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Abstract 

Clonal Amplification of Behavior: A Simple Interpretation of the Effect of Reinforcement  

By Olivia Louise Calvin 

 

The theory of neuronal group selection (Edelman, 1987) is an account of neural development and 

dynamics that has been used as the theoretical basis for autonomous agents that are capable of an 

impressively wide range of adaptive behaviors (e.g., Edelman, 2007; Krichmar & Edelman, 

2002; 2005; Krichmar, Nitz, Gally, & Edelman, 2005; Krichmar, Seth, Nitz, Fleischer, & 

Edelman, 2005; Seth & Edelman, 2007). Edelman’s theory draws parallels between natural 

selection and the adaptive dynamics of neuronal groups in response to environmental 

consequences. Critics have focused on the theory’s use of clonal amplification as the 

reproduction method, which they see as insufficiently adaptive (Crick, 1989; Fernando, 

Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, 

& Husbands, 2012). When comparing Edelman’s theory to the evolutionary theory of behavior 

dynamics (McDowell, 2004), McDowell argued that the theories differ in their reproduction 

methods and that a simulation that more purely models the clonal amplification dynamic may 

assess its viability (2010). This dissertation reports the results of the proposed simulations, which 

indicate that an implementation of the theory of neuronal group selection using clonal 

amplification can produce patterns of behavior that are quantitatively and qualitatively like 

humans and animals in operantly reinforcing environments. However, the range of viable 

parameters is smaller than for the evolutionary theory of behavior dynamics. There are also 

differences in the patterns of behavior predicted by the two theories that would need to be 

assessed with human or animal experiments to determine which is the better account. 
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Chapter 1: General Introduction 

We all choose to allocate our time and effort to the things we find important. Our choices 

are sometimes the result of deep consideration of our life goals, but more often they are of the 

moment and lacking that deeper insight. The accumulation of these relatively minor choices can 

have important mental, physiological, and social effects on our wellbeing and that of our society. 

A natural question arises from this need to understand ourselves and protect ourselves from the 

consequences of our thoughtless actions, which is how and why we choose our actions? 

  The unique relevance of psychology to understanding our choices was well described by 

Skinner in Beyond Freedom and Dignity (1971) when he wrote  

“The application of the physical and biological sciences alone will not solve our problems because 

the solutions lie in another field. Better contraceptives will control population only if people use 

them. New weapons may offset new defenses and vice versa, but a nuclear holocaust can be 

prevented only if the conditions under which nations make war can be changed. New methods of 

agriculture and medicine will not help if they are not practiced, and housing is a matter not only of 

buildings and cities but of how people live. Overcrowding can be corrected only by inducing 

people not to crowd, and the environment will continue to deteriorate until polluting practices are 

abandoned. In short, we need to make vast changes in human behavior, and we cannot make them 

with the help of nothing more than physics or biology…” (pg.4) “What we need is a technology of 

behavior.” (pg. 5) 

While Skinner mostly emphasized the societal consequences of not understanding human 

psychology, the consequences of our actions can be just as personally debilitating and 

devastating. 

An approach to investigating why people make the choices that they do is to focus on 

situations where participants are provided with the opportunity to act. The participant can act in 

any way that they choose to, but the researcher only rewards certain behaviors. If the groups of 
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behaviors that the researcher decides to reward are mutually exclusive, then this situation 

provides the crux of choice behavior. For each action the participant suffers an opportunity cost; 

whatever action a participant engages in, it excludes other – potentially beneficial – actions that 

they could engage in. By carefully controlling and manipulating this situation, it is possible to 

deduce what motivates the participant by observing the choices that they make as their situation 

changes. 

 

1.1. The Matching Law 

 Surprisingly, if our behavior is somewhat unpredictably rewarded in this free-choice 

paradigm it is well described by an equation – the matching law. The original version of the 

matching law states that we allocate our behavior in proportion to the number of reinforcers we 

receive for doing that action (Herrnstein, 1961). This was later revised by Baum (1974) to 

account for participant preferences for certain consequences and a tendency for them to engage 

with the less rewarded side more frequently than Herrnstein’s equation predicted. Baum’s 

equation – the modern matching law – is expressed as  

𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑅𝑅1
𝑅𝑅2
�
𝑎𝑎

,    (1-1)1 

which states that behavior is allocated as a function of the rewards for those behaviors. In this 

equation, B is the measured rate of behavior, R is the experimentally-manipulated obtained rate 

of reinforcement, the subscripts indicate the experimenter-defined groups of behaviors that are 

measured, and b and a are free parameters.  

                                                           
1 For the reader’s benefit, copies of all equations that are frequently discussed are listed on page 94. 



3 
 

The parameter b is interpreted as the participant’s bias towards one reinforcing 

consequence over the other, and this parameter captures most asymmetric qualities of the 

experiment that led the participant to prefer one behavior over another (Baum, 1974, 1979; 

McDowell, 1989; Wearden & Burgess, 1982). For example, a b greater than 1 could indicate a 

participant’s greater preference for money over candy if those were the respective consequences 

of B1 and B2. A b greater than 1 could also indicate that the work required to earn the money was 

less difficult than for the candy. This parameter simply captures individual preference   and 

cannot indicate the cause for that bias. 

The parameter a in Equation 1-1 is sometimes referred to as sensitivity because it 

indicates how powerfully the rate of behavior is controlled by the rate of reinforcement, and, 

hence, the participant’s sensitivity to changes in that variable. An exponent of 1 indicates that the 

ratio of behavior perfectly matched the ratio of reinforcement – excepting bias. In this case, if the 

participant received twice as many reinforcers for engaging in behavior B1, then they also 

engaged in behavior B1 twice as frequently. If the exponent is less than 1, which is most often 

observed, it indicates that there is a tendency for the participant to perform the less frequently 

reinforced behavior more often than the ratio of reinforcement would suggest. The parameter a 

averages around 0.8 for many experiments (Baum 1974, 1979; McDowell, 1989, 2013b; Myers 

& Myers, 1977; Wearden & Burgess, 1982). One interpretation for why the exponent is less than 

1, which is sometimes called undermatching, is that participants adaptively engage in exploratory 

behavior to detect new reward opportunities (McDowell & Caron, 2007; Wearden 1983). 

Herrnstein’s matching law (1961) is equivalent to the modern matching law (Equation 1-1) when 

the parameters a and b are both equal to 1. 
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The original and modern versions of the matching law stated that behavior is a function 

of the rates of reinforcement for then two choices, but this was later expanded upon. Two 

important ways that it was extended were to situations where the participant chooses between 

any number actions (Herrnstein, 1970) and to multiple differences in the consequences of 

behaviors (Baum, 1974; Baum & Rachlin, 1969; Rachlin, 1971; Tversky, 1969). This 

dissertation will be simulating the behavior of models in these two situations, and the details of 

how the modern matching law was extended to these situations will be provided with the 

relevant experiments. 

  

1.2. The Evolutionary Theory of Behavior Dynamics (ETBD) 

While the matching law accurately describes the long-term behavior of participants in 

free-choice environments (for review see Davison & McCarthy, 1988; McDowell, 2013a), it 

does not explain the dynamics of behavior. The evolutionary theory of behavior dynamics 

(ETBD) is a theory of adaptive behavior that overcomes this limitation of the matching law and 

should be considered the better understanding of choice behavior due to it explaining a wider 

range of phenomena than the matching law (Hempel & Oppenheim, 1948; McDowell, 2013b). 

The ETBD states that the behavior of humans and animals is generated through a dynamic 

process that is analogous to evolution (Berardi, Carretero-González, Klepeis, Machiani, 

Jahangiri, Bellettiere, & Hovell, 2018; Kulubekova & McDowell, 2008; 2013; McDowell, 2004; 

McDowell & Calvin, 2015; McDowell & Caron, 2007; McDowell, Caron, Kulubekova, & Berg, 

2008; McDowell & Klapes, 2018; McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012; 

Popa & McDowell, 2016). The idea that behavior adapts to environmental contingencies in a 

way that is analogous to evolution is not novel; many researchers hypothesized this prior to the 
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ETBD’s development (e.g., Campbell, 1960; Catania, 1978, 1987; Donahoe, 1999; Donahoe, 

Burgos, & Palmer, 1993; Edelman, 1987; Fuster, 1997; Gilbert, 1970, 1972; Glenn & Field, 

1994; Glenn & Madden, 1995; Hayek, 1952a, 1952b; Henriques, 2003; Hughes, 2011; Pringle, 

1951; Russell, 1962; Skinner, 1974, 1981, 1984; Staddon, 1975; Staddon & Simmelhag, 1971; 

Thorndike, 1898; Wasserman, 2012; Wasserman & Blumberg, 2010). What is unique about the 

ETBD is that it is the first testable model2 that can be compared to human and animal behavior. 

To date, the ETBD has successfully demonstrated behavior dynamics that qualitatively and 

quantitatively match human and animal behavior across a wide range of situations (for review 

see McDowell, 2013b). There are, however, multiple ways that the theory’s concept could be 

interpreted and only a few of these have been examined in depth. Some of these interpretations 

have relevance to theory development and practical applications. 

Evolution is often strictly thought of as the process by which organisms adapt over time, 

but evolution can also be viewed more abstractly as the process of selection, variation, and 

reproduction. This general, three-step process is a simple problem-solving method that can find 

surprisingly complex solutions to problems. From this perspective, biological evolution is simply 

an example of how good solutions to problems – fit organisms – are found by repeating the 

three-step process of selection, variation, and reproduction. This abstraction of evolution as a 

problem-solving method is the foundation for an entire class of problem-solving methods, which 

are known as genetic algorithms (Holland, 1975). 

Models based on the ETBD are unique subtypes of genetic algorithms, which have been 

used to explain the dynamics of human and animal behavior. In these models, an organism’s 

behavior can be conceptualized as an attempt to solve the problem of their environment; 

                                                           
2 In this dissertation, “theory” strictly refers to an explanation that is built from logic and evidence, and “model” 
refers to how a theory is translated into a process or algorithm that produces testable hypotheses. 
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behavior, in this sense, is a solution to the current environment’s characteristics. The wide range 

of behaviors that humans and animals can engage in are represented in the ETBD as a population 

of potential behaviors. This population of behaviors adapts to the organism’s environment by – 

to use evolutionary terminology – selecting behaviors that previously resulted in beneficial 

consequences, making them become more likely via reproduction, and then adding random 

variation to some of these behaviors. There are many ways that selection, reproduction, and 

variation can be interpreted in the context of the ETBD, and this dissertation will examine a 

subgroup of these that have theoretical importance. The specific model dynamic that will be 

explored is when existing behaviors that resulted in beneficial consequences are directly 

amplified in frequency in a method analogous to asexual reproduction or cloning.  

  

1.3. Theory of Neuronal Group Selection (TNGS) 

 Cloning in ETBD models is important to explore because of its use by other researchers 

(Barerdi et al., 2018) and its relation to the theory of neuronal group selection (TNGS; 

summarized in McDowell, 2010). In his book Neural Darwinism: The Theory of Neuronal 

Group Selection (1987), Edelman explained his selectionist theory of brain development and the 

brain’s continuous adaptation to the environment. This theory has dynamics that are similar to 

the ETBD’s and it specifies a plausible biological mechanism (McDowell, 2010). Edelman’s 

wide-ranging theory covers everything from early brain development via synaptogenesis and 

pruning to synaptic adaptation of neuronal groups. Even greater phenomena like the mind and 

consciousness are explored by the theory. The synaptic adaptation of neuronal groups as an 

account of behavior is the element of the TNGS that matches the phenomena that the ETBD 

covers, and it also has dynamics that are like evolution. Neuronal group adaptation allows 
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organisms to adjust their behavior to their environment. Its dynamics are analogous to evolution 

in that the neuronal groups’ connectivity adapts to match the organism’s environment; neuronal 

groups that lead to beneficial behaviors are selectively reinforced and gain more influence over 

future behavior. 

 The viability of the TNGS has been confirmed by it predicting physical characteristics of 

the nervous system and forming the basis for proof-of-concept artificial intelligences 

(McDowell, 2010). An example of how the theory predicted future discoveries of neural 

functioning is how Edelman (1987) deduced the necessity of bidirectional connections between 

neuronal groups – reentry – despite lacking evidence for it at that time.   This hypothesis was 

later supported, and in a recent review Edelman and Gally (2013) were able to conclude that 

there is now some anatomical evidence that there is reentry. The proof-of-concept artificial 

intelligences that are based on the TNGS have been shown to be capable of numerous 

complicated tasks that were not strictly built into the intelligence’s capacity. For example, these 

proof-of-concept intelligences have been implemented as autonomous robots that could 

remember and find hidden platforms in Morris water mazes and other robots that could search 

the environment for appetitive blocks while avoiding subtly different aversive blocks. (Edelman, 

2007; Krichmar & Edelman, 2002; 2005; Krichmar, Nitz, Gally, & Edelman, 2005; Krichmar, 

Seth, Nitz, Fleischer, & Edelman, 2005; Seth & Edelman, 2007). It is important to distinguish 

this type of development from commercial artificial intelligences, which are often atheoretically 

constructed with layered heuristics and neural networks to produce satisfying answers. 

Developing machines and simulations from theory that are not designed to specifically perform 

these tasks but that nevertheless can do so, like TNGS- and ETBD-based models, are more 
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evidentially impressive than atheoretically constructing a machine to perform only a specific 

task. 

 A major contention about the TNGS’s theoretical viability is whether the dynamics it 

proposes are truly analogous to evolution. Edelman paints clear and pervasive parallels between 

his model and the evolutionary process (1987), but this has been contested by others (Crick, 

1989; Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; 

Fernando, Szathmary, & Husbands, 2012). Crick’s response (1989) was particularly critical of 

the notion that there is a parallel (e.g., “I have not found it possible to make a worthwhile 

analogy between the theory of natural selection and what happens in the developing brain and 

indeed Edelman has not presented one”, page 246). Similarly, Fernando and his colleges have 

been critical of the TNGS but have primarily emphasized the perceived inadequacy of the 

TNGS’s method of reproduction to adapt to the environment (Fernando, Karishma, & 

Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 

2012). Central to these critiques is that the direct amplification in strength of existing neuronal 

groups following positive outcomes, which is an aspect of the theory, is like an asexual 

reproduction dynamic because it increases the likelihood of an existing neural pattern of 

behavior but prevents novel neuronal group connections that could create new behaviors. This is 

believed to be too simple of a neural dynamic because it cannot account for the complex 

behaviors that humans learn and engage. Whether the TNGS is inadequate because of this 

cloning-like dynamic has been contested by Edelman (1992, pp. 94-97), and McDowell 

suggested that a modified version of the ETBD that quantitatively assessed this dynamic in 

choice environments would be able to assess the TNGS’s viability (2010). 
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1.4. Practical Importance of Adaptive Models of Behavior 

 Over the last 40 years, the long-term behavior of organisms when their behaviors are 

unpredictably reinforced has been found to be well described by equations, such as the matching 

law and quantitative law of effect (summarized in McDowell, 2013a). These equations are 

important because they accurately describe how behavior relates to its consequences over a long 

period of time, which is sometimes referred to as molar behavior. A significant limit to their 

explanatory utility, however, is that they are incapable of describing the moment-to-moment 

processes that lead to these outcomes, which is sometimes called molecular behavior, and this 

limits their predictive utility. The ETBD fills this gap in our understanding by correctly modeling 

the molecular dynamics of behavior (Kulubekova & McDowell, 2008, 2013), while also 

explaining how the molar behavior is a direct result of that molecular behavior (McDowell, 

2004; McDowell & Caron, 2007; McDowell, Caron, Kulubekova, & Berg, 2008; McDowell & 

Popa, 2010; McDowell, Popa, & Calvin, 2012). 

 By explaining the molecular behavior dynamics, the ETBD should be more applicable to 

clinical issues due to its greater predictive utility. At the least, the ETBD should be applicable to 

the same clinical phenomena to which the equations of molar behavior have been applied. The 

matching law (Equation 1-1) and quantitative law of effect (Herrnstein, 1970; Equation 3-1) have 

been found to be relevant to aggressive, antisocial, and delinquent behavior (Dishion, Andrews, 

& Crosby, 1995; McDowell & Caron, 2010a; 2010b; Snyder, Horsch & Childs, 1997; Snyder, 

Schrepferman, & St. Peter, 1997; Snyder, West, Stockemer, Gibbons, & Amquist-Parks, 1996; 

Snyder & Patterson, 1995), ADHD (Kollins, Lane, & Shapiro, 1997; Murray & Kollins, 2000; 

Taylor, Lincoln, & Foster, 2010), bipolar disorder (Szabadi, Bradshaw, & Ruddle, 1981), chronic 

pain syndrome (Fernandez & McDowell, 1995), developmental disabilities (Oliver, Hall, & 
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Nixon, 1999), and self-injurious behavior (McDowell, 1981, 1982; Symons, Hoch, Dahl, & 

McComas, 2003). Because the ETBD accounts for the matching law and quantitative law of 

effect, the ETBD is, thus, also relevant to these issues and could provide greater insight into 

them. Furthermore, because the ETBD accounts for more phenomena than the matching law and 

quantitative law of effect, it is likely that it will become relevant to other areas of clinical 

research. 

An example of how learning more about the dynamics of behavior may inform novel 

clinical approaches to disorders is provided by Popa and McDowell (2016). They argued that the 

ETBD may inform the treatment of attention-deficit and hyperactivity disorder by identifying 

patterns of behavior that could indicate different subtypes of ADHD-like behavior. As an 

example of equifinality, they found that ADHD-like patterns of behavior could be caused in 

multiple ways (Popa & McDowell, 2016). This work suggests that ADHD-like behavior can be 

caused by either poorly-structured environments or innate characteristics of the individual, and 

that there are some slight behavioral differences between these two causes. More specifically, 

environments that reinforce behaviors infrequently, provide reinforcers of poor quality, or permit 

rapid switching between tasks could lead to the simulated typical individual’s rapidly switching 

between tasks in a way that could be misinterpreted as ADHD. Alternatively, atypical simulated 

individuals, who had abnormally large amounts of behavioral variability, had similar patterns of 

ADHD-like behavior even in typical environments. These different causes of ADHD-like 

behavior could be classified as different subtypes of ADHD and could be targeted with 

interventions that are specific to their dynamic causes. For example, stimulants may be more 

clinically useful for individuals who express more atypical patterns of behavior in typical 

environments, and interventions that focus on training parents and teachers to restructure a 
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child’s environment may be better for children who express a typical-individual-but-poor-

environment pattern of behavior. This research still needs to be evaluated in a clinical sample of 

individuals with ADHD, but it highlights how the ETBD can inform clinical research.  

 

1.5. Objective of this Dissertation 

The objective of this dissertation is to evaluate the quantitative viability of the TNGS’s 

proposed dynamics. Specifically, the amplification of existing behaviors by replicating them in a 

manner akin to asexual reproduction (i.e., cloning) was evaluated because it is the most 

contentious aspect of the TNGS (Crick, 1989; Fernando et al., 2008; 2010; 2012). To evaluate 

the quantitative viability of this dynamic the TNGS was reinterpreted to more explicitly focus on 

the proposed evolution-like dynamics rather than constructing a brain-based device, as has been 

previously done (e.g., Edelman, 2007; Krichmar & Edelman, 2002; 2005; Krichmar, Nitz, Gally, 

& Edelman, 2005; Krichmar, Seth, Nitz, Fleischer, & Edelman, 2005; Seth & Edelman, 2007). 

One of the weaknesses of complicated constructions like brain-based devices is that they add 

numerous parameters that need to be tailored to the application, which can obscure the dynamics. 

Two experiments were conducted to assess the TNGS’s quantitative viability. These 

experiments were chosen based on their importance and previous assessment of the ETBD. The 

first experiment (Chapter 3) assessed the TNGS’s quantitative viability as an account for human 

and animal behavior in environments that are unpredictably reinforcing and was a replication of 

McDowell and Popa (2010). The second experiment (Chapter 4) assessed the TNGS’s 

quantitative viability as an account for pigeon behavior when reinforcers are delivered 

unpredictably and of different magnitudes, which was a replication of McDowell et al., 2012). 

For the TNGS to be considered a viable account of human and animal behavior it must behave 
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like them. The criteria for experiments one and two are based on our best understanding of how 

humans and animals behave in those situations.  
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Chapter 2: General Methods 

 To assess the viability of the TNGS as an account of human and animal behavior it is 

necessary to translate it into a model. Previous simulation work with the ETBD will serve as the 

foundation for this approach, because it permits the cloning reproduction dynamic to be brought 

into sharp focus. Translating the TNGS into a model that is like the ETBD’s requires a thorough 

understanding of the ETBD and a detailed examination of the TNGS. By thoroughly examining 

the TNGS, it is possible to identify what dynamics it suggests, and to translate that into a set of 

possible models that can be evaluated. 

 

2.1. ETBD Creatures 

It is necessary to build models based on the ETBD to assess the theory and its 

application. These models will be referred to as ETBD creatures because they are artificial 

constructs that are based on the theory and that interact with their environments. Within 

simulations, ETBD creatures fill the same role that human and animal participants do in live 

experiments and are expected to behave like them. Any contradiction between the ETBD 

creature behavior and human or animal behavior indicates that the ETBD creature is a poor 

model. It is necessary to create ETBD creatures and simulate entire sequences of events, because 

each ETBD creature is a complex system with the outcome at each step in the chain of events 

being probabilistic rather than purely deterministic.  

The ETBD describes a rather abstract process and avoids discussing the underlying 

neurological mechanisms of behavior (McDowell, 2010). From an Aristotelian perspective of 

explaining behavior (Killeen, 2001), the ETBD explains behavior based on its final causes (i.e., 

the purpose of behavior) rather than its material causes (i.e., neurological mechanisms). The 
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absence of a material explanation is why the ETBD is translated into models that have little 

similarity to neurology. A benefit of this is that the ETBD creatures are dramatically simpler than 

equivalent neural models, like TNGS-based models, because they are simply trying to model the 

dynamics rather than the exact mechanisms. 

 

2.1.1. Representation of potential behaviors within the ETBD. Potential behaviors are 

represented within the algorithm as whole numbers, typically between 0 and 1023, and – 

simultaneously – the binary representation of those numbers. The whole number representation 

of a behavior is called its phenotype because it represents how the behavior is expressed in the 

environment (McDowell, 2003). The binary representation of a potential behavior is referred to 

as its genotype because it is never observed, but it is what the algorithm’s selection, 

reproduction, and variation dynamics act upon (McDowell, 2003). This makes the binary 

representation similar to genes in biological evolution in that they are the primary unit of change 

but are not directly expressed. 

Prior to an experiment, the researcher identifies a group of functionally-equivalent 

behaviors – the target class. Within ETBD-based simulations, target classes are specified as a 

range of phenotype values that represent a set of behaviors having the same effect. For example, 

pressing the ‘A’ key on your keyboard could be an experimenter-defined target class of 

behaviors, and might be represented in the simulation as the phenotype range of 1 to 10. A 

participant in a real situation could functionally press the ‘A’ key with their fingers, with a pencil 

in their hand, or by asking someone else to press it. These behaviors have the same effect – an 

‘A’ is typed – and are, thus, functionally equivalent. In the ETBD these behaviors would each 

have different but similar phenotype values because they have the same effect. 
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There is a clear relationship between the phenotype and the genotype, which is that the 

integer value is simply transformed into its binary representation, but there are also some 

nuances to this relationship. For example, the 10-digit binary – genotype – of the phenotype 127 

is 0001111111 and the genotype of 128 is 0010000000. This example highlights an important 

nuance of the genotype-phenotype relationship; while phenotypes 127 and 128 are adjacent 

whole numbers, their genotypes are very dissimilar. To transform 0001111111 (phenotype 127) 

into 0010000000 (phenotype 128) it is necessary to flip the eight bolded bits from 0 to 1 or 1 to 

0. The number of bits required to transform one binary number into another is called the 

Hamming distance between two numbers (Hamming, 1950). 

Popa and McDowell (2010) showed that the Hamming distances between potential 

behaviors is a critical aspect of the ETBD’s functioning. They showed that the Hamming 

distance functions as a changeover delay, which is an important component of the environment. 

A changeover delay is typically implemented in experiments with more than one source of 

reinforcement to reduce switching between the target classes that are reinforced, and thus make 

them mutually exclusive. After switching from one target class to the other, the changeover delay 

imposes a waiting period that must elapse before the organism can gain reinforcement. This 

delay occurs after every switch, which means that if an animal continuously switches from one 

alternative to another then it would never receive reinforcement. In the absence of a changeover 

delay, animals frequently switch between the measured response alternatives (Herrnstein, 1961). 

The changeover delay may seem artificial at first, but it instead improves the experiment’s 

external validity. For example, the changeover delay has been found to be equivalent to the 

amount of time or effort that it takes to physically travel between locations where the animal can 

gain reinforcement (Baum, 1982), which is clearly related to concepts like foraging behavior. 
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Since the Hamming distance between behaviors functions as a changeover delay it partially 

represents a physical property of the environment. 

To summarize, each potential behavior consists of two pieces of information. The 

phenotype provides information about the function of behavior in an environment, and the 

genotype provides information about the ease of switching between groups of behaviors that are 

reinforced. While these are both important, it can be challenging when designing environments 

for ETBD creatures to interact with. The main difficulty is that, when determining which 

behaviors to reinforce, the experimenter must consider the time it takes to switch between an 

alternative – in binary – and how functionally similar behaviors are – as integers. While this is 

manageable, it is not intuitive. 

 The overall process by which the population of potential behaviors adapts to the 

environment is shown in Figure 2-1. Each cycle of the algorithm – going through steps 1 through 

5 – creates a new “generation” of behavior. The first two steps are very simple, but steps 3 

through 5 are more complicated. For step 1, one potential behavior is plucked at random from the 

current generation of one hundred potential behaviors and the ETBD creature engages in that 

behavior. Step 2 is the ETBD creature receiving environmental feedback on that behavior. This 

feedback determines whether the algorithm moves to Step 3A – beneficial selection – or 3B – 

random selection. If the expressed behavior did not result in a beneficial outcome (Step 3B), then 

all potential behaviors in the population have equal influence on the next generation. If that 

behavior resulted in a beneficial outcome (Step 3A), then the fitness of all potential behaviors in 

the population are inferred from how similar they are to the expressed behavior. Those that are 

more like the expressed behavior have a greater influence on the composition of the next 

generation via reproduction (Step 4).  
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2.1.2. Step 3A: Beneficial selection. The implementation of selection in the ETBD is 

very different from biological evolution. With biological evolution, selection typically occurs at 

the individual level; every organism in the population interacts with its environment, which 

determines whether it survives and reproduces. The organisms that survive and reproduce are 

fitter than those that don’t. Selection within the ETBD does not and cannot work this way. With 

every generation, only one behavior in the population engages with the environment, and the 

algorithm therefore needs to extrapolate the likely outcomes of other behaviors based on the 

consequences of only the behavior it just engaged in. 

Algorithmically, the likely outcomes of potential behaviors are extrapolated via 

continuous probability density functions. This method of selection – continuous selection – is the 

only method of beneficial selection that has been used in published articles (Kulubekova & 

McDowell, 2008; McDowell, 2004; McDowell & Caron, 2007; McDowell et al., 2008; 

McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012; Popa & McDowell, 2010). The 

purpose of continuous selection is to select potential behaviors from the population that are like 

the behavior that immediately preceded a beneficial consequence. There are three variations of 

the continuous selection method that have been used to select potential behaviors, namely, 

uniform, linear, and exponential selection. For all three variations, the fitness value of each 

potential behavior is the phenotypic distance (i.e., absolute difference in its integer 

representation) from the last rewarded behavior that the ETBD creature engaged in. Behaviors 

are probabilistically selected from the population of potential behaviors based on the functions 

shown in Figure 2-2. The shapes of these three probability density functions are different, but 

they all prefer behaviors that are phenotypically close to the behavior that preceded a beneficial 
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consequence. The exact equations that are used to create these functions are given in McDowell 

(2004). 

The shapes of all three functions are defined by a single parameter, the selection 

function’s mean. In Figure 2-2, all three functions have the same mean of 40. The mean value of 

a function indicates its effectiveness at increasing the probability that the target behavior will be 

engaged in. Continuous selection function means are inversely related to the effectiveness of the 

reinforcer, with smaller means indicating greater changes in the population. This is analogous to 

the greater quantity or quality of a reinforcer being a more potent reinforcer, which is its 

reinforcing magnitude. The inverse of the mean, thus, indicates the reinforcer’s magnitude with 

smaller selection function means indicating stronger magnitudes and larger function means 

indicating weaker magnitudes. 

 Two important properties of these functions are their upper limits and how behaviors are 

selected from these functions. The uniform and linear functions both have upper limits along the 

x-axis, which can be seen in Figure 2-2. Potential behaviors that are more than twice the uniform 

function’s mean value (e.g., 80 in Figure 2-2) cannot be selected, and potential behaviors that are 

more than thrice the linear function’s mean value (e.g., 120 in Figure 2-2) cannot be selected. 

The exponential function does not have an upper limit and can thus select any potential behavior 

from the population of potential behaviors, although behaviors that are distant from the emitted 

behavior are rarely selected. The process used to select behaviors using these functions is quite 

simple. Random fitness values are drawn from the continuous distributions until one is found 

that corresponds with the fitness of a behavior in the population. The selected behaviors are then 

used to create the next generation of behaviors via reproduction (Step 4 in Figure 2-1). 
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While effective under most circumstances, continuous selection functions poorly when 

reinforcers have a very large magnitude. The tiny mean of the selection function causes the 

function to be very steep. This is a weakness in that large amounts of computer processing time 

are wasted because the function oversamples too close to the reinforced behavior. In some 

circumstances, this can result in hours of processing time being spent trying to find a single 

behavior in the population. This occurs when there are just a few potential behaviors that are 

near the reinforced behavior and, thus, are unlikely to be selected by the continuous selection 

function. Linear and uniform continuous selection methods are particularly sensitive to this 

problem because of their upper limits. With large magnitudes there is a possibility that there is an 

absence of two behaviors – a requirement of bitwise recombination (Section 2.1.3) – within the 

function’s limits, which means that Step 4 in Figure 2-1 cannot occur because there are not 

enough behaviors that could be selected for reproduction. When this occurs, the experiment is 

typically restarted, but there are some other potential approaches to this problem. These 

weaknesses have become increasingly problematic as experimentation has been done with ever 

more extreme magnitudes. 

 

2.1.3. Step 4: Reproduction. The primary method of reproduction that has been used to 

date is bitwise recombination. With this method the genotypes of two potential parent behaviors 

are mixed to create a new child behavior. First, two of the behaviors that were selected in Step 

3A or 3B are translated into their genotype formats (Figure 2-3). For each of the new child’s bits, 

a bit is randomly chosen from either of the parents. In Figure 2-3, the first, fourth, sixth, seventh, 

and ninth bits of the child behavior were randomly picked from the first parent and the rest came 
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from the second parent. The resulting child behaviors have qualities that are like the parents, but 

the child behaviors are not identical to them. 

 

2.1.4. Step 5: Variation. There are many possible methods of implementing variation 

within the ETBD, but the most frequently used method is bitflip-by-individual (see McDowell 

2004 or McDowell & Caron 2007 for exceptions). With this method there is a probability that 

each child behavior will have some random variation added to its binary representation, which 

results in changes to its phenotype. The probability that variation will change a child behavior 

(i.e., the mutation rate) has been systematically varied in multiple experiments (McDowell, 2004; 

McDowell & Caron, 2007; McDowell et al., 2008; McDowell & Popa, 2010; McDowell, Popa, 

& Calvin, 2012). If the behavior is randomly chosen to be mutated, then 1 of its 10 bits is flipped 

from 0 to 1 or 1 to 0. In Figure 2-4, the eighth bit from the left of the new child behavior was 

flipped from 1 to 0. This only changed the phenotype of the behavior by 4. If the leftmost bit had 

been flipped instead, however, then the phenotype would have changed to 870, which is a 

phenotypic difference of 512. This method adds significant variation to the population of 

potential behaviors over the course of the experiment. 

 

2.2. Translating the TNGS to the ETBD: Three Algorithmic Variations 

The TNGS conceptualizes the nervous system as being composed of primary and 

secondary repertoires of behavior (Edelman, 1987). The TNGS’s primary repertoire specifies the 

evolutionarily adaptive behavioral capacities that an organism develops during synaptogenesis 

and pruning. These behavioral capacities are presumed to have evolved over time to be 

adaptively advantageous and are considered innate elements of the nervous system. Within 
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behavioral analysis, these capacities are like the older concepts of modal action patterns and 

reflexes, but this theory is a mechanistic explanation for them. The primary repertoire enables 

behaviors like limb movement, reproductive behavior, and vocalizations, but does not adaptively 

determine which behaviors the organism will do. This responsibility is instead the secondary 

repertoire’s, which controls the dynamics of behavior. The secondary repertoire does this by 

tapping into the behavioral capacities that the primary repertoire provides and then modifying the 

probabilities of engaging in the behaviors by altering synaptic connections at the neural group 

level. Neural groups are large clusters of interconnected nerve cells that receive stimuli from 

other neurons and generate output that is translated into behavior through the primary repertoire. 

 Both repertoires translate relatively directly into the ETBD. The ETBD’s range of 

behavioral phenotypes and the phenotype-genotype relationship of the ETBD’s behaviors are 

analogous to the primary repertoire in that they establish the ETBD creature’s behavioral 

capacities and their relationship to the environment. The secondary repertoire directly translates 

to the ETBD’s population of potential behaviors in that both specify the adaptive probabilities 

that certain behaviors will be engaged in at different times. The challenging part of this 

translation is how the TNGS’s dynamics map onto the ETBD’s. 

 Secondary repertoire dynamics are, unfortunately, unclearly presented in genetic 

algorithm terms within Edelman’s writings (Crick, 1989, McDowell, 2010; Edelman, 1987). This 

lack of evolutionary dynamic clarity has permitted extensive freedom of interpretation of the 

theory’s dynamics (Carlton & Shane, 2014; Crick, 1989; Fernando, Karishma, & Syathmary, 

2008; McDowell, 2010). The selection dynamics are the most straightforward with neuronal 

groups that fire together becoming bound together when they are predictively useful. The design 

of the primary repertoire is such that neuronal groups that are proximally located tend to be 



22 
 

highly connected and, thus, more likely to fire together (visually represented in Edelman 1987’s 

Figure 7.5). This conceptually maps well onto the ETBD’s abstraction of the selection function 

preferring similar phenotypes (Figure 2-2), but it does not suggest any particular selection 

function form. The reproduction dynamics of the TNGS have been argued to be most like 

cloning or asexual reproduction (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; 

Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012; McDowell, 

2010). However, different authors have focused on different mechanisms for this type of 

reproduction. Crick and Edelman both emphasized the adaptive strengthening of neuronal group 

connections as a form of selectionism (Crick, 1989; Edelman, 1987), whereas Fernando 

emphasized the direct replication of entire neuronal groups (Fernando, Karishma, & Syathmary, 

2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012). 

Fernando, Szathmary, and Husbands (2012) classified the TNGS as a “parallel search with 

competition” model, which describes how the neuronal groups compete with one another to 

control behavior but do not directly inform each other. The lack of information conveyed 

between neuronal groups means that replication is best described as a direct amplification of the 

neural patterns that led to the behavior, rather than as the ETBD’s sexual-like reproduction of 

behaviors, because there is no combining of neuronal groups. The TNGS’s variation dynamic 

can be found as either imperfect replication of neuronal groups (Fernando, Karishma, & 

Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010) or randomness in connection 

strengthening (Edelman, 1987; Crick, 1989). Edelman modelled this randomness as a Gaussian 

noise generator that influenced the state of neuronal groups (e.g., Edelman, 1984, pp. 273-274), 

which in turn modified the degree of connection strengthening and weakening. The Gaussian 

noise generator is a common element of neural networks and is not unique to the TNGS. Within 
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the ETBD, this dynamic could jointly be considered the randomness of the selection process and 

the bit-flip-by-individual mutation method. The TNGS does not strongly suggest a genotypic 

mutation method like bit-flip-by-individual mutation, however. Rather, the organization of the 

primary repertoire could equally suggest a phenotype-based mutation method, which was 

explored in early ETBD simulations (McDowell, 2004; McDowell & Caron, 2007). 

These similarities suggest three major variations to the ETBD algorithm that are of 

practical and theoretical interest. The most important task is to evaluate whether reproduction by 

cloning is a viable alternative to the sexual-like reproduction that has been explored with the 

ETBD. In addition to this being an important theoretical issue, it is algorithmically simpler than 

bitwise recombination, and is a more direct interpretation of reinforcement. The second variation 

is phenotypic variation because the TNGS does not strongly suggest genotypic variation – as the 

ETBD currently functions. Of secondary interest with this variation is that it would eliminate the 

genotype-phenotype distinction of how behaviors are represented, which could conceptually 

streamline the ETBD. The third variation is a modification of continuous selection, which is of 

practical interest because it does not have the large-magnitude problem that can be problematic 

with cloning-based ETBD models. In summary, this project seeks to evaluate novel variations of 

selection, reproduction, and variation that may further the theoretical development of the ETBD 

and the TNGS. 

 

2.2.1. Algorithmic variant of step 4: Cloning reproduction. Cloning, or asexual 

reproduction, is the simplest method of reproduction and is easier to conceptualize than bitwise 

recombination. With this method, selected parent behaviors are simply copied to produce new 

child behaviors for the next generation. Behaviors that were beneficial become more likely to 



24 
 

occur in the future, which is, essentially, Thorndike’s law of effect (1898) and the definition of 

operant reinforcement. If cloning generates behavior like living organisms, then it would suggest 

that bitwise recombination (Section 2.1.3) is not a required mechanism of the ETBD. 

 

2.2.2. Algorithmic variation of step 5: Phenotypic variation. Phenotypic variation adds 

novel behaviors to the population by acting on the phenotypes of the behaviors, rather than on 

their genotypes. Besides the relevance to the TNGS, this method – when combined with cloning 

reproduction – would result in there being no need for the phenotype-genotype distinction of 

behavioral representation. The algorithm would represent behaviors only as integers rather than 

the more complex representation of behaviors as simultaneously bit strings and integers. With 

this method, behaviors with more similar integer values are easier to switch between and have 

similar effects on the environment. 

 Discarding the genotype-phenotype distinction simplifies the design of simulated 

environments and their interpretation. With our previous research, it has been necessary to define 

target classes at very specific locations. These locations have been where the two target classes 

are most different in their binary representations (Popa & McDowell, 2010). For example, the 

two groups of behaviors that are reinforced have typically been defined as the integer ranges 

(i.e., phenotype ranges) of 471 to 511 and 512 to 552. While adjacent to each other 

phenotypically, 511 is maximally different from 512 in their binary representations; 511 is 

represented as 0111111111 and 512 as 1000000000, which is a Hamming distance of 10. The 

presence of behaviors that are very genotypically different within a target class also has 

significant effects on the behavior of ETBD creatures (Popa & McDowell, 2010). Removing the 
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genotype-phenotype distinction makes the environment simpler to define and design because 

only phenotypes need to be considered. 

Phenotypic variation is not a novel implementation of ETBD creatures. Gaussian 

mutation is a method of phenotypic variation that was used in the earliest research with the 

ETBD (McDowell, 2004; McDowell & Caron, 2007). With this method, each potential behavior 

has a probability that it will be changed. If changed, then a number is generated from a Gaussian 

distribution and added to that behavior’s integer representation (i.e., phenotype). If the behavior 

mutates outside the permissible range of behaviors, then it is moved to the opposite end of the 

range. For example, if the range of behavior is from 0 to 1023 (i.e., the range permissible with 10 

bits) and a child behavior is mutated outside of this range to 1025 then it would become 2 (1025 

– 1023). 

In addition to this method, the continuous selection functions have inspired an additional 

three methods of phenotypic mutation, which are displayed in Figure 2-5. While the following 

phenotypic mutation methods are based on the same probability density functions used in 

continuous selection, they have been modified to generate both positive and negative values from 

a single random number. These functions are: 

Uniform:  ∆𝑃𝑃 = 4𝜇𝜇(𝑟𝑟 − 0.5) 

Linear:  ∆𝑃𝑃 = �
−3𝜇𝜇�1 − √2𝑟𝑟�, 𝑖𝑖𝑖𝑖 𝑟𝑟 < 0.5;

3𝜇𝜇 �1 −�2(1 − 𝑟𝑟)� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
 

Exponential:  ∆𝑃𝑃 = � 𝜇𝜇 log(2𝑟𝑟), 𝑖𝑖𝑖𝑖 𝑟𝑟 < 0.5;
−𝜇𝜇 log[2(1 − 𝑟𝑟)],𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

In these equations ΔP is the change in the integer representation of the behavior, µ is the mean of 

the absolute value of the ΔP function, and r is a random decimal value. Based on these 

distributions, a ΔP will be randomly drawn that will be added to the current integer 
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representation of the behavior. For the experiments conducted in this dissertation, the absolute 

means of the uniform, linear, and exponential continuous mutation methods were set to 50, as 

was the standard deviation of the Gaussian continuous mutation method. The Gaussian standard 

deviation is twice that of previous research (McDowell, 2004; McDowell & Caron, 2007), and 

was so chosen on the basis of pilot data to make the mutation rate more like bitflip-by-individual 

mutation rates (discussed in Section 2.1.4). 

 

2.2.3. Algorithmic variant of step 3A: Roulette-continuous selection. Roulette-

continuous selection is a new method of selection for the ETBD that has some practical benefits. 

It is a combination of continuous selection (discussed in Section 2.1.2) and roulette-wheel 

selection (Goldberg, 1989). In the context of the ETBD, roulette-wheel selection would choose 

parent behaviors from the population based on their fitness values, with the likelihood that a 

behavior will be selected being equal to its fitness value divided by the sum of all fitness values 

within the population of potential behaviors. For example, if a behavior has a fitness value of 15 

and the sum of all fitness values in the population is 100 then there is a 15% chance that that 

behavior will be selected for reproduction. This method of selection can be easily imagined as a 

roulette wheel with the relative fitness indicating what percentage of the wheel is associated with 

each behavior of the population. If the wheel were spun it would come to rest on the area of one 

behavior, with the behaviors that have greater areas being more likely to be randomly chosen. 

Like most genetic algorithm methods of selection that were not designed for the ETBD, 

roulette-wheel selection assumes that all elements of the population have been assigned a fitness 

value by interacting with the environment. This is not the case with the ETBD, which must 

instead extrapolate the fitness of behaviors that were not emitted. Because roulette-wheel 
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selection requires that fitter behaviors have higher values, it is necessary to develop a new 

definition of fitness for this method. It is simplest to incorporate the continuous selection’s 

method of assigning fitness values into roulette wheel selection, because it creates a property of 

behaviors that becomes larger as they become more like the reinforced behavior. This requires 

measuring the area under the curve of the fitness functions (Figure 2-2), which can be calculated 

by integrating the functions. Rather than defining fitness as the distance from the last emitted 

behavior, fitness will be more directly defined as the probability that a behavior would be 

selected for reproduction. 

By integrating the functions used to produce the curves used in Figure 2-2, it is possible 

to calculate the exact probability that a potential behavior would be randomly selected in a single 

sampling. Without going into their derivation, the definite integrals that need to be calculated for 

each of the continuous function methods are: 

𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖𝑜𝑜𝑟𝑟𝑈𝑈:� (𝑥𝑥 2𝜇𝜇⁄ )2,   𝑖𝑖𝑖𝑖 𝑥𝑥 < 2𝜇𝜇
𝑥𝑥+1

𝑥𝑥
 

𝐿𝐿𝑖𝑖𝑈𝑈𝑒𝑒𝐿𝐿𝑟𝑟:� [−(𝑥𝑥 3𝜇𝜇⁄ )2 + (2𝑥𝑥 3𝜇𝜇⁄ )]/2
𝑥𝑥+1

𝑥𝑥
,   𝑖𝑖𝑖𝑖 𝑥𝑥 < 3𝜇𝜇 

𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜𝑈𝑈𝑒𝑒𝑈𝑈𝑜𝑜𝑖𝑖𝐿𝐿𝑒𝑒:∫ �1 − 𝑒𝑒−1/𝑥𝑥𝑥𝑥�𝑥𝑥+1
𝑥𝑥 . 

In these equations x is the absolute distance of the potential behavior from the emitted behavior 

and µ is the mean of fitness function. The uniform and linear functions are limited because they 

do not extend infinitely like the exponential does. The uniform function is limited to twice its 

mean and the linear to thrice its mean. Any potential emitted behavior that is outside these 

bounds has zero probability of being selected. 

This combination of roulette-wheel and continuous selection can be termed roulette-

continuous selection. Figure 2-6 illustrates how this method would be used with a tiny 
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population of three potential behaviors. The phenotypic integer distance of behaviors 1, 2, and 3 

from the reinforced behavior are 5, 20, and 30. The probability of selection becomes smaller as 

we go from potential behaviors 1 to 2 and from 2 to 3 as is indicated by the area under of the 

curve for each behavior. If the shaded portions are turned into a single wheel, then it would look 

like the roulette-wheel that is shown in the top right of Figure 2-6. Since the area of behavior 1 is 

roughly equal to the combined size of behaviors 2 and 3, it takes up half of the wheel’s area. 

