 

procedures.  

 

Two methods for multiple imputation and variable selection based on the Bayesian framework 

was applied in this case study.52 “Impute then select” (ITS) is one method for variable selection 

that first produces the multiple inputted datasets and subsequently applies Bayesian variable 

selection to them. Alternatively, “simultaneous impute and select” (SIAS) generates multiple 

inputted datasets and Bayesian variable selection simultaneously using the Gibbs sampling 

process. MAR was assumed for these analyses. In both the ITS and SIAS method, being white 

and the number of case-worker home visits were highly predictive of the number visits for 

mental health services. In the ITS method, being white and the number of case-worker home 

visits had a probability of 50% and 89% of being selected as significant predictors in the final 

multiple linear regression model. Similar results were reported with the SIAS method (being 

white, 50%; and number of case-worker home visits, 82%). However, the models were sensitive 

to the selection of prior distribution used for the Bayesian process. In this case study, Yang, et 

al.52 provided further information regarding the use of different algorithms for multiple 

imputation using a Bayesian framework. Although most multiple imputation procedures use the 

MCMC algorithm, ITS and SIAS offer alternative methods.  

 

Newgard54 applied multiple imputation to handle missing data in a retrospective cohort study 

that had matched records between out-of-hospital and ambulance values. Records from 1998 to 

2003 were available for four variables (intubation attempt, Glasgow Coma Scale, systolic blood 

pressure, and respiratory rate) that were used in a logistic regression model to determine 
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association with mortality. A total of 6,150 matched records were identified with missing values 

in intubation attempt (9%, missing values), Glasgow Coma Scale (17%), systolic blood pressure 

(22%), and respiratory rate (17%). The study assumed MAR in order to perform the multiple 

imputation method and generated ten imputed datasets used for the regression analysis. Results 

of the complete-case and multiple imputation analyses were compared to the complete matched-

record which was defined as the “true” completed data.  

 

In most cases, multiple imputation provided fair to moderate estimates of the missing values for 

all four independent variables.54 There were a few instances that deserved notice. In the logistic 

regression, both complete-case and multiple imputation analysis were biased towards the null 

when compared to the “true” completed data for the association between having a systolic blood 

pressure less than 90 mm Hg and mortality. Intubation was associated with mortality using the 

multiple imputation analysis and “true” complete data; however, complete-case analysis reported 

a reduction in mortality with intubation. Although the confidence intervals were not explicitly 

stated, the figures reported confidence bands that were narrower for the multiple imputation 

analysis compared to the complete-case analysis. Based on the results of Newgard’s study,54 

multiple imputations provides an accurate and precise estimation of the point estimates based on 

a logistic regression model.  

 

Greenland, et al. performed a series of missing data analysis that were compared to complete-

case analysis for a retrospective cohort study investigating endometrial cancer among estrogen 

users.53 There were 318 endometrial cancer cases and 599 controls; controls were matched to the 

cases by age and time in the healthcare plan. Proportions of missing data ranged from 0% to 47% 
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with approximately 59% of the cases missing more than one value in the univariate analyses. The 

authors assumed MAR and generated ten imputed datasets using multiple imputation methods 

for the conditional logistic regression model. Three missing data analysis methods were 

compared to complete-case analysis: ordinary missing indicator, regression imputation, and 

multiple imputation.  

 

The conditional logistic regression model used two main exposure variables: recent estrogen use 

and age at menarche (11 versus 16 years) to evaluate their independent association with 

endometrial cancer.53 The complete-case analysis was only able to use 140 (44%) of the 318 

cases and 248 (41%) of the 599 controls in the regression analysis; whereas, the other methods 

were able to use all cases and controls. Odds ratios were similar in magnitude and direction for 

all missing data analyses. There were no major differences in the odds of developing endometrial 

cancer in subjects who had recent estrogen use relative to those who did not for the complete-

case analysis (OR=1.60; 95% CI: 1.10, 2.34), ordinary missing indicator (OR=1.96; 95% CI: 

1.44, 2.66), regression imputation (OR=1.82; 95% CI: 1.35, 2.46), and multiple imputation 

(OR=1.83; 95% CI: 1.36, 2.47). The upper limit of the confidence interval for the ordinary 

missing indicator was higher than all the other methods; conversely, the lower limit of the 

confidence interval for the complete-case analysis was the lowest compared to the other 

methods. The complete-case analysis also demonstrated a wide confidence band which reflects 

imprecision and uncertainty.  

 

Similar findings were reported for the odds of developing endometrial cancer for subjects 

experiencing menarche at 11 year versus 16 years old for the complete-case analysis (OR=1.42; 
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95% CI: 0.91, 2.22), ordinary missing indicator (OR=1.54; 95% CI: 0.70, 3.38), regression 

imputation (OR=1.07; 95% CI: 0.78, 1.46), and multiple imputation (OR=1.09; 95% CI: 0.72, 

1.64).53  Again, the upper limit of the confidence limit was highest with the ordinary missing 

indicator method; but the lower confidence limit was also lowest with the same method. This 

indicates a wide uncertainty and lack of precision with the ordinary missing indicator method. 

The regression imputation method reported a narrower confidence band that was suggestive of 

artificial increase in precision. It was recommended by the authors that multiple imputation 

should be preferred; however, lacking the statistical software, investigators should use the 

complete-case analysis over the ordinary missing indicator and regression imputation methods 

where overestimation and large confidence bands reduce their utility.  

 

Mulla, et al.50 investigated the use of multiple imputation in an population-based study that 

evaluated the association between hospital mortality and age in patients who were hospitalized 

for invasive group A streptococcal (GAS) disease. Age was the exposure of interest and 

transformed into a categorical variable (55 years or older versus 0 to 54 years), but missing data 

was only present in the confounding variable, serum albumin. Logistic regression was performed 

to evaluate the association between age and hospital mortality controlling for potential 

confounders (race, gender, clindamycin use, beta-lactam use, necrotizing fasciitis, and serum 

albumin). MAR was assumed as the missing data mechanism, and twenty inputted datasets were 

generated.  

 

Mulla, et al.50 did not evaluate missing data for the dependent variable which reduced their 

sample from 257 to 201 (35, deaths; 166, survived). Therefore, a total of 110 (55%) of subjects 
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had complete data for serum albumin [91 (45%) of patients did not]. No missing values were 

reported for the other independent variables. In the complete-case analysis, there was no 

significant association with being 55 years or older and hospital mortality relative to being 0 to 

54 years old (OR=2.43; 95% CI: 0.79, 7.53). An increase in serum albumin was significantly 

associated with lower hospital mortality (OR=0.23; 95% CI: 0.10, 0.55). No other significant 

associations were reported in the complete-case analysis. In the multiple imputation analysis, 

being 55 years or older was significantly associated with mortality relative to being 0 to 54 years 

old (OR=3.08; 95% CI: 1.22, 7.78). Similar to the complete-case analysis, an increase in serum 

albumin was associated with a reduction in mortality (OR=0.23; 95% CI: 0.10, 0.53).  

 

In the complete-case analysis, there was no significant association between age and mortality 

which conflicts with the results of the multiple imputation method. Available data supports the 

latter’s conclusion that older age is associated with mortality in GAS disease;55 therefore, it was 

concluded by the authors that multiple imputation provided an accurate and precise account of 

the association between age and hospital mortality. In the complete-case analysis, a total of 110 

patients were analyzable, a reduction of 45% from the total data. Type II error is a potential 

consequence of missing values and should be dealt with appropriately. More importantly, the 

multiple imputation method allowed the use of all available data; thus, maintaining power, 

increasing precision and reducing the potential for Type II error. Ultimately, the authors 

concluded that multiple imputation had a significant contribution in changing their initial 

conclusions regarding the use of complete-case analysis.  
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Van der Heijden, et al.51 took data from a prospective cohort study56 that investigated the risk of 

pulmonary embolism (PE) and used it as a case study for missing data methods. The method of 

analysis was a logistic regression model that investigated possible predictors for a diagnosis of 

PE. The main dependent variable was the diagnosis of PE, and the independent variables were 

baseline demographics (age and gender), medical condition at the time of admission (e.g., 

duration of symptoms, period confined to bed, respiratory rate, cardiac rate, arterial oxygen 

pressure, arterial carbon-oxygen pressure, Quetelet index, leg paresis, leg pain, family history of 

deep vein thrombosis (DVT)/PE, fever, dyspnea, pleura rub, wheezing, palpitations, collapse 

with or without unconsciousness, surgery in the past 3 months, malignancy, signs of DVT, 

previous history of DVT/PE, leg ultrasound, and chest X-ray). Missing data analysis included the 

following methods: indicator method, unconditional mean imputation, conditional mean 

imputation, and multiple imputation.  

 

There were 398 subjects in the study with 246 (61.8%) with no missing data.51 Forty-two 

(10.6%) subjects had one missing value, 72 (18.1%) subjects had two missing values, 24 (6.0%) 

subjects had three missing values, 6 (1.5%) subjects had four missing values, 6 (1.5%) subjects 

had five missing values, and 2 (0.5%) subjects had 6 missing values. Arterial carbon-oxygen 

pressure accounted for 86 (21.6%) of the missing values, followed by arterial oxygen pressure 

with 84 (21.1%) and echography of legs with 55 (13.8%). Dummy variables were used as a 

missing data indicator and statistical tests were performed to analyze the differences between 

groups with no missing values and at least one missing value for the potential predictors of PE. 

Diagnosis of PE (P=0.02), dyspnea (P<0.01), malignancy (P<0.01), surgery in previous 3 

months (P=0.04), previous PE (P=0.02), and respiratory rate (P<0.01) were significantly 
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different between groups with no missing values and at least one missing value. The significant 

difference in prevalence of PE between the no missing value and at least one missing value 

groups indicate that the missing data mechanism was not MCAR. Therefore, complete-case 

analysis was expected to produce biased results.  

 

Variable selections for the final logistic regression model using the backward elimination process 

were different based on the missing data analysis methods applied.51 In the complete-case 

analysis, echography of legs, cardiac rate, chest X-ray, duration of symptoms, age, collapse with 

or without unconsciousness, wheezing, signs of DVT/PE, and palpitations were part of the final 

model. For the indicator method, unconditional mean imputation, and conditional mean 

imputation, the final model also included period confined to bed, fever, and prior DVT/PE; but 

excluded signs of DVT/PE and palpitations. Unlike the alternative missing data methods, 

multiple imputation method did not include prior DVT/PE as a predictor in the final logistic 

regression model. There were no differences in the directionality and outcome of the parameter 

coefficients when compared to the different missing data analysis methods. Complete-case 

analysis yielded the largest standard errors for all the parameter coefficients of predictor 

variables relative to the other methods. This was expected due to a reduction in sample size and 

decreased precision.  

 

Receiver operating characteristic (ROC) curves were generated to compare the 5 different 

missing data analyses methods.51 ROC curves discriminate between the different models by 

providing probabilities for predicting PE based on the variables included and the parameter 

estimates generated by the missing data analysis methods.57 Based on different missing data 
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analysis methods, missing indicator method produced an overestimation of the ROC curve area 

(0.813) compared to complete-case analysis (0.794), conditional mean imputation (0.792), 

multiple imputation (0.787), and unconditional mean imputation (0.755).51 It was speculated that 

the lack of any significant differences between the missing data analysis methods was due to the 

low number of missing values. Therefore, more profound results would have been reported if 

there were a larger proportion of missing values. Regardless, all methods used produced 

parameter estimates that were similar in terms of direction, magnitude and variance between 

each other.  

 

2.3. SUMMARY OF CURRENT PROBLEM AND STUDY RELEVANCE 

Multiple imputation methods can reduce bias and overestimation of uncertainty by the complete-

case analysis when assuming MAR missing data mechanism. In addition, multiple imputation 

has influence over the selection of variables in the final regression models. As demonstrated by 

van der Heijden, et al.,51 missing data analysis methods yielded different final regression models 

due to the differences in the variable selection outcomes. Therefore, it is critical that any study 

constructing multivariate regression models perform missing data analysis to strengthen the 

study’s conclusions or identify the effect that missing data can have.  

 

The studies by Watanabe, et al.17 and Bounthavong, et al.18 used complete-case analysis to 

determine the parameter estimates of their regression models. There were no discussions of the 

potential effect of missing data on the outcomes. This lack of reporting reflects the common 

practice in current epidemiologic studies. Fielding, et al.58 reported that among 61 randomly 

selected quality of life studies from the New England Journal of Medicine, Journal of the 
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American Medical Association, BMJ, and Lancet from 2005 to 2006, 36 (59%) had some form 

of missing data but did not perform any imputation analysis.  

 

Current statistical software have the ability to perform multiple imputation methods. Although 

assumptions about the missing data mechanism are still required, software such as SAS and 

SPSS provide investigators with user-friendly interfaces to perform complicated missing data 

analysis. Therefore, investigators should be able to assess for the effects of missing data on their 

study conclusions.  

 

The key strength of multiple imputation methods is its robustness in generating parameter 

estimates that are close to the “true” value while addressing the variance. Unlike single 

imputation methods where parameter estimates have artificially inflated precisions, multiple 

imputations maintain the variance expected in parameter estimates while reducing bias. Several 

studies that engineered missing data in order to compare the results of multiple imputation to the 

“true” data have reported moderate to high correlations and similar confidence levels.21,41–43,49 

These studies provide confidence in the method and support its application in situations where 

missing data mechanisms are MAR and the unobserved values are unavailable for validation.  

 

The current thesis builds upon the literature by providing further support for using multiple 

imputation in multivariate regression models where the missing data mechanism is MAR. 

