
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all
forms of media, now or hereafter known, including display on the world wide web. I understand
that I may select some access restrictions as part of the online submission of this thesis or
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain
the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Name Date

����������������������

	�������
�	������������������
����

��	������2�����
��������)"�#&��#1�'

Approved by the Committee

Accepted by the Laney Graduate School

����������������������

	�������
�	������������������
����

�)�-)+�) ��"#&),)*"0

�)"�#&��#1�'

��-")�,�)+��'*+)/#(!�-"���(-�+*+�-��#&#-0��(���/�&.�-#)(�) ����"#(�����+(#(!�
�)��&,��(�����#,#)(���%#(!��0,-�',

�
��
��

����������
�����

#),-�-#,-#�,

�����

���
��

�	�
�

��/#��
�(%�,�+

�������

��1#�"����#

����������
�����

�($�'#(��#,%

��������+%�+
����������
�����

��
����
�������	
����������������
��
����������
�#'��+&0����)���++#)&����"������

Methods for Improving the Interpretability and Evaluation of Machine Learning
Models and Decision Making Systems

By

Sohail Nizam
B.A., University of Chicago, IL, 2018

Advisor: David Benkeser, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Biostatistics and Bioinformatics

2023

Abstract

The ability to interpret and evaluate machine learning models is of great importance,
particularly when such models will be used as the foundation for decision making
systems. Practitioners must have a high degree of certainty about the level of
performance that their models will achieve and be able to explain decisions rendered
by them. This work aims to improve capabilities in both of these areas.

In the first chapter, we address the problem of model evaluation in binary classifica-
tion settings. There, the Area Under the Precision Recall Curve (AUPRC) is often of
interest in settings with extreme class imbalance. Estimation of metrics like AUPRC
is often paired with cross-validation. We formally define the Cross-Validated AUPRC
(CVAUPRC), a data-adaptive target parameter, and provide closed-form inference
for its non-parametric maximum likelihood estimator. Additionally, we propose a
more efficient estimation strategy based on nested cross-validation that offers dramatic
improvement in situations with extreme class imbalance.

In the second chapter, we introduce a method for building an interpretable repre-
sentation of the Highly Adaptive Lasso (HAL). HAL is a machine learning method
that has been shown to have predictive performance on par with state-of-the art
algorithms and can be represented as a non-recursive partitioning of the feature space.
We propose a method for mapping this partitioning implied by HAL to a recursive
partitioning, which then allows for the representation of HAL as a decision tree. We
refer to this post-hoc method for interpretability as Highly Adaptive Regression Trees.

In the third chapter, we address the problem of interpretable Conditional Aver-
age Treatment Effect (CATE) and, by extension, Optimal Treatment Policy (OTP)
estimation. Many machine learning-based frameworks for CATE estimation have
been proposed. However, few of these methods are interpretable, and those that are
often suffer in terms of performance. We extend HART’s capabilities and build on
existing Meta-Learning algorithms to produce CATE and OTP estimates which can be
represented as trees. We introduce this method for settings with an arbitrary number
of treatment arms. We provide regret rates for the proposed methods and show that
they outperform popular methods, both interpretable and not.

Methods for Improving the Interpretability and Evaluation of Machine Learning
Models and Decision Making Systems

By

Sohail Nizam
B.A., University of Chicago, IL, 2018

Advisor: David Benkeser, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Biostatistics and Bioinformatics
2023

Acknowledgments

I’d like to thank my advisor, Dr. David Benkeser for his guidance, support, and the

endless time he sat patiently answering my random questions about causal inference

and semi-parametric efficiency theory. I’d also like to thank my family. My dad,

Azhar, is the first and best teacher I’ve ever had. From times tables to probability

and calculus, everything I know and love about math traces back to time spent with

him. My mom, Janet is the kindest and most supportive person on the planet. If I

can call myself a good person, it’s probably because of her. My sister, Zainab has

always been someone to look up to and beat me to finishing the PhD by a few months.

My girlfriend, Tomris, reminds me that work isn’t everything and that its important

to live an exciting life. She’s managed to make Law School look easy while still taking

me all over the world. Finally, I’d like to thank my dog, Rosie who is telling me to

wrap it up so we can go on a walk.

i

Contents

1 Estimation and inference for cross-validated area under the precision

recall curve 1

1.1 Introduction . 1

1.2 Notation and definition of target parameters 4

1.2.1 AUPRC as a target parameter 4

1.2.2 Cross-validated AUPRC as a target parameter 4

1.3 Estimation and inference . 6

1.3.1 Estimation and inference for AUPRC 6

1.3.2 Estimation and inference for cross-validated AUPRC 7

1.3.3 Improved estimation and inference for cross-validated AUPRC 8

1.4 Results . 10

1.4.1 Simulations . 10

1.4.2 Data analysis . 11

1.5 Discussion . 18

2 Highly Adaptive Regression Trees: A post-hoc method for interpret-

ing the Highly Adaptive Lasso 19

2.1 Introduction . 19

2.2 Highly adaptive lasso . 21

2.3 Notation . 22

2.4 From HAL to HART . 22

2.5 Examples . 26

2.5.1 Scenario (i): naturally recursive partitioning 27

2.5.2 Scenario (ii): non-recursive partitioning, minimal redundancy 28

2.5.3 Scenario (iii): non-recursive partitioning, minimal and non-

minimal redundancy . 29

2.6 Highly adaptive regression trees . 30

2.6.1 Growing trees . 30

2.6.2 Policies . 32

2.6.3 Sub-HARTs and Prediction Smoothing 34

2.7 Algorithm Complexity . 36

2.7.1 HART Complexity . 36

2.7.2 Bin and Aggregate Predictions Complexity 37

2.8 Data Analysis . 37

2.8.1 Performance . 38

2.8.2 Trees . 38

2.8.3 Complexity . 41

2.9 Discussion . 42

3 Highly Adaptive Treatment Trees: interpretable estimation of het-

erogeneous treatment effects and treatment policies 43

3.1 Introduction . 43

3.2 Problem Setup and Estimation Frameworks 45

3.2.1 Setup . 45

3.2.2 Meta-Learning With Two Treatment Arms 46

3.2.3 Meta-Learning with Multiple Treatment Arms 48

3.2.4 Causal Trees and Forests . 49

3.3 The Highly Adaptive Lasso . 50

3.3.1 Background . 50

3.3.2 Highly Adaptive Regression Trees 51

3.4 CATE Estimation with HAL . 52

3.4.1 Theoretical Guarantees for S and DR learners 52

3.4.2 Tree Representations . 54

3.5 Simulations . 55

3.5.1 Data generating process . 55

3.5.2 Evaluation . 57

3.5.3 Linear CATE Results . 57

3.5.4 Polynomial CATE Results . 57

3.5.5 Sinusoidal CATE Results . 59

3.6 Data Analysis . 60

3.7 Discussion . 61

Appendix A Chapter 1 Supplementary Material 63

A.1 Notation . 63

A.2 Theorem 1.3.1 Proof . 64

A.3 Theorem 1.3.1 Condition Examination 73

A.4 Theorem 1.3.2 Proof . 75

A.5 Supplementary Figures . 76

Appendix B Chapter 3 Supplementary Material 89

B.1 Theorem 3.2.1 Proof . 89

B.2 Theorem 3.4.1 Proof . 90

B.3 Theorem 3.4.2 Proof . 93

B.4 Further 2-Arm Simulation Results . 97

B.5 Multi-Arm Simulation Results . 97

Bibliography 102

iv

List of Figures

1.1 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with no imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. 12

1.2 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with large imbalance. 5 and 10 on the x-axis indicate number of

outer folds K. In each case results are based on 1000 simulations. . . 13

1.3 Coverage probabilities for 95% confidence intervals. LR and RF stand

for Logistic Regression and Random Forest respectively. Probabilities

represent the proportion of 95% confidence intervals covering the true

value out of 1000 estimation procedures. 14

2.1 Left: Illustration of partitioning of the feature space according to the

HAL basis expansion. The sets of �̂ (excluding the intercept) correspond

to those in equation (2.1) that fall in each region. Right: An illustrative

HAL partitioning, when �̂X11 = �̂X21 = �̂X22 = �̂X12,X22 = 0, which

results in a non-recursive partitioning of the feature space. To represent

this partitioning as a decision tree, we must determine a parsimonious

recursive structure for the L-shaped left-most region. 24

2.2 Decision tree representation of the full feature space partitioning implied

by the HAL basis expansion. 25

2.3 Two possible recursive partitions to represent the non-recursive partition

implied by the HAL model when �̂X11 = �̂X21 = �̂X22 = �̂X12,X22 = 0. . 26

2.4 Left: The feature space partitioned according to the HAL fit with all

�̂ 6= 0. These partitions will be described by values from X. Right:

Feature space with X11 describing the first partition. 27

2.5 An illustrative HAL partitioning, when �̂X11 = �̂X12 = �̂X22 = �̂X11,X21 =

0, which results in a non-recursive partitioning of the feature space. . 30

2.6 Two recursive partitionings to represent the non-recursive partitioning

implied by HAL when �̂X11 = �̂X12 = �̂X22 = �̂X11,X21 = 0. The left

partitioning is not minimally redundant. The right partitioning is

minimally redundant. 31

2.7 Left: CART fit to Breast Cancer dataset. Right: HART built from HAL

fit to Breast Cancer dataset. Feature space is restricted to subjects

aged 20-29 having tumors greater than 5mm in diameter. Algorithm 2

was applied with Q = 3. 40

2.8 HART representing HAL fit to Breast Cancer data. Algorithm 2 has

been applied with Q = 2 bins, equivalent to thresholding the predicted

probability of recurrence at 0.5. 41

3.1 Simulation results under the Linear setting. The DR-Learner with

HAL used Super Learning to construct nuisance parameter estimates.

Results at each sample size are averaged over 1000 replications. . . . 58

3.2 Simulation results under the Polynomial setting. The DR-Learner with

HAL used Super Learning to construct nuisance parameter estimates.

Results at each sample size are averaged over 1000 replications. . . . 58

3.3 Simulation results under the Sinusoidal setting with lower variation

norm. The DR-Learner with HAL used Super Learning to construct

outcome regression estimates. All propensity score estimates were

constructed with simple means. At n = 50, Causal Forest showed

abnormally low performance and is omitted from the plot to keep other

learners distinguishable. Results at each sample size are averaged over

1000 replications. 59

3.4 Simulation results under the Sinusoidal setting with higher variation

norm. The DR-Learner with HAL used Super Learning to construct

outcome regression estimates. All propensity score estimates were

constructed with simple means. Results at each sample size are averaged

over 1000 replications. 60

3.5 Tree representing the effect of receiving a mailer with a message meant

to assuage fears about ballot secrecy. M-dev age represent the number

of years above the median study age. The terminal nodes represent

differences in estimated counterfactual probability of voting under

treatment versus control. 61

A.1 Coverage probabilities of 95% confidence intervals for the AUPRC.

Probabilities are calculated as the proportion of times the interval

covered the true parameter out of 5000 iterations. 74

A.2 Scaled absolute bias of the NPMLE of the AUPRC at several sample

sizes. Results at a given sample size are averaged over 5000 iterations. 75

A.3 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with no imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. 77

A.4 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with imbalance. 5 and 10 on the x-axis indicate number of outer folds

K. In each case results are based on 1000 simulations. 78

A.5 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with large imbalance. 5 and 10 on the x-axis indicate number of

outer folds K. In each case results are based on 1000 simulations. . . 79

A.6 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with no imbalance. 5 and 10 on the x-axis indicate number of

outer folds K. In each case results are based on 1000 simulations. . . 80

A.7 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. 81

A.8 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with large imbalance. 5 and 10 on the x-axis indicate number

of outer folds K. In each case results are based on 1000 simulations. . 82

A.9 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with no imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. Restricted

to n = 200, 4000, 6000 for easier viewing. 83

A.10 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with imbalance. 5 and 10 on the x-axis indicate number of outer folds

K. In each case results are based on 1000 simulations. Restricted to

n = 200, 4000, 6000 for easier viewing. 84

A.11 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Random Forest on data

with large imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. Restricted

to n = 200, 4000, 6000 for easier viewing. 85

A.12 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with no imbalance. 5 and 10 on the x-axis indicate number

of outer folds K. In each case results are based on 1000 simulations.

Restricted to n = 200, 4000, 6000 for easier viewing. 86

A.13 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with imbalance. 5 and 10 on the x-axis indicate number of outer

folds K. In each case results are based on 1000 simulations. Restricted

to n = 200, 4000, 6000 for easier viewing. 87

A.14 Scaled absolute bias, variance, and mean squared error (MSE) for CV

and CV-OS estimators of the performance of Logistic Regression on

data with large imbalance. 5 and 10 on the x-axis indicate number

of outer folds K. In each case results are based on 1000 simulations.

Restricted to n = 200, 4000, 6000 for easier viewing. 88

B.1 Accuracy, Sensitivity, and Specificity results for learning the learning

the binary optimal treatment rule in the Linear CATE setting. 97

B.2 Accuracy, Sensitivity, and Specificity results for learning the learning

the binary optimal treatment rule in the Polynomial CATE setting. . 98

B.3 Accuracy, Sensitivity, and Specificity results for learning the learning

the binary optimal treatment rule in the Sinusoidal CATE setting with

C = 1. At n = 50, Causal Forest showed abnormally low performance

and is omitted from the plot to keep other learners distinguishable. . 99

B.4 Accuracy, Sensitivity, and Specificity results for learning the learning

the binary optimal treatment rule in the Sinusoidal CATE setting with

C = 10. 100

B.5 Multi-arm simulation results in the Linear setting. A simple mean

estimator was used to estimate the propensity score for the DR-Learner

with HAL. The bottom left and bottom right panels show L2 norms

for ̂(1 | v) and ̂(2 | v) respectively. 100

B.6 Multi-arm simulation results in the polynomial setting. A simple mean

estimator was used to estimate the propensity score for the DR-Learner

with HAL. The bottom left and bottom right panels show L2 norms

for ̂(1 | v) and ̂(2 | v) respectively. 101

x

List of Tables

1.1 UCI dataset characteristics. N is sample size, p is number of features. 15

1.2 Analysis results using n = 250 samples to train and evaluate learners.

Remaining observations were used to calculate the true CVAUPRC

values. Est. is the average parameter estimate, Width is the average

95% confidence interval width, and Cov. is the proportion of 95%

confidence intervals covering the truth. Each entry is a result averaged

over 1000 iterations. 16

1.3 Analysis results using n = 1000 samples to train and evaluate learners.

Remaining observations were used to calculate the true CVAUPRC

values. Est. is the average parameter estimate, Width is the average

95% confidence interval width, and Cov. is the proportion of 95%

confidence intervals covering the truth. Each entry is a result averaged

over 1000 iterations. 17

2.1 Notation used throughout the paper to describe aspects of feature space

partitioning and tree creation. 23

2.2 UCI dataset characteristics. N is sample size, p is number of features. 38

2.3 10-fold cross-validated metrics are reported for Breast Cancer, Cardio,

and Drugs. 3-fold cross validated metrics are reported for Wine. For

CART, Random Forest, and XGBoost, we carried out grid searches

over 10 tuning parameter settings. Results correspond to models with

the highest performing tuning parameters. Computations were carried

out on a High Performance Computing cluster. 39

2.4 Breast Cancer dataset feature names and descriptions. 39

xii

List of Algorithms

1 HART . 31

2 Bin Predictions . 35

3 Aggregate Predictions . 35

4 CATE Tree Construction . 54

5 Treatment Policy Tree Construction 55

1

Chapter 1

Estimation and inference for

cross-validated area under the

precision recall curve

1.1 Introduction

Suppose we are given a function that maps from a covariate space X to the unit

interval. For example, could be a clinical risk score, where X 2 X represents a vector

of underlying demographic and clinical information and (X) represents predicted

probability of disease. Let Y denote the binary outcome of interest, where we use case

to refer to observations with Y = 1 and non-case to refer to those with Y = 0. A binary

classifier could be formed from , for example by classifying individuals with covariate

values x as a case if (x) > z and all others as non-cases. Many metrics are available

for evaluating the performance of , either as a predicted probability that Y = 1 or

as the basis for a binary classifier. For example, the Accuracy of a classifier based on

 is P ((X) > z, Y = 1) + P ((X)  z, Y = 0), which describes the proportion of

“correct” predictions that the classifier makes. Alternatively, Area Under the Receiver

2

Operating Characteristic Curve (AUC) = P ((X1) > (X2) | Y1 = 1, Y2 = 0) for two

independent observations (X1, Y1), (X2, Y2), which describes the probability that a

randomly-selected case has a higher predicted risk than a randomly-selected control.

AUC can also be represented as the area under a parametric curve, plotting the Recall

P ((X) > z | Y = 1) and the False Positive Rate P ((X) > z | Y = 0) as a function

of z. The AUC may provide a more reasonable account of model performance than

Accuracy in cases with class imbalance [16]. This is because, with large class imbalance,

high Accuracy can be achieved by simply predicting the majority class with high

probability. While the AUC does offer some improvement in this case, its dependence

on the true negative observations through the False Positive Rate may still yield overly

optimistic model assessments in cases where P (Y = 0) >> P (Y = 1) [34]. In these

settings, many researchers prefer an alternative metric, the Area Under the Precision

Recall Curve (AUPRC). AUPRC is similar to AUC in that it can be represented

as the area under a parametric curve of Precision P (Y = 1 | (X) > z) and Recall

as a function of z. However, the AUC parameter does not depend on the marginal

distribution of Y , and thus may be overly optimistic about model performance in

settings with case imbalance. In these settings, AUPRC may provide a more balanced

view of tradeoffs of using as a classifier.

In many settings, we need to develop and evaluate its performance using a single

data set. For this task we use cross-validation. For example, K-fold cross-validation

involves splitting the data into K folds, each comprised of a training sample and a

validation sample. For each k = 1, . . . , K, we develop a function n,k using the k-th

training sample, and we evaluate n,k by calculating our chosen metric using the k-th

validation sample. We then average the K estimates of performance of the K models.

A statistical framework for evaluating such estimators is presented in [52]. In this paper,

we apply this framework to the Cross-Validated AUPRC (CVAUPRC) parameter.

We formally define this parameter, derive the influence function of its nonparametric

3

maximum likelihood estimator (NPMLE), and establish weak convergence of the

NPMLE. Together these results yield closed-form, asymptotically justified inference

for CV-AUPRC, including confidence intervals about the performance of a given model

and hypothesis tests comparing the performance of two or more models. While these

approaches are justified in large samples, we argue that they may perform poorly in

settings with small samples and/or high case imbalance. Because this latter situation

specifically motivates the use of AUPRC as an evaluation metric, we are motivated to

explore alternative estimation strategies.

We then note that, while use of the AUPRC is most advantageous in situations

where the negative class has a large majority, estimation of the CVAUPRC could be

extremely difficult in that exact situation. The reliance of the CV estimator on K

validation samples of approximate size n/K to estimate the the Recall could prove

problematic if the data already contain few cases. This issue could be especially

prominent in small samples.

To address this issue, we also propose an estimation strategy based on nested

cross-validation wherein we use the full training data within a fold both to build the

classification model and evaluate it by calculating the AUPRC. Without correction,

this strategy will yield biased estimates of model performance. Thus we examine

the form of this bias and use it to construct a correction term using the data in the

validation samples. We call this final estimate incorporating the correction term the

CV One-Step (CV-OS) estimator.

We evaluate and compare the performances of both the CV and CV-OS estimators

through simulation in scenarios with varying degrees of class imbalance and several

sample sizes. These simulations verify the asymptotic results of both estimators, and

demonstrate that the CV-OS can offer dramatic improvement in scenarios with class

imbalance and/or small samples. We also apply both methods to the analysis of real

data, which corroborates the results of the simulations.

4

1.2 Notation and definition of target parameters

1.2.1 AUPRC as a target parameter

Suppose we observe n independent realizations of the random variable O = (X, Y) ⇠ P0

where P0 is an element of nonparametric model M, X 2 X is a vector of predictors

and Y 2 {0, 1} is the outcome of interest. Suppose we have access to a prediction

function x 7! (x) for x 2 X . Our goal is to evaluate the performance of a given

function as a risk score by calculating the AUPRC. We can represent the AUPRC of

 as a functional � : M ! [0, 1] of the data generating distribution. Under sampling

from a given distribution P 2 M, the AUPRC of is

� (P) =

Z
P (Y = 1 | (X) > z)dF (X)|Y=1(z) . (1.1)

From equation (1.1), we see that AUPRC depends on two functionals of the distri-

bution P : the precision P (Y = 1 | (X) > z) and the complement of the recall

F (X)|Y=1(z) := P ((X)  z | Y = 1). We use the zero subscript to denote the value

of these functionals under P0 and define � ,0 := � (P0) as the true AUPRC of

under sampling from the true distribution of the data P0.