Similarly, behaviors 2 and 3 have progressively smaller areas and take up less of the wheel. We 

would select a single behavior by spinning this wheel and a pointer would come to rest on one of 

those 3 behaviors. 

 Roulette-continuous selection has advantages over continuous selection. While it is 

computationally more intensive to calculate the areas under the curve for each behavior than to 

just measure the difference between behaviors in the population, it does not suffer from the large 

magnitudes (i.e., small fitness density function means) problem. If there are potential behaviors 

in the population that are within the limits of the function, then roulette-continuous selection will 

operate without issue. This is guaranteed with cloning reproduction because the behavior that 

was emitted and resulted in reinforcement will always be within the function’s range. Another 

important element of this method is that it maintains the forms of continuous selection, which 

connects it to previous research. Despite the computational intensity of calculating areas under 

the curve, roulette-continuous selection is a more efficient algorithm. Drawing random numbers 

– as continuous selection does – is a computationally more intensive task than calculating the 

probability of each behavior via integrals. Roulette-continuous selection only requires that one 

random number be drawn for each behavior rather than the expected average of 10 (the range of 
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phenotypes – 1024 – divided by the population size of 100) for the continuous selection function 

method.  

 

2.3. Virtual Environments 

 The simulated environments that the ETDB creature will be interacting with must be 

defined prior to experimentation. This is a critical aspect of modelling because it delineates what 

the researcher believed was relevant to the situation being examined. The inappropriate addition 

or omission of a critical component to the environment can produce results that have poor 

external validity because the reality of the situation was not modelled. Critical assumptions about 

how environments were designed for the experiments of this dissertation will be identified and 

briefly discussed. 

 For both experiments only two target classes are defined. These two target classes 

established which emitted behaviors were reinforced. All previous studies that have examined 

ETBD behavior in concurrently reinforcing environments have been conducted with just two 

target classes (Kulubekova & McDowell, 2013; McDowell et al., 2008; McDowell & Calvin, 

2015; McDowell & Klapes, 2018; McDowell & Popa, 2010, 2016; McDowell, Popa, & Calvin, 

2012; Popa & McDowell, 2010). A potential limitation to this design’s external validity is that 

matching law theory (Herrnstein, 1970) assumes that there are other reinforced behaviors that a 

participant engages in that are not measured by the experimenter, and this assumption also holds 

for concurrent schedules. While the experiments described in this dissertation followed the 

typical design for concurrent environments that have been conducted in the past, this design may 

lack external validity because there is no simulated unscheduled reinforcement which would 

exist in any experiment or real-world situation. Given the ratio form of Equation 1.0, however, it 
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is assumed that the unmonitored behaviors and unmeasured reinforcers would cancel out and 

thus not affect the results. 

 For the simulations, reinforcers were provided on random-interval (RI) schedules, which 

are idealized Fleshler and Hoffman (1962) VI schedules (McDowell et al., 2008). On VI 

schedules, reinforcers become available to the participant after variable periods of time have 

elapsed since the last reinforcer was collected (Ferster & Skinner, 1957). RI schedules are only 

different in that new intervals are created as the experiment is conducted, which is a minor 

distinction, but it does prevent the participant from potentially identifying reinforcement patterns 

that could exist with poorly preconstructed VI schedules. The random intervals were drawn from 

an exponential distribution (Fleshler & Hoffman, 1962). Exponential distributions are useful for 

eliminating the confound of memory, because the probability that a reinforcer will become 

available does not change as time elapses (Fleshler & Hoffman, 1962; Catania & Reynolds, 

1986). For example, if the RI mean is 10 seconds then there is a 50% chance that the reinforcer 

will become available within the next 10 seconds. If the reinforcer does not, however, become 

available within that first 10 seconds, then there is still a 50% chance that it will become 

available within the next 10 seconds, and so on. As long as no reinforcer has become available 

then the likelihood that it will become available within the next 10 seconds is the same regardless 

of how much time has elapsed. 

 A necessary component of concurrent VIVI schedules for them to produce behavior that 

follows the matching law is a changeover delay (COD). A COD prevents the participant from 

immediately receiving a reinforcer when they switch from one target class to the other (Findley, 

1958; Herrnstein, 1961; Ferster & Skinner, 1957). Herrnstein (1961) demonstrated that the 

absence of a COD results in frequent switching between target classes – a changeover – and that 
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the behavior is less well controlled by the environmental contingencies. The concept of CODs 

has been further explored, and it was found that CODs can be any type of punisher or cost for 

switching between target classes and are not limited to simply imposing a delay in obtaining 

reinforcers (summarized by Baum, 1982). These costs encourage participants to remain in one 

target class rather than switch, which makes their behavior more strongly controlled by the 

reinforcing contingencies. 

 Implementing CODs for ETBD creatures is complicated by the genotype-phenotype 

distinction. Popa and McDowell (2010) found that the Hamming distance between behaviors was 

the most analogous characteristic of ETBD simulations to a COD. The Hamming distances 

between target classes and within target classes controlled what the exponent in Equation 1.0 

would be, which is consistent with how CODs work with humans and animals. A rough rule is 

that the Hamming distance between target classes minus the Hamming distance within the target 

classes must be greater than 3 for the matching law exponent (Equation 1-1) to be within the 

range of what is typical of experiments (Popa & McDowell, 2010). The two target classes for 

ETBD creature experiments in the concurrent RI RI schedule environment are most often located 

at 471 to 511 and 512 to 552 (Kulubekova & McDowell, 2013; McDowell et al., 2008; 

McDowell & Calvin, 2015; McDowell & Popa, 2010, 2016; McDowell, Popa, & Calvin, 2012; 

Popa & McDowell, 2010). This was the location of the target classes for ETBD creatures that 

used bitflip-by-individual mutation (Section 2.1.4) for Step 5 of the ETBD algorithm (Figure 2-

1). With phenotypic mutation (Section 2.2.2), the target classes need to be separated 

phenotypically, because a short phenotypic distance like 471 to 511 and 512 to 552 will have 

excessively frequent changeovers. The target classes, thus, needed to be phenotypically 

separated, and the target classes of 225 to 275 and 725 to 775 were chosen for this reason. The 
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mutation mean of the phenotypic mutation methods was set to 50 on the basis of pilot data and 

the expected average of 10 mutations in one direction to switch between target classes. This 

number of mutations is analogous to bitflip-by-individuals average number of bit flips that are 

needed to go from one target class to another. 

 

2.4. Apparatus 

I wrote the software that was used to conduct the experiments, which were all conducted 

on a computer using the Windows 10 operating system. The computer used for experimentation 

had a dual core 2.3 Ghz processor with 8 GB of RAM. The ETBD and laboratory code were 

written in VB.Net 2015, which is a common programming language. The timing, emitted 

behaviors, and reinforcement counts were recorded and stored in standard databases (i.e., XML 

files and Microsoft Excel). Data were analyzed using standard software (i.e., Microsoft Excel & 

R). 
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Chapter 3: ETBD and TNGS Behavior on Concurrent RI RI Schedules 

For new theories to be considered strong alternatives to existing ones, a new theory either 

must account for more phenomena or better predict phenomena than existing theories (Hempel & 

Oppenheim, 1948; Killeen, 2001; Platt, 1964; Popper 1959; Staddon & Bueno, 1991). The 

ETBD has already demonstrated that it can explain a wider range of phenomena than the 

matching law (Equation 1-1; for review see McDowell, 2013a), which suggests that it may be a 

better account of operant behavior. The first steps that were taken to assess the ETBD’s viability 

as an account of human and animal operant behavior consisted of examining its performance on 

single RI and concurrent RI RI schedules (McDowell, 2004; McDowell & Caron, 2007; 

McDowell et al., 2008). Because the TNGS’s sustained operant behavior has not been assessed, 

those same experiments provide an opportunity to assess its viability as a quantitative account of 

behavior. The clinical relevance of behavior in those circumstances is another reason why single 

RI and concurrent RI RI schedules are a good starting point (Section 1.4). Fortunately, a single 

experimental design can simultaneously assess a model’s explanatory viability for both 

concurrent RI RI and single RI environments (McDowell & Popa, 2010). 

 

3.1. Matching to Rates of Reinforcement on Single Schedules 

 Two separate equations that are based on the matching law are used to describe human 

and animal behavior in concurrent RI RI and single RI environments. Behavior on concurrent RI 

RI schedules is typically described with the modern matching law (Equation 1-1; Section 1.1) 

and a derivation of it is fitted to behavior on single RI schedules. The derivation entails 

theoretical assumptions that make it distinctly different from the matching law because it 

ascribes more characteristics to the participant and the environment than the matching law. The 
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original derivation was based on the original matching law equation (Herrnstein, 1961), which is 

like Equation 1-1 but expresses behavior and reinforcement as proportions and omits the a and b 

parameters. The original matching law equation is 

𝐵𝐵1
𝐵𝐵1+𝐵𝐵2

= 𝑅𝑅1
𝑅𝑅1+𝑅𝑅2

,     (3-1) 

where B is the rate of behavior, R is the rate of obtained reinforcement, and the subscripts 

indicate the target classes. This equation is strictly inferior to the modern matching law 

(Equation 1-1) as a description of human and animal behavior (for review see McDowell, 

2013b). Both Equations 1-1 and 3-1 are limited in that they only apply to the specific 

circumstance of two target classes. This dramatically limits their external validity because 

natural environments may reinforce any number of behaviors, not just behaviors that neatly fall 

into two target classes. 

Herrnstein addressed this limitation by making two important assumptions (1970). The 

first assumption is that humans and animals engage in behaviors at a constant rate, and the 

second is that the environment reinforces behaviors outside of the target classes at constant rates. 

By making these assumptions a new equation could be derived that extended the matching law to 

any number of target classes. This equation is called the quantitative law of effect because it was 

a quantitative interpretation of Thorndike’s law of effect (1911). The quantitative law of effect is 

expressed as  

𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖
𝑅𝑅𝑖𝑖+𝑟𝑟𝑒𝑒

,      (3-2) 

where B is the rate of behavior, R is the obtained rate of reinforcement, k is the estimated 

constant total rate of behavior, re is the estimated rate of unmeasured reinforcement, and i 

identifies the target class. In theory, k represents the sum of all rates of behavior, ΣBx, and re 
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represents the sum of all rates of reinforcement, ΣRx, minus the rate of reinforcement from the 

target class, Ri (i.e., re = ΣRx - Ri). 

An alternative to the quantitative law of effect that makes the same assumptions but is 

derived from the modern matching law is  

𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖𝑎𝑎

𝑅𝑅𝑖𝑖𝑎𝑎+
𝑟𝑟𝑒𝑒
𝑎𝑎

𝑏𝑏𝑖𝑖

       (3-3) 

(Dallery et al., 2005; McDowell, 1986, 2005; Soto et al., 2005). B, R, k, re, and i have the same 

meanings as in Equation 3-2. The parameters a and b have similar, but not identical, 

interpretations to Equation 1-1, which is that a is the sensitivity to the rate of reinforcement and 

bi reflects relative preference for the identified target class over all other measured and 

unmeasured target classes. When fitted to data, re and b cannot be separately estimated and are, 

thus, combined into the parameter c (Dallery et al., 2005; McDowell, 2005; 2013b; McDowell & 

Calvin, 2015). With the substitution of c, Equation 3-3 becomes  

𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖𝑎𝑎

𝑅𝑅𝑖𝑖𝑎𝑎+𝑐𝑐
.          (3-4) 

In a recent review, Equation 3-4 was found to provide a better description of behavior on single 

alternative schedules than Equation 3-2 (McDowell, 2013b). 

In Equations 3-2, 3-3, and 3-4, the parameters k and re represent information that the 

researcher can only indirectly and uncertainly assess during an experiment. For example, an 

important caveat to k representing the sum of all behaviors is that all behaviors are of the same 

form and effort (Herrnstein, 1970). This requires the interpretation of k in terms of target-class-

equivalent behaviors even when the unmeasured behaviors are dramatically different. The 

estimated values are an amalgam of effort, cost, frequency, and other qualities that are roughly 

equivalent to the measured behavior. If typing was the target class, then k is measured in typed 
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words per minute despite the forms of the unmeasured behaviors diverging from that (e.g., 

grading, cooking, or socializing). In this way k is like measuring the worth of everything in a 

grocery store in terms of apples, so its validity is difficult to assess. Similarly, the parameter re is 

the sum of reinforcement rates and has the same measurement caveat as k inasmuch as the value 

is relative to the measured reinforcers. Unsurprisingly given these caveats, researchers have 

heavily critiqued Equation 3-2 despite its utility (Baum, 1981; 2012; Baum & Davison, 2014; 

Dallery, McDowell, & Lancaster, 2000; Dallery, McDowell, & Soto, 2004; Dallery, Soto, & 

McDowell, 2005; Davison, 1993; McDowell, 2005; 2013b; McDowell & Dallery, 1999; 

McDowell & Calvin, 2015; Pear, 1975). 

 The primary criticism of Equation 3-2 is that Herrnstein’s first assumption – that the rate 

of behavior, k, is constant – is refuted by data. Numerous studies have found that k varies with 

the size or quality of the reinforcers (Dallery et al., 2000; 2004; 2005; McDowell, 2005; 2013a; 

McDowell & Dallery, 1999). The impact of a reinforcer on future behavior is often called its 

magnitude and it can refer to either the quality (e.g., sucrose concentration) or quantity of the 

reinforcer. Dallery et al. (2004; 2005) and McDowell (2005) found that k estimates of human and 

rat behavior changed with the reinforcers’ magnitude. McDowell (2013) revised his opinion, 

however, when he conducted a more powerful reanalysis of McDowell and Dallery (1999). 

McDowell concluded that their experiment lacked the statistical power to determine whether k 

varied with reinforcer magnitude. This lingering uncertainty about k’s constancy led to the 

development of an ETBD simulation which predicted that k varies with the reinforcer’s 

magnitude (McDowell & Calvin, 2015). This seemed to be confirmed when McDowell et al. 

(2017) reanalyzed McDowell and Dallery (1999), again, using a new statistical approach and 

concluded that k did vary. However, the statistical technique they used was novel (McDowell, 
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Calvin, & Klapes, 2016) and overly focused on residuals being homoscedastic. It would be better 

if a new experiment was conducted that were more clearly identify differences in k values with 

reinforcer magnitude using traditional statistical approaches. 

To assess the viability of the TNGS it is necessary to see what patterns of behavior it 

predicts and assess whether that pattern is like those produced by humans and animals. The 

criteria of a successful simulation of human and animal behavior in concurrent RI RI and single 

RI environments are multifaceted. The first criterion is that the simulation must result in patterns 

of behavior that are better described by the modern versions of the matching law (Equation 1-1) 

and quantitative law of effect (3-4) than their original versions (Equations 3-1 and 3-2), which is 

supported by McDowell’s review (2013b). Secondly, the parameters found with Equations 1-1 

and 3-4 must be consistent with those found with humans and animals in single-RI and 

concurrent-RI RI environments. The average exponent value must be near 0.8 (Baum 1974, 

1979; McDowell, 1989, 2013b; Myers & Myers, 1977; Wearden & Burgess, 1982), although a 

range of 0.7 to 0.9 is permissible inasmuch as the 0.8 criteria is a rough estimate that has not 

been thoroughly assessed via meta-analysis. Additionally, the bias parameter should reflect 

differences and similarities in reinforcer magnitudes. If a reinforcer is stronger for one target 

class than another, then the bias parameter should favor that side. If the reinforcers’ magnitudes 

are equivalent across target classes, then the bias parameter should favor neither target class (i.e., 

have a value of 1). Thirdly – but to a lesser extent because it is under examined – the rate of 

switching between target classes should be greatest when the rate of reinforcement is equivalent 

for the two target classes and smallest when the rate of reinforcement strongly favors one target 

class over another (Alsop & Elliffe, 1988; Baum, 1974; Brownstein & Pliskoff, 1968; 
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Herrnstein, 1961). If a simulation meets these criteria, then it would indicate that it is in 

accordance with animal and human behavior in similar situations. 

Another goal of this experiment was to assess whether the TNGS makes the same 

predictions as the ETBD (McDowell & Calvin, 2015). The purpose of this simulation was to 

determine which interpretation of the matching law the ETBD predicted. As proposed by 

McDowell (2013b), matching theory can be separated into four categories based on the form of 

the equation and assumptions about k. These are the classical response-strength, classical 

algebraic, modern response-strength, and modern algebraic interpretations. The first 

classification entails the equation’s form (classical vs. modern) and refers to whether behavior is 

best described by the classic quantitative law of effect (Equation 3-2) or the modern quantitative 

law of effect (Equation 3-3). The second classification is whether the parameter k has the same 

value in all situations or if it can vary across situations. This entails whether the theory that 

underlies the quantitative law of effect – Herrnstein’s assumptions (1970) – is supported by the 

data or if the equation should be viewed simply as being an algebraic description. This was 

assessed in the McDowell and Calvin (2015) simulations by holding the magnitude of 

reinforcement for one target class constant while varying the magnitude of the other target class. 

If Herrnstein’s assumptions were correct, then the parameter k should always be the same 

regardless of the target class’s magnitude.  

 McDowell and Calvin (2015) found that the typically used version of the ETBD predicts 

that behavior is best described by the modern quantitative law of effect (Equation 3-3), but that 

Herrnstein’s assumptions were not supported by the data (i.e., the modern algebraic 

interpretation). The best descriptor of behavior was a version of the modern quantitative law of 

effect that allowed the k and c parameters to vary across magnitudes. For the new models to 
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make the same predictions, the best descriptors of their behavior should also find that the k 

parameter values vary with reinforcer magnitude. This is not a strict criterion because it needs to 

be more strongly verified than in McDowell et al. (2017), but it is important to identify 

deviations in theory predictions because they can inform the development of critical experiments 

(Platt, 1964). 

 

3.2. Methods 

3.2.1. Participants. Twelve different simulated creature types were assessed and are 

listed in Table 3-1. These twelve creature types are various combinations of the selection, 

reproduction, and variation algorithm methods that were possible implementations of the TNGS 

and ETBD. For the sake of conciseness, the abbreviated simulated creature names that are listed 

in the table will be used in the text and figures. In the abbreviated format, the first word is the 

form of the selection function, the second is the method of reproduction, and the last is the 

method of variation. This considerably improves readability because describing a creature’s 

algorithm as “linear-bitwise-bitflip” is much briefer than “continuous-linear selection, bitwise 

reproduction, and bitflip-by-individual variation” while conveying the same meaning. 

The twelve types of simulated creatures can be organized by their relationship to the 

TNGS and ETBD. The first two simulated creatures that are listed in Table 3-1 under the ETBD-

based heading (linear-bitwise-bitflip and exponential-bitwise-bitflip) are comparison models and 

are replications of the same ETBD algorithms that have been used in previous research. These 

were included to identify problems with the simulation and differences between the TNGS and – 

as previously implemented – the ETBD. The two versions of the TNGS that are genotype based 

(Table 3-1; linear-clone-bitflip and exponential-clone-bitflip) maintain the distinction between 
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the behavioral genotype and phenotype, whereas the remaining eight that are phenotype based 

only represent behaviors as phenotypes. Please note that, the dissertation proposal only suggested 

using the exponential selection function but – for reasons that will become apparent in the 

second experiment – the creature types that used linear selection functions had to be added. This 

was unanticipated and doubled the size of this experiment. While the linear and exponential 

replications are presented together, the true order of events was that the simulations with the six 

creature types that used the exponential selection function were conducted first and then later the 

simulations with the six creature types that used the linear selection function were conducted. 

 The mutation rate for all creature types was systematically manipulated from 5% to 20% 

in steps of 2.5%. This gave seven rates of mutation, which were 5%, 7.5%, 10%, 12.5%, 15%, 

17.5%, and 20%. At each combination of creature type and mutation rate ten creatures were 

simulated, and each creature worked on 208 concurrent RI RI schedules for 20,500 time steps 

per schedule. This resulted in 298,480,000 simulated behaviors (7 mutation rates • 10 creatures • 

208 schedules • 20,500 time steps) for each creature type, so great confidence can be placed in 

the observed patterns of behavior being representative of that creature type’s predictions. Since 

there were twelve different types of simulated creatures, this experiment represents a total of 

3,581,760,000 simulated behaviors that were produced by 840 simulated creatures. 

 

3.2.2. Procedures. This experiment’s procedures generally followed McDowell and Popa 

(2010) but deviated in some minor respects. All simulated creatures worked on 52 concurrent RI 

RI schedules (Table 3-2) at four different reinforcer magnitude pairs, which gives a total of 208 

schedules of reinforcement. At each reinforcer magnitude pair, the 52 schedules were presented 

to the simulated creature in a random order. This wide range of concurrent RI RI schedules is 
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necessary for simultaneously fitting the modern quantitative law of effect (Equation 3-4) and 

modern matching law (Equation 1-1), because the two equations have different fitting 

requirements. The modern matching law requires a wide range of reinforcement ratios, whereas 

the modern quantitative law of effect requires a wide range of obtained reinforcement rates. 

The 52 schedules of this experiment deviated from McDowell and Popa’s 54 schedules 

(2010) to better sample the lean range of concurrent RI RI reinforcement rates (i.e., RIs between 

20 and 80 time steps). The random-interval means ranged from 2.5 to 80 time steps, which is 

slightly wider than McDowell and Popa’s 1 to 70 (2010). The range of scheduled RI ratios was 

slightly more restricted in this experiment with its largest ratio being 1:4, whereas it was 1:5 in 

McDowell and Popa (2010). The 52 schedules were constructed by creating 4x4 grids of 

reinforcement ratios at RIs 2.5, 5, 10, and 20 time steps. Each grid was created by multiplying 

those interval rates by the ratios 1:1, 1:1.3�, 1:2, 1:4, 1.3�, 1, 1.3�: 1.3�, 1.3�:2, 1.3�:4, 2:1, 2: 1.3�, 2:2, 

2:4, 4:1, 4:1.3�, 4:2, and 4:4 (visualized in Figure 3-1). This method provides an even sampling of 

the rate of reinforcement domain, which McDowell and Popa’s (2010) experiment lacked. 

McDowell and Popa sampled the richest rates of reinforcement (i.e., RIs 1 through 10) with 

many ratios, whereas they only sampled the lean schedules (i.e., RIs 20 to 80) at a 1:1 ratio. 

 At each mutation rate, the simulated creatures were assessed at 4 pairs of reinforcer 

magnitudes. The reinforcer magnitude pairs were fitness density function mean pairs of 20 & 20, 

40 & 40, 60 & 60, and 80 & 80. Recall that fitness density functions means are inversely related 

to their reinforcing magnitudes; for example, a fitness density function mean of 20 represents a 

greater reinforcer magnitude than a mean of 80. 

 

3.2.3. Analyses. 
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3.2.3.1. Data pooling and averaging. Simulated behavior during the first 500 time steps 

of each schedule was excluded from analyses to assess each simulated creature type’s steady-

state behavior rather than behavior during transition. Observed reinforcement and behavior 

frequencies during the remaining 20,000 time steps were divided by 500 time steps to create 

rates of reinforcement and behavior. These rates were then averaged across simulated creatures 

of the same type as a precaution against individual creatures becoming stuck in unrepresentative 

local minima. In summary, each data point represents 200,000 behaviors from 10 simulated 

creatures. 

  

3.2.3.2. Weighted ensemble fitting. To estimate parameter values for the matching law 

and quantitative law of effect it is necessary to simultaneously fit both equations while using the 

same parameter values (McDowell, 2005). In total, it was necessary to simultaneously fit three 

equations: the modern quantitative law of effect to the first target class, the modern quantitative 

law of effect to the second target class, and the modern matching law to the ratio of the two 

target classes. The theoretical formulations of the modern matching law (Equation 1-1) and 

quantitative law of effect (Equation 3-3) are inadequate for fitting data because b cannot be 

estimated for the quantitative law of effect and re cannot be estimated for the modern matching 

law. The parameter c from Equation 3-4, captures both elements, however, and thus can be used 

to create an important equality that bridges the two (McDowell, 2005). The c parameter for each 

target class represents the extraneous rate of reinforcement to the power of a divided by the bias 

towards that side. Since c1 represents re
a/b1 and c2 represents re

a/b2, the ratio of those c estimates 

represents bias in the modern matching law equation because re
a cancels out (i.e., c2/c1 = b). 
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Based on this, the modern matching law and quantitative law of effect equations were 

modified to forms that are better suited for data analysis (McDowell, 2005; McDowell & Calvin, 

2015; McDowell & Popa, 2010). To highlight the relationship between these equations and their 

theoretical counterparts they are designated by their base equation with a prime added to it. The 

modern matching law is typically log transformed to make it a linear equation, which gives 

log �𝐵𝐵1
𝐵𝐵2
� = 𝐿𝐿 ∙ log �𝑅𝑅1

𝑅𝑅2
� + log �𝑐𝑐2

𝑐𝑐1
�.    (1-1′) 

The modern quantitative law of effect must be simultaneously fitted to both target classes by 

using the equations 

𝐵𝐵1 = 𝑘𝑘 �𝑐𝑐1
𝑅𝑅1𝑎𝑎

+ 𝑐𝑐1𝑅𝑅2𝑎𝑎

𝑐𝑐2𝑅𝑅1𝑎𝑎
+ 1�

−1
    (3-4a′) 

and 

𝐵𝐵2 = 𝑘𝑘 �𝑐𝑐2
𝑅𝑅2𝑎𝑎

+ 𝑐𝑐2𝑅𝑅1𝑎𝑎

𝑐𝑐1𝑅𝑅2𝑎𝑎
+ 1�

−1
     (3-4b′) 

(McDowell, 2005; McDowell & Calvin, 2015; McDowell & Popa, 2010). The parameters in 

these three equations are the same as those in the modern matching law (Equation 1-1) and 

quantitative law of effect (Equation 3-4). 

 The effect of the free parameters on the shape of Equations 3-4a′ and 3-4b′ are shown in 

Figure 3-23. The unbroken black line serves as a reference for the effects of changing k, c, and a. 

The dashed line shows the effect of reducing k, which is that it lowers the function’s asymptote. 

                                                           
3 For the sake of clarity, Figure 3-2 shows the predicted rate of responding for one target class 
when there is no reinforcement from the other target class, which means that Equations 3-4a′ and 
3-4b′ can be simplified to Equation 3-4. The true shape of Equations 3-4a′ and 3-4b′ is three 
dimensional with the axes being the rate of reinforcement from the 1st target class, the rate of 
reinforcement from the 2nd target class, and the rate of behavior. The effects of the free 
parameters that are described by this paragraph are not significantly affected by the rate of 
reinforcement in the 2nd target class. 
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The dotted line shows the effect of increasing c, which is that it takes longer to reach the 

asymptote. It is important to note that c is the rate of reinforcement that predicts a rate of 

responding that is half of k (Bradshaw, Szabadi, & Bevan, 1976). For example, in Figure 3-2, 

when the rate of reinforcement is 50 along the dotted line, then the predicted rate of behavior is 

250. The dot-dash line shows the effect of undermatching (i.e., a less than 1). The effect of an a 

value less than one is like increasing c in that reduces the rate of ascent to the asymptote. 

However, it has less of an effect at low rates of reinforcement and a greater one at high rates of 

reinforcement. 

The simultaneous fitting of Equations 1-1′, 3-4a′, and 3-4b′ complicates the analysis in a 

way that precludes ordinary least squares (OLS) fitting (McDowell, 2005). OLS is a poor fitting 

method in this case because it cannot account for B1, B2, and B1/B2 sample variance differences, 

which can bias fits. The variances of behavior in the target classes strongly differs from the 

variance of the behavioral ratio by orders of magnitude. Even the sample variances of B1 and B2 

may be slightly unequal in spite of the experiment’s symmetrical design. 

A solution to this problem is ensemble least-error fitting (McDowell, 2005). This 

approach is like OLS in that the sum of squares is minimized, but it also takes into account the 

different sample variances. Ensemble least-error fitting minimizes   

�
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑅𝑅𝑅𝑅𝑖𝑖

,
𝑘𝑘

𝑖𝑖=1

 

where k is the number of data subsets being fitted, RSS is the residual sum of squares for a data 

subset, and SS is the total sum of squares for a data subset (McDowell, 2005). The residual sum 

of squares divided by the total sum of squares is closely related to the percentage of variance 

accounted for, so it can also be thought of as maximizing the overall percentages of variance 
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accounted for. This approach has been successfully used to analyze quantitative law of effect fits 

to rat behavior under multiple deprivation conditions (McDowell, 2005; McDowell, Calvin, 

Hackett, & Klapes, 2017), to analyze the simultaneous fit of the quantitative law of effect to 

simulated creature behavior on concurrent RI RI schedules (McDowell & Calvin, 2013; 

McDowell & Calvin, 2015), and to analyze the simultaneous fit of the quantitative law of effect 

and matching law to simulated creature behavior (McDowell & Popa, 2010). 

 A potential problem with ensemble least-error fitting is suggested by McDowell and Popa 

(2010). They simultaneously fitted Equations 1-1′, 3-4a′ and 3-4b′. Figure 3 of that paper shows 

differences in the percentages of variance accounted for by the matching law and quantitative 

law of effect fits, with the quantitative law of effect fits having larger percentages of variance 

accounted for. This difference may be due to the quantitative law of effect equation implicitly 

having twice as much weight on the overall percentage of variance accounted for because it 

constitutes two of the three fitted equations. However, this difference disappears when a larger 

sampling area of reinforcement rates (i.e., 54 data points rather than 11) is used, which suggests 

that this would not be a problem for this experiment.  

To prevent any possible impact of the greater implicit weighting towards the quantitative 

law of effect, a weighting parameter was added to the ensemble least-error fitting method. 

Attaching a weighting value is a simple way to account for the implicit imbalance of equation 

forms. With the weighting adjustment, the ensemble least-error fitting takes the form of 

�𝑒𝑒𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
𝑅𝑅𝑅𝑅𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, 

in which RSS, SS, and k have the same meaning as ensemble least-error fitting and w represents 

the weighting for a fit. By weighting the matching law fit twice as much as the two quantitative 
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law of effect fits, it should prevent overfitting to the quantitative law of effect. In this 

experiment, Equation 1-1′ was weighted at 0.5 and Equations 3-4a′ and 3-4b′ were each weighted 

at 0.25. 

 

3.2.3.3. Analytic approach to ensemble fits. A nested model analysis approach was taken 

to determine how the behavior of the simulated creatures could be best described. The nested-

models approach is used to refine an equation with many parameters to the lowest justifiable 

number of parameters (Loehlin, 2004). To do this, the experimenter evaluates various parametric 

assumptions that simplify the equation and then evaluates whether each of those assumptions can 

explain the data just as well as the more general account. A simile for this approach is that the 

equations are like Russian nesting dolls (i.e., Matryoshka dolls) and that the data is like a ball 

that can fit into some but not all dolls. More specific equations with fewer parameters are like 

smaller dolls that fit within the largest doll, which represents the most general equation. The 

analyst’s goal is fit the ball – data – within the smallest doll they can – an equation that describes 

the data without sacrificing any explanatory power. An equation that describes the data as well as 

the most general equation is the most parsimonious account. 

For this approach, the most general fit serves as a baseline that accounts for the largest 

percentage of variance but may have the least explanatory utility due to possibly unnecessary 

parameters. This baseline fit is then compared to simplified versions of that equation that are 

made by making certain assumptions about the parameters. For example, the classic quantitative 

law of effect (Equation 3-2) is nested within the modern quantitative law of effect (Equation 3-

4), because they produce the same predictions when a equals 1 and there is no bias (c1 = c2). The 
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classic quantitative law of effect is a more restricted version of the modern quantitative law of 

effect and is, thus, nested within it. 

This logic can be applied to compare multiple versions of the quantitative law of effect 

that make different assumptions about the parameters. To deduce the best version of the 

quantitative law of effect, eight models that made different assumptions were fitted to simulated 

creature behavior and then compared (Table 3-2). These different models are roughly ordered by 

the level of restriction. Model 1 is the least restrictive and Model 8 is the most restrictive because 

it makes the most assumptions about the parameters. These comparisons models can support one 

of four major interpretations (McDowell, 2013b), which are the classic algebraic (models 6 and 7 

in Table 3-3), classic response strength (model 8), modern algebraic (models 1 through 4), and 

modern response strength (model 5). 

There are many ways to compare models within a nested-models analysis (Loehlin, 

2004). To prevent overreliance on any given comparison method, the extra sum of squares 

difference test (Motulsky & Christopolous, 2004), Akaike Information Criterion (AIC; Akaike, 

1974), and Bayes Information Criterion (BIC; Schwarz, 1978) were used. The extra sum of 

squares difference test was chosen over the frequently used root mean square error of 

approximation (RMSEA), because the weighted least-error ensemble fitting method is closest to 

OLS. RMSEA is based on a χ2 difference test and is thus nonparametric.  

The extra sum of squares difference test is a generalization of a typical F-test used in 

ANOVA (Motulsky & Christopolous, 2004, pg. 142). The F-test is 

𝐹𝐹 =
�𝑅𝑅𝑅𝑅𝑙𝑙𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙 − 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙�/�𝐷𝐷𝐹𝐹𝑙𝑙𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙 − 𝐷𝐷𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙�

�𝑅𝑅𝑅𝑅𝑙𝑙𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙/𝐷𝐷𝐹𝐹𝑙𝑙𝑎𝑎𝑟𝑟𝑙𝑙𝑙𝑙�
, 

where SS is the sum of squares, DF is the degrees of freedom, large refers to the more general 

equation, and small refers to the more specific equation (Motulsky & Christopolous, 2004). This 
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is a null-hypothesis test which has the alternative hypothesis that the more restrictive equation 

explains less of the variance. If there is a significant difference, then the simpler model does not 

account for the data as well as the more general model and, thus, should be rejected. A failure to 

reject suggests that the simpler model is a better description via Occam’s razor. By comparing 

ever simpler models, the simplest explanation that still describes the data can be found. 

 A second and distinct approach to model evaluation from extra-sum-of-squares difference 

testing is to compare information criteria (Motulsky & Christopolous, 2004). Two commonly 

used and important information-criteria-based measures are the AIC and BIC. When comparing 

models, the model with the smallest information criterion is considered the best model among 

those fitted. The AIC is an estimator of the information provided by a model (Akaike, 1974; 

Hurvich & Tsai, 1991), and is given by the equation  

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁 �𝑒𝑒𝑈𝑈 �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁
� + 2𝑘𝑘�, 

where N is the sample size, RSS is the residual sum of squares, and k is the number of parameters 

(Motulsky & Christopolous, 2004). BIC is similar, but is based on Bayesian prediction (Schwarz, 

1978) and is given by the equation 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑁𝑁 �𝑒𝑒𝑈𝑈 �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁
�� + 𝑘𝑘 ∙ 𝑒𝑒𝑈𝑈(𝑁𝑁). 

   These three methods of assessing the fit of the eight models (Table 3-3) were used to 

determine which quantitative law of effect model best described the simulated creature behavior. 

 

3.2.3.4. Changeover profiles. An under examined aspect of human and animal behavior 

on concurrent RI RI schedules is how frequently participants switch their behavior between 

target classes. When a participant switches from one target class to the other it is called a 
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changeover. Changeovers indirectly describe the participant’s sustained persistence at tasks, with 

fewer changeovers suggesting longer durations of sustained behavior within a target class. A 

clinically relevant example of a changeover is when a client with attention deficit hyperactivity 

disorder stops doing their homework to go watch television. 

On concurrent RI RI schedules, changeovers are most frequently observed when 

reinforcers are obtained equally from the two target classes, and least frequently when 

reinforcers are obtained from just one target class (Alsop & Elliffe, 1988; Baum, 1974; 

Brownstein & Pliskoff, 1968; Herrnstein, 1961). Mathematically, changeovers follow a quadratic 

pattern (for example see Figure 4 of Alsop & Elliffe, 1988). This quadratic pattern can be 

described by the equation C = aP2 + bP + c, where C is the number of changeovers, P is the 

proportion of obtained reinforcers for behavior in the first target class, and a, b, and c are fitted 

parameters (McDowell et al., 2008). The proportion of reinforcement, P, is defined as R1 / (R1 + 

R2), and its range of possible values is 0 to 1. Two important elements of this quadratic are the 

maximum rate of changeovers and the range of changeover rates (McDowell et al., 2008). The 

quadratic equation’s parameter values can be used to calculate the maximum rate of 

changeovers, CMax, with the equation c – b2/4a, and the range of changeovers, CΔ, with -b2/4a 

(McDowell et al., 2008). In previous simulations, this has been an effective method of describing 

the changeover behavior of linear-bitwise-bitflip creatures (McDowell et al., 2008; 2012). 

 

3.3. Results 

3.3.1. Best quantitative law of effect model. Overall, the twelve ETBD algorithms were 

best described by the third quantitative law of effect model, which set c1 equal to c2 (i.e., no bias 

towards either target class) and enforced a constant a across reinforcement magnitudes (Figure 3-
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3 ). Preference count is simply the number of times (across all 84 creature types and mutation 

rate combinations) that the criterion measure or difference test determined that model was better 

than the other models. For the information criterion measures (i.e., AIC and BIC), the preferred 

models were those with the smallest criterion value at each combination of creature type and 

mutation rate. For the extra sum of squares difference test measure, the preferred model was the 

most restricted model that was not significantly different from model 1. All classic quantitative 

law of effect models (models 6 through 8) were dramatically worse than model 3. The BIC 

provided the clearest support for model 3, whereas the AIC’s and extra sum of squares tests 

equally supported models 1 through 3 (Figure 3-3).  

The selection function form affected the fitting measure’s model preferences. The BIC, 

AIC, and extra sum of squares tests all preferred model 3 when the simulated creatures used an 

exponential selection function (black bars of Figures 3-3), whereas the results were more mixed 

when they used a linear selection function (white bars of Figures 3-3). In all cases, the modern 

algebraic interpretation was supported.  

The AIC and extra sum of squares tests were oversensitive to slight random differences in 

simulated creature behavior, which is in line with recent simulations that included models that 

permitted overfitting of the AIC (Huang, 2017; Lin, Huang, & Weng, 2017). This oversensitivity 

was suggested by how frequently model 1 was preferred over model 2. No asymmetries in 

reinforcer magnitudes were designed into the simulation, which means that c1 should always 

equal c2. The failure of the AIC and extra sum of squares difference tests to properly eliminate 

model 1, which permits c1 to not equal c2, suggests that those comparison methods poorly 

discriminated between the quantitative law of effect models. This was further supported by the 

lack of consistency of model preference across mutation rates, which can be observed in 
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Appendices A through L. Given the AIC and extra sum of squares difference test’s poor ability 

to discriminate between models, the BIC is the best tool for deciding with model is best.   

 Simulated creature behavior was very well described by model 3. Across the twelve types 

of simulated creatures and their seven mutation rate combinations, the lowest percentage of 

variance accounted for by the modern quantitative law of effect (Equations 3-4a′ and 3-4b′) was 

91% (Table 3 of Appendices A through L). The modern quantitative law of effect’s (Equations 

3-4a′ and 3-4b′) median percentage of variance accounted for ranged between 98% and 100% 

across the twelve types of simulated creatures. Similarly, simulated creature behavior was well 

described by the modern matching law equation (Equation 1-1′). The median percentage of 

variance accounted for by the modern matching law equation ranged between 99% and 100% 

(Table 3 of Appendices A through L). 

 

3.3.2. Best fitting model parameters. Since model 3 was the best overall descriptor of 

simulated creature behavior, the parameter values of its fits were used as the basis of comparison 

across all simulated creature types. With model 3, the fitted exponent (a) was constant across 

magnitudes, there was a single c parameter at each magnitude, and the asymptote of the 

quantitative law of effect, k, could vary across magnitudes. Model 3 does not permit bias towards 

either target class because c1 equals c2. Model 3 used 9 parameters to fit simulated behavior at 

each mutation rate. 

 

3.3.2.1. Exponent (a) values. The exponent (a) estimates of all twelve simulated creature 

types were between 0.7 and 0.9 – the range typically observed by humans and animals – across 

all seven mutation rates (Figure 3-4). The form of the selection function that the simulated 
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creature used affected the exponent; simulated creatures that used an exponential selection 

function (top panel of Figure 3-4) had exponents that were roughly 0.05 higher than those that 

used the linear selection function (bottom panel of Figure 3-4). The method of variation also 

affected exponent values, with the simulated creatures that used bitflip-by-individual variation 

(squares and circles in Figures 3-4) having greater exponent values than the phenotypic variation 

methods.  

 

3.3.2.2. Asymptote (k) values. The asymptotes of the modern quantitative law of effect 

(k) followed interesting patterns across the four magnitude pairs of reinforcement, two methods 

of selection, and seven mutation rates (Figures 3-5 and 3-6). A unique characteristic of the linear 

and exponential bitwise-bitflip ETBD creatures was that the k parameter estimates were 

relatively stable across mutation rates at each reinforcer magnitude pair (squares in Figures 3-5 

and 3-6). Reinforcer magnitude did, however, have a large effect on the k parameter estimates; k 

estimates systematically decreased as the reinforcer became weaker (i.e., as the selection 

function’s mean increased from 20 to 80). The linear-bitwise-bitflip ETBD creatures showed 

larger changes in the k parameter estimates than the exponential-bitwise-bitflip ETBD creatures. 

The bitwise-bitflip ETBD creatures’ k parameter stability across mutation rates strongly 

differs from the TNGS-based creature types. The TNGS-based simulated creatures had 

decreasing k parameter values as the rate of mutation increased. The bitflip-by-individual 

variation method in conjunction with cloning ameliorated this (circles in Figures 3-5 and 3-6), 

but strong downward trajectories were still observed with the linear-clone-bitflip creatures at the 

reinforcer magnitude pairs of 60 & 60 and 80 & 80 (circles in the bottom two panels of Figure 3-

6). While all phenotypic variation methods showed substantial decreases in the asymptote (k) as 
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the mutation rate increased, they were also strongly affected by the form of the selection 

function. The change in k values was similar across the four phenotypic variation methods when 

combined with the linear selection function (triangles, diamonds, and asterisks in Figure 3-5), but 

they greatly differed when combined with the exponential selection function (triangles, 

diamonds, and asterisks in Figure 3-6). 

 

3.3.2.3. Rate of the quantitative law of effect’s ascent. The c parameter estimates of the 

modern quantitative law of effect, which is a measure of its rate of ascent (Section 3.2.3.2; 

Figure 3-2), showed distinctly different patterns across the bitflip and phenotypic methods of 

variation (Figures 3-7 and 3-8). The bitwise-bitflip and clone-bitflip simulated creatures’ 

behavior (squares and circles in Figure 3-7 and 3-8) showed increases in c as the rate of mutation 

increased regardless of the magnitude of the reinforcer pairs, which indicates a lower rate of 

ascent as the mutation rate increases. The phenotypic methods of variation (triangles, diamonds, 

and asterisks in Figures 3-7 and Figures 3-8) only showed this increase at the stronger magnitude 

pairs (i.e., 20 & 20 and 40 & 40) and were, otherwise, stable or decreasing with the mutation 

rates. Overall, this suggests that the rate of ascent does not change as the mutation rate increases 

for the simulated creatures that used phenotypic variation.  

 However, comparisons of c are most meaningful when two equations have the same k 

parameter value because c’s meaning is dependent upon k (Bradshaw et al., 1976). While the 

simulated creatures that used phenotypic variation had stable c values as the rate of mutation 

increased, those creatures also had decreasing k values. This combination of k and c parameter 

value changes could result in a pattern of behavior that is like an increase in c if a limited range 

of reinforcement rates is observed (Figure 3-9). Figure 3-9 shows quantitative law of effect fits 



54 
 

(Equation 3-4) to the behavior of exponential-bitwise-bitflip and exponential-clone-pheno-

Gaussian creatures, which had opposite changes in k and c as the mutation rate increased, at the 

mutation rates of 10% and 20%. The exponential-bitwise-bitflip creatures had relatively stable k 

values (417 at 10% and 380 at 20) but increasing c values as the rate of mutation increased (21 at 

10% and 38 at 20%), whereas the exponential-clone-pheno-Gaussian creatures had decreasing k 

values (444 at 10% and 348 at 20%) but stable c values as the rate of mutation increased (19 at 

10% and 22 at 20%). Despite these differences, the fits to these creature types’ behavior at 20% 

mutation are relatively similar within the bounds of the observed rates of obtained reinforcement 

(the greatest obtained rate of reinforcement was nearly 150 reinforcers per 500 time steps). Thus, 

examining c and k separately may be misleading. Another approach would be to compare the 

predicted rates of behavior at a specific rate of reinforcement. Looking at the predicted rate of 

behavior at a specific rate of reinforcementpermits a direct comparison of the Equation 3-4’s rate 

of ascent to the asymptote k across the simulated creatures. A rate of reinforcement of 15 

reinforcers per 500 time steps was selected, because it was greater than the lowest c values and 

could highlight differences in the rates of ascent. 