Similar to the literature, this thesis will compare multiple imputation with complete-data analysis 

using two case studies where multivariate regression models were used in the primary analysis. 
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Furthermore, this thesis intends to justify the use of multiple imputation over complete-case 

analysis when there is missing data.  
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CHAPTER 3: METHODS 

 

3.1. INTRODUCTION 

This project is a secondary analysis of two retrospective cohort studies17,18 that used multivariate 

regression models to evaluate the impact of missing data on each of the study outcomes. Each 

study did not use time-varying predictors and had a dependent variable that was assumed to 

follow a normal distribution. Moreover, the studies also had a large amount of missing data 

among the predictors and the outcome variables which may have a meaningful impact on the 

outcomes of the studies.  

 

The first retrospective cohort study17 (Case study 1) constructed logistic regression models to 

investigate the association between adherence and achievement of lipid panel changes (achieving 

a 25% reduction). The second retrospective cohort study18 (Case study 2) constructed a multiple 

linear regression model that investigated the association between drug use (exenatide or 

liraglutide) and change in hemoglobin A1c (HbA1c) level. Both studies used data from the 

Veteran population.  Case study 1 derived data from the Veteran population in the southwest 

region of the United States (US); whereas, Case study 2 derived data from the national Veteran 

population. Both case studies used complete-case analysis methods to generate the parameter 

estimates of the regression models but did not assess impact of missing data.  

 

Multiple imputation method will be compared to complete-case analysis to determine the 

direction and magnitude of the parameter estimates for each case study. Five imputed data sets 

(m=5) will be used to combine the results into the regression methods. Based on these findings, 
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this project will provide guidance and recommendations on how to handle missing data when a 

large proportion of data is missing. 

 

3.2. POPULATION AND SAMPLE 

This project will use two case studies17,18 to evaluate the impact of missing data on study results 

based on multivariate regression models. In the first case study17 (Case study 1), the study 

population was based on the Veteran population at the regional level. The study population of the 

second case study18 (Case study 2) was based on the Veteran population at the national level. 

Each study population and their selection process are discussed below. 

 

3.2.1. Case 1 – Regional level 

The study population was drawn from the Veterans Integrated Systems Network (VISN) 22 

(Desert Pacific Healthcare Network) which includes VA facilities in the Southern California 

(Los Angeles, Long Beach, Loma Linda, and San Diego) and Nevada (Las Vegas) regions that 

service approximately 1.4 million veterans.59 VISN represents the different VA networks across 

the United States (US) that is responsible for the veterans in their covered networks. There are a 

total of 21 VISNs across the United States (US) which encompasses 152 VA medical centers and 

1,400 community-based outpatient clinics.60 VISN 22 covers the southwest US and has a total of 

5 medical centers with 29 community-based outpatient centers.59  

 

Patients were included if they were a new statin user between the periods of November 30, 2006 

and December 2, 2007 with a diagnosis of dyslipidemia (or related disorders) based on the 

International Classification of Disease, Ninth Revision (ICD-9), greater than 18 years of age, and 
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had been continuously enrolled in the VA health plan for at least 2 years. Table 3 provides a list 

of ICD-9 codes associated with dyslipidemia that were used in Case study 1. Patients were 

considered new statin users as defined by a 6-month washout period before filling their first 

statin prescription. Patients were followed for a 1-year observation period after the index date on 

lipid panel levels [low-density lipoprotein (LDL), total cholesterol (TC), and non-high-density 

lipoprotein (non-HDL)].  Subjects were required to be eligible for VA medical and pharmacy 

services 6 months prior to index date and throughout study period and to have complete data for 

exposure, outcome, and adjustment variables. Patients were excluded if they switched statins 

during the 12-month follow up period or had an admission for more than 30 consecutive days.   

Table 3. ICD-9-CM Diagnosis Codes for dyslipidemia use for Case study 1. 
ICD-9-CM Diagnosis Code Description 

272 Disorders of lipid metabolism 
272.1 Pure hyperglyceridemia 

272 Mixed hyperlipidemia 
272.3 Hyperchylomicronemia 
272.4 Hyperchylomicronemia 

 

Veterans were subject to prescription drug copayments based on their eligibility status 

determined by the VA priority category of 2007.61 Priority categories range from 1 to 8 with 1 

being the highest priority. Veterans in priority group 1 were defined as having a service-

connected disability that was rated ≥ 50% and determined by the VA to be due to service-related 

conditions. Veterans in priority group 1 were exempt from prescription drug copayments. 

Veterans in priority groups 2 to 6 had an $8 prescription drug copayment for each 30-day supply. 

Exemptions to prescription drug copayment were made for veterans who had a condition that 

was service-connected and for former prisoners of war. An annual prescription drug copayment 

cap of $960 was established for veterans enrolled in priority groups 2 to 6; however, no 
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medication cap was established for veterans in priority groups 7 to 8. Veterans in priority groups 

7 to 8 were required to pay a prescription drug copayment. Veterans who did not have a service-

related condition for dyslipidemia but were service-connected for another disability were 

required to pay a prescription drug copayment (labeled as Copayment Service Connected 

Category). Veterans who did not have a service-related condition for dyslipidemia and were not 

service-connected for another disability were required to pay a prescription drug copayment 

(labeled Copayment Non-Service Connected Category). 

 

3.2.2. Case 2 – National level 

The study population for Case study 2 was based on the national Veteran population which 

includes 50 states, the District of Columbia, and all US territories where a VA medical center or 

community-based outpatient center is present (Guam, Puerto Rico, Samoa, Philippines, and 

Virgin Islands). The Department of Veterans Affairs is responsible for 22.3 million covered lives 

at the end of fiscal year 2012.62  

 

Patients were included in the second case if they had a diagnosis of type 2 diabetes mellitus 

(ICD-9, 250.X), greater than or equal to 18 years, and newly initiated on exenatide or liraglutide 

between January 1, 2006 to December 31, 2011. Patients were considered newly initiated on the 

study drug if they did not have any active prescriptions to either therapy 6 months prior to the 

index date. Patients on exenatide were dosed twice daily per the FDA approved labeling. Patients 

on liraglutide were dose once daily per the FDA approved labeling. Index date was defined as 

the date when patients filled the study medication. Patients were followed for up to 12 months to 

measure the change in HgbA1c. Patients who were eligible to receive VA prescription benefits 
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had to have at least 1 office visit 6 month prior to the index date and another office visit within 

12 months post-index date.  

 

Patients were excluded if they had a diagnostic code of type 1 diabetes mellitus or gestational 

diabetes as determined by ICD-9. Patients who started on one of the study medication and then 

switched to an alternative study medication were also excluded from analysis.  

 

3.3. RESEARCH DESIGN AND PROCEDURES 

This project focuses on the missing data analysis investigation of two retrospective cohort 

studies;17,18 consequently, it is retrospective in nature. The original findings of the two 

retrospective studies used complete-case analysis which will be labeled as the control group. 

Results from the missing data analysis will be categorized as the experimental group. Missing 

data mechanism for MCAR will be tested using Little’s test;23 however, this is not a 

confirmatory test for non-MCAR mechanism. There are no statistical tests to distinguish between 

MCAR/MAR and NMAR. Therefore, for the purpose of this project, MAR will be assumed in 

order to fulfill the assumptions of multiple imputation.  

 

3.3.1. Case study 1: 

The purpose of Case study 1 was to evaluate the impact of adherence on lipid panel changes 

(25% reduction from baseline for LDL, TC, and non-HDL). Adherence to statin medication was 

based on the medication possession ratio (MPR), the main exposure variable in the multivariate 

regression model. Lipid panel changes were measured at 12 months after initiation of a statin 
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prescription and included low-density lipoproteins (LDL), non-high-density lipoprotein (non-

HDL), and triglycerides (TG). 

 

Adherence was the main exposure variable of interest and was categorized into adherent or non-

adherent based on an arbitrary MPR threshold level of 0.80. Patients who were at or above the 

threshold were considered adherent; patients who were below the threshold were considered non-

adherent. MPR is a surrogate marker for adherence and does not indicate that the patient ingested 

the medication; however, several studies have reported that it provides an accurate depiction of 

patient adherence using pharmacy claims data.63,64 MPR was calculated as the number of days 

supplied of prescription medication divided by days of observation.63,64 MPR was right-skewed; 

however it was assumed that this would not violate the assumptions of the multiple logistic 

regression.  

 

The dependent variable was change in lipid panel levels which included LDL, non-HDL, and 

TG. Although these outcomes were continuous, the study categorized them into achieving a 25% 

reduction from baseline which is considered a clinically significant change.65,66 This level of 

reduction has been associated with improved clinical outcomes.  

 

3.3.2. Case study 2: 

The purpose of Case study 2 was to evaluate the association between drug use with exenatide or 

liraglutide and HbA1c reduction in the Veteran population. The main exposure variable in the 

multivariate regression model was drug use (exenatide or liraglutide) and the outcome variable 

was change in HbA1c at 12 months after initiation.   
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HbA1c is a surrogate measure for long-term glycemic control in patients with diabetes.67,68 The 

glycation process of hemoglobin reflects the amount of unregulated glucose in the blood that is 

exposed to erythrocytes where the hemoglobin is attached. Therefore, when glucose plasma 

concentration is high, more glucose binds to the erythrocyte and glycated hemoglobin 

increases.69,70 Because, glycated hemoglobin is irreversibly attached to the erythrocyte, it takes 

approximately 120 days for elimination which is the average life span of a red blood cell.71 The 

Diabetes Control and Complications Trial Research Group (DCCT) demonstrated the clinical 

association between HbA1c and microvascular complications.72 As a result, HbA1c has become 

a standard laboratory assay for diabetic outcomes and long-term glycemic control. 

 

3.4. INSTRUMENTS 

Data source for the cases was derived from the Veterans Affairs (VA) Regional Data Warehouse 

and Corporate Data Warehouse.73 Figures 3 and 4 diagrams the schematic data architecture of 

the Regional Data Warehouse and Corporate Data Warehouses, respectively. The VA databases 

have a comprehensive capture of pharmacy utilization, medical records, demographic 

characteristics, and health plan coverage elements allowing robust analysis of health outcomes.  

 

Access to both databases required Institutional Review Board approval and must be in 

compliance with the Human Insurance Portability and Accountability Act.74 Patients were de-

identified and protected health information was never available to any of the investigators.  
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Data query was performed using Microsoft® Structured Query Language (SQL) Server 

Management Studio 2008 (Redmond, WA) and then transferred into a Comma-Separated Values 

(CSV) file which was imported into a statistical software for analysis.  

 
Figure 3. Schematic of the VA Regional Data Warehouse.75 

 
 
 
Figure 4. Schematic of the VA Corporate Data Warehouse.75 
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Case study 1 used data from the VA Regional Data Warehouse for VISN 22 who were new statin 

users. Care study 2 used data from the VA Corporate Data Warehouse to capture all patients who 

used exenatide and liraglutide for type II diabetes mellitus. Exenatide and liraglutide are not on 

the national formulary. Consequently, utilization is limited and a larger geographic area was 

required to capture an adequate sample size. Therefore, the national VA Corporate Data 

Warehouse was used to capture the small number of patients on exenatide and liraglutide.  

 

3.5. PLANS FOR DATA ANALYSIS 

The plan for missing data analysis will follow a systematic pattern that will be replicated for each 

study. The multivariate regression models of each study will be recreated and complete-case 

analysis will be performed. Parameter estimates and confidence intervals from the complete-case 

analysis will be compared to the multiple imputation methods.  

 

The regression framework employed for Case study 1 was the logistic model expressed as: 

𝑃 𝐷 = 1 𝑋!,𝑋!,… ,𝑋! = 𝑃 𝑋 = !

!!!!(!! !!!!!!)
!
!!!

, 

where i = 1, 2, 3,…, k, D = 1 denotes the outcome of interest (e.g., achieving 25% in lipid 

reduction), Xi denote the k number of independent variables in the regression model, α and β 

denote unknown parameters, P(X) denotes the probability of achieving the clinical goals (X=1) 

given that the following independent variables (Xk) are present, and 𝜀 denotes the error term. The 

logit form of the logistic model is expressed as: 

𝐿𝑜𝑔𝑖𝑡  𝑃 𝑋 =   𝛼 + 𝛽!𝑋! + 𝜀!
!!! , 
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where i = 1, 2, 3,…, k, Xk denotes the k number independent variables for in the regression 

model, and 𝜀 denotes the error term. The odds ratio (OR) is computed as the product of 

exponentials: 

𝑂𝑑𝑑𝑠  𝑟𝑎𝑡𝑖𝑜 𝑂𝑅 = 𝑒!!(!!!!!!!)!
!!! , 

where X1 and X0 are two specifications of the collection of k independent variables X1, X2, X3,…, 

Xk. 

 

The regression framework employed for Case study 2 was modeled as a multiple linear 

regression: 

𝑌! = 𝛼 + 𝛽!𝑋! + 𝜀!
!!! , 

where Yi denotes the outcome of interest (e.g., reduction in HbA1c), i = 1, 2, 3,…, k, α denotes 

the Y-intercept or constant, βi denotes the parameter coefficient for the independent variable (Xi), 

Xi denotes the k number of independent variables, and 𝜀 denotes the error term.  

 

Multiple imputation methods will require an initial assumption that the missing data mechanism 

is MAR where the probability of the missing value depends of the observed value (Yobs), not on 

the unobserved value (Ymis). Multiple imputation will be carried out using Markov chain Monte 

Carlo (MCMC) simulation where a large number of samples are drawn from a posterior 

distribution yielding an estimate for the missing value.6,20 Five imputed dataset (m = 5) will be 

generated and combined for the analysis of multivariate regression models using the methods 

developed by Little and Rubin.6 Parameter estimates and confidence intervals will be compared 

to results of the complete-case analysis.  
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Sensitivity analysis will be performed comparing the parameter estimates and confidence 

intervals to those of the complete-case analysis and multiple imputation methods. Statistical 

significance will be set at a 5% (two-tailed) level. All data analysis will be performed using SAS 

version 9.3 (Cary, NC).  