1.2.2 Cross-validated AUPRC as a target parameter

Rather than always having access to a pre-trained developed on external data, it

is common to have a single data set that must be used to build and evaluate . We

denote by : M ! a method for training a prediction algorithm where is the

space of functions mapping X to [0, 1]. Thus, for example, if Pn denotes the empirical

distribution of (O1, . . . On) then (Pn) denotes the prediction algorithm trained using

(O1, . . . On). A naive strategy would be to obtain (Pn) using data (O1, . . . On) and

then evaluate (Pn) by estimating the AUPRC using the same data. Such an estimate

5

of � (Pn)(P0) would likely be biased and may give an overly optimistic sense of (Pn)’s

performance.

This motivates the use of cross-validation. Cross-validation allows us to estimate

performance in a way that is generalizable to new data from the same distribution. We

focus on a K-fold cross-validation procedure [23], though our framework also applies

to other forms of cross-validation such as leave-one-out [46, 3, 23] and leave-p-out [45].

Consider a procedure in which we partition the data into K mutually exclusive blocks

of approximately equal size. We then define K folds, where each fold consists of a

training set that includes K � 1 blocks of data and a validation set that includes the

remaining block of data. For k = 1, . . . K, we denote by P
0
n,k the empirical distribution

of observations in k-th training set and define n,k := ̂(P 0
n,k) as the prediction

algorithm trained using the training set. The cross-validated AUPRC (CV-AUPRC)

at a distribution P 2 M is defined as:

�cv :=
1

K

KX

k=1

� n,k
(P) . (1.2)

This new target parameter is the average of K different parameters � n,k
(P), each

of which describes the performance of a different prediction function n,k. Each of

these prediction functions in turn depends on the training data used to develop it.

Thus �cv depends on the random splitting of the data and can therefore be called a

data-adaptive target parameter [52]. We can interpret this strategy as targeting the

performance of a method for developing prediction functions rather than targeting

the performance of a single, externally developed function as in subsection 1.2.1.

6

1.3 Estimation and inference

1.3.1 Estimation and inference for AUPRC

A natural estimator for the AUPRC defined in (1.1) is the plug-in estimator

� (Pn) =

Z
Pn(Y = 1 | (X) > z)dFn, (X)|Y=1(z) , (1.3)

where Pn denotes the empirical measure of O1, . . . , On, Pn(Y = 1 | (X) > z) denotes

the sample proportion of cases with (Xi) > z and Fn, (X)|Y=1 denotes the empirical

cumulative distribution function of (X) amongst the cases.

The large-sample behavior of �n := � (Pn) can be characterized by its influence

function. We recall that an estimator ✓n of a parameter ✓0 is said to be asymptotically

linear if

✓n � ✓0 =
1

n

nX

i=1

D(Oi) + op(n
�1/2)

for some function D such that
R
D(o)dP (o) = 0 and

R
D(o)2dP (o) < 1. The object

D is referred to as the influence function of ✓n. Asymptotic linearity is a convenient

property of estimators in that study of the estimator is facilitated via classical results

pertaining to the large sample behavior of sample means, such as the weak law of large

numbers and the central limit theorem. Additionally, for so-called regular estimators,

influence functions are intimately connected to asymptotic efficiency.

Theorem 1.3.1. If
R dP0((X)z|Y=1)

[P0((X)�z|Y=1)]4
< 1, then �n is asymptotically linear with

influence function

D� (P0)(Oi) :=
Z

z< (Xi)


Yi �

P0((X) > z, Y = 1)

P0((X) > z)

�✓
1

P0((X) > z)

◆
dF0, (X)|Y=1(z)

+
Yi

P0(Y = 1)


P0((X) > (Xi), Y = 1)

P0((X) > (Xi))
� � (P0)

�
.

(1.4)

7

The proof of Theorem 1.3.1 is included in the appendix. An immediate corollary

of Theorem 1.3.1 is that D� is the efficient influence function in a nonparamet-

ric model. Thus, the plug-in estimator �n has the smallest asymptotic variance

amongst all regular, asymptotically linear estimators of �0. A second corollary of

the theorem is that the Central Limit Theorem implies n
1/2 (�n � �0)

d! N (0, �2
0),

where �
2
0 :=

R
D� (P0)(o)2dP0(o). We can consistently estimate �

2
0 with �

2
n :=

1
n

Pn
i=1 D� (Pn)(Oi)2. Thus, if zr is the rth quantile of the standard normal distribu-

tion, a (1� ↵)⇥ 100% confidence interval for �n is

⇣
�n � z1�↵/2

�n

n1/2
,�n + z1�↵/2

�n

n1/2

⌘
. (1.5)

The condition in Theorem 1.3.1 is likely to be violated in degenerate scenarios

where the machine learning model is fully uninformative for predicting the outcome.

For example, if the model generates a score between 0 and 1 uniformly at random and

independent of Y , the condition will not hold. However, we note that this condition is

sufficient but likely not necessary. We demonstrate this in the appendix by showing

that we still obtain valid inference even when (X) ⇠ Unif(0, 1). We leave the

identification of a less stringent condition for future work.

1.3.2 Estimation and inference for cross-validated AUPRC

In order to estimate the CV-AUPRC, we first propose a natural extension to the

estimator presented in the previous section, hereafter referred to as the CV estimator.

For k = 1, . . . , K, we denote by P
1
n,k the empirical distribution of observations in the

k-th validation set. The CV estimator is

�n,cv :=
1

K

KX

k=1

� n,k
(P 1

n,k) . (1.6)

8

The k-th parameter in the sum in (1.2) is estimated by calculating the AUPRC of

 n,k using the data in the k-th validation set.

Theorem 1.3.2. Assume that for a given k 2 {1, . . . , K},

Z
{D� n,k

(P0)(o)�D� k
(P0)(o)}2dP0(o)

p! 0 ,

where D� k
(P0)(o) is a limiting influence curve indexed by k. Then, we can write

the asymptotic distribution of the CV estimator as n
1/2 (�n,cv � �0,cv)

d! N (0, �2
cv)

where �
2
cv := 1

k

PK
k=1

R
D� k

(P0)(o)2dP0(o). Letting n
1
k be the number of obser-

vations in the kth validation fold, we can consistently estimate �2
cv with �

2
n,cv :=

1
k

PK
k=1

1
n1
k

Pn1
k

i=1 D� n,k
(P 1

n,k)(Oi).

The proof for Theorem 1.3.2 can be found in the Appendix. It follows from

Theorem 1.3.2 that, if zr is the rth quantile of the standard normal distribution, a

(1� ↵)⇥ 100% confidence interval for �n,cv is

⇣
�n,cv � z1�↵/2

�n,cv

n1/2
,�n,cv + z1�↵/2

�n,cv

n1/2

⌘
. (1.7)

1.3.3 Improved estimation and inference for cross-validated

AUPRC

Here we explore an alternative estimation strategy for the CV-AUPRC. As discussed,

one of the desirable qualities of the AUPRC as an evaluation metric is that it overcomes

the over-optimism sometimes implied by other metrics when there is class imbalance in

the data. However, the proposed estimator (1.6) depends on P
1
n,k(n,k(X)  z | Y = 1),

the empirical probability of classifying an observation as a control amongst cases in

the k-th validation set. If there are very few cases in the data as a whole, splitting

the data into K folds might result in P
1
n,k(n,k(X)  z | Y = 1) being an unstable

estimate of P0(n,k(X)  z | Y = 1) and therefore reducing the quality of �n,cv.

9

Ideally we would be able to utilize more data when estimating each � n,k
rather

than relying solely on the k-th validation fold. To this end, we propose to use a

strategy first described by [9]. This strategy involves training and evaluating n,k

using k-th training sample. Training and evaluating using the same data will result in

a biased estimate. Therefore, a correction term based on the EIF is built using the

k-th validation sample and is added to the initial estimate.

Specifically, [9] propose an estimator based on nested cross-validation which involves

splitting the k-th training sample into V additional folds. Let P 0
n,k,v and P

1
n,k,v represent

the empirical distributions of the v-th training and validation samples, respectively,

nested within the k-th outer training sample. We then estimate the k-th parameter in

the sum in (1.2) in the following way. For each v 2 {1, . . . , V }, we train the prediction

algorithm on the v-th nested training fold to obtain n,k,v := ̂(P 0
n,k,v). We then

estimate the necessary components of the distribution of n,k using

1

V

VX

v=1

P
1
n,k,v(Y = 1 | n,k,v(X) > z) (1.8)

and
1

V

VX

v=1

P
1
n,k,v(n,k,v(X)  z | Y = 1). (1.9)

Then, letting P̂
0
n,k be any distribution compatible with (1.8) and (1.9), we construct a

plug-in estimate of the k-th parameter, � n,k
(P̂ 0

n,k). The one-step bias correction term

constructed using the k-th validation fold takes the form P
1
n,kD� n,k

(P̂ 0
n,k)(o). Thus,

the final, bias corrected estimate which we will refer to as the CV-OS can be written

as

�n,cv-os :=
1

K

KX

k=1


� n,k

(P̂ 0
n,k) +

Z
D� n,k

(P̂ 0
n,k)(o)dP

1
n,k(o)

�
, (1.10)

10

and we have that n
1/2 (�n,cv-os � �0,cv-os)

d! N (0, �2
cv) where

�
2
cv :=

1

K

KX

k=1

Z
D k

(P0)(o)
2
dP0(o) .

Letting n
1
k be the number of observations in the kth validation fold, a consistent

variance estimator is

�
2
n,cv-os :=

1

k

KX

k=1

1

n1
k

n1
kX

i=1

D� n,k
(P̂ 0

n,k)(Oi) .

Thus, if zr is the rth quantile of the standard normal distribution, a (1� ↵)⇥ 100%

confidence interval for �n,cv-os is

⇣
�n,cv-os � z1�↵/2

�n,cv-os

n1/2
, �n,cv-os + z1�↵/2

�n,cv-os

n1/2

⌘
.

1.4 Results

1.4.1 Simulations

Simulations were performed to examine the performance of each of the proposed

estimation and inference strategies using the R Language [41] (version 4.0.2). Three

data generating processes were used resulting in data sets with cases comprising

approximately 50%, 20%, and 10% of observations. We will refer to these as the balance,

imbalance, and large imbalance processes respectively. At each of six sample sizes, 1000

datasets were simulated using each imbalance scheme. For each dataset, we evaluated

the performance of Logistic Regression and Random Forest [12] (as implemented in

the R package ranger [58]) by calculating point estimates and confidence intervals of

CV-AUPRC using the CV and CV-OS strategies. This process was repeated using

K = 5 and 10 (outer) cross-validation folds. For the CV-OS estimator, the number of

11

inner folds was set to V = 5 in each case.

Finally, true CVAUPRC values were generated for each K, learner `, data generat-

ing process d, and sample size n combination in order to evaluate estimates and 95%

confidence interval coverage. That was achieved for a given combination as follows.

A dataset of size N = 500000 was generated under process d. The K model fits of

learner ` saved from doing cross-validation on the corresponding dataset of size n were

used to predict on the N observations of the large dataset. These K prediction sets

were then used to calculate the K AUPRC values found in the sum in (1.2).

We found that, at smaller sample sizes, the CV-OS estimator shows better perfor-

mance in terms of bias and MSE with the discrepancy once again growing as imbalance

increases (Figures 1.1 and 1.2). It should also be noted that the variance of the CV-OS

estimator is consistently larger than that of the CV estimator regardless of imbalance.

In the interest of space, we only include results for Random Forest under the no

imbalance and large imbalance schemes. However, these results are consistent for

both learners and all imbalance schemes. Figures displaying the remaining results

as well as zoomed in plots for results at the larger sample sizes can be found in the

Appendix (A.5). While we found that coverage probability converges to the nominal

level in all cases, it is clear that the CV-OS estimator performs better at smaller

sample sizes than the CV estimator (Figure 1.3). Furthermore, performance of the

CV-OS estimator is nearly identical when using K = 5 and K = 10 outer folds. By

contrast, choosing K = 10 noticeably reduces performance of the CV estimator with

the issue becoming more pronounced as imbalance in the data increases.

1.4.2 Data analysis

Performance of the CV and CV-OS estimators was evaluated on the Adult and Bank

datasets from the publicly available UCI repository [19]. Characteristics of each dataset

are summarized in Table 1.1. 1000 datasets of size n = 250 and 1000 datasets of size

12

0

2

4

5 10

n
⋅|
B
ia
s|

n = 250

0

2

4

5 10

n = 500

0

2

4

5 10

n = 1000

0

2

4

5 10

n = 2000

0

2

4

5 10

n = 4000

0

2

4

5 10

n = 6000

0

5

10

15

20

5 10

n
⋅V
ar

0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10

0

10

20

30

5 10

n
⋅M
S
E

0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10

CV-OS CV

Figure 1.1: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Random Forest on data with no imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations.

13

0

3

6

9

5 10

n
⋅|
B
ia
s|

n = 250

0

3

6

9

5 10

n = 500

0

3

6

9

5 10

n = 1000

0

3

6

9

5 10

n = 2000

0

3

6

9

5 10

n = 4000

0

3

6

9

5 10

n = 6000

0

20

40

60

5 10

n
⋅V
ar

0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10

0

50

100

5 10

n
⋅M
S
E

0

50

100

5 10
0

50

100

5 10
0

50

100

5 10
0

50

100

5 10
0

50

100

5 10

CV-OS CV

Figure 1.2: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Random Forest on data with large

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations.

14

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

LR; No imbalance

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

LR; Imbalance

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

LR; Large imbalance

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

RF; No imbalance

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

RF; Imbalance

0.25

0.50

0.75

1.00

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

RF; Large imbalance

CV CV-OS K = 5 K = 10

Figure 1.3: Coverage probabilities for 95% confidence intervals. LR and RF stand
for Logistic Regression and Random Forest respectively. Probabilities represent the
proportion of 95% confidence intervals covering the true value out of 1000 estimation
procedures.

15

n = 1000 were sampled from each of Adult and Bank. CV and CV-OS estimators

were built along with 95% confidence intervals. Similar to the simulations conducted

in Section 1.4.1, model fits were saved during cross-validation and were applied to the

remaining N � n observations in order to calculate true CVAUPRC values. Tables

1.2 and 1.3 compare results of the estimation strategies using Random Forest, Lasso

[47, 22], and the Highly Adaptive Lasso (HAL) [8, 25] for sample sizes n = 250 and

n = 1000 respectively. True CVAUPRC values and estimates were averaged over the

1000 iterations of the procedure.

Dataset N p PN(Y = 1)

Adult 32561 86 0.241
Bank 41188 55 0.113

Table 1.1: UCI dataset characteristics. N is sample size, p is number of features.

The findings of these analyses are similar to those of the simulations. The average

CV-OS estimator is closer to the average true CVAUPRC for each dataset, sample size

n, learner, and choice of K. The CV estimator tends to underestimate the truth, and

that discrepancy is exacerbated by spreading the cases thinner. Bank has much larger

class imbalance than Adult, and the CV estimator performance drops correspondingly

when applied to Bank. Once again, choosing K = 10 also decreased CV performance.

The CV-OS estimator does show drops in performance with increased K and larger

class imbalance, but the drops are much smaller than those of the CV estimator and

are nearly non-existent when n = 1000.

95% confidence interval coverage is uniformly better for the CV-OS estimator,

with coverage often coming very close to the nominal level and never dropping below

0.855. Coverage for the CV estimator never surpasses 0.875 and drops as low as 0.157

in the case of using Ranger with data Bank and K = 10 folds.

16

Data Model K Truth CV CV-OS

Est. Width Cov. Est. Width Cov.

Adult

Ranger 5 0.712 0.627 0.212 0.654 0.712 0.282 0.939
10 0.717 0.559 0.204 0.198 0.715 0.279 0.949

Lasso 5 0.682 0.604 0.213 0.687 0.668 0.286 0.934
10 0.687 0.541 0.202 0.245 0.674 0.285 0.924

HAL 5 0.660 0.585 0.213 0.699 0.661 0.296 0.940
10 0.671 0.528 0.201 0.274 0.669 0.295 0.939

Bank

Ranger 5 0.506 0.392 0.260 0.581 0.497 0.410 0.902
10 0.514 0.301 0.227 0.157 0.505 0.407 0.898

Lasso 5 0.520 0.411 0.265 0.590 0.513 0.405 0.899
10 0.527 0.314 0.233 0.174 0.518 0.403 0.855

HAL 5 0.491 0.381 0.257 0.566 0.480 0.402 0.892
10 0.500 0.293 0.222 0.172 0.491 0.404 0.867

Table 1.2: Analysis results using n = 250 samples to train and evaluate learners.
Remaining observations were used to calculate the true CVAUPRC values. Est. is the
average parameter estimate, Width is the average 95% confidence interval width, and
Cov. is the proportion of 95% confidence intervals covering the truth. Each entry is a
result averaged over 1000 iterations.

17

Data Model K Truth CV CV-OS

Est. Width Cov. Est. Width Cov.

Adult

Ranger 5 0.759 0.737 0.212 0.862 0.761 0.116 0.938
10 0.763 0.719 0.204 0.629 0.765 0.114 0.945

Lasso 5 0.735 0.713 0.213 0.864 0.735 0.120 0.938
10 0.737 0.695 0.202 0.664 0.739 0.118 0.931

HAL 5 0.747 0.725 0.213 0.875 0.750 0.119 0.940
10 0.751 0.708 0.201 0.628 0.753 0.116 0.938

Bank

Ranger 5 0.569 0.534 0.260 0.804 0.567 0.210 0.895
10 0.574 0.507 0.227 0.580 0.572 0.205 0.898

Lasso 5 0.569 0.544 0.265 0.842 0.571 0.206 0.922
10 0.571 0.517 0.233 0.683 0.573 0.207 0.922

HAL 5 0.572 0.540 0.257 0.810 0.568 0.207 0.903
10 0.577 0.515 0.222 0.597 0.571 0.206 0.904

Table 1.3: Analysis results using n = 1000 samples to train and evaluate learners.
Remaining observations were used to calculate the true CVAUPRC values. Est. is the
average parameter estimate, Width is the average 95% confidence interval width, and
Cov. is the proportion of 95% confidence intervals covering the truth. Each entry is a
result averaged over 1000 iterations.

18

1.5 Discussion

In this study, we found that both the CV and CV-OS estimators perform well in large

samples in accordance with the asymptotic distributions shown in sections 1.3.2 and

1.3.3. However, the CV-OS estimator was shown to have superior performance in terms

of point estimation and confidence interval coverage in situations with small samples

and class imbalance. The results also suggest the CV-OS may be preferable when

one wishes to use a larger number of folds K. CV-OS performance is not seriously

impacted by the choice of K, even in smaller samples. This is a useful property

for a number of reasons. First, in practice, this number is often chosen arbitrarily

with popular choices being K = 3, 5, 10. Thus it is valuable to have a method whose

performance is invariant to that choice. The CV estimator results in Tables 1.2 and 1.3

suggest that its use will often lead to severe underestimation of model performance if

K is too large. Second, it may actually be preferable to select as large a K as possible

without spreading the data too thin. The reason for this is that, in choosing larger K,

we may be more closely mimicking the non-data-adaptive target parameter that most

practitioners likely think they are estimating when carrying out this procedure.

To elaborate on this, we stress the point that the target parameter itself depends

not only the data and learning algorithm we are using, but also on K. Typically after

using cross-validation to estimate a metric and compare models, the chosen algorithm

will then be fit to the entire dataset to build the model that will be deployed. Thus,

in practice, it is this model trained on the full data n := ̂(P 0
n) that people wish to

evaluate rather than the average performance of K different models. Evaluating n is

equivalent to estimating � n(P0). As K increases, the CVAUPRC 1
K

PK
k=1� n,k(P0)

will approach � n(P0). In the future it would be worth investigating if the CV-OS

procedure with large K offers a good estimate and a high level of confidence interval

coverage for � n(P0) despite targeting a different parameter.

19

Chapter 2

Highly Adaptive Regression Trees: A

post-hoc method for interpreting the

Highly Adaptive Lasso

2.1 Introduction

Recent advances in theoretical statistics and computer science have led to the devel-

opment of machine learning algorithms that can improve professionals’ abilities to

accomplish tasks in a myriad of fields. For example, such algorithms have been used

to assess risks of future adverse health outcomes [39, 15, 1, 43], estimate consumer

demand [7], forecast currency exchange rates [4], predict student academic success

[59], and improve communication systems [27]. Machine learning may be used by

professionals in these fields to appropriately guide decision making. However, use of

machine learning in these contexts often involves weighing the choice of accuracy versus

interpretability of a prediction algorithm. Simple algorithms (e.g., based on logistic

regression) are easy-to-interpret, but rely on relatively inflexible statistical models and

so may not make accurate predictions. More complex algorithms (e.g., based on deep

20

learning) may predict more accurately, but are often difficult to interpret.