 The predicted rate of behavior at 15 reinforcers per 500 time steps showed surprisingly 

consistent patterns of behavior regardless of the simulated creature type. All simulated creatures 

showed lower rates of predicted behavior as the mutation rate increased (Figures 3-10 and 3-11), 

which indicates slower rates of ascent. The clone-bitflip simulated creatures (circles in Figures 3-

10 and 3-11) showed the fastest rates of ascent at mutation rates 5% through 12.5% but their 

behavior tended to fall below clone-pheno-Gaussian at mutation rates 15% through 20% 

(asterisks in Figures 3-10 and 3-11). The ETBD-based bitwise-bitflip simulated creatures 
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(squares in Figures 3-10 and 3-11) were most affected by the mutation rate; their rate of ascent 

was the second fastest at mutation rate 5% and the lowest at mutation rate 20%.  

 

3.3.3. Quadratic description of changeover profiles. The initial examination of the 

simulated creature changeovers quickly revealed that a quadratic (Section 3.2.3.4) was an 

inadequate descriptor of changeover behavior. As can be seen in Figure 3-12, while the 

changeovers were roughly quadratic, there was significantly greater variation around the 

quadratic than previous research with animals (Alsop & Elliffe, 1988; Baum, 1974a; Brownstein 

& Pliskoff, 1968; Herrnstein, 1961) and the ETBD (McDowell et al., 2008; 2012) suggested. 

Those experiments consistently showed that there were more changeovers when the obtained rate 

of reinforcement was equal across the target classes and that – except for Herrnstein (1961) 

which did not plot changeovers as a function of relative reinforcement – there was a quadratic 

profile to the changeovers. The quadratic pattern was consistent and showed little variation 

around the quadratic, unlike Figure 3-12. 

The quadratic equation’s poor descriptive utility was highlighted by the relatively small 

percentages of variance it accounted for. The median percentage of variance accounted for by the 

exponential-bitwise-bitflip simulated creatures was only 12% (Appendix A.20). The changeovers 

of all five simulated creatures that had exponential selection functions and reproduced by cloning 

were also poorly described by the quadratic. The median percentages of variance accounted for 

were 28% for the exponential-clone-bitflip (Appendix B.20), 4% for the exponential-clone-

pheno-uniform (Appendix C.20), 2% for the exponential-clone-pheno-linear (Appendix D.20), 

6% for the exponential-clone-pheno-exponential (Appendix E.20), and 2% for the exponential-

clone-pheno-Gaussian (Appendix F.20) simulated creature types. The changeover behaviors of 
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the simulated creatures that used linear selection functions were also poorly described by the 

quadratic (Appendices G-L.20).  

 

3.3.4. Post-hoc analysis of changeover profiles. The observed changeover patterns (as 

exemplified in Figure 3-12) differed markedly from McDowell et al.’s Figure 2 (2008). 

McDowell et al.’s Figure 2 showed a good fit of the quadratic with small, homoscedastic 

residuals. Figure 3-12, in comparison, showed the exact opposite with poor fit and 

heteroscedastic residuals. While the percentages of variance accounted for by the quadratic 

equation were not listed in McDowell et al. (2008), the differences between their Figure 2 and 

this experiment’s Figure 3-12 suggested that that there was a major procedural difference. 

 The major procedural difference between this experiment and McDowell et al. (2008) 

was that McDowell et al. held the total scheduled rate of reinforcement constant while this 

experiment did not. When plotted as a 3-dimensional figure with the obtained total rate of 

reinforcement (i.e., R1+R2) added as a new axis (Figure 3-13), it is apparent that the total rate of 

reinforcement has a systematic effect on the changeover rate. There was an inverse relationship 

between changeovers and the total rate of obtained reinforcement. Note that the total rate of 

reinforcement axis in Figure 3-13 was reversed to enhance visual clarity. 

 Given the sharp rise in the number of changeovers as the total rate of reinforcement 

approached zero, I fitted various two-variable exponential functions (i.e., surfaces). An 

exponential function seemed like a natural choice because it stays relatively flat before rapidly 

accelerating. The exponential equation that accounted for the largest percentages of variance 

incorporated McDowell et al.’s (2008) quadratic but multiplied it by an exponential. This 

equation, a quadratic-exponential, was  
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𝐴𝐴 = (𝐿𝐿𝑃𝑃2 + 𝑏𝑏𝑃𝑃 + 𝑐𝑐) ∙ 10−𝑑𝑑∙𝑇𝑇 ,     (3-5) 

where C is the number of changeovers, P is the proportion of obtained rate of reinforcement for 

the first target class [i.e., R1 / (R1 + R2)], T is the total rate of obtained reinforcers (i.e., R1 + R2), 

and a, b, c, and d are fitted parameters. 

 Figure 3-14 is representative of how well this equation fits the changeover profiles of the 

simulated creatures. The quadratic-exponential accounted for large percentages of variance; the 

median percentage of variance accounted for was greater than 96% for all twelve simulated 

creature types (Appendices A-L.21). While generally a good descriptor, the quadratic-

exponential changeover function tends to account for less changeover behavior as the mutation 

rate increases. Another weakness is that there are trends in the residuals, which suggests that the 

quadratic-exponential function is an imperfect description of changeover behavior. This trend 

can be observed in Figure 3-14 by the pattern of white and black dots against the total-rate-of-

reinforcement axis. There is a small but systematic range at low rates of reinforcement where the 

actual values are above the predicted values (black dots), whereas the rest of the actual values 

(white dots) tend to fall below what is predicted. Overall, this pattern suggests a quadratic trend 

in the residuals with the quadratic peaking (black dots) at the low rate of reinforcement. 

 The quadratic-exponential can explain why McDowell et al. (2008) observed a quadratic 

despite that equation’s poor fit to changeover behavior in this experiment. As part of this post-

hoc analysis, McDowell et al. (2008) was replicated with an exponential-bitwise-bitflip 

simulated creature at 10% mutation, and its changeover behavior was plotted against the 

quadratic-exponential function that was fitted to that creature type (Figure 3-15). If changeovers 

were solely examined as a function of the proportion of reinforcement, then it would look like a 

quadratic, as McDowell et al. (2008) observed. The quadratic-exponential function suggests a 
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different interpretation, however. The quadratic component of the quadratic-exponential is 

concave upwards in Figure 3-15 (i.e., the lowest changeover rate was at P = 0.5), which is the 

opposite direction of the quadratic proposed by McDowell et al. (2008). The slight differences in 

the total obtained rates of reinforcement are what causes the concave-downwards quadratic 

pattern (i.e., the highest changeover rate was at P = 0.5). The quadratic-exponential suggests that 

the simulated creature’s changeover behavior increases because it obtains fewer reinforcers at P 

= 0.5. The quadratic pattern was observed simply because the data points rest upon the quadratic-

exponential’s surface in a way that appears quadratic when changeovers are narrowly viewed as 

a function of the proportion of reinforcement. 

 One of the benefits of McDowell et al.’s quadratic (2008) is its ability to characterize 

changeover behavior in terms of two useful quantities, namely, the maximum rate of 

changeovers and the range of changeovers. To maintain these conceptualizations, the equations 

for the two quantities, CΔ and CMax, (Section 3.2.3.4) had to be reevaluated for the quadratic-

exponential because some of the implicit assumptions no longer held. Given the quadratic-

exponential’s form, the maximum rate of changeovers is predicted to occur when the total rate of 

obtained reinforcement is zero. It is important to note, however, that neither the quadratic nor the 

quadratic-exponential apply when the total rate of reinforcement is zero. This is because P 

becomes zero divided zero, which is undefined, and thus outside of the function’s domain. 

Because the predicted rate of changeovers could not be evaluated when the rate of reinforcement 

is zero, limits were used to find the changeover function’s value as it approached a total 

reinforcement rate of zero. There are multiple ways that the total rate of obtained reinforcers can 

approach zero, but the two most important cases to consider are when R1 is 0 and R2 is 
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approaching 0 (case 1) and when R1 equals R2 and both are approaching 0 (case 2). For case 1, 

CMax can be expressed and solved as 

lim
𝑅𝑅2→0+

10−𝑑𝑑(0+𝑅𝑅2) ∙ �𝐿𝐿 �
0

0 + 𝑅𝑅2
�
2

+ 𝑏𝑏 �
0

0 + 𝑅𝑅2
� + 𝑐𝑐� 

= 10−𝑑𝑑0 ∙ [𝐿𝐿02 + 𝑏𝑏0 + 𝑐𝑐] 

    =  1 ∙ [0 + 0 + 𝑐𝑐] 

= 𝑐𝑐 

For case 2, CMax can be expressed and solved as 

lim
𝑅𝑅→0+

10−𝑑𝑑(𝑅𝑅+𝑅𝑅) ∙ �𝐿𝐿 �
𝑅𝑅

𝑅𝑅 + 𝑅𝑅
�
2

+ 𝑏𝑏 �
𝑅𝑅

𝑅𝑅 + 𝑅𝑅
� + 𝑐𝑐� 

= 10−𝑑𝑑0 ∙ �𝐿𝐿 �
1
2
�
2

+ 𝑏𝑏 �
1
2
� + 𝑐𝑐� 

= 1 ∙ �
𝐿𝐿
4

+
𝑏𝑏
2

+ 𝑐𝑐� 

=
𝐿𝐿
4

+
𝑏𝑏
2

+ 𝑐𝑐. 

Because the quadratic portion of the quadratic-exponential can be concave upwards (when the 

smallest value is at P = 0.5) or downwards (when the largest value is at P = 0.5), it is necessary 

to define CMax as the greater of cases 1 and 2. Thus, CMax is the greater of c and (a/4 + b/2 + c). 

This contrasts with McDowell et al.’s (2008) CMax, which implicitly assumed that the quadratic 

was always concave downwards. 

 McDowell et al.’s CΔ (2008) also had to be reinterpreted for the quadratic-exponential. 

The first difficulty was that CΔ could be evaluated for both the proportion of obtained 

reinforcement, P, and total rate of obtained reinforcement, T, axes. The difference in the 

changeover rate along the obtained total reinforcement axis is trivially equivalent to CMax, 
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because the upper limit (+∞) of the exponential is zero and the lower limit is CMax (Figure 3-16). 

Thus, it is unnecessary to use as a descriptor since CMax already captures that information. 

Examining the function on the proportional axis when the total rate of reinforcement is held 

constant, however, is useful, and is also closest to McDowell et al.’s (2008) CΔ. This leads to the 

second difficulty, which is that the difference between the minimum and maximum changeover 

rates changes with the total rate of reinforcement. The multiplication of the exponential and the 

quadratic results in the difference between the highest and lowest changeover rates exponentially 

increasing as the obtained reinforcer rate decreases. For example, at the zero limit of Equation 3-

5 CΔ would be the difference between the two CMax cases, but CΔ would also approach zero as 

Equation 3-5 approaches positive infinity. Since the absolute changeover differences on both 

axes are inadequate descriptors, another measure of curvature was examined. 

 An equation that preserves the utility of CΔ while making it have the same value across 

the entire total-reinforcement axis is CΔ% = [(a + 2b) / 4c] • 100%. This equation is simply the 

percentage difference between the two CMax cases divided by the parameter c. The value of CΔ% 

is only indicative of the predicted range of changeovers when none are delivered, so it is best to 

consider CΔ% as the concavity of the quadratic-exponential (Equation 3-5) along the proportion 

of reinforcement axis instead. Positive CΔ% values indicate that the function is concave 

downwards – like a hill – and negative CΔ% values indicate that the function is concave upwards 

– like a valley. At all total rates of reinforcement CΔ% has the same value, unlike CΔ. CΔ% values 

close to 0% indicate that the quadratic is flat, a CΔ% value of 100% indicates that the changeover 

rate at the center of the quadratic is twice that at P of 0 or 1, and a CΔ% value of -100% indicates 

that the changeover rate at the center of the quadratic is 0. This is an attractive descriptor of 
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changeover behavior on the proportion of reinforcement axis because it describes this behavior 

regardless of the total rate of reinforcement. 

 The new CMax and CΔ% descriptors of changeover behaviors provide insights into the 

behavior of the simulated creatures. The maximum rate of changeovers predicted for the 4 

different magnitude conditions were averaged together, because they are all estimates of 

changeovers in the absence of reinforcement and thus reinforcer magnitude should have no 

effect. For all simulated creature types, the maximum rate of changeovers (CMax) increases as the 

mutation rate increases, but there were large differences in each creature types’ maximum rate of 

changeovers (Figures 3-17). Cloning-bitflip simulated creatures (circles) produced the highest 

maximum rates of changeovers, which were roughly twice that of the typically used bitwise-

bitflip ETBD creatures (squares) across all mutation rates. The four phenotypic mutation 

methods (triangles, diamonds, and asterisks) showed dramatically lower maximum changeover 

rates with their highest rates of changeovers at 20% mutation being relatively close to bitwise-

bitflip ETBD creatures’ rate of changeovers at 5% mutation. The selection function method had 

no effect on maximum changeover rates, which was expected since the selection function form 

should have no effect in the absence or reinforcement. 

The concavity of the simulated creatures’ changeover behaviors (CΔ%) were surprisingly 

consistent across selection function forms, mutation rates, and reinforcer magnitudes (Figures 3-

18 and 3-19). Regardless of the selection function form, the curvatures were similar (compare 

Figures 3-18 and 3-19), although at the lower mutation rates there were some slight 

discrepancies. For example, at a 5% mutation rate the changeover profiles of the linear-clone-

pheno-Gaussian simulated creatures (bottom panel of 3-19) are more concave upwards (i.e., the 

lowest changeover rate was at P = 0.5) than the exponential-clone-pheno-Gaussian simulated 
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creatures (bottom panel of 3-18). The magnitude of the reinforcers had inconsistent and 

seemingly random effects on the concavity. The simulated creatures’ changeover concavities 

were relatively consistent across the mutation rates except for the clone-bitflip simulated 

creatures, which showed a linear increase in concavity as the mutation rate increased. The linear 

increase in concavity of the exponential-clone-bitflip creature represents a qualitative difference 

in form across the mutation rates. At the lowest mutation rates the quadratic is flat or valley-like 

and at the highest mutation rates its hill-like; low mutation rates have the greatest rates of 

changeovers occurring when more reinforcers are obtained from one of the target classes and 

highest mutation rates have the greatest changeover rates when reinforcers are equally distributed 

across the two target classes. The concavities of the other creature types were consistently 

concave upwards (i.e., the lowest changeover rate was at P = 0.5) across mutation rates and 

reinforcer magnitudes. 

  

3.4. Discussion 

 All twelve simulated creature types met the criteria for a successful simulation of human 

and animal behavior in concurrent RI RI and single RI environments. This supports the TNGS as 

an alternative to the ETBD and the matching law. While all creature types were viable, there 

were unique differences between the TNGS and ETBD simulated creature types. Some of these 

differences may help identify potential experiments that could elucidate whether the TNGS or 

ETBD is the better explanation for human and animal behavior. 

 

3.4.1. Conformance to the matching law and the quantitative law of effect. The third 

model of the quantitative law of effect, which assumed a constant a and no bias (c1 = c2), was the 
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best overall descriptor of ETBD and TNGS based simulated creature behavior. This model is 

best described as an algebraic interpretation of the modern quantitative law of effect and 

matching law (Equations 3-4 and 1-1, respectively). It is important to note that this model rules 

out the theoretical justifications for the quantitative law of effect and supports a strictly 

descriptive interpretation of k and c (McDowell, 2005). For example, k should be interpreted as 

the maximum rate of behavior within the target class given a reinforcer’s magnitude. In this way, 

k is more related to the value of a reinforcer than it is an innate characteristic of the participant. 

Similarly, c is simply how many reinforcers need to be obtained before the predicted rate of 

behavior is half of k. The meaning of parameters a and b are unchanged with this new 

interpretation. 

  McDowell and Calvin (2015) also found that the algebraic version of the matching law 

was the best account, which indicates that this is a robust finding. This experiment was unable to 

assess a different equation that was proposed by McDowell and Calvin (2015), which permitted 

differences in k for each target class based on the magnitude of the reinforcers. This experiment 

was incapable of this assessment because no asymmetries in reinforcer magnitudes were 

scheduled. Figures 3-5 and 3-6, however, suggest that the McDowell and Calvin’s (2015) 

varying k equation would be a good account since the k estimates change with reinforcer 

magnitude. This is especially the case with the cloning TNGS models because their k estimates 

also change with mutation rate. To conclusively assess whether the TNGS makes the same 

predictions as the ETBD it would be necessary to perform a simulation that created asymmetries 

of reinforcer magnitude like McDowell and Calvin (2015). 
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3.4.2. Parameter values. The exponent values of all ETBD creatures across the seven 

mutation rates met the 0.7 to 0.9 criterion, but there were notable differences between the twelve 

types of simulated creatures (Figure 3-4). The simulated creatures that used exponential selection 

function forms had exponents that were roughly 0.05 higher than those that used linear selection 

function forms. The exponent values of the eight simulated creature types that used cloning 

reproduction and phenotypic variation tended to be below the commonly estimated 0.8 exponent 

average for humans and animals (Baum 1974, 1979; McDowell, 1989, 2013b; Myers & Myers, 

1977; Wearden & Burgess, 1982). This suggests that those creature types are less likely to be 

truly representative of human and animal behavior than the bitflip-bitwise and cloning-bitwise 

simulated creature types. Basing this conclusion on the 0.8 criterion is, however, inconclusive; a 

meta-analysis of human or animal performance on concurrent RI RI schedules should be 

conducted to determine what a value is representative of human and animal behavior. 

 The k parameter estimates showed a qualitative difference between the bitwise-bitflip 

ETBD creatures and the TNGS-based cloning creatures. The k values of the bitwise-bitflip 

simulated creatures tend to be similar regardless of the mutation rate, whereas the TNGS-based 

simulated creatures mostly showed a decrease in k values as the mutation rate increased (Figures 

3-5 and 3-6). If high mutation rates are analogous to the cause of ADHD-like behavior, as Popa 

and McDowell (2016) suggested, then it may be possible to eliminate either the TNGS or ETBD 

in a critical experiment by comparing k parameter estimates of individuals with and without 

ADHD. If the average k value for those with ADHD is lower than for those without, then it 

would suggest that the TNGS is a better than the ETBD. If there is not a difference between the 

two groups, then it would suggest that the ETBD is a better account. An important caveat, 

however, is that reinforcer magnitude must be controlled across the groups because it affects k 
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estimates. This would be a difficult – if not impossible – task because there may be group 

differences in the perceived reinforcing value of identical reinforcers. It may be possible to 

control for this by pairing participants diagnosed with ADHD and non-ADHD beforehand based 

on their relative reinforcer preferences and then comparing the groups with a matched-pairs 

dependent t-test. This would be suggestive but inconclusive, however, because it is possible that 

the same relative preferences would fail to properly account for a true difference in perceived 

value.  

  

3.4.3. Changeovers. The post-hoc analysis revealed that McDowell et al.’s quadratic 

function (2008), despite describing changeovers when the total rate of scheduled reinforcement 

was constant across reinforcement schedules, is unable to generalize to experiments that vary the 

total rate of scheduled reinforcement. The changeover behavior of these simulated creatures is 

better understood by the quadratic-exponential function. That function’s exponential decrease in 

changeover behavior as the rate of obtained reinforcers increases suggests a different purpose for 

changeovers than the proportional account. The proportional account suggests that participants 

more frequently switch between alternatives when the source of the next reinforcer is uncertain, 

whereas the total reinforcement account argues that participants are simply more likely to switch 

between target classes in the absence of reinforcement. 

 The qualitative differences in creature type changeover rates are helpful to understanding 

their behavioral dynamics. For instance, the higher maximum number of changeovers (CMax) 

exhibited by the cloning-bitflip simulated creatures seems contradictory to it also having the 

highest maximum rate of behavior in the target classes – k (Figures 3-5, 3-6, and 3-17). Higher 

rates of changeovers typically indicate that behavior is more variable and exploratory, but the 
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higher rates of behavior in the target class contradicts that by suggesting that behavior is more 

reinforcer directed. The population of potential behaviors does not seem to drift from one target 

class to the other as it does with bitwise-bitflip creatures. Rather, it is possible that the population 

of potential behaviors may be distributed across both target classes as two distinct sub 

populations. This is possible with clonal amplification because, unlike bitwise reproduction, 

cloning does not mix elements of the population to create new behaviors. To highlight this 

difference, if there were only two potential behaviors in the population then cloning reproduction 

could result in a new population of behaviors that is roughly half of the first behavior and half of 

the second behavior. In the same situation, bitwise reproduction would instead result in a new, 

variable population that contains all possible genotypic combinations of the two potential 

behaviors. To assess whether this is occurring, an analysis of the population of potential 

behaviors would have to be conducted, which would require a new simulation because that data 

was not recorded in this experiment. By examining the population of potential behaviors from 

this new simulation, it would be possible to observe how the population’s density within the 

target classes change in reaction to environmental consequences. Simultaneously high population 

densities within both target classes would suggest that there are two distinct subpopulations.  

 The lower changeover rates of the phenotypic variation methods (Figures 3-17) indicates 

that those simulated creatures have prolonged bouts of behavior within the target classes relative 

to the bitwise-bitflip ETBD creatures. Of the phenotypic variation methods, only phenotypic 

Gaussian variation has been used in previous research (McDowell, 2004; McDowell & Caron, 

2007). In McDowell (2004) and McDowell and Caron (2007), the standard deviation of the 

Gaussian was set to 25 – only half of this experiment’s phenotypic standard deviation. Since the 

simulated creatures that used the Gaussian variation method were extremely perseverative in this 
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experiment it suggests that the results of McDowell (2004) and McDowell and Caron (2007) 

should be viewed with some caution and not overgeneralized. Those experiments should be 

replicated with the typically used creature type – linear-bitwise-bitflip – to ensure that it also 

exhibits undermatching on a single alternative. This experiment suggests that this is the case, but 

there are important procedural differences that could influence results such as the absence of a 

second target class. 

 Another insight from the CMax parameter is that the underlying populations of potential 

behaviors are not randomly distributed across the entire phenotype range in the absence of 

reinforcement. This must be the case because CMax increases with the mutation rate and varies by 

creature type. In a population of potential behaviors that is evenly distributed across the entire 

phenotype range, which would be the case if the population was truly random, the probability of 

a behavior in the target class being emitted at each time step would be the size of the target class 

divided by the size of the phenotype range, which is 3.9% for a 40 phenotype-wide target class. 

Given that probability, it should be expected that there would be 19.6 behaviors emitted in each 

target class over the course of 500 time steps simply due to chance. If we also assume that the 

probability of the next measured behavior being in the other target class is 50% then we can 

calculate the expected rate of changeovers from a truly random population. This can be 

calculated by multiplying the probability of a changeover by the number of behaviors emitted 

within the target classes, which would be 19.6 changeovers per 500 time steps if the target 

classes are 40 phenotypes wide. Similarly, the simulated creatures that used the 50-phenotype 

wide target classes (those that used phenotypic variation) have an expected changeover rate of 

24.4 per 500 time steps. Since most of the simulated creature types never reach the expected 
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changeover rates, it suggests that the underlying populations of potential behaviors are 

distributed in many small clumps that drift across the phenotype range.  

The cloning-bitflip simulated creatures are odd in that the CMax estimates exceed the 

expected rate of changeovers at the higher mutation rates (Figures 3-17). Notably, these are also 

the only simulated creature types that have positive CΔ% values. Positive CΔ% values indicate that 

the quadratic-exponential’s greatest changeover rate is when the rate of reinforcement is evenly 

distributed between the two target classes. It may be that the CMax estimates are only greater than 

the expected rate, because the quadratic-exponential is inappropriately quadratic when there are 

no reinforcers. This intuitively seems likely – how could the distribution of reinforcement across 

the target classes have an effect when there are no reinforcers being delivered? Different versions 

of the quadratic-exponential that become flatter on the proportion dimension as it approaches 

zero reinforcers should be explored, and those functions should be assessed against human and 

animal behavior rather than against a simulation, because there are some implicit assumptions 

built into the simulation that may not be externally valid. 

 

3.4.4. Conclusion. This experiment indicated that TNGS-based simulated creatures are 

viable models of human and animal behavior. The different behavioral dynamics of the TNGS-

based simulated creatures suggest potentially fruitful directions for future research. Given the 

TNGS viability, it warrants further examination. The next major quantitative assessment of the 

ETBD was an investigation of whether it could simultaneously match its behavior to the 

scheduled reinforcer magnitudes and reinforcement rates (McDowell et a., 2012). Experiment 2 

replicates McDowell et al. (2012) to assess whether the TNGS-based creatures can do this. 

  



69 
 

Chapter 4: Matching to Rates and Magnitudes of Reinforcement 

A conceptual interpretation of the matching law is that humans and animals match their 

behavior to the value of that behavior’s consequences (Baum, 1974; Baum & Rachlin, 1969; 

Killeen, 1972; Rachlin, 1971). The consequent’s value can be construed as a combination of its 

qualities (Baum, 1974; Baum & Rachlin, 1969). The three primary qualities of the consequent 

that influence its value are the rate of reinforcement, the reinforcer magnitude, and the 

immediacy of reinforcer delivery. An expression for how these variables may be related I s 

𝐵𝐵1
𝐵𝐵2

= 𝑅𝑅1
𝑅𝑅2
∙ 𝑀𝑀1
𝑀𝑀2
∙ 𝐼𝐼1
𝐼𝐼2
∙ 𝑋𝑋1
𝑋𝑋2

= 𝑣𝑣1
𝑣𝑣2

,    (4-1) 

where B is the rate of behavior, R is the obtained rate of reinforcement, M is the magnitude of the 

reinforcer, I is the immediacy of reinforcer delivery, X is any other quality of reinforcement that 

affects behavior, v is the value of the consequent, and the subscripts indicate the target classes 

(Rachlin, 1971)4. 

 A commonly investigated combination of those qualities is reinforcer magnitude and rate 

(Aparicio, Baum, Hughes, & Pitts, 2016; Davison & Hogsden, 1984; Dunn, 1982; Elliffe, 

Davison, & Landon, 2008; Keller & Gollub, 1977; McLean & Blampied, 2001; Schneider, 1973; 

Todorov, 1973; Todorov, Hanna, & Bittencourt de Sa, 1984). When Equation 4-1 is simplified to 

just those qualities and combined with the modern matching law (Equation 1-1), it gives the 

bivariate matching law (Schneider, 1973; Todorov et al., 1984) which is 

𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑅𝑅1
𝑅𝑅2
�
𝑎𝑎𝑅𝑅
�𝑀𝑀1
𝑀𝑀2
�
𝑎𝑎𝑀𝑀

.     (4-2) 

                                                           
4 This is presented slightly differently from its original version to highlight the equation’s development into the 
bivariate matching equation (4-2). In the original equation the rate of behavior is expressed as the amount of time 
spent engaging in target class behavior. Similarly, I substituted the reinforcing magnitude – a combination of quality 
and quantity – for the quantity of reinforcers. 
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B, R, M, and the subscripts have the same meanings as in Equation 4-1. The free parameters are 

b, aR, and aM and have similar meanings as they do in the modern matching law (Equation 1-1). 

The exponents aR and aM indicate the participant’s sensitivities to the rate of reinforcement and 

reinforcer magnitudes, respectively. This equation describes animal behavior very well (for 

review see Cording, McLean, & Grace, 2011), but has not been fitted to human behavior. 

Cording, McLean, and Grace (2011) meta-analyzed the available data of pigeon behavior 

on reinforcement schedules that systematically varied both the rate and magnitude of 

reinforcement. This meta-analysis allowed them to find estimates of aR and aM that best 

represented pigeon behavior. This was a particularly valuable meta-analysis because the sample 

sizes of the six individual studies that comprised it were very small; even when combined the 

sample of the meta-analysis was only 25 pigeons. Cording et al. (2011) found that the average 

sensitivity to the rate of reinforcement – aR – was 0.74 across all six studies, but that there were 

unsurprisingly large differences between the studies. The lowest study’s aR mean value was 0.47 

(reanalysis of Keller & Gollub, 1977; N of 3) and the highest was 1.01 (reanalysis of Elliffe et 

al., 2008; N of 5). The average sensitivity to the magnitude of reinforcement – aM – was 0.60 

across the six studies and showed similar amounts of variation. The smallest average aM value 

was 0.26 (reanalysis of Todorov et al., 1984; N of 2) and the largest was 0.87 (McLean & 

Blampied, 2001; N of 8). While the parameter estimates of the individual studies are not 

compelling due to their small sample sizes, the meta-analysis provides a better estimate of what a 

simulation of behavior should strive to observe.  

The ETBD’s behavior in experiments that simultaneously vary the rate and magnitude of 

reinforcement has already been assessed (McDowell et al., 2012). The behavior of the linear-

bitwise-bitflip ETBD simulated creatures was most like those found in Cording et al.’s (2011) 



71 
 

meta-analysis for the mutation rate range of 7.5% through 14%. Within that mutation range, the 

fits to the simulated behavior lacked residual trends, which Cording et al. (2011) had also found. 

While less emphasized, the ETBD’s behavior was very well described by Equation 4-2, which 

accounted for 99% of the variance on average. 

The exact criteria for a successful simulation of behavior in this type of experiment were 

not clearly defined by McDowell et al. (2012). Their analysis emphasized residual trends and 

bivariate matching law (Equation 4-2) parameter values, but did not delineate a range of viable 

parameter values a priori. For this experiment, a range of plus or minus 0.1 from the parameter 

estimates found by Cording et al. (2011) was used as the viability criterion for the simulated 

creatures. This gives parameter criteria of 0.65 to 0.85 for aR values and 0.5 to 0.7 for aM values, 

which must be met simultaneously. The plus or minus 0.1 range was chosen because it was 

consistent with Experiment 1 and because it also considered the uncertainty of the parameter 

values that were found in Cording et al.’s (2011) meta-analysis. The third criterion of this 

experiment was that Equation 4-2 accounted for a large percentage of variance, as was found by 

Cording et al. (2011). No residual trend criterion was used for this simulation, because Cording 

et al. (2011) only found no residual trend when they removed a study from the meta-analysis – 

Elliffe et al. (2008) – and because they could only assess for a quadratic trend. 

 

4.1. Methods 

4.1.1. Participants. The same twelve creature types that were used in Experiment 1 

(Table 3-1) were simulated, but over a wider range of mutation rates. Mutation rates of 0.5%, 

1%, 2.5%, 5%,7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% 

were simulated for the TNGS-based creatures. A smaller mutation rate range of 5%, 7.5%, 10%, 
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12.5%, 15%, 17.5%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% was used for the bitwise-bitflip 

ETBD creatures because they were unable to complete the simulations at the lower mutation 

rates of 0.5%, 1%, and 2.5%. At each mutation rate, 10 creatures were simulated, and each 

simulated creature’s behavior was observed as it engaged with 25 concurrent RI RI schedules for 

20,500 time steps. This resulted in 8,200,000 behaviors (16 mutation rates • 10 creatures • 25 

conditions • 20,500 generations of behavior) being observed for the simulated creature types that 

used cloning reproduction, and 6,662,500 behaviors (13 mutation rates • 10 creatures • 25 

conditions • 20,500 generations of behavior) for those that used bitwise reproduction. In total, 

this experiment represents 83,325,000 simulated behaviors and 1,860 simulated creatures 

 

4.1.2. Procedures. Concurrent RI RI schedules were simulated that used the same target 

classes as Experiment 1, but different reinforcement rates and magnitudes. The schedule design 

was identical to phase 3 of McDowell, Popa, and Calvin (2012). Twenty-five schedules were 

constructed to systematically sample the reinforcement and reinforcer magnitude dimensions 

(Table 4-1). These 25 schedules are all possible combinations of five pairs of reinforcer 

magnitudes – 15 & 90, 34 & 71, 52 & 52, 71 & 34, and 90 & 15 – and five pairs of 

reinforcement rates – RI 15 RI 180, RI 56 RI 139, RI 98 RI 98, RI 139 RI 56, and RI 180 RI 15. 

Since the reinforcer magnitudes are in terms of the mean values assigned to the simulated 

creatures’ selection fitness density function (Section 2.1.2), the values are inversely related to 

their effects; a small fitness density function mean represents a stronger reinforcer than a large 

fitness density function mean. 

  

4.1.3. Analyses 
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4.1.3.1. Data pooling and averaging. Simulated behavior during the first 500 time steps 

of each schedule were excluded from analyses to assess each simulated creature type’s steady-

state behavior rather than behavior during transition. Observed reinforcement and behavior 

frequencies during the remaining 20,000 time steps were divided by 500 time steps to create 

rates of reinforcement and behavior. These rates were then averaged across simulated creatures 

of the same type as a precaution against individual creatures becoming stuck in unrepresentative 

local minima. In summary, each data point represents 200,000 behaviors from 10 simulated 

creatures. 

 

4.1.3.2. Bivariate matching law equation. The log transformed version of the bivariate 

matching law was fitted to the 25 averaged data points at each mutation rate. The fitted equation 

was 

log �𝐵𝐵1
𝐵𝐵2
� = 𝐿𝐿𝑅𝑅 ∙ log �𝑅𝑅1

𝑅𝑅2
� + 𝐿𝐿𝑀𝑀 ∙ log �𝐹𝐹2

𝐹𝐹1
� + log(𝑏𝑏).    (4-2′) 

In this equation, B is the observed rate of behavior, R is the obtained rate of reinforcement, F is 

the scheduled fitness density function mean, the numerical subscripts indicate the target class, 

and aR, aM, and b are free parameters. The fitness density function means were substituted for 

reinforcer magnitudes because that is the equivalent measure of reinforcer magnitude for this 

type of algorithm. The fitness density function mean ratio is also inverted – relative to the 

magnitude expression in Equation 4-2 – because the scheduled fitness density function means are 

inversely related to reinforcer strength. For example, a fitness density function mean of 15 is 

stronger than 180. This equation was fitted using OLS. 

 

4.2. Results 
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 The behaviors of the twelve creature types were well described by the bivariate matching 

law (Equation 4-2′). The median percentages of variance accounted for by the bivariate matching 

law were above 98% for all creature types (Appendix M). The smallest percentage of variance 

accounted for was 94%, which was when the equation was fitted to the linear-cloning-pheno-

Gaussian creature type’s behavior at the 0.5% mutation rate. Although the behavior of the 

creature types was well described by the bivariate matching law, the fitted parameter values did 

not meet the simulation’s criteria for a viable account. 

 The simulated creature types that used an exponential selection function generally had 

sensitivity to magnitude exponent values that were below criteria. Only the exponential-bitwise-

bitflip ETBD creatures met the criteria – albeit marginally. In the mutation rate rage of 5% to 

12.5%, the sensitivity to rate was at the upper limit of its criterion – 0.85 – while the sensitivity 

to magnitude was at the lower limit of its criterion – 0.5 (Figure 4-1). All TNGS-based simulated 

creatures that used exponential selection had sensitivities to magnitude that were below its lower 

bound criterion of 0.5 (Figures 4-2, 4-3, 4-4, 4-5, and 4-6). The sensitivities to the rate of 

reinforcement found in this study corroborated those found in Experiment 1. In summary, the 

only viable simulated creature type that used exponential selection was the exponential-bitwise-

bitflip ETBD creature type within the mutation rate range of 5% to 12.5% and it barely met the 

criteria within that range. 

 The simulated creatures that used linear selection functions tended to be more viable. The 

linear-bitwise-bitflip ETBD creature type’s behavior met viability criteria for the mutation rate 

range of 5% to 20% (Figure 4-7). The parameter values of its behavior at 15% mutation were 

almost an exact match to those estimated by Cording et al. (2011). The linear-cloning-bitflip 

TNGS creature type’s behavior met criteria in the mutation rate range of 2.5% to 15% (Figure 4-
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8). In some ways the parameter values of these simulated creatures better approximate Cording 

et al. (2011) than linear-bitwise-bitflip ETBD creatures because the estimated parameter values 

are closer to those found in the meta-analysis across a wider range of mutation rates. However, 

the lack of aR and aM variability may be a double-edged sword; if a new meta-analysis found that 

the aM value should be greater than Cording et al. (2011) suggested then there is very little 

leeway for it to match that meta-analysis because aM seems to be capped at 0.60 for the linear-

cloning-bitflip TNGS creature type. Cloning reproduction with phenotypic variation only 

produced patterns of behavior that matched Cording et al. (2011) at very specific mutation rates, 

which suggests that they are unlikely to be viable models of behavior. Linear-cloning-pheno-

linear TNGS creatures met criteria at the mutation rates of 1% and 2.5% (Figure 4-10), which is 

very limited. The flatter phenotypic variation forms – uniform and Gaussian – were even more 

restrictive and only met criteria at the mutation rate of 2.5% (Figures 4-9 and 4-12). The steepest 

variation function – exponential – did not meet criteria at any mutation rate (Figure 4-11). 

 

4.3. Discussion 

 These results indicate that both the ETBD and TNGS are viable accounts for behavior on 

concurrent schedules when the rate and magnitude of reinforcement are varied, but that the 

TNGS is more limited. If the viable creature types are listed in order of viability, then the order 

would be linear-bitwise-bitflip, linear-clone-bitflip, and exponential-bitwise-bitflip. Given the 

criteria, linear-bitwise-bitflip ETBD creatures and linear-clone-bitflip TNGS creatures seem 

equally likely to represent human and animal behavior because they meet the criteria for a wide 

range of mutation rates, but linear-bitwise-bitflip has a slight edge because it can meet a wider 

range of possible aM values. The exponential-bitwise-bitflip ETBD creature type meets the 
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criteria but is unlikely to represent animal behavior because there is a larger difference between 

the aR and aM values than Cording et al.’s meta-analysis suggests (2011). A few of the simulated 

creatures that used linear selection and phenotypic variation had very small regions of viability, 

but these are so restricted that they are unlikely to be representative of human and animal 

behavior. Overall, the TNGS is less likely to represent human and animal behavior than the 

ETBD. Only one of the ten TNGS-based models met the criteria for a successful simulation of 

behavior, whereas all of the ETBD-based models did. This suggests that the ETBD is a more 

robust account of behavior than the TNGS 

 This simulation identified two major algorithmic requirements for simulated behavior to 

match human and animal behavior in concurrent RI RI schedules that vary the rate and 

magnitude of reinforcement. The first of these requirements is that behaviors must be represented 

as a series of bits and cannot be only represented by phenotypes. This was evidenced by all 

creature types that used phenotypic variation methods being unable to compellingly simulate 

pigeon behavior because the aM parameter estimates were too low. This is a robust finding; four 

different phenotypic variation alternatives were examined and they all had the same flaw. So 

why is phenotypic variation such a poor account? By combining cloning reproduction and 

phenotypic variation behaviors are solely expressed as phenotypes. This changes the nature of 

the process the algorithm uses to find a behavioral solution to the environment in a way that 

makes it more like a hill-climbing algorithm than a genetic algorithm. Hill-climbing algorithms 

systematically vary each of the parameters on a single dimension until they find a maximum. 

Genetic algorithms – like the ETBD – instead vary the parameters multidimensionally. It does 

this because each bit of the genotype can be thought of as a separate dimension to solving the 

problem of the environment. This means that the genotype can be thought of as representing the 
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problem space as a hypercube with the number of sides equaling the number of bits (Whitley, 

1994). By searching the environmental problem space multidimensionally, the simulated creature 

types that represent behaviors with genotypes may be far more adaptive than anything that relies 

on a purely phenotypic approach.  

The second algorithmic requirement is that the form of the selection function be linear. 

The linear selection function form is preferable to the exponential, because it results in greater 

sensitivities to magnitude and lower sensitivities to the rate reinforcement (for example compare 

Figures 4-1 and Figure 4-7). This combination of effects makes the simulated creature’s behavior 

better approximate pigeon behavior on concurrent RI RI schedules that vary the reinforcer rates 

and magnitudes. Since there is a difference between exponential and linear selection functions, it 

may be informative to investigate the performance of the third type of selection function form, 

which is uniform (Figure 2-2). If the selection function’s slope has a systematic effect, then it 

may be that a uniform selection function form could raise the sensitivity to magnitude even 

higher than the linear selection function. 

 A major limitation of this experiment is that the basis for the criteria are not as strongly 

supported as they were for Experiment 1. The criteria of this study may be flawed because they 

are based solely on pigeon behavior, which is the only animal that Equation 4-2 has been 

evaluated with. This poses a significant risk to this experiment’s conclusions; if there are species 

specific differences to magnitude sensitivities or to certain types of reinforcers, then the aM 

criterion range that was used in this experiment is not warranted. The behavior of a wider range 

of species on schedules that simultaneously vary rate and magnitude of reinforcement needs to 

be explored.  
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4.3.1. Conclusion. This simulation provided limited support for the TNGS as a viable 

account of behavior in environments in which the rate and magnitude of reinforcement are 

simultaneously varied. The phenotypic variation versions of the TNGS were all rejected as 

accounts of behavior, because the estimated sensitivity to magnitude exponents – aM – were too 

low. ETBD-based simulated creatures were more robustly able to produce patterns of behavior 

that were like animals in environments in which the rate and magnitude of reinforcement are 

simultaneously varied. The number of possible algorithms was also significantly reduced by this 

study because it identified the necessity of the linear selection function form. Given the 

successes of the linear-cloning-bitflip TNGS simulation, the behavioral dynamics of that model 

should be further explored.  
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Chapter 5: General Discussion 

 A version of the TNGS was found to be a viable account for human and animal behavior 

inasmuch as the simulations were valid. The only version of the TNGS that met criteria in both 

Experiments 1 and 2 used a linear-clone-bitflip algorithm. The other nine versions of the TNGS 

failed to meet criteria in Experiment 2. While there is a version of the TNGS that met criteria, the 

overall failure of the TNGS-based simulated creatures suggests that it is not as robust an 

explanation as the ETBD. Since a version of the TNGS is viable, however, it suggests that the 

critiques of its dynamics (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; Fernando, 

Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012) may have been 

premature.  

While Experiments 1 and 2 provided support for the linear-clone-bitflip algorithm, more 

studies need to be conducted that focus on its behavioral dynamics. Experiments 1 and 2 

examined long-term steady state behavior, which is important, but short-term patterns of 

behavior like response bouts and how behavior changes immediately following reinforcement 

also need to be investigated. Kulubekova and McDowell (2008; 2013) investigated these 

dynamics with the ETBD in a pair of studies. They found that the behavior predicted by the 

ETBD is like humans and animals. It would be informative to replicate these two studies with the 

TNGS-based linear-cloning-bitflip simulated creature type to determine if it is also a viable 

account. 

A novel finding of Experiment 1 was the quadratic-exponential function that describes 

changeover behavior. This equation was preferable to McDowell et al.’s proportion of 

reinforcement equation (2008), because that equation fails to adequately describe changeover 

behavior when the total rate of reinforcement varies. To the extent that the simulation is 
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externally valid, the exponentially decreasing rate of changeovers as the total rate of 

reinforcement increases suggests that human and animal changeover behavior could be 

controlled by the overall reinforcement rate of the environment more than the uncertainty of the 

next reinforcer. 

It seems unlikely, however, that the quadratic-exponential that was found in Experiment 

1’s simulation can be generalized to other circumstances, because the experiment’s design lacks 

external validity. It seems more likely that the quadratic-exponential function is simply an 

artifact of the simulation’s design rather than a true prediction of the theory. One reason why it 

seems unlikely is that the expected CMax estimates depend on the size of the target classes, which 

is an arbitrary element of the simulation. As was discussed in Experiment 1, the expected 

changeover rates of a truly random population of behaviors are 20 for genotypic mutation 

methods and 25 for phenotypic mutation methods per 500 time steps. This probability is much 

higher than what is typically observed with humans or animals in the absence of scheduled 

reinforcement. Making the simulated target classes smaller relative to the phenotype range could 

correct for this, but there are other issues that limit the simulation’s external validity. 

Experiment 1’s design does not account for unmeasured behaviors being reinforced. By 

only defining two reinforcing target classes within the simulation, the experimental design 

implicitly suggests that these are the only reinforcing events during a concurrent RI RI 

experiment, which is not true of the real world. In the absence of reinforcers provided by the 

experimenter, humans and animals will seek out other sources of reinforcement. Even in the 

highly controlled situation of a Skinner box, an animal can sleep, scratch an itch, explore the 

box, or engage in any other behavior that is intrinsically reinforcing. Appropriately simulating 

these alternative behaviors and their consequences would reduce the observed maximum 
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changeover rates when the rate of reinforcement is low because the simulated creatures would 

allocate their behavior towards those alternatives instead. This would improve the simulations’ 

external validity but would likely invalidate the quadratic-exponential account of changeover 

behavior. 

 A novel approach to assess the TNGS to the ETBD would be to determine parameter 

values that describe a participant’s behavior and then see if it can predict that same participant’s 

behavior in the future. Li, Elliffe, and Hautus (2018) recently developed a method for 

determining parameter values for the ETBD that correspond to a participant’s behavior. If the 

parameter values that are found from this approach can predict future behavior, then the theories’ 

predictions could be strongly compared. After finding optimal parameters for both theories, a 

participant’s behavior could be predicted in a novel environment and then later compared with 

the participant’s actual behavior when they engage with that environment. The theory that better 

predicts future behavior would be the stronger theory.  