 

3.6. LIMITATIONS AND DELIMITATIONS 

A noticeable limitation in this project is the lack of a “true” dataset. A “true” dataset is the 

complete dataset without any missing observations. This is impossible to acquire since missing 

data may be due to systematic issues, lack of response, miscoding, errors in imputation and a 

variety of other factors. Consequently, the mechanism of missing data needs to be investigated. 

Complete-case analysis assumes that the data is either MCAR or MAR. This assumption is 

robust to small amounts of missing data (<5%); however, large proportions of missing data are 

unlikely to be MCAR. This project assumes that the missing data mechanism was MAR. It is 

also possible that the missing data mechanism was NMAR.  

 

An assumption of Case study 1 is that MPR accurately reflects patient adherence to their statin 

therapy. There are limitations with this assumption. MPR does not directly measure patient 

consumption of their statin therapy; instead, it provides an indirect estimate of adherence based 

on pharmacy refill data.76 Other forms of adherence measurements are available which were not 

used in Case study 1. For example, Proportion of Days Covered (PDC) reflects the percentage of 

days the medication was available to the patient.64 PDC is calculated as the total days the 

complete medication regimen was available divided by the total number of days evaluated 

capped at 1.0.64 MPR can also be truncated or allowed to exceed a cap of 1.0. In Case study 1, 



	  

	   44	  

MPR was truncated at 1.0. It is unclear whether using the PDC would impact whether a patient 

was adherent or not. Hess, et al. reported that differences between MPR and PDC were 

negligible and provided similar answers in terms of categorizing patients as adherent or non-

adherent.64  

 

Another limitation of this project is the small sample size of the liraglutide group relative to the 

exenatide group in Case study 2.18 The small sample is potentially sensitive to missing data 

which can result in inaccurate parameter estimates due to large uncertainties or variances. A 

larger sample size would mitigate this issue; however, there was not possible with the current 

design.  

 

In observational studies, unmeasured variables can be potential confounders despite controlling 

for all measurable variables. Propensity score matching may be considered in this situation, 

however it is highly sensitive to unmeasured confounders.77 It is not an absolute answer in the 

absence of a randomized controlled trial. Future investigation using propensity score matching 

should be pursued and compared to the result of the missing data analyses in these two case 

studies.  

 

The Veteran population may not be generalizable to the non-veteran community. For both case 

studies, a majority of the sample subjects were male and white. It is debatable whether these 

factors affect the internal validity of the multivariate models for the case studies. However, their 

effect on the methods used for missing data analysis is likely to be trivial and are therefore 

ignored.   



	  

	   45	  

CHAPTER 4 - RESULTS 

 

4.1. INTRODUCTION 

The results for each Case study included the crude estimate, complete-case analysis, and the 

multiple imputation results. In Case study 1, the crude odds ratio (OR) and the OR from the 

complete-case analysis were compared to the OR from the multiple imputation method. In Case 

study 2, the crude estimate and the estimate from the complete-case analysis were compared to 

the estimate from the multiple imputation method. The SAS codes for each case are provided in 

APPENDIX A. 

 

4.2. FINDINGS 

4.2.1. Case study 1: 

The purpose of Case study 1 was to evaluate the impact of adherence on lipid panel changes 

(LDL, TC, and non-HDL). Lipid panel changes were considered significant if there was a 

reduction of 25% at one year from baseline. Measurements were taken at one year and at 

baseline for LDL, TC, and non-HDL.  

 

There were a total of 7,739 patients that were identified based on the inclusion and exclusion 

criteria. However, 6,074 (79%) patients had complete values and were eligible for inclusion in 

the complete-case analysis. For patients with complete data, 2,827 (47%) were adherent (MPR ≥ 

0.80) and 3,247 (54%) were non-adherent (MPR < 0.80) (Table 4). A large proportion of the 

patients were male (N=5,786, 95%), white (N=2,948, 49%), prescribed simvastatin (N=85%), 

and had hypertension (N=4,366, 72%). Patients in the adherent group were older (64 versus 62 
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years, P<0.0001), had higher starting medication count (7.9 versus 6.8, P<0.0001), and lower 

LDL (133.9 versus 141.0 mg/dL, P<0.0001), TC (209.3 versus 217.6 mg/dL, P<0.0001), and 

non-HDL (167.3 versus 174.9 mg/dL, P<0.0001). In addition, patients who were adherent had 

lower number of patients with diabetes (P=0.0051), hypertension (P<0.0001), and vascular 

disease (P=0.0009); but higher number of patients with congestive heart failure (P=0.0055).  

 
Table 4. Baseline demographics between adherent and non-adherent subjects.  

Variables 
Adherent Non-Adherent 

P-value 
N=2827 N=3247 

Age (years), mean (SD) 64.07 (10.79) 62.28 (11.29) <0.0001 
Male, No. (%) 2701 (95.54) 3085 (95.01) 0.3303 
Starting medication count, mean (SD) 7.94 (4.62) 6.79 (4.14) <0.0001 
LDL baseline, mean (SD) 133.89 (40.32) 141.04 (39.22) <0.0001 
Non-HDL baseline, mean (SD) 167.30 (46.43) 174.85 (45.32) <0.0001 
TG baseline, mean (SD) 169.72 (150.19) 172.47 (144.95) 0.8263 
TC baseline, mean (SD) 209.25 (48.39) 217.57 (47.03) <0.0001 
Ethnicity     <0.0001 

White 1474 (52.14) 1474 (45.40)   
Black 345 (12.20) 548 (16.88)   

Hispanic 266 (9.41) 393 (12.10)   
Asian 91 (3.22) 121 (3.73)   

American Indian 37 (1.31) 46 (1.42)   
Unknown 614 (21.72) 665 (20.48)   

Statin     0.057 
Simvastatin 2378 (84.12) 2776 (85.49)   
Atorvastatin 9 (0.32) 23 (0.71)   
Rosuvastatin 187 (6.61) 170 (5.24)   

Lovastatin 187 (6.61) 212 (6.53)   
Pravastatin 34 (1.20) 30 (0.92)   
Fluvastatin 32 (1.13) 36 (1.11)   

Copayment 1847 (65.33) 2196 (67.63) 0.0583 
Diabetes 1113 (39.37) 1165 (35.88) 0.0051 
Hypertension 2142 (75.77) 2224 (68.49) <0.0001 
Vascular disease 969 (34.38) 984 (30.30) 0.0009 
Congestive heart failure 157 (5.55) 131 (4.03) 0.0055 
History of myocardial infarction 84 (2.97) 99 (3.05) 0.8599 
Angina 70 (2.48) 66 (2.03) 0.2439 

LDL, low-density lipoprotein 
TG, triglyceride 
TC, total cholesterol 
HDL, high-density lipoprotein 
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There was a moderate amount of missing data, mainly with the lipid panel. Baseline LDL, HDL, 

and TC values had 16.1%, 16.6%, and 17.9% missing data (Table 5). Follow-up LDL, HDL, and 

TC values had 19.2%, 19.6%, and 19.4% missing data. Baseline BMI had 6.8% missing data. 

Since the percent of missing data was greater than 5%, it was reasonable to assume that there 

was a potential for bias. The missing data pattern was suggestive of MAR; thereby allowing for 

multiple imputation to be performed. 

 
Table 5. Missing data pattern for Case study 1.  
Variables Number missing Percent missing 

HDL FU 1520 19.6% 

TC FU 1502 19.4% 

LDL FU 1484 19.2% 

TC baseline 1383 17.9% 

HDL baseline 1286 16.6% 

LDL baseline 1248 16.1% 

BMI baseline 522 6.8% 

Adherence status 0 0.0% 

Copayment status 0 0.0% 

Age 0 0.0% 

Gender 0 0.0% 

Ethnicity 0 0.0% 

Starting medication count 0 0.0% 

Diabetes 0 0.0% 

Hypertension 0 0.0% 

Vascular disease 0 0.0% 

CHF 0 0.0% 

History of MI 0 0.0% 

Angina 0 0.0% 
LDL, low-density lipoprotein 
TC, total cholesterol 
HDL, high-density lipoprotein 
 

Comparison between groups with missing data reported no apparent differences except for the 

number of compliant patients (Table 6). There was approximately an equal proportion of patients 

who were male for groups that had missing data for baseline LDL, HDL, and TC compared to 
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groups with complete data for baseline LDL, HDL, and TC. Patient who had complete data had a 

higher proportion categorized as adherent compared to those with missing data for baseline LDL, 

HDL, and TC.  

 
Table 6. Comparison between groups with missing and non-missing data. 

Missing variable of 
interest 

Missing Non-Missing 
LDL at 
baseline 

HDL at 
baseline 

TC at 
baseline 

LDL at 
baseline 

HDL at 
baseline 

TC at 
baseline 

Number 1248 1286 1239 6491 6453 6500 
Age (years), mean 
(SD) 

65.49 
(11.82) 

65.59 
(11.85) 

65.82 
(11.81) 

63.13 
(11.15) 

63.09 
(11.14) 

63.07 
(11.14) 

Gender (males), 
number (%) 

1194 
(95.67%) 

1230 
(95.65%) 

1188 
(95.88%) 

6187 
(95.32%) 

6151 
(95.32%) 

6193 
(95.28%) 

Adherent, number (%) 483 
(38.70%) 

501 
(38.96%) 

485 
(39.14%) 

3003 
(46.26%) 

2985 
(46.26%) 

3001 
(46.17%) 

LDL, low-density lipoprotein 
HDL, high-density lipoprotein 
TC, total cholesterol 
 
 
In the univariate analysis, there were statistically significant differences in the proportion of 

patients who had 25% or greater reduction in LDL, TC, and non-HDL for the adherent compared 

to the non-adherent patients (Table 7). Adherent patients had higher number who achieved a 

25% or greater reduction in LDL compared to non-adherent patients (1,475 versus 776, 

P<0.0001). Similarly, adherent patients had a higher number who achieved a 25% or greater 

reduction in TC (1,005 versus 485, P<0.0001) and non-HDL (1,320 versus 650, P<0.0001) 

compared to non-adherent patients. 

Table 7. Univariate analysis with lipid outcomes, Case study 1. 

Outcome 
Adherent Non-Adherent 

P-value 
N % N % 

LDL >=25% 1475 52.18 776 23.90 <0.0001 
TC >=25% 1005 35.55 485 14.94 <0.0001 
Non-HDL >=25% 1320 46.69 650 20.02 <0.0001 

LDL, low-density lipoprotein 
TC, total cholesterol 
HDL, high-density lipoprotein 
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Logistic regression model for the multivariate analysis controlled for age, BMI, gender, baseline 

lipid values, comorbid conditions (diabetes, hypertension, congestive heart failure, history of 

myocardial infarction, angina, vascular disease), statin use, ethnicity, and starting medication 

count. The regression results for the crude, complete-case analysis, and multiple imputation 

method were similar and did not vary significantly (Table 8). There was a bias away from the 

null with both the complete-case analysis and multiple imputation results for the odd of 

achieving a 25% or greater reduction in LDL compared to the crude OR. The crude OR (3.47; 

95% CI: 3.11, 3.88) was lower than the OR for the complete-case analysis (4.34; 95% CI: 3.84, 

4.90) and multiple imputation method (4.10; 95% CI: 3.66, 4.58). Similar bias away from the 

null with both the complete-case analysis and multiple imputation results was reported for the 

odd of achieving a 25% or greater reduction in TC compared to the crude OR. The crude OR 

(3.14; 95% CI: 2.78, 3.55) was lower than the OR for the complete-case analysis (4.00; 95% CI: 

3.49, 4.59) and multiple imputation method (4.07; 95% CI: 3.58, 4.63). Bias away from the null 

was reported for the odds of achieving a 25% or greater reduction in non-HDL compared to the 

crude OR. The crude OR (3.50; 95% CI: 3.13, 3.92) was lower than the OR for the complete-

case analysis (4.54; 95% CI: 4.00, 5.16) and multiple imputation method (4.37; 95% CI: 3.88, 

4.91). 

Table 8. Odds of achieving a ≥25% reduction in lipid panel levels for adherent versus non-adherent patients on 
a statin in the VASDHS, Case study 1.  

  
Crude 

N=6,074 
Complete-case analysis* 

N=6,074 
Multiple imputation* 

N=7,739 
Outcome Odds ratio (95% CI) Odds ratio (95% CI) Odds ratio (95% CI) 
25% or greater reduction in LDL 3.47 (3.11, 3.88) 4.34 (3.84, 4.90) 4.10 (3.66, 4.58) 
25% or greater reduction in Total 
Cholesterol 3.14 (2.78, 3.55) 4.00 (3.49, 4.59) 4.07 (3.58, 4.63) 

25% or greater reduction in non-
HDL 3.50 (3.13, 3.92) 4.54 (4.00, 5.16) 4.37 (3.88, 4.91) 

VASDHS, Veterans Affairs San Diego Healthcare System 
95% CI, 95% Confidence Interval 
LDL, low-density lipoprotein 
HDL, high-density lipoprotein 
*Adjusted for age, gender, BMI, baseline lipid values, comorbid conditions (diabetes, hypertension, congestive heart failure, 
history of myocardial infarction, angina, vascular disease), statin use, ethnicity, and starting medication count. 
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4.2.2. Case study 2: 

The purpose of Case study 2 was to evaluate the association between two glucagon-like peptide 

(GLP)-1 agonist (exenatide and liraglutide) and HbA1c reduction in the Veteran population 

using national data. The main exposure variable of interest was the GLP-1 agonist prescribed and 

the main outcome variable was change inHbA1c reduction at 12 months from baseline.  