The need for accuracy in these settings is manifest. For example, before machine

learning-based technology can be deployed in healthcare settings, providers and

patients must have faith in the fidelity of the predictions. Interpretability is also

crucial from an ethical standpoint [32]. Consider an algorithm to triage intensive care

unit patients based on predicted risk of death. In this case, it is important to carefully

scrutinize the triage decision making process to ensure that care is being delivered in

an equitable manner.

Decision trees have long been a popular tool for creating interpretable prediction

functions and are particularly popular in clinical research [40, 14, 55, 60]. However,

traditional techniques for learning these trees generally fail to yield predictions that

are as accurate as competitor algorithms [21]. The poor performance may be due

to the greedy approach used to fit the trees, which can quickly spread data thin

even in relatively data rich settings. This has led to the abandonment of regression

trees in settings where accuracy is a primary consideration, in favor of other, more

difficult-to-interpret algorithms.

Here we describe a method for constructing classification and regression trees that

delivers predictive accuracy comparable to that of random forests and boosting. Our

proposal centers around the highly adaptive lasso (HAL) algorithm [8], which has

been previously established to have competitive predictive performance compared with

state-of-the-art algorithms. Here, we show that HAL can be represented as a decision

tree and provide an algorithm for building such a tree from a trained HAL model.

We verify that HAL can indeed perform prediction tasks as well as state-of-the-art

algorithms, and we demonstrate the interpretability of trees built using real data.

21

2.2 Highly adaptive lasso

We consider a prediction problem where the observed data consist of n independent

copies of the random variable O = (X, Y) ⇠ P0, where X 2 X is a vector of features,

Y 2 Y is the outcome of interest, and P0 represents the probability distribution of

the observed data. Here, Y could be {0, 1} (as in binary classification), {Y1, . . . ,Yk}

(multi-class classification), or R (regression). For simplicity, we take Y = {0, 1}.

For a given function 2 , the space of functions mapping from X to the unit

interval, we define the negative log-likelihood loss function, L(, o) = �log[(x)y{1�

 (x)}1�y]. The risk of is the expected value of L(, O), R0() =
R
L(, o)dP0(o). It

is straightforward to show that the minimizer of this risk over is 0, the conditional

probability that Y = 1 given X. The theory of HAL is built around two key

assumptions about 0: (i) 0 is right-continuous with left-hand limits (i.e., is a cadlag

function) and (ii) 0 has finite variation norm. To precisely define variation norm, we

note that any cadlag function generates a signed measure, which allows us to write

integrals with respect to . The variation norm of is k kv =
R
|d (u)|.

Previous works [8, 49] demonstrated how to find the minimum loss-based estimator

(MLE) in the class of functions with variation norm smaller than a fixed number

M . This MLE estimates 0,M = argmin :k kv<MR0() and may be computed using

the fact that any cadlag function with finite variation norm can be arbitrarily well-

approximated by a tensor product of indicator basis functions. In the univariate case,

we observe X1, . . . , Xn, independent copies of a scalar-valued variable X. The linear

combination of basis functions is of the form n,�(x) = �0 + �
>
Xb(x), where b(x) is an

n-length vector with i-th entry equal to [Xi,1)(x). Here, we use the indicator notation:

for (c, d) 2 R2, [c,d)(x) = 1 if x 2 [c, d) and equals 0 otherwise. As the dimension of

X increases, we include tensor product basis functions. For example, if we observe

(X1i, X2i), i = 1, . . . , n, independent copies of X = (X1, X2), where X1, X2 2 R2, then

 n,�(x) = �0 + �
>
X1
b1(x) + �

>
X2
b2(x) + �

>
X1,X2

b1(x)b2(x), where for j = 1, 2, the i-th

22

entry of bi(x) is equal to [Xji,1)(xj). The idea generalizes to arbitrary p with at most

n(2p � 1) basis functions included.

Because the L1-norm of � equals the variation norm of n,�, the MLE in the class

of functions with variation norm smaller than M may be computed by regressing Y

onto this set of basis functions, and ensuring that the
Pn

i=1|�i| < M . This can be

achieved by making use of software for the popular lasso algorithm [47]. We note that

with a univariate feature, this approach is well established in the signal de-noising

literature under the name of (zero-order) trend filtering. Benkeser and van der Laan

(2016) [8] generalized to multiple dimensions and proved that HAL converges to 0 in

terms of regret at a fast rate, R0(n,M)�R0(0,M) = op(n�[1/4+1/{8p+1}]). This theory

establishes HAL as a strong candidate for accurate machine learning. In Section 2.4,

we establish that HAL is also a good candidate for performing interpretable machine

learning.

2.3 Notation

The remainder of the paper includes a large set of notation that is necessary for

describing the process of building tree representations of HAL models. For this reason,

we include Table 2.1 which contains descriptions of all new notation and vocabulary

introduced. Each piece of notation is defined in the text, but readers my find it

convenient to refer to all definitions in one place.

2.4 From HAL to HART

Classification and Regression Tree (CART) [13] is a prediction algorithm that has

long been employed across many diverse fields [40]. Decision trees built using this

approach typically start with a fully un-partitioned feature space and, through a

greedy algorithm, recursively partition the (sub)space into smaller units until a

23

Term Description

X Candidate split data structure to be recursively pruned
R A feature space region
bji(xj) Indicator basis function set to 1 if Xj � xji

subscript G A label applied to indicate right-hand sub-region
subscript L A label applied to indicate left-hand sub-region
�ji Set of basis expansion terms involving value Xji

� Set of all �ji (represents the whole HAL model fit)
⇡ Policy for choosing tree split
Tree A HART tree object
Tree.label Text displayed in the rood node of Tree
Tree.preds Set of predictions given by terminal nodes in Tree
Node(label) Indicates creation of a non-terminal node displaying label
TerminalNode Indicates creation of a terminal node displaying label
Tree.left-child Left child node of the root node of Tree
Tree.right-child Right child node of the root node of Tree
subtree.parent = node Indicates assignment of node as parent of object subtree

Table 2.1: Notation used throughout the paper to describe aspects of feature space
partitioning and tree creation.

specified stopping criterion is met. By nature of the partitioning process, CART

yields a histogram approximation of 0. Furthermore, because of the recursive process

employed in training, decision trees are naturally created. However, CARTs rarely

achieve high predictive performance and can be prone to overfitting [21].

HAL provides an alternative approach to learning a histogram approximation of a

function, though its training process is in stark contrast to CART. HAL starts with a

dense partitioning of the feature space (implied by the tensor product basis expansion),

that is subsequently shrunk to achieve the best global fit to the data. Because HAL is

optimizing a global smoothness criteria, it is able to partition the feature space more

efficiently than CART and generally provides a much more accurate representation

of 0. However, the histogram approximation created by HAL partitions will not in

general represent a recursive partitioning of the feature space and thus will not be

immediately amenable to representation as a decision tree. The goal of this paper is

to present an algorithm that maps a trained HAL model into a decision tree. We call

24

X1

X2

X11 X12

X21

X22

{;} �̂X11
�̂X11

, �̂X12

�̂X21

�̂X21
, �̂X22

�̂X11
, �̂X21

,

�̂X11,X21

�̂X11
, �̂X21

,

�̂X22
,

�̂X11,X21

�̂X11
, �̂X12

,

�̂X21
,

�̂X11,X21

�̂X11
, �̂X12

,

�̂X21
, �̂X22

�̂X11,X21
�̂X12,X22

X1

X2

X11

X21

X22

X12

{;}

�̂X11,X21
�̂X12

,
�̂X11,X21

�̂X12

Figure 2.1: Left: Illustration of partitioning of the feature space according to the
HAL basis expansion. The sets of �̂ (excluding the intercept) correspond to those in
equation (2.1) that fall in each region. Right: An illustrative HAL partitioning, when
�̂X11 = �̂X21 = �̂X22 = �̂X12,X22 = 0, which results in a non-recursive partitioning of
the feature space. To represent this partitioning as a decision tree, we must determine
a parsimonious recursive structure for the L-shaped left-most region.

the resulting trees Highly Adaptive Regression Trees (HART).

To illustrate the significant challenges associated with this goal, we consider

an immensely simplified example in which we observe (X1i, X2i), i = 1, 2, n = 2

observations of the two-dimensional feature-vector X = (X1, X2). Further assume

that X1i < X2i for i = 1, 2. Define bji(x) = [Xji,1)(xj). The HAL basis expansion is

 n,�(x) = �0 + �X11b11(x1) + �X12b12(x1) + �X21b21(x2) + �X22b22(x2)

+ �X11,X21b11(x1)b12(x2) + �X12,X22b12(x1)b22(x2)
(2.1)

The left panel of Figure 2.1 illustrates the partitioning of the feature space implied

by this basis expansion. For example, given �̂ 2 R7, the HAL prediction for obser-

vations falling in the lowest left portion of the feature space is �̂0, for the upper left

portion the prediction is �̂0 + �̂X21 + �̂X22 , and so on. Note that the full partitioning

implied by the basis expansion (equivalent to the partitioning implied if all coefficient

estimates are nonzero) is naturally recursive and thus can immediately be represented

25

X11

X21

{;} X22

�̂X21 �̂X21 ,

�̂X22

X12

X21

�̂X11 X22

�̂X11 , �̂X21 ,

�̂X11,X21

�̂X11 , �̂X21 ,

�̂X11,X21 , �̂X22

X21

�̂X11 ,

�̂X12

X22

�̂X11 , �̂X12 ,

�̂X21 , �̂X11,X21

�̂X11 , �̂X12 ,

�̂X21 , �̂X22 ,

�̂X11,X21 , �̂X11,X21

< �

Figure 2.2: Decision tree representation of the full feature space partitioning implied
by the HAL basis expansion.

by the decision tree in Figure 2.2. In this and subsequent trees, each node contains an

observed value; moving to the left (right) of the node implies a value less (equal to or

greater) than the node value.

Because HAL uses L1-penalization of the coefficient vector, many coefficients are

shrunk to zero when the model is trained; this causes some partitions of the feature

space to collapse. For example, suppose we find that �̂X11 = �̂X21 = �̂X22 = �̂X12,X22 =

0. In this case, the partitioning collapses (right panel, Figure 2.1) and does not have

a recursive structure. In this case, any decision tree representing this partitioned

space will have at least some redundancy in the terminal nodes. Figure 2.3 illustrates

two possible recursive partitions that could be used to approximate the non-recursive

partitioning implied by HAL. Note that these are both valid representations in that

they would yield predictions identical to those generated by the HAL model. However,

each has one redundant partition. This can be observed by noting that each has

separate regions with identical predictions.

In higher dimensions, the partitions cannot be visualized, and some recursive

partitions may have a large amount of redundancy. In the next sections we motivate

26

X1

X2

X11 X12

X21

X22 {;}

{;}

�̂X11,X21

�̂X12

�̂X12
,

�̂X11,X21

X1

X2

X11 X12

X21

X22

{;}

{;}

�̂X11,X21

�̂X12

�̂X12
,

�̂X11,X21

Figure 2.3: Two possible recursive partitions to represent the non-recursive partition
implied by the HAL model when �̂X11 = �̂X21 = �̂X22 = �̂X12,X22 = 0.

and describe our algorithm for mapping an arbitrary set of non-zero basis functions

into a recursive partitioning of the feature space.

Throughout this work, we consider the set X = {Xji : j = 1, . . . , p i = 1, . . . , n}

which contains the values of our data. The elements of X act as candidates for

describing partitions implied by HAL. At each stage in the proposed process, a single

value is chosen from X to describe a partition, and other values are pruned if they

are not needed to describe the remaining partitions implied by HAL. The crux of

our problem is then identifying which values from our data should be candidates for

describing partitions and the order in which we should choose them. As we will see,

both of these factors impact the amount of redundancy contained in our final recursive

partitioning.

2.5 Examples

To motivate our approach for reducing redundancy in the HAL tree growing process,

we consider three scenarios: (i) a set of basis functions that naturally yields a recursive

structure; (ii) a set of basis functions that yields a non-recursive structure for which

27

X1

X2

X1

X2

X11 X12

X21

X22

X1

X2

X11

x1 < X11 x1 � X11

RL RG

Figure 2.4: Left: The feature space partitioned according to the HAL fit with all
�̂ 6= 0. These partitions will be described by values from X. Right: Feature space
with X11 describing the first partition.

there are many minimally redundant recursive approximations; (iii) a set of basis

functions that yields a non-recursive partitioning for which there are both minimally

redundant and highly redundant recursive representations. With each increase in

complexity, we will highlight necessary algorithmic changes to the tree growing process.

2.5.1 Scenario (i): naturally recursive partitioning

Consider a situation where estimates of the coefficients in the basis expansion in

equation (2.1) are all nonzero. The partitioning implied by that model is the full

partitioning of the feature space (left panel of Figure 2.1). The data structure in

our recursive process is X = {X11, X12, X21, X22}, the elements of which represent

potential splits in our feature space and potential nodes in our tree. We can select

values from X to describe feature space partitions in any order. Suppose we begin

with value X11. A line is then drawn dividing the feature space a region RL where

x1 < X11 and a region RG where x1 � X11 (Figure 2.4).

In each of the two new sub-regions of the feature space, we can begin the process

28

again, now with a reduced data structure. In both sub-regions, we set X = X\{X11}

since X11 has just been partitioned on. Recall now that we specified X11 < X12.

In sub-region RL where x1 < X11, it must be true that x1 < X12. Thus, it is

clearly not necessary to further partition RL using the value X22, and we can set

XL = X\{X12} = {X21, X22}. By contrast, in RG, x1 � X11, but it may or may not

be true that x1 � X12. Thus, we set XG = {X12, X21, X22}.

Suppose we carry out this recursive process until X is empty in every sub-region.

Predictions are then constructed by summing the appropriate coefficient estimates for

that region. The resulting partitioned feature space and the corresponding decision

tree perfectly represent the fully partitioned feature space in the left panel of Figure

2.1 and its decision tree in Figure 2.2 respectively.

2.5.2 Scenario (ii): non-recursive partitioning, minimal redun-

dancy

Suppose we estimate �̂X11 = �̂X21 = �̂X22 = �̂X12,X22 = 0 and the remaining parameters

in 2.1 to be nonzero. The partitioning implied by this model is pictured in the right

panel of Figure 2.1. It is worth noting that the full partitioning in the left panel of

Figure 2.1 is a valid representation of this non-recursive partitioning. However, the

associated decision tree would have considerable redundancy. Consider two examples

of redundancy in that partition under this HAL fit.

First we can see that, X22 is not needed to describe any of the partitions implied

by the HAL fit. This suggests that our initial data structure X need not contain

X22; we could set X = {X11, X12, X21}. Suppose again that we choose X11 to describe

the first partition. Two sub-regions RL and RG are created where x1 < X11 and

x1 � X11 respectively. As in Scenario (i), in RG we can simply prune X11 and set

X = X\{X11}. However, in RL, there are no remaining partitions suggesting that in

this region X11, X12, and, X21 should be pruned from X. This example highlights the

29

necessity for a more comprehensive rule for pruning values from X in a certain region,

given a HAL model fit.

In particular, a value Xji is unnecessary for describing partitions in a given region R

if it meets one of two criteria. First, Xji is unnecessary if all coefficient estimate-basis

function product terms involving Xji in the HAL basis expansion evaluate to zero.

For example, consider the region where x1 < X11. There, X21 is unnecessary because

�̂X21b21(x2) = 0 and �̂X11,X21b11(x1)b21(x2) = 0. The second criterion is that bji(xj) = 1

for all xj . For example, X11 is unnecessary in the region where x1 � X11 because it is

known that b11(x1) = 1. Following these criteria, and assuming we select values for

partitioning in the order that they appear in X, we obtain the partitioning shown in

the left panel of Figure 2.3. As we showed in Section 2.4, this is just one possible

minimally redundant recursive approximation of the non-recursive partitioning implied

by the HAL model. In fact, after initially pruning X22, we could order the elements of

X in six different ways and therefore obtain six different, minimally redundant trees.

2.5.3 Scenario (iii): non-recursive partitioning, minimal and

non-minimal redundancy

Now assume that we estimate �̂X11 = �̂X12 = �̂X22 = �̂X11,X21 = 0 and the remaining

coefficients as nonzero. The feature space partitioning implied by this model is shown

in Figure 2.5. According to our criteria from Section 2.5.2, we begin by pruning X11

from X. The left and right panels of Figure 2.6 show partitionings resulting from

proceeding with orderings {X12, X21, X22} and {X21, X22, X12} respectively. Choosing

the first ordering results in an unnecessary partition.

This motivates the introduction of some policy ⇡ that dictates which value should

be chosen to describe the next partition given the data X, the current region R, and

the model fit information. The problem of finding the most parsimonious recursive

partitioning then reduces to finding an optimal policy ⇡
⇤. Potential policies are

30

X1

X2

X11 X12

X21

X22

{;}

�̂X21

�̂X12,X22

Figure 2.5: An illustrative HAL partitioning, when �̂X11 = �̂X12 = �̂X22 = �̂X11,X21 = 0,
which results in a non-recursive partitioning of the feature space.

discussed in Section 2.6.2.

2.6 Highly adaptive regression trees

2.6.1 Growing trees

Algorithm 1 presents a formal algorithm for finding parsimonious recursive repre-

sentations of feature space partitionings implied by HAL models. The algorithm

is presented for a design matrix involving n observations of p elements, X = {Xji :

j = 1, . . . , p, i = 1, . . . , n}. Let �ji be the set of all coefficient estimate-basis func-

tion product terms involving the value Xji in the HAL basis expansion, and define

� = {�ji : j = 1, . . . , p, i = 1, . . . , n}, a set of sets that represents the whole

HAL model fit. A given region of the feature space can be represented by the tuple

R = (�,�) where �(x) = {Xji : xj < Xji} and �(x) = {Xji : xj � Xji}. At the

beginning of the process, we initialize � = � = {;} and let R = ({;}, {;}) represent

the entire feature space.

Once a partition is described using a value Xji, it naturally implies two new regions

31

X1

X2

X11 X12

X21

X22

{;} {;}

�̂X21

�̂X21

�̂X12,X22

X1

X2

X11 X12

X21

X22

{;}

�̂X21

�̂X21
�̂X12,X22

Figure 2.6: Two recursive partitionings to represent the non-recursive partitioning
implied by HAL when �̂X11 = �̂X12 = �̂X22 = �̂X11,X21 = 0. The left partitioning is not
minimally redundant. The right partitioning is minimally redundant.

Algorithm 1: HART
1: X = {Xji : j = 1, . . . , p, i = 1, . . . , n}
2: � = {�ji : j = 1, . . . , p, i = 1, . . . , n}
3: � = � = {;}
4: R = (�,�)
5: X = X\{Xji : �ji = {0, . . . , 0} | R}
6: def Grow(X,�,R)
7: if X = {;} then

8: ̂ =
P

s⇢� �̂s

9: return TerminalNode(̂)
10: else

11: Xj⇤i⇤ = ⇡(X,�,R)
12: node = Node(Xj⇤i⇤)
13: �L = � [{Xj⇤i : Xj⇤i � Xj⇤i⇤}
14: RL = (�L,�)
15: XL = X\{Xji : �ji = {0, . . . , 0} | RL}
16: node.child = Grow(XL,�,RL)
17: �G = � [{Xj⇤i : Xj⇤i  Xj⇤i⇤}
18: RG = (�,�G)
19: XG = X\{Xji : bji = 1 | RG}
20: node.child = Grow(XG,�,RG)
21: return node
22: end if

23: call Grow(X,�,R)

32

within the feature space. RL describes the region in which xj < Xji and RG describes

the region in which xj � Xji. These new regions can be formalized by updating the

components of the tuple � and � to include relevant values. As values are added

to these sets, basis functions from the HAL basis expansion take on realizations of

one or zero thus changing values in �. We use the notation �ji | R to refer to the

specific realization of a set of product terms �ji within a specific region R. Together,

the information in the HAL fit and the current region inform which values should be

pruned from X before further partitions are described. We use ⇡ to denote a general

policy that dictates which value in X should be chosen to describe the next partition.

⇡ is a mapping from the current state of the partitioning, described by (X,�,R), to

the value that will describe the next partition Xj⇤i⇤ .

Finally, in Algorithm 1 we make the connection between feature space partitions

and nodes in a decision tree. Each time we describe a partition using a value Xji,

we indicate the creation of a tree node with Node(Xji). The two children of that

node will correspond to the partitions in the resulting sub-regions where xj < Xji and

xj � Xji respectively.

2.6.2 Policies

As stated in Section 2.4, the two sources of redundancy in our tree representations are

the identification of candidates for partitioning and the order in which we should choose

them. Algorithm 1 fully accounts for the former and ensures that no unnecessary feature

values are identified as candidates in a given stage of the growing process. The ordering

of those candidates and the resulting redundancy is dictated solely by the policy ⇡.