 The ability to determine parameter values for individuals and predict their future behavior 

also has numerous potential clinical applications. If future behavior can be predicted from these 

algorithms, then the effects of behaviorally-focused therapies could be assessed prior to 

implementing them with a client. After developing a case conceptualization of the problem, the 

therapist could have the client work on a concurrent schedule that would be used to determine 

parameter values that describe their behavior. The therapist could then use the ETBD algorithm 

to predict how that client’s behavior may change in response to treatments. By selecting the 

simulated therapeutic approach that predicted the desired changes to the client’s behavior it may 

be possible to tailor the treatment to the patient and, thus, achieve better treatment outcomes. 
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 Another opportunity for this type of simulation work to be applied to clinical treatment is 

just-in-time adaptive interventions (Berardi et al., 2018). Just-in-time adaptive interventions are 

computer programs that are designed to recognize detrimental changes in patient behavior and 

correct them before they become a larger problem (Nahum-Shani, Hekler, & Spruijt-Metz, 2015; 

Spruijt-Metz & Nilsen, 2014; Spruijt-Metz et al., 2015). These programs work with computers, 

laptops, or mobile phones and have the client frequently report on their behavior. A strong 

emphasis is placed on the dynamics of behavior, which the ETBD is particularly well suited to 

because – unlike the matching law – it is a dynamic model of behavior. Some preliminary work 

with the ETBD has already been conducted to see how well it could suit this function (Berardi et 

al., 2018), but the implementation of the theory in that study was novel. Berardi et al. (2018) 

implemented the ETBD by using an odd version of cloning reproduction, which makes that 

simulation more akin to the TNGS. However, they did not directly replicate behaviors as this 

study did, but rather used a complicated Gaussian-kernelling method to create population 

distributions that were then used to generate the next generation of potential behaviors. The 

authors never explained why they decided to implement the ETBD this way and there were 

numerous other oddities in its design, but this preliminary work suggests that there are potential 

clinical applications to this type of intervention. 

 In summary, limited support was found for the TNGS but it was not as robustly supported 

as the ETBD. All versions of the TNGS were viable accounts of behavior on concurrent RI RI 

and single RI schedules, but only one version of the TNGS was a viable account of matching to 

simultaneously varying rates of reinforcement and reinforcer magnitude. The dynamics of the 

only viable version of the TNGS need to be further assessed by replicating Kulubekova and 

McDowell (2008; 2013). Future studies should also emphasize the clinical utility of these 
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simulations. By pursuing these projects, the TNGS may become better supported as an account 

of human and animal behavior.  
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EQUATION SUMMARY 

Matching Law and Theory 

Theoretical Equations 

Equation 3-1: The classic matching law (pg. 34)    
𝐵𝐵1

𝐵𝐵1+𝐵𝐵2
= 𝑅𝑅1

𝑅𝑅1+𝑅𝑅2
 

Equation 1-1: The modern matching law (pg. 2)    
𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑅𝑅1
𝑅𝑅2
�
𝑎𝑎

 

Equation 3-2: The classic quantitative law of effect (pg. 34)   𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖
𝑅𝑅𝑖𝑖+𝑟𝑟𝑒𝑒

 

Equation 3-3: The modern quantitative law of effect (pg. 35)   𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖𝑎𝑎

𝑅𝑅𝑖𝑖𝑎𝑎+
𝑟𝑟𝑒𝑒
𝑎𝑎

𝑏𝑏𝑖𝑖

 

Equation 3-4: The modern quantitative law of effect w/ c (pg. 35)  𝐵𝐵𝑖𝑖 = 𝑘𝑘𝑅𝑅𝑖𝑖𝑎𝑎

𝑅𝑅𝑖𝑖𝑎𝑎+𝑐𝑐
 

Fitted Equations 

Equation 1-1′: Log-transformed modern matching law (pg. 43) 

log �
𝐵𝐵1
𝐵𝐵2
� = 𝐿𝐿 ∙ log �

𝑅𝑅1
𝑅𝑅2
� + log �

𝑐𝑐2
𝑐𝑐1
� 

Equation 3-4a′: Modern quantitative law of effect to the first target class (pg. 43) 

𝐵𝐵1 = 𝑘𝑘 �
𝑐𝑐1
𝑅𝑅1𝑎𝑎

+
𝑐𝑐1𝑅𝑅2𝑎𝑎

𝑐𝑐2𝑅𝑅1𝑎𝑎
+ 1�

−1

 

Equation 3-4b′: Modern quantitative law of effect to the second target class (pg. 43) 

𝐵𝐵2 = 𝑘𝑘 �
𝑐𝑐2
𝑅𝑅2𝑎𝑎

+
𝑐𝑐2𝑅𝑅1𝑎𝑎

𝑐𝑐1𝑅𝑅2𝑎𝑎
+ 1�

−1

B = Observed rate of behavior 

R = Rate of obtained reinforcement 

a = Sensitivity to reinforcement 

b = Bias 

bi = Bias towards the target class 

k = Maximum rate of behavior 

re = Extraneous Reinforcement 

c = Composite parameter 

subscripts = Target class specifiers

Note: Variables identified by uppercase are manipulated or observable, whereas variables identified by lowercase 
are estimated free parameters. 
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Concurrent RI RI Changeover Profiles 

Unlabeled Equation: Quadratic changeovers (pg. 49)  

𝐴𝐴 = (𝐿𝐿𝑃𝑃2 + 𝑏𝑏𝑃𝑃 + 𝑐𝑐) 

Equation 3-5: Quadratic-exponential changeovers (pg. 57) 

𝐴𝐴 = (𝐿𝐿𝑃𝑃2 + 𝑏𝑏𝑃𝑃 + 𝑐𝑐) ∙ 10−𝑑𝑑∙𝑇𝑇 
 

P = Proportion of reinforcement [i.e., R1/(R1+R2)] 

T = Total rate of reinforcement (i.e., R1+R2) 

a, b, c, & d = Free parameters 
 

 

Bivariate Matching Law 

Theoretical Equations 

Equation 4-1: Multivariate matching law (pg. 69)  
𝐵𝐵1
𝐵𝐵2

= 𝑅𝑅1
𝑅𝑅2
∙ 𝑀𝑀1
𝑀𝑀2
∙ 𝐼𝐼1
𝐼𝐼2
∙ 𝑋𝑋1
𝑋𝑋2

= 𝑣𝑣1
𝑣𝑣2

 

Equation 4-2: Bivariate matching law (pg. 69)  
𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑅𝑅1
𝑅𝑅2
�
𝑎𝑎𝑅𝑅
�𝑀𝑀1
𝑀𝑀2
�
𝑎𝑎𝑀𝑀

 

Fitted Equation 

Equation 4-2′: Log-transformed bivariate matching law (pg. 73) 

log �
𝐵𝐵1
𝐵𝐵2
� = 𝐿𝐿𝑅𝑅 ∙ log �

𝑅𝑅1
𝑅𝑅2
�+ 𝐿𝐿𝑀𝑀 ∙ log �

𝐹𝐹2
𝐹𝐹1
� + log(𝑏𝑏) 

 

B = Observed rate of behavior 

R = Rate of obtained reinforcement 

M = Reinforcer magnitude 

I = Immediacy of reinforcement 

X = Any other quality of reinforcement 

F = Mean of the fitness density function  

v = Value of the reinforcer 

aR = Sensitivity to the rate of reinforcement 

aM = Sensitivity to the reinforcer magnitude 

b = Bias 

subscripts = Target class specifiers
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Figure 2-1. Flowchart of how the ETBD creates new generations of behaviors 

  



101 
 

 

Figure 2-2. Continuous probability density function forms with means of 40 
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Note: The bolded 0s and 1s were randomly selected from the two parents to create the new child behavior. 

Figure 2-3. The bitwise method of reproduction 
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Figure 2-4. The bitflip-by-individual variation method 
  



104 
 

 

Figure 2-5. Plots of the probability density functions of phenotypic variation methods 
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Figure 2-6. A simplified example of roulette-wheel selection  

  



106 
 

Table 3-1.  

The Twelve Simulated Creature Types 

 Algorithm Methods 
Abbreviated Creature Names Selection Reproduction Variation 
ETBD-based    
    Linear-Bitwise-Bitflip Continuous Lineara Bitwisec Bitflip-by-Individuale 
    Exponential-Bitwise-Bitflip Continuous Exponentiala Bitwisec Bitflip-by-Individuale 
    
TNGS-based (Genotypic)    
    Linear-Clone-Bitflip Roulette-Continuous Linearb Cloningd Bitflip-by-Individuale 
    Exponential-Clone-Bitflip Roulette-Continuous Exponentialb Cloningd Bitflip-by-Individuale 
    
TNGS-based (Phenotypic)    
    Linear-Clone-Pheno-Uniform Roulette-Continuous Linearb Cloningd Uniform Continuousf 
    Linear-Clone-Pheno-Linear Roulette-Continuous Linearb Cloningd Linear Continuousf 
    Linear-Clone-Pheno-Exponential Roulette-Continuous Linearb Cloningd Exponential Continuousf 
    Linear-Clone-Pheno-Gaussian Roulette-Continuous Linearb Cloningd Gaussian Continuousf 
    Exponential-Clone-Pheno-Uniform Roulette-Continuous Exponentialb Cloningd Uniform Continuousf 
    Exponential-Clone-Pheno-Linear Roulette-Continuous Exponentialb Cloningd Linear Continuousf 
    Exponential-Clone-Pheno-Exponential Roulette-Continuous Exponentialb Cloningd Exponential Continuousf 
    Exponential-Clone-Pheno-Gaussian Roulette-Continuous Exponentialb Cloningd Gaussian Continuousf 

a Section 2.1.2 
b Section 2.2.3 
c Section 2.1.3 
d Section 2.2.1 
e Section 2.1.4 
f Section 2.2.2 
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Table 3-2.  

Scheduled random-interval means of the two reinforcing target classes 

 

Schedule 
Number 

Target Class  Schedule 
Number 

Target Class 
1 2   1 2 

1 2.50 2.50  27 13.33 10.00 
2 2.50 3.33  28 13.33 13.33 
3 2.50 5.00  29 13.33 20.00 
4 2.50 10.00  30 13.33 40.00 
5 3.33 2.50  31 20.00 5.00 
6 3.33 3.33  32 20.00 6.67 
7 3.33 5.00  33 20.00 10.00 
8 3.33 10.00  34 20.00 13.33 
9 5.00 2.50  35 20.00 20.00 
10 5.00 3.33  36 20.00 26.67 
11 5.00 5.00  37 20.00 40.00 
12 5.00 6.67  38 20.00 80.00 
13 5.00 10.00  39 26.67 20.00 
14 5.00 20.00  40 26.67 26.67 
15 6.67 5.00  41 26.67 40.00 
16 6.67 6.67  42 26.67 80.00 
17 6.67 10.00  43 40.00 10.00 
18 6.67 20.00  44 40.00 13.33 
19 10.00 2.50  45 40.00 20.00 
20 10.00 3.33  46 40.00 26.67 
21 10.00 5.00  47 40.00 40.00 
22 10.00 6.67  48 40.00 80.00 
23 10.00 10.00  49 80.00 20.00 
24 10.00 13.33  50 80.00 26.67 
25 10.00 20.00  51 80.00 40.00 
26 10.00 40.00  52 80.00 80.00 
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Figure 3-1. Scatterplot of scheduled reinforcement rates 
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Figure 3-2. Effects of the parameters k, c, and a on the predicted rate of behavior 
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Table 3-2.  

Model parameter restrictions  

 
Model Description Parameters a k c1 c2 

1 Modern Algebraic 16 * * * * 
2 Modern Algebraic w/ No Bias 12 * * * E 
3 Modern Algebraic w/ Constant Exponent 9 C * * E 
4 Modern Algebraic w/ Constant k 6 C C * E 
5 Modern Response Strength 3 C C C E 
6 Classic Algebraic 8 1 * * E 
7 Classic Algebraic w/ Constant k 5 1 C * E 
8 Classic Response Strength 2 1 C C E 

* = Varies with each magnitude pair, C = Constant across magnitude pairs, E = equal to c1 at each 
magnitude pair, and a specific value means that is what the value is set to across all magnitude pairs 
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Figure 3-3. Summary of model preferences by the BIC, AIC, and extra sums of squares 
difference tests 
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Figure 3-4. Exponent (a) parameter values of model 3 fits to simulated creature behavior 
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Figure 3-5. k parameter values of model 3 fits to the behavior of simulated creatures that 
used an exponential selection function 
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Figure 3-6. k parameter values of model 3 fits to the behavior of simulated creatures that 
used a linear selection function 
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Figure 3-7. c parameter values of model 3 fits to the behavior of simulated creatures that 
used an exponential selection function 
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Figure 3-8. c parameter values of model 3 fits to the behavior of simulated creatures that 
used a linear selection function 
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Note: The parameter values of the fits can be found in Appendices A.3 and F.3 at the reinforcer magnitude pair of 
40 & 40 

Figure 3-9. Predicted rates of behavior for exponential-bitwise-bitflip and exponential-
clone-pheno-Gaussian creature types at 10% and 20% mutation 
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Figure 3-10. Predicted rate of behavior at 15 reinforcers per 500 time steps of simulated 
creatures that used an exponential selection function 
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Figure 3-11. Predicted rate of behavior at 15 reinforcers per 500 time steps of simulated 
creatures that used a linear selection function 
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Figure 3-12. Quadratic fit to changeovers per 500 time steps of exponential-bitwise-bitflip 
creature type behavior at 10% mutation 
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Note: The (R1+R2)-axis is reversed for display purposes. 

Figure 3-13. Changeovers per 500 time steps (ts) as a function of total and proportional 
reinforcement of the exponential-bitwise-bitflip creature type at 10% mutation  
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Note: White dots are datapoints that are below the function’s predicted values and black dots are above. The arrows 
on the axes indicate the direction of increasing value. 

Figure 3-14. Quadratic-exponential fit to changeovers per 500 time steps (ts) of the 
exponential-bitwise-bitflip creature type at 10% mutation  
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Note: The arrows on the axes indicate the direction of increasing value. 

Figure 3-15. Quadratic-exponential fit to changeovers per 500 time steps (ts) of the 
exponential-bitwise-bitflip creature type at 10% mutation on a typical 11 schedule 
experiment 
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Figure 3-16. Exponential fit to changeovers per 500 time steps of the exponential-bitwise-
bitflip creature type at 10% mutation 
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Figure 3-17. Averaged maximum changeovers (CMax) predicted by the quadratic-
exponential fits to simulated creature behavior 
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Figure 3-18. The concavity (CΔ%) of the best fitting quadratic-exponential to the changeover 
behavior of simulated creatures that used an exponential selection function 
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Figure 3-19. The concavity (CΔ%) of the best fitting quadratic-exponential to the changeover 
behavior of simulated creatures that used a linear selection function 
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Table 4-1.  

Scheduled random-interval rate means and reinforcer magnitudes of the two reinforcing 

components 

 
Schedule 
Number 

Component Rates  Component Magnitudes 
1 2   1 2 

1 15 180  15 90 
2 15 180  34 71 
3 15 180  52 52 
4 15 180  71 34 
5 15 180  90 15 
6 56 139  15 90 
7 56 139  34 71 
8 56 139  52 52 
9 56 139  71 34 
10 56 139  90 15 
11 98 98  15 90 
12 98 98  34 71 
13 98 98  52 52 
14 98 98  71 34 
15 98 98  90 15 
16 139 56  15 90 
17 139 56  34 71 
18 139 56  52 52 
19 139 56  71 34 
20 139 56  90 15 
21 180 15  15 90 
22 180 15  34 71 
23 180 15  52 52 
24 180 15  71 34 
25 180 15   90 15 
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Note: Mutation rates of 0.5, 1.0, and 2.5% are omitted because they could not be successfully run. 

Figure 4-1. Bivariate matching fit exponents of exponential-bitwise-bitflip simulated 
creature behavior 
 

 

Figure 4-2. Bivariate matching fit exponents of exponential-clone-bitflip simulated creature 
behavior   
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Figure 4-3. Bivariate matching fit exponents of exponential-clone-pheno-uniform simulated 
creature behavior 
 

 

Figure 4-4. Bivariate matching fit exponents of exponential-clone-pheno-linear simulated 
creature behavior 
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Figure 4-5. Bivariate matching fit exponents of exponential-clone-pheno-exponential 
simulated creature behavior 
 

 

Figure 4-6. Bivariate matching fit exponents of exponential-clone-pheno-Gaussian 
simulated creature behavior 
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Note: Mutation rates of 0.5, 1.0, and 2.5% are omitted because they could not be successfully run. 

Figure 4-7. Bivariate matching fit exponents of linear-bitwise-bitflip simulated creature 
behavior 

 

Figure 4-8. Bivariate matching fit exponents of linear-clone-bitflip simulated creature 
behavior 
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Figure 4-9. Bivariate matching fit exponents of linear-clone-pheno-uniform simulated 
creature behavior 
 

 

Figure 4-10. Bivariate matching fit exponents of linear-clone-pheno-linear simulated 
creature behavior  
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Figure 4-11. Bivariate matching fit exponents of linear-clone-pheno-exponential simulated 
creature behavior 
 

 

Figure 4-12. Bivariate matching fit exponents of linear-clone-pheno-Gaussian simulated 
creature behavior
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Appendix A: Experiment 1 Fitting Measures of the Exponential-Bitwise-Bitflip Creature 

Type 

 
Table A.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 478 8.5 8.7 0.77 97 99 

 40/40 400 8.7 8.9 0.77 99 99 
 60/60 358 10.0 9.8 0.77 99 99 

 80/80 322 10.6 10.8 0.77 98 99 
7.5 20/20 494 14.7 14.8 0.81 99 99 

 40/40 406 14.1 13.9 0.80 99 99 

 60/60 364 16.3 16.2 0.81 99 100 

 80/80 326 16.8 16.9 0.81 99 100 
10.0 20/20 496 20.0 19.9 0.82 100 100 

 40/40 416 21.1 21.3 0.83 100 100 

 60/60 368 22.3 22.4 0.83 100 100 
 80/80 332 24.1 24.2 0.83 100 100 

12.5 20/20 503 26.0 25.8 0.83 100 100 

 40/40 423 27.4 27.2 0.84 100 100 
 60/60 372 28.9 29.2 0.85 100 100 

 80/80 344 31.3 31.4 0.84 100 100 
15.0 20/20 510 30.9 30.7 0.83 100 100 

 40/40 433 33.3 33.3 0.84 100 100 

 60/60 381 35.8 35.6 0.85 100 100 

 80/80 350 37.7 37.7 0.84 100 100 
17.5 20/20 454 31.3 31.2 0.82 100 100 

 40/40 357 33.0 33.0 0.82 100 100 

 60/60 285 30.1 30.2 0.80 100 100 
 80/80 259 31.0 30.9 0.76 100 99 

20.0 20/20 455 35.8 35.7 0.83 100 100 

 40/40 360 37.2 37.5 0.82 100 100 
 60/60 290 34.1 34.2 0.79 100 100 
  80/80 253 32.2 32.2 0.75 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 478 8.6 0.77 97 99 

 40/40 400 8.8 0.77 99 99 
 60/60 358 9.9 0.77 99 99 

 80/80 322 10.7 0.77 98 99 
7.5 20/20 494 14.8 0.81 99 99 

 40/40 406 14.0 0.80 99 99 

 60/60 364 16.3 0.81 99 100 

 80/80 326 16.9 0.81 99 100 
10.0 20/20 496 20.0 0.82 100 100 

 40/40 416 21.2 0.83 100 100 

 60/60 368 22.3 0.83 100 100 
 80/80 332 24.2 0.83 100 100 

12.5 20/20 503 25.9 0.83 100 100 

 40/40 423 27.3 0.84 100 100 
 60/60 372 29.1 0.85 100 100 

 80/80 344 31.4 0.84 100 100 
15.0 20/20 510 30.8 0.83 100 100 

 40/40 433 33.3 0.84 100 100 

 60/60 381 35.7 0.85 100 100 

 80/80 350 37.7 0.84 100 100 
17.5 20/20 454 31.2 0.82 100 100 

 40/40 357 33.0 0.82 100 100 

 60/60 285 30.1 0.80 100 100 
 80/80 259 30.9 0.76 100 99 

20.0 20/20 455 35.7 0.83 100 100 

 40/40 360 37.4 0.82 100 100 
 60/60 290 34.2 0.79 100 100 
  80/80 253 32.2 0.75 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 479 8.6 0.77 97 99 

 40/40 400 8.9  99 99 
 60/60 358 9.9  99 99 

 80/80 322 10.7  98 99 
7.5 20/20 495 14.7 0.81 99 99 

 40/40 403 14.2  99 99 

 60/60 367 16.1  99 100 

 80/80 326 16.8  99 100 
10.0 20/20 492 20.1 0.83 100 100 

 40/40 417 21.1  100 100 

 60/60 368 22.3  100 100 
 80/80 334 24.1  100 100 

12.5 20/20 500 26.1 0.84 100 100 

 40/40 425 27.3  100 100 
 60/60 376 29.0  100 100 

 80/80 342 31.4  100 100 
15.0 20/20 504 31.0 0.84 100 100 

 40/40 434 33.3  100 100 

 60/60 387 35.6  100 100 

 80/80 349 37.7  100 100 
17.5 20/20 475 31.0 0.80 100 100 

 40/40 373 33.1  100 100 

 60/60 284 30.1  100 100 
 80/80 238 30.2  99 99 

20.0 20/20 486 35.7 0.79 100 100 

 40/40 380 37.8  100 100 
 60/60 287 34.1  100 100 
  80/80 228 31.0   99 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 384 10.6 0.77 74 99 

 40/40  9.9  96 99 
 60/60  11.0  98 99 

 80/80  11.5  85 98 
7.5 20/20 398 17.5 0.80 80 99 

 40/40  16.6  96 99 

 60/60  18.1  99 100 

 80/80  19.5  88 99 
10.0 20/20 413 25.5 0.83 82 100 

 40/40  23.7  98 100 

 60/60  26.2  99 100 
 80/80  28.9  90 99 

12.5 20/20 372 28.3 0.85 79 100 

 40/40  27.4  96 100 
 60/60  28.5  100 100 

 80/80  31.1  93 99 
15.0 20/20 458 44.2 0.83 82 100 

 40/40  41.3  98 100 

 60/60  45.6  99 100 

 80/80  49.3  91 99 
17.5 20/20 474 64.3 0.79 59 100 

 40/40  57.4  92 99 

 60/60  64.7  98 100 
 80/80  71.3  82 97 

20.0 20/20 532 81.0 0.79 58 100 

 40/40  72.2  91 99 
 60/60  81.2  97 100 
  80/80   88.9   81 96 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 378 10.3 0.77 73 99 

 40/40    95 99 
 60/60    98 99 

 80/80    84 99 
7.5 20/20 390 17.1 0.81 79 99 

 40/40    95 99 

 60/60    99 100 

 80/80    87 100 
10.0 20/20 403 25.0 0.83 81 100 

 40/40    97 100 

 60/60    99 100 
 80/80    89 100 

12.5 20/20 421 33.8 0.84 81 100 

 40/40    97 100 
 60/60    99 100 

 80/80    89 100 
15.0 20/20 443 43.1 0.84 81 100 

 40/40    96 100 

 60/60    99 100 

 80/80    89 100 
17.5 20/20 434 59.6 0.80 57 100 

 40/40    88 100 

 60/60    98 100 
 80/80    79 99 

20.0 20/20 481 74.6 0.80 56 100 

 40/40    87 100 
 60/60    98 100 
  80/80       78 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 423 12.5 95 91 

 40/40 351 12.5 97 90 
 60/60 312 13.9 97 90 

 80/80 277 14.7 97 90 
7.5 20/20 433 19.9 98 94 

 40/40 352 18.9 97 93 

 60/60 314 20.8 99 94 

 80/80 277 21.3 98 94 
10.0 20/20 427 25.5 99 95 

 40/40 359 26.4 99 96 

 60/60 312 27.1 99 95 
 80/80 279 28.6 99 96 

12.5 20/20 428 32.1 99 96 

 40/40 357 32.7 99 96 
 60/60 312 34.0 99 96 

 80/80 278 35.5 99 96 
15.0 20/20 418 37.0 99 96 

 40/40 353 38.6 99 96 

 60/60 309 40.2 99 96 

 80/80 272 40.9 99 96 
17.5 20/20 365 36.8 99 95 

 40/40 275 36.4 99 95 

 60/60 210 32.2 98 93 
 80/80 174 31.3 96 89 

20.0 20/20 358 40.7 99 95 

 40/40 268 39.8 99 95 
 60/60 203 34.9 98 92 
  80/80 164 31.6 96 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table A.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 347 5.2 91 91 

 40/40  12.0 97 90 
 60/60  19.8 96 90 

 80/80  29.1 93 90 
7.5 20/20 352 9.8 95 94 

 40/40  18.9 97 93 

 60/60  28.9 98 94 

 80/80  40.2 96 94 
10.0 20/20 355 14.6 97 95 

 40/40  25.6 99 96 

 60/60  37.6 98 95 
 80/80  50.4 97 96 

12.5 20/20 356 19.5 98 96 

 40/40  32.4 99 96 
 60/60  46.2 99 96 

 80/80  60.5 97 96 
15.0 20/20 351 23.8 98 96 

 40/40  38.2 99 96 

 60/60  53.1 99 96 

 80/80  68.4 97 96 
17.5 20/20 273 17.3 95 95 

 40/40  35.8 99 95 

 60/60  55.4 96 93 
 80/80  73.3 91 89 

20.0 20/20 264 19.3 95 95 

 40/40  38.8 99 95 
 60/60  58.7 96 92 
  80/80   76.2 90 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table A.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 327 14 71 91 

 40/40   93 90 
 60/60   96 90 

 80/80   82 90 
7.5 20/20 332 22 78 94 

 40/40   94 93 

 60/60   98 94 

 80/80   86 94 
10.0 20/20 336 30 80 95 

 40/40   96 96 

 60/60   99 95 
 80/80   88 96 

12.5 20/20 340 39 81 96 

 40/40   96 96 
 60/60   99 96 

 80/80   88 96 
15.0 20/20 341 47 80 96 

 40/40   96 96 

 60/60   99 96 

 80/80   88 96 
17.5 20/20 267 54 56 95 

 40/40   87 95 

 60/60   96 93 
 80/80   76 89 

20.0 20/20 266 60 55 95 

 40/40   86 95 
 60/60   96 92 
  80/80     74 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table A.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 214 114 4 403 2 
3   Constant a, c1 = c2 9 116 113 7 406 1 
4   Constant a & c 6 29940 842 10 409 36* 
5   Constant a, c & k 3 24275 875 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 6875 246 8 407 28* 
7  Constant k, a = 1, c1 = c2 5 10199 384 11 410 27* 
8  Constant k & c, a = 1,  2 26297 1001 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table A.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 16 50 4 403 0 
3   Constant a, c1 = c2 9 25 50 7 406 1 
4   Constant a & c 6 25397 670 10 409 38* 
5   Constant a, c & k 3 20945 709 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2904 106 8 407 27* 
7  Constant k, a = 1, c1 = c2 5 6212 215 11 410 29* 
8  Constant k & c, a = 1,  2 21335 772 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table A.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 4 19 4 403 0 
3   Constant a, c1 = c2 9 -2 19 7 406 <0 
4   Constant a & c 6 20765 527 10 409 39* 
5   Constant a, c & k 3 17556 573 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1886 56 8 407 33* 
7  Constant k, a = 1, c1 = c2 5 3921 124 11 410 32* 
8  Constant k & c, a = 1,  2 17475 611 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model. Model 3 had a lower residual sum of 
squares than Model 1, which made the test invalid because the F-value was less than 0. 
 
Table A.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 21 9 4 403 2 
3   Constant a, c1 = c2 9 13 9 7 406 1 
4   Constant a & c 6 21031 523 10 409 40* 
5   Constant a, c & k 3 15207 489 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1434 37 8 407 39* 
7  Constant k, a = 1, c1 = c2 5 2899 87 11 410 33* 
8  Constant k & c, a = 1,  2 15106 521 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  



146 
 

Table A.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 5 5 4 403 1 
3   Constant a, c1 = c2 9 2 5 7 406 0 
4   Constant a & c 6 14751 366 10 409 40* 
5   Constant a, c & k 3 12649 404 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1310 31 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 2160 63 11 410 34* 
8  Constant k & c, a = 1,  2 12609 433 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table A.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 0 3 4 403 0 
3   Constant a, c1 = c2 9 46 4 7 406 12* 
4   Constant a & c 6 21184 521 10 409 41* 
5   Constant a, c & k 3 17888 568 13 412 32* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1110 25 8 407 44* 
7  Constant k, a = 1, c1 = c2 5 2856 80 11 410 36* 
8  Constant k & c, a = 1,  2 17397 593 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table A.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 2 3 4 403 1 
3   Constant a, c1 = c2 9 54 3 7 406 16* 
4   Constant a & c 6 18030 443 10 409 41* 
5   Constant a, c & k 3 15181 481 13 412 32* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 987 22 8 407 45* 
7  Constant k, a = 1, c1 = c2 5 2404 67 11 410 36* 
8  Constant k & c, a = 1,  2 14785 504 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table A.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1981 1643 1253 934 708 497 398 
2   c1 = c2 12 1981 1636 1246 935 704 490 393 
3   Constant a, c1 = c2 9 1974 1633 1238 929 696 577 517 
4   Constant a & c 6 2807 2712 2612 2609 2460 2607 2540 
5   Constant a, c & k 3 2820 2733 2644 2578 2499 2640 2572 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2297 1948 1684 1510 1435 1345 1290 
7  Constant k, a = 1, c1 = c2 5 2479 2239 2010 1860 1728 1825 1753 
8  Constant k & c, a = 1 2 2875 2767 2670 2603 2526 2657 2589 

 
Table A.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1083 -1218 -1323 -1469 -1530 -1512 -1517 
2   c1 = c2 8 -1089 -1225 -1330 -1476 -1537 -1520 -1523 

3, 4, 5   Constant a & c1 = c2 2 -1101 -1236 -1340 -1486 -1542 -1485 -1478 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -659 -730 -789 -839 -882 -902 -931 
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Table A.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2045 1708 1317 998 772 562 463 
2   c1 = c2 12 2029 1685 1294 983 752 538 442 
3   Constant a, c1 = c2 9 2011 1669 1274 966 732 614 553 
4   Constant a & c 6 2831 2736 2636 2633 2484 2632 2564 
5   Constant a, c & k 3 2832 2745 2656 2590 2511 2652 2584 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2329 1980 1716 1543 1467 1377 1322 
7  Constant k, a = 1, c1 = c2 5 2499 2259 2030 1880 1748 1846 1773 
8  Constant k & c, a = 1 2 2883 2775 2678 2611 2534 2665 2597 

 
Table A.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1043 -1178 -1283 -1429 -1490 -1472 -1477 
2   c1 = c2 8 -1063 -1199 -1304 -1450 -1510 -1494 -1496 

3, 4, 5   Constant a & c1 = c2 2 -1095 -1230 -1333 -1479 -1535 -1478 -1471 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -659 -730 -789 -839 -882 -902 -931 
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Table A.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -0.4 0.3 0.3 0.3 0.1 1 
 40/40 -1.1 1.1 0.3 0.5 0.3 3 
 60/60 -1.4 1.4 0.3 0.7 0.4 3 
 80/80 -1.6 1.5 0.5 0.9 0.4 2 

7.5 20/20 -2.4 2.4 0.3 0.9 0.6 6 
 40/40 -2.6 2.6 0.5 1.2 0.7 4 
 60/60 -5.6 5.6 0.4 1.8 1.4 11 
 80/80 -5.5 5.5 0.6 2.0 1.4 7 

10.0 20/20 -5.2 5.2 0.3 1.6 1.3 11 
 40/40 -7.0 7.1 0.4 2.2 1.8 12 
 60/60 -8.9 8.9 0.6 2.8 2.2 13 
 80/80 -10.0 9.9 0.9 3.3 2.4 13 

12.5 20/20 -7.8 8.0 0.3 2.4 2.0 14 
 40/40 -10.6 10.7 0.5 3.3 2.7 16 
 60/60 -12.3 12.0 0.9 3.9 2.9 15 
 80/80 -14.5 14.1 1.1 4.5 3.5 16 

15.0 20/20 -10.6 10.7 0.5 3.1 2.7 16 
 40/40 -13.7 13.7 0.7 4.2 3.4 16 
 60/60 -15.6 15.9 0.9 5.0 4.1 15 
 80/80 -17.7 17.5 1.3 5.7 4.4 15 

17.5 20/20 -13.4 13.5 0.7 4.1 3.4 16 
 40/40 -18.6 18.6 1.1 5.8 4.7 16 
 60/60 -19.3 19.5 1.9 6.8 4.9 12 
 80/80 -20.2 20.1 2.8 7.8 5.0 9 

20.0 20/20 -15.6 15.7 0.9 4.9 3.9 17 
 40/40 -21.9 21.8 1.3 6.8 5.4 16 
 60/60 -22.4 22.4 2.3 7.9 5.6 12 
  80/80 -18.7 18.8 4.2 8.9 4.7 6 

Note. %VAF = Percentage of Variance Accounted For. 
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Table A.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 5.1 -4.8 4.3 0.043 4.3 -26% 99 
 40/40 2.8 -2.8 5.3 0.041 5.3 -13% 99 
 60/60 1.4 -1.2 5.2 0.035 5.2 -5% 99 
 80/80 2.3 -2.5 6.1 0.032 6.1 -11% 99 

7.5 20/20 4.0 -3.3 6.2 0.034 6.2 -10% 99 
 40/40 3.6 -3.4 7.5 0.030 7.5 -11% 99 
 60/60 1.1 -0.8 8.4 0.029 8.4 -2% 99 
 80/80 4.1 -3.6 9.3 0.026 9.3 -8% 99 

10.0 20/20 5.2 -4.9 9.2 0.030 9.2 -13% 99 
 40/40 3.2 -3.1 10.7 0.028 10.7 -7% 99 
 60/60 4.2 -4.4 11.3 0.024 11.3 -10% 99 
 80/80 2.9 -3.3 11.9 0.021 11.9 -8% 99 

12.5 20/20 2.8 -3.0 10.1 0.025 10.1 -8% 99 
 40/40 7.1 -6.8 12.4 0.022 12.4 -13% 99 
 60/60 3.6 -3.8 12.9 0.020 12.9 -8% 99 
 80/80 4.1 -4.1 13.6 0.018 13.6 -8% 99 

15.0 20/20 5.8 -5.9 11.7 0.021 11.7 -13% 99 
 40/40 4.0 -4.8 13.9 0.019 13.9 -10% 99 
 60/60 6.2 -5.9 15.1 0.017 15.1 -9% 99 
 80/80 5.2 -4.6 15.0 0.015 15.0 -7% 99 

17.5 20/20 4.2 -4.1 12.7 0.018 12.7 -8% 99 
 40/40 3.8 -3.2 14.7 0.015 14.7 -5% 99 
 60/60 4.3 -4.0 16.1 0.013 16.1 -6% 99 
 80/80 3.7 -3.6 16.3 0.011 16.3 -5% 99 

20.0 20/20 5.5 -5.4 14.0 0.016 14.0 -10% 99 
 40/40 3.2 -3.5 16.2 0.013 16.2 -6% 99 
 60/60 2.0 -1.7 16.3 0.011 16.3 -2% 99 
  80/80 3.0 -3.0 17.1 0.010 17.1 -4% 99 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix B: Experiment 1 Fitting Measures of the Exponential-Clone-Bitflip Creature 

Type 

 
Table B.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 534 9.7 9.4 0.77 99 99 

 40/40 549 13.0 13.1 0.79 99 99 
 60/60 545 15.1 15.3 0.80 99 99 

 80/80 550 19.3 19.2 0.83 100 100 
7.5 20/20 543 15.4 15.9 0.82 100 100 

 40/40 544 19.5 19.4 0.83 99 100 

 60/60 554 24.5 24.9 0.84 100 100 

 80/80 553 28.3 28.4 0.84 100 100 
10.0 20/20 550 20.8 20.9 0.82 100 100 

 40/40 549 26.7 26.9 0.85 100 100 

 60/60 553 33.0 32.9 0.86 100 100 
 80/80 544 36.7 36.8 0.86 100 100 

12.5 20/20 548 26.4 26.5 0.84 100 100 

 40/40 549 32.8 32.6 0.85 100 100 
 60/60 542 38.6 38.5 0.86 100 100 

 80/80 547 44.4 44.6 0.86 100 100 
15.0 20/20 553 30.9 30.9 0.83 100 100 

 40/40 543 38.0 38.1 0.85 100 100 

 60/60 538 44.8 44.6 0.86 100 100 

 80/80 539 49.4 49.8 0.85 100 100 
17.5 20/20 543 34.4 34.1 0.83 100 100 

 40/40 530 42.1 42.5 0.86 100 100 

 60/60 525 49.9 49.9 0.86 100 100 
 80/80 526 52.8 52.7 0.84 100 99 

20.0 20/20 535 38.0 38.0 0.84 100 100 

 40/40 520 45.0 45.3 0.85 100 100 
 60/60 518 50.7 50.8 0.84 100 100 
  80/80 517 56.7 56.6 0.83 100 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table B.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 534 9.6 0.77 98 99 

 40/40 549 13.0 0.79 99 99 
 60/60 544 15.2 0.80 99 99 

 80/80 550 19.3 0.83 100 100 
7.5 20/20 543 15.7 0.82 100 100 

 40/40 544 19.4 0.83 99 100 

 60/60 555 24.8 0.84 100 100 

 80/80 553 28.4 0.84 100 100 
10.0 20/20 550 20.9 0.82 100 100 

 40/40 549 26.8 0.85 100 100 

 60/60 553 33.0 0.86 100 100 
 80/80 544 36.7 0.86 100 100 

12.5 20/20 548 26.5 0.84 100 100 

 40/40 549 32.7 0.85 100 100 
 60/60 542 38.6 0.86 100 100 

 80/80 547 44.5 0.86 100 100 
15.0 20/20 553 30.9 0.83 100 100 

 40/40 543 38.0 0.85 100 100 

 60/60 538 44.7 0.86 100 100 

 80/80 539 49.6 0.85 100 100 
17.5 20/20 543 34.3 0.83 100 100 

 40/40 530 42.3 0.86 100 100 

 60/60 525 49.9 0.86 100 100 
 80/80 526 52.7 0.84 100 99 

20.0 20/20 535 38.0 0.84 100 100 

 40/40 520 45.2 0.85 100 100 
 60/60 518 50.8 0.84 100 100 
  80/80 517 56.6 0.83 100 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table B.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 524 9.9 0.80 98 99 

 40/40 548 13.1  99 99 
 60/60 546 15.2  99 99 

 80/80 567 18.6  100 99 
7.5 20/20 536 16.0 0.83 100 100 

 40/40 542 19.5  99 100 

 60/60 562 24.5  100 100 

 80/80 561 28.1  100 100 
10.0 20/20 536 21.5 0.85 100 100 

 40/40 551 26.7  100 100 

 60/60 562 32.6  100 100 
 80/80 554 36.4  100 100 

12.5 20/20 540 26.8 0.85 100 100 

 40/40 549 32.7  100 100 
 60/60 549 38.4  100 100 

 80/80 551 44.4  100 100 
15.0 20/20 541 31.2 0.85 100 100 

 40/40 548 37.9  100 100 

 60/60 550 44.6  100 100 

 80/80 538 49.6  100 100 
17.5 20/20 531 34.5 0.85 100 100 

 40/40 540 42.2  100 100 

 60/60 544 49.9  100 100 
 80/80 514 52.5  100 99 

20.0 20/20 532 38.0 0.84 100 100 

 40/40 532 45.2  100 100 
 60/60 518 50.8  100 100 
  80/80 506 56.3   100 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table B.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 543 13.7 0.80 97 99 

 40/40  13.4  99 99 
 60/60  13.8  99 99 

 80/80  14.6  98 99 
7.5 20/20 546 21.4 0.83 97 100 

 40/40  21.0  99 100 

 60/60  21.6  100 100 

 80/80  22.8  98 100 
10.0 20/20 550 29.1 0.85 97 100 

 40/40  28.0  100 100 

 60/60  29.9  100 100 
 80/80  31.4  98 100 

12.5 20/20 550 36.0 0.85 97 100 

 40/40  35.0  100 100 
 60/60  37.0  100 100 

 80/80  38.8  97 100 
15.0 20/20 553 42.4 0.85 96 100 

 40/40  40.8  99 100 

 60/60  43.5  100 100 

 80/80  45.4  97 99 
17.5 20/20 543 46.9 0.85 95 100 

 40/40  44.9  99 100 

 60/60  48.0  100 100 
 80/80  50.7  96 99 

20.0 20/20 539 51.3 0.84 94 100 

 40/40  49.0  99 100 
 60/60  52.2  99 100 
  80/80   55.0   96 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table B.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 542 13.7 0.80 97 99 

 40/40    98 99 
 60/60    99 99 

 80/80    98 99 
7.5 20/20 544 21.3 0.83 97 100 

 40/40    99 100 

 60/60    100 100 

 80/80    98 100 
10.0 20/20 548 29.1 0.85 97 100 

 40/40    99 100 

 60/60    100 100 
 80/80    97 100 

12.5 20/20 547 36.0 0.85 96 100 

 40/40    99 100 
 60/60    100 100 

 80/80    97 100 
15.0 20/20 547 42.2 0.85 96 100 

 40/40    99 100 

 60/60    100 100 

 80/80    96 100 
17.5 20/20 537 46.7 0.85 95 100 

 40/40    99 100 

 60/60    100 100 
 80/80    96 99 

20.0 20/20 531 50.9 0.84 94 100 

 40/40    99 100 
 60/60    100 100 
  80/80       95 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table B.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 470 13.9 97 91 

 40/40 482 18.2 98 92 
 60/60 473 20.9 98 93 

 80/80 479 25.1 99 95 
7.5 20/20 476 20.8 99 94 

 40/40 477 25.3 98 95 

 60/60 481 30.9 99 96 

 80/80 472 34.8 99 96 
10.0 20/20 474 27.1 99 95 

 40/40 475 32.9 99 97 

 60/60 475 39.5 99 97 
 80/80 461 43.4 99 97 

12.5 20/20 467 32.4 99 96 

 40/40 464 39.1 99 97 
 60/60 455 44.9 99 97 

 80/80 444 50.3 99 97 
15.0 20/20 457 37.2 99 96 

 40/40 452 44.3 99 97 

 60/60 440 50.3 99 97 

 80/80 421 54.6 99 96 
17.5 20/20 441 40.5 99 96 

 40/40 434 47.8 99 97 

 60/60 422 54.4 99 97 
 80/80 391 55.6 99 96 

20.0 20/20 427 43.5 99 96 

 40/40 412 49.8 99 97 
 60/60 390 54.1 99 96 
  80/80 368 57.4 99 95 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
 
  



158 
 

Table B.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 475 14.5 97 91 

 40/40  17.4 98 92 
 60/60  21.3 98 93 

 80/80  24.5 99 95 
7.5 20/20 476 20.8 99 94 

 40/40  25.3 98 95 

 60/60  30.2 99 96 

 80/80  35.8 99 96 
10.0 20/20 472 26.7 99 95 

 40/40  32.4 99 97 

 60/60  38.9 99 97 
 80/80  45.9 99 97 

12.5 20/20 459 31.0 99 96 

 40/40  38.0 99 97 
 60/60  45.9 99 97 

 80/80  54.2 99 97 
15.0 20/20 445 34.8 99 96 

 40/40  42.7 99 97 

 60/60  51.6 99 97 

 80/80  61.2 99 96 
17.5 20/20 425 37.1 99 96 

 40/40  45.8 99 97 

 60/60  55.3 99 97 
 80/80  65.8 99 96 

20.0 20/20 403 38.1 99 96 

 40/40  47.5 99 97 
 60/60  58.1 99 96 
  80/80   68.6 98 95 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table B.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 474 19 95 91 