 

A total of 1,094 patients met inclusion and exclusion criteria. Exenatide had a larger proportion 

of patients compared to liraglutide (1,054 and 40, respectively). However, there were only 585 

(53.5%) patients with complete data. Patients in the exenatide group (N=572) had a larger 

number of complete cases relative to the liraglutide group (N=13) with complete data.  

 

Among the complete cases, there were no statistically significant differences in baseline 

demographics (Table 9). Exenatide and liraglutide patients were approximately 60 to 61 years 

old and mostly white males. Although the differences were not statistically significant, there was 

a higher proportion of dyslipidemia (100% versus 88%, P=0.3838) and obesity (77% versus 

67%, P=0.1884) in liraglutide patients compared to exenatide patients. Conversely, There was a 

higher proportion of hypertension in exenatide patients compared to liraglutide patients (89% 

versus 77%, P=0.5607).  

 

Baseline HbA1c, BMI, and race had 86 (7.9%), 108 (9.9%), and 291 (26.6%) patients with 

missing data, respectively (Table 10). The dependent variable, HbA1c at 12 months, had 188 

(17.2%) patients with missing data. Patients who were in the exenatide arm of the study had 

higher proportion with missing baseline BMI values compared to liraglutide patients (10.1% 
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versus 5.0%). However, patients who were in the liraglutide arm of the study had higher 

proportions with missing baseline HbA1c (25.0 % versus 7.2%), race (32.5% versus 26.4%), and 

HbA1c at 12 months values (41.7% versus 16.3%) compared to exenatide. 

Table 9. Baseline demographics for exenatide and liraglutide groups, Case study 2. 

Variable Exenatide 
(N=572) 

Liraglutide 
(N=13) P-value 

Age (years), mean (SD) 60.28 (7.83) 60.93 (8.50) 0.6843 

BMI (kg/m2), mean (SD) 37.82 (7.55) 35.23 (5.83) 0.1753 

Baseline HbA1c, mean (SD) 8.39 (1.65) 8.62 (1.21) 0.4665 

Charlson Comorbidity Index, mean (SD) 1.66 (0.95) 1.31 (0.63) 0.1531 

Female, N (%) 29 (5) 0 (0) 1.0000 

Ethnicity, N (%)     0.7762 
White 529 (92) 13 (100)   
Asian 6 (1) 0 (0)   

Unknown 22 (4) 0 (0)   
Declined to answer 17 (3) 0 (0)   

Congestive heart failure, N (%) 40 (7) 1 (8) 0.6138 

Depression, N (%) 143 (25) 2 (15) 0.7448 

Dyslipidemia, N (%) 503 (88) 13 (100) 0.3838 

Hypertension, N (%) 508 (89) 10 (77) 0.1884 

History of myocardial infarction, N (%) 6 (1) 0 (0) 1.0000 

Obesity, N (%) 384 (67) 10 (77) 0.5607 
SD, standard deviation 

 

Since the percent of missing data was greater than 5%, it was reasonable to assume that there 

was a potential for bias. The missing data pattern was suggestive of MAR; thereby allowing for 

multiple imputation to be performed. 
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Table 10. Number of missing data, Case study 2. 

 
Total Exenatide Liraglutide  

Variable 
Number 
missing 

Percent 
missing 

Number 
missing 

Percent 
missing 

Number 
missing 

Percent 
missing 

HbAc1 at 1 year 188 17.2% 170 16.1% 18 45.0% 

BMI at baseline 108 9.9% 106 10.1% 2 5.0% 

HbA1c at baseline 86 7.9% 76 7.2% 10 25.0% 

Race 291 26.6% 278 26.4% 13 32.5% 

Age 0 0.0% 0 0.0% 0 0.0% 

Gender 0 0.0% 0 0.0% 0 0.0% 
Charlson 
Comorbidity Index 0 0.0% 0 0.0% 0 0.0% 

Congestive heart 
failure 0 0.0% 0 0.0% 0 0.0% 

Depression 0 0.0% 0 0.0% 0 0.0% 

Hypertension 0 0.0% 0 0.0% 0 0.0% 

Obesity 0 0.0% 0 0.0% 0 0.0% 

Dyslipidemia 0 0.0% 0 0.0% 0 0.0% 
BMI, Body mass index (kb/m^2) 

Comparisons between groups with missing data and complete data reported that no clear 

differences were present (Table 11). Patients who had missing HbA1 baseline values were 

similar in age and gender compared with patients who had non-missing HbA1 baseline values. 

There was a larger proportion of patients receiving liraglutide who had missing baseline HbA1c 

values compared to the non-missing group (12% versus 3%). In addition, patients with missing 

baseline HbA1c had a lower proportion of patients receiving exenatide compared to patients with 

complete data (88% versus 97%). For groups with missing and non-missing data for race, 

average age, gender and drug exposure were similar.   

Table 11. Comparison between groups with missing and non-missing data. 
  Missing Non-Missing 
Missing variable of interest HbA1c at baseline Race HbA1c at baseline Race 
Number 86 291 1008 803 
Age (years), mean (SD) 60.93 (10.41) 61.07 (9.25) 62.74 (8.40) 63.15 (8.26) 
Gender (males), number (%) 80 (93.02) 269 (92.44) 949 (94.15) 760 (94.65) 
Drug: Exenatide, number (%) 76 (88.37) 278 (95.53) 978 (97.02) 776 (96.64) 
Drug: Liraglutide, number (%) 10 (11.63) 13 (4.47) 30 (2.98) 27 (3.36) 
HbA1c, hemoglobin A1c. 
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In the univariate analyses, liraglutide had a higher but non-significant reduction in HbA1c 

compared to exenatide (1.17 versus 0.65, P=0.3432). Results of the regression models reported 

that there were no statistically significant association between GLP-1 agonists (exenatide or 

liraglutide) and change in HbA1c relative to each other while controlling for age, gender, race, 

baseline HbA1c, BMI, CCI, history of myocardial infarction, congestive heart failure, 

hypertension, obesity, and dyslipidemia (Table 12). There was a higher but non-significant 

HbA1c reduction with exenatide relative to liraglutide in the crude estimate (0.37; 95% CI: -

0.29, 1.03). Similarly, findings were reported with exenatide relative to liraglutide in the 

complete-case analysis (0.36; 95% CI: -0.35, 1.08) and multiple imputation method (0.25; 95% 

CI: -0.33, 0.82). The confidence band of the estimate generated by the multiple imputation 

method was narrower than the complete-case analysis and crude methods. Both missing data 

analyses resulted in an estimate that was biased towards the null. 

Table 12. Percent change in HbA1 at 2 years from baseline for exenatide relative to liraglutide, Case study 2.  

  
Crude 
N=585 

Complete-case analysis* 
N=585 

Multiple imputation* 
N=1,094 

Comparison Change in HbA1c (95% CI) Change in HbA1c (95% CI) Change in HbA1c (95% CI) 

Exenatide versus 
liraglutide 0.37% (-0.29%, 1.03%) 0.36% (-0.35%, 1.08%) 0.25% (-0.33%, 0.82%) 

*Adjusted for age, gender, race, baseline HbA1c, BMI, CCI, history of myocardial infarction, congestive heart 
failure, hypertension, obesity, and dyslipidemia. 
 

4.3. SUMMARY 

In Case study 1, there were statistically significant differences in the odds of achieving a 25% in 

LDL, TC, and non-HDL between adherent and non-adherent patients to their statin prescriptions. 

However, the moderate amount of missing data created some potential for bias. Crude OR was 

estimated in order to provide a reference with which to compare other missing data analyses. 
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Complete-case analysis was performed to generate odds ratios with 95% confidence intervals for 

LDL, TC, and non-HDL outcomes. However, there were no differences in conclusions from the 

crude ORs. Similarly, there were no differences between the ORs and 95% CIs generated by 

multiple imputation methods and complete-case analysis.  

 

For Case study 1, there was no apparent impact by missing data on the study conclusions, 

whether using crude or complete-case analysis. Multiple imputation method allowed for the use 

of the entire sample (N=7,739), thereby, maximizing the sample size. However, the improvement 

in precision was unnecessary since the point estimate and confidence limits did not change the 

study conclusions.  

 

In Case study 2, the impact of missing data had a greater potential for influence since there was a 

disproportionate number of patients in the exenatide and liraglutide groups. There were 1,054 

patients in the exenatide group and 40 patients in the liraglutide group. When complete-case 

analysis was performed, these numbers were reduced to 574 and 13 for the exenatide and 

liraglutide groups, respectively. The small sample size in the liraglutide group made it 

susceptible to potentially large changes in the outcomes.  

 

There were no statistically significant differences in HbA1c reduction between exenatide and 

liraglutide at 1 year. Although, patients in the exenatide group had a larger HbA1c reduction 

relative to patients prescribed liraglutide, this difference was not statistically significant in the 

crude analysis (P=0.2674). Similarly, the complete-case analysis reported that there was a higher 

but non-significant HbA1c reduction with exenatide relative to liraglutide (P=0.3187).  
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Multiple imputation provided a method to maximize the already small sample size of liraglutide. 

When compared to the crude and complete-case analysis, no significant differences in 

conclusions were observed. Although there were no differences in conclusions between the 

different missing data analysis used, multiple imputation was biased towards the null compared 

to the crude and complete-case analysis.  

 

In both case studies, there were no significant impact by the missing data; and multiple 

imputation provided the same answers as the complete-case analysis. Although there were some 

improvements in precisions with multiple imputation in Case study 2, this was not observed in 

Case study 2. The benefits of multiple imputation includes increased sample size for both case 

studies, especially Case study 2; however, there were no changes in the conclusions based on the 

complete-case analyses.   
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CHAPTER 5: CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS 

 

5.1. INTRODUCTION 

This section summarizes the critical elements of the study thesis. The study conclusions are 

provided as well as potential implications of the results in the field of epidemiology and missing 

data analysis. Several recommendations for the use of multiple imputation for missing data 

analysis are also provided.  

 

5.2. SUMMARY OF STUDY 

Missing data in epidemiologic studies may impact the results of multivariate models. Depending 

on the pattern and amount of missing data, missing data can influence the conclusions of studies, 

especially those that use multivariate models. In most statistical software, multivariate models 

remove cases from analysis when missing data is present. This reduces the sample size and may 

lead to biased results. In situations where this is highly probable, an investigation of the impact 

of missing data will need to be performed.  

 

Most studies do not evaluate the impact of missing data. A study published by Fielding, et al.58 

reported that 59% (36 out of 61 randomly selected studies) of studies with missing data 

published in the New England Journal of Medicine, Journal of the American Medical 

Association, BMJ, and Lancet from 2005 to 2006 did not account for the potential impact that 

missing data may have on the conclusions of individual studies. Similarly, Wood, et al.8 reported 

that 89% (63 out of 71 randomly selected studies reviewed) published in the New England 

Journal of Medicine, Journal of the American Medical Association, BMJ, and Lancet between 
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July and December 2001 had missing data. Most of the studies (92%) applied complete-case 

analysis which is the default mode for statistical software when dealing with missing data.  

 

The purpose of this study was to evaluate the impact of missing data on two case studies that 

used multivariate models. In Case study 1, Watanabe, et al.17 used multivariate models to 

evaluate the association between adherence and achievement of 25% lipid panel reductions (e.g., 

LDL, TC, and non-HDL). In Case study 2, Bounthavong, et al.18 used multiple linear regression 

to evaluate the association between GLP-1 agonists (exenatide or liraglutide) and HbA1c 

reduction. In both cases, complete-case analysis was performed in handling missing data; 

however, the impact of missing data was not evaluated.  

  

5.2.1. Case Study 1: 

In Case study 1, there was a moderate amount of missing data that ranged from 16% to 19% for 

individual variables. In the multivariate models, the initial sample size of 7,739 subjects was 

reduced to 6,074 (~22% missing) due to missing data. Crude analysis was performed to provide 

a reference for comparison with the complete-case analysis and multiple imputation method. The 

conclusions from the complete-case analysis were similar to the crude analysis. Further 

comparisons between the conclusions of the multiple imputation method and complete-case 

analysis were also similar controlling for age, BMI, gender, baseline lipid values, comorbid 

conditions (diabetes, hypertension, congestive heart failure, history of myocardial infarction, 

angina, vascular disease), statin use, ethnicity, and starting medication count. In all scenarios, 

there were significant associations between adherence and achieving 25% reduction in lipid 

panel levels.  



	  

	   58	  

 

5.2.2. Case Study 2: 

In Case study 2, there was a moderate-large amount of missing data that ranged from 5% to 45% 

for individual variables. The study had 1,094 patients who met the inclusion and exclusion 

criteria; however, only 585 (53.5% of the original sample) patients had complete data for 

analysis. Multiple linear regression was performed to evaluated the association between GLP-1 

agonists and reduction in HbA1c levels controlling for age, gender, race, baseline HbA1c, BMI, 

CCI, history of myocardial infarction, congestive heart failure, hypertension, obesity, and 

dyslipidemia. Complete-case analysis and multiple imputation method were performed and the 

results were compared to the crude analysis. In all three methods, there were no significant 

association between exenatide and reduction in HbA1c relative to liraglutide. Multiple 

imputation method provided the same conclusion as the complete-case analysis and crude 

analysis.  

 

5.3. CONCLUSIONS 

5.3.1. Case Study 1: 

In Case study 1, adherent patients were reported to have a higher odd of achieving 25% or more 

reduction in lipid panel levels relative to non-adherent patients controlling for potential 

confounding factors. Kazerooni, et al.36 reported similar findings in that patients who were 

adherence (MPR ≥ 0.80) had a significant reduction in LDL and non-HDL level relative to non-

adherent patients in a veteran population.  
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The use of multiple imputation did not change the conclusion of the complete-case analysis and 

crude analysis. However, it increased the sample size of the study and improved precision on the 

confidence limits when compared to the complete-case analysis. It also provided supporting 

evidence that the conclusions were appropriate and unaffected by missing data.  