Ideally we would choose ⇡ to achieve an optimally parsimonious representation of ̂.

However, ordering binary variables to achieve optimally parsimonious representations

of functions is known to be an NP-complete problem [10]. We instead rely on heuristics

to reduce redundancy.

33

We propose a heuristic that orders split candidates Xji based on the number of

non-zero coefficient estimate-basis function product terms involving Xji. Intuitively,

this is the number of times Xji appears in the basis expansion for a given region and

can be thought of as a measure of importance. Formally, for split candidates X and

HAL fit � in region R of the feature space, the next split is chosen as

⇡h(X,�,R) := Xj⇤i⇤ where (j⇤, i⇤) = argmaxj,i|⌫ 2 �ji | R : ⌫ 6= 0| (2.2)

As an alternative, we propose to take advantage of popular existing decision tree

algorithms and define ⇡ based on their splitting criteria. This strategy has the benefit

of imbuing HART splits with the same interpretation as those of the chosen algorithm

as well as acting as a heuristic way of achieving parsimony. For example, in the

classification setting, CART chooses splits to minimize Gini Impurity. Heuristically,

minimizing Gini Impurity is akin to achieving the ‘best separation’ of the classes in

that region. We can build a HART carrying this same interpretation by employing

Algorithm 1 and letting ⇡ choose the the minimizer of the Gini Impurity. Formally, if

we let Pn,R represent the empirical measure based on data falling in region R, then a

Gini Impurity based policy can be defined in the following way. For split candidates

X and HAL fit � in region R of the feature space, the next split is chosen as

⇡gini(X,�,R) := argmin
xji2X

{2Pn,R(Xj < xji)Pn,RL(Y = 1)Pn,RL(Y = 0)

+ 2Pn,R(Xj � xji)Pn,RG(Y = 1)Pn,RG(Y = 0)}

We could similarly define ⇡ based on the splitting criteria of C4.5 [44], CHAID [29],

Minimum Message Length based Decision Graphs [38], or any other algorithm. We

can also adapt any of these policies to the needs of the problem setting. Say we are

34

predicting some disease outcome based on treatment status and other features. We

could enforce that treatment status is always the final split in the tree and otherwise

use ⇡gini. This would allow us to examine how the predicted outcome differs by

treatment status for any given subgroup.

2.6.3 Sub-HARTs and Prediction Smoothing

Even with a well chosen policy, the full HART may be large and difficult to interpret

globally. We can use two simple strategies to mitigate the resultant complexity.

First, we can restrict the region of the feature space in which to visualize the model.

In Equation 2.1, if we restrict X1 < X11, then bX11 = 0, and we have a simplified

function. This simplified function still follows the structure of a HAL model. Therefore

Algorithm 1 can be applied to build a Sub-HART that represents the model only

in the region where X1 < X11. The Sub-HART will necessarily be smaller and

easier to interpret. The choice of how to restrict the feature space can be motivated

by the specific problem setting. For example, consider fitting HAL to predict the

recurrence of breast cancer based on demographic features and features related to the

original tumors. If we are mainly interested in how the estimated function classifies

older subjects, we could restrict Age � 65. If we are interested in how the function

differs between older and younger subjects, we could compare Sub-HARTs restricting

Age < 20 and Age � 65 respectively.

A second strategy is to smooth the predicted outcomes so that there are fewer

unique predictions to display. We can then collapse regions of the tree that no

longer show any heterogeneity. HART may display many adjacent terminal nodes

with predictions that differ by small, clinically insignificant amounts. This level of

granularity might unnecessarily add to the size of the tree. One method for smoothing

predictions is to break the prediction space into a set number of intervals and only

display the correct interval in each terminal node (Algorithm 2). For example, in the

35

Algorithm 2: Bin Predictions
1: def Bin(Tree, Q):
2: intervals = {[0, 1

Q), [
1
Q ,

2
Q), . . . , [

Q�1
Q , 1]}

3: if Tree is TerminalNode then

4: max = 1
Q · ceiling(Tree.pred

Q)

5: min = max � 1
Q

6: returnTerminalNode([min,max))
7: else if All Tree.preds in i for i in intervals then

8: return TerminalNode(i)
9: else

10: node = Node(Tree.label)
11: left-subtree = Bin(Tree.left-child, Q)
12: right-subtree = Bin(Tree.right-child, Q)
13: left-subtree.parent = node
14: right-subtree.parent = node
15: return(node)
16: end if

Algorithm 3: Aggregate Predictions
1: def Agg(Tree, K):
2: if Tree is TerminalNode then

3: return TerminalNode(Tree.pred)
4: else if max(Tree.preds) � min(Tree.preds)  K then

5: interval = [min(Tree.preds), max(Tree.preds)]
6: return TerminalNode(interval)
7: else

8: node = Node(Tree.label)
9: left-subtree = Agg(Tree.left-child, K)

10: right-subtree = Agg(Tree.right-child, K)
11: left-subtree.parent = node
12: right-subtree.parent = node
13: return(node)
14: end if

36

binary classification setting, we may bin the predictions into low ([0, .333)), medium

([0.333, 0.667)), and high ([0.667, 1.0)) probability of success. A second method is to

choose some minimum amount of prediction heterogeneity required to introduce new

splits (Algorithm 3). In the binary classification setting, we may enforce that splits

only occur if they separate predicted probabilities having a difference higher than, say,

0.20. If a region of the tree has many terminal nodes and yet the predicted probabilities

range only from .05 to 0.25, we can group that region into a single terminal node and

display the prediction range. Even if one is still interested in viewing the predictions

at the most granular level, a HART with smoothed predictions could be a convenient

first step to identify interesting sub-regions to investigate further.

2.7 Algorithm Complexity

Here we examine the theoretical time complexities of Algorithms 1, 2, and 3.

2.7.1 HART Complexity

The exact time complexity of Algorithm 1 is difficult to specify as it depends on

the proportion of candidate splits pruned after each node creation in the tree. That

number is entirely dependent on the chosen splitting policy ⇡ and the fitted HAL

model. Our analysis here is therefore limited to a range of worst-case and more

optimistic scenarios.

We begin by considering the per-node computation in terms of the number of initial

split candidates, which we will refer to as c. Given a split value, a node is created first

by updating the set R to pinpoint the feature space region being considered. That

involves comparing the split value to a set of values on the order of O(n) within the

same feature as the split value. Once the region is updated we shrink the candidate

set which, involves looking at all candidates. This is a computation on the order of

37

O(c). We then take the remaining list of candidates, and compute a score for each

based on the model fit information. In the case of ⇡gini that score is the gini impurity

induced by splitting the data on that candidate. In the case of ⇡h that is the number

of times the given candidate appears in the HAL basis expansion. Since we must

examine each candidate once, this computation is on the order of O(c). Once the best

candidate is identified, we create a new node in the tree which is done in constant

time, O(1). We perform this set of operations for each non-terminal node in tree. In

the absolute worse case in which only the chosen split is pruned at each stage, we

have 2c�1 non-terminal nodes. In the case of a balanced, binary tree in which half

of the candidates are pruned after each split, there are 2log2(c)�1 = c non-terminal

nodes. Depending on the splitting policy ⇡ and the fitted model, there may be cases

in which more or fewer than half of the candidates are pruned after each split. Thus,

we estimate that the overall time complexity of Algorithm 1 is between the worst case

of O(nc2 · 2c�1) and a more optimistic case of O(nc3).

2.7.2 Bin and Aggregate Predictions Complexity

Next we discuss the complexity of Algorithms 3 and 2. In both of these algorithms, a

constant amount of work is done for each non-terminal node examined. In the worst

case scenario, all non-terminal nodes in the tree are examined, although in practice it

will be fewer if there is any binning or aggregation to be done. Therefore, the worst

case time complexity is O(t) where t is the total number of non-terminal nodes.

2.8 Data Analysis

We examined the predictive performance of HAL, CART, Random Forest (Breiman,

2001), and XGBoost (Chen and Guestrin, 2016) using four publicly available data

sets from the UCI Machine Learning Repository (Table 2.2) all of which have binary

38

outcomes. Next, we focus on one data set and compare the decision tree produced by

CART to those produced by HART using the heuristic policy shown in equation (2.2).

Name Citation N p PN(Y = 1)

Breast Cancer Zwitter et al. (1988) [61] 285 9 0.298
Cardio Ayres-de Campos et al. (2000) [6] 2126 21 0.139
Drugs Fehrman et al. (2017) [20] 1885 12 0.186
Wine Aeberhard et al. (1992) [2] 6497 12 0.197

Table 2.2: UCI dataset characteristics. N is sample size, p is number of features.

2.8.1 Performance

For each dataset in Table 2.2, HAL, CART, Random Forest, and XGBoost were

evaluated by calculating several 10-fold cross-validated performance metrics. For

each of CART, Random Forest, and XGBoost, models were built under a grid of

10 possible tuning parameter settings. We only report the results corresponding to

models built with the parameter settings that resulted in the highest CV-AUCs for

each learner. We found that HAL, Random Forest, and XGBoost typically provided

large improvement over CART in all metrics (Table 2.3). Moreover, we found that

the performance of HAL is comparable to Random Forest and XGBoost, which are

considered state-of-the-art. For a more extensive examination of HAL’s performance,

see Benkeser and van der Laan (2016) [8].

2.8.2 Trees

Here we focus on the Breast Cancer dataset to demonstrate the interpretability

of HART. We aim to predict the recurrence of breast cancer with nine features,

descriptions for which can be found in Table 2.4. The left panel of Figure 2.7 shows the

tree built using CART with tuning parameters selected using 10-fold cross-validation.

Here, the fitted CART model implies that, of the 9 available features, only the

39

Data Learner AUC Accuracy Precision Recall Time

Breast
Cancer

HAL 0.710 0.751 0.709 0.307 13.415 sec
CART 0.669 0.702 0.500 0.366 0.297 sec
XGboost 0.712 0.737 0.593 0.376 13.43 min
Random Forest 0.696 0.722 0.588 0.235 32.882 sec

Cardio

HAL 0.973 0.953 0.886 0.763 1.73 min
CART 0.933 0.935 0.798 0.712 0.611 sec
XGboost 0.981 0.961 0.898 0.810 46.89 min
Random Forest 0.979 0.950 0.879 0.739 3.594 min

Drugs

HAL 0.748 0.814 0.604 0.057 28.58 min
CART 0.662 0.762 0.306 0.220 0.635 sec
XGboost 0.746 0.814 0.486 0.051 39.453 min
Random Forest 0.741 0.816 0.615 0.023 3.472 mins

Wine

HAL 0.973 0.953 0.886 0.763 1.76 hour
CART 0.813 0.817 0.537 0.482 0.380 sec
XGboost 0.904 0.874 0.741 0.554 30.380 min
Random Forest 0.921 0.888 0.862 0.510 3.563 min

Table 2.3: 10-fold cross-validated metrics are reported for Breast Cancer, Cardio, and
Drugs. 3-fold cross validated metrics are reported for Wine. For CART, Random Forest,
and XGBoost, we carried out grid searches over 10 tuning parameter settings. Results
correspond to models with the highest performing tuning parameters. Computations
were carried out on a High Performance Computing cluster.

Table 2.4: Breast Cancer dataset feature names and descriptions.
Feature Description

age Discretized subject age in years
early meno Whether the subject reach menopause early
pre-meno Whether the subject is pre-menopausal
tumor size Size of breast cancer tumor in mm
aux-nodes # auxiliary lymph nodes containing metastatic cancer
in node cap Whether metastatic tumors are encased in lymph node capsule
deg-malig Histological degree of the tumor malignancy (range 1-3)
breast Which breast cancer resides in
breast quadrant Quadrant of breast cancer resides in
rad therapy Whether the subject received radiation therapy

40

deg-malig< 2

0.25 aux-nodes< 2

0.38 0.73

Y es No

deg-malig< 3

aux-nodes< 2

[0, 0.333) deg-malig< 2

[0, 0.333) [0.333, 0.667)

aux-nodes< 2

[0.333, 0.667) in node cap

[0.333, 0.667) aux-nodes< 3

[0.333, 0.667) [0.667, 1]

Yes No

Figure 2.7: Left: CART fit to Breast Cancer dataset. Right: HART built from HAL
fit to Breast Cancer dataset. Feature space is restricted to subjects aged 20-29 having
tumors greater than 5mm in diameter. Algorithm 2 was applied with Q = 3.

degree of malignancy and the number of auxiliary lymph nodes containing metastatic

breast cancer are needed to make a prediction about risk for breast cancer recurrence.

However, the HART built using the same data shows a much more complex function

and has much higher performance. The right panel of Figure 2.7 shows a Sub-HART

visualized for subjects aged 20� 29 having tumors greater than 5 mm in diameter. We

have binned the predicted probabilities into three intervals: [0, 0.333), [0.333, .667),

and [0.667, 1]. This model implies a higher degree of heterogeneity in the predicted

probability that relies on more features and values. We could investigate any of the

terminal regions in Figure 2.7 further without binning the predictions. Alternatively,

we could restrict to subjects older than 29 to see how the function changes with age.

If we are interested in using HART to make binary decisions based on a probability

threshold, we can simplify the overall tree and visualize it without restricting the

feature space. Figure 2.8 visualizes the full HART with 1 displayed in regions where

predicted probabilities are above 0.5 and 0 displayed otherwise. Again, we see that

increased performance is associated with a much more complex function. However, we

can gain insights into HART’s structure that could motivate different visualizations

or even further study. Consider the role of menopause status in the prediction. Figure

2.8 suggests that having reached menopause before age 40 is associated with lower risk

for breast cancer recurrence versus having reached it after 40 or being pre-menopause.

41

age< 2

deg-malig< 3

0 aux-nodes< 2

0 tumor size< 3

0 tumor size< 4

early meno

1 0

pre-meno

early meno

1 0

1

deg-malig< 3

0 tumorsize< 4

aux-nodes< 2

0 tumor size< 3

0 in node cap

early meno

age< 3

1 up left quad

1 0

0

early meno

1 0

pre-meno

aux-nodes< 2

0 in node cap

early meno

1 0

early meno

1 tumor size< 5

0 aux-nodes< 3

0 1

aux-nodes< 2

tumor size< 5

0 rad therapy

in node cap

0 age< 3

1 up left quad

1 0

in node cap

0 tumor size< 6

age< 3

1 up left quad

1 0

1

1

Yes No

Figure 2.8: HART representing HAL fit to Breast Cancer data. Algorithm 2 has
been applied with Q = 2 bins, equivalent to thresholding the predicted probability of
recurrence at 0.5.

This association is consistent with breast cancer research [33].

2.8.3 Complexity

We examined the time it took to apply Algorithms 1, 2, and 3 to both the Breast

Cancer and Drugs datasets. After fitting HAL to the Breast Cancer data, there were

15 split candidates. The full HART constructed from the model fit was constructed in

0.752 seconds. Binning and Aggregating the predictions in the resulting tree took 0.015

seconds each. Applying the algorithms to the Cardio dataset took significantly longer.

After fitting HAL to the Cardio data, there were 104 candidate splits. Constructing

the full HART took 20.210 minutes. Binning and Aggregating the predictions in

the resulting tree took 1.103 and 1.215 minutes respectively. All computations were

carried out on an Apple Macbook Air containing an ARM processor with 8GB of

RAM.

42

2.9 Discussion

In this paper we have presented a tool for post-hoc interpretation of the Highly

Adaptive Lasso. HAL has the potential to learn more complex functions than CART

without overfitting the data. HART, via Algorithms 1, 2, and 3, provides methodology

for understanding these complex functions. An additional advantage of HART is that

it allows one to tailor visualizations to the needs of the problem via the splitting policy

⇡ and Algorithms 2. In general, we recommend that HART be used less as a static

tool for visualizing simple decision making processes and more as a dynamic way to

visualize and understand a complex decision making process. In the future, it would

be of interest to apply HART to problems that require transparent decision making

such as medical treatment assignment and fair social policy design.

43

Chapter 3

Highly Adaptive Treatment Trees:

interpretable estimation of

heterogeneous treatment effects and

treatment policies

3.1 Introduction

Methods for the estimation of heterogeneous treatment effects have been widely studied

in recent years [28, 26, 42]. The development of such methods is vital in fields like

healthcare where treatments may have different effects when administered to people

with different characteristics. Developing treatment policies based on population-

averaged effects could lead to unnecessary or even harmful treatment decisions for

certain individuals. Ideally, we would like to derive optimal guidelines for practitioners

in recommending the best treatment based on the clinical presentation of the patient.

A common estimand for addressing this question is the Conditional Average

Treatment Effect (CATE), which measures the difference in counterfactual outcomes

44

under two treatments conditional on a set of covariates. A natural extension of the

CATE is the Optimal Treatment Policy (OTP) which gives the treatment that will

maximize the counterfactual outcome given a set of covariates. The OTP can be easily

estimated given an estimate of the CATE.

One popular set of methods for estimating the CATE that has emerged is called

Meta-Learning. Meta-Learning encompasses methods that repurpose off-the-shelf

machine-learning algorithms for the estimation of the CATE. These include the S, T,

X, R, and DR learners [31, 36, 30]. Athey and Imbens [5] introduced Causal Trees,

a method for CATE estimation that involve recursive partitioning of the covariate

space. That partitioning can then be represented as an interpretable decision tree.

They extended this method to Causal Forest [56], which improves performance but

loses interpretablity.

With the exception of Causal Trees, there are limited nonparametric methods for

CATE estimation that emphasize interpretaibility. However, interpretability in such

estimates is often of paramount importance, especially if they are to be used to guide

treatment decisions. If an estimated policy suggests to a doctor that a patient should

(not) be treated, the doctor should be able to discern why that decision was rendered.

If the policy is a black box, it is impossible to tell what characteristics the decisions

are based on and whether those decisions are fair and logical.

In this paper, we introduce methods for CATE and OTP estimation that are both

interpretable and high performing. Our methods combine the S and DR learning

Meta-Learning frameworks with the Highly Adaptive Lasso (HAL) algorithm. We are

able to show that the resultant estimates achieve fast regret rates. Previous work has

also showed that HAL regression fits can be represented as trees [37]. We adapt those

representation algorithms for the cases of CATE and OTP estimation.

Our contributions can thus be summarized as new algorithms for developing flexible,

yet interpretable estimates of heterogeneous treatment effects and OTP. An additional

45

strength of our proposed methods is that we allow for any number of treatment arms

and estimation based on any subset of covariates.

3.2 Problem Setup and Estimation Frameworks

3.2.1 Setup

Assume we observe an independent and identically distributed sample of observations

Oi = (Wi, Ai, Yi) ⇠ P0 2 M where P0 is an unknown distribution that lies in

non-parametric model M. W 2 Rp are covariates, A 2 A = {0, 1, . . . , K} is a

treatment, and Y 2 R is a real-valued outcome. Further, let V ✓ W be some subset

of covariates with V 2 Rq for q  p. For each a 2 A, we define a counterfactual

data unit Xi(a) = (Wi, Yi(a)) ⇠ P0,a corresponding to the data that would have been

observed on unit i if, possibly counter to fact, the unit had been assigned treatment

a. The Conditional Average Treatment Effect (CATE) is defined as 0,a(v) :=

E0,a [Y (a) | V = v]� E0,a [Y (0) | V = v], where for a P0,a-measurable functions f , we

write the expectation of f(O) as E0,a[f(O)] =
R
fdP0,a. We note that our notation for

the CATE explicitly makes level 0 of the treatment a referent level against which all

other treatments are compared and we define A0 := A \ {0}.

The CATE quantifies the expected difference in counterfactual outcome under

treatment a 2 A0 versus treatment 0 for data units with V = v. Also of interest is the

Optimal Treatment Policy (OTP), d0,·(v) := argmaxa2AE0,a [Y (a) | V = v]. Given an

estimate ̂(a | v) of 0(a | v), we can construct an estimate of the OTP as

d̂(a | v) :=

8
>><

>>:

0 if ̂(a | v) < 0 8 a 2 A0

arg max
a2A0

 ̂(a | v) else
.

Estimation of the CATE and OTP require a set of causal assumptions that allow

46

us to rewrite the parameter without unobservable counterfactuals. One set of such

assumptions is as follows.

1. Positivity: P0{0 < P0(A = a | W) < 1} = 1 8 a 2 A

2. No confounding: Y (a) ? A | W 8a 2 A

3. Consistency: Yi =
P

a2A a(Ai)Yi(a)

4. No interference: the counterfactual outcome of each individual under each treatment

does not depend on treatments assigned to other individuals in the population

If these assumptions are satisfied the CATE is identified by a parameter of the

distribution of the observed data P0. We define µ0(a, w) := E0 [Y | A = a,W = w],

where E0 denotes expectation under P0. The CATE is identified by 0(a | v) =

E0 [µ0(a,W)� µ0(0,W) | V = v]. The object µ0 is referred to as the outcome regres-

sion. Below, we also discuss the propensity score for treatment a, ⇡0(a | w) := P0(A =

a | W = w).