 40/40   98 92 
 60/60   98 93 

 80/80   97 95 
7.5 20/20 473 27 97 94 

 40/40   98 95 

 60/60   99 96 

 80/80   97 96 
10.0 20/20 469 36 96 95 

 40/40   99 97 

 60/60   99 97 
 80/80   97 97 

12.5 20/20 457 42 96 96 

 40/40   99 97 
 60/60   99 97 

 80/80   97 97 
15.0 20/20 443 48 95 96 

 40/40   99 97 

 60/60   99 97 

 80/80   96 96 
17.5 20/20 423 52 94 96 

 40/40   98 97 

 60/60   99 97 
 80/80   95 96 

20.0 20/20 401 54 93 96 

 40/40   98 97 
 60/60   99 96 
  80/80     94 95 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table B.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 151 131 4 403 1 
3   Constant a, c1 = c2 9 245 133 7 406 2 
4   Constant a & c 6 4674 242 10 409 19* 
5   Constant a, c & k 3 4016 254 13 412 16* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 7327 273 8 407 27* 
7  Constant k, a = 1, c1 = c2 5 5363 271 11 410 20* 
8  Constant k & c, a = 1,  2 7808 391 14 413 20* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table B.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 177 50 4 403 4* 
3   Constant a, c1 = c2 9 134 51 7 406 3* 
4   Constant a & c 6 5474 182 10 409 30* 
5   Constant a, c & k 3 4651 194 13 412 24* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3666 120 8 407 31* 
7  Constant k, a = 1, c1 = c2 5 2674 119 11 410 22* 
8  Constant k & c, a = 1,  2 6267 260 14 413 24* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table B.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 9 23 4 403 0 
3   Constant a, c1 = c2 9 15 23 7 406 1 
4   Constant a & c 6 5375 154 10 409 35* 
5   Constant a, c & k 3 4811 174 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2839 78 8 407 36* 
7  Constant k, a = 1, c1 = c2 5 2083 78 11 410 27* 
8  Constant k & c, a = 1,  2 5978 225 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table B.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 11 10 4 403 1 
3   Constant a, c1 = c2 9 5 10 7 406 1 
4   Constant a & c 6 5679 149 10 409 38* 
5   Constant a, c & k 3 4996 167 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2318 56 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 1723 56 11 410 31* 
8  Constant k & c, a = 1,  2 5881 209 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table B.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 5 10 4 403 0 
3   Constant a, c1 = c2 9 6 10 7 406 1 
4   Constant a & c 6 5444 143 10 409 38* 
5   Constant a, c & k 3 4789 161 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2164 53 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 1636 54 11 410 30* 
8  Constant k & c, a = 1,  2 5616 200 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table B.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 13 9 4 403 1 
3   Constant a, c1 = c2 9 13 9 7 406 1 
4   Constant a & c 6 5025 132 10 409 38* 
5   Constant a, c & k 3 4495 151 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1967 47 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 1522 50 11 410 31* 
8  Constant k & c, a = 1,  2 5249 187 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table B.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 2 9 4 403 0 
3   Constant a, c1 = c2 9 4 9 7 406 0 
4   Constant a & c 6 4927 130 10 409 38* 
5   Constant a, c & k 3 4344 146 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1782 44 8 407 40* 
7  Constant k, a = 1, c1 = c2 5 1418 47 11 410 30* 
8  Constant k & c, a = 1,  2 4996 178 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table B.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2043 1634 1318 979 982 929 943 
2   c1 = c2 12 2040 1641 1312 976 976 927 936 
3   Constant a, c1 = c2 9 2043 1640 1309 969 972 925 932 
4   Constant a & c 6 2289 2169 2100 2086 2070 2035 2028 
5   Constant a, c & k 3 2305 2194 2148 2132 2116 2088 2075 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2340 1999 1821 1678 1655 1613 1582 
7  Constant k, a = 1, c1 = c2 5 2335 1994 1818 1679 1662 1628 1606 
8  Constant k & c, a = 1 2 2484 2314 2254 2224 2206 2176 2157 

 
Table B.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1125 -1305 -1378 -1437 -1427 -1396 -1379 
2   c1 = c2 8 -1130 -1307 -1385 -1445 -1435 -1402 -1387 

3, 4, 5   Constant a & c1 = c2 2 -1124 -1305 -1358 -1443 -1429 -1394 -1394 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -661 -741 -780 -825 -863 -895 -915 
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Table B.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2108 1699 1383 1044 1046 993 1007 
2   c1 = c2 12 2088 1689 1360 1024 1024 975 984 
3   Constant a, c1 = c2 9 2079 1676 1345 1005 1008 961 968 
4   Constant a & c 6 2313 2193 2124 2110 2094 2059 2053 
5   Constant a, c & k 3 2317 2206 2160 2144 2128 2100 2087 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2372 2031 1853 1710 1687 1645 1615 
7  Constant k, a = 1, c1 = c2 5 2355 2014 1838 1700 1682 1648 1627 
8  Constant k & c, a = 1 2 2492 2322 2262 2232 2214 2184 2165 

 
Table B.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1085 -1265 -1338 -1397 -1387 -1356 -1339 
2   c1 = c2 8 -1103 -1281 -1358 -1418 -1408 -1376 -1360 

3, 4, 5   Constant a & c1 = c2 2 -1118 -1298 -1351 -1437 -1422 -1388 -1388 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -661 -741 -780 -825 -863 -895 -915 
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Table B.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -2.0 2.0 0.5 1.0 0.5 2 
 40/40 -4.3 4.4 0.8 1.9 1.1 4 
 60/60 -6.5 6.4 1.1 2.7 1.6 5 
 80/80 -10.8 10.9 0.7 3.5 2.7 13 

7.5 20/20 -8.8 8.7 0.8 3.0 2.1 10 
 40/40 -10.8 10.2 2.0 4.4 2.4 8 
 60/60 -22.4 21.9 1.1 6.5 5.4 22 
 80/80 -23.2 23.0 1.3 7.0 5.7 21 

10.0 20/20 -15.9 15.8 0.9 4.9 3.9 16 
 40/40 -29.3 29.0 1.2 8.3 7.2 26 
 60/60 -32.5 32.2 1.7 9.7 8.0 27 
 80/80 -31.3 31.1 2.3 10.0 7.7 23 

12.5 20/20 -27.0 26.7 0.7 7.3 6.6 30 
 40/40 -40.8 41.2 0.7 11.1 10.4 32 
 60/60 -43.2 42.8 2.1 12.7 10.6 31 
 80/80 -47.8 48.1 1.8 13.8 12.1 36 

15.0 20/20 -31.6 31.2 1.2 8.9 7.7 27 
 40/40 -45.0 45.2 1.7 13.1 11.3 30 
 60/60 -52.9 53.6 1.7 15.3 13.6 37 
 80/80 -49.3 48.8 3.5 15.6 12.1 31 

17.5 20/20 -35.4 35.4 1.3 10.1 8.9 27 
 40/40 -52.7 52.2 2.3 15.2 13.0 34 
 60/60 -56.8 57.2 2.7 17.1 14.4 39 
 80/80 -54.7 54.1 4.5 17.9 13.4 35 

20.0 20/20 -39.9 39.8 1.7 11.6 9.9 29 
 40/40 -57.3 57.8 2.4 17.0 14.6 36 
 60/60 -56.1 56.1 4.4 18.4 14.0 32 
  80/80 -56.2 56.4 5.3 19.4 14.1 35 

Note. %VAF = Percentage of Variance Accounted For. 
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Table B.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 7.0 -6.4 9.4 0.038 9.4 -16% 98 
 40/40 1.1 -2.6 11.5 0.028 11.5 -9% 99 
 60/60 -2.3 2.5 12.0 0.025 12.7 6% 98 
 80/80 -2.8 2.7 12.0 0.023 12.6 5% 98 

7.5 20/20 2.8 -2.1 12.5 0.025 12.5 -3% 99 
 40/40 -1.5 0.1 16.9 0.021 16.9 -2% 99 
 60/60 -4.7 4.4 16.5 0.018 17.6 6% 98 
 80/80 -2.8 3.1 16.7 0.016 17.6 5% 99 

10.0 20/20 -8.1 6.4 15.2 0.020 16.4 8% 99 
 40/40 -6.8 5.0 20.2 0.016 21.0 4% 99 
 60/60 -9.8 9.8 19.1 0.013 21.5 13% 98 
 80/80 1.6 -2.3 21.4 0.011 21.4 -3% 97 

12.5 20/20 -9.0 8.7 16.0 0.016 18.1 13% 99 
 40/40 -16.9 17.0 19.5 0.013 23.8 22% 98 
 60/60 -17.6 16.1 20.6 0.010 24.3 18% 96 
 80/80 -12.1 11.2 21.1 0.009 23.7 12% 96 

15.0 20/20 0.4 -0.7 20.5 0.014 20.5 -1% 99 
 40/40 -5.4 4.9 24.4 0.011 25.5 5% 97 
 60/60 -19.8 19.8 21.3 0.008 26.2 23% 96 
 80/80 -10.6 10.3 22.9 0.007 25.4 11% 95 

17.5 20/20 -9.8 9.9 18.6 0.012 21.1 13% 98 
 40/40 -14.7 14.2 23.5 0.009 26.9 14% 96 
 60/60 -19.9 20.7 21.6 0.007 27.0 25% 94 
 80/80 -16.8 16.0 22.4 0.006 26.2 17% 92 

20.0 20/20 -7.3 6.7 20.9 0.010 22.5 7% 98 
 40/40 -19.0 19.5 22.3 0.007 27.3 22% 95 
 60/60 -17.5 18.4 22.8 0.006 27.6 21% 91 
  80/80 -21.0 21.3 21.3 0.005 26.7 25% 87 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix C: Experiment 1 Fitting Measures of the Exponential-Clone-Pheno-Uniform 

Creature Type 

 
Table C.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 524 11.3 12.3 0.73 94 96 

 40/40 541 17.3 18.0 0.74 94 96 
 60/60 529 21.6 22.8 0.76 97 98 

 80/80 491 21.6 23.2 0.75 98 98 
7.5 20/20 514 17.1 17.7 0.76 96 98 

 40/40 499 22.3 22.3 0.77 98 99 

 60/60 475 26.9 27.2 0.79 99 99 

 80/80 423 25.4 25.7 0.78 98 99 
10.0 20/20 496 21.2 21.0 0.77 98 99 

 40/40 469 25.4 26.2 0.78 98 99 

 60/60 408 25.0 26.3 0.79 99 99 
 80/80 346 22.3 22.1 0.78 98 99 

12.5 20/20 480 25.1 25.3 0.79 100 100 

 40/40 423 26.7 27.0 0.79 99 100 
 60/60 363 25.3 25.4 0.79 99 100 

 80/80 306 21.4 21.9 0.79 99 100 
15.0 20/20 458 27.1 27.6 0.79 99 100 

 40/40 377 24.8 25.2 0.79 99 100 

 60/60 320 22.7 23.5 0.79 99 99 

 80/80 271 20.1 19.9 0.78 99 99 
17.5 20/20 430 27.4 27.6 0.79 100 100 

 40/40 346 24.4 24.7 0.79 99 100 

 60/60 289 20.9 21.0 0.77 99 99 
 80/80 247 18.7 18.8 0.78 99 100 

20.0 20/20 402 28.0 27.9 0.79 99 100 

 40/40 320 23.3 23.0 0.78 99 100 
 60/60 262 19.2 19.4 0.77 99 100 
  80/80 228 17.0 17.1 0.76 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table C.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 520 12.1 0.74 93 96 

 40/40 539 17.8 0.74 94 96 
 60/60 527 22.5 0.76 96 98 

 80/80 488 23.0 0.76 97 98 
7.5 20/20 513 17.6 0.77 96 97 

 40/40 499 22.3 0.77 98 99 

 60/60 475 27.1 0.79 99 99 

 80/80 423 25.6 0.78 98 99 
10.0 20/20 496 21.1 0.77 98 99 

 40/40 468 25.9 0.78 98 99 

 60/60 409 26.2 0.79 99 99 
 80/80 346 22.2 0.78 98 99 

12.5 20/20 480 25.2 0.79 99 100 

 40/40 423 26.8 0.79 99 100 
 60/60 363 25.3 0.79 99 100 

 80/80 306 21.7 0.79 99 100 
15.0 20/20 458 27.4 0.79 99 100 

 40/40 377 25.0 0.79 99 100 

 60/60 321 23.4 0.79 99 99 

 80/80 271 20.0 0.78 99 99 
17.5 20/20 430 27.5 0.79 100 100 

 40/40 346 24.6 0.79 99 100 

 60/60 289 21.0 0.77 99 99 
 80/80 247 18.8 0.78 99 100 

20.0 20/20 402 27.9 0.79 99 100 

 40/40 320 23.1 0.78 99 100 
 60/60 262 19.3 0.77 99 100 
  80/80 228 17.1 0.76 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table C.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 515 12.3 0.75 93 96 

 40/40 535 17.9  94 96 
 60/60 536 22.3  96 98 

 80/80 493 22.9  97 98 
7.5 20/20 508 17.8 0.78 96 97 

 40/40 494 22.4  98 99 

 60/60 486 26.8  99 99 

 80/80 426 25.5  98 99 
10.0 20/20 491 21.3 0.78 98 99 

 40/40 467 25.9  98 99 

 60/60 416 26.0  99 99 
 80/80 345 22.3  98 99 

12.5 20/20 481 25.2 0.79 99 100 

 40/40 425 26.8  99 100 
 60/60 364 25.3  99 100 

 80/80 304 21.7  99 100 
15.0 20/20 462 27.3 0.79 99 100 

 40/40 376 25.1  99 100 

 60/60 321 23.3  99 99 

 80/80 269 20.1  99 99 
17.5 20/20 435 27.4 0.78 100 100 

 40/40 350 24.5  99 99 

 60/60 285 21.0  99 99 
 80/80 246 18.8  99 100 

20.0 20/20 416 27.8 0.77 99 100 

 40/40 321 23.1  99 100 
 60/60 260 19.3  99 100 
  80/80 223 17.1   99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table C.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 523 19.4 0.75 80 96 

 40/40  18.2  93 96 
 60/60  19.1  96 98 

 80/80  19.4  90 98 
7.5 20/20 487 24.2 0.77 84 97 

 40/40  23.3  97 99 

 60/60  24.8  98 99 

 80/80  26.5  91 99 
10.0 20/20 448 26.7 0.77 84 99 

 40/40  24.8  97 99 

 60/60  26.7  98 99 
 80/80  30.0  91 98 

12.5 20/20 410 28.7 0.79 86 100 

 40/40  27.0  98 99 
 60/60  29.6  98 99 

 80/80  31.5  92 99 
15.0 20/20 372 27.8 0.78 85 100 

 40/40  26.2  98 99 

 60/60  28.1  98 99 

 80/80  31.1  92 99 
17.5 20/20 340 26.7 0.78 85 100 

 40/40  25.0  98 99 

 60/60  27.4  98 99 
 80/80  29.2  92 99 

20.0 20/20 311 25.1 0.77 84 100 

 40/40  24.1  98 99 
 60/60  25.6  98 100 
  80/80   27.2   92 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
 
  



172 
 

Table C.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 518 18.9 0.75 80 96 

 40/40    92 96 
 60/60    96 98 

 80/80    90 98 
7.5 20/20 479 23.8 0.77 83 97 

 40/40    97 99 

 60/60    98 99 

 80/80    90 99 
10.0 20/20 438 26.2 0.78 83 99 

 40/40    96 99 

 60/60    98 99 
 80/80    89 99 

12.5 20/20 401 28.1 0.79 85 100 

 40/40    97 100 
 60/60    98 100 

 80/80    91 100 
15.0 20/20 365 27.5 0.79 84 100 

 40/40    97 100 

 60/60    98 99 

 80/80    90 99 
17.5 20/20 332 26.1 0.78 84 100 

 40/40    97 99 

 60/60    98 99 
 80/80    91 100 

20.0 20/20 304 24.6 0.77 83 100 

 40/40    97 100 
 60/60    99 100 
  80/80       91 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table C.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 439 18.5 88 86 

 40/40 434 25.5 90 85 
 60/60 412 29.7 93 89 

 80/80 381 31.2 94 89 
7.5 20/20 421 24.3 93 89 

 40/40 392 29.3 95 91 

 60/60 373 34.2 97 92 

 80/80 327 32.1 96 92 
10.0 20/20 400 28.6 95 91 

 40/40 362 32.5 96 91 

 60/60 320 32.3 97 92 
 80/80 271 27.9 96 91 

12.5 20/20 382 32.2 98 93 

 40/40 336 34.1 97 93 
 60/60 285 31.2 98 93 

 80/80 241 26.5 98 92 
15.0 20/20 360 34.0 98 93 

 40/40 298 31.7 97 92 

 60/60 251 28.3 97 92 

 80/80 213 24.1 97 92 
17.5 20/20 333 33.8 98 93 

 40/40 269 29.7 98 92 

 60/60 223 25.4 97 91 
 80/80 194 22.6 97 92 

20.0 20/20 310 33.5 98 93 

 40/40 244 27.8 97 91 
 60/60 201 23.0 97 91 
  80/80 175 20.2 97 90 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table C.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 421 16.4 88 86 

 40/40  23.7 90 85 
 60/60  31.4 93 89 

 80/80  39.5 93 89 
7.5 20/20 387 19.1 93 89 

 40/40  28.4 95 91 

 60/60  37.2 97 92 

 80/80  47.1 95 92 
10.0 20/20 349 19.9 94 91 

 40/40  29.8 96 91 

 60/60  39.8 97 92 
 80/80  50.0 94 91 

12.5 20/20 320 20.1 96 93 

 40/40  30.4 97 93 
 60/60  41.1 97 93 

 80/80  51.1 95 92 
15.0 20/20 289 19.1 96 93 

 40/40  29.4 97 92 

 60/60  39.5 97 92 

 80/80  48.7 94 92 
17.5 20/20 260 17.8 95 93 

 40/40  27.3 98 92 

 60/60  36.7 96 91 
 80/80  44.9 94 92 

20.0 20/20 235 16.2 95 93 

 40/40  25.3 97 91 
 60/60  33.8 96 91 
  80/80   41.1 94 90 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table C.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 413 26 76 86 

 40/40   88 85 
 60/60   93 89 

 80/80   86 89 
7.5 20/20 374 31 80 89 

 40/40   94 91 

 60/60   97 92 

 80/80   87 92 
10.0 20/20 335 33 80 91 

 40/40   94 91 

 60/60   97 92 
 80/80   86 91 

12.5 20/20 307 34 84 93 

 40/40   95 93 
 60/60   97 93 

 80/80   88 92 
15.0 20/20 276 33 82 93 

 40/40   95 92 

 60/60   97 92 

 80/80   88 92 
17.5 20/20 249 30 82 93 

 40/40   95 92 

 60/60   96 91 
 80/80   88 92 

20.0 20/20 225 28 81 93 

 40/40   95 91 
 60/60   96 91 
  80/80     88 90 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table C.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 2435 267 4 403 9* 
3   Constant a, c1 = c2 9 1475 267 7 406 6* 
4   Constant a & c 6 13499 569 10 409 24* 
5   Constant a, c & k 3 10606 572 13 412 19* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 11553 468 8 407 25* 
7  Constant k, a = 1, c1 = c2 5 8662 471 11 410 18* 
8  Constant k & c, a = 1,  2 15635 767 14 413 20* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table C.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 233 119 4 403 2 
3   Constant a, c1 = c2 9 181 119 7 406 2 
4   Constant a & c 6 10896 382 10 409 29* 
5   Constant a, c & k 3 9193 405 13 412 23* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 5711 228 8 407 25* 
7  Constant k, a = 1, c1 = c2 5 4753 243 11 410 20* 
8  Constant k & c, a = 1,  2 11911 518 14 413 23* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table C.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 187 75 4 403 3* 
3   Constant a, c1 = c2 9 129 74 7 406 2 
4   Constant a & c 6 9930 314 10 409 32* 
5   Constant a, c & k 3 8547 341 13 412 25* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3916 149 8 407 26* 
7  Constant k, a = 1, c1 = c2 5 3878 176 11 410 22* 
8  Constant k & c, a = 1,  2 10509 427 14 413 25* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table C.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 26 26 4 403 1 
3   Constant a, c1 = c2 9 13 26 7 406 0 
4   Constant a & c 6 9900 267 10 409 37* 
5   Constant a, c & k 3 8379 290 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2891 82 8 407 35* 
7  Constant k, a = 1, c1 = c2 5 3477 119 11 410 29* 
8  Constant k & c, a = 1,  2 9619 351 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table C.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 89 26 4 403 3* 
3   Constant a, c1 = c2 9 51 26 7 406 2 
4   Constant a & c 6 8317 228 10 409 36* 
5   Constant a, c & k 3 7086 248 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2237 69 8 407 33* 
7  Constant k, a = 1, c1 = c2 5 3115 108 11 410 29* 
8  Constant k & c, a = 1,  2 8186 302 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table C.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 11 15 4 403 1 
3   Constant a, c1 = c2 9 7 14 7 406 0 
4   Constant a & c 6 7054 187 10 409 38* 
5   Constant a, c & k 3 5960 202 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1999 54 8 407 37* 
7  Constant k, a = 1, c1 = c2 5 2866 91 11 410 31* 
8  Constant k & c, a = 1,  2 6859 247 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   



179 
 

Table C.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 10 12 4 403 1 
3   Constant a, c1 = c2 9 16 12 7 406 1 
4   Constant a & c 6 6332 167 10 409 38* 
5   Constant a, c & k 3 5248 178 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1784 47 8 407 38* 
7  Constant k, a = 1, c1 = c2 5 2731 85 11 410 32* 
8  Constant k & c, a = 1,  2 6055 217 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   



180 
 

Table C.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2304 2000 1802 1370 1359 1130 1063 
2   c1 = c2 12 2335 2000 1805 1366 1365 1125 1058 
3   Constant a, c1 = c2 9 2331 1997 1801 1360 1359 1119 1058 
4   Constant a & c 6 2644 2478 2397 2330 2264 2180 2134 
5   Constant a, c & k 3 2643 2499 2428 2360 2296 2211 2157 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2564 2266 2089 1842 1767 1663 1611 
7  Constant k, a = 1, c1 = c2 5 2565 2288 2154 1991 1952 1881 1854 
8  Constant k & c, a = 1 2 2764 2601 2521 2439 2376 2292 2239 

 
Table C.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -966 -1084 -1131 -1292 -1278 -1342 -1384 
2   c1 = c2 8 -966 -1091 -1132 -1298 -1280 -1348 -1390 

3, 4, 5   Constant a & c 2 -977 -1101 -1144 -1308 -1290 -1355 -1387 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -679 -701 -713 -724 -738 -746 -756 
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Table C.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2368 2065 1867 1435 1423 1194 1127 
2   c1 = c2 12 2384 2049 1853 1415 1414 1173 1107 
3   Constant a, c1 = c2 9 2368 2034 1837 1396 1396 1156 1095 
4   Constant a & c 6 2668 2502 2421 2354 2288 2205 2158 
5   Constant a, c & k 3 2656 2511 2440 2372 2308 2223 2169 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2597 2298 2121 1874 1799 1695 1643 
7  Constant k, a = 1, c1 = c2 5 2585 2309 2174 2011 1973 1901 1874 
8  Constant k & c, a = 1 2 2772 2609 2529 2447 2385 2300 2248 

 
Table C.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -925 -1044 -1091 -1252 -1238 -1302 -1344 
2   c1 = c2 8 -939 -1064 -1106 -1271 -1254 -1322 -1364 

3, 4, 5   Constant a & c 2 -971 -1094 -1137 -1301 -1284 -1348 -1380 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -679 -701 -713 -724 -738 -746 -756 
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Table C.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.1 -0.1 0.0 0.0 0.0 3 
 40/40 0.1 -0.1 0.1 0.0 0.0 2 
 60/60 0.0 -0.1 0.0 0.0 0.0 1 
 80/80 0.0 0.0 0.1 0.0 0.0 0 

7.5 20/20 0.0 0.0 0.1 0.1 0.0 0 
 40/40 -0.1 0.1 0.1 0.1 0.0 0 
 60/60 -0.2 0.2 0.1 0.1 0.0 1 
 80/80 -0.2 0.2 0.1 0.1 0.0 1 

10.0 20/20 -0.1 0.1 0.1 0.1 0.0 0 
 40/40 -0.2 0.2 0.1 0.2 0.0 1 
 60/60 -0.6 0.5 0.1 0.2 0.1 5 
 80/80 -0.6 0.6 0.1 0.3 0.2 2 

12.5 20/20 -0.8 0.8 0.1 0.3 0.2 5 
 40/40 -0.6 0.6 0.1 0.3 0.2 3 
 60/60 -0.9 0.9 0.1 0.4 0.2 4 
 80/80 -1.2 1.2 0.2 0.5 0.3 4 

15.0 20/20 -0.9 0.9 0.2 0.4 0.2 4 
 40/40 -0.7 0.7 0.2 0.4 0.2 2 
 60/60 -1.4 1.3 0.2 0.5 0.3 6 
 80/80 -1.9 1.9 0.2 0.7 0.5 5 

17.5 20/20 -1.5 1.4 0.2 0.6 0.4 5 
 40/40 -1.5 1.5 0.2 0.6 0.4 5 
 60/60 -1.9 1.8 0.3 0.7 0.4 5 
 80/80 -2.3 2.2 0.3 0.9 0.5 5 

20.0 20/20 -2.3 2.3 0.2 0.8 0.6 7 
 40/40 -2.1 2.1 0.3 0.8 0.5 5 
 60/60 -2.7 2.6 0.3 0.9 0.6 6 
  80/80 -3.0 3.0 0.4 1.1 0.7 5 

Note. %VAF = Percentage of Variance Accounted For. 
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Table C.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 -0.2 0.2 0.4 0.052 0.4 13% 93 
 40/40 0.6 -0.5 0.7 0.060 0.7 -17% 96 
 60/60 0.4 -0.5 0.7 0.055 0.7 -24% 95 
 80/80 -0.4 0.4 0.5 0.050 0.6 20% 94 

7.5 20/20 1.1 -1.2 1.4 0.058 1.4 -23% 97 
 40/40 1.7 -1.8 1.6 0.059 1.6 -29% 98 
 60/60 1.9 -1.8 1.7 0.056 1.7 -24% 98 
 80/80 0.6 -0.8 1.7 0.051 1.7 -13% 98 

10.0 20/20 0.4 -0.3 1.7 0.048 1.7 -3% 98 
 40/40 2.1 -1.8 2.1 0.051 2.1 -17% 98 
 60/60 2.7 -2.6 2.5 0.047 2.5 -24% 98 
 80/80 1.3 -1.5 3.1 0.051 3.1 -14% 98 

12.5 20/20 1.1 -1.1 2.5 0.043 2.5 -11% 99 
 40/40 0.3 -0.2 2.7 0.047 2.7 0% 98 
 60/60 1.4 -1.6 3.7 0.050 3.7 -12% 97 
 80/80 1.7 -1.9 4.4 0.048 4.4 -11% 97 

15.0 20/20 2.3 -2.1 3.6 0.042 3.6 -14% 98 
 40/40 2.8 -2.7 3.7 0.042 3.7 -17% 99 
 60/60 2.7 -2.7 4.5 0.044 4.5 -15% 98 
 80/80 2.4 -2.2 5.4 0.044 5.4 -9% 98 

17.5 20/20 4.1 -4.1 4.9 0.041 4.9 -21% 98 
 40/40 4.3 -4.1 4.9 0.039 4.9 -20% 99 
 60/60 0.6 -0.5 4.9 0.040 4.9 -2% 98 
 80/80 4.4 -4.3 6.7 0.041 6.7 -16% 98 

20.0 20/20 2.4 -2.7 5.7 0.039 5.7 -13% 98 
 40/40 3.8 -4.0 6.1 0.038 6.1 -17% 98 
 60/60 2.5 -2.9 6.3 0.037 6.3 -13% 97 
  80/80 3.3 -3.5 7.8 0.038 7.8 -12% 98 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix D: Experiment 1 Fitting Measures of the Exponential-Clone-Pheno-Linear 

Creature Type 

 
Table D.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 535 11.9 12.4 0.73 94 97 

 40/40 541 17.5 18.4 0.76 95 97 
 60/60 404 18.5 19.6 0.73 98 99 

 80/80 347 19.4 19.9 0.74 98 99 
7.5 20/20 519 16.8 17.0 0.76 98 98 

 40/40 507 22.1 22.6 0.77 98 99 

 60/60 326 17.7 18.5 0.75 99 99 

 80/80 275 16.4 17.0 0.74 99 99 
10.0 20/20 514 22.2 22.7 0.78 99 100 

 40/40 489 27.0 26.8 0.78 99 100 

 60/60 281 17.0 17.0 0.76 99 99 
 80/80 231 14.1 14.3 0.73 99 99 

12.5 20/20 500 25.6 26.0 0.78 99 99 

 40/40 446 28.2 29.1 0.80 99 99 
 60/60 246 14.9 15.3 0.75 99 99 

 80/80 200 12.2 12.4 0.73 99 99 
15.0 20/20 475 27.7 28.2 0.79 100 100 

 40/40 411 28.7 28.6 0.79 99 100 

 60/60 221 13.6 13.6 0.74 99 99 

 80/80 182 11.1 11.1 0.71 99 99 
17.5 20/20 447 28.1 27.6 0.78 100 100 

 40/40 371 26.5 26.3 0.78 99 100 

 60/60 203 12.7 12.6 0.73 99 99 
 80/80 166 10.2 10.2 0.72 99 99 

20.0 20/20 420 28.6 28.7 0.79 100 100 

 40/40 340 25.2 25.4 0.78 99 100 
 60/60 188 11.3 11.4 0.72 99 100 
  80/80 155 9.2 9.1 0.70 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table D.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 534 12.3 0.74 94 97 

 40/40 540 18.2 0.76 95 97 
 60/60 402 19.3 0.73 97 98 

 80/80 346 19.6 0.74 98 99 
7.5 20/20 519 16.9 0.76 98 98 

 40/40 507 22.4 0.77 98 99 

 60/60 325 18.3 0.75 99 99 

 80/80 275 16.8 0.74 99 99 
10.0 20/20 514 22.5 0.78 99 99 

 40/40 489 26.9 0.78 99 100 

 60/60 281 17.0 0.76 99 99 
 80/80 231 14.2 0.73 99 99 

12.5 20/20 500 25.9 0.79 99 99 

 40/40 446 28.9 0.80 99 99 
 60/60 246 15.2 0.75 99 99 

 80/80 200 12.3 0.73 99 99 
15.0 20/20 475 28.0 0.79 100 100 

 40/40 411 28.6 0.79 99 100 

 60/60 221 13.6 0.74 99 99 

 80/80 182 11.1 0.72 99 99 
17.5 20/20 447 27.9 0.78 100 100 

 40/40 371 26.4 0.78 99 100 

 60/60 203 12.6 0.73 99 99 
 80/80 166 10.2 0.72 99 99 

20.0 20/20 420 28.7 0.79 100 100 

 40/40 340 25.3 0.78 99 100 
 60/60 188 11.4 0.72 99 100 
  80/80 155 9.2 0.70 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table D.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 531 12.4 0.74 94 97 

 40/40 551 17.8  95 97 
 60/60 397 19.5  97 98 

 80/80 347 19.6  98 99 
7.5 20/20 521 16.8 0.76 98 98 

 40/40 517 22.1  98 99 

 60/60 324 18.3  99 99 

 80/80 270 17.0  99 99 
10.0 20/20 528 22.0 0.76 99 99 

 40/40 503 26.6  99 100 

 60/60 279 17.1  99 99 
 80/80 223 14.4  99 99 

12.5 20/20 516 25.5 0.76 99 99 

 40/40 473 28.6  99 99 
 60/60 242 15.3  99 99 

 80/80 193 12.5  99 99 
15.0 20/20 505 27.6 0.76 99 100 

 40/40 439 28.5  99 99 

 60/60 217 13.7  99 99 

 80/80 174 11.3  99 99 
17.5 20/20 472 27.7 0.75 100 100 

 40/40 391 26.3  99 99 

 60/60 199 12.7  99 99 
 80/80 160 10.4  99 99 

20.0 20/20 460 28.6 0.74 99 99 

 40/40 365 25.4  99 99 
 60/60 183 11.5  99 100 
  80/80 148 9.3   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table D.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 505 24.4 0.73 48 97 

 40/40  20.0  79 95 
 60/60  25.1  93 98 

 80/80  28.0  76 97 
7.5 20/20 466 30.1 0.75 54 98 

 40/40  24.8  82 97 

 60/60  31.2  95 99 

 80/80  34.2  78 97 
10.0 20/20 460 36.7 0.75 58 99 

 40/40  30.5  83 98 

 60/60  38.3  95 99 
 80/80  41.7  77 98 

12.5 20/20 398 33.8 0.75 58 99 

 40/40  27.3  86 98 
 60/60  34.7  95 99 

 80/80  38.1  78 98 
15.0 20/20 367 32.9 0.74 60 99 

 40/40  27.7  84 98 

 60/60  33.9  95 99 

 80/80  37.0  77 98 
17.5 20/20 325 29.1 0.74 60 99 

 40/40  24.9  85 98 

 60/60  30.0  95 99 
 80/80  32.6  78 98 

20.0 20/20 285 25.3 0.73 60 99 

 40/40  21.9  84 98 
 60/60  25.7  95 100 
  80/80   28.0   78 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table D.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 464 21.8 0.74 47 97 

 40/40    70 97 
 60/60    94 98 

 80/80    71 99 
7.5 20/20 421 26.3 0.75 52 98 

 40/40    74 99 

 60/60    96 99 

 80/80    74 99 
10.0 20/20 397 30.4 0.76 55 99 

 40/40    75 99 

 60/60    96 99 
 80/80    75 99 

12.5 20/20 353 29.3 0.76 55 99 

 40/40    77 99 
 60/60    96 99 

 80/80    77 99 
15.0 20/20 323 28.2 0.75 56 100 

 40/40    77 99 

 60/60    96 99 

 80/80    77 99 
17.5 20/20 291 25.5 0.75 57 100 

 40/40    78 99 

 60/60    96 99 
 80/80    77 99 

20.0 20/20 260 22.6 0.74 57 99 

 40/40    78 99 
 60/60    97 100 
  80/80       77 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table D.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 450 18.7 89 86 

 40/40 444 25.7 92 88 
 60/60 305 25.8 93 86 

 80/80 265 25.5 95 87 
7.5 20/20 423 23.5 95 90 

 40/40 403 29.9 95 91 

 60/60 253 23.3 96 89 

 80/80 212 21.4 96 87 
10.0 20/20 418 30.2 97 92 

 40/40 380 34.5 97 92 

 60/60 219 21.2 97 89 
 80/80 179 18.0 95 86 

12.5 20/20 394 33.1 98 92 

 40/40 346 34.9 98 93 
 60/60 193 19.0 96 88 

 80/80 157 15.3 96 86 
15.0 20/20 370 34.9 98 93 

 40/40 314 34.2 98 93 

 60/60 172 16.8 96 87 

 80/80 142 13.9 94 83 
17.5 20/20 338 33.9 98 92 

 40/40 281 31.8 98 92 

 60/60 159 15.6 96 86 
 80/80 131 12.8 94 84 

20.0 20/20 318 34.2 98 92 

 40/40 255 29.8 97 91 
 60/60 146 14.2 95 84 
  80/80 122 11.6 93 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table D.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 396 12.4 88 86 

 40/40  18.8 91 88 
 60/60  47.4 91 86 

 80/80  62.3 89 87 
7.5 20/20 351 13.4 92 90 

 40/40  20.7 94 91 

 60/60  50.9 92 89 

 80/80  66.7 88 87 
10.0 20/20 321 14.5 93 92 

 40/40  22.5 96 92 

 60/60  53.1 91 89 
 80/80  67.7 84 86 

12.5 20/20 287 13.9 92 92 

 40/40  21.8 97 93 
 60/60  49.9 91 88 

 80/80  63.4 83 86 
15.0 20/20 256 12.7 91 93 

 40/40  20.4 96 93 

 60/60  45.1 90 87 

 80/80  57.2 80 83 
17.5 20/20 230 11.7 90 92 

 40/40  19.1 96 92 

 60/60  40.3 89 86 
 80/80  50.9 81 84 

20.0 20/20 206 10.1 89 92 

 40/40  16.9 95 91 
 60/60  34.9 89 84 
  80/80   44.1 79 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table D.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 348 29 42 86 

 40/40   67 88 
 60/60   90 86 

 80/80   67 87 
7.5 20/20 303 31 49 90 

 40/40   70 91 

 60/60   93 89 

 80/80   70 87 
10.0 20/20 275 34 52 92 

 40/40   72 92 

 60/60   94 89 
 80/80   71 86 

12.5 20/20 244 32 52 92 

 40/40   75 93 
 60/60   94 88 

 80/80   73 86 
15.0 20/20 220 31 53 93 

 40/40   75 93 

 60/60   93 87 

 80/80   72 83 
17.5 20/20 200 28 54 92 

 40/40   76 92 

 60/60   93 86 
 80/80   72 84 

20.0 20/20 181 25 54 92 

 40/40   76 91 
 60/60   92 84 
  80/80     71 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table D.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 976 222 4 403 4* 
3   Constant a, c1 = c2 9 578 221 7 406 3* 
4   Constant a & c 6 47626 1374 10 409 35* 
5   Constant a, c & k 3 42383 1545 13 412 27* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8906 385 8 407 23* 
7  Constant k, a = 1, c1 = c2 5 9711 469 11 410 21* 
8  Constant k & c, a = 1,  2 44836 1727 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table D.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 222 74 4 403 3* 
3   Constant a, c1 = c2 9 86 73 7 406 1 
4   Constant a & c 6 42728 1116 10 409 38* 
5   Constant a, c & k 3 37688 1260 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 6056 190 8 407 32* 
7  Constant k, a = 1, c1 = c2 5 8360 295 11 410 28* 
8  Constant k & c, a = 1,  2 38851 1387 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table D.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 39 32 4 403 1 
3   Constant a, c1 = c2 9 33 31 7 406 1 
4   Constant a & c 6 38221 965 10 409 40* 
5   Constant a, c & k 3 33861 1099 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3528 100 8 407 35* 
7  Constant k, a = 1, c1 = c2 5 7424 230 11 410 32* 
8  Constant k & c, a = 1,  2 34389 1196 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table D.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 97 24 4 403 4* 
3   Constant a, c1 = c2 9 127 25 7 406 5* 
4   Constant a & c 6 31083 783 10 409 40* 
5   Constant a, c & k 3 28126 910 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2538 73 8 407 35* 
7  Constant k, a = 1, c1 = c2 5 6741 204 11 410 33* 
8  Constant k & c, a = 1,  2 28413 986 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table D.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 25 14 4 403 2 
3   Constant a, c1 = c2 9 96 15 7 406 6* 
4   Constant a & c 6 26421 659 10 409 40* 
5   Constant a, c & k 3 23339 750 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2320 59 8 407 39* 
7  Constant k, a = 1, c1 = c2 5 6557 189 11 410 35* 
8  Constant k & c, a = 1,  2 23670 816 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table D.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 28 10 4 403 3* 
3   Constant a, c1 = c2 9 68 11 7 406 6* 
4   Constant a & c 6 20185 503 10 409 40* 
5   Constant a, c & k 3 17652 567 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2104 51 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 5606 160 11 410 35* 
8  Constant k & c, a = 1,  2 18045 621 14 413 29* 

 
Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table D.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 8 9 4 403 1 
3   Constant a, c1 = c2 9 94 11 7 406 9* 
4   Constant a & c 6 17253 431 10 409 40* 
5   Constant a, c & k 3 14936 480 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1870 46 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 5377 153 11 410 35* 
8  Constant k & c, a = 1,  2 15199 524 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table D.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2248 1798 1449 1328 1103 974 936 
2   c1 = c2 12 2258 1802 1446 1337 1102 978 932 
3   Constant a, c1 = c2 9 2253 1792 1443 1352 1137 1007 991 
4   Constant a & c 6 3011 2924 2864 2777 2705 2593 2528 
5   Constant a, c & k 3 3057 2972 2915 2836 2756 2639 2570 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2484 2190 1923 1791 1703 1644 1597 
7  Constant k, a = 1, c1 = c2 5 2563 2370 2266 2216 2185 2116 2097 
8  Constant k & c, a = 1 2 3102 3011 2949 2869 2790 2677 2606 

 
Table D.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1002 -1150 -1275 -1298 -1372 -1390 -1434 
2   c1 = c2 8 -1003 -1154 -1280 -1299 -1379 -1396 -1441 

3, 4, 5   Constant a & c1 = c2 2 -1011 -1157 -1262 -1270 -1308 -1351 -1343 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -670 -693 -707 -721 -735 -745 -755 
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Table D.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2312 1862 1514 1393 1167 1039 1001 
2   c1 = c2 12 2307 1851 1495 1385 1151 1026 980 
3   Constant a, c1 = c2 9 2289 1828 1479 1388 1173 1043 1028 
4   Constant a & c 6 3035 2948 2888 2801 2729 2617 2552 
5   Constant a, c & k 3 3069 2984 2927 2849 2768 2651 2583 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2516 2223 1956 1824 1735 1676 1629 
7  Constant k, a = 1, c1 = c2 5 2583 2390 2286 2236 2205 2136 2117 
8  Constant k & c, a = 1 2 3110 3019 2957 2877 2798 2685 2614 

 
Table D.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -962 -1110 -1235 -1258 -1332 -1350 -1394 
2   c1 = c2 8 -976 -1127 -1253 -1272 -1352 -1369 -1415 

3, 4, 5   Constant a & c1 = c2 2 -1005 -1150 -1255 -1264 -1302 -1344 -1336 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -670 -693 -707 -721 -735 -745 -755 
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Table D.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.1 -0.1 0.1 0.0 0.0 1 
 40/40 0.0 0.0 0.1 0.0 0.0 0 
 60/60 0.0 0.0 0.1 0.0 0.0 1 
 80/80 0.0 0.0 0.1 0.0 -0.1 0 

7.5 20/20 -0.1 0.1 0.1 0.1 0.0 0 
 40/40 -0.2 0.1 0.1 0.1 0.0 1 
 60/60 -0.2 0.2 0.1 0.2 0.0 1 
 80/80 -0.3 0.3 0.1 0.2 0.1 1 

10.0 20/20 -0.3 0.2 0.1 0.2 0.1 1 
 40/40 -0.4 0.5 0.1 0.2 0.1 2 
 60/60 -0.5 0.5 0.1 0.3 0.1 2 
 80/80 -0.4 0.4 0.2 0.3 0.1 1 

12.5 20/20 -0.7 0.7 0.2 0.3 0.2 3 
 40/40 -1.2 1.1 0.2 0.4 0.2 7 
 60/60 -0.7 0.7 0.3 0.4 0.2 2 
 80/80 -0.9 0.9 0.3 0.5 0.2 2 

15.0 20/20 -1.5 1.5 0.2 0.6 0.4 6 
 40/40 -1.6 1.6 0.2 0.6 0.4 6 
 60/60 -1.5 1.5 0.3 0.6 0.4 4 
 80/80 -1.3 1.3 0.4 0.7 0.3 2 

17.5 20/20 -2.0 2.0 0.2 0.7 0.5 6 
 40/40 -2.0 2.0 0.3 0.8 0.5 6 
 60/60 -2.0 2.0 0.3 0.8 0.5 4 
 80/80 -1.8 1.8 0.5 1.0 0.4 2 

20.0 20/20 -2.9 2.9 0.2 1.0 0.7 8 
 40/40 -3.1 3.0 0.3 1.0 0.7 8 
 60/60 -2.3 2.2 0.5 1.0 0.5 3 
  80/80 -1.6 1.6 0.7 1.2 0.4 1 

Note. %VAF = Percentage of Variance Accounted For. 
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Table D.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 1.2 -1.2 1.0 0.062 1.0 -32% 97 
 40/40 0.8 -0.6 0.7 0.054 0.7 -11% 98 
 60/60 0.6 -0.7 0.9 0.051 0.9 -24% 95 
 80/80 0.5 -0.6 0.9 0.043 0.9 -20% 97 

7.5 20/20 0.7 -1.0 1.5 0.049 1.5 -21% 97 
 40/40 0.9 -0.9 1.5 0.049 1.5 -15% 98 
 60/60 0.3 -0.3 1.4 0.045 1.4 -7% 97 
 80/80 1.2 -1.2 1.7 0.043 1.7 -16% 98 

10.0 20/20 2.6 -2.9 2.8 0.047 2.8 -29% 98 
 40/40 1.0 -0.7 2.1 0.044 2.1 -4% 98 
 60/60 2.7 -2.7 2.9 0.046 2.9 -23% 98 
 80/80 1.0 -1.1 2.5 0.039 2.5 -11% 97 

12.5 20/20 3.0 -3.0 3.8 0.046 3.8 -19% 98 
 40/40 2.0 -2.2 3.6 0.043 3.6 -16% 98 
 60/60 2.9 -2.9 3.7 0.040 3.7 -19% 98 
 80/80 2.4 -2.6 3.9 0.038 3.9 -17% 97 

15.0 20/20 4.2 -4.1 4.7 0.041 4.7 -21% 98 
 40/40 2.8 -3.3 4.6 0.038 4.6 -21% 98 
 60/60 2.1 -2.2 4.4 0.037 4.4 -14% 97 
 80/80 2.3 -2.3 4.7 0.035 4.7 -13% 97 

17.5 20/20 3.1 -3.1 5.1 0.036 5.1 -16% 98 
 40/40 3.0 -3.2 5.4 0.036 5.4 -16% 98 
 60/60 2.3 -2.5 5.6 0.036 5.6 -12% 97 
 80/80 2.1 -2.2 6.3 0.036 6.3 -9% 96 

20.0 20/20 3.9 -4.2 6.4 0.035 6.4 -17% 97 
 40/40 2.6 -2.8 6.4 0.035 6.4 -12% 98 
 60/60 1.4 -1.4 6.0 0.033 6.0 -6% 98 
  80/80 3.2 -3.1 6.9 0.032 6.9 -11% 96 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix E: Experiment 1 Fitting Measures of the Exponential-Clone-Pheno-Exponential 