 

5.3.2. Case Study 2: 

In Case study 2, patients who were prescribed exenatide had no significant association with 

change in HbA1c compared to liraglutide while controlling for potential confounders. In 

contrast, Buse, et al.78 reported that liraglutide once daily had a significantly greater reduction in 

HbA1c compared with exenatide twice daily in a 26-week, open-labeled, parallel group, 

multinational study [-1.12% (SE, 0.08) versus -0.79% (0.08), P<0.0001]. The small sample size 

of the liraglutide cohort may reflect confounding by indication which is a form of selection 

bias.79 It is plausible that patients who were prescribed liraglutide may have some other 

indication than diabetes that is different from exenatide patients. The VHA national formulary 

does not include GLP-1 agonists. However, during the study period of interest, exenatide twice 

daily had a criteria for use document that formulary managers in the VHA used to determine 

whether or not the patient is eligible to receive the liraglutide based on specific criteria; 

liraglutide did not (http://www.pbm.va.gov). Therefore, it is speculated, that providers and 

pharmacists preferred to use exenatide as a consequence of formulary guidelines being available. 

This may indicate that patients on lirgalutide could have been approved based on a specific 

clinical indication (other than diabetes) that would prevent them from using exenatide (e.g., 

previous history of exenatide, contraindication, or patient/provider preferences). Future studies 
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will need to randomize exenatide and liraglutide to diabetic patients based on baseline HbA1c in 

order to reduce bias and potential confounding.  

 

Regardless, multiple imputation provided similar conclusions as the complete-case analysis and 

crude analysis. The confidence limit from the multiple imputation method was narrower 

compared to the complete-case analysis and crude analysis; however, this improvement in 

precision did not change the conclusion that there was no significant association between 

exenatide and change in HbA1c compared to liraglutide. In addition, multiple imputation 

provided benefit by increasing the sample size of the small cohort of liraglutide patients.  

 

5.3.3. Limitations 

In both case studies, multiple imputation and complete-case analysis for the missing data 

methods performed. However, there are other methods available that were not investigated, 

thereby, limiting the generalizability of these results. Maximum likelihood estimator is another 

method that could be applied to handling missing data. Unlike multiple imputation where m 

number of datasets need to be generated through imputation methods, maximum likelihood is a 

simple method that does not require much computational power or time to perform.29–31 

 

This study was performed using data from the veteran population; as a result, generalizability to 

a non-veteran population may be limited. It is unclear whether or not veterans would be more 

adherent compared to non-veterans; or if veterans would be less likely to have major reductions 

in the HbA1c after using a GLP-1 agonist. There have been no studies to demonstrate these 

changes. Moreover, the veteran demographic is predominantly white male which limits 
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generalizability to the non-white female population. Fitzgerald, et al. reported that there were no 

differences in attitude but not adherence between male and female in patients with Type 2 

diabetes mellitus.80 However, they reported that for type 1 diabetes mellitus, there were 

differences in patient attitudes.80 Men were more likely to follow the provider’s orders while 

women were more likely to take type 1 diabetes mellitus serious and agree that diabetes has a 

significant effect on quality of life.80 Future studies will need to recruit equal number of male 

and female subjects to eliminate this potential confounder.  

 

Another limitation of this study is the absence of an evaluation for NMAR. Heckman selection 

procedure is used when the missing data pattern is reflective of NMAR.81 Since this study 

assumed MAR, multiple imputation was performed. Heckman selection procedure tends to 

provide conclusions that are different from both the complete-case analysis and multiple 

imputation. Missing data pattern that is NMAR is unlikely; therefore, Heckman selection 

procedure was not performed in this study.  

 

5.4. IMPLICATIONS 

Multiple imputation improved the sample size and increased precision in cases where 

multivariate regression models were employed. In both case studies, multiple imputation 

provided reassurance for the conclusions obtained by complete-case analysis.  

 

Currently, most statistical software (e.g., SAS, SPSS, and STATA) by default perform complete-

case analysis for multivariate models. Researchers who are unaware of this default setting may 

find that the sample size has been reduced and potential bias present. It will also be difficult to 
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convince researchers to perform additional analysis, especially if the benefits of missing data 

analysis provide minimal incremental benefits. In the two case studies of this thesis, using 

multiple imputation to handle missing data did not outperform complete-case analysis methods. 

However, multiple imputation performed an important role in providing additional support for 

the initial conclusions based on complete-case analysis. This has important implications when it 

comes to using the results from the complete-case analysis for making policy decisions.  

 

Situations where the conclusions are divergent between complete-case analysis and multiple 

imputation method would benefit from the analyses. In these situations, researchers will need to 

address the impact that missing data have on their study conclusions. More importantly, they 

would need to discuss the potential compromise in internal validity due to missing data.  

 

5.5. RECOMMENDATIONS 

Based on the results of this study, multiple imputation provided similar conclusions that were 

based on complete-case anlysis. Researchers who are involved with multivariate models may 

consider using multiple imputation to address missing data in order to provide additional support  

for results obtained from complete-case analysis.  

 

However, if differences are present, researchers will need to address the impact of missing data 

on their conclusions. According to the European Medicines Agency (EMA), there is no standard 

guideline that can be applied in all scenarios where missing data is present.10 According to the 

EMA, each case will require the researcher to apply the appropriate methods in handling missing 

data on a case-by-case basis. An important element of missing data analysis is the performance 
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of sensitivity analysis to support the initial study conclusions. In our case studies, multiple 

imputation was performed in order to support the conclusions based on complete-case analysis.  

 

Researchers facing problems with missing data should perform complete-case analysis followed 

by another missing data analysis method (e.g., multiple imputation, maximum likelihood 

estimation) in order to support the initial conclusions. If there are conflicts, then the researcher 

will need to highlight this as a potential problem of the study. Transparency is critical when it 

comes to making informed decisions about based on study conclusions hampered by missing 

data. Figure 5 summarizes the recommendations for performing missing data analysis.  

 

Figure 5. Recommended guideline for validating study conclusions.  
 

 
  

Missing	  data	  
present	  

• Identify	  pattern	  for	  missing	  
data	  (e.g.,	  MCAR,	  MAR,	  and	  
NMAR)	  

Perform	  missing	  
data	  analysis	  

• Multiple	  imputation	  

Compare	  
answer	  to	  

complete-‐case	  
analysis	  

• If	  the	  results	  conWlict	  
then	  present	  both	  
conclusions.	  If	  similar,	  
then	  conclusion	  is	  
robust	  to	  missing	  
data.	  



	  

	   64	  

REFERENCES 
1.	   Ferguson,	  L.	  External	  validity,	  generalizability,	  and	  knowledge	  utilization.	  J.	  Nurs.	  

Scholarsh.	  Off.	  Publ.	  Sigma	  Theta	  Tau	  Int.	  Honor	  Soc.	  Nurs.	  Sigma	  Theta	  Tau	  36,	  16–22	  
(2004).	  

2.	   Campbell,	  D.	  T.	  &	  Stanley,	  J.	  Experimental	  and	  quasiexperimental	  designs	  for	  research.	  
(Houghton	  Mifflin,	  1963).	  

3.	   Grimes,	  D.	  A.	  &	  Schulz,	  K.	  F.	  Bias	  and	  causal	  associations	  in	  observational	  research.	  
Lancet	  359,	  248–252	  (2002).	  

4.	   Tripepi,	  G.,	  Jager,	  K.	  J.,	  Dekker,	  F.	  W.,	  Wanner,	  C.	  &	  Zoccali,	  C.	  Bias	  in	  clinical	  research.	  
Kidney	  Int.	  73,	  148–153	  (2008).	  

5.	   Kleinbaum,	  D.	  G.,	  Sullivan,	  K.	  M.	  &	  Barker,	  N.	  D.	  ActiveEpi	  Companion	  Textbook:	  A	  
supplement	  for	  use	  with	  the	  ActiveEPI	  CD-‐ROM.	  (2003).	  

6.	   Little,	  R.	  J.	  A.	  &	  Rubin,	  D.	  B.	  Statistical	  Analysis	  with	  Missing	  Data.	  (John	  Wiley	  &	  Sons,	  
Inc.,	  2002).	  

7.	   Rubin,	  D.	  B.	  Inference	  and	  missing	  data.	  Biometrika	  63,	  581–592	  (1976).	  
8.	   Wood,	  A.	  M.,	  White,	  I.	  R.	  &	  Thompson,	  S.	  G.	  Are	  missing	  outcome	  data	  adequately	  

handled?	  A	  review	  of	  published	  randomized	  controlled	  trials	  in	  major	  medical	  journals.	  
Clin.	  Trials	  Lond.	  Engl.	  1,	  368–376	  (2004).	  

9.	   Sterne,	  J.	  A.	  C.	  et	  al.	  Multiple	  imputation	  for	  missing	  data	  in	  epidemiological	  and	  clinical	  
research:	  potential	  and	  pitfalls.	  BMJ	  338,	  b2393	  (2009).	  

10.	  European	  Medicines	  Evaluation	  Agency.	  Guideline	  on	  Missing	  Data	  in	  Confirmatory	  
Clinical	  Trials.	  Committee	  for	  Medical	  Products	  for	  Human	  Use.	  (2009).	  at	  
<http://www.ema.europa.eu/pdfs/human/ewp/177699endraft.pdf>	  

11.	  The	  Prevention	  and	  Treatment	  of	  Missing	  Data	  in	  Clinical	  Trials.	  at	  
<http://www.nap.edu/openbook.php?record_id=12955>	  

12.	  Liu,	  M.,	  Wei,	  L.	  &	  Zhang,	  J.	  Review	  of	  guidelines	  and	  literature	  for	  handling	  missing	  data	  
in	  longitudinal	  clinical	  trials	  with	  a	  case	  study.	  Pharm.	  Stat.	  5,	  7–18	  (2006).	  

13.	  Li,	  T.	  et	  al.	  Minimal	  Standards	  in	  the	  Prevention	  and	  Handling	  of	  Missing	  Data	  in	  
Observational	  and	  Experimental	  Patient	  Centered	  Outcomes	  Research.	  (2012).	  at	  
<http://www.pcori.org/assets/Minimal-‐Standards-‐in-‐the-‐Prevention-‐and-‐Handling-‐of-‐
Missing-‐Data-‐in-‐Observational-‐and-‐Experimental-‐Patient-‐Centered-‐Outcomes-‐
Research1.pdf>	  

14.	  Vandenbroucke,	  J.	  P.	  et	  al.	  Strengthening	  the	  Reporting	  of	  Observational	  Studies	  in	  
Epidemiology	  	  	  	  	  	  	  	  	  	  	  (STROBE):	  Explanation	  and	  Elaboration.	  PLoS	  Med	  4,	  e297	  (2007).	  

15.	  Moher,	  D.	  et	  al.	  CONSORT	  2010	  Explanation	  and	  Elaboration:	  Updated	  guidelines	  for	  
reporting	  parallel	  group	  randomised	  trials.	  J.	  Clin.	  Epidemiol.	  63,	  e1–37	  (2010).	  

16.	  Gallo,	  V.	  et	  al.	  STrengthening	  the	  Reporting	  of	  OBservational	  studies	  in	  Epidemiology-‐-‐
Molecular	  Epidemiology	  STROBE-‐ME:	  an	  extension	  of	  the	  STROBE	  statement.	  J.	  Clin.	  
Epidemiol.	  64,	  1350–1363	  (2011).	  

17.	  Watanabe,	  J.	  H.,	  Bounthavong,	  M.	  &	  Chen,	  T.	  Revisiting	  the	  medication	  possession	  ratio	  
threshold	  for	  adherence	  in	  lipid	  management.	  Curr.	  Med.	  Res.	  Opin.	  29,	  175–180	  (2013).	  

18.	  Bounthavong,	  M.,	  Tran,	  J.	  N.,	  Watanabe,	  J.	  H.	  &	  Chen,	  T.	  C.	  PDB15	  -‐	  Retrospective	  Cohort	  
Study	  Evaluating	  Liraglutide	  And	  Exenatide	  In	  A	  Veteran	  Population.	  Value	  Health	  16,	  
A158	  (2013).	  



	  

	   65	  

19.	  Haukoos,	  J.	  S.	  &	  Newgard,	  C.	  D.	  Advanced	  statistics:	  missing	  data	  in	  clinical	  research-‐-‐
part	  1:	  an	  introduction	  and	  conceptual	  framework.	  Acad.	  Emerg.	  Med.	  14,	  662–668	  
(2007).	  