3.2.2 Meta-Learning With Two Treatment Arms

This CATE estimation problem is commonly presented in the case of two treatment

arms, A = {0, 1}, in which case the target parameter for estimation is 0(1 | ·), a

function only of covariates V . A common approach to estimation of 0(1 | ·) is the

S-Learner [31], so called because it involves a single outcome regression estimator.

The estimate µ̂ of µ0 can be obtained using any regression technique. For example,

many such techniques estimate µ0 by minimizing an empirical risk criteria based on a

loss (, o) ! L(µ)(o). We focus throughout on results for squared-error loss with the

understanding that other loss functions could be used. For the purpose of learning µ0,

squared error loss may be written L(µ)(o) := {y � µ(a, v)}2.

47

Regardless of the learning approach adopted to generate µ̂, the S-Learner CATE

estimate can be obtained post-hoc. If V = W , then the estimate is ̂S(1 | w) :=

µ̂(1, w)� µ̂(0, w). If instead, V ⇢ W , then a second-stage of learning is required. In

particular, we define a pseudo-outcome Dµ̂(Oi) := µ̂(1,Wi) � µ̂(0,Wi) and regress

this pseudo-outcome on covariates V to obtain the CATE estimate ̂S(1 | v) :=

Ê [Dµ̂(O) | V = v]. Again, the regression learning technique is interchangeable. For

example, we could minimize empirical risk based on squared error loss LS()(o) =

{Dµ(o)� (1 | v)}2.

An alternative strategy sometimes adopted is to split the data and regress Y on W

separately for each treatment group to obtain estimates µ̂(0, w) and µ̂(1 | w) of µ0(1, w)

and µ(0, w) respectively. This method is referred to as the T-Learner [31]. Again,

if V = W , we can estimate the CATE by subtracting the two regression estimates:

 ̂T(1 | w) = µ̂(1, w)� µ̂(0, w). If V ⇢ W , this difference constitutes a pseudo-outcome

which we further regress V to obtain our CATE estimate. The T-learner typically has

lower performance due to the lack of information sharing across treatment arms when

estimating the outcome regression [30]. Thus, it is not considered further here.

van der Laan [50] describes a Doubly Robust (DR)-Learner, which involves estima-

tion not only of the outcome regression µ0, but also the propensity score ⇡0. The two

nuisance parameter estimates µ̂ or ⇡̂ are both used to construct the pseudo-outcome:

Dµ̂,⇡̂(Oi) =


2Ai � 1

⇡̂(Ai | Wi)

�
{Yi � µ̂(Ai,Wi)}

+ µ̂(1,Wi)� µ̂(0,Wi) .

(3.1)

Dµ̂,⇡̂(O) is then regressed on V to obtain the CATE estimate ̂DR(1 | v) := Ê [Dµ,⇡(O) | V = v].

We can obtain this estimate, for example, via empirical risk minimization based on a

loss LDR()(o). We focus on squared-error loss, LDR()(o) = {Dµ,⇡(o)� (1 | v)}2.

This estimator is referred to as doubly robust because E0[Dµ,⇡(O) | V = v] = 0(1 | v)

48

if either µ = µ0 or ⇡ = ⇡0. Thus, we generally expect that ̂DR will be consistent for

 0 if either µ̂ is consistent for µ0 or ⇡̂ is consistent for ⇡0.

3.2.3 Meta-Learning with Multiple Treatment Arms

These methods readily extend to the case when |A| > 2. We describe analogs of each

of the Meta-Learners when there are multiple treatment arms. First, we must choose

a reference treatment against which we will compare all others. This may be a control

group or it may just be one arm chosen arbitrarily. Throughout this paper, we will let

A = 0 be the reference treatment.

In the case when V = W , the S-Learner procedure is largely unchanged. We

regress Y on A and W to obtain µ̂(a, w), which can then be used to construct

 ̂S(a | w) := µ̂(a, w)� µ̂(0, w) for each a 2 A0.

In the case when V ⇢ W , the S-Learner requires estimation of µ0(a, w) and second

stage regression as before. For a given a, we could learn ̂S(a | v) by empirical risk

minimization, based on the loss L
a
S,µ()(o), such as mean squared-error, La

S,µ()(o) =

{Da
µ(o)� (a | v)}2.

Alternatively, we could learn each ̂(a | v) simultaneously by considering a summed

loss function LS,µ() :=
P

a2A0
!(a)La

Sµ(). Here, !(a) is any positive weight. We

index the loss by µ to enable distinction between the regression using the estimated

nuisance parameters and the regression using the true nuisance parameters.

To minimize this summed loss, we create |A|� 1 pseudo-outcomes for each indi-

vidual, with the form of the pseudo-outcome for the i
th individual associated with

 (a | v) calculated as

D
a
µ̂(Oi) = µ̂(a,Wi)� µ̂(0,Wi) . (3.2)

This results in a modified dataset with n · (|A|� 1) rows. We then regress the stacked

pseudo-outcome values on covariates plus one-hot-encoded a values.

49

To construct the DR-Learner with multiple treatments, we similarly create |A|� 1

pseudo-outcomes for each individual. In this case, the pseudo-outcome for the i
th

individual associated with 0(a | v) is

D
a
µ̂,⇡̂(Oi) =


a(Ai)

⇡̂(a | Wi)
� 0(Ai)

⇡̂(0 | Wi)

�

· {Yi � µ̂(Ai,Wi)}+ µ̂(a,Wi)� µ̂(0,Wi) .

(3.3)

Note that if an individual i has Ai = a 6= 0, (3.3) reduces to

D
a
µ̂,⇡̂(Oi) =

{Yi � µ̂(Ai,Wi)}
⇡̂(a | Wi)

+ µ̂(a,Wi)� µ̂(0,Wi) .

If instead Ai = 0, then (3.3) reduces to

D
a
µ̂,⇡̂(Oi) = �{Yi � µ̂(Ai,Wi)}

⇡̂(0 | Wi)
+ µ̂(a,Wi)� µ̂(0,Wi) .

Finally, if individual i has Ai /2 {0, a}, (3.3) reduces to

D
a
µ̂,⇡̂(Oi) = µ̂(a,Wi)� µ̂(0,Wi) .

This pseudo-outcome form is doubly robust as established below.

Theorem 3.2.1. For each a 2 A0, E0[Da
µ,⇡(O) | V = v] = 0(a | v) if either µ = µ0

or ⇡ = ⇡0.

The proof of Theorem 3.2.1 can be found in section B.1 of the Appendix. As

with the S-Learner, the CATE estimate of is obtained by regressing the stacked

pseudo-outcomes D
a
µ̂,⇡̂(O) against the covariates V and one-hot-encoded a values.

3.2.4 Causal Trees and Forests

Athey and Imbens [5] developed Causal Trees for estimating the CATE in a way that

50

can be represented as a decision tree. The method involves recursively partitioning

the feature space into regions that have constant treatment effect. They employ what

they call “honest estimation" of the CATE by using separate sets of data to partition

the feature space and estimate the treatment effects within the resulting partitions.

Partitioning is done in a greedy way to minimize an estimate of the expected mean

square error of the treatment effect. The optimal depth of the tree is selected via

cross-validation, and the tree is then pruned to the selected depth. Finally, treatment

effects are estimated within each region of the partition using a held out dataset. An

extension of this method, Causal Forests, applies bootstrap aggregation to Causal

Trees in order to obtain smoother estimates of the CATE [56]. We compare the

performance of both Causal Trees and Causal Forests to our method in section 3.5.

3.3 The Highly Adaptive Lasso

3.3.1 Background

Our method centers on use of the Highly Adaptive Lasso (HAL) for regression in the

final stage of the chosen Meta-Learning algorithm. We briefly introduce HAL and its

properties in the context of a general supervised learning task. Later, we extend these

properties to estimation of the CATE.

HAL is a general approach for estimation of functional parameters using regularized

empirical risk minimization. The theory of HAL is built around two assumptions about

the underlying functional paramter: (i) that it is right-continuous with left-hand limits

and (ii) that it has finite variation norm. The assumption of smoothness defined by a

function’s variation norm has been long studied in the statistical learning literature

[17].

Benkeser and Van Der Laan [8] and van der Laan [49] discuss an approach for

finding the minimum loss-based estimator (MLE) in the class of functions with

51

variation norm smaller than a finite constant.The MLE is computed absed on the

fact that any cadlag function with finite variation norm can be arbitrarily well-

approximated by a tensor product of indicator basis functions. If learning, for example,

the mean of a random variable Z conditional on a set of variables C, the functional

form of the estimate is �̂0 + �̂
>
C b(c), where b(c) is an n-length vector with i-th entry

equal to �Ci(c). As the dimension of X increases, we include tensor product basis

functions. For example, in the bivariate case C = (C1, C2) the functional form is

�̂0 + �̂
>
C1
c1(x) + �̂

>
C2
b2(c) + �̂

>
C1,C2

b1(c)b2(c), where for j = 1, 2, the i-th entry of bj

is equal to �Cj,i . The idea generalizes to arbitrary p with at most n(2p � 1) basis

functions included.

Due to the construction of the basis functions, the L1-norm of the �̂ coefficients

equals the variation norm of the estimate. Thus, HAL estimates can be achieved by

making use of regularized risk minimization algorithms that have been made popular

by the lasso algorithm [47]. Benkeser and Van Der Laan [8] showed that HAL estimates

converge in terms of regret at a rate of op(n�[1/4+1/{8p+1}]), where p is the dimension

of the feature vector. The authors also demonstrated competitive performance of HAL

with other commonly used machine learning frameworks across a variety of empirical

experiments.

3.3.2 Highly Adaptive Regression Trees

Previous work has shown that regression fits generated by the Highly Adaptive Lasso

algorithm can be represented as trees [37] referred to as Highly Adaptive Regression

Trees (HART). HAL itself results in a non-recursive partitioning of the feature space.

The HART algorithm involves generating a set of candidate values implied by the

HAL fit and using those values to recursively partition the feature space. In each

sub-region of the feature space, the set of candidate values is appropriately pruned to

minimize the amount of redundancy in the final tree representation.

52

These tree representations make HAL an ideal candidate for the estimation of

CATEs and, by extension, treatment policies.

3.4 CATE Estimation with HAL

3.4.1 Theoretical Guarantees for S and DR learners

Let µ̂ and ⇡̂ be given estimates of µ0 and ⇡0. Further, let R̂
⇤
p := op(n�[1/4+1/{8p+1}]),

which is the regret rate of the HAL estimator when estimating a function of bounded

variation. Finally, for general P0-measurable function f of O, we define the Lm(P0)

norm of f to be ||f ||m,P0 :=
�R

f
m
dP0

�1/m
.

Theorem 3.4.1. Let ̂S(v) be an estimate of 0(v) constructed with the S-learner

algorithm. If V = W and HAL is used to construct the estimator, then

Z h
LS(̂S)� LS(0)

i
dP0 = R̂

⇤
p
2
.

If V ⇢ W , and HAL is used to perform the second stage regression, then

Z h
LS,µ0(̂S)� LS,µ0(0)

i
dP0

=
X

a2A0

op(||µ̂(a, ·)� µ0(a, ·)||2,P0) · R̂⇤
q + R̂

⇤
q

A proof of Theorem 3.4.1 can be found in Appendix section B.2. Recall that when

V = W , the S-Learner only involves estimation of the outcome regression µ0(a, v).

Intuitively then, when HAL is used to estimate µ0(a, v), the S-Learner CATE estimate

converges in terms of regret to the true CATE at a rate of R⇤
n,p. When V ⇢ W , the

S-Learner requires estimation of µ0 as a nuisance parameter. We consider the rate at

which the S-Learner CATE estimate constructed with the true outcome regression

converges in terms of regret to the true CATE. We see that when HAL is used for

53

the second stage regression this rate depends both on the regret rate of the outcome

regression estimator and that of the HAL pseudo-outcome regression estimator.

We have the following result for the DR learner.

Theorem 3.4.2. Let ̂DR(v) be an estimate of 0(a | v) constructed with the DR-

learner algorithm. If HAL is used for the final stage regression, then

Z h
LDR,µ0,⇡0(̂DR)� LDR,µ0,⇡0(0)

i
dP0

= R̂
⇤
q +

X

a2A0

[op (||⇡̂(a | ·)� ⇡0(a | ·)||4,P0)

· op (||µ̂(a, ·)� µ0(a, ·)||4,P0)] · R̂⇤
q .

Theorem 3.4.2 gives a similar result for the DR-Learner as with the S learner, but

where the rate now depends on the regret rates of the estimates of ⇡0(a | w) and

µ0(a, w). A proof can be found in Appendix section B.3. The theorem indicates that

the DR-Learner may enjoy advantages over the S-Learner. Consider a scenario in

which the CATEs and propensity score are easier to learn than the outcome regression.

When using the S-Learner, the overall regret rate may be slowed by poor estimation

of the outcome regression. However, the rate of the DR-Learner involves the product

of the regret rates of the propensity score and the outcome regression. Thus, the

ability to quickly learn the propensity score may mitigate the impact of poor outcome

regression estimation, thereby achieving an overall rate closer or equal to R̂
⇤
q . This

scenario is plausible in several settings including when the data are generated from

randomized experiments.

Moreover, the pseudo-outcome regression may be easier to learn than the outcome

regression itself simply because the contrast function µ0(a, ·)� µ0(0, ·) may be simpler

or smoother function than µ0 itself. In the case of HAL, the most relevant measure of

smoothness is the variation norm of the respective functions. In the case when V ⇢ W ,

we may also expect that 0 will have lower variation norm than µ0(a, w)�µ0(0, w), as

54

Algorithm 4: CATE Tree Construction
Input: CATE Estimate ̂(a | v)
if |A| == 2 then

Apply HART to ̂(1 | v)
Collapse regions with identical terminal nodes

else

Apply HART to ̂(a | v) enforcing A appears first
Collapse regions with identical terminal nodes

end if

it conditions on a subset of variables, thereby averaging over covariates across which

there may be substantial variation in µ0.

3.4.2 Tree Representations

When HAL is used as the final stage regression estimator for either the S or DR-

learning procedures, the resulting CATE and OTP estimates can be represented using

trees. Both of those procedures rely on extensions of the original HART algorithm

[37]. In the case when there are two treatments, we can simply apply the original

HART algorithm to build a CATE representation and apply a threshold of 0 to the

terminal nodes in that tree in order to obtain a OTP estimate representation. In the

case when there are more than two treatments, we must account for the treatment

indicator variables in the tree. The HART algorithm allows the user to select the

order that variables appear in the tree. Typically, we aim to find an ordering that

minimizes the size of the tree. However, in this case, it is convenient to enforce that

the treatment indicator variables appear first in the tree so that the effects for each

treatment arm relative to the reference treatment are represented by distinct regions

of the tree. Full details for representing the CATE estimate as a tree are shown in

algorithm 4.

When representing the OTP in the case of more than two treatments, we can

enforce that the treatment indicator variables appear last in the tree, just before the

55

Algorithm 5: Treatment Policy Tree Construction
Input: CATE Estimate ̂(a | v)
if |A| == 2 then

Apply HART to ̂(1 | v)
Set terminal node values to 1 if ̂(1 | v) > 0, 0 else
Collapse regions with identical terminal nodes

else

Apply HART to ̂(a | v) enforcing A appears last
Replace treatment nodes and terminal nodes with argmaxa2A ̂(a | v) in each

region
Collapse regions with identical terminal nodes

end if

terminal nodes in the regions where they are necessary to split on. We can then

replace the treatment indicator variable nodes and the terminal nodes with terminal

nodes displaying the treatment that has the highest expected counterfactual outcome.

Full details for representing the OTP estimate can be found in algorithm 5.

3.5 Simulations

We performed simulations to evaluate the performances of both the S and DR-

Learner versions of HATT. We also compared their performances to those of Causal

Trees, Causal Forests, and the S and DR-Learners built with other machine learning

algorithms.

3.5.1 Data generating process

Simulations were conducted under three settings, linear, polynomial, and sinusoidal, so

named for the chosen functional form of the true CATEs. In each setting we considered

a continuous outcome Y and a binary treatment A 2 {0, 1}. Additional simulations

with |A| = 3 treatment arms are included in Appendix section ??. Counterfactual

outcome values were calculated by adding standard normal random noise to the

specified true outcome regression. Treatment values were assigned by simulating from

56

a Bernoulli distribution with probability of A = 1 set by a chosen propensity score

function. We simulated data at sample sizes n = 50, 100, 200, 500, and 1000. We

generated data, fit models to estimate the CATE and OTP and evaluated performances

using metrics described in 3.5.2. This process was replicated 1000 times at each sample

size, and results were averaged. Below are descriptions of each setting.

Linear setting

Here we considered p = 5 covariates, and set the task of estimating the treatment

effect conditional on all five. All covariates were simulated independently from standard

normal distributions. The true outcome regression was µ0(a, w) = 4a+ 5aw1 + w2 �

3w3 + 5w3 ⇤ w4. Consequently, the true CATE was 0(1 | w) = 4 + 5w1. We specified

the true propensity score as

⇡(a | w) = 1

1 + exp(�.5 ⇤ w1 + .2w2 � .3w3 + w5)
.

Polynomial setting

Here we again considered p = 5 covariates and aimed to estimate the CATE

conditional on all 5. This time we specified a polynomial function of covariates for the

outcome regression: µ0(a, w) = 5a+ 2aw1 + w2 � 3aw3w
2
5 + 2aw3

4. This resulted in a

CATE of 0(1 | w) = 5 + 2w1 � 3w3w
2
5 + 2w3

4. We set the propensity score to be the

same as the logistic regression specified in the linear setting.

Sinusoidal setting

Here we considered p = 1 covariate, W1 simulated from a standard normal distribu-

tion. We set the true outcome regression as µ0(a, w) = sin{(2a� 1)cw1}, for c = 1, 10.

This resulted in CATEs of the form 0(1 | w) = sin(cw1)� sin(�cw1). The propensity

score was set to be constant ⇡(a | w) = 0.5 for all w.

57

3.5.2 Evaluation

To evaluate each estimation method, we generated independent test datasets of size

N = 1e5. These data sets were first used to approximate the L2 norm of each estimated

CATE: E[(̂(1 | w)� 0(1 | w))2], a measure of global fit of ̂ to 0. Next, we used

the test data to estimate the value of the learned policy. That is, we can simulate

counterfactuals Y (a) for all a 2 A for observations in the test datasets. We then

evaluate the learned policy recommendation for each test dataset observation. The

value of the policy is the average value of the counterfactual treatment recommended

by the learned policy.

3.5.3 Linear CATE Results

DR-Learning of the CATE with HAL as the second stage algorithm and S-Learning

with a Super Learner [51, 57, 11] ensemble performed best both in terms of policy

value and L2 norm (Figure 3.1). Both methods yielded high initial policy values,

showed fast convergence to the optimal policy value, and yielded the smallest L2

norms at all sample sizes. The performance of S-Learning with HAL is lower, which

may be explained by the fact that the DR-Learner with HAL uses Super Learner,

which may be providing a more accurate outcome regression estimate than HAL itself.

Causal Tree, the only other interpretable method of estimation, showed significantly

lower performance at all sample sizes than HAL-based methods.

3.5.4 Polynomial CATE Results

In this setting, DR-Learning with HAL and S-Learning with Super Learner still tended

to have the highest performers, though the relative improvements over other methods

was less marked than in the linear setting (Figure 3.2). As with the linear setting, the

benefit of Doubly-Robust estimation is still evident, though less pronounced.

58

3.6

3.8

4.0

4.2

4.4

4.6

250 500 750 1000
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

linear CATE

0

10

20

30

250 500 750 1000
Sample Size

L2
 N

or
m

linear CATE

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure 3.1: Simulation results under the Linear setting. The DR-Learner with HAL
used Super Learning to construct nuisance parameter estimates. Results at each
sample size are averaged over 1000 replications.

5.0

5.5

6.0

250 500 750 1000
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

polynomial CATE

25

50

75

100

250 500 750 1000
Sample Size

L2
 N

or
m

polynomial CATE

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure 3.2: Simulation results under the Polynomial setting. The DR-Learner with
HAL used Super Learning to construct nuisance parameter estimates. Results at each
sample size are averaged over 1000 replications.

59

0.45

0.50

0.55

0.60

250 500 750 1000
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

sin CATE, C=1

0.0

0.3

0.6

0.9

250 500 750 1000
Sample Size

L2
 N

or
m

sin CATE, C=1

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure 3.3: Simulation results under the Sinusoidal setting with lower variation norm.
The DR-Learner with HAL used Super Learning to construct outcome regression
estimates. All propensity score estimates were constructed with simple means. At
n = 50, Causal Forest showed abnormally low performance and is omitted from the
plot to keep other learners distinguishable. Results at each sample size are averaged
over 1000 replications.