Creature Type 

 
Table E.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 560 11.9 12.1 0.71 97 98 

 40/40 567 16.8 17.3 0.74 98 99 
 60/60 551 20.6 21.4 0.76 98 98 

 80/80 535 23.8 24.7 0.77 99 99 
7.5 20/20 557 17.5 17.3 0.74 99 99 

 40/40 559 24.0 23.9 0.76 99 99 

 60/60 543 28.2 28.3 0.76 99 100 

 80/80 500 30.6 30.8 0.78 100 100 
10.0 20/20 551 21.9 22.1 0.75 100 100 

 40/40 535 29.1 29.0 0.78 100 100 

 60/60 501 31.0 31.2 0.77 99 100 
 80/80 452 31.4 31.4 0.78 99 100 

12.5 20/20 535 26.0 26.4 0.77 100 100 

 40/40 498 29.3 29.2 0.76 100 100 
 60/60 451 31.0 31.1 0.77 99 100 

 80/80 405 30.8 30.3 0.77 99 100 
15.0 20/20 522 28.3 28.6 0.77 100 100 

 40/40 471 31.6 31.5 0.77 99 100 

 60/60 402 29.5 29.6 0.77 99 100 

 80/80 357 27.5 27.6 0.75 99 100 
17.5 20/20 504 30.5 30.7 0.76 99 100 

 40/40 436 30.1 30.1 0.75 99 100 

 60/60 373 27.9 28.0 0.75 99 100 
 80/80 321 25.6 25.8 0.75 99 100 

20.0 20/20 480 30.7 30.6 0.75 99 100 

 40/40 405 28.4 28.6 0.74 99 100 
 60/60 336 25.5 25.5 0.74 99 100 
  80/80 287 23.1 22.9 0.74 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table E.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 560 12.0 0.71 97 98 

 40/40 567 17.1 0.74 98 99 
 60/60 550 21.1 0.76 98 98 

 80/80 535 24.4 0.77 99 99 
7.5 20/20 557 17.4 0.74 99 99 

 40/40 559 24.0 0.76 99 99 

 60/60 543 28.3 0.76 99 100 

 80/80 500 30.8 0.78 100 100 
10.0 20/20 551 22.0 0.76 100 100 

 40/40 535 29.0 0.78 100 100 

 60/60 501 31.2 0.77 99 100 
 80/80 452 31.4 0.78 99 100 

12.5 20/20 535 26.2 0.77 100 100 

 40/40 498 29.3 0.76 100 100 
 60/60 451 31.1 0.77 99 100 

 80/80 404 30.6 0.77 99 100 
15.0 20/20 521 28.5 0.77 100 100 

 40/40 471 31.6 0.77 99 100 

 60/60 402 29.5 0.77 99 100 

 80/80 357 27.5 0.75 99 100 
17.5 20/20 504 30.6 0.76 99 100 

 40/40 436 30.1 0.75 99 100 

 60/60 373 28.0 0.75 99 100 
 80/80 321 25.7 0.75 99 100 

20.0 20/20 480 30.6 0.75 99 100 

 40/40 405 28.5 0.74 99 100 
 60/60 336 25.5 0.74 99 100 
  80/80 287 23.0 0.74 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table E.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 544 12.4 0.74 97 98 

 40/40 564 17.2  98 99 
 60/60 560 20.9  98 98 

 80/80 555 24.0  99 99 
7.5 20/20 543 17.7 0.76 99 99 

 40/40 558 24.0  99 99 

 60/60 545 28.2  99 100 

 80/80 521 30.6  100 100 
10.0 20/20 540 22.2 0.77 100 100 

 40/40 544 28.9  100 100 

 60/60 501 31.2  99 100 
 80/80 456 31.3  99 99 

12.5 20/20 538 26.2 0.77 100 100 

 40/40 494 29.3  100 100 
 60/60 452 31.1  99 100 

 80/80 405 30.6  99 100 
15.0 20/20 523 28.5 0.76 100 100 

 40/40 478 31.6  99 100 

 60/60 404 29.5  99 100 

 80/80 349 27.5  99 100 
17.5 20/20 516 30.7 0.75 99 100 

 40/40 437 30.1  99 100 

 60/60 368 27.9  99 100 
 80/80 317 25.6  99 100 

20.0 20/20 494 30.8 0.74 99 100 

 40/40 403 28.5  99 100 
 60/60 334 25.5  99 100 
  80/80 284 22.9   99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table E.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 559 18.8 0.74 89 98 

 40/40  17.8  98 99 
 60/60  18.7  97 98 

 80/80  19.5  94 99 
7.5 20/20 551 26.0 0.76 90 99 

 40/40  25.3  98 99 

 60/60  26.7  99 100 

 80/80  28.3  94 99 
10.0 20/20 532 31.3 0.77 89 100 

 40/40  30.0  98 99 

 60/60  32.2  99 99 
 80/80  34.6  93 99 

12.5 20/20 501 33.6 0.76 88 100 

 40/40  32.2  98 100 
 60/60  34.5  99 99 

 80/80  37.6  93 99 
15.0 20/20 469 35.2 0.76 86 100 

 40/40  33.6  98 99 

 60/60  36.1  99 100 

 80/80  38.4  91 99 
17.5 20/20 439 34.6 0.75 84 100 

 40/40  33.1  98 99 

 60/60  35.4  98 100 
 80/80  37.6  91 99 

20.0 20/20 407 32.9 0.74 83 100 

 40/40  31.3  98 99 
 60/60  33.7  98 100 
  80/80   35.9   90 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table E.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 554 18.4 0.74 89 98 

 40/40    97 99 
 60/60    97 98 

 80/80    94 99 
7.5 20/20 544 25.7 0.76 90 99 

 40/40    98 99 

 60/60    99 100 

 80/80    93 100 
10.0 20/20 521 30.8 0.77 88 100 

 40/40    98 100 

 60/60    99 100 
 80/80    92 99 

12.5 20/20 490 33.2 0.77 87 100 

 40/40    98 100 
 60/60    99 100 

 80/80    91 100 
15.0 20/20 458 34.5 0.76 85 100 

 40/40    97 100 

 60/60    99 100 

 80/80    90 100 
17.5 20/20 427 33.9 0.75 83 100 

 40/40    97 100 

 60/60    99 100 
 80/80    90 100 

20.0 20/20 394 32.0 0.74 82 100 

 40/40    96 100 
 60/60    99 100 
  80/80       89 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table E.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 452 17.7 92 83 

 40/40 449 24.0 96 86 
 60/60 430 28.3 96 88 

 80/80 415 31.8 97 90 
7.5 20/20 438 23.7 96 87 

 40/40 425 30.5 97 89 

 60/60 405 35.5 97 90 

 80/80 378 37.6 98 92 
10.0 20/20 426 29.1 97 89 

 40/40 406 36.1 98 91 

 60/60 367 37.7 97 91 
 80/80 331 37.5 98 91 

12.5 20/20 409 33.0 98 91 

 40/40 366 35.9 97 90 
 60/60 325 36.4 97 91 

 80/80 289 35.2 97 90 
15.0 20/20 383 34.5 98 90 

 40/40 339 36.9 97 91 

 60/60 291 34.8 97 90 

 80/80 251 31.5 97 89 
17.5 20/20 361 35.8 97 90 

 40/40 304 34.5 97 89 

 60/60 259 31.8 96 88 
 80/80 225 29.1 96 88 

20.0 20/20 334 35.0 97 89 

 40/40 276 32.3 96 87 
 60/60 231 28.6 96 87 
  80/80 201 25.8 95 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table E.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 440 16.3 92 83 

 40/40  22.7 96 86 
 60/60  30.0 96 88 

 80/80  36.9 97 90 
7.5 20/20 418 20.6 96 87 

 40/40  29.1 97 89 

 60/60  38.2 97 90 

 80/80  47.2 98 92 
10.0 20/20 391 23.1 97 89 

 40/40  32.9 98 91 

 60/60  43.7 97 91 
 80/80  54.1 97 91 

12.5 20/20 357 23.1 97 91 

 40/40  33.8 97 90 
 60/60  45.0 97 91 

 80/80  55.7 96 90 
15.0 20/20 324 22.5 96 90 

 40/40  33.2 97 91 

 60/60  44.3 96 90 

 80/80  55.0 94 89 
17.5 20/20 294 21.2 95 90 

 40/40  31.8 97 89 

 60/60  42.5 96 88 
 80/80  52.2 94 88 

20.0 20/20 265 19.5 94 89 

 40/40  29.5 96 87 
 60/60  39.2 95 87 
  80/80   48.1 92 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table E.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 434 25 84 83 

 40/40   95 86 
 60/60   95 88 

 80/80   91 90 
7.5 20/20 410 32 87 87 

 40/40   96 89 

 60/60   97 90 

 80/80   92 92 
10.0 20/20 381 37 86 89 

 40/40   97 91 

 60/60   97 91 
 80/80   90 91 

12.5 20/20 346 39 85 91 

 40/40   95 90 
 60/60   97 91 

 80/80   89 90 
15.0 20/20 315 39 83 90 

 40/40   95 91 

 60/60   96 90 

 80/80   87 89 
17.5 20/20 285 37 81 90 

 40/40   94 89 

 60/60   96 88 
 80/80   86 88 

20.0 20/20 256 34 79 89 

 40/40   93 87 
 60/60   95 87 
  80/80     85 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table E.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 455 141 4 403 3* 
3   Constant a, c1 = c2 9 433 143 7 406 3* 
4   Constant a & c 6 10581 393 10 409 27* 
5   Constant a, c & k 3 8635 406 13 412 21* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 10767 347 8 407 31* 
7  Constant k, a = 1, c1 = c2 5 7992 348 11 410 23* 
8  Constant k & c, a = 1,  2 14086 610 14 413 23* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table E.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 15 53 4 403 0 
3   Constant a, c1 = c2 9 66 54 7 406 1 
4   Constant a & c 6 10060 298 10 409 34* 
5   Constant a, c & k 3 8628 324 13 412 27* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 6301 176 8 407 36* 
7  Constant k, a = 1, c1 = c2 5 4878 183 11 410 27* 
8  Constant k & c, a = 1,  2 11613 445 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table E.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 10 24 4 403 0 
3   Constant a, c1 = c2 9 27 24 7 406 1 
4   Constant a & c 6 9978 268 10 409 37* 
5   Constant a, c & k 3 8711 298 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4740 117 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 4049 132 11 410 31* 
8  Constant k & c, a = 1,  2 10839 391 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table E.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 32 17 4 403 2 
3   Constant a, c1 = c2 9 19 17 7 406 1 
4   Constant a & c 6 9312 244 10 409 38* 
5   Constant a, c & k 3 8166 274 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4015 95 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 3825 119 11 410 32* 
8  Constant k & c, a = 1,  2 10081 358 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table E.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 10 15 4 403 1 
3   Constant a, c1 = c2 9 10 15 7 406 1 
4   Constant a & c 6 8852 231 10 409 38* 
5   Constant a, c & k 3 7594 254 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3381 81 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 3484 108 11 410 32* 
8  Constant k & c, a = 1,  2 9072 322 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table E.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 3 14 4 403 0 
3   Constant a, c1 = c2 9 10 14 7 406 1 
4   Constant a & c 6 7713 202 10 409 38* 
5   Constant a, c & k 3 6552 220 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3012 73 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 3299 102 11 410 32* 
8  Constant k & c, a = 1,  2 7940 282 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table E.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 3 11 4 403 0 
3   Constant a, c1 = c2 9 10 11 7 406 1 
4   Constant a & c 6 6443 168 10 409 38* 
5   Constant a, c & k 3 5515 184 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2744 64 8 407 43* 
7  Constant k, a = 1, c1 = c2 5 3080 93 11 410 33* 
8  Constant k & c, a = 1,  2 6800 241 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table E.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2063 1671 1341 1186 1141 1104 1001 
2   c1 = c2 12 2069 1664 1335 1186 1136 1097 994 
3   Constant a, c1 = c2 9 2072 1666 1335 1180 1132 1095 993 
4   Constant a & c 6 2490 2375 2330 2292 2269 2213 2136 
5   Constant a, c & k 3 2500 2407 2372 2337 2306 2246 2172 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2440 2159 1988 1903 1836 1790 1740 
7  Constant k, a = 1, c1 = c2 5 2439 2171 2036 1992 1952 1927 1890 
8  Constant k & c, a = 1 2 2669 2538 2484 2447 2403 2349 2282 

 
Table E.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1100 -1271 -1351 -1398 -1428 -1453 -1504 
2   c1 = c2 8 -1103 -1278 -1358 -1401 -1435 -1460 -1511 

3, 4, 5   Constant a & c1 = c2 2 -1106 -1279 -1364 -1412 -1443 -1467 -1518 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -671 -705 -725 -748 -762 -777 -788 
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Table E.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2128 1735 1406 1251 1205 1169 1065 
2   c1 = c2 12 2117 1712 1383 1234 1184 1146 1042 
3   Constant a, c1 = c2 9 2108 1702 1372 1217 1168 1132 1030 
4   Constant a & c 6 2514 2399 2354 2316 2293 2237 2161 
5   Constant a, c & k 3 2512 2419 2385 2349 2318 2258 2184 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2472 2191 2020 1935 1868 1822 1772 
7  Constant k, a = 1, c1 = c2 5 2459 2191 2056 2012 1972 1948 1910 
8  Constant k & c, a = 1 2 2677 2546 2492 2455 2411 2357 2290 

 
Table E.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1060 -1230 -1311 -1358 -1388 -1413 -1464 
2   c1 = c2 8 -1077 -1251 -1331 -1374 -1408 -1433 -1484 

3, 4, 5   Constant a & c1 = c2 2 -1099 -1272 -1357 -1406 -1436 -1460 -1511 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -671 -705 -725 -748 -762 -777 -788 
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Table E.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.0 0.0 0.1 0.1 0.0 0 
 40/40 -0.1 0.1 0.1 0.1 0.0 0 
 60/60 -0.2 0.2 0.1 0.2 0.0 1 
 80/80 -0.4 0.3 0.1 0.2 0.1 2 

7.5 20/20 -0.6 0.6 0.1 0.3 0.2 2 
 40/40 -0.7 0.7 0.1 0.3 0.2 3 
 60/60 -0.7 0.6 0.2 0.4 0.1 3 
 80/80 -1.2 1.2 0.2 0.5 0.3 5 

10.0 20/20 -1.2 1.2 0.2 0.5 0.3 4 
 40/40 -1.7 1.6 0.2 0.6 0.4 7 
 60/60 -1.5 1.5 0.3 0.6 0.4 5 
 80/80 -1.7 1.7 0.4 0.8 0.4 5 

12.5 20/20 -2.1 2.1 0.2 0.8 0.5 7 
 40/40 -2.0 2.0 0.3 0.8 0.5 5 
 60/60 -2.5 2.6 0.3 0.9 0.7 6 
 80/80 -3.2 3.3 0.3 1.1 0.8 7 

15.0 20/20 -3.2 3.2 0.3 1.1 0.8 8 
 40/40 -3.5 3.6 0.3 1.2 0.9 9 
 60/60 -3.1 3.1 0.5 1.2 0.8 6 
 80/80 -4.0 4.0 0.5 1.5 1.0 6 

17.5 20/20 -4.1 4.0 0.4 1.4 1.0 9 
 40/40 -4.0 3.9 0.5 1.4 1.0 7 
 60/60 -4.2 4.2 0.6 1.6 1.0 6 
 80/80 -4.4 4.4 0.7 1.8 1.1 5 

20.0 20/20 -5.3 5.4 0.4 1.7 1.4 9 
 40/40 -4.7 4.7 0.6 1.8 1.2 6 
 60/60 -5.2 5.2 0.6 1.9 1.3 6 
  80/80 -5.7 5.8 0.8 2.3 1.5 5 

Note. %VAF = Percentage of Variance Accounted For. 
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Table E.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 1.1 -1.1 1.2 0.037 1.2 -22% 95 
 40/40 0.1 -0.1 1.0 0.036 1.0 -1% 95 
 60/60 0.4 -0.3 1.0 0.033 1.0 -3% 98 
 80/80 0.0 -0.2 1.4 0.035 1.4 -6% 97 

7.5 20/20 1.3 -1.3 2.0 0.032 2.0 -15% 97 
 40/40 0.8 -0.8 1.9 0.031 1.9 -11% 97 
 60/60 1.4 -1.5 2.4 0.032 2.4 -17% 96 
 80/80 2.4 -2.1 2.9 0.033 2.9 -15% 97 

10.0 20/20 0.6 -0.7 2.9 0.030 2.9 -7% 96 
 40/40 1.5 -1.6 3.3 0.032 3.3 -13% 96 
 60/60 1.0 -1.0 3.2 0.029 3.2 -7% 97 
 80/80 2.1 -2.4 4.2 0.029 4.2 -17% 97 

12.5 20/20 2.0 -1.8 4.0 0.028 4.0 -11% 97 
 40/40 1.5 -1.5 4.1 0.028 4.1 -9% 97 
 60/60 3.5 -3.2 4.8 0.029 4.8 -15% 97 
 80/80 3.6 -3.4 5.7 0.029 5.7 -14% 97 

15.0 20/20 2.5 -2.4 5.3 0.028 5.3 -11% 96 
 40/40 3.1 -3.0 5.3 0.026 5.3 -14% 97 
 60/60 0.7 -0.9 5.4 0.026 5.4 -5% 97 
 80/80 0.6 -0.6 6.2 0.026 6.2 -2% 96 

17.5 20/20 3.4 -3.3 6.1 0.025 6.1 -13% 96 
 40/40 2.2 -2.1 6.2 0.025 6.2 -9% 96 
 60/60 4.1 -4.3 7.2 0.025 7.2 -16% 96 
 80/80 5.9 -6.4 8.5 0.024 8.5 -20% 96 

20.0 20/20 2.8 -2.8 7.3 0.025 7.3 -9% 96 
 40/40 1.7 -1.6 7.1 0.024 7.1 -5% 95 
 60/60 4.0 -3.9 8.2 0.024 8.2 -12% 95 
  80/80 3.7 -3.6 9.2 0.024 9.2 -9% 96 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix F: Experiment 1 Fitting Measures of the Exponential-Clone-Pheno-Gaussian 

Creature Type 

 
Table F.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 533 10.2 10.8 0.71 92 94 

 40/40 529 13.9 14.6 0.73 93 95 
 60/60 523 17.5 18.0 0.73 96 97 

 80/80 483 17.9 18.9 0.74 95 97 
7.5 20/20 502 13.4 14.6 0.76 95 97 

 40/40 491 18.2 19.1 0.77 96 97 

 60/60 446 18.2 19.4 0.76 97 98 

 80/80 434 21.3 21.1 0.76 98 99 
10.0 20/20 476 15.8 16.6 0.77 96 98 

 40/40 442 19.4 19.5 0.78 98 99 

 60/60 416 21.3 21.9 0.78 98 99 
 80/80 372 20.8 21.1 0.78 98 99 

12.5 20/20 471 19.6 20.3 0.78 98 99 

 40/40 413 20.6 21.7 0.79 98 99 
 60/60 378 21.9 22.1 0.78 98 99 

 80/80 338 20.3 20.8 0.78 99 99 
15.0 20/20 442 20.4 21.2 0.79 99 99 

 40/40 404 22.9 23.8 0.79 99 99 

 60/60 339 20.3 21.0 0.78 99 99 

 80/80 304 19.4 19.8 0.78 99 99 
17.5 20/20 429 22.4 22.4 0.79 99 99 

 40/40 370 21.7 22.8 0.79 99 99 

 60/60 322 21.6 21.9 0.79 99 100 
 80/80 288 19.3 19.3 0.77 99 100 

20.0 20/20 417 23.9 23.7 0.79 100 100 

 40/40 346 21.5 22.0 0.78 99 99 
 60/60 300 21.1 20.8 0.79 99 100 
  80/80 271 18.7 18.8 0.76 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table F.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 531 10.7 0.72 91 94 

 40/40 526 14.4 0.73 92 95 
 60/60 522 17.8 0.74 96 97 

 80/80 480 18.6 0.75 95 97 
7.5 20/20 499 14.4 0.77 95 97 

 40/40 489 18.9 0.77 96 97 

 60/60 444 19.1 0.77 97 98 

 80/80 434 21.2 0.76 98 99 
10.0 20/20 475 16.4 0.77 96 98 

 40/40 442 19.4 0.78 98 99 

 60/60 415 21.6 0.78 98 99 
 80/80 373 20.9 0.78 98 99 

12.5 20/20 471 20.1 0.78 98 99 

 40/40 412 21.5 0.79 98 99 
 60/60 378 22.0 0.78 98 99 

 80/80 337 20.6 0.78 99 99 
15.0 20/20 442 21.0 0.79 99 99 

 40/40 404 23.6 0.79 99 99 

 60/60 338 20.8 0.79 99 99 

 80/80 304 19.6 0.78 99 99 
17.5 20/20 429 22.4 0.79 99 99 

 40/40 370 22.7 0.79 99 99 

 60/60 322 21.8 0.79 99 100 
 80/80 288 19.3 0.77 99 100 

20.0 20/20 417 23.8 0.79 100 100 

 40/40 346 21.9 0.78 99 99 
 60/60 300 21.0 0.79 99 100 
  80/80 271 18.8 0.76 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table F.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 526 10.9 0.73 91 94 

 40/40 525 14.4  92 95 
 60/60 524 17.8  96 97 

 80/80 487 18.4  95 97 
7.5 20/20 500 14.4 0.76 95 97 

 40/40 492 18.7  96 97 

 60/60 444 19.1  97 98 

 80/80 429 21.3  98 99 
10.0 20/20 472 16.5 0.78 95 98 

 40/40 444 19.4  98 99 

 60/60 416 21.6  98 99 
 80/80 373 20.9  98 99 

12.5 20/20 470 20.1 0.79 98 99 

 40/40 417 21.3  98 99 
 60/60 378 22.0  98 99 

 80/80 334 20.7  99 99 
15.0 20/20 444 20.9 0.79 99 99 

 40/40 407 23.5  99 99 

 60/60 338 20.8  99 99 

 80/80 301 19.7  99 99 
17.5 20/20 431 22.4 0.78 99 99 

 40/40 373 22.6  99 99 

 60/60 326 21.7  99 100 
 80/80 281 19.5  99 100 

20.0 20/20 423 23.7 0.78 100 100 

 40/40 348 21.8  99 99 
 60/60 305 20.9  99 100 
  80/80 263 18.9   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table F.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 518 15.9 0.73 79 94 

 40/40  14.7  92 95 
 60/60  15.9  96 97 

 80/80  16.1  88 96 
7.5 20/20 471 19.0 0.76 82 97 

 40/40  17.6  95 97 

 60/60  18.7  96 98 

 80/80  20.9  92 98 
10.0 20/20 431 20.7 0.77 83 98 

 40/40  19.8  97 99 

 60/60  21.0  97 99 
 80/80  22.5  90 98 

12.5 20/20 405 23.0 0.78 85 99 

 40/40  21.1  97 99 
 60/60  23.6  98 99 

 80/80  24.7  92 99 
15.0 20/20 378 23.7 0.78 85 99 

 40/40  21.7  98 99 

 60/60  23.8  98 99 

 80/80  25.5  92 99 
17.5 20/20 360 24.1 0.78 86 99 

 40/40  22.0  98 99 

 60/60  24.5  99 99 
 80/80  26.4  92 99 

20.0 20/20 344 24.3 0.78 87 100 

 40/40  22.7  98 99 
 60/60  25.1  99 100 
  80/80   26.2   92 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table F.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 514 15.6 0.73 80 94 

 40/40    91 95 
 60/60    96 97 

 80/80    87 97 
7.5 20/20 464 18.7 0.76 82 97 

 40/40    95 97 

 60/60    96 98 

 80/80    91 99 
10.0 20/20 425 20.5 0.78 82 98 

 40/40    97 99 

 60/60    97 99 
 80/80    90 99 

12.5 20/20 399 22.6 0.79 85 99 

 40/40    96 99 
 60/60    98 99 

 80/80    91 99 
15.0 20/20 373 23.3 0.79 85 99 

 40/40    97 99 

 60/60    98 99 

 80/80    91 99 
17.5 20/20 353 23.7 0.78 86 99 

 40/40    97 99 

 60/60    99 100 
 80/80    91 100 

20.0 20/20 336 23.8 0.78 86 100 

 40/40    97 99 
 60/60    99 100 
  80/80       91 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table F.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 442 16.1 86 81 

 40/40 429 21.4 87 83 
 60/60 405 24.4 92 85 

 80/80 382 26.3 91 87 
7.5 20/20 422 20.6 92 89 

 40/40 404 26.3 93 89 

 60/60 363 26.9 94 90 

 80/80 336 27.9 95 89 
10.0 20/20 399 23.3 92 91 

 40/40 359 25.6 96 92 

 60/60 330 27.9 96 91 
 80/80 298 27.3 96 91 

12.5 20/20 383 26.3 96 91 

 40/40 336 27.5 96 92 
 60/60 301 27.8 97 91 

 80/80 268 26.3 97 92 
15.0 20/20 360 27.1 97 92 

 40/40 321 29.5 98 92 

 60/60 272 26.4 97 92 

 80/80 242 24.6 97 91 
17.5 20/20 342 28.4 97 92 

 40/40 295 28.4 98 92 

 60/60 260 27.3 97 93 
 80/80 224 24.2 97 91 

20.0 20/20 329 29.8 98 92 

 40/40 273 27.2 97 92 
 60/60 238 25.6 98 92 
  80/80 207 22.8 97 89 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table F.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 419 13.5 86 81 

 40/40  20.0 87 83 
 60/60  26.7 92 85 

 80/80  33.0 90 87 
7.5 20/20 388 15.9 91 89 

 40/40  23.6 93 89 

 60/60  31.8 94 90 

 80/80  39.5 94 89 
10.0 20/20 353 16.4 91 91 

 40/40  24.6 96 92 

 60/60  33.1 96 91 
 80/80  40.7 95 91 

12.5 20/20 328 17.1 95 91 

 40/40  25.9 96 92 
 60/60  34.5 97 91 

 80/80  42.8 95 92 
15.0 20/20 305 17.2 96 92 

 40/40  25.9 98 92 

 60/60  35.1 96 92 

 80/80  43.1 95 91 
17.5 20/20 286 17.3 96 92 

 40/40  26.1 98 92 

 60/60  34.4 97 93 
 80/80  43.0 95 91 

20.0 20/20 267 16.7 96 92 

 40/40  25.6 97 92 
 60/60  33.9 97 92 
  80/80   41.7 94 89 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
  



223 
 

Table F.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 412 22 75 81 

 40/40   86 83 
 60/60   91 85 

 80/80   83 87 
7.5 20/20 376 26 79 89 

 40/40   92 89 

 60/60   93 90 

 80/80   87 89 
10.0 20/20 342 27 78 91 

 40/40   95 92 

 60/60   95 91 
 80/80   87 91 

12.5 20/20 317 29 83 91 

 40/40   94 92 
 60/60   96 91 

 80/80   89 92 
15.0 20/20 294 29 83 92 

 40/40   96 92 

 60/60   96 92 

 80/80   89 91 
17.5 20/20 275 29 84 92 

 40/40   96 92 

 60/60   97 93 
 80/80   89 91 

20.0 20/20 257 29 84 92 

 40/40   95 92 
 60/60   97 92 
  80/80     89 89 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table F.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1688 365 4 403 5* 
3   Constant a, c1 = c2 9 978 362 7 406 3* 
4   Constant a & c 6 12604 651 10 409 19* 
5   Constant a, c & k 3 10122 660 13 412 15* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 13600 612 8 407 22* 
7  Constant k, a = 1, c1 = c2 5 10369 620 11 410 17* 
8  Constant k & c, a = 1,  2 16658 904 14 413 18* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table F.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1454 180 4 403 8* 
3   Constant a, c1 = c2 9 825 178 7 406 5* 
4   Constant a & c 6 11958 455 10 409 26* 
5   Constant a, c & k 3 10028 478 13 412 21* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8022 321 8 407 25* 
7  Constant k, a = 1, c1 = c2 5 6625 340 11 410 19* 
8  Constant k & c, a = 1,  2 13621 623 14 413 22* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table F.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 347 115 4 403 3* 
3   Constant a, c1 = c2 9 218 115 7 406 2 
4   Constant a & c 6 9997 354 10 409 28* 
5   Constant a, c & k 3 8371 373 13 412 22* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 5766 224 8 407 26* 
7  Constant k, a = 1, c1 = c2 5 5056 245 11 410 21* 
8  Constant k & c, a = 1,  2 11039 483 14 413 23* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table F.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 373 71 4 403 5* 
3   Constant a, c1 = c2 9 213 70 7 406 3* 
4   Constant a & c 6 9995 310 10 409 32* 
5   Constant a, c & k 3 8469 333 13 412 25* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3694 139 8 407 27* 
7  Constant k, a = 1, c1 = c2 5 3895 170 11 410 23* 
8  Constant k & c, a = 1,  2 9829 399 14 413 25* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  



226 
 

Table F.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 302 39 4 403 8* 
3   Constant a, c1 = c2 9 175 39 7 406 4* 
4   Constant a & c 6 9092 258 10 409 35* 
5   Constant a, c & k 3 7637 277 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3034 96 8 407 32* 
7  Constant k, a = 1, c1 = c2 5 3468 129 11 410 27* 
8  Constant k & c, a = 1,  2 8788 333 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table F.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 141 27 4 403 5* 
3   Constant a, c1 = c2 9 86 27 7 406 3* 
4   Constant a & c 6 7600 211 10 409 36* 
5   Constant a, c & k 3 6548 231 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2576 76 8 407 34* 
7  Constant k, a = 1, c1 = c2 5 2991 105 11 410 28* 
8  Constant k & c, a = 1,  2 7454 277 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table F.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 56 17 4 403 3* 
3   Constant a, c1 = c2 9 39 17 7 406 2* 
4   Constant a & c 6 6924 186 10 409 37* 
5   Constant a, c & k 3 5871 202 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2230 61 8 407 37* 
7  Constant k, a = 1, c1 = c2 5 2889 94 11 410 31* 
8  Constant k & c, a = 1,  2 6838 248 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table F.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2453 2144 1980 1768 1514 1362 1195 
2   c1 = c2 12 2465 2171 1985 1782 1539 1377 1201 
3   Constant a, c1 = c2 9 2459 2164 1980 1776 1533 1372 1198 
4   Constant a & c 6 2700 2551 2447 2392 2315 2231 2179 
5   Constant a, c & k 3 2703 2569 2466 2418 2341 2267 2210 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2676 2408 2258 2059 1904 1807 1714 
7  Constant k, a = 1, c1 = c2 5 2679 2429 2293 2141 2025 1940 1895 
8  Constant k & c, a = 1 2 2833 2678 2572 2492 2418 2341 2295 

 
Table F.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -909 -991 -1056 -1111 -1192 -1266 -1329 
2   c1 = c2 8 -911 -987 -1060 -1114 -1192 -1264 -1335 

3, 4, 5   Constant a & c 2 -922 -998 -1072 -1125 -1203 -1270 -1336 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -651 -679 -695 -701 -710 -718 -729 
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Table F.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2518 2208 2045 1832 1578 1427 1260 
2   c1 = c2 12 2513 2219 2033 1830 1587 1425 1249 
3   Constant a, c1 = c2 9 2495 2201 2017 1812 1570 1409 1234 
4   Constant a & c 6 2724 2575 2471 2416 2339 2255 2203 
5   Constant a, c & k 3 2715 2581 2478 2430 2353 2279 2222 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2708 2441 2290 2092 1936 1839 1746 
7  Constant k, a = 1, c1 = c2 5 2699 2449 2313 2161 2045 1960 1915 
8  Constant k & c, a = 1 2 2841 2686 2580 2500 2426 2349 2303 

 
Table F.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -868 -951 -1016 -1070 -1152 -1226 -1289 
2   c1 = c2 8 -884 -960 -1033 -1088 -1165 -1238 -1308 

3, 4, 5   Constant a & c 2 -915 -991 -1065 -1118 -1196 -1264 -1329 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -651 -679 -695 -701 -710 -718 -729 
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Table F.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.1 -0.1 0.0 0.0 0.0 2 
 40/40 0.1 -0.1 0.0 0.0 0.0 4 
 60/60 0.0 0.0 0.0 0.0 0.0 0 
 80/80 0.0 0.0 0.0 0.0 0.0 1 

7.5 20/20 0.0 -0.1 0.1 0.0 0.0 1 
 40/40 0.1 -0.1 0.1 0.0 0.0 3 
 60/60 0.1 -0.1 0.1 0.0 0.0 1 
 80/80 -0.1 0.1 0.0 0.1 0.0 0 

10.0 20/20 0.0 0.0 0.1 0.1 0.0 1 
 40/40 -0.1 0.1 0.1 0.1 0.0 1 
 60/60 0.0 0.0 0.1 0.1 0.0 0 
 80/80 -0.1 0.1 0.1 0.1 0.0 0 

12.5 20/20 -0.2 0.2 0.1 0.1 0.0 2 
 40/40 -0.3 0.3 0.1 0.2 0.1 3 
 60/60 -0.3 0.3 0.1 0.2 0.1 2 
 80/80 -0.3 0.3 0.1 0.2 0.1 1 

15.0 20/20 -0.4 0.4 0.1 0.2 0.1 3 
 40/40 -0.5 0.5 0.1 0.2 0.1 4 
 60/60 -0.5 0.4 0.2 0.3 0.1 2 
 80/80 -0.6 0.6 0.2 0.3 0.2 2 

17.5 20/20 -0.8 0.8 0.1 0.3 0.2 4 
 40/40 -0.8 0.7 0.2 0.3 0.2 4 
 60/60 -0.7 0.7 0.2 0.4 0.1 3 
 80/80 -0.9 0.9 0.2 0.5 0.2 2 

20.0 20/20 -1.1 1.1 0.1 0.4 0.3 5 
 40/40 -1.2 1.0 0.2 0.4 0.2 5 
 60/60 -1.6 1.6 0.1 0.5 0.4 6 
  80/80 -1.5 1.5 0.2 0.6 0.4 4 

Note. %VAF = Percentage of Variance Accounted For. 
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Table F.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 0.6 -0.7 0.5 0.069 0.5 -37% 93 
 40/40 0.2 -0.2 0.3 0.056 0.3 -8% 95 
 60/60 0.6 -0.4 0.4 0.057 0.4 -19% 97 
 80/80 0.5 -0.6 0.6 0.061 0.6 -24% 96 

7.5 20/20 1.1 -1.2 0.9 0.060 0.9 -34% 97 
 40/40 0.5 -0.7 0.8 0.054 0.8 -25% 97 
 60/60 0.8 -0.8 0.8 0.051 0.8 -26% 96 
 80/80 -0.5 0.5 0.8 0.052 0.9 19% 96 

10.0 20/20 1.0 -1.1 1.5 0.060 1.5 -22% 98 
 40/40 0.8 -0.8 1.3 0.055 1.3 -16% 96 
 60/60 1.2 -1.3 1.3 0.046 1.3 -25% 97 
 80/80 2.2 -2.3 2.2 0.057 2.2 -27% 97 

12.5 20/20 0.7 -0.9 1.7 0.050 1.7 -17% 98 
 40/40 0.5 -0.7 1.9 0.053 1.9 -11% 98 
 60/60 1.6 -2.2 2.6 0.053 2.6 -26% 99 
 80/80 1.8 -1.9 2.7 0.050 2.7 -18% 98 

15.0 20/20 2.2 -2.0 2.7 0.053 2.7 -16% 98 
 40/40 2.8 -2.8 2.7 0.048 2.7 -26% 98 
 60/60 2.1 -2.1 3.1 0.049 3.1 -18% 98 
 80/80 1.6 -1.3 2.9 0.044 2.9 -10% 99 

17.5 20/20 1.6 -1.7 2.9 0.045 2.9 -15% 98 
 40/40 1.9 -1.7 3.2 0.046 3.2 -12% 98 
 60/60 2.4 -2.7 3.8 0.046 3.8 -20% 98 
 80/80 3.6 -3.2 4.3 0.044 4.3 -16% 98 

20.0 20/20 1.9 -2.2 3.7 0.043 3.7 -16% 98 
 40/40 1.4 -1.9 4.1 0.044 4.1 -15% 98 
 60/60 0.8 -0.7 4.0 0.042 4.0 -4% 98 
  80/80 2.6 -2.3 4.7 0.041 4.7 -10% 98 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix G: Experiment 1 Fitting Measures of the Linear-Bitwise-Bitflip Creature Type 

 
Table G.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 422 7.5 7.4 0.76 98 99 

 40/40 329 8.1 8.3 0.77 99 99 
 60/60 248 6.8 6.7 0.74 99 99 

 80/80 212 7.1 7.1 0.73 98 98 
7.5 20/20 431 12.4 12.1 0.80 99 99 

 40/40 335 13.1 13.0 0.80 99 100 

 60/60 254 11.1 11.2 0.78 99 99 

 80/80 222 11.8 11.8 0.76 99 99 
10.0 20/20 440 17.8 17.8 0.82 100 100 

 40/40 341 17.9 17.9 0.81 100 100 

 60/60 264 15.9 16.0 0.79 100 99 
 80/80 235 16.7 16.7 0.76 99 100 

12.5 20/20 448 22.1 22.2 0.82 100 100 

 40/40 349 23.0 22.9 0.81 100 100 
 60/60 271 20.5 20.3 0.79 100 100 

 80/80 245 22.3 22.5 0.78 100 100 
15.0 20/20 454 27.5 27.3 0.83 100 100 

 40/40 355 28.4 28.4 0.82 100 100 

 60/60 275 25.3 25.4 0.80 100 100 

 80/80 244 26.3 26.2 0.78 100 100 
17.5 20/20 454 31.7 31.6 0.83 100 100 

 40/40 357 32.7 32.5 0.82 100 100 

 60/60 282 29.7 29.8 0.80 100 100 
 80/80 250 30.5 30.6 0.78 100 99 

20.0 20/20 462 36.1 36.2 0.82 100 100 

 40/40 359 37.3 37.5 0.82 100 100 
 60/60 291 33.9 34.0 0.79 100 99 
  80/80 260 33.5 33.7 0.75 99 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 422 7.5 0.76 98 99 

 40/40 329 8.2 0.77 98 99 
 60/60 248 6.8 0.74 99 99 

 80/80 212 7.1 0.73 98 98 
7.5 20/20 431 12.3 0.80 99 99 

 40/40 335 13.0 0.80 99 100 

 60/60 254 11.2 0.78 99 99 

 80/80 222 11.8 0.76 99 99 
10.0 20/20 440 17.8 0.82 100 100 

 40/40 341 17.9 0.81 100 100 

 60/60 264 15.9 0.79 100 99 
 80/80 235 16.7 0.76 99 100 

12.5 20/20 448 22.2 0.82 100 100 

 40/40 349 23.0 0.81 100 100 
 60/60 271 20.4 0.79 100 100 

 80/80 245 22.4 0.78 100 100 
15.0 20/20 455 27.4 0.83 100 100 

 40/40 355 28.4 0.82 100 100 

 60/60 275 25.3 0.80 100 100 

 80/80 244 26.2 0.78 100 100 
17.5 20/20 454 31.7 0.83 100 100 

 40/40 357 32.6 0.82 100 100 

 60/60 282 29.7 0.80 100 100 
 80/80 250 30.6 0.78 100 99 

20.0 20/20 462 36.1 0.82 100 100 

 40/40 359 37.4 0.82 100 100 
 60/60 291 33.9 0.79 100 99 
  80/80 260 33.6 0.75 99 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 426 7.3 0.75 98 98 

 40/40 333 8.0  98 99 
 60/60 246 6.8  99 99 

 80/80 209 7.2  98 98 
7.5 20/20 436 12.1 0.78 99 99 

 40/40 339 12.8  99 100 

 60/60 253 11.2  99 99 

 80/80 217 12.0  99 99 
10.0 20/20 454 17.3 0.79 100 100 

 40/40 347 17.7  100 100 

 60/60 263 16.0  100 99 
 80/80 225 16.8  99 99 

12.5 20/20 460 21.8 0.80 100 100 

 40/40 355 22.8  100 100 
 60/60 269 20.5  100 100 

 80/80 235 22.4  100 99 
15.0 20/20 468 27.1 0.81 100 100 

 40/40 362 28.3  100 100 

 60/60 274 25.3  100 100 

 80/80 233 26.1  100 99 
17.5 20/20 474 31.4 0.80 100 100 

 40/40 366 32.6  100 100 

 60/60 279 29.7  100 100 
 80/80 236 30.1  100 99 

20.0 20/20 490 36.2 0.79 100 100 

 40/40 382 37.8  100 100 
 60/60 287 33.8  100 99 
  80/80 234 32.2   99 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 291 10.2 0.74 38 98 

 40/40  8.9  86 98 
 60/60  10.5  97 99 

 80/80  11.5  72 97 
7.5 20/20 310 17.2 0.78 50 99 

 40/40  15.2  88 99 

 60/60  17.3  98 99 

 80/80  19.2  78 98 
10.0 20/20 340 26.3 0.79 57 100 

 40/40  23.0  90 99 

 60/60  26.4  98 99 
 80/80  29.2  81 98 

12.5 20/20 373 36.3 0.79 58 100 

 40/40  32.2  91 99 
 60/60  36.9  98 100 

 80/80  40.3  82 98 
15.0 20/20 413 48.6 0.80 61 100 

 40/40  43.1  92 99 

 60/60  49.0  98 100 

 80/80  54.2  83 98 
17.5 20/20 457 61.9 0.80 60 100 

 40/40  55.6  92 99 

 60/60  62.5  98 100 
 80/80  68.4  82 97 

20.0 20/20 539 81.9 0.79 59 100 

 40/40  73.0  91 99 
 60/60  82.2  97 99 
  80/80   89.5   82 96 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 278 9.4 0.75 37 99 

 40/40    82 99 
 60/60    98 99 

 80/80    71 98 
7.5 20/20 296 16.0 0.78 48 99 

 40/40    85 100 

 60/60    98 99 

 80/80    76 99 
10.0 20/20 322 24.5 0.79 55 100 

 40/40    87 100 

 60/60    99 99 
 80/80    79 99 

12.5 20/20 348 33.6 0.80 56 100 

 40/40    88 100 
 60/60    98 100 

 80/80    80 99 
15.0 20/20 383 45.3 0.81 59 100 

 40/40    88 100 

 60/60    98 100 

 80/80    80 99 
17.5 20/20 421 57.7 0.80 58 100 

 40/40    88 100 

 60/60    98 100 
 80/80    80 99 

20.0 20/20 487 75.0 0.79 57 100 

 40/40    87 100 
 60/60    98 99 
  80/80       78 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 375 10.9 95 90 

 40/40 287 11.4 96 90 
 60/60 214 9.5 96 86 

 80/80 180 9.6 94 85 
7.5 20/20 378 16.6 98 93 

 40/40 293 17.7 98 93 

 60/60 217 14.5 98 92 

 80/80 182 14.8 96 89 
10.0 20/20 381 22.7 99 95 

 40/40 287 22.3 99 94 

 60/60 216 19.3 98 92 
 80/80 183 19.8 97 89 

12.5 20/20 376 27.5 99 95 

 40/40 284 27.4 99 94 
 60/60 216 24.2 98 93 

 80/80 184 25.0 97 91 
15.0 20/20 374 32.9 99 95 

 40/40 283 33.0 99 95 

 60/60 214 28.4 98 94 

 80/80 179 28.0 97 92 
17.5 20/20 367 37.1 99 95 

 40/40 274 36.1 99 95 

 60/60 209 31.9 98 93 
 80/80 174 31.2 97 91 

20.0 20/20 358 40.9 99 95 

 40/40 268 40.0 99 95 
 60/60 203 34.8 97 92 
  80/80 165 32.2 96 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table G.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 271 1.4 83 90 

 40/40  9.0 96 90 
 60/60  21.4 91 86 

 80/80  33.6 81 85 
7.5 20/20 277 4.7 90 93 

 40/40  14.8 98 93 

 60/60  29.6 94 92 

 80/80  44.2 87 89 
10.0 20/20 277 7.7 92 95 

 40/40  20.3 99 94 

 60/60  37.0 95 92 
 80/80  52.5 89 89 

12.5 20/20 279 11.2 94 95 

 40/40  26.2 99 94 
 60/60  44.1 95 93 

 80/80  60.9 92 91 
15.0 20/20 279 14.6 95 95 

 40/40  31.8 99 95 

 60/60  50.8 96 94 

 80/80  68.5 92 92 
17.5 20/20 273 17.3 95 95 

 40/40  35.9 99 95 

 60/60  55.6 96 93 
 80/80  73.3 92 91 

20.0 20/20 265 19.5 95 95 

 40/40  38.9 99 95 
 60/60  58.6 96 92 
  80/80   76.6 91 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table G.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 235 13 34 90 