20.	  Rubin,	  D.	  B.	  Multiple	  imputation	  after	  18+	  years.	  J.	  Am.	  Stat.	  Assoc.	  91,	  473–489	  (1996).	  
21.	  Raghunathan,	  T.	  E.	  What	  do	  we	  do	  with	  missing	  data?	  Some	  options	  for	  analysis	  of	  

incomplete	  data.	  Annu.	  Rev.	  Public	  Health	  25,	  99–117	  (2004).	  
22.	  McKnight,	  P.	  E.,	  McKnight,	  K.	  M.,	  Sidani,	  S.	  &	  Figueredo,	  A.	  J.	  Missing	  Data:	  A	  Gentle	  

Introduction.	  (The	  Guildorf	  Press,	  2007).	  
23.	  Little,	  R.	  J.	  A.	  A	  Test	  of	  Missing	  Completely	  at	  Random	  for	  Multivariate	  Data	  with	  

Missing	  Values.	  J.	  Am.	  Stat.	  Assoc.	  83,	  1198–1202	  (1988).	  
24.	  Newgard,	  C.	  D.	  &	  Haukoos,	  J.	  S.	  Advanced	  statistics:	  missing	  data	  in	  clinical	  research-‐-‐

part	  2:	  multiple	  imputation.	  Acad.	  Emerg.	  Med.	  14,	  669–678	  (2007).	  
25.	  Kneipp,	  S.	  M.	  &	  McIntosh,	  M.	  Handling	  missing	  data	  in	  nursing	  research	  with	  multiple	  

imputation.	  Nurs.	  Res.	  50,	  384–389	  (2001).	  
26.	  Sinharay,	  S.,	  Stern,	  H.	  S.	  &	  Russell,	  D.	  The	  use	  of	  multiple	  imputation	  for	  the	  analysis	  of	  

missing	  data.	  Psychol.	  Methods	  6,	  317–329	  (2001).	  
27.	  Schafer,	  J.	  L.	  Multiple	  imputation:	  a	  primer.	  Stat.	  Methods	  Med.	  Res.	  8,	  3–15	  (1999).	  
28.	  Héraud-‐Bousquet,	  V.,	  Larsen,	  C.,	  Carpenter,	  J.,	  Desenclos,	  J.-‐C.	  &	  Le	  Strat,	  Y.	  Practical	  

considerations	  for	  sensitivity	  analysis	  after	  multiple	  imputation	  applied	  to	  
epidemiological	  studies	  with	  incomplete	  data.	  BMC	  Med.	  Res.	  Methodol.	  12,	  73	  (2012).	  

29.	  Chen,	  M.	  H.	  &	  Ibrahim,	  J.	  G.	  Maximum	  likelihood	  methods	  for	  cure	  rate	  models	  with	  
missing	  covariates.	  Biometrics	  57,	  43–52	  (2001).	  

30.	  Horton,	  N.	  J.	  &	  Laird,	  N.	  M.	  Maximum	  likelihood	  analysis	  of	  generalized	  linear	  models	  
with	  missing	  covariates.	  Stat.	  Methods	  Med.	  Res.	  8,	  37–50	  (1999).	  

31.	  Shih,	  W.	  J.	  Maximum	  likelihood	  estimation	  and	  likelihood	  ratio	  test	  for	  square	  tables	  
with	  missing	  data.	  Stat.	  Med.	  6,	  91–97	  (1987).	  

32.	  Li,	  L.,	  Shen,	  C.,	  Li,	  X.	  &	  Robins,	  J.	  M.	  On	  weighting	  approaches	  for	  missing	  data.	  Stat.	  
Methods	  Med.	  Res.	  22,	  14–30	  (2013).	  

33.	  Seaman,	  S.	  R.	  &	  White,	  I.	  R.	  Review	  of	  inverse	  probability	  weighting	  for	  dealing	  with	  
missing	  data.	  Stat.	  Methods	  Med.	  Res.	  22,	  278–295	  (2013).	  

34.	  Collins,	  L.	  M.,	  Schafer,	  J.	  L.	  &	  Kam,	  C.	  M.	  A	  comparison	  of	  inclusive	  and	  restrictive	  
strategies	  in	  modern	  missing	  data	  procedures.	  Psychol.	  Methods	  6,	  330–351	  (2001).	  

35.	  Rubin,	  D.	  B.	  Multiple	  Imputation	  for	  Nonresponse	  in	  Surveys.	  (John	  Wiley	  &	  Sons,	  Inc.,	  
1987).	  

36.	  Kazerooni,	  R.,	  Watanabe,	  J.	  H.	  &	  Bounthavong,	  M.	  Association	  Between	  Statin	  Adherence	  
and	  Cholesterol	  Level	  Reduction	  from	  Baseline	  in	  a	  Veteran	  Population.	  
Pharmacotherapy	  (2013).	  doi:10.1002/phar.1305	  

37.	  Messer,	  K.	  &	  Natarajan,	  L.	  Maximum	  likelihood,	  multiple	  imputation	  and	  regression	  
calibration	  for	  measurement	  error	  adjustment.	  Stat.	  Med.	  27,	  6332–6350	  (2008).	  

38.	  Buhi,	  E.	  R.,	  Goodson,	  P.	  &	  Neilands,	  T.	  B.	  Out	  of	  sight,	  not	  out	  of	  mind:	  strategies	  for	  
handling	  missing	  data.	  Am.	  J.	  Health	  Behav.	  32,	  83–92	  (2008).	  

39.	  Choi,	  Y.	  J.,	  Nam,	  C.	  M.	  &	  Kwak,	  M.	  J.	  Multiple	  imputation	  technique	  applied	  to	  
appropriateness	  ratings	  in	  cataract	  surgery.	  Yonsei	  Med.	  J.	  45,	  829–837	  (2004).	  

40.	  Balise,	  R.	  R.	  et	  al.	  Imputation	  of	  missing	  ages	  in	  pedigree	  data.	  Hum.	  Hered.	  63,	  168–174	  
(2007).	  



	  

	   66	  

41.	  Moons,	  K.	  G.	  M.,	  Donders,	  R.	  A.	  R.	  T.,	  Stijnen,	  T.	  &	  Harrell,	  F.	  E.,	  Jr.	  Using	  the	  outcome	  for	  
imputation	  of	  missing	  predictor	  values	  was	  preferred.	  J.	  Clin.	  Epidemiol.	  59,	  1092–1101	  
(2006).	  

42.	  Rue,	  T.,	  Thompson,	  H.	  J.,	  Rivara,	  F.	  P.,	  Mackenzie,	  E.	  J.	  &	  Jurkovich,	  G.	  J.	  Managing	  the	  
common	  problem	  of	  missing	  data	  in	  trauma	  studies.	  J.	  Nurs.	  Scholarsh.	  Off.	  Publ.	  Sigma	  
Theta	  Tau	  Int.	  Honor	  Soc.	  Nurs.	  Sigma	  Theta	  Tau	  40,	  373–378	  (2008).	  

43.	  Moore,	  L.	  et	  al.	  Multiple	  imputation	  of	  the	  Glasgow	  Coma	  Score.	  J.	  Trauma	  59,	  698–704	  
(2005).	  

44.	  Croiseau,	  P.,	  Génin,	  E.	  &	  Cordell,	  H.	  J.	  Dealing	  with	  missing	  data	  in	  family-‐based	  
association	  studies:	  a	  multiple	  imputation	  approach.	  Hum.	  Hered.	  63,	  229–238	  (2007).	  

45.	  Souverein,	  O.	  W.,	  Zwinderman,	  A.	  H.	  &	  Tanck,	  M.	  W.	  T.	  Multiple	  imputation	  of	  missing	  
genotype	  data	  for	  unrelated	  individuals.	  Ann.	  Hum.	  Genet.	  70,	  372–381	  (2006).	  

46.	  Cordell,	  H.	  J.	  Estimation	  and	  testing	  of	  genotype	  and	  haplotype	  effects	  in	  case-‐control	  
studies:	  comparison	  of	  weighted	  regression	  and	  multiple	  imputation	  procedures.	  Genet.	  
Epidemiol.	  30,	  259–275	  (2006).	  

47.	  Siddique,	  J.	  &	  Belin,	  T.	  R.	  Multiple	  imputation	  using	  an	  iterative	  hot-‐deck	  with	  distance-‐
based	  donor	  selection.	  Stat.	  Med.	  27,	  83–102	  (2008).	  

48.	  Bono,	  C.,	  Ried,	  L.	  D.,	  Kimberlin,	  C.	  &	  Vogel,	  B.	  Missing	  data	  on	  the	  Center	  for	  
Epidemiologic	  Studies	  Depression	  Scale:	  a	  comparison	  of	  4	  imputation	  techniques.	  Res.	  
Soc.	  Adm.	  Pharm.	  RSAP	  3,	  1–27	  (2007).	  

49.	  Moore,	  L.,	  Hanley,	  J.	  A.,	  Turgeon,	  A.	  F.,	  Lavoie,	  A.	  &	  Emond,	  M.	  A	  multiple	  imputation	  
model	  for	  imputing	  missing	  physiologic	  data	  in	  the	  national	  trauma	  data	  bank.	  J.	  Am.	  
Coll.	  Surg.	  209,	  572–579	  (2009).	  

50.	  Mulla,	  Z.	  D.,	  Seo,	  B.,	  Kalamegham,	  R.	  &	  Nuwayhid,	  B.	  S.	  Multiple	  imputation	  for	  missing	  
laboratory	  data:	  an	  example	  from	  infectious	  disease	  epidemiology.	  Ann.	  Epidemiol.	  19,	  
908–914	  (2009).	  

51.	  Van	  der	  Heijden,	  G.	  J.	  M.	  G.,	  Donders,	  A.	  R.	  T.,	  Stijnen,	  T.	  &	  Moons,	  K.	  G.	  M.	  Imputation	  of	  
missing	  values	  is	  superior	  to	  complete	  case	  analysis	  and	  the	  missing-‐indicator	  method	  
in	  multivariable	  diagnostic	  research:	  a	  clinical	  example.	  J.	  Clin.	  Epidemiol.	  59,	  1102–
1109	  (2006).	  

52.	  Yang,	  X.,	  Belin,	  T.	  R.	  &	  Boscardin,	  W.	  J.	  Imputation	  and	  variable	  selection	  in	  linear	  
regression	  models	  with	  missing	  covariates.	  Biometrics	  61,	  498–506	  (2005).	  

53.	  Greenland,	  S.	  &	  Finkle,	  W.	  D.	  A	  critical	  look	  at	  methods	  for	  handling	  missing	  covariates	  
in	  epidemiologic	  regression	  analyses.	  Am.	  J.	  Epidemiol.	  142,	  1255–1264	  (1995).	  

54.	  Newgard,	  C.	  D.	  The	  validity	  of	  using	  multiple	  imputation	  for	  missing	  out-‐of-‐hospital	  
data	  in	  a	  state	  trauma	  registry.	  Acad.	  Emerg.	  Med.	  Off.	  J.	  Soc.	  Acad.	  Emerg.	  Med.	  13,	  314–
324	  (2006).	  

55.	  O’Loughlin,	  R.	  E.	  et	  al.	  The	  epidemiology	  of	  invasive	  group	  A	  streptococcal	  infection	  and	  
potential	  vaccine	  implications:	  United	  States,	  2000-‐2004.	  Clin.	  Infect.	  Dis.	  Off.	  Publ.	  
Infect.	  Dis.	  Soc.	  Am.	  45,	  853–862	  (2007).	  

56.	  Van	  Beek,	  E.	  J.	  et	  al.	  A	  normal	  perfusion	  lung	  scan	  in	  patients	  with	  clinically	  suspected	  
pulmonary	  embolism.	  Frequency	  and	  clinical	  validity.	  Chest	  108,	  170–173	  (1995).	  

57.	  Hanley,	  J.	  A.	  &	  McNeil,	  B.	  J.	  The	  meaning	  and	  use	  of	  the	  area	  under	  a	  receiver	  operating	  
characteristic	  (ROC)	  curve.	  Radiology	  143,	  29–36	  (1982).	  



	  

	   67	  

58.	  Fielding,	  S.,	  Maclennan,	  G.,	  Cook,	  J.	  A.	  &	  Ramsay,	  C.	  R.	  A	  review	  of	  RCTs	  in	  four	  medical	  
journals	  to	  assess	  the	  use	  of	  imputation	  to	  overcome	  missing	  data	  in	  quality	  of	  life	  
outcomes.	  Trials	  9,	  51	  (2008).	  

59.	  US	  Department	  of	  Veterans	  Affairs.	  VISN	  22:	  Desert	  Pacific	  Healthcare	  Network.	  at	  
<http://www.va.gov/directory/guide/region.asp?ID=1022>	  

60.	  US	  Department	  of	  Veterans	  Affairs.	  Veterans	  Health	  Administration.	  About	  the	  VHA.	  at	  
<http://www.va.gov/health/aboutVHA.asp>	  

61.	  Department	  of	  Veterans	  Affairs.	  2007	  Veterans	  Health	  Care	  Handbook.	  Military	  
Handbooks.	  2007.	  (Department	  of	  Veterans	  Affairs,	  2007).	  at	  
<http://www.militaryhandbooks.com>	  

62.	  Department	  of	  Veterans	  Affairs.	  Veteran	  Population.	  National	  Center	  for	  Veterans	  
Analysis	  and	  Statistics.	  at	  <http://www.va.gov/vetdata/Veteran_Population.asp>	  

63.	  Andrade,	  S.	  E.,	  Kahler,	  K.	  H.,	  Frech,	  F.	  &	  Chan,	  K.	  A.	  Methods	  for	  evaluation	  of	  medication	  
adherence	  and	  persistence	  using	  automated	  databases.	  Pharmacoepidemiol.	  Drug	  Saf.	  
15,	  565–574;	  discussion	  575–577	  (2006).	  

64.	  Hess,	  L.	  M.,	  Raebel,	  M.	  A.,	  Conner,	  D.	  A.	  &	  Malone,	  D.	  C.	  Measurement	  of	  adherence	  in	  
pharmacy	  administrative	  databases:	  a	  proposal	  for	  standard	  definitions	  and	  preferred	  
measures.	  Ann.	  Pharmacother.	  40,	  1280–1288	  (2006).	  

65.	  Grundy,	  S.	  M.	  et	  al.	  Implications	  of	  recent	  clinical	  trials	  for	  the	  National	  Cholesterol	  
Education	  Program	  Adult	  Treatment	  Panel	  III	  Guidelines.	  J.	  Am.	  Coll.	  Cardiol.	  44,	  720–
732	  (2004).	  

66.	  Gotto,	  A.	  M.,	  Jr	  &	  Grundy,	  S.	  M.	  Lowering	  LDL	  cholesterol:	  questions	  from	  recent	  meta-‐
analyses	  and	  subset	  analyses	  of	  clinical	  trial	  DataIssues	  from	  the	  Interdisciplinary	  
Council	  on	  Reducing	  the	  Risk	  for	  Coronary	  Heart	  Disease,	  ninth	  Council	  meeting.	  
Circulation	  99,	  E1–7	  (1999).	  