3.5.5 Sinusoidal CATE Results

When C = 1 (indicating a lower variation norm of the outcome regression), Causal

Forest, and S-Learner with Super Learner were the highest performers, while the

DR-Learner with HAL shows marginally lower performance (Figure 3.3). When C

is increased to 10, DR-Learning with HAL and DR-Learning with XGBoost tended

to perform best (Figure 3.4). At the lower sample sizes, S-learning with HAL shows

poor performance. This drop is likely due to the increased variation norm of the true

outcome regression. This reinforces the idea that, in cases when HAL is not powerful

enough to estimate the the CATE in single stage regression, it can be paired with

other learning techniques, such as Super Learner to achieve superior performance

while preserving interpretability of the final CATE estimate.

60

0.0

0.2

0.4

0.6

250 500 750 1000
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

sin CATE, C=10

1

2

250 500 750 1000
Sample Size

L2
 N

or
m

sin CATE, C=10

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure 3.4: Simulation results under the Sinusoidal setting with higher variation norm.
The DR-Learner with HAL used Super Learning to construct outcome regression
estimates. All propensity score estimates were constructed with simple means. Results
at each sample size are averaged over 1000 replications.

3.6 Data Analysis

We analyzed experimental data to identify the conditional effect of sending mailers with

messages addressing ballot secrecy concerns on voter turnout in the 2010 Connecticut

congressional general election [24]. Researchers worked with the Connecticut Secretary

of State to sent written messages to n = 3744 registered voters who had not voted in

the 2008 presidential election. There were two “treatment” arms. Some registrants

received a letter containing information about voting and a message intending to

assuage concerns about ballot secrecy. The other registrants received a letter containing

only voting information. Several covariates were recorded for each subject including age,

gender, political party (Republican or Democrat), number of members of household,

and the town in which they resided. The reseachers then recorded whether each

individual had cast a vote in the 2010 election.

We employed the DR-Learner with the estimated propensity score given by the

sample proportion in each treatment condition and the estimated outcome regression

produced using a Super Learner ensemble. HAL was used to carry out the second

stage regression, and we employed Algorithm 4 to build a tree representation (Figure

61

M-dev age< �1.29

0.025 household size 1

female

0.035 0.036

M-Dev Age< 9.29

female

0.035 0.036

female

0.056 0.058

Y es No

Figure 3.5: Tree representing the effect of receiving a mailer with a message meant
to assuage fears about ballot secrecy. M-dev age represent the number of years
above the median study age. The terminal nodes represent differences in estimated
counterfactual probability of voting under treatment versus control.

3.5). As we can see there is a small amount of heterogenity in the estimated effect

of the treatment across different strata of the covariates. In general, the effect of a

secrecy message seems lower for females than males. The effect also appears negatively

correlated with age. Furthermore, there is an interaction between the subjects age and

household size. Whether or not the subject was the sole member of their household

only changed the treatment effect for subjects greater than 9.29 years above the

median study age. All strata have positive estimated effects, and the resulting optimal

treatment policy would be to send messages to assuage fears about ballot secrecy

to everyone. However, such a tree could be useful in prioritizing segments of the

population in a, resource-limited setting. For example, if an organization aiming to

increase turnout could only send mailers to a fraction of potential voters, they could

prioritize older registrants living in households with larger numbers of people.

3.7 Discussion

In this paper we have introduced a method for CATE and OTP estimation that

empirically has strong performance and has desirable interpretability properties. The

62

empirical results seen in our experiments align with the regret rate theory that we

establish. When paired with our adaptations of the tree representation algorithms in

Nizam and Benkeser [37], the method provides an appealing framework for developing

data-driven, interpretable decision making systems. Nevertheless, a potential downside

of this work is that, while learned OTP may be interpretable, they may not satisfy

fundamental notions of fairness. A concern is that the interpretability of an OTP

may provide a false sense of security in terms of fairness. However, it is not clear that

human observers will be adequate judges of the fairness of an OTP simply by studying

the policy alone. This may be particularly true if the tree for the OTP is complex.

In the future, we would like enhance our work by making use of the literature on

algorithmic fairness, such as in Nabi et al. [35]. Unifying such work with our own

could lead to the development of policies that are interpretable, optimal, and fair.

63

Appendix A

Chapter 1 Supplementary Material

A.1 Notation

Here we define new notation to be used throughout Appendix A.

• Let P be a probability measure and f be a measurable function. We define

Pf :=
R
fdP . Further, for two measures P1 and P2, we can define (P1�P2)f :=

R
fd(P1 � P2) :=

R
fdP1 �

R
fdP2. For two measurable functions f1 and f2, we

define P (f1 � f2) := Pf1 � Pf2.

• In the proof of Theorem 1.3.1 we suppress the dependence of the AUPRC on

the function and the data X in notation by letting Z := (X).

• In the proof of Theorem 1.3.1, we write the AUPRC in a new form. Let

QP (z, y) :=
y

P (Y=1) ·
P (Z>z,Y=1)

P (Z>z) . Then we can define the AUPRC as �(P) :=
R R

QP (z, y)P (dz, dy) := PQP .

• In the proof of Theorem 1.3.1, we let F0,Z|Y=1(z) := P (Z  z|Y = 1).

64

A.2 Theorem 1.3.1 Proof

Under the new notation defined in which the dependence on is suppressed, we can

refer to our NPML estimator using �(Pn) and the true value using �(P0). We begin

by decomposing the difference between the estimate and the truth into several terms:

�(Pn)� �(P0) = PnQPn � P0QP0

= PnQPn � P0QP0 ± PnQp0 ± P0QPn ± P0QP0 ± (Pn � P0)(QPn �QP0)

= (Pn � P0)QP0 + P0(QPn �QP0) + (Pn � P0)(QPn �QP0)

= (Pn � P0)QP0 + P0(QPn �QP0) +Rn,1

where Rn,1 := (Pn � P0)(QPn �QP0). We break this proof into two parts. In part (i)

we will show that (Pn � P0)QP0 + P0(QPn � QP0) =
1
n

Pn
i=1 D�(P0)(Oi) + op(n�1/2).

In part (ii) we will show that Rn,1 = op(n�1/2), and the proof will be complete.

(i) Consider QPn �QP0 = QPn(z, y)�QP0(z, y). Plugging in the definitions of both

terms, we have

QPn(z, y)�QP0(z, y) = y


Pn(Z > z | Y = 1)

Pn(Z > z)
� P0(Z > z | Y = 1)

P0(Z > z)

�
.

We can rewrite this as

y


Pn(Z > z | Y = 1)

Pn(Z > z)
� P0(Z > z | Y = 1)

P0(Z > z)

± Pn(Z > z, Y = 1)

P0(Y = 1)P0(Z > z)
± P0(Z > z = 1)Pn(Y = 1)

P0(Y = 1)P0(Z > z)

± P0(Z > z | Y = 1)

P0(Z > z)
± P0(Z > z | Y = 1)Pn(Z > z)

P0(Z > z)

�
,

(A.1)

65

which can be rearranged to

QPn(z, y)�QP0(z, y) =
1

n

nX

i=1

1

P0(Z > z)

Yi

P (Y = 1)
[I(Zi > z)� P0(Z > z | Y = 1)]

� 1

n

nX

i=1

P0(Z > z | Y = 1)

P0(Z > z)2
[I(Zi > z)� P0(Z > z)]

+Rn,2.

(A.2)

The first term above comes from combining the positive portion of the third term and

the negative portion of the fourth term in [ref]. The second term above comes from

combining the positive portion of the fifth term and the negative portion of the sixth

term of [ref]. Rn,2 is comprised of the remaining terms and is defined below:

Rn,2 =
Pn(Y = 1, Z > z)

Pn(Y = 1)Pn(Z > z)
� P0(Y = 1, Z > z)

P0(Y = 1)P0(Z > z)

� Pn(Y = 1, Z > z)

P0(Y = 1)P0(Z > z)
+

Pn(Z > z | Y = 1)Pn(Y = 1)

P0(Y = 1)P0(Z > z)

� P0(Z > z | Y = 1)

Pn(Z > z)
+

P0(Z > z | Y = 1)Pn(Z > z)

P0(Z > z)2

We can show by repeatedly adding, subtracting, and rearranging terms that

Rn,2 = op(n�1/2). Our goal is to produce terms of the form AnBn
Cn

where An = op(1),

Bn = Op(n�1/2), and Cn
p! c for some constant c. Then, by the Continuous Mapping

Theorem, An
Cn

= op(1), and we can conclude that AnBn
Cn

= op(1)Op(n�1/2) = op(n�1/2).

We begin by considering the first and third terms of Rn,2 above:

66

Pn(Y = 1, Z > z)

Pn(Y = 1)Pn(Z > z)
� Pn(Y = 1, Z > z)

P0(Y = 1)P0(Z > z)

=
Pn(Y = 1, Z > z)

Pn(Y = 1)Pn(Z > z)
� Pn(Y = 1, Z > z)

P0(Y = 1)P0(Z > z)
± Pn(Y = 1, Z > z)

P0(Y = 1)Pn(Z > z)

= Pn(Y = 1, Z > z)


P0(Y = 1)� Pn(Y = 1)

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

�

+ Pn(Y = 1, Z > z)


P0(Z > z)� Pn(Z > z)

P0(Y = 1)P0(Z > z)Pn(Z > z)

�

± P0(Y = 1, Z > z)


P0(Y = 1)� Pn(Y = 1)

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

�

± P0(Y = 1, Z > z)


P0(Z > z)� Pn(Z > z)

P0(Y = 1)P0(Z > z)Pn(Z > z)

�

=
[Pn(Y = 1, Z > z)� P0(Y = 1, Z > z)] [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+
[Pn(Y = 1, Z > z)� P0(Y = 1, Z > z)] [P0(Z > z)� Pn(Z > z)]

P0(Y = 1)P0(Z > z)Pn(Z > z)

+
P0(Y = 1, Z > z) [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+
P0(Y = 1, Z > z) [P0(Z > z)� Pn(Z > z)]

P0(Y = 1)P0(Z > z)Pn(Z > z)

= op(n
�1/2) +

P0(Y = 1, Z > z) [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+
P0(Y = 1, Z > z) [P0(Z > z)� Pn(Z > z)]

P0(Y = 1)P0(Z > z)Pn(Z > z)

Note that the first two terms after the third equality take the form AnBn
Cn

as discussed.

Therefore the final equality follows. Next, consider the second, fourth, fifth, and sixth

terms of Rn,2. Letting d0 :=
P0(Y=1,Z>z)

P0(Y=1)P0(Z>z) , we can factor and rewrite those terms as

d0


Pn(Z > z)� P0(Z > z)

P0(Z > z)

�
+ d0


Pn(Y = 1)� P0(Y = 1)

P0(Y = 1)

�
.

Putting all six terms of Rn,2 back together, we can now write

67

Rn,2 = d0


P0(Z > z)� Pn(Z > z)

Pn(Z > z)
+

Pn(Z > z)� P0(Z > z)

P0(Z > z)

�

+
P0(Y = 1, Z > z) [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+ d0


Pn(Y = 1)� P0(Y = 1)

P0(Y = 1)

�
+ op(n

�1/2)

= d0


{P0(Z > z)� Pn(Z > z)} {Pn(Z > z)� P0(Z > z)}

Pn(Z > z)P0(Z > z)

�

+
P0(Y = 1, Z > z) [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+ d0


Pn(Y = 1)� P0(Y = 1)

P0(Y = 1)

�
+ op(n

�1/2)

=
P0(Y = 1, Z > z) [P0(Y = 1)� Pn(Y = 1)]

P0(Y = 1)Pn(Y = 1)Pn(Z > z)

+ d0


Pn(Y = 1)� P0(Y = 1)

P0(Y = 1)

�
+ op(n

�1/2)

where the second equality results from finding a common denominator for the two

fractions in the first term of the first equality. We then note that this term also

takes the form AnBn
Cn

and is therefore op(n�1/2). The final equality follows since

op(n�1/2) + op(n�1/2) = op(n�1/2). The remaining two terms may be shown to be

op(n�1/2) using similar techniques, beginning with adding and subtracting the term

d0
P0(Y=1)�Pn(Y=1)

Pn(Y=1) . We omit the details in the interest of space. Thus, having shown

that Rn,2 = op(n�1/2), applying P0 to A.2 yields

68

P0(QPn �QP0)

=

Z

z

P0(Y = 1)
1

n

nX

i=1

⇢
Yi

P0(Z > z)P0(Y = 1)
[I(Zi > z)� P0(Z > z | Y = 1)]

�
dF0,Z|Y=1(z)

�
Z

z

P0(Y = 1)
1

n

nX

i=1

⇢
P0(Z > z | Y = 1)

P0(Z > z)2
[I(Zi > z)� P0(Z > z)]

�
dF0,Z|Y=1(z)

+ op(n
�1/2)

=
1

n

nX

i=1

Yi

Z

z

⇢
I(Zi > z)� P0(Z > z | Y = 1)

P0(Z > z)

�P0(Y = 1, Z > z)

P0(Z > z)2
[I(Zi > z)� P0(Z > z)]

�
dF0,Z|Y=1(z)

+ op(n
�1/2)

=
1

n

nX

i=1

⇢
Yi

Z

z<Zi

1

P0(Z > z)
dF0,Z|Y=1(z)�

Yi

P0(Y = 1)
�(P0)

�
Z

z<Zi

P0(Z > z, Y = 1)

P0(Z > z)2
dF0,Z|Y=1(z) + �(P0)

�
+ op(n

�1/2)

Where the second and third equalities are the result of rearranging terms. Using this

result, we may return to the difference between the NPMLE and the truth and write

�(Pn)� �(P0) = P0(QPn �QP0) + (Pn � P0)QP0 +Rn,1

=
1

n

nX

i=1

⇢
Yi

Z

z<Zi

1

P0(Z > z)
dF0,Z|Y=1(z)�

Yi

P0(Y = 1)
�(P0)

�
Z

z<Zi

P0(Z > z, Y = 1)

P0(Z > z)2
dF0,Z|Y=1(z) + �(P0)

�

+
1

n

nX

i=1

⇢
Yi

P0(Y = 1)
· P0(Z > Zi, Y = 1)

P0(Z > Zi)
� �(P0)

�
+ op(n

�1/2) +Rn,1.

Bringing all but the remainder terms into the same sum and rearranging gives

69

�(Pn)� �(P0) =
1

n

nX

i=1

8
<

:

Z

z<Zi


Yi �

P0(Z > z, Y = 1)

P0(Z > z)

�✓
1

P0(Z > z)

◆
dF0,Z|Y=1(z)

+
Yi

P0(Y = 1)


P0(Z > Zi, Y = 1)

P0(Z > Zi)
� � (P0)

��
+ op(n

�1/2) +Rn,1

=
1

n

nX

i=1

D�(P0)(Zi, Yi) + op(n
�1/2) +Rn,1.

Where D�(P0)(Zi, Yi) is exactly as defined in the statement of Theorem 1.3.1 using

reduced notation. The only remaining task is to show that Rn, 1 = op(n�1/2).

(ii) Recall that Rn,1 = (Pn � P0)(QPn � QP0). Using a key result from Empirical

Process Theory [54], we can state that (Pn � P0)(QPn �QP0) = op(n�1/2) if:

1. P0(QPn �QP0)
2 = op(1)

2. QPn �QP0 falls in a P0-Donsker Class.

We introduce the following notation to prove that the two conditions above are met:

• Qp(z, y) :=
y

P (Y=1) ·
P (Z>z,Y=1)

P (Z>z)

• PQp :=
R
Qp(z, y)dP (y, z)

• h0 := P0(Y = 1)

• fz(
⇠
o) := I(

⇠
z > z)

• f1,z(
⇠
o) := I(

⇠
y = 1,

⇠
z > z)

• gn(z) := Pn(Y = 1 | Z > z) = Pnfz
Pnf1,z

• hn := Pn(Y = 1)

• Similarly for g0(z) and h0

70

Beginning with condition 1, we can rewrite

P0(QPn �QP0)
2 =

Z
y

✓
gn(z)

hn
� g0(z)

h0

◆2

dP0(y, z)

=

Z
y

✓
gn(z)

hn
± gn(z)

h0
± g0(z)

hn
± g0(z)

h0
� g0(z)

h0

◆2

=
(hn � h0)2

h2
nh

2
0

Z
yg

2
0(z)dP0(y, z) (A.3)

+
h
2
n + (hn � h0)2

h2
nh

2
0

Z
y(gn(z)� g0(z))

2
dP0(y, z) (A.4)

By the Continuous Mapping Theorem and Slutsky’s Theorem, term A.3 and the

portion of A.4 outside of the integral are both op(1). Thus, to prove that condition 1

holds, we must only show that
R
y(gn(z)� g0(z))2dP0(y, z) = op(1).

We can decompose that term and subsequently bound the resulting summands in the

following way:

Z
y(gn(z)� g0(z))

2
dP0(y, z)

=

Z
y


(Pn � P0)fz

P0f1,z

�2
dP0(y, z)

+

Z
yP

2
0 fz


(Pn � P0)f1,z
Pnf1,zP0f1,z

�2
dP0(y, z)

+

Z
y


{(Pn � P0)fz} {(Pn = P0)f1,z}

Pnf1,zP0f1,z

�2
dP0(y, z)

<

Z
y

P 2
0 f1,z

⇣
Sup⇠

z2(0,1)|(Pn � P0)fz|
⌘2

dP0(y, z)

+

Z
yP

2
0 fz

P 2
nf1,zP

2
0 f1,z

⇣
Sup⇠

z2(0,1)|(Pn � P0)f1,z|
⌘2

dP0(y, z)

Z
y

P 2
nf1,zP

2
0 f1,z

⇣
Sup⇠

z2(0,1)|(Pn � P0)fz|
⌘2 ⇣

Sup⇠
z2(0,1)|(Pn � P0)f1,z|

⌘2

dP0(y, z).

We can then pull each of the Sup terms out of the integrals to obtain

71

⇣
Sup⇠

z2(0,1)|(Pn � P0)fz|
⌘2

Z
y

P 2
0 f1,z

dP0(y, z) (A.5)

+
⇣
Sup⇠

z2(0,1)|(Pn � P0)f1,z|
⌘2

Z
yP

2
0 fz

P 2
nf1,zP

2
0 f1,z

dP0(y, z) (A.6)

+
⇣
Sup⇠

z2(0,1)|(Pn � P0)fz|
⌘2 ⇣

Sup⇠
z2(0,1)|(Pn � P0)f1,z|

⌘2
Z

y

P 2
nf1,zP

2
0 f1,z

dP0(y, z).

(A.7)

Sup⇠
z2(0,1)|(Pn � P0)fz| can be equivalently written as Supf2F |(Pn � P0)f | where F =

{fz : 0  z  1}. Note that F is a Donsker class [18] and thus Sup⇠
z2(0,1)|(Pn�P0)fz| =

Supf2F |(Pn � P0)f | = Op(n�1/2). Similarly, Sup⇠
z2(0,1)|(Pn � P0)f1,z| = Op(n�1/2).

Thus, the terms outside of the integrals in A.5, A.6, A.7 are Op(n�1), Op(n�1), and

Op(n�2) respectively. Each of those terms is then certainly Op(1) allowing us to write

Z
y(gn(z)� g0(z))

2
dP0(y, z)

= Op(1)

Z
y

P 2
0 f1,z

dP0(y, z)

+Op(1)

Z
yP

2
0 fz

P 2
nf1,zP

2
0 f1,z

dP0(y, z)

+Op(1)

Z
y

P 2
nf1,zP

2
0 f1,z

dP0(y, z). (A.8)

The stochastic order of the sum above is dictated by A.8. Plugging in the definition

of the f1,z, we can rewrite that term as

Op(1)

Z
y

Pn(Y = 1, Z �)2P0(Y = 1, Z � z)2
P0(dz | Y = 1).

72

By the Continuous Mapping Theorem and the assumption given in Theorem 1.3.1,

Z
y

Pn(Y = 1, Z �)2P0(Y = 1, Z � z)2
P0(dz | Y = 1) = Op(1).

Thus, we can conclude that
R
y(gn(z)� g0(z))2dP0(y, z) = op(1)Op(1)Op(1) = op(1),

and that condition 1 is met.

We next turn to condition 2. We will show that QPn � QP0 has bounded uniform

sectional variation norm (USVN) with probability tending to 1 which is a sufficient

condition to show that it falls in a P0�Donsker Class. Throughout the remainder of

the proof, we assume that P0(Y = 1) > � for some � > 0. The USVN of QPn �QP0 is

||QPn �QP0 ||⇤V = max
⇢

Supy,z|QPn(y, z)�QP0(y, z)|, (A.9)

Supy

Z
|QPn(y, dz)�QP0(y, dz)|, (A.10)

Supz

Z
|QPn(dy, z)�QP0(dy, z)|, (A.11)

Z
|QPn(dy, dz)�QP0(dy, dz)|

�
(A.12)

Term A.9 can be written

Supz|QPn(1, z)�QP0(1, z)|

= Supz|
gn(z)

hn
� g0(z)

h0
|  2

�
+ op(1).