 40/40   80 90 
 60/60   95 86 

 80/80   67 85 
7.5 20/20 243 20 47 93 

 40/40   83 93 

 60/60   97 92 

 80/80   73 89 
10.0 20/20 249 28 54 95 

 40/40   85 94 

 60/60   97 92 
 80/80   76 89 

12.5 20/20 256 36 55 95 

 40/40   87 94 
 60/60   97 93 

 80/80   77 91 
15.0 20/20 263 45 58 95 

 40/40   87 95 

 60/60   97 94 

 80/80   77 92 
17.5 20/20 265 53 57 95 

 40/40   87 95 

 60/60   96 93 
 80/80   77 91 

20.0 20/20 266 60 55 95 

 40/40   86 95 
 60/60   95 92 
  80/80     74 87 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table G.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 78 74 4 403 1 
3   Constant a, c1 = c2 9 31 73 7 406 0 
4   Constant a & c 6 55051 1418 10 409 39* 
5   Constant a, c & k 3 44824 1486 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4834 167 8 407 29* 
7  Constant k, a = 1, c1 = c2 5 14530 462 11 410 31* 
8  Constant k & c, a = 1,  2 44561 1582 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table G.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 61 35 4 403 2 
3   Constant a, c1 = c2 9 70 35 7 406 2 
4   Constant a & c 6 46276 1165 10 409 40* 
5   Constant a, c & k 3 37528 1217 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2432 81 8 407 30* 
7  Constant k, a = 1, c1 = c2 5 9431 286 11 410 33* 
8  Constant k & c, a = 1,  2 36485 1270 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table G.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1 12 4 403 0 
3   Constant a, c1 = c2 9 63 13 7 406 5* 
4   Constant a & c 6 39306 973 10 409 40* 
5   Constant a, c & k 3 32330 1032 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1877 49 8 407 38* 
7  Constant k, a = 1, c1 = c2 5 7355 209 11 410 35* 
8  Constant k & c, a = 1,  2 31442 1078 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table G.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 6 7 4 403 1 
3   Constant a, c1 = c2 9 49 7 7 406 7* 
4   Constant a & c 6 31279 771 10 409 41* 
5   Constant a, c & k 3 25998 827 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1490 36 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 4988 140 11 410 36* 
8  Constant k & c, a = 1,  2 25082 857 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table G.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 3 4 4 403 1 
3   Constant a, c1 = c2 9 36 5 7 406 7* 
4   Constant a & c 6 25633 631 10 409 41* 
5   Constant a, c & k 3 21473 682 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1196 28 8 407 43* 
7  Constant k, a = 1, c1 = c2 5 3733 105 11 410 36* 
8  Constant k & c, a = 1,  2 20891 713 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table G.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 4 3 4 403 1 
3   Constant a, c1 = c2 9 38 4 7 406 10* 
4   Constant a & c 6 21186 521 10 409 41* 
5   Constant a, c & k 3 17759 564 13 412 32* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1077 24 8 407 44* 
7  Constant k, a = 1, c1 = c2 5 2896 81 11 410 36* 
8  Constant k & c, a = 1,  2 17294 589 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table G.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1 3 4 403 0 
3   Constant a, c1 = c2 9 50 3 7 406 14* 
4   Constant a & c 6 17737 436 10 409 41* 
5   Constant a, c & k 3 14894 473 13 412 32* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1018 23 8 407 45* 
7  Constant k, a = 1, c1 = c2 5 2382 66 11 410 36* 
8  Constant k & c, a = 1,  2 14545 496 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table G.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1804 1485 1058 799 640 513 418 
2   c1 = c2 12 1800 1484 1050 795 634 510 412 
3   Constant a, c1 = c2 9 1793 1486 1080 836 680 576 523 
4   Constant a & c 6 3024 2942 2867 2770 2687 2608 2533 
5   Constant a, c & k 3 3040 2957 2889 2796 2716 2637 2564 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2137 1837 1625 1495 1392 1336 1304 
7  Constant k, a = 1, c1 = c2 5 2556 2357 2227 2060 1938 1832 1750 
8  Constant k & c, a = 1 2 3065 2974 2906 2810 2734 2655 2583 

 
Table G.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1105 -1246 -1366 -1471 -1545 -1531 -1487 
2   c1 = c2 8 -1113 -1252 -1374 -1478 -1552 -1538 -1494 

3, 4, 5   Constant a & c 2 -1116 -1254 -1344 -1466 -1534 -1516 -1459 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -667 -734 -784 -830 -873 -907 -929 
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Table G.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1868 1549 1122 863 705 578 483 
2   c1 = c2 12 1849 1533 1098 843 683 558 460 
3   Constant a, c1 = c2 9 1829 1522 1116 872 716 612 559 
4   Constant a & c 6 3048 2966 2891 2795 2711 2632 2558 
5   Constant a, c & k 3 3052 2970 2901 2809 2728 2649 2576 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2169 1869 1658 1527 1424 1368 1336 
7  Constant k, a = 1, c1 = c2 5 2576 2378 2247 2081 1958 1852 1770 
8  Constant k & c, a = 1 2 3073 2982 2914 2818 2742 2663 2591 

 
Table G.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1065 -1206 -1326 -1430 -1505 -1491 -1447 
2   c1 = c2 8 -1086 -1225 -1347 -1451 -1526 -1512 -1467 

3, 4, 5   Constant a & c 2 -1109 -1247 -1338 -1459 -1527 -1509 -1452 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -667 -734 -784 -830 -873 -907 -929 
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Table G.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -0.5 0.5 0.2 0.4 0.1 1 
 40/40 -1.3 1.2 0.4 0.6 0.3 2 
 60/60 -1.3 1.3 0.6 0.9 0.4 1 
 80/80 -1.6 1.7 0.8 1.3 0.5 1 

7.5 20/20 -2.5 2.5 0.3 0.9 0.6 6 
 40/40 -2.5 2.7 0.6 1.4 0.7 3 
 60/60 -4.4 4.3 0.9 2.0 1.1 5 
 80/80 -5.6 5.5 1.2 2.6 1.4 5 

10.0 20/20 -6.1 6.0 0.4 1.8 1.5 14 
 40/40 -8.1 8.1 0.5 2.6 2.1 12 
 60/60 -10.6 10.4 0.8 3.3 2.6 12 
 80/80 -10.5 10.3 1.5 4.0 2.5 7 

12.5 20/20 -8.4 8.3 0.5 2.6 2.1 15 
 40/40 -12.5 12.7 0.5 3.7 3.2 15 
 60/60 -10.6 10.7 1.5 4.2 2.7 8 
 80/80 -13.7 13.5 2.0 5.3 3.3 9 

15.0 20/20 -11.7 11.9 0.3 3.4 3.1 18 
 40/40 -14.3 14.0 1.2 4.6 3.4 14 
 60/60 -16.2 16.2 1.6 5.6 4.1 12 
 80/80 -17.7 17.8 2.2 6.7 4.4 10 

17.5 20/20 -13.9 14.1 0.5 4.1 3.6 17 
 40/40 -17.8 17.8 1.3 5.7 4.4 15 
 60/60 -19.2 19.3 1.9 6.8 4.8 12 
 80/80 -19.4 19.4 3.0 7.9 4.9 10 

20.0 20/20 -15.6 15.8 0.9 4.8 4.0 16 
 40/40 -20.9 20.6 1.6 6.7 5.1 15 
 60/60 -21.5 21.6 2.4 7.8 5.4 11 
  80/80 -22.3 22.2 3.5 9.1 5.5 9 

Note. %VAF = Percentage of Variance Accounted For. 
  



247 
 

Table G.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 1.0 -1.2 4.3 0.045 4.3 -8% 98 
 40/40 0.9 -0.8 4.5 0.034 4.5 -4% 99 
 60/60 2.8 -2.7 5.3 0.028 5.3 -12% 98 
 80/80 1.7 -1.5 5.4 0.023 5.4 -6% 97 

7.5 20/20 3.6 -3.6 6.5 0.033 6.5 -14% 99 
 40/40 4.1 -4.3 8.3 0.029 8.3 -13% 99 
 60/60 2.5 -2.4 8.9 0.025 8.9 -7% 98 
 80/80 1.2 -1.2 8.7 0.020 8.7 -4% 98 

10.0 20/20 1.5 -1.4 8.4 0.028 8.4 -4% 99 
 40/40 3.7 -3.5 10.8 0.024 10.8 -8% 99 
 60/60 0.9 -1.1 11.0 0.021 11.0 -3% 99 
 80/80 3.9 -3.8 11.9 0.017 11.9 -8% 99 

12.5 20/20 2.8 -2.9 10.0 0.023 10.0 -7% 99 
 40/40 4.0 -3.3 12.2 0.020 12.2 -5% 99 
 60/60 2.7 -2.5 12.5 0.017 12.5 -4% 99 
 80/80 2.6 -2.8 13.6 0.014 13.6 -6% 99 

15.0 20/20 3.6 -3.7 11.7 0.021 11.7 -8% 99 
 40/40 4.1 -4.1 14.2 0.017 14.2 -7% 99 
 60/60 2.3 -2.6 14.2 0.014 14.2 -5% 99 
 80/80 4.4 -4.3 15.5 0.013 15.5 -7% 99 

17.5 20/20 3.6 -3.5 12.7 0.018 12.7 -7% 99 
 40/40 3.4 -3.0 14.7 0.015 14.7 -5% 99 
 60/60 2.3 -2.2 15.4 0.013 15.4 -3% 99 
 80/80 2.7 -2.7 16.0 0.011 16.0 -4% 99 

20.0 20/20 7.7 -7.8 14.2 0.016 14.2 -14% 99 
 40/40 2.6 -2.6 15.9 0.013 15.9 -4% 99 
 60/60 5.4 -5.6 17.4 0.012 17.4 -8% 99 
  80/80 6.0 -5.7 18.0 0.010 18.0 -8% 100 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix H: Experiment 1 Fitting Measures of the Linear-Clone-Bitflip Creature Type 

 
Table H.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 531 10.5 10.6 0.78 99 99 

 40/40 531 14.2 14.9 0.77 99 99 
 60/60 529 21.0 20.6 0.80 99 100 

 80/80 527 25.3 25.2 0.79 99 100 
7.5 20/20 540 16.4 16.2 0.81 99 100 

 40/40 534 23.5 23.5 0.82 100 100 

 60/60 519 28.6 28.1 0.81 100 100 

 80/80 499 32.1 31.7 0.80 100 100 
10.0 20/20 538 22.0 21.9 0.83 100 100 

 40/40 513 28.9 29.2 0.84 100 100 

 60/60 490 33.5 33.3 0.83 100 100 
 80/80 486 37.2 37.5 0.80 100 99 

12.5 20/20 544 27.1 26.7 0.83 100 100 

 40/40 504 33.4 33.5 0.84 100 100 
 60/60 476 36.9 37.0 0.82 100 99 

 80/80 451 39.4 39.7 0.80 100 99 
15.0 20/20 532 31.0 31.4 0.84 100 100 

 40/40 491 36.6 36.5 0.83 100 100 

 60/60 463 39.6 39.8 0.81 100 99 

 80/80 439 39.8 39.8 0.77 99 99 
17.5 20/20 534 34.7 34.8 0.83 100 100 

 40/40 478 39.0 38.8 0.83 100 99 

 60/60 448 41.1 40.9 0.79 99 99 
 80/80 430 41.0 41.0 0.75 99 98 

20.0 20/20 521 37.3 37.3 0.83 100 100 

 40/40 466 39.5 39.7 0.81 100 99 
 60/60 428 40.3 40.1 0.77 99 98 
  80/80 427 41.3 41.0 0.72 99 97 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table H.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 530 10.5 0.78 99 99 

 40/40 530 14.7 0.77 99 99 
 60/60 528 20.8 0.80 99 100 

 80/80 527 25.2 0.79 99 100 
7.5 20/20 540 16.3 0.81 99 100 

 40/40 534 23.5 0.82 100 100 

 60/60 519 28.4 0.81 100 100 

 80/80 499 31.9 0.80 100 100 
10.0 20/20 538 22.0 0.83 100 100 

 40/40 513 29.0 0.84 100 100 

 60/60 490 33.4 0.83 100 100 
 80/80 486 37.4 0.80 100 99 

12.5 20/20 544 26.9 0.83 100 100 

 40/40 504 33.4 0.84 100 100 
 60/60 476 36.9 0.82 100 99 

 80/80 451 39.5 0.80 100 99 
15.0 20/20 532 31.2 0.84 100 100 

 40/40 491 36.5 0.83 100 100 

 60/60 463 39.7 0.81 100 99 

 80/80 439 39.8 0.77 99 99 
17.5 20/20 534 34.8 0.83 100 100 

 40/40 478 38.9 0.83 100 99 

 60/60 448 41.0 0.79 99 99 
 80/80 430 41.0 0.75 99 98 

20.0 20/20 521 37.3 0.83 100 100 

 40/40 466 39.6 0.81 100 99 
 60/60 428 40.2 0.77 99 98 
  80/80 427 41.1 0.72 99 97 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table H.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 528 10.6 0.78 99 99 

 40/40 522 14.9  99 99 
 60/60 537 20.5  99 99 

 80/80 534 25.1  99 100 
7.5 20/20 539 16.4 0.81 99 100 

 40/40 541 23.3  100 100 

 60/60 520 28.4  100 100 

 80/80 492 32.0  100 100 
10.0 20/20 542 21.8 0.82 100 100 

 40/40 526 28.6  100 100 

 60/60 493 33.4  100 100 
 80/80 461 37.3  100 99 

12.5 20/20 551 26.7 0.82 100 100 

 40/40 519 33.1  100 100 
 60/60 472 37.0  100 99 

 80/80 431 39.2  100 99 
15.0 20/20 557 30.6 0.81 100 100 

 40/40 514 36.4  100 100 

 60/60 461 39.7  100 99 

 80/80 397 38.7  99 98 
17.5 20/20 569 34.5 0.80 100 100 

 40/40 509 39.0  100 99 

 60/60 445 40.9  99 99 
 80/80 377 39.1  99 97 

20.0 20/20 580 37.5 0.78 100 99 

 40/40 502 40.2  100 99 
 60/60 425 40.1  99 98 
  80/80 359 38.1   99 96 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table H.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 531 17.5 0.78 89 99 

 40/40  16.3  99 99 
 60/60  18.5  99 99 

 80/80  19.4  93 99 
7.5 20/20 534 26.9 0.81 88 100 

 40/40  25.3  98 100 

 60/60  28.2  99 100 

 80/80  30.3  93 99 
10.0 20/20 525 34.9 0.82 86 100 

 40/40  32.0  98 100 

 60/60  36.0  99 100 
 80/80  38.4  92 99 

12.5 20/20 525 41.5 0.82 84 100 

 40/40  38.1  98 99 
 60/60  42.5  99 99 

 80/80  45.5  91 98 
15.0 20/20 530 47.8 0.81 82 100 

 40/40  43.9  97 99 

 60/60  48.4  99 99 

 80/80  52.3  90 97 
17.5 20/20 536 53.4 0.80 79 100 

 40/40  49.2  96 99 

 60/60  54.3  99 99 
 80/80  57.8  88 96 

20.0 20/20 537 56.2 0.78 77 99 

 40/40  51.4  95 99 
 60/60  56.9  99 98 
  80/80   60.8   87 95 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table H.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 524 17.5 0.79 89 99 

 40/40    98 99 
 60/60    99 99 

 80/80    92 100 
7.5 20/20 523 26.7 0.82 87 100 

 40/40    97 100 

 60/60    99 100 

 80/80    92 100 
10.0 20/20 513 34.1 0.83 86 100 

 40/40    97 100 

 60/60    99 100 
 80/80    91 99 

12.5 20/20 509 40.4 0.82 84 100 

 40/40    96 100 
 60/60    99 99 

 80/80    90 99 
15.0 20/20 510 46.4 0.81 81 100 

 40/40    95 100 

 60/60    99 99 

 80/80    88 98 
17.5 20/20 510 51.0 0.80 78 100 

 40/40    94 99 

 60/60    99 99 
 80/80    86 97 

20.0 20/20 505 53.2 0.78 75 100 

 40/40    92 99 
 60/60    99 98 
  80/80       85 96 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
 
  



253 
 

Table H.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 465 14.9 97 92 

 40/40 443 20.2 97 90 
 60/60 440 27.4 98 93 

 80/80 420 31.7 98 93 
7.5 20/20 468 21.6 98 94 

 40/40 454 30.0 99 95 

 60/60 420 34.9 99 94 

 80/80 388 38.1 98 94 
10.0 20/20 467 28.2 99 96 

 40/40 435 35.3 99 96 

 60/60 393 39.1 99 95 
 80/80 357 41.8 98 93 

12.5 20/20 458 33.5 99 96 

 40/40 415 39.5 99 96 
 60/60 365 42.1 98 95 

 80/80 324 42.4 98 93 
15.0 20/20 444 37.5 99 96 

 40/40 392 42.1 99 96 

 60/60 340 43.4 98 93 

 80/80 290 40.9 97 89 
17.5 20/20 428 40.6 99 96 

 40/40 369 43.6 99 95 

 60/60 313 43.0 98 92 
 80/80 266 40.6 96 86 

20.0 20/20 409 42.6 99 96 

 40/40 343 43.2 98 94 
 60/60 286 41.5 97 90 
  80/80 243 39.0 95 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table H.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 446 12.9 96 92 

 40/40  20.6 97 90 
 60/60  28.5 98 93 

 80/80  36.8 98 93 
7.5 20/20 440 17.8 98 94 

 40/40  27.5 99 95 

 60/60  39.2 99 94 

 80/80  50.7 98 94 
10.0 20/20 423 21.2 99 96 

 40/40  32.9 99 96 

 60/60  46.5 99 95 
 80/80  60.4 97 93 

12.5 20/20 401 23.5 98 96 

 40/40  36.5 99 96 
 60/60  51.9 98 95 

 80/80  66.6 97 93 
15.0 20/20 377 24.5 98 96 

 40/40  38.3 99 96 

 60/60  54.4 98 93 

 80/80  69.9 95 89 
17.5 20/20 353 25.0 97 96 

 40/40  39.3 98 95 

 60/60  55.6 97 92 
 80/80  71.5 94 86 

20.0 20/20 327 24.4 97 96 

 40/40  38.8 98 94 
 60/60  54.9 97 90 
  80/80   70.1 92 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table H.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 438 23 87 92 

 40/40   95 90 
 60/60   98 93 

 80/80   91 93 
7.5 20/20 429 33 87 94 

 40/40   97 95 

 60/60   98 94 

 80/80   91 94 
10.0 20/20 410 40 85 96 

 40/40   96 96 

 60/60   99 95 
 80/80   89 93 

12.5 20/20 389 45 83 96 

 40/40   96 96 
 60/60   98 95 

 80/80   88 93 
15.0 20/20 367 50 80 96 

 40/40   94 96 

 60/60   98 93 

 80/80   86 89 
17.5 20/20 344 52 78 96 

 40/40   93 95 

 60/60   97 92 
 80/80   84 86 

20.0 20/20 319 52 75 96 

 40/40   91 94 
 60/60   97 90 
  80/80     81 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table H.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 426 92 4 403 5* 
3   Constant a, c1 = c2 9 351 94 7 406 4* 
4   Constant a & c 6 16797 498 10 409 34* 
5   Constant a, c & k 3 14582 546 13 412 27* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8319 251 8 407 33* 
7  Constant k, a = 1, c1 = c2 5 6323 256 11 410 25* 
8  Constant k & c, a = 1,  2 17835 691 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table H.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 43 41 4 403 1 
3   Constant a, c1 = c2 9 24 41 7 406 1 
4   Constant a & c 6 19300 512 10 409 38* 
5   Constant a, c & k 3 16874 572 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4043 120 8 407 34* 
7  Constant k, a = 1, c1 = c2 5 3560 136 11 410 26* 
8  Constant k & c, a = 1,  2 17688 639 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table H.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 18 20 4 403 1 
3   Constant a, c1 = c2 9 14 20 7 406 1 
4   Constant a & c 6 19765 502 10 409 39* 
5   Constant a, c & k 3 16902 552 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2985 78 8 407 38* 
7  Constant k, a = 1, c1 = c2 5 3113 103 11 410 30* 
8  Constant k & c, a = 1,  2 17349 607 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table H.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 20 15 4 403 1 
3   Constant a, c1 = c2 9 22 15 7 406 1 
4   Constant a & c 6 18780 474 10 409 40* 
5   Constant a, c & k 3 15974 519 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2582 66 8 407 39* 
7  Constant k, a = 1, c1 = c2 5 3000 95 11 410 32* 
8  Constant k & c, a = 1,  2 16250 565 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  



258 
 

Table H.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 9 12 4 403 1 
3   Constant a, c1 = c2 9 21 12 7 406 2 
4   Constant a & c 6 17772 446 10 409 40* 
5   Constant a, c & k 3 15171 490 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2405 59 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 3011 92 11 410 33* 
8  Constant k & c, a = 1,  2 15392 533 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table H.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1 11 4 403 0 
3   Constant a, c1 = c2 9 57 12 7 406 5* 
4   Constant a & c 6 16712 419 10 409 40* 
5   Constant a, c & k 3 14102 456 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2157 53 8 407 40* 
7  Constant k, a = 1, c1 = c2 5 2859 88 11 410 33* 
8  Constant k & c, a = 1,  2 14099 489 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   



259 
 

Table H.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 4 10 4 403 0 
3   Constant a, c1 = c2 9 107 12 7 406 9* 
4   Constant a & c 6 14944 375 10 409 40* 
5   Constant a, c & k 3 12699 410 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2026 50 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 2777 84 11 410 33* 
8  Constant k & c, a = 1,  2 12623 438 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table H.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1882 1561 1253 1143 1036 1016 976 
2   c1 = c2 12 1894 1557 1249 1141 1031 1009 969 
3   Constant a, c1 = c2 9 1896 1551 1244 1140 1035 1038 1033 
4   Constant a & c 6 2588 2600 2592 2568 2543 2517 2471 
5   Constant a, c & k 3 2624 2643 2629 2602 2579 2549 2505 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2305 1998 1819 1747 1701 1661 1632 
7  Constant k, a = 1, c1 = c2 5 2311 2046 1930 1899 1886 1864 1849 
8  Constant k & c, a = 1 2 2721 2689 2667 2637 2613 2577 2531 

 
Table H.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1158 -1279 -1333 -1326 -1320 -1310 -1304 
2   c1 = c2 8 -1158 -1285 -1340 -1334 -1326 -1318 -1311 

3, 4, 5   Constant a & c 2 -1168 -1291 -1328 -1330 -1293 -1286 -1267 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -678 -735 -789 -824 -851 -867 -879 
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Table H.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1947 1625 1318 1208 1101 1081 1040 
2   c1 = c2 12 1942 1606 1297 1189 1080 1057 1018 
3   Constant a, c1 = c2 9 1932 1587 1281 1176 1071 1074 1069 
4   Constant a & c 6 2612 2624 2616 2592 2567 2541 2495 
5   Constant a, c & k 3 2636 2656 2641 2615 2591 2561 2517 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2337 2030 1851 1779 1733 1693 1664 
7  Constant k, a = 1, c1 = c2 5 2331 2066 1951 1919 1906 1884 1869 
8  Constant k & c, a = 1 2 2729 2697 2675 2645 2621 2585 2539 

 
Table H.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1118 -1239 -1293 -1286 -1280 -1270 -1264 
2   c1 = c2 8 -1132 -1258 -1313 -1307 -1299 -1291 -1284 

3, 4, 5   Constant a & c 2 -1161 -1285 -1321 -1323 -1286 -1279 -1261 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -678 -735 -789 -824 -851 -867 -879 
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Table H.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -2.5 2.5 0.7 1.4 0.6 2 
 40/40 -6.2 6.0 1.3 2.7 1.4 5 
 60/60 -8.8 8.9 1.2 3.4 2.2 8 
 80/80 -10.2 10.3 1.4 4.0 2.6 11 

7.5 20/20 -11.3 11.3 0.9 3.8 2.8 12 
 40/40 -18.5 18.1 1.9 6.3 4.4 14 
 60/60 -23.3 23.2 1.8 7.5 5.8 19 
 80/80 -22.5 22.9 2.1 7.9 5.8 20 

10.0 20/20 -17.9 18.1 1.4 6.0 4.6 16 
 40/40 -32.3 32.2 2.1 10.2 8.0 23 
 60/60 -37.5 37.8 2.1 11.6 9.5 28 
 80/80 -34.0 33.6 3.5 11.8 8.3 26 

12.5 20/20 -28.0 29.1 1.1 8.6 7.6 22 
 40/40 -42.3 42.5 2.7 13.4 10.7 27 
 60/60 -39.8 39.6 4.2 14.0 9.8 23 
 80/80 -41.4 41.3 4.6 14.9 10.3 29 

15.0 20/20 -35.7 35.8 1.9 10.8 9.0 27 
 40/40 -49.9 50.2 3.2 15.8 12.6 30 
 60/60 -47.9 47.5 5.0 16.8 11.8 27 
 80/80 -40.2 40.3 6.8 16.9 10.1 25 

17.5 20/20 -43.0 43.9 1.5 12.7 11.2 30 
 40/40 -55.1 56.1 4.0 18.3 14.3 30 
 60/60 -49.2 49.1 6.6 18.8 12.2 29 
 80/80 -42.2 42.3 8.4 19.0 10.6 26 

20.0 20/20 -45.9 46.1 2.5 14.1 11.6 29 
 40/40 -56.1 56.3 5.8 19.9 14.1 29 
 60/60 -48.0 48.3 8.3 20.5 12.2 26 
  80/80 -33.1 32.8 12.2 20.4 8.1 18 

Note. %VAF = Percentage of Variance Accounted For. 
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Table H.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 -0.1 -0.4 8.5 0.030 8.5 -3% 97 
 40/40 6.6 -4.6 11.9 0.024 11.9 -6% 98 
 60/60 -1.9 1.5 10.5 0.018 10.8 2% 98 
 80/80 -3.3 2.8 9.2 0.014 9.8 6% 97 

7.5 20/20 -2.9 2.0 13.1 0.021 13.4 2% 99 
 40/40 -0.4 0.8 17.5 0.017 17.8 2% 98 
 60/60 2.0 -2.0 17.1 0.013 17.1 -3% 98 
 80/80 -10.0 10.7 12.3 0.010 15.2 23% 97 

10.0 20/20 3.1 -1.4 17.4 0.018 17.4 0% 99 
 40/40 -10.3 10.2 20.1 0.012 22.6 13% 98 
 60/60 -2.6 1.8 20.6 0.010 20.9 1% 97 
 80/80 -9.3 9.4 16.6 0.007 18.9 14% 96 

12.5 20/20 -4.4 4.8 19.4 0.014 20.7 7% 99 
 40/40 -4.9 4.4 23.9 0.009 24.9 4% 96 
 60/60 -7.0 7.0 21.7 0.007 23.4 8% 95 
 80/80 -7.6 7.7 19.6 0.006 21.6 10% 92 

15.0 20/20 -14.5 15.8 18.0 0.011 22.3 24% 98 
 40/40 -12.4 13.2 23.1 0.008 26.6 15% 94 
 60/60 -11.3 11.1 22.6 0.006 25.3 12% 92 
 80/80 -12.7 12.4 19.7 0.004 22.7 15% 87 

17.5 20/20 -7.6 8.3 21.0 0.009 23.3 11% 98 
 40/40 -21.6 22.6 22.8 0.006 28.8 26% 93 
 60/60 -17.0 17.5 21.5 0.004 25.9 21% 87 
 80/80 -18.4 18.5 19.1 0.003 23.7 24% 79 

20.0 20/20 -4.6 5.4 23.1 0.008 24.6 7% 97 
 40/40 -17.9 17.7 24.4 0.005 28.8 18% 91 
 60/60 -18.8 19.0 21.9 0.004 26.7 22% 83 
  80/80 -14.2 13.5 20.6 0.002 23.9 16% 65 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix I: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Uniform Creature 

Type 

 
Table I.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 519 13.1 13.8 0.74 92 96 

 40/40 460 17.6 17.6 0.73 96 98 
 60/60 369 16.1 17.4 0.73 96 98 

 80/80 319 16.6 17.9 0.74 97 98 
7.5 20/20 488 16.7 17.6 0.76 97 98 

 40/40 381 16.5 16.9 0.73 98 99 

 60/60 293 14.4 15.5 0.75 98 99 

 80/80 243 13.0 13.6 0.75 98 99 
10.0 20/20 481 22.2 22.5 0.78 99 99 

 40/40 338 17.2 17.2 0.75 98 99 

 60/60 257 14.8 15.1 0.77 99 99 
 80/80 216 12.4 12.8 0.74 99 99 

12.5 20/20 436 22.7 22.9 0.79 99 99 

 40/40 298 16.8 16.9 0.77 99 99 
 60/60 228 13.4 13.4 0.76 99 99 

 80/80 193 11.5 11.5 0.73 99 99 
15.0 20/20 402 22.5 22.2 0.78 99 99 

 40/40 274 15.7 16.0 0.76 99 100 

 60/60 206 12.3 12.1 0.75 99 99 

 80/80 175 10.2 10.3 0.72 99 99 
17.5 20/20 379 22.9 23.3 0.78 99 100 

 40/40 254 16.1 16.0 0.77 99 99 

 60/60 192 11.3 11.4 0.74 99 99 
 80/80 164 9.5 9.6 0.71 99 99 

20.0 20/20 356 22.9 23.7 0.78 99 100 

 40/40 236 14.3 14.5 0.74 99 99 
 60/60 179 10.3 10.2 0.72 99 99 
  80/80 154 9.0 9.1 0.71 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table I.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 518 13.6 0.74 92 96 

 40/40 460 17.6 0.73 96 98 
 60/60 366 17.2 0.74 96 97 

 80/80 317 17.6 0.75 97 98 
7.5 20/20 485 17.1 0.76 96 98 

 40/40 382 16.9 0.73 98 99 

 60/60 293 15.4 0.76 98 98 

 80/80 242 13.4 0.75 98 99 
10.0 20/20 481 22.4 0.78 99 99 

 40/40 338 17.2 0.75 98 99 

 60/60 257 15.0 0.77 99 99 
 80/80 215 12.7 0.74 99 99 

12.5 20/20 436 22.8 0.79 99 99 

 40/40 298 16.8 0.77 99 99 
 60/60 228 13.4 0.76 99 99 

 80/80 193 11.5 0.73 99 99 
15.0 20/20 402 22.3 0.78 99 99 

 40/40 274 15.9 0.76 99 100 

 60/60 206 12.2 0.76 99 99 

 80/80 175 10.2 0.72 99 99 
17.5 20/20 379 23.2 0.78 99 100 

 40/40 254 16.0 0.77 99 99 

 60/60 192 11.4 0.74 99 99 
 80/80 163 9.5 0.71 99 99 

20.0 20/20 356 23.5 0.79 99 100 

 40/40 236 14.4 0.74 99 99 
 60/60 179 10.3 0.72 99 99 
  80/80 154 9.1 0.71 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
 
  



266 
 

Table I.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 518 13.6 0.74 92 96 

 40/40 453 17.8  96 98 
 60/60 366 17.2  96 97 

 80/80 322 17.5  97 98 
7.5 20/20 491 16.9 0.75 97 98 

 40/40 375 17.1  98 99 

 60/60 295 15.3  98 98 

 80/80 242 13.4  98 99 
10.0 20/20 496 22.1 0.76 99 99 

 40/40 334 17.4  98 99 

 60/60 260 14.8  99 99 
 80/80 212 12.8  99 99 

12.5 20/20 453 22.3 0.76 99 99 

 40/40 301 16.8  99 99 
 60/60 228 13.4  99 99 

 80/80 187 11.7  99 99 
15.0 20/20 418 21.9 0.75 99 99 

 40/40 275 15.8  99 100 

 60/60 207 12.2  99 99 

 80/80 170 10.4  99 99 
17.5 20/20 400 22.8 0.75 99 99 

 40/40 262 15.9  99 99 

 60/60 190 11.4  99 99 
 80/80 157 9.7  99 99 

20.0 20/20 385 23.1 0.74 99 99 

 40/40 239 14.4  99 99 
 60/60 176 10.4  99 99 
  80/80 150 9.2   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table I.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 430 20.7 0.74 45 95 

 40/40  19.1  91 98 
 60/60  20.4  94 98 

 80/80  21.8  81 97 
7.5 20/20 362 20.7 0.74 50 98 

 40/40  18.7  93 98 

 60/60  20.3  96 99 

 80/80  22.6  81 98 
10.0 20/20 334 22.6 0.75 60 99 

 40/40  20.8  93 99 

 60/60  22.9  97 99 
 80/80  24.8  83 98 

12.5 20/20 293 20.9 0.75 60 99 

 40/40  19.0  94 99 
 60/60  21.4  97 99 

 80/80  23.1  83 98 
15.0 20/20 268 19.5 0.75 61 99 

 40/40  17.8  95 99 

 60/60  20.2  98 99 

 80/80  21.4  82 98 
17.5 20/20 244 18.5 0.75 62 99 

 40/40  16.9  94 99 

 60/60  18.7  98 99 
 80/80  20.0  83 98 

20.0 20/20 228 17.0 0.73 64 99 

 40/40  15.6  94 99 
 60/60  17.4  97 99 
  80/80   18.4   84 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table I.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 423 20.0 0.74 46 95 

 40/40    90 98 
 60/60    94 97 

 80/80    78 98 
7.5 20/20 352 19.7 0.75 50 98 

 40/40    91 99 

 60/60    96 98 

 80/80    77 99 
10.0 20/20 320 21.2 0.76 59 99 

 40/40    91 99 

 60/60    97 99 
 80/80    81 99 

12.5 20/20 281 19.6 0.76 59 99 

 40/40    92 99 
 60/60    98 99 

 80/80    81 99 
15.0 20/20 255 18.2 0.75 59 99 

 40/40    92 100 

 60/60    98 99 

 80/80    81 99 
17.5 20/20 235 17.5 0.75 61 99 

 40/40    92 99 

 60/60    98 99 
 80/80    82 99 

20.0 20/20 219 16.0 0.74 62 99 

 40/40    92 99 
 60/60    98 99 
  80/80       83 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table I.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 435 20.7 87 86 

 40/40 361 25.3 92 86 
 60/60 291 24.0 92 86 

 80/80 248 22.6 94 87 
7.5 20/20 400 24.4 93 89 

 40/40 299 23.4 93 87 

 60/60 235 20.1 95 88 

 80/80 196 17.9 95 88 
10.0 20/20 382 28.7 97 91 

 40/40 267 23.3 95 88 

 60/60 211 19.8 96 91 
 80/80 172 16.2 96 87 

12.5 20/20 351 29.4 97 92 

 40/40 238 21.6 96 90 
 60/60 185 17.2 96 89 

 80/80 153 14.5 95 86 
15.0 20/20 317 28.3 97 92 

 40/40 216 20.3 97 89 

 60/60 168 15.6 97 89 

 80/80 139 13.1 95 84 
17.5 20/20 297 28.6 98 92 

 40/40 202 19.7 97 91 

 60/60 155 14.6 96 88 
 80/80 129 12.1 94 83 

20.0 20/20 279 28.8 98 92 

 40/40 184 17.8 96 87 
 60/60 143 13.1 95 85 
  80/80 122 11.4 94 82 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table I.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 355 11.0 83 86 

 40/40  24.2 92 86 
 60/60  38.7 90 86 

 80/80  52.1 90 87 
7.5 20/20 299 10.1 87 89 

 40/40  23.5 93 87 

 60/60  37.1 92 88 

 80/80  49.2 88 88 
10.0 20/20 268 10.1 89 91 

 40/40  23.4 95 88 

 60/60  36.6 94 91 
 80/80  48.7 89 87 

12.5 20/20 238 9.2 89 92 

 40/40  21.4 96 90 
 60/60  33.3 94 89 

 80/80  44.1 87 86 
15.0 20/20 213 8.4 88 92 

 40/40  19.4 97 89 

 60/60  29.8 94 89 

 80/80  39.4 86 84 
17.5 20/20 195 8.0 88 92 

 40/40  17.6 97 91 

 60/60  27.4 93 88 
 80/80  36.0 85 83 

20.0 20/20 178 7.2 86 92 

 40/40  16.1 96 87 
 60/60  24.6 92 85 
  80/80   32.1 86 82 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table I.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 322 26 41 86 

 40/40   85 86 
 60/60   90 86 

 80/80   74 87 
7.5 20/20 268 25 46 89 

 40/40   86 87 

 60/60   93 88 

 80/80   74 88 
10.0 20/20 241 26 56 91 

 40/40   88 88 

 60/60   95 91 
 80/80   77 87 

12.5 20/20 212 24 56 92 

 40/40   89 90 
 60/60   95 89 

 80/80   77 86 
15.0 20/20 193 22 57 92 

 40/40   90 89 

 60/60   95 89 

 80/80   77 84 
17.5 20/20 178 21 58 92 

 40/40   90 91 

 60/60   95 88 
 80/80   77 83 

20.0 20/20 164 19 59 92 

 40/40   89 87 
 60/60   93 85 
  80/80     77 82 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 

 
 
  



272 
 

Table I.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1111 193 4 403 6* 
3   Constant a, c1 = c2 9 671 192 7 406 3* 
4   Constant a & c 6 33529 999 10 409 34* 
5   Constant a, c & k 3 26147 1003 13 412 26* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8136 340 8 407 24* 
7  Constant k, a = 1, c1 = c2 5 8956 419 11 410 21* 
8  Constant k & c, a = 1,  2 28955 1159 14 413 25* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table I.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 622 80 4 403 8* 
3   Constant a, c1 = c2 9 362 79 7 406 5* 
4   Constant a & c 6 28369 766 10 409 37* 
5   Constant a, c & k 3 22678 787 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 5217 175 8 407 30* 
7  Constant k, a = 1, c1 = c2 5 8034 288 11 410 28* 
8  Constant k & c, a = 1,  2 24172 891 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table I.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 62 40 4 403 2 
3   Constant a, c1 = c2 9 45 39 7 406 1 
4   Constant a & c 6 24932 648 10 409 38* 
5   Constant a, c & k 3 20244 677 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3165 101 8 407 31* 
7  Constant k, a = 1, c1 = c2 5 7256 233 11 410 31* 
8  Constant k & c, a = 1,  2 20965 749 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table I.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 7 28 4 403 0 
3   Constant a, c1 = c2 9 26 28 7 406 1 
4   Constant a & c 6 19877 513 10 409 39* 
5   Constant a, c & k 3 16318 542 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2237 71 8 407 31* 
7  Constant k, a = 1, c1 = c2 5 6021 189 11 410 32* 
8  Constant k & c, a = 1,  2 16782 596 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table I.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 49 14 4 403 3* 
3   Constant a, c1 = c2 9 40 14 7 406 3* 
4   Constant a & c 6 15449 391 10 409 39* 
5   Constant a, c & k 3 12761 416 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2136 56 8 407 38* 
7  Constant k, a = 1, c1 = c2 5 5263 155 11 410 34* 
8  Constant k & c, a = 1,  2 13278 464 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table I.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 22 10 4 403 2 
3   Constant a, c1 = c2 9 51 10 7 406 5* 
4   Constant a & c 6 13367 336 10 409 40* 
5   Constant a, c & k 3 10922 354 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1772 44 8 407 40* 
7  Constant k, a = 1, c1 = c2 5 4726 136 11 410 35* 
8  Constant k & c, a = 1,  2 11272 391 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table I.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 63 9 4 403 7* 
3   Constant a, c1 = c2 9 81 10 7 406 8* 
4   Constant a & c 6 10883 275 10 409 40* 
5   Constant a, c & k 3 8903 289 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1704 42 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 4479 129 11 410 35* 
8  Constant k & c, a = 1,  2 9402 327 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table I.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2184 1806 1542 1402 1110 957 914 
2   c1 = c2 12 2201 1832 1541 1395 1116 959 935 
3   Constant a, c1 = c2 9 2196 1826 1537 1395 1116 980 963 
4   Constant a & c 6 2878 2768 2698 2601 2488 2425 2341 
5   Constant a, c & k 3 2877 2776 2713 2621 2511 2444 2360 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2432 2156 1926 1783 1679 1584 1562 
7  Constant k, a = 1, c1 = c2 5 2516 2359 2272 2184 2101 2048 2024 
8  Constant k & c, a = 1 2 2936 2827 2754 2659 2555 2484 2410 

 
Table I.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -989 -1099 -1192 -1213 -1299 -1334 -1380 
2   c1 = c2 8 -985 -1092 -1197 -1221 -1304 -1340 -1379 

3, 4, 5   Constant a & c 2 -996 -1101 -1195 -1215 -1289 -1306 -1324 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -668 -686 -694 -709 -715 -729 -737 
 
  



277 
 

Table I.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2249 1871 1607 1467 1174 1022 978 
2   c1 = c2 12 2249 1880 1589 1444 1165 1007 984 
3   Constant a, c1 = c2 9 2232 1863 1573 1431 1153 1016 999 
4   Constant a & c 6 2902 2792 2722 2625 2512 2449 2365 
5   Constant a, c & k 3 2889 2788 2725 2633 2523 2456 2372 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2464 2188 1958 1815 1711 1616 1594 
7  Constant k, a = 1, c1 = c2 5 2536 2379 2292 2204 2122 2068 2045 
8  Constant k & c, a = 1 2 2944 2835 2762 2667 2563 2492 2418 

 
Table I.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -949 -1059 -1152 -1173 -1259 -1294 -1340 
2   c1 = c2 8 -958 -1065 -1170 -1194 -1278 -1313 -1352 

3, 4, 5   Constant a & c 2 -990 -1095 -1188 -1208 -1283 -1299 -1317 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -668 -686 -694 -709 -715 -729 -737 
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Table I.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.1 -0.1 0.0 0.0 0.0 1 
 40/40 0.0 0.0 0.0 0.0 0.0 0 
 60/60 0.0 -0.1 0.1 0.0 0.0 1 
 80/80 0.0 0.0 0.1 0.1 0.0 1 

7.5 20/20 0.0 -0.1 0.1 0.1 0.0 1 
 40/40 0.1 -0.1 0.1 0.1 0.0 0 
 60/60 0.0 0.0 0.1 0.1 0.0 1 
 80/80 0.0 0.0 0.1 0.2 0.0 1 

10.0 20/20 -0.3 0.3 0.1 0.2 0.1 2 
 40/40 -0.1 0.1 0.1 0.2 0.0 0 
 60/60 -0.3 0.3 0.1 0.2 0.1 1 
 80/80 -0.3 0.3 0.2 0.3 0.1 1 

12.5 20/20 -0.6 0.5 0.1 0.3 0.1 3 
 40/40 -0.5 0.4 0.2 0.3 0.1 2 
 60/60 -0.7 0.6 0.2 0.3 0.2 2 
 80/80 -0.8 0.8 0.2 0.4 0.2 2 

15.0 20/20 -0.9 0.9 0.2 0.4 0.2 4 
 40/40 -1.0 1.0 0.2 0.4 0.2 3 
 60/60 -1.0 1.0 0.2 0.5 0.3 3 
 80/80 -0.7 0.6 0.4 0.5 0.1 1 

17.5 20/20 -1.5 1.4 0.2 0.6 0.3 5 
 40/40 -1.8 1.8 0.2 0.6 0.5 6 
 60/60 -1.2 1.1 0.4 0.6 0.3 2 
 80/80 -1.2 1.2 0.4 0.7 0.3 1 

20.0 20/20 -1.8 1.7 0.3 0.7 0.4 5 
 40/40 -2.2 2.1 0.3 0.8 0.5 5 
 60/60 -1.6 1.6 0.4 0.8 0.4 2 
  80/80 -1.7 1.6 0.6 1.0 0.4 2 

Note. %VAF = Percentage of Variance Accounted For. 
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Table I.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 -0.6 0.5 0.6 0.067 0.7 21% 93 
 40/40 -0.1 0.0 0.7 0.063 0.7 0% 97 
 60/60 0.3 -0.3 0.6 0.053 0.6 -13% 95 
 80/80 0.2 -0.1 0.6 0.047 0.6 -2% 96 

7.5 20/20 0.7 -0.8 1.4 0.057 1.4 -17% 98 
 40/40 1.0 -1.2 1.5 0.056 1.5 -22% 96 
 60/60 1.3 -1.5 1.5 0.051 1.5 -26% 98 
 80/80 0.8 -1.0 1.5 0.045 1.5 -20% 98 

10.0 20/20 1.4 -1.5 2.2 0.054 2.2 -19% 98 
 40/40 1.8 -1.7 2.2 0.051 2.2 -18% 98 
 60/60 2.1 -2.1 2.4 0.050 2.4 -23% 98 
 80/80 1.5 -1.7 2.4 0.044 2.4 -19% 97 

12.5 20/20 0.2 -0.3 2.6 0.048 2.6 -4% 98 
 40/40 3.1 -3.5 3.6 0.049 3.6 -27% 97 
 60/60 1.8 -1.8 3.3 0.046 3.3 -14% 98 
 80/80 0.8 -0.7 3.0 0.040 3.0 -5% 97 