67.	  Saudek,	  C.	  D.	  &	  Brick,	  J.	  C.	  The	  clinical	  use	  of	  hemoglobin	  A1c.	  J.	  Diabetes	  Sci.	  Technol.	  3,	  
629–634	  (2009).	  

68.	  Kilpatrick,	  E.	  S.	  Haemoglobin	  A1c	  in	  the	  diagnosis	  and	  monitoring	  of	  diabetes	  mellitus.	  J.	  
Clin.	  Pathol.	  61,	  977–982	  (2008).	  

69.	  Jovanovic,	  L.	  &	  Peterson,	  C.	  M.	  The	  clinical	  utility	  of	  glycosylated	  hemoglobin.	  Am.	  J.	  Med.	  
70,	  331–338	  (1981).	  

70.	  McDonald,	  J.	  M.	  &	  Davis,	  J.	  E.	  Glycosylated	  hemoglobins	  and	  diabetes	  mellitus.	  Hum.	  
Pathol.	  10,	  279–291	  (1979).	  

71.	  Bunn,	  H.	  F.,	  Haney,	  D.	  N.,	  Kamin,	  S.,	  Gabbay,	  K.	  H.	  &	  Gallop,	  P.	  M.	  The	  biosynthesis	  of	  
human	  hemoglobin	  A1c.	  Slow	  glycosylation	  of	  hemoglobin	  in	  vivo.	  J.	  Clin.	  Invest.	  57,	  
1652–1659	  (1976).	  

72.	  The	  effect	  of	  intensive	  treatment	  of	  diabetes	  on	  the	  development	  and	  progression	  of	  
long-‐term	  complications	  in	  insulin-‐dependent	  diabetes	  mellitus.	  The	  Diabetes	  Control	  
and	  Complications	  Trial	  Research	  Group.	  N.	  Engl.	  J.	  Med.	  329,	  977–986	  (1993).	  

73.	  VA	  Informatics	  and	  Computing	  Infrastructure	  (VINCI).	  at	  
<http://www.hsrd.research.va.gov/for_researchers/vinci/cdw.cfm#.UfDEN20ueSo>	  

74.	  Summary	  of	  the	  HIPAA	  Privacy	  Rule.	  at	  
<http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/>	  

75.	  VA	  Information	  Resource	  Center.	  VIReC	  Resource	  Guide:	  VA	  Corporate	  Data	  Warehouse.	  
(Hines,	  IL:	  U.S.	  Dept.	  of	  Veterans	  Affairs,	  Health	  Services	  Research	  and	  Development	  
Service,	  VA	  Information	  Resource	  Center,	  2012).	  



	  

	   68	  

76.	  Ho,	  P.	  M.,	  Bryson,	  C.	  L.	  &	  Rumsfeld,	  J.	  S.	  Medication	  Adherence:	  Its	  Importance	  in	  
Cardiovascular	  Outcomes.	  Circulation	  119,	  3028–3035	  (2009).	  

77.	  Rosenbaum,	  P.	  R.	  &	  Rubin,	  D.	  B.	  The	  central	  role	  of	  the	  propensity	  score	  in	  
observational	  studies	  for	  causal	  effects.	  Biometrika	  70,	  41–55	  (1983).	  

78.	  Buse,	  J.	  B.	  et	  al.	  Liraglutide	  once	  a	  day	  versus	  exenatide	  twice	  a	  day	  for	  type	  2	  diabetes:	  
a	  26-‐week	  randomised,	  parallel-‐group,	  multinational,	  open-‐label	  trial	  (LEAD-‐6).	  Lancet	  
374,	  39–47	  (2009).	  

79.	  Salas,	  M.,	  Hofman,	  A.	  &	  Stricker,	  B.	  H.	  Confounding	  by	  indication:	  an	  example	  of	  
variation	  in	  the	  use	  of	  epidemiologic	  terminology.	  Am.	  J.	  Epidemiol.	  149,	  981–983	  
(1999).	  

80.	  Fitzgerald,	  J.	  T.,	  Anderson,	  R.	  M.	  &	  Davis,	  W.	  K.	  Gender	  differences	  in	  diabetes	  attitudes	  
and	  adherence.	  Diabetes	  Educ.	  21,	  523–529	  (1995).	  

81.	  Sales,	  A.	  E.,	  Plomondon,	  M.	  E.,	  Magid,	  D.	  J.,	  Spertus,	  J.	  A.	  &	  Rumsfeld,	  J.	  S.	  Assessing	  
response	  bias	  from	  missing	  quality	  of	  life	  data:	  the	  Heckman	  method.	  Health	  Qual.	  Life	  
Outcomes	  2,	  49	  (2004).	  

 
  



	  

	   69	  

APPENDIX 
Appendix 1. SAS codes for Case study 1. 
****************************************************************************; 
*STUDENT: MARK BOUNTHAVONG - THESIS; 
*TITLE: MISSING DATA ANALYSIS WITH MULTIVARIATE MODELS CASE 1; 
*THESIS CHAIR: DR. KEVIN SULLIVAN; 
*THESIS COMMITTEE MEMBER: DR. JONATHAN H. WATANABE; 
*DATE OF ANALYSIS: 17 SEPTEMBER 2013; 
****************************************************************************; 
 
*THERE ARE A COUPLE OF THINGS THAT NEED TO BE CLARIFIED FOR THIS; 
*THE OUTCOMES ARE 25% REDUCTION IN LIPID PROFILE FOR LDL, HDL AND NON-HDL; 
*NON-HDL WAS CALCULATED AS: NON-HDL = TC - HDL; 
****************************************************************************; 
*START; 
****************************************************************************; 
****************************************************************************; 
*STEP 1: IMPORTING DATA; 
****************************************************************************; 
 
libname s "H:\Courses\Thesis\copay.xlsx"; 
 
proc contents data=s.'sheet1$'n; 
run; 
 
data copay; 
set s.'sheet1$'n; 
run; 
 
proc contents data=copay; 
run; 
 
 
****************************************************************************; 
*STEP 2: VERIFYING THE TOTAL SAMPLE SIZE; 
****************************************************************************; 
*TOTAL N = 7739; 
PROC FREQ DATA=COPAY; 
TABLES RK_ETHNICITY; 
RUN; 
 
 
****************************************************************************; 
*STEP 3: BUILDING A DATASET THAT ONLY HAS THE COMPLETE CASES; 
****************************************************************************; 
DATA COPAY2; 
SET COPAY; 
 NON_HDL_BASE = TC_BASE - HDL_BASE; 
 NON_HDL_FU = TC_FU - HDL_FU; 
 CHANGE_LDL = LDL_FU-LDL_BASE; 
 CHANGE_TC = TC_FU-TC_BASE; 
 CHANGE_NON_HDL = NON_HDL_FU - NON_HDL_BASE; 
 
 PERCENT_LDL = -(CHANGE_LDL)/LDL_BASE; 
 PERCENT_TC = -(CHANGE_TC)/TC_BASE; 
 PERCENT_NON_HDL = -(CHANGE_NON_HDL)/NON_HDL_BASE; 
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 IF PERCENT_LDL >=0.25 THEN LDL25 = 1; 
 IF PERCENT_LDL <0.25 THEN LDL25 = 0; 
 
 IF PERCENT_TC >=0.25 THEN TC25 = 1; 
 IF PERCENT_TC <0.25 THEN TC25 = 0; 
 
 IF PERCENT_NON_HDL >=0.25 THEN NONHDL25 = 1; 
 IF PERCENT_NON_HDL <0.25 THEN NONHDL25 = 0; 
 
RUN; 
 
****************************************************************************; 
*STEP 3-a: DESCRIPTIVE ANALYSIS BETWEEN PATIENTS WITH AND W/O MISSING DATA; 
****************************************************************************; 
*LDL AT BASELINE IS GROUPED MISSING AND NON-MISSING; 
DATA COPAY9; 
SET COPAY2; 
      IF ldl_base =. THEN MISSING = 1; ELSE MISSING = 0; 
/*    IF tc_base =. THEN MISSING = 1; ELSE MISSING = 0; 
      IF hdl_base =. THEN MISSING = 1; ELSE MISSING = 0; 
 IF LDL25 =. THEN MISSING = 1; ELSE MISSING = 0;; 
 IF TC25 =. THEN MISSING = 1; ELSE MISSING = 0; 
 IF NONHDL25 =. THEN MISSING = 1; ELSE MISSING = 0; 
*/ 
RUN; 
 
PROC SORT DATA=COPAY9; 
BY MISSING; 
RUN; 
 
PROC MEANS DATA=COPAY9 N MEAN STD MEDIAN QRANGE; 
CLASS MISSING; 
VAR AGE LDL_BASE TC_BASE HDL_BASE BMIBASE; 
RUN; 
 
PROC FREQ DATA=COPAY9; 
TABLES (GENDER RK_COMPLIANT)*MISSING / CHISQ; 
RUN; 
 
 
*HDL-LDL AT BASELINE IS GROUPED MISSING AND NON-MISSING; 
DATA COPAY10; 
SET COPAY2; 
/*    IF ldl_base =. THEN MISSING = 1; ELSE MISSING = 0; 
*/ IF tc_base =. THEN MISSING = 1; ELSE MISSING = 0; 
      IF hdl_base =. THEN MISSING = 1; ELSE MISSING = 0; 
/* IF LDL25 =. THEN MISSING = 1; ELSE MISSING = 0;; 
 IF TC25 =. THEN MISSING = 1; ELSE MISSING = 0; 
 IF NONHDL25 =. THEN MISSING = 1; ELSE MISSING = 0; 
*/ 
RUN; 
 
PROC SORT DATA=COPAY10; 
BY MISSING; 
RUN; 
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PROC MEANS DATA=COPAY10 N MEAN STD MEDIAN QRANGE; 
CLASS MISSING; 
VAR AGE LDL_BASE TC_BASE HDL_BASE BMIBASE; 
RUN; 
 
PROC FREQ DATA=COPAY10; 
TABLES (GENDER RK_COMPLIANT)*MISSING / CHISQ; 
RUN; 
 
 
*HDL-LDL AT BASELINE IS GROUPED MISSING AND NON-MISSING; 
DATA COPAY11; 
SET COPAY2; 
/*    IF ldl_base =. THEN MISSING = 1; ELSE MISSING = 0;*/ 
      IF tc_base =. THEN MISSING = 1; ELSE MISSING = 0; 
/*    IF hdl_base =. THEN MISSING = 1; ELSE MISSING = 0; 

IF LDL25 =. THEN MISSING = 1; ELSE MISSING = 0;; 
 IF TC25 =. THEN MISSING = 1; ELSE MISSING = 0; 
 IF NONHDL25 =. THEN MISSING = 1; ELSE MISSING = 0; 
*/ 
RUN; 
 
PROC SORT DATA=COPAY11; 
BY MISSING; 
RUN; 
 
PROC MEANS DATA=COPAY11 N MEAN STD MEDIAN QRANGE; 
CLASS MISSING; 
VAR AGE LDL_BASE TC_BASE HDL_BASE BMIBASE; 
RUN; 
 
PROC FREQ DATA=COPAY11; 
TABLES (GENDER RK_COMPLIANT)*MISSING / CHISQ; 
RUN; 
 
*************************************************************************; 
*STEP 3-b: *NEW DATA SET FOR TOTAL N = 6074 FOR COMPLETE-CASE ANALYSIS; 
*************************************************************************; 
DATA COPAY3; 
SET COPAY2; 
 
     IF MPR ~= . ; 
     IF RK_MALE ~= . ; 
     IF angina ~= . ; 
     IF chf ~= . ; 
     IF copd ~= . ; 
     IF dm ~= . ; 
     IF depres ~= . ; 
     IF hxmi ~= . ; 
     IF vascdis ~= . ; 
     IF htn ~= . ; 
     IF bipol ~= . ; 
     IF rk_copay ~= . ; 
     IF age ~= . ; 
     IF ldl_base ~= . ; 
     IF tc_base ~= . ; 
     IF hdl_base ~= . ; 
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     IF tg_base ~= . ; 
     IF bmibase ~= . ; 
  IF RK_COMPLIANT ~=.; 
  IF LDL25 ~=.; 
  IF TC25 ~=.; 
  IF NONHDL25 ~=.; 
 
RUN; 
 
************************************************************************* 
*STEP 3-c: VERIFY THAT THE CALCULATIONS WERE HANDLED APPROPRIATELY; 
************************************************************************* 
PROC SORT DATA=COPAY3; 
BY RK_COMPLIANT; 
RUN; 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM PERCENT_LDL; 
RUN; 
PROC MEANS DATA=COPAY3; 
CLASS RK_COMPLIANT; 
VAR PERCENT_LDL; 
RUN; 
PROC CONTENTS DATA=COPAY3; 
RUN; 
PROC PRINT DATA=COPAY3 (OBS=10); 
VAR PERCENT_LDL; 
RUN; 
 
 
****************************************************************************; 
*STEP 4: BASELINE DEMOGRAPHICS; 
****************************************************************************; 
PROC MEANS DATA=COPAY3 MEAN N STD MEDIAN QRANGE; 
CLASS RK_COMPLIANT; 
VAR AGE STARTMEDCNT LDL_BASE NON_HDL_BASE TG_BASE TC_BASE PERCENT_LDL 
PERCENT_TC PERCENT_NON_HDL; 
RUN; 
 
PROC FREQ DATA=COPAY3; 
TABLES (RK_MALE RK_ETHNICITY STATIN RK_COPAY DM HTN VASCDIS CHF HXMI  
ANGINA)*RK_COMPLIANT / CHISQ; 
RUN; 
 