Term A.10 can be written

73

Z
|QPn(1, dz)�QP0(1, dz)|

=

Z
|gn(dz)

hn
� g0(dz)

h0
|

=

Z
gn(dz)� g0(dz)

h0
+ op(1)

 Supz|gn(z)� g0(z)|
�

 2

�
+ op(1).

Term A.11 can be written

Supz|QPn(1, z)�QP0(1, z)| 
2

�
+ op(1).

Term A.12 can be written the in the same way as term A.10:

Z
|QPn(1, dz)�QP0(1, dz)| 

2

�
+ op(1).

Thus, P0(||QPn �QP0 ||⇤V  2
�) ! 1 as n ! 1 and so QPn �QP0 has bounded USVN,

with probability tending to 1. The class of functions with bounded USVN is a Donkser

class [48]. Thus condition 2 is met and the proof is complete.

A.3 Theorem 1.3.1 Condition Examination

Here we present evidence that, the condition in Theorem 1.3.1 that
R dP0(Zz|Y=1)

P0(Z�z|Y=1)4 < 1

is likely too stringent and that there exists lighter conditions under which the parameter

is asymptotically linear with the given influence function.

Consider the scenario in which P0(Y = 1) = 0.5 and Z ⇠ Unif(0, 1) independent

of Y . In the context of a binary classification problem, this would indicate an

uninformative machine learning model which generates a score at random. Here, the

74

0.930

0.935

0.940

0.945

0.950

0 2000 4000 6000
Sample Size

C
ov

er
ag

e
P

ro
ba

bi
lit

y

Coverage Probabilities of 95% CIs
at Different Sample Sizes

Figure A.1: Coverage probabilities of 95% confidence intervals for the AUPRC.
Probabilities are calculated as the proportion of times the interval covered the true
parameter out of 5000 iterations.

true AUPRC is 0.5. The term of interest is

Z
16

[P0(Z � z | Y = 1)P (Y = 1)]4
dz =

Z
16

(1� z)4
dz > 1

.

Thus the condition is not satisfied. We conducted simulations under this data

generating distribution at a variety of sample sizes. For each sample size, we generated

data according to P0(Y = 1) = 0.5 and Z ⇠ Unif(0, 1) and calculated the NPMLE of

the AUPRC and constructed confidence intervals using the variance of the influence

function given in Theorem 1.3.1. This process was repeated 5000 times per sample

size.

Coverage probabilities of 95% confidence intervals converge to 95% (A.1), and

bias scaled by
p
n shrinks to 0 as sample size increases. Thus, we can still do valid

estimation and inference even while violating the condition.

75

0.00

0.02

0.04

0.06

0 2000 4000 6000
Sample Size

(
n
⋅)
|B
ia
s|

Scaled Bias
at Different Sample Sizes

Figure A.2: Scaled absolute bias of the NPMLE of the AUPRC at several sample
sizes. Results at a given sample size are averaged over 5000 iterations.

A.4 Theorem 1.3.2 Proof

By Theorem 1.3.1, each AUPRC plug-in estimator � n,k
(P 1

n,k) of � n,k
(P0) is asymp-

totically linear, and we can write

�n,cv � �0,cv =
1

K

KX

k=1

[� n,k
(P 1

n,k)]�
1

K

KX

k=1

[� n,k
(P0)]

=
1

K

KX

k=1

(P 1
n,k � P0)D� n,k

(P0) + op(n
�1/2).

We can decompose the first term in the sum above into two pieces:

1

K

KX

k=1

(P 1
n,k � P0)D� n,k

(P0) =
1

K

KX

k=1

(P 1
n,k � P0)D� k (P0)

+
1

K

KX

k=1

(P 1
n,k � P0){D� n,k

(P0)�D� k
(P0)}.

76

By the assumption that P0{D� n,k
(P0)�D� k

(P0)}2
p! 0 and Theorem 2.14.1 in [53],

we can write for the second piece that

1

K

KX

k=1

(P 1
n,k � P0){D� n,k

(P0)�D� k
(P0)} = op(n

�1/2).

Finally, we note that the first piece can be rewritten

1

K

KX

k=1

(P 1
n,k � P0)D� k (P0) = (Pn � P0)D� k (P0).

Thus, we have that

�n,cv � �0,cv = (Pn � P0)D� k (P0) + op(n
�1/2)

=
1

n

nX

i=1

D� k
(P0)(Oi) + op(n

�1/2).

The CV estimator is therefore asymptotically linear and has the follows the asymptotic

distribution stated in the theorem.

A.5 Supplementary Figures

77

0

2

4

5 10

n
⋅|
B
ia
s|

n = 250

0

2

4

5 10

n = 500

0

2

4

5 10

n = 1000

0

2

4

5 10

n = 2000

0

2

4

5 10

n = 4000

0

2

4

5 10

n = 6000

0

5

10

15

20

5 10

n
⋅V
ar

0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10

0

10

20

30

5 10

n
⋅M
S
E

0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10

CV-OS CV

Figure A.3: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Random Forest on data with no imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations.

78

0.0

2.5

5.0

7.5

5 10

n
⋅|
B
ia
s|

n = 250

0.0

2.5

5.0

7.5

5 10

n = 500

0.0

2.5

5.0

7.5

5 10

n = 1000

0.0

2.5

5.0

7.5

5 10

n = 2000

0.0

2.5

5.0

7.5

5 10

n = 4000

0.0

2.5

5.0

7.5

5 10

n = 6000

0

20

40

5 10

n
⋅V
ar

0

20

40

5 10
0

20

40

5 10
0

20

40

5 10
0

20

40

5 10
0

20

40

5 10

0

25

50

75

100

5 10

n
⋅M
S
E

0

25

50

75

100

5 10
0

25

50

75

100

5 10
0

25

50

75

100

5 10
0

25

50

75

100

5 10
0

25

50

75

100

5 10

CV-OS CV

Figure A.4: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Random Forest on data with imbalance. 5
and 10 on the x-axis indicate number of outer folds K. In each case results are based
on 1000 simulations.

79

0

3

6

9

5 10

n
⋅|
B
ia
s|

n = 250

0

3

6

9

5 10

n = 500

0

3

6

9

5 10

n = 1000

0

3

6

9

5 10

n = 2000

0

3

6

9

5 10

n = 4000

0

3

6

9

5 10

n = 6000

0

20

40

60

5 10

n
⋅V
ar

0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10
0

20

40

60

5 10

0

50

100

5 10

n
⋅M
S
E

0

50

100

5 10
0

50

100

5 10
0

50

100

5 10
0

50

100

5 10
0

50

100

5 10

CV-OS CV

Figure A.5: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Random Forest on data with large

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations.

80

0

1

2

3

4

5 10

n
⋅|
B
ia
s|

n = 250

0

1

2

3

4

5 10

n = 500

0

1

2

3

4

5 10

n = 1000

0

1

2

3

4

5 10

n = 2000

0

1

2

3

4

5 10

n = 4000

0

1

2

3

4

5 10

n = 6000

0

5

10

15

5 10

n
⋅V
ar

0

5

10

15

5 10
0

5

10

15

5 10
0

5

10

15

5 10
0

5

10

15

5 10
0

5

10

15

5 10

0

10

20

30

5 10

n
⋅M
S
E

0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10

CV-OS CV

Figure A.6: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Logistic Regression on data with no

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations.

81

0

1

2

3

4

5

5 10

n
⋅|
B
ia
s|

n = 250

0

1

2

3

4

5

5 10

n = 500

0

1

2

3

4

5

5 10

n = 1000

0

1

2

3

4

5

5 10

n = 2000

0

1

2

3

4

5

5 10

n = 4000

0

1

2

3

4

5

5 10

n = 6000

0

5

10

15

20

5 10

n
⋅V
ar

0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10
0

5

10

15

20

5 10

0

10

20

30

5 10

n
⋅M
S
E

0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10

CV-OS CV

Figure A.7: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Logistic Regression on data with imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations.

82

0
1
2
3
4
5

5 10

n
⋅|
B
ia
s|

n = 250

0
1
2
3
4
5

5 10

n = 500

0
1
2
3
4
5

5 10

n = 1000

0
1
2
3
4
5

5 10

n = 2000

0
1
2
3
4
5

5 10

n = 4000

0
1
2
3
4
5

5 10

n = 6000

0

5

10

15

20

25

5 10

n
⋅V
ar

0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10

0

10

20

30

5 10

n
⋅M
S
E

0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10
0

10

20

30

5 10

CV-OS CV

Figure A.8: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Logistic Regression on data with large

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations.

83

0.0

0.4

0.8

1.2

5 10

n = 2000

0.0

0.4

0.8

1.2

5 10

n = 4000

0.0

0.4

0.8

1.2

5 10

n = 6000

0.0

0.5

1.0

1.5

2.0

2.5

5 10
0.0

0.5

1.0

1.5

2.0

2.5

5 10
0.0

0.5

1.0

1.5

2.0

2.5

5 10

0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10

CV-OS CV

Figure A.9: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Random Forest on data with no imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier viewing.

84

0

1

2

5 10

n = 2000

0

1

2

5 10

n = 4000

0

1

2

5 10

n = 6000

0

2

4

6

5 10
0

2

4

6

5 10
0

2

4

6

5 10

0.0

2.5

5.0

7.5

10.0

5 10
0.0

2.5

5.0

7.5

10.0

5 10
0.0

2.5

5.0

7.5

10.0

5 10

CV-OS CV

Figure A.10: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Random Forest on data with imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier viewing.

85

0

1

2

3

4

5 10

n = 2000

0

1

2

3

4

5 10

n = 4000

0

1

2

3

4

5 10

n = 6000

0

5

10

5 10
0

5

10

5 10
0

5

10

5 10

0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10
0

5

10

15

20

25

5 10

CV-OS CV

Figure A.11: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Random Forest on data with large

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier
viewing.

86

0.0

0.4

0.8

1.2

5 10

n = 2000

0.0

0.4

0.8

1.2

5 10

n = 4000

0.0

0.4

0.8

1.2

5 10

n = 6000

0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10

0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10
0.0

0.5

1.0

1.5

2.0

5 10

CV-OS CV

Figure A.12: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Logistic Regression on data with no

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier
viewing.

87

0.0

0.5

1.0

1.5

5 10

n = 2000

0.0

0.5

1.0

1.5

5 10

n = 4000

0.0

0.5

1.0

1.5

5 10

n = 6000

0

1

2

3

5 10
0

1

2

3

5 10
0

1

2

3

5 10

0

1

2

3

5 10
0

1

2

3

5 10
0

1

2

3

5 10

CV-OS CV

Figure A.13: Scaled absolute bias, variance, and mean squared error (MSE) for CV and
CV-OS estimators of the performance of Logistic Regression on data with imbalance.
5 and 10 on the x-axis indicate number of outer folds K. In each case results are
based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier viewing.

88

0.0

0.5

1.0

5 10

n = 2000

0.0

0.5

1.0

5 10

n = 4000

0.0

0.5

1.0

5 10

n = 6000

0

1

2

3

5 10
0

1

2

3

5 10
0

1

2

3

5 10

0

1

2

5 10
0

1

2

5 10
0

1

2

5 10

CV-OS CV

Figure A.14: Scaled absolute bias, variance, and mean squared error (MSE) for CV
and CV-OS estimators of the performance of Logistic Regression on data with large

imbalance. 5 and 10 on the x-axis indicate number of outer folds K. In each case
results are based on 1000 simulations. Restricted to n = 200, 4000, 6000 for easier
viewing.

89

Appendix B

Chapter 3 Supplementary Material

B.1 Theorem 3.2.1 Proof

Throughout the appendix we adopt the notation that for a P -measurable function f ,

Pf :=
R
fdP .

Consider the pseudo-outcome for learning µ0(a,W) � µ0(0,W) defined for an

observation Oi as

D
a
µ,⇡(Oi) =


a(Ai)

⇡(a | Wi)
� 0(Ai)

⇡(0 | Wi)

�
{Yi � µ(Ai,Wi)}+ µ(a,Wi)� µ(0,Wi)

90

Let A denote the set of possible treatments. Consider that

E0[D
a
µ,⇡(O) | W] = E0

✓
a(A)

⇡(a | W)
� 0(A)

⇡(0 | W)

�
{Y � µ(A,W)}+ µ(a,W)� µ(0,W) | W

◆

= E0

✓
a(A)

⇡(a | W)
� 0(A)

⇡(0 | W)

�
{Y � µ(A,W)} | W

◆
+ µ(a,W)� µ(0,W)

= E0

⇢
E0

✓
a(A)

⇡(a | W)
� 0(A)

⇡(0 | W)

�
{Y � µ(A,W)} | A,W

◆
| W

�
+ µ(a,W)� µ(0,W)

= E0

✓
a(A)

⇡(a | W)
� 0(A)

⇡(0 | W)

�
{µ0(A,W)� µ(A,W) | W

◆
+ µ(a,W)� µ(0,W)

=
X

u2A

✓
I(u = a)

⇡(a | W)
� I(u = 0)

⇡(0 | W)

�
{µ0(u,W)� µ(u,W)}

◆
⇡0(u | W) + µ(a,W)� µ(0,W)

=
⇡0(a | W)

⇡(a | W)
{µ0(a,W)� µ(a,W)}� ⇡0(0 | W)

⇡(0 | W)
{µ0(0,W)� µ(0,W)}+ µ(a,W)� µ(0,W) .

Thus, E0[Da
µ,⇡(O) | W] = µ0(a,W)� µ0(0,W) if either µ = µ0 or ⇡ = ⇡0.

B.2 Theorem 3.4.1 Proof

Consider the oracle regret P0

h
L
a
S,µ0

(̂S)� L
a
S,µ0

(0)
i

for learning the effect of treat-

ment a.

(i) When V = W , ̂S(a | v) = µ̂(a | v)� µ̂(0 | v). Thus,

P0

h
L
a
S,µ0

(̂S)� L
a
S,µ0

(0)
i
= P0

⇥
(µ̂a � µa,0 + µ0,0 � µ̂0)

2
⇤

= ||µ̂a � µa,0 + µ0,0 � µ̂0||22,P0

 (||(µ̂a � µa,0)||2,P0 + ||µ0,0 � µ̂0||2,P0)
2

= R̂
⇤
p
2

where the third line follows from the Triangle Inequality, and the fourth line follows

from two applications of the regret rate established for the Highly Adpative Lasso in

Nizam and Benkeser [37].

We can also consider simultaneously learning 0(a | v) for multiple a by considering

91

a summed loss function

LS,µ() =
X

a2A0

!(a)La
S,µ() ,

where !(a) is any positive weight. Then the oracle regret is as follows:

P0

h
LS,µ0(̂S)� LS,µ0(0)

i
=

X

a2A0

!(a)P0

h
L
a
S,µ0

(̂S)� L
a
S,µ0

(0)
i

where P0

h
L
a
S,µ0

(̂S)� L
a
S,µ0

(0)
i

achieves the rate established above.

(ii) Again, begin by considering the effect of a single treatment a. When V ⇢ W ,

recall that we first estimate the outcome regression, then regress pseudo-outcome

D
a
µ̂(O) = µ̂(a,W)�µ̂(0,W) on covariates V . It is convenient to introduce the following

shorthand: ̂(v) := ̂S(a | v), 0(v) := 0(a | v), µ0,a := µ0(a, ·), µ̂a := µ̂(a, ·),

L0,a := LS,µ0,a, L̂a := L̂a,µ̂, D̂a := D
a
µ̂, D0 := D

a
µ0

.

The oracle regret can be written as

P0[L0,a(̂)� L0,a(0)] = P0[L0,a(̂)� L0,a(0)] + P0

h
L0,a(̂)� L0,a(0)�

⇣
L̂a(̂)� L̂a(0)

⌘i

= P0

h
L̂a(̂)� L̂a(0)

i
(B.1)

+ P0

h
L̂a(0)� L0,a(0)

i
(B.2)

� P0

h
L̂a(̂)� L0,a(̂)

i
. (B.3)

We expect due to the theory of the HAL estimator [8], that (B.1) achieves rate R̂
⇤
q .

We can rewrite (B.2) as:

92

P0

h
L̂a(0)� L0,a(0)

i
= P0

h
(0 � D̂a)

2 � (0 �D0,a)
i

= P0

h
2 0(D0,a � D̂a) + D̂

2
a �D

a
0
2
i
.

(B.3) can be rewritten similarly:

P0

h
L̂a(̂)� L0,a(̂)

i
= P0

h
(̂ � D̂a)

2 � (̂ �D0,a)
2
i

= P0

h
2 ̂(D0,a � D̂a) + D̂

2
a �D

a
0
2
i
.

Putting all three results together, we can write our oracle regret as

P0[L0,a(̂)� L0,a(0)]

= 2P0

h
(0 � ̂)(D0,a � D̂a)

i
+ R̂

⇤
q .

= 2P0

h
{µ0,a � µ̂0,a + µ̂0 � µ0,0}

n
 0 � ̂

oi
+ R̂

⇤
q

= 2P0

h
{µ0,a � µ̂0,a}

n
 0 � ̂

oi
+ 2P0

h
{µ̂0 � µ0,0}

n
 0 � ̂

oi
+ R̂

⇤
q

 2P0

h
 0 � ̂

i1/2 n
P0

⇥
(µ0,a � µ̂a)

2
⇤1/2

+ P0

⇥
(µ̂0 � µ0,0)

2
⇤1/2o

+ R̂
⇤
q

= 2R̂⇤
qop (||µ0,a � µ̂a||2,P0 + ||µ̂0 � µ0,0||2,P0) + R̂

⇤
q

where the third line results from plugging in the definition of the pseudo-outcome,

the fifth line is a result of the Cauchy-Schwartz Inequality, and the sixth line invokes

the regret rate established for the Highly Adaptive Lasso in Nizam and Benkeser [37].

Again, we can then consider simultaneously learning 0(a | V) for multiple a by

93

considering a summed loss function

L() =
X

a2A0

!(a)La() ,

where !(a) is any positive weight. Then the oracle regret is as follows:

P0

h
L0(̂)� L0(0)

i
=

X

a2A\{0}

!(a)P0

h
L0,a(̂)� L0,a(0)

i

where P0

h
L0,a(̂)� L0,a(0)

i
achieves the rate established above.

B.3 Theorem 3.4.2 Proof

Again, we begin by simplifying notation with the following shorthand: ̂ := ̂DR(a | v),

 0 := 0(a | v), µ0,a := µ0(a, ·), µ̂a := µ̂(a, ·), L0,a := LDR,µ0,⇡0,a, L̂a := L̂a,µ̂,⇡̂,

D̂a := D
a
µ̂,⇡̂, D0 := D

a
µ0,⇡0 .

We start by considering the regret for learning the effect of a single treatment a.

We use the work from the proof of Theorem 3.4.1, shown in B.2 and immediately note

that

P0[L0,a(̂)� L0,a(0)] = 2P0

h⇣
D0,a � D̂a

⌘⇣
 0 � ̂

⌘i
+ R̂

⇤
q .

Applying the Law of Total Expectation, we can rewrite the expectation in that

94

expression as

P0

h⇣
D0(O)� D̂(O)

⌘⇣
 0 � ̂

⌘i

= E0

h
E0

h⇣
D0(O)� D̂(O)

⌘⇣
 0(a | V)� ̂(a | V)

⌘
| A,W

ii

= E0

h
E0

h
D0(O)� D̂(O) | A,W

i
(0(a | V)� ̂(a | V))

i

= E0

h
E0

h
E0

h
D0(O)� ˆD(O) | A,W

i ⇣
 0(a | V)� ̂(a | V)

⌘
| W

ii

= E0

h
E0

h
E0

h
D0(O)� D̂(O) | A,W

i
| W

i ⇣
 0(a | V)� ̂(a | V)

⌘i

Now consider the inner-most expectation in the term above.

E0

h
D0(O)� D̂(O) | A,W

i

=


a(A)

⇡0(a | W)
� 0(A)

⇡0(0 | W)

�
{µ0(A,W)� µ0(A,W)}+ µ0(a,W)� µ0(0,W)

�

I(Ai = a)

⇡̂(a | W)
� 0(A)

⇡̂(0 | W)

�
{µ0(A,W)� µ̂(A,W)}+ µ̂(a,Wi)� µ̂(0,Wi)

=


a(A)

⇡̂(a | W)
� 0(A)

⇡̂(0 | W)

�
{µ̂(A,W)� µ0(A,W)}+ {µ0(a,W)� µ̂(a,W) + µ̂(0,W)� µ0(0,W)}.