*VISUAL INSPECTION OF DISTRIBUTIONS; 
PROC SORT DATA=COPAY3; 
BY RK_COMPLIANT; 
RUN; 
 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM AGE; 
RUN; 
 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM LDL_BASE; 
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RUN; 
 
*SKEWED TO THE RIGHT; 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM NON_HDL_BASE; 
RUN; 
 
*SKEWED TO THE RIGHT; 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM TG_BASE; 
RUN; 
 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM TC_BASE; 
RUN; 
 
*SKEWED TO THE RIGHT; 
PROC SGPLOT DATA=COPAY3; 
BY RK_COMPLIANT; 
HISTOGRAM STARTMEDCNT; 
RUN; 
 
*TTEST; 
PROC TTEST DATA=COPAY3; 
CLASS RK_COMPLIANT; 
VAR AGE LDL_BASE TC_BASE NON_HDL_BASE; 
RUN; 
 
PROC NPAR1WAY DATA=COPAY3 WILCOXON; 
CLASS RK_COPAY; 
VAR STARTMEDCNT TG_BASE; 
RUN; 
 
 
****************************************************************************; 
*STEP 5: UNIVARIATE ANALYSIS; 
****************************************************************************; 
*PART A: OUTCOME=PERCENT LDL CHANGE >= 25%; 
PROC FREQ DATA=COPAY3; 
TABLES RK_COMPLIANT*LDL25 / CHISQ; 
RUN; 
*PART B: OUTCOME=PERCENT TC CHANGE >= 25%; 
PROC FREQ DATA=COPAY3; 
TABLES RK_COMPLIANT*TC25 / CHISQ; 
RUN; 
 
*PART C: OUTCOME=PERCENT NON-HDL CHANGE >= 25%; 
PROC FREQ DATA=COPAY3; 
TABLES RK_COMPLIANT*NONHDL25 / CHISQ; 
RUN; 
 
 
****************************************************************************; 
*STEP 6: PERFORMING THE LOGISTIC REGRESSION MODEL -- COMPLETE-CASE ANALYSIS; 
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****************************************************************************; 
*PART A: LDL25 = 1; 
PROC LOGISTIC DATA=COPAY3; 
CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  rk_copay (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL LDL25 (EVENT = '1') = RK_COMPLIANT RK_MALE age startmedcnt  
LDL_BASE NON_HDL_base TG_base TC_BASE rk_ethnicity statin dm htn bmibase 
vascdis chf HXMI ANGINA; 
RUN; 
 
*PART B: TC25 = 1; 
PROC LOGISTIC DATA=COPAY3; 
CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  rk_copay (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL TC25 (EVENT = '1') = RK_COMPLIANT RK_MALE age startmedcnt  
LDL_BASE NON_HDL_base TG_base TC_BASE rk_ethnicity statin dm htn bmibase 
vascdis chf HXMI ANGINA; 
RUN; 
 
*PART C: NONHDL25 = 1; 
PROC LOGISTIC DATA=COPAY3; 
CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  rk_copay (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL NONHDL25 (EVENT = '1') = RK_COMPLIANT RK_MALE age startmedcnt  
LDL_BASE NON_HDL_base TG_base TC_BASE rk_ethnicity statin dm htn bmibase 
vascdis chf HXMI ANGINA; 
RUN; 
 
 
****************************************************************************; 
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*STEP 7: ANALYZING MISSING DATA PATTERNS; 
****************************************************************************; 
*DETERMINING THE TYPE OF MISSING VALUE PRESENT (IDEALLY, IT SHOULD BE 1); 
OPTIONS NOFMTERR NOCENTER NODATE NOLABEL; 
PROC FREQ DATA=COPAY2 NLEVELS; 
TABLES RK_COMPLIANT RK_MALE RK_ETHNICITY STATIN age startmedcnt LDL_BASE 
NON_HDL_base  
TG_base TC_BASE LDL_FU NON_HDL_FU TC_FU dm htn bmibase vascdis chf HXMI 
ANGINA / NOPRINT MISSING; 
RUN; 
 
*CALCULATING THE PERCENT MISSING FROM N=7739; 
PROC MEANS DATA=COPAY2 NMISS N; 
VAR RK_COMPLIANT RK_MALE age startmedcnt LDL_BASE NON_HDL_base  
TG_base TC_BASE LDL_FU NON_HDL_FU TC_FU dm htn bmibase vascdis chf HXMI 
ANGINA; 
OUTPUT OUT=MISSINGPATTERN (DROP=_TYPE_ _FREQ_) NMISS= / AUTONAME; 
RUN; 
PROC TRANSPOSE DATA=MISSINGPATTERN PREFIX=NMISS OUT=MISSPATT_1; 
VAR _NUMERIC_; 
RUN; 
DATA MISSPATT2; 
SET MISSPATT_1; 
PMISS=NMISS1/7739*100; 
RUN; 
PROC PRINT DATA=MISSPATT2; 
RUN; 
 
 
****************************************************************************; 
*STEP 8: PERFORMING MULTIPLE IMPUTATION - PROC MI; 
****************************************************************************; 
*ASSUMPTION: NOT ASSUMING MONOTONE DATA PATTERN MISSINGNESS; 
*APPLYING THE FCS OPTION FOR ARBITARY MISSING PATTERN; 
PROC MI DATA=COPAY2 SEED=42037921 
NIMPUTE=5 OUT=MIOUT2; 
CLASS  STATIN RK_ETHNICITY LDL25 RK_MALE DM HTN VASCDIS CHF COPD HXMI  
ANGINA; 
FCS NBITER=5 DISCRIM (STATIN RK_ETHNICITY LDL25 RK_MALE DM HTN VASCDIS  
CHF COPD HXMI ANGINA/DETAILS); 
VAR  MPR RK_MALE angina chf copd dm hxmi vascdis htn LDL25 age  
LDL_BASE tc_base NON_hdl_base tg_base bmibase RK_COMPLIANT STATIN 
RK_ETHNICITY 
NONHDL25 TC25; 
RUN; 
 
 
****************************************************************************; 
*STEP 9: PERFORMING MULTIPLE IMPUTATION - PROC LOGISTIC WITH 5 IMPUTATIONS; 
****************************************************************************; 
 
****************************************************************************; 
*PART A: LDL25; 
****************************************************************************; 
*PEFORMING LOGISTIC REGRESSION WITH _IMPUTATION_; 
PROC LOGISTIC DATA=MIOUT2 DESCENDING; 
BY _IMPUTATION_; 
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CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  LDL25 (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL LDL25 (EVENT = '1') = RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_BASE TC_BASE TG_base rk_ethnicity statin dm htn bmibase vascdis chf 
HXMI  
ANGINA; 
ODS OUTPUT PARAMETERESTIMATES=LOGPARMS; 
RUN; 
ODS OUTPUT PARAMETERESTIMATES = LOGOUT; 
 
****************************************************************************; 
*PART B: TC25; 
****************************************************************************; 
*PEFORMING LOGISTIC REGRESSION WITH _IMPUTATION_; 
PROC LOGISTIC DATA=MIOUT2 DESCENDING; 
BY _IMPUTATION_; 
CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  TC25 (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL TC25 (EVENT = '1') = RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_BASE TC_BASE TG_base rk_ethnicity statin dm htn bmibase vascdis chf 
HXMI  
ANGINA; 
ODS OUTPUT PARAMETERESTIMATES=LOGPARMS2; 
RUN; 
ODS OUTPUT PARAMETERESTIMATES = LOGOUT2; 
 
****************************************************************************; 
*PART C: NONHDL25; 
****************************************************************************; 
*PEFORMING LOGISTIC REGRESSION WITH _IMPUTATION_; 
PROC LOGISTIC DATA=MIOUT2 DESCENDING; 
BY _IMPUTATION_; 
CLASS  rk_ethnicity (PARAM=REF REF='WHITE') 
  NONHDL25 (param=ref ref='0') 
  statin (PARAM=REF REF='SIMVASTATIN')  
  RK_MALE (PARAM=REF REF='0') 
  dm (param=ref ref='0') 
  htn (param=ref ref='0') 
  vascdis (param=ref ref='0') 
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  chf (param=ref ref='0') 
  COPD (param=ref ref='0') 
  HXMI (param=ref ref='0') 
  ANGINA(param=ref ref='0'); 
MODEL NONHDL25 (EVENT = '1') = RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_BASE TC_BASE TG_base rk_ethnicity statin dm htn bmibase vascdis chf 
HXMI  
ANGINA; 
ODS OUTPUT PARAMETERESTIMATES=LOGPARMS3; 
RUN; 
ODS OUTPUT PARAMETERESTIMATES = LOGOUT3; 
 
 
****************************************************************************; 
*STEP 10: PERFORMING MULTIPLE IMPUTATION - PROC MIANALYZE; 
****************************************************************************; 
 
****************************************************************************; 
*PART A: LDL25; 
****************************************************************************; 
*SUMMARIZING THE IMPUTATION INTO ONE RESULT USING PROC MIANALYZE; 
PROC MIANALYZE PARMS=LOGPARMS; 
MODELEFFECTS INTERCEPT RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_base TC_BASE TG_base rk_ethnicity statin dm htn bmibase vascdis chf 
HXMI ANGINA; 
RUN; 
 
****************************************************************************; 
*PART B: TC25; 
****************************************************************************; 
*SUMMARIZING THE IMPUTATION INTO ONE RESULT USING PROC MIANALYZE; 
PROC MIANALYZE PARMS=LOGPARMS2; 
MODELEFFECTS INTERCEPT RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_base TC_BASE TG_base rk_ethnicity statin dm htn bmibae vascdis chf 
HXMI ANGINA; 
RUN; 
 
****************************************************************************; 
*PART C: NONHDL25; 
****************************************************************************; 
*SUMMARIZING THE IMPUTATION INTO ONE RESULT USING PROC MIANALYZE; 
PROC MIANALYZE PARMS=LOGPARMS3; 
MODELEFFECTS INTERCEPT RK_COMPLIANT age RK_MALE startmedcnt LDL_BASE  
NON_HDL_base TC_BASE TG_base rk_ethnicity statin dm htn bmibase vascdis chf 
HXMI ANGINA; 
RUN; 
 
****************************************************************************; 
*STEP 11: CALCULATING ODDS RATIOS AND 95% CI; 
****************************************************************************; 
 
****************************************************************************; 
*PART A: LDL25; 
****************************************************************************; 
DATA LOGOUT_A; 
SET LOGOUT; 
IF PARM ^="INTERCEPT"; 
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ODDS_RATIO = EXP(ESTIMATE); 
ODDS_LCLMEAN = EXP(LCLMEAN); 
ODDS_UCLMEAN = EXP(UCLMEAN); 
RUN; 
PROC PRINT DATA=LOGOUT_A NOOBS; 
VAR PARM ODDS:; 
RUN; 
 
****************************************************************************; 
*PART B: TC25; 
****************************************************************************; 
DATA LOGOUT_B; 
SET LOGOUT2; 
IF PARM ^="INTERCEPT"; 
ODDS_RATIO = EXP(ESTIMATE); 
ODDS_LCLMEAN = EXP(LCLMEAN); 
ODDS_UCLMEAN = EXP(UCLMEAN); 
RUN; 
PROC PRINT DATA=LOGOUT_B NOOBS; 
VAR PARM ODDS:; 
RUN; 
 
****************************************************************************; 
*PART C: NONHDL25; 
****************************************************************************; 
DATA LOGOUT_C; 
SET LOGOUT3; 
IF PARM ^="INTERCEPT"; 
ODDS_RATIO = EXP(ESTIMATE); 
ODDS_LCLMEAN = EXP(LCLMEAN); 
ODDS_UCLMEAN = EXP(UCLMEAN); 
RUN; 
PROC PRINT DATA=LOGOUT_C NOOBS; 
VAR PARM ODDS:; 
RUN; 
 
 
****************************************************************************; 
*STEP 12: PERFORMING THE CRUDE ODDS RATIO AND CHI-SQUARED TEST; 
****************************************************************************; 
*DIFFERENCES IN THE CRUDE OR; 
 
*PART A: LDL25; 
PROC LOGISTIC DATA=COPAY2; 
CLASS  LDL25 (PARAM=REF REF='0') 
  RK_COMPLIANT (PARAM=REF REF='0'); 
MODEL LDL25 (EVENT='1') = RK_COMPLIANT; 
RUN; 
*CHI-SQUARE TEST; 
PROC FREQ DATA=COPAY2; 
TABLES LDL25*RK_COMPLIANT / NOROW NOCOL NOPERCENT CHISQ; 
RUN; 
 
*PART B: TC25; 
PROC LOGISTIC DATA=COPAY2; 
CLASS  TC25 (PARAM=REF REF='0') 
  RK_COMPLIANT (PARAM=REF REF='0'); 
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MODEL TC25 (EVENT='1') = RK_COMPLIANT; 
RUN; 
*CHI-SQUARE TEST; 
PROC FREQ DATA=COPAY2; 
TABLES TC25*RK_COMPLIANT / NOROW NOCOL NOPERCENT CHISQ; 
RUN; 
 
*PART C: NONHDL25; 
PROC LOGISTIC DATA=COPAY2; 
CLASS  NONHDL25 (PARAM=REF REF='0') 
  RK_COMPLIANT (PARAM=REF REF='0'); 
MODEL NONHDL25 (EVENT='1') = RK_COMPLIANT; 
RUN; 
*CHI-SQUARE TEST; 
PROC FREQ DATA=COPAY2; 
TABLES NONHDL25*RK_COMPLIANT / NOROW NOCOL NOPERCENT CHISQ; 
RUN; 
****************************************************************************; 
*END; 
****************************************************************************; 
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Appendix 2. SAS codes for Case study 2. 
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