(B.4)

95

Next, we write

E0

h
E0

h
D0(O)� D̂(O) | A,W

i
| W

i

= E0

⇢
a(A)

⇡̂(a | W)
� 0(A)

⇡̂(0 | W)

�
{µ̂(A,W)� µ0(A,W)} | W

�

+ {µ0(a,W)� µ̂(a,W) + µ̂(0,W)� µ0(0,W)}

=
⇡0(a | W)

⇡̂(a | W)
{µ̂(a,W)� µ0(a,W)}� ⇡0(0 | W)

⇡̂(0 | W)
{µ̂(0,W)� µ0(0,W)}

+ {µ0(a,W)� µ̂(a,W)) + (µ̂(0,W)� µ0(0,W)}

=
⇡0(a | W) {µ̂(a,W)� µ0(a,W)}� ⇡̂(a | W) {µ̂(a,W)� µ0(a,W)}

⇡̂(a | W)

+
⇡̂(0 | W) {µ̂(0,W)� µ0(0,W)}� ⇡0(0 | W) {µ̂(0,W)� µ0(0,W)}

⇡̂(0 | W)

=
{⇡0(a | W)� ⇡̂(a | W)} {µ̂(a,W)� µ0(a,W)}

⇡̂(a | W)

� {⇡0(0 | W)� ⇡̂(0 | W)} {µ̂(0,W)� µ0(0,W)}
⇡̂(0 | W)

.

Thus, returning to the original regret rate, we can say that

P0[L0(̂)� L0(0)]

= 2E0

h
(0(a | V)� ̂(a | V))(D0(O)� D̂(O))

i
+ R̂

⇤
q

= 2E0

✓
{⇡0(a | W)� ⇡̂(a | W)} {µ̂(a,W)� µ0(a,W)}

⇡̂(a | W)

◆⇣
 0(a | V)� ̂(a | V)

⌘�

� 2E0

✓
{⇡0(0 | W)� ⇡̂(0 | W)} {µ̂(0,W)� µ0(0,W)}

⇡̂(0 | W)

◆⇣
 0(a | V)� ̂(a | V)

⌘�
.

96

We can then apply the Cauchy-Schwartz inequality two times:

E0

✓
{⇡0(a | W)� ⇡̂(a | W)} {µ̂(a,W)� µ0(a,W)}

⇡̂(a | W)

◆⇣
 0(a | V)� ̂(a | V)

⌘�

 E0

"
{⇡0(a | W)� ⇡̂(a | W)}4

⇡̂(a | W)4

#1/4

E0

⇥
{µ̂(a,W)� µ0(a,W)}4

⇤1/4

· E0

n
 0(a | V)� ̂(a | V)

o2
�1/2

We can apply the regret rate established for HAL in Nizam and Benkeser [37] to the

third term in the product above. Assuming that ⇡̂(a | w) is bounded away from 0 and

1, we can establish the following rate:

P0 [Lµ̂,⇡̂(n)� Lµ̂,⇡̂(0)]

= op (||⇡a,0 � ⇡̂a||4,P0 · ||µ̂a � µa,0||4,P0) R̂
⇤
q

+ op (||⇡0,0 � ⇡̂0||4,P0 · ||µ̂0 � µ0,0||4,P0) R̂
⇤
q

+ R̂
⇤
q .

We can also consider simultaneously learning 0(a | V) for multiple a by considering

a summed loss function

L() =
X

a2A0

!(a)La() ,

where !(a) is any positive weight. Then the oracle regret is as follows:

P0

h
L0(̂)� L0(0)

i
=

X

a2A0

!(a)P0[L0,a(̂)� L0,a(0)]

where P0[L0,a(̂)� L0,a(0)] achieves the rate established above.

97

B.4 Further 2-Arm Simulation Results

Additional evaluation metrics for the simulation study discussed in the main body

of the paper area included below (Figures B.1, B.2, and B.3). Treating assignment

of the treatment rule as a binary classification problem, we calculated the Accuracy,

Sensitivity, and Specificity of each estimation method. Again we see that Doubly-

Robust estimation with HAL is at or among the top performers in each setting.

0.8

0.9

250 500 750 1000
Sample Size

A
cc
ur
ac
y

linear CATE

0.80

0.85

0.90

0.95

250 500 750 1000
Sample Size

S
en
si
tiv
ity

linear CATE

0.2

0.4

0.6

0.8

250 500 750 1000
Sample Size

S
pe
ci
fic
ity

linear CATE

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure B.1: Accuracy, Sensitivity, and Specificity results for learning the learning the
binary optimal treatment rule in the Linear CATE setting.

B.5 Multi-Arm Simulation Results

We conducted additional simulations to test our methodology in a scenario with

three treatment arms. Simulations were conducted under two settings, linear and

polynomial so named for the chosen functional form of the true CATEs. In each setting

we considered a continuous outcome Y and treatment with three arms, A 2 {0, 1, 2}.

Counterfactual outcome values were calculated by adding standard normal random

98

0.80

0.85

0.90

0.95

250 500 750 1000
Sample Size

A
cc
ur
ac
y

polynomial CATE

0.84

0.88

0.92

0.96

250 500 750 1000
Sample Size

S
en
si
tiv
ity

polynomial CATE

0.25

0.50

0.75

250 500 750 1000
Sample Size

S
pe
ci
fic
ity

polynomial CATE

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure B.2: Accuracy, Sensitivity, and Specificity results for learning the learning the
binary optimal treatment rule in the Polynomial CATE setting.

noise to the specified true outcome regression. Treatment values were assigned by

randomly sampling from {0, 1, 2}. In each setting, we specified that each treatment

have equal probability (P (A = a) = 1/3 for a = 1, 2, 3).

We simulated data at sample sizes n = 50, 100, 200, and 500. We generated data,

fit models to estimate the CATEs and OTP and evaluated performances using CATE

estimate L2 norms, estimated policy values, and accurracy of treatment assignment.

This process was replicated 1000 times at each sample size, and results were averaged.

Below are descriptions of each setting.

Linear setting

Here we considered p = 5 covariates, and set the task of estimating the treatment

effect conditional on all five. All covariates were simulated independently from standard

normal distributions. The true outcome regression was µ0(a, w) = 1(a)(4 + 5 ⇤ w1) +

2(a)(3 + 4 ⇤ w2) + w2 � 3 ⇤ w3 + 5 ⇤ w3w4.

Polynomial setting

99

0.80

0.85

0.90

0.95

250 500 750 1000
Sample Size

A
cc
ur
ac
y

sin CATE, C=1

0.80

0.85

0.90

0.95

1.00

250 500 750 1000
Sample Size

S
en
si
tiv
ity

sin CATE, C=1

0.90

0.92

0.94

0.96

0.98

250 500 750 1000
Sample Size

S
pe
ci
fic
ity

sin CATE, C=1

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure B.3: Accuracy, Sensitivity, and Specificity results for learning the learning the
binary optimal treatment rule in the Sinusoidal CATE setting with C = 1. At n = 50,
Causal Forest showed abnormally low performance and is omitted from the plot to
keep other learners distinguishable.

Here we again considered p = 5 covariates and aimed to estimate the CATEs

conditional on all 5. This time we specified a polynomial function of covariates for the

outcome regression: µ0(a, w) = 1(a)(5+2w1�3w3w
2
5+2w3

4)+ 2(a)(w1+2w3w
2
4)+w2.

Interpretation

Results in these simulations were consistent with the two treatment arm settings.

Both S and DR-Learners with HAL consistently show performance superior to Causal

Forest (Figure B.5 and Figure B.6). In some cases, the S-Learner with Super Learner

shows some marginal improvement over HAL based methods.

100

0.5

0.6

0.7

0.8

0.9

250 500 750 1000
Sample Size

A
cc
ur
ac
y

sin CATE, C=10

0.5

0.6

0.7

0.8

0.9

250 500 750 1000
Sample Size

S
en
si
tiv
ity

sin CATE, C=10

0.5

0.6

0.7

0.8

0.9

250 500 750 1000
Sample Size

S
pe
ci
fic
ity

sin CATE, C=10

Causal Forest

Causal Tree

DR-Learner HAL

DR-Learner XGBoost

S-learner HAL

S-learner SuperLearner

S-learner XGBoost

Figure B.4: Accuracy, Sensitivity, and Specificity results for learning the learning the
binary optimal treatment rule in the Sinusoidal CATE setting with C = 10.

3.5

4.0

4.5

5.0

5.5

6.0

0 100 200 300 400 500
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

linear CATE

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500
Sample Size

A
cc
ur
ac
y

linear CATE

0

10

20

30

0 100 200 300 400 500
Sample Size

C
A

TE
 1

 L
2

N
or

m

linear CATE

0

5

10

15

20

0 100 200 300 400 500
Sample Size

 C
A

TE
 2

 L
2

N
or

m

linear CATE

Causal Forest DR-Learner HAL S-learner HAL S-learner SuperLearner

Figure B.5: Multi-arm simulation results in the Linear setting. A simple mean
estimator was used to estimate the propensity score for the DR-Learner with HAL.
The bottom left and bottom right panels show L2 norms for ̂(1 | v) and ̂(2 | v)
respectively.

101

5.0

5.5

6.0

6.5

0 100 200 300 400 500
Sample Size

E
st

im
at

ed
 P

ol
ic

y
V

al
ue

polynomial CATE

0.75

0.80

0.85

0.90

0.95

0 100 200 300 400 500
Sample Size

A
cc
ur
ac
y

polynomial CATE

6

9

12

15

0 100 200 300 400 500
Sample Size

 C
A

TE
 2

 L
2

N
or

m

polynomial CATE

6

9

12

15

0 100 200 300 400 500
Sample Size

 C
A

TE
 2

 L
2

N
or

m

polynomial CATE

Causal Forest DR-Learner HAL S-learner HAL S-learner SuperLearner

Figure B.6: Multi-arm simulation results in the polynomial setting. A simple mean
estimator was used to estimate the propensity score for the DR-Learner with HAL.
The bottom left and bottom right panels show L2 norms for ̂(1 | v) and ̂(2 | v)
respectively.

102

Bibliography

[1] Laura Acion, Diana Kelmansky, Mark van der Laan, Ethan Sahker, DeShauna

Jones, and Stephan Arndt. Use of a machine learning framework to predict

substance use disorder treatment success. PLOS One, 12(4):e0175383, 2017. doi:

https://doi.org/10.1371/journal.pone.0175383.

[2] S Aeberhard, D Coomans, and O De Vel. Comparison of classifiers in high

dimensional settings. Dept. Math. Statist., James Cook Univ., North Queensland,

Australia, Tech. Rep, 92(02), 1992. doi: https://doi.org/10.1016/0031-3203(94)

90145-7.

[3] David M Allen. The relationship between variable selection and data agumentation

and a method for prediction. technometrics, 16(1):125–127, 1974.

[4] Christophe Amat, Tomasz Michalski, and Gilles Stoltz. Fundamentals and

exchange rate forecastability with simple machine learning methods. Journal of

International Money and Finance, 88:1–24, 2018.

[5] Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal

effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360,

2016.

[6] Diogo Ayres-de Campos, Joao Bernardes, Antonio Garrido, Joaquim Marques-de

Sa, and Luis Pereira-Leite. Sisporto 2.0: a program for automated analysis of

103

cardiotocograms. Journal of Maternal-Fetal Medicine, 9(5):311–318, 2000. doi:

10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9.

[7] Patrick Bajari, Denis Nekipelov, Stephen P Ryan, and Miaoyu Yang. Machine

learning methods for demand estimation. American Economic Review, 105(5):

481–85, 2015.

[8] David Benkeser and Mark Van Der Laan. The highly adaptive lasso estimator.

In 2016 IEEE international conference on data science and advanced analytics

(DSAA), pages 689–696. IEEE, 2016.

[9] David Benkeser, Maya Petersen, and Mark J van der Laan. Improved small-

sample estimation of nonlinear cross-validated prediction metrics. Journal of the

American Statistical Association, 115(532):1917–1932, 2020.

[10] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is

np-complete. IEEE Transactions on computers, 45(9):993–1002, 1996. doi:

10.1109/12.537122.

[11] Leo Breiman. Stacked regressions. Machine learning, 24:49–64, 1996.

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classi-

fication and Regression Trees. CRC press, 1984.

[14] Ching-Chin Chern, Yu-Jen Chen, and Bo Hsiao. Decision tree–based classifier in

providing telehealth service. BMC medical informatics and decision making, 19

(1):1–15, 2019. doi: 10.1186/s12911-019-0825-9.

[15] Matthew M Churpek, Trevor C Yuen, Christopher Winslow, David O Meltzer,

Michael W Kattan, and Dana P Edelson. Multicenter comparison of machine

learning methods and conventional regression for predicting clinical deterioration

104

on the wards. Critical Care Medicine, 44(2):368, 2016. doi: 10.1097/CCM.

0000000000001571.

[16] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc

curves. In Proceedings of the 23rd international conference on Machine learning,

pages 233–240, 2006.

[17] David L Donoho et al. High-dimensional data analysis: The curses and blessings

of dimensionality. AMS Math Challenges Lecture, 1(2000):32, 2000.

[18] Monroe D Donsker. Justification and extension of doob’s heuristic approach to

the kolmogorov-smirnov theorems. The Annals of mathematical statistics, pages

277–281, 1952.

[19] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL

http://archive.ics.uci.edu/ml.

[20] Elaine Fehrman, Awaz K Muhammad, Evgeny M Mirkes, Vincent Egan, and

Alexander N Gorban. The five factor model of personality and evaluation of

drug consumption risk. In Data science, pages 231–242. Springer, 2017. doi:

https://doi.org/10.1007/978-3-319-55723-6_18.

[21] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of

statistical learning, volume 1. Springer series in statistics New York, 2001.

[22] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for

generalized linear models via coordinate descent. Journal of Statistical Software,

33(1):1–22, 2010. doi: 10.18637/jss.v033.i01. URL https://www.jstatsoft.

org/v33/i01/.

[23] Seymour Geisser. The predictive sample reuse method with applications. Journal

of the American statistical Association, 70(350):320–328, 1975.

105

[24] Alan S Gerber, Gregory A Huber, Daniel R Biggers, and David J Hendry. Ballot

secrecy concerns and voter mobilization: New experimental evidence about

message source, context, and the duration of mobilization effects. American

Politics Research, 42(5):896–923, 2014.

[25] Nima S Hejazi, Jeremy R Coyle, and Mark J van der Laan. hal9001: Scalable

highly adaptive lasso regression inr. Journal of Open Source Software, 5(53):2526,

2020.

[26] Anning Hu. Heterogeneous treatment effects analysis for social scientists: A

review. Social Science Research, page 102810, 2022.

[27] Xin-Lin Huang, Xiaomin Ma, and Fei Hu. Machine learning and intelligent

communications. Mobile Networks and Applications, 23(1):68–70, 2018.

[28] Daniel Jacob. Cate meets ml: Conditional average treatment effect and machine

learning. Digital Finance, 3(2):99–148, 2021.

[29] Gordon V Kass. An exploratory technique for investigating large quantities of

categorical data. Journal of the Royal Statistical Society: Series C (Applied

Statistics), 29(2):119–127, 1980. doi: https://doi.org/10.2307/2986296.

[30] Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous

causal effects. arXiv preprint arXiv:2004.14497, 2020.

[31] Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for

estimating heterogeneous treatment effects using machine learning. Proceedings

of the national academy of sciences, 116(10):4156–4165, 2019.

[32] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva. Counterfactual fairness.

ArXiv e-prints, March 2017. doi: https://doi.org/10.48550/arXiv.1703.06856.

106

[33] Chunhuan Lao, Mark Elwood, Marion Kuper-Hommel, Ian Campbell, and

Ross Lawrenson. Impact of menopausal status on risk of metastatic recur-

rence of breast cancer. Menopause, 28(10):1085–1092, 2021. doi: 10.1097/GME.

0000000000001817.

[34] Charles X Ling, Jin Huang, Harry Zhang, et al. Auc: a statistically consistent and

more discriminating measure than accuracy. In Ijcai, volume 3, pages 519–524,

2003.

[35] Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. Learning optimal fair policies.

In International Conference on Machine Learning, pages 4674–4682. PMLR, 2019.

[36] Xinkun Nie, Stefan Wager, et al. Learning objectives for treatment effect estima-

tion. arXiv preprint arXiv:1712.04912, 2017.

[37] Sohail Nizam and David Benkeser. Highly adaptive regression trees. Journal of

Evolutionary Intelligence, 2023+.

[38] JONATHAN J Oliver, DAVID L Dowe, and CS Wallace. Inferring decision graphs

using the minimum message length principle. In Proceedings of the 5th Australian

Joint Conference on Artificial Intelligence, pages 361–367. World Scientific, 1992.

[39] Romain Pirracchio, Maya L Petersen, Marco Carone, Matthieu Resche Rigon,

Sylvie Chevret, and Mark J van der Laan. Mortality prediction in intensive care

units with the super icu learner algorithm (sicula): a population-based study.

The Lancet Respiratory Medicine, 3(1):42–52, 2015. doi: 10.1016/S2213-2600(14)

70239-5.

[40] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: an

overview and their use in medicine. Journal of medical systems, 26(5):445–463,

2002. doi: 10.1023/a:1016409317640.

107

[41] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2020. URL https:

//www.R-project.org/.

[42] Alexandros Rekkas, Jessica K Paulus, Gowri Raman, John B Wong, Ewout W

Steyerberg, Peter R Rijnbeek, David M Kent, and David van Klaveren. Predictive

approaches to heterogeneous treatment effects: a scoping review. BMC Medical

Research Methodology, 20(1):1–12, 2020.

[43] Anthony J Rosellini, Francisca Dussaillant, José R Zubizarreta, Ronald C

Kessler, and Sherri Rose. Predicting posttraumatic stress disorder following

a natural disaster. Journal of Psychiatric Research, 96:15–22, 2018. doi:

10.1016/j.jpsychires.2017.09.010.

[44] Steven L Salzberg. C4. 5: Programs for machine learning by j. ross quinlan.

morgan kaufmann publishers, inc., 1993, 1994.

[45] Jun Shao. Linear model selection by cross-validation. Journal of the American

statistical Association, 88(422):486–494, 1993.

[46] Mervyn Stone. Cross-validatory choice and assessment of statistical predictions.

Journal of the royal statistical society: Series B (Methodological), 36(2):111–133,

1974.

[47] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[48] MJ van deLaan. Efficient and inefficient estimation in semiparametric models.

CWI Tracts, 1995.

[49] Mark van der Laan. A generally efficient targeted minimum loss based estimator

108

based on the highly adaptive lasso. The international journal of biostatistics, 13

(2), 2017. doi: 10.1515/ijb-2015-0097.

[50] Mark J van der Laan. Statistical inference for variable importance. The Interna-

tional Journal of Biostatistics, 2(1), 2006.

[51] Mark J van der Laan, Eric C Polley, and Alan E Hubbard. Super learner.

Statistical applications in genetics and molecular biology, 6(1), 2007.

[52] Mark J van der Laan, Alan E Hubbard, and Sara Kherad Pajouh. Statistical

inference for data adaptive target parameters. 2013.

[53] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university

press, 2000.

[54] Aad W Van Der Vaart, Jon A Wellner, Aad W van der Vaart, and Jon A Wellner.

Weak convergence. Springer, 1996.

[55] Ashwini Venkatasubramaniam, Julian Wolfson, Nathan Mitchell, Timothy

Barnes, Meghan JaKa, and Simone French. Decision trees in epidemio-

logical research. Emerging themes in epidemiology, 14(1):1–12, 2017. doi:

10.1186/s12982-017-0064-4.

[56] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous

treatment effects using random forests. Journal of the American Statistical

Association, 113(523):1228–1242, 2018.

[57] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[58] Marvin N. Wright and Andreas Ziegler. ranger: A fast implementation of random

forests for high dimensional data in C++ and R. Journal of Statistical Software,

77(1):1–17, 2017. doi: 10.18637/jss.v077.i01.

109

[59] Hassan Zeineddine, Udo Braendle, and Assaad Farah. Enhancing prediction of

student success: Automated machine learning approach. Computers & Electrical

Engineering, 89:106903, 2021.

[60] Heping Zhang, Richard S Legro, Jeffrey Zhang, Leon Zhang, Xiang Chen, Hao

Huang, Peter R Casson, William D Schlaff, Michael P Diamond, Stephen A

Krawetz, et al. Decision trees for identifying predictors of treatment effectiveness

in clinical trials and its application to ovulation in a study of women with

polycystic ovary syndrome. Human Reproduction, 25(10):2612–2621, 2010. doi:

10.1093/humrep/deq210.

[61] Milan Zwitter, Matjaz & Soklic. Breast Cancer. UCI Machine Learning Repository,

1988.