15.0 20/20 1.3 -1.3 3.6 0.044 3.6 -9% 98 
 40/40 3.0 -3.1 4.0 0.043 4.0 -20% 99 
 60/60 0.7 -0.7 3.5 0.040 3.5 -4% 97 
 80/80 2.5 -2.7 4.0 0.036 4.0 -18% 98 

17.5 20/20 1.9 -1.9 4.3 0.039 4.3 -11% 98 
 40/40 2.9 -2.9 4.8 0.040 4.8 -15% 99 
 60/60 3.9 -4.4 5.6 0.040 5.6 -22% 98 
 80/80 4.6 -4.7 5.8 0.038 5.8 -20% 97 

20.0 20/20 2.6 -3.0 5.3 0.038 5.3 -16% 98 
 40/40 2.4 -2.4 6.0 0.040 6.0 -10% 97 
 60/60 1.9 -1.9 5.8 0.037 5.8 -9% 98 
  80/80 5.5 -5.3 6.8 0.036 6.8 -19% 97 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix J: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Linear Creature 

Type 

 
Table J.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 522 13.0 13.5 0.74 96 97 

 40/40 458 17.4 18.7 0.76 97 98 
 60/60 394 18.5 19.0 0.74 97 98 

 80/80 357 19.1 19.7 0.72 98 99 
7.5 20/20 498 17.6 18.0 0.77 97 98 

 40/40 420 20.8 21.6 0.77 98 99 

 60/60 318 17.6 17.7 0.76 99 99 

 80/80 263 15.9 15.9 0.76 99 99 
10.0 20/20 475 21.3 21.1 0.78 99 99 

 40/40 363 20.6 21.3 0.78 99 99 

 60/60 279 16.7 16.7 0.76 99 99 
 80/80 225 13.5 13.8 0.74 99 99 

12.5 20/20 461 24.7 25.3 0.80 99 100 

 40/40 329 20.3 20.9 0.78 99 99 
 60/60 249 16.0 16.0 0.76 99 99 

 80/80 201 12.4 12.5 0.73 99 99 
15.0 20/20 432 25.4 25.8 0.79 99 100 

 40/40 293 18.2 18.4 0.77 99 100 

 60/60 221 14.5 14.6 0.77 99 99 

 80/80 182 11.3 11.2 0.72 99 100 
17.5 20/20 408 26.4 26.9 0.79 99 100 

 40/40 269 17.4 17.1 0.76 99 100 

 60/60 204 12.8 12.9 0.74 99 99 
 80/80 165 9.8 9.8 0.71 99 100 

20.0 20/20 383 25.5 25.8 0.78 100 100 

 40/40 251 16.4 16.5 0.75 99 100 
 60/60 187 11.1 11.2 0.72 99 100 
  80/80 154 9.1 9.1 0.70 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table J.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 521 13.2 0.74 96 97 

 40/40 455 18.6 0.77 96 98 
 60/60 394 18.8 0.74 97 98 

 80/80 356 19.5 0.72 98 99 
7.5 20/20 497 17.9 0.77 97 98 

 40/40 419 21.4 0.77 98 99 

 60/60 318 17.6 0.76 99 99 

 80/80 263 15.9 0.76 99 99 
10.0 20/20 475 21.2 0.78 99 99 

 40/40 363 21.1 0.78 99 99 

 60/60 279 16.7 0.76 99 99 
 80/80 225 13.8 0.74 99 99 

12.5 20/20 461 25.1 0.80 99 100 

 40/40 329 20.7 0.78 99 99 
 60/60 249 16.0 0.76 99 99 

 80/80 201 12.4 0.73 99 99 
15.0 20/20 432 25.6 0.79 99 100 

 40/40 293 18.3 0.77 99 100 

 60/60 221 14.6 0.77 99 99 

 80/80 182 11.2 0.72 99 100 
17.5 20/20 408 26.7 0.79 99 100 

 40/40 269 17.3 0.76 99 100 

 60/60 204 12.8 0.74 99 99 
 80/80 165 9.8 0.71 99 100 

20.0 20/20 353 21.7 0.78 99 100 

 40/40 249 16.2 0.75 99 100 
 60/60 185 11.0 0.72 99 100 
  80/80 149 8.2 0.70 99 100 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table J.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 520 13.2 0.74 96 97 

 40/40 468 18.0  96 98 
 60/60 392 18.8  97 98 

 80/80 346 19.7  98 99 
7.5 20/20 501 17.7 0.76 97 98 

 40/40 422 21.3  98 99 

 60/60 316 17.7  99 99 

 80/80 261 16.0  99 99 
10.0 20/20 485 20.8 0.76 99 99 

 40/40 373 20.8  99 99 

 60/60 276 16.8  99 99 
 80/80 219 13.9  99 99 

12.5 20/20 484 24.6 0.77 99 99 

 40/40 337 20.5  99 99 
 60/60 247 16.0  99 99 

 80/80 193 12.7  99 99 
15.0 20/20 454 25.2 0.76 99 99 

 40/40 296 18.2  99 100 

 60/60 223 14.5  99 99 

 80/80 174 11.4  99 99 
17.5 20/20 445 26.4 0.75 99 99 

 40/40 275 17.2  99 99 

 60/60 202 12.9  99 99 
 80/80 159 10.0  99 99 

20.0 20/20 419 25.6 0.73 99 99 

 40/40 258 16.4  99 100 
 60/60 183 11.2  99 100 
  80/80 149 9.2   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table J.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 453 22.6 0.74 55 97 

 40/40  19.3  92 97 
 60/60  22.8  96 98 

 80/80  24.4  82 98 
7.5 20/20 402 24.6 0.75 57 98 

 40/40  21.8  95 99 

 60/60  25.5  97 99 

 80/80  28.1  82 98 
10.0 20/20 348 24.8 0.76 62 99 

 40/40  21.9  93 99 

 60/60  25.3  98 99 
 80/80  27.3  83 98 

12.5 20/20 328 25.9 0.76 62 99 

 40/40  22.8  95 99 
 60/60  26.4  98 99 

 80/80  28.7  83 98 
15.0 20/20 292 23.3 0.75 62 99 

 40/40  21.1  94 99 

 60/60  23.6  98 99 

 80/80  26.1  82 98 
17.5 20/20 262 21.0 0.74 62 99 

 40/40  19.5  93 99 

 60/60  21.2  98 99 
 80/80  22.9  82 98 

20.0 20/20 240 18.9 0.73 61 99 

 40/40  17.2  93 99 
 60/60  18.9  98 100 
  80/80   20.5   83 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table J.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 434 21.3 0.75 55 97 

 40/40    88 98 
 60/60    96 98 

 80/80    79 99 
7.5 20/20 380 23.2 0.76 55 98 

 40/40    91 99 

 60/60    97 99 

 80/80    79 99 
10.0 20/20 329 23.0 0.76 60 99 

 40/40    90 99 

 60/60    98 99 
 80/80    81 99 

12.5 20/20 310 24.2 0.76 60 99 

 40/40    91 99 
 60/60    98 99 

 80/80    81 99 
15.0 20/20 276 21.9 0.76 60 99 

 40/40    92 100 

 60/60    98 99 

 80/80    81 99 
17.5 20/20 250 19.8 0.75 60 99 

 40/40    91 99 

 60/60    98 99 
 80/80    81 99 

20.0 20/20 230 17.8 0.73 59 99 

 40/40    91 100 
 60/60    98 100 
  80/80       81 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table J.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 425 18.8 92 87 

 40/40 371 25.8 93 89 
 60/60 303 25.4 93 87 

 80/80 262 25.0 94 84 
7.5 20/20 414 25.3 94 91 

 40/40 329 27.8 97 90 

 60/60 252 23.2 96 90 

 80/80 209 20.5 96 89 
10.0 20/20 383 27.9 97 92 

 40/40 289 26.6 97 91 

 60/60 219 21.3 97 89 
 80/80 176 17.3 95 87 

12.5 20/20 370 31.9 98 93 

 40/40 262 26.1 97 92 
 60/60 196 19.8 97 89 

 80/80 157 15.7 95 86 
15.0 20/20 341 32.0 98 93 

 40/40 228 22.4 97 90 

 60/60 177 18.1 97 90 

 80/80 142 14.1 95 85 
17.5 20/20 318 32.3 98 93 

 40/40 210 21.4 97 90 

 60/60 159 15.8 96 87 
 80/80 130 12.3 94 82 

20.0 20/20 291 30.8 98 92 

 40/40 193 19.8 97 88 
 60/60 146 14.0 94 84 
  80/80 121 11.3 93 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table J.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 358 10.6 89 87 

 40/40  23.4 93 89 
 60/60  37.9 91 87 

 80/80  51.1 90 84 
7.5 20/20 321 11.9 90 91 

 40/40  26.2 97 90 

 60/60  41.8 93 90 

 80/80  55.6 90 89 
10.0 20/20 276 10.5 91 92 

 40/40  23.4 97 91 

 60/60  37.9 94 89 
 80/80  50.5 88 87 

12.5 20/20 254 10.7 91 93 

 40/40  23.9 97 92 
 60/60  38.0 94 89 

 80/80  50.0 87 86 
15.0 20/20 225 9.5 89 93 

 40/40  21.5 97 90 

 60/60  33.4 94 90 

 80/80  44.0 86 85 
17.5 20/20 201 8.3 87 93 

 40/40  18.8 97 90 

 60/60  29.4 93 87 
 80/80  38.5 84 82 

20.0 20/20 183 7.5 86 92 

 40/40  16.9 96 88 
 60/60  26.2 91 84 
  80/80   34.4 83 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table J.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 330 28 52 87 

 40/40   86 89 
 60/60   91 87 

 80/80   75 84 
7.5 20/20 287 29 51 91 

 40/40   90 90 

 60/60   94 90 

 80/80   77 89 
10.0 20/20 246 28 58 92 

 40/40   88 91 

 60/60   96 89 
 80/80   77 87 

12.5 20/20 228 28 58 93 

 40/40   89 92 
 60/60   96 89 

 80/80   77 86 
15.0 20/20 203 25 57 93 

 40/40   90 90 

 60/60   96 90 

 80/80   77 85 
17.5 20/20 183 23 58 93 

 40/40   88 90 

 60/60   95 87 
 80/80   75 82 

20.0 20/20 167 21 57 92 

 40/40   88 88 
 60/60   93 84 
  80/80     75 81 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table J.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 763 143 4 403 5* 
3   Constant a, c1 = c2 9 457 142 7 406 3* 
4   Constant a & c 6 35023 990 10 409 35* 
5   Constant a, c & k 3 29025 1048 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8602 303 8 407 28* 
7  Constant k, a = 1, c1 = c2 5 8912 372 11 410 24* 
8  Constant k & c, a = 1,  2 30767 1175 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table J.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 190 73 4 403 3* 
3   Constant a, c1 = c2 9 98 72 7 406 1 
4   Constant a & c 6 28657 771 10 409 37* 
5   Constant a, c & k 3 24412 840 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4362 156 8 407 28* 
7  Constant k, a = 1, c1 = c2 5 6961 257 11 410 27* 
8  Constant k & c, a = 1,  2 25681 940 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table J.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 79 36 4 403 2 
3   Constant a, c1 = c2 9 53 36 7 406 1 
4   Constant a & c 6 25700 663 10 409 39* 
5   Constant a, c & k 3 21348 708 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2985 94 8 407 32* 
7  Constant k, a = 1, c1 = c2 5 6424 207 11 410 31* 
8  Constant k & c, a = 1,  2 21744 772 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table J.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 104 19 4 403 5* 
3   Constant a, c1 = c2 9 94 20 7 406 5* 
4   Constant a & c 6 23118 583 10 409 40* 
5   Constant a, c & k 3 19252 625 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2324 64 8 407 36* 
7  Constant k, a = 1, c1 = c2 5 6456 191 11 410 34* 
8  Constant k & c, a = 1,  2 19590 682 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table J.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 20 13 4 403 2 
3   Constant a, c1 = c2 9 39 13 7 406 3* 
4   Constant a & c 6 18065 454 10 409 40* 
5   Constant a, c & k 3 15068 488 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2033 52 8 407 39* 
7  Constant k, a = 1, c1 = c2 5 5821 169 11 410 35* 
8  Constant k & c, a = 1,  2 15492 537 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table J.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 37 11 4 403 4* 
3   Constant a, c1 = c2 9 87 12 7 406 8* 
4   Constant a & c 6 15837 397 10 409 40* 
5   Constant a, c & k 3 12923 418 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1817 46 8 407 40* 
7  Constant k, a = 1, c1 = c2 5 5623 161 11 410 35* 
8  Constant k & c, a = 1,  2 13254 459 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table J.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 108 8 4 403 13* 
3   Constant a, c1 = c2 9 73 8 7 406 9* 
4   Constant a & c 6 12510 313 10 409 40* 
5   Constant a, c & k 3 10208 329 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1738 41 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 4826 136 11 410 35* 
8  Constant k & c, a = 1,  2 10587 366 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table J.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2061 1793 1501 1231 1074 985 832 
2   c1 = c2 12 2075 1795 1502 1245 1073 991 882 
3   Constant a, c1 = c2 9 2070 1788 1498 1252 1082 1028 886 
4   Constant a & c 6 2874 2770 2708 2654 2550 2495 2395 
5   Constant a, c & k 3 2895 2803 2732 2680 2577 2512 2413 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2384 2108 1895 1736 1654 1598 1553 
7  Constant k, a = 1, c1 = c2 5 2466 2312 2222 2190 2137 2118 2049 
8  Constant k & c, a = 1 2 2942 2849 2767 2715 2616 2551 2456 

 
Table J.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1026 -1138 -1207 -1261 -1335 -1380 -1470 
2   c1 = c2 8 -1025 -1142 -1213 -1268 -1340 -1385 -1474 

3, 4, 5   Constant a & c 2 -1034 -1151 -1211 -1245 -1309 -1321 -1397 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -672 -691 -705 -711 -727 -737 -750 
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Table J.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2125 1857 1566 1295 1139 1049 896 
2   c1 = c2 12 2124 1844 1551 1294 1121 1040 931 
3   Constant a, c1 = c2 9 2107 1825 1534 1288 1118 1065 922 
4   Constant a & c 6 2898 2794 2732 2679 2574 2519 2419 
5   Constant a, c & k 3 2907 2815 2744 2693 2589 2525 2425 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2416 2140 1927 1769 1687 1630 1585 
7  Constant k, a = 1, c1 = c2 5 2487 2332 2243 2210 2157 2138 2069 
8  Constant k & c, a = 1 2 2950 2857 2775 2723 2624 2559 2464 

 
Table J.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -986 -1097 -1167 -1221 -1295 -1340 -1430 
2   c1 = c2 8 -998 -1116 -1187 -1242 -1313 -1358 -1448 

3, 4, 5   Constant a & c 2 -1027 -1145 -1204 -1238 -1302 -1315 -1390 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -672 -691 -705 -711 -727 -737 -750 
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Table J.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -0.1 0.1 0.0 0.0 0.0 1 
 40/40 0.0 0.0 0.1 0.1 0.0 1 
 60/60 0.0 0.0 0.1 0.1 0.0 0 
 80/80 0.0 0.0 0.1 0.1 0.0 0 

7.5 20/20 -0.1 0.1 0.1 0.1 0.0 0 
 40/40 -0.2 0.1 0.1 0.1 0.0 2 
 60/60 -0.2 0.2 0.1 0.1 0.0 1 
 80/80 -0.2 0.2 0.1 0.2 0.1 1 

10.0 20/20 -0.4 0.4 0.1 0.2 0.1 2 
 40/40 -0.4 0.4 0.1 0.2 0.1 2 
 60/60 -0.5 0.5 0.2 0.3 0.1 2 
 80/80 -0.4 0.3 0.2 0.3 0.1 1 

12.5 20/20 -1.0 0.9 0.2 0.4 0.2 5 
 40/40 -0.9 0.8 0.2 0.4 0.2 4 
 60/60 -1.0 1.0 0.2 0.4 0.3 4 
 80/80 -0.8 0.8 0.3 0.5 0.2 2 

15.0 20/20 -1.3 1.3 0.2 0.5 0.3 5 
 40/40 -1.8 1.7 0.2 0.6 0.4 6 
 60/60 -1.5 1.5 0.3 0.6 0.4 4 
 80/80 -1.2 1.3 0.4 0.7 0.3 2 

17.5 20/20 -2.4 2.3 0.2 0.8 0.6 9 
 40/40 -1.9 2.0 0.3 0.8 0.5 5 
 60/60 -1.9 2.0 0.3 0.8 0.5 4 
 80/80 -1.3 1.3 0.6 0.9 0.3 1 

20.0 20/20 -2.8 2.8 0.3 1.0 0.7 7 
 40/40 -2.7 2.6 0.4 1.0 0.6 6 
 60/60 -1.9 1.8 0.6 1.0 0.4 2 
  80/80 -2.0 1.9 0.7 1.2 0.5 2 

Note. %VAF = Percentage of Variance Accounted For. 
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Table J.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 -0.1 0.0 0.6 0.052 0.6 -6% 98 
 40/40 0.6 -0.5 0.8 0.055 0.8 -14% 97 
 60/60 0.5 -0.4 0.7 0.050 0.7 -11% 96 
 80/80 1.2 -1.2 1.0 0.045 1.0 -29% 97 

7.5 20/20 -0.6 0.5 1.2 0.049 1.3 8% 98 
 40/40 1.1 -1.2 1.6 0.049 1.6 -22% 98 
 60/60 -0.1 0.0 1.3 0.043 1.3 -1% 97 
 80/80 1.5 -1.4 1.9 0.047 1.9 -16% 97 

10.0 20/20 1.3 -1.2 2.1 0.043 2.1 -14% 98 
 40/40 1.2 -1.1 2.2 0.044 2.2 -12% 98 
 60/60 1.9 -1.8 2.6 0.045 2.6 -16% 97 
 80/80 1.6 -1.4 2.5 0.039 2.5 -13% 97 

12.5 20/20 2.5 -2.4 3.4 0.043 3.4 -17% 98 
 40/40 2.1 -2.0 3.3 0.042 3.3 -14% 98 
 60/60 2.2 -2.1 3.3 0.039 3.3 -14% 98 
 80/80 2.0 -1.8 3.5 0.037 3.5 -11% 97 

15.0 20/20 3.5 -3.5 4.4 0.039 4.4 -20% 99 
 40/40 3.3 -3.7 4.9 0.040 4.9 -21% 98 
 60/60 2.5 -2.6 4.6 0.038 4.6 -15% 98 
 80/80 2.7 -2.7 5.1 0.038 5.1 -13% 96 

17.5 20/20 2.9 -2.5 5.1 0.038 5.1 -11% 98 
 40/40 2.5 -2.9 5.4 0.036 5.4 -16% 97 
 60/60 3.1 -2.9 5.3 0.035 5.3 -13% 98 
 80/80 2.8 -2.6 5.4 0.032 5.4 -12% 97 

20.0 20/20 2.7 -2.5 6.1 0.036 6.1 -9% 97 
 40/40 3.0 -2.9 6.3 0.035 6.3 -12% 97 
 60/60 3.8 -3.8 6.5 0.033 6.5 -15% 98 
  80/80 3.1 -3.2 7.1 0.032 7.1 -12% 96 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix K: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Exponential 

Creature Type 

 
Table K.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 544 13.3 13.7 0.74 99 99 

 40/40 510 18.8 19.5 0.74 99 99 
 60/60 461 21.4 22.1 0.72 99 99 

 80/80 419 23.2 23.6 0.72 99 99 
7.5 20/20 538 18.0 18.4 0.75 100 100 

 40/40 459 21.5 21.9 0.75 99 99 

 60/60 394 22.5 22.3 0.73 99 99 

 80/80 324 19.0 19.1 0.71 99 99 
10.0 20/20 521 22.2 22.4 0.76 99 100 

 40/40 427 23.4 23.5 0.74 99 99 

 60/60 331 19.7 19.5 0.73 99 99 
 80/80 273 16.8 16.7 0.70 99 99 

12.5 20/20 509 24.8 24.9 0.76 100 100 

 40/40 378 21.9 22.0 0.74 99 100 
 60/60 291 18.6 18.5 0.73 99 99 

 80/80 233 14.3 14.4 0.70 99 99 
15.0 20/20 477 26.4 26.4 0.77 100 100 

 40/40 343 20.7 20.7 0.73 99 100 

 60/60 260 16.0 15.9 0.70 99 99 

 80/80 209 12.9 12.9 0.68 99 99 
17.5 20/20 459 26.8 26.8 0.75 100 100 

 40/40 319 20.2 20.2 0.72 99 99 

 60/60 236 14.7 14.6 0.70 99 99 
 80/80 190 11.6 11.6 0.67 99 100 

20.0 20/20 434 27.0 26.9 0.75 100 100 

 40/40 290 18.4 18.3 0.72 99 100 
 60/60 219 13.5 13.5 0.68 99 99 
  80/80 174 10.4 10.4 0.66 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table K.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 544 13.5 0.74 99 99 

 40/40 509 19.3 0.74 99 99 
 60/60 460 21.8 0.73 99 99 

 80/80 418 23.4 0.72 99 99 
7.5 20/20 538 18.2 0.75 100 100 

 40/40 459 21.7 0.75 99 99 

 60/60 394 22.4 0.73 99 99 

 80/80 324 19.1 0.71 99 99 
10.0 20/20 522 22.3 0.76 99 100 

 40/40 427 23.5 0.74 99 99 

 60/60 331 19.7 0.73 99 99 
 80/80 273 16.7 0.70 99 99 

12.5 20/20 509 24.8 0.76 100 100 

 40/40 378 21.9 0.74 99 100 
 60/60 291 18.5 0.73 99 99 

 80/80 233 14.3 0.70 99 99 
15.0 20/20 477 26.4 0.77 100 100 

 40/40 343 20.7 0.73 99 100 

 60/60 260 15.9 0.70 99 99 

 80/80 209 12.9 0.68 99 99 
17.5 20/20 459 26.8 0.75 100 100 

 40/40 319 20.2 0.72 99 99 

 60/60 236 14.7 0.70 99 99 
 80/80 190 11.6 0.67 99 100 

20.0 20/20 434 27.0 0.75 100 100 

 40/40 290 18.4 0.72 99 100 
 60/60 219 13.5 0.68 99 99 
  80/80 174 10.4 0.66 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table K.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 549 13.4 0.73 99 99 

 40/40 514 19.2  98 99 
 60/60 457 21.8  99 99 

 80/80 411 23.4  99 99 
7.5 20/20 549 18.0 0.73 100 100 

 40/40 469 21.6  99 99 

 60/60 393 22.4  99 99 

 80/80 311 19.1  99 99 
10.0 20/20 548 21.9 0.73 99 99 

 40/40 437 23.4  99 99 

 60/60 328 19.7  99 99 
 80/80 260 16.7  99 99 

12.5 20/20 534 24.7 0.73 100 100 

 40/40 386 21.9  99 100 
 60/60 292 18.5  99 99 

 80/80 221 14.4  99 99 
15.0 20/20 524 26.3 0.72 100 99 

 40/40 352 20.7  99 100 

 60/60 254 15.9  99 99 

 80/80 199 12.9  99 99 
17.5 20/20 503 27.0 0.71 99 99 

 40/40 330 20.3  99 99 

 60/60 232 14.6  99 99 
 80/80 180 11.6  99 99 

20.0 20/20 486 27.5 0.70 99 99 

 40/40 300 18.4  99 100 
 60/60 214 13.5  99 99 
  80/80 166 10.4   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table K.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 515 24.6 0.73 68 99 

 40/40  22.2  95 99 
 60/60  24.9  98 99 

 80/80  27.2  85 98 
7.5 20/20 477 29.1 0.73 64 100 

 40/40  26.2  94 99 

 60/60  30.0  98 99 

 80/80  32.6  82 98 
10.0 20/20 437 30.3 0.73 61 99 

 40/40  27.5  94 99 

 60/60  31.2  98 99 
 80/80  34.0  81 98 

12.5 20/20 396 30.1 0.72 59 100 

 40/40  27.3  93 99 
 60/60  30.7  98 99 

 80/80  33.1  80 98 
15.0 20/20 351 27.2 0.71 57 99 

 40/40  24.8  92 99 

 60/60  27.7  97 99 

 80/80  29.9  79 98 
17.5 20/20 323 25.5 0.70 55 99 

 40/40  23.5  91 99 

 60/60  25.8  97 99 
 80/80  27.9  79 98 

20.0 20/20 291 23.1 0.69 52 99 

 40/40  21.3  90 99 
 60/60  23.2  97 99 
  80/80   24.9   78 98 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table K.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 496 23.5 0.73 67 99 

 40/40    93 99 
 60/60    98 99 

 80/80    82 99 
7.5 20/20 449 27.3 0.74 62 100 

 40/40    91 99 

 60/60    98 99 

 80/80    80 99 
10.0 20/20 407 28.2 0.73 58 99 

 40/40    90 99 

 60/60    98 99 
 80/80    79 99 

12.5 20/20 369 27.8 0.73 57 100 

 40/40    90 100 
 60/60    98 99 

 80/80    78 99 
15.0 20/20 327 25.0 0.72 55 99 

 40/40    88 100 

 60/60    98 99 

 80/80    78 99 
17.5 20/20 301 23.5 0.71 52 99 

 40/40    88 99 

 60/60    98 99 
 80/80    77 99 

20.0 20/20 274 21.4 0.70 50 99 

 40/40    87 100 
 60/60    98 99 
  80/80       76 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
 
  



301 
 

Table K.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 443 19.2 96 87 

 40/40 389 26.0 95 86 
 60/60 335 28.2 96 85 

 80/80 289 28.2 96 83 
7.5 20/20 424 24.9 97 88 

 40/40 345 27.9 97 88 

 60/60 284 27.7 96 86 

 80/80 229 23.4 94 83 
10.0 20/20 407 29.3 97 90 

 40/40 313 29.3 97 88 

 60/60 241 24.5 95 85 
 80/80 194 20.4 94 81 

12.5 20/20 379 31.2 97 89 

 40/40 277 27.0 96 87 
 60/60 212 22.2 95 85 

 80/80 168 17.4 93 80 
15.0 20/20 357 32.7 97 90 

 40/40 247 25.0 96 86 

 60/60 186 19.2 94 81 

 80/80 151 15.6 92 77 
17.5 20/20 331 32.5 97 89 

 40/40 228 24.0 95 85 

 60/60 169 17.5 93 80 
 80/80 138 14.2 90 75 

20.0 20/20 307 31.7 97 88 

 40/40 207 22.0 95 84 
 60/60 156 16.2 92 77 
  80/80 127 12.8 88 72 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table K.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 381 11.6 94 87 

 40/40  24.5 95 86 
 60/60  38.7 95 85 

 80/80  53.1 93 83 
7.5 20/20 337 12.3 93 88 

 40/40  26.1 97 88 

 60/60  41.7 94 86 

 80/80  56.5 89 83 
10.0 20/20 300 12.0 92 90 

 40/40  26.2 96 88 

 60/60  41.6 93 85 
 80/80  55.6 86 81 

12.5 20/20 267 11.3 90 89 

 40/40  24.5 96 87 
 60/60  39.1 93 85 

 80/80  51.9 83 80 
15.0 20/20 236 9.8 87 90 

 40/40  21.9 96 86 

 60/60  34.8 91 81 

 80/80  46.1 81 77 
17.5 20/20 214 9.1 85 89 

 40/40  20.3 95 85 

 60/60  32.0 90 80 
 80/80  42.0 79 75 

20.0 20/20 193 8.1 83 88 

 40/40  18.2 94 84 
 60/60  28.7 89 77 
  80/80   37.5 76 72 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table K.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 356 30 64 87 

 40/40   90 86 
 60/60   95 85 

 80/80   79 83 
7.5 20/20 311 33 60 88 

 40/40   89 88 

 60/60   95 86 

 80/80   75 83 
10.0 20/20 274 32 56 90 

 40/40   88 88 

 60/60   95 85 
 80/80   74 81 

12.5 20/20 243 30 54 89 

 40/40   86 87 
 60/60   95 85 

 80/80   72 80 
15.0 20/20 214 27 52 90 

 40/40   85 86 

 60/60   93 81 

 80/80   70 77 
17.5 20/20 195 25 49 89 

 40/40   84 85 

 60/60   92 80 
 80/80   68 75 

20.0 20/20 178 23 46 88 

 40/40   82 84 
 60/60   90 77 
  80/80     65 72 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
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Table K.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 348 55 4 403 6* 
3   Constant a, c1 = c2 9 185 54 7 406 3* 
4   Constant a & c 6 33979 881 10 409 39* 
5   Constant a, c & k 3 28183 939 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 8353 215 8 407 39* 
7  Constant k, a = 1, c1 = c2 5 8601 281 11 410 31* 
8  Constant k & c, a = 1,  2 30722 1091 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table K.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 108 23 4 403 5* 
3   Constant a, c1 = c2 9 98 23 7 406 4* 
4   Constant a & c 6 31729 797 10 409 40* 
5   Constant a, c & k 3 26846 868 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 5560 131 8 407 42* 
7  Constant k, a = 1, c1 = c2 5 7725 229 11 410 34* 
8  Constant k & c, a = 1,  2 28025 971 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table K.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 31 21 4 403 1 
3   Constant a, c1 = c2 9 89 22 7 406 4* 
4   Constant a & c 6 27769 699 10 409 40* 
5   Constant a, c & k 3 23552 763 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4109 101 8 407 41* 
7  Constant k, a = 1, c1 = c2 5 7353 218 11 410 34* 
8  Constant k & c, a = 1,  2 24495 850 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table K.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 6 14 4 403 0 
3   Constant a, c1 = c2 9 55 14 7 406 4* 
4   Constant a & c 6 23211 581 10 409 40* 
5   Constant a, c & k 3 19387 625 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3472 82 8 407 43* 
7  Constant k, a = 1, c1 = c2 5 6819 196 11 410 35* 
8  Constant k & c, a = 1,  2 20366 704 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table K.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 3 10 4 403 0 
3   Constant a, c1 = c2 9 95 11 7 406 8* 
4   Constant a & c 6 20197 503 10 409 40* 
5   Constant a, c & k 3 16877 542 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3042 69 8 407 44* 
7  Constant k, a = 1, c1 = c2 5 6763 191 11 410 35* 
8  Constant k & c, a = 1,  2 17679 609 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table K.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 1 8 4 403 0 
3   Constant a, c1 = c2 9 75 9 7 406 8* 
4   Constant a & c 6 16330 407 10 409 40* 
5   Constant a, c & k 3 13561 436 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2717 61 8 407 44* 
7  Constant k, a = 1, c1 = c2 5 5919 166 11 410 36* 
8  Constant k & c, a = 1,  2 14400 496 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table K.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 2 7 4 403 0 
3   Constant a, c1 = c2 9 88 8 7 406 10* 
4   Constant a & c 6 13854 346 10 409 40* 
5   Constant a, c & k 3 11340 365 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2448 55 8 407 44* 
7  Constant k, a = 1, c1 = c2 5 5355 151 11 410 36* 
8  Constant k & c, a = 1,  2 12074 416 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table K.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1657 1301 1277 1100 964 873 828 
2   c1 = c2 12 1676 1313 1275 1094 958 865 821 
3   Constant a, c1 = c2 9 1668 1319 1294 1115 1016 923 896 
4   Constant a & c 6 2826 2784 2730 2653 2593 2505 2437 
5   Constant a, c & k 3 2850 2817 2763 2680 2621 2530 2456 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2241 2035 1927 1838 1771 1718 1674 
7  Constant k, a = 1, c1 = c2 5 2350 2264 2243 2200 2189 2132 2090 
8  Constant k & c, a = 1 2 2911 2863 2807 2728 2668 2583 2510 

 
Table K.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1216 -1334 -1341 -1400 -1458 -1490 -1524 
2   c1 = c2 8 -1216 -1336 -1349 -1407 -1466 -1498 -1532 

3, 4, 5   Constant a & c 2 -1223 -1333 -1326 -1385 -1385 -1430 -1447 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -670 -693 -710 -726 -740 -752 -765 
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Table K.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 1721 1366 1342 1165 1029 938 893 
2   c1 = c2 12 1724 1362 1324 1143 1006 914 870 
3   Constant a, c1 = c2 9 1704 1355 1330 1151 1052 959 933 
4   Constant a & c 6 2850 2809 2754 2677 2617 2529 2461 
5   Constant a, c & k 3 2862 2829 2775 2692 2633 2542 2468 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2273 2067 1960 1870 1803 1750 1707 
7  Constant k, a = 1, c1 = c2 5 2370 2284 2263 2220 2209 2152 2110 
8  Constant k & c, a = 1 2 2919 2871 2815 2736 2676 2591 2518 

 
Table K.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -1176 -1294 -1301 -1360 -1418 -1450 -1484 
2   c1 = c2 8 -1189 -1309 -1322 -1380 -1439 -1471 -1505 

3, 4, 5   Constant a & c 2 -1217 -1327 -1319 -1378 -1378 -1423 -1440 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -670 -693 -710 -726 -740 -752 -765 
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Table K.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 -0.2 0.2 0.1 0.1 0.1 2 
 40/40 -0.1 0.1 0.1 0.1 0.0 1 
 60/60 -0.3 0.3 0.1 0.2 0.1 1 
 80/80 -0.5 0.4 0.1 0.2 0.1 3 

7.5 20/20 -0.7 0.7 0.1 0.3 0.2 3 
 40/40 -0.8 0.8 0.1 0.3 0.2 4 
 60/60 -0.6 0.6 0.2 0.4 0.2 2 
 80/80 -0.6 0.6 0.3 0.4 0.1 1 

10.0 20/20 -1.3 1.3 0.2 0.5 0.3 5 
 40/40 -1.2 1.2 0.3 0.5 0.3 4 
 60/60 -1.1 1.2 0.3 0.6 0.3 3 
 80/80 -1.0 1.1 0.4 0.7 0.3 2 

12.5 20/20 -1.8 1.8 0.3 0.8 0.4 5 
 40/40 -1.8 1.8 0.3 0.8 0.4 4 
 60/60 -2.2 2.3 0.3 0.9 0.6 5 
 80/80 -1.5 1.5 0.6 1.0 0.4 2 

15.0 20/20 -3.0 3.0 0.3 1.1 0.7 8 
 40/40 -2.8 2.8 0.4 1.1 0.7 5 
 60/60 -2.4 2.5 0.6 1.2 0.6 3 
 80/80 -2.1 2.1 0.8 1.3 0.5 2 

17.5 20/20 -3.7 3.7 0.4 1.4 0.9 7 
 40/40 -3.2 3.3 0.5 1.4 0.9 5 
 60/60 -3.6 3.6 0.6 1.5 0.9 4 
 80/80 -2.1 2.2 1.1 1.6 0.6 1 

20.0 20/20 -4.3 4.3 0.6 1.7 1.1 6 
 40/40 -3.5 3.6 0.8 1.7 0.9 3 
 60/60 -3.6 3.6 0.9 1.8 0.9 3 
  80/80 -2.1 1.9 1.5 2.0 0.4 1 

Note. %VAF = Percentage of Variance Accounted For. 
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Table K.21. Quadratic-exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 0.5 -0.6 1.2 0.039 1.2 -14% 95 
 40/40 0.7 -0.7 1.0 0.032 1.0 -18% 96 
 60/60 1.0 -0.9 1.2 0.035 1.2 -18% 96 
 80/80 0.5 -0.5 1.3 0.033 1.3 -11% 94 

7.5 20/20 0.6 -0.6 1.8 0.031 1.8 -9% 97 
 40/40 0.8 -0.9 1.9 0.032 1.9 -13% 97 
 60/60 0.5 -0.5 1.8 0.028 1.8 -8% 97 
 80/80 0.5 -0.5 2.0 0.027 2.0 -6% 96 

10.0 20/20 0.6 -0.7 3.0 0.032 3.0 -6% 97 
 40/40 1.2 -1.0 2.6 0.028 2.6 -7% 96 
 60/60 0.9 -0.6 2.8 0.028 2.8 -4% 97 
 80/80 0.5 -0.6 3.0 0.026 3.0 -5% 96 

12.5 20/20 3.0 -2.8 4.2 0.029 4.2 -16% 96 
 40/40 2.7 -2.4 4.1 0.029 4.1 -13% 96 
 60/60 1.5 -1.3 4.0 0.027 4.0 -7% 96 
 80/80 2.3 -2.3 4.5 0.025 4.5 -13% 95 

15.0 20/20 2.1 -2.0 4.9 0.026 4.9 -10% 97 
 40/40 1.1 -1.0 5.0 0.027 5.0 -4% 96 
 60/60 1.6 -1.8 5.3 0.026 5.3 -9% 95 
 80/80 1.5 -1.3 5.2 0.024 5.2 -5% 95 

17.5 20/20 1.1 -1.1 5.8 0.025 5.8 -4% 96 
 40/40 3.5 -3.3 6.1 0.024 6.1 -12% 96 
 60/60 2.4 -2.4 6.4 0.025 6.4 -9% 96 
 80/80 1.9 -1.8 6.5 0.023 6.5 -6% 95 

20.0 20/20 3.5 -3.7 7.6 0.026 7.6 -13% 95 
 40/40 3.4 -3.3 7.3 0.024 7.3 -11% 96 
 60/60 1.6 -1.3 7.1 0.024 7.1 -4% 95 
  80/80 3.6 -3.7 7.8 0.022 7.8 -12% 95 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix L: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Gaussian 

Creature Type 

 
Table L.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

    %VAF 
k c1 c2 a QLOE ML 

5.0 20/20 504 10.0 11.0 0.72 93 95 

 40/40 497 15.3 16.6 0.68 94 95 
 60/60 410 16.0 17.5 0.71 96 97 

 80/80 360 17.3 17.9 0.73 96 97 
7.5 20/20 486 13.9 14.3 0.74 96 97 

 40/40 394 14.3 14.9 0.72 94 97 

 60/60 332 15.0 15.6 0.73 97 98 

 80/80 281 15.0 15.1 0.75 98 99 
10.0 20/20 458 15.2 15.8 0.74 96 98 

 40/40 349 15.2 15.9 0.76 97 98 

 60/60 278 13.9 14.5 0.76 98 99 
 80/80 244 13.1 13.4 0.74 98 99 

12.5 20/20 426 16.8 17.6 0.77 97 98 

 40/40 321 14.9 15.5 0.76 99 99 
 60/60 261 14.4 14.7 0.76 98 99 

 80/80 223 12.8 12.8 0.74 99 99 
15.0 20/20 411 18.5 18.6 0.77 99 99 

 40/40 296 15.4 15.9 0.78 99 99 

 60/60 237 12.9 13.1 0.75 99 99 

 80/80 201 11.3 11.4 0.73 99 99 
17.5 20/20 397 19.6 20.6 0.78 99 100 

 40/40 278 15.0 15.3 0.77 99 99 

 60/60 221 12.4 12.5 0.75 99 99 
 80/80 189 11.2 11.3 0.74 99 99 

20.0 20/20 384 21.2 21.6 0.78 99 100 

 40/40 263 14.8 15.0 0.77 99 99 
 60/60 208 12.5 12.6 0.76 99 99 
  80/80 174 10.5 10.6 0.75 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law  
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Table L.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 500 10.9 0.73 92 95 

 40/40 489 16.2 0.70 94 94 
 60/60 404 17.1 0.72 95 97 

 80/80 359 17.7 0.73 96 97 
7.5 20/20 486 14.2 0.75 96 97 

 40/40 393 14.6 0.72 94 97 

 60/60 331 15.4 0.73 97 98 

 80/80 281 15.1 0.75 98 99 
10.0 20/20 456 15.6 0.75 96 97 

 40/40 348 15.6 0.76 97 98 

 60/60 278 14.4 0.77 98 99 
 80/80 244 13.3 0.74 98 99 

12.5 20/20 425 17.4 0.77 97 98 

 40/40 320 15.3 0.76 99 99 
 60/60 261 14.6 0.76 98 99 

 80/80 223 12.8 0.74 99 99 
15.0 20/20 411 18.5 0.77 99 99 

 40/40 296 15.7 0.78 99 99 

 60/60 237 13.0 0.75 99 99 

 80/80 201 11.3 0.73 99 99 
17.5 20/20 396 20.3 0.78 99 99 

 40/40 278 15.1 0.77 99 99 

 60/60 221 12.4 0.75 99 99 
 80/80 189 11.2 0.74 99 99 

20.0 20/20 384 21.4 0.78 99 100 

 40/40 263 14.9 0.77 99 99 
 60/60 208 12.6 0.76 99 99 
  80/80 174 10.6 0.75 99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table L.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 504 10.7 0.72 92 95 

 40/40 474 16.4  94 94 
 60/60 406 17.0  95 97 

 80/80 365 17.6  96 97 
7.5 20/20 490 14.1 0.74 96 97 

 40/40 387 14.9  94 97 

 60/60 330 15.5  97 98 

 80/80 285 14.9  98 99 
10.0 20/20 453 15.7 0.75 96 97 

 40/40 351 15.5  97 98 

 60/60 283 14.2  98 99 
 80/80 241 13.4  98 99 

12.5 20/20 432 17.1 0.76 97 98 

 40/40 320 15.3  99 99 
 60/60 263 14.5  98 99 

 80/80 218 13.0  99 99 
15.0 20/20 419 18.3 0.75 99 99 

 40/40 304 15.4  99 99 

 60/60 235 13.0  99 99 

 80/80 195 11.5  99 99 
17.5 20/20 409 20.0 0.76 99 99 

 40/40 281 15.0  99 99 

 60/60 219 12.5  99 99 
 80/80 185 11.3  99 99 

20.0 20/20 395 21.2 0.76 99 100 

 40/40 264 14.9  99 99 
 60/60 208 12.6  99 99 
  80/80 171 10.7   99 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table L.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 457 18.2 0.71 48 95 

 40/40  16.1  92 95 
 60/60  17.8  93 97 

 80/80  19.8  81 96 
7.5 20/20 383 18.1 0.73 59 97 

 40/40  16.3  90 97 

 60/60  18.3  95 98 

 80/80  20.4  83 97 
10.0 20/20 342 18.7 0.75 55 97 

 40/40  16.6  94 98 

 60/60  18.9  96 98 
 80/80  20.8  82 98 

12.5 20/20 316 18.8 0.75 59 98 

 40/40  16.9  96 99 
 60/60  19.2  97 99 

 80/80  21.3  82 98 
15.0 20/20 290 18.6 0.75 60 99 

 40/40  16.7  94 99 

 60/60  18.8  97 99 

 80/80  20.6  83 98 
17.5 20/20 275 18.6 0.75 64 99 

 40/40  16.9  95 99 

 60/60  19.0  98 99 
 80/80  20.5  84 98 

20.0 20/20 260 18.9 0.76 69 100 

 40/40  17.4  95 99 
 60/60  19.2  98 99 
  80/80   20.8   85 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table L.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

   %VAF 
k c a QLOE ML 

5.0 20/20 443 17.4 0.72 49 95 

 40/40    88 94 
 60/60    93 97 

 80/80    77 97 
7.5 20/20 370 17.2 0.73 58 97 

 40/40    88 97 

 60/60    95 98 

 80/80    80 99 
10.0 20/20 330 17.7 0.75 54 97 

 40/40    91 98 

 60/60    96 99 
 80/80    79 99 

12.5 20/20 303 17.8 0.76 57 98 

 40/40    93 99 
 60/60    97 99 

 80/80    80 99 
15.0 20/20 279 17.7 0.75 59 99 

 40/40    92 99 

 60/60    98 99 

 80/80    81 99 
17.5 20/20 264 17.7 0.76 63 99 

 40/40    93 99 

 60/60    98 99 
 80/80    83 99 

20.0 20/20 250 17.8 0.76 67 100 

 40/40    93 99 
 60/60    98 99 
  80/80       84 99 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table L.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 425 16.9 87 84 

 40/40 365 22.4 87 76 
 60/60 306 22.5 90 82 

 80/80 273 23.2 93 83 
7.5 20/20 400 20.5 93 87 

 40/40 316 21.8 88 85 

 60/60 260 20.8 93 85 

 80/80 225 20.1 95 88 
10.0 20/20 368 21.8 92 87 

 40/40 284 21.1 94 89 

 60/60 228 18.8 95 90 
 80/80 194 17.4 95 87 

12.5 20/20 353 24.1 94 91 

 40/40 259 20.5 96 89 
 60/60 211 18.7 96 89 

 80/80 178 16.7 96 87 
15.0 20/20 335 25.2 96 91 

 40/40 244 20.6 97 91 

 60/60 192 17.3 96 88 

 80/80 160 14.8 95 86 
17.5 20/20 319 26.3 97 91 

 40/40 224 19.4 97 90 

 60/60 178 16.0 96 88 
 80/80 151 14.2 96 86 

20.0 20/20 304 27.1 98 92 

 40/40 212 19.1 97 90 
 60/60 171 16.1 97 90 
  80/80 143 13.6 96 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law 
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Table L.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 359 9.4 83 84 

 40/40  21.3 87 76 
 60/60  33.9 89 82 

 80/80  44.5 89 83 
7.5 20/20 313 9.2 88 87 

 40/40  21.2 88 85 

 60/60  33.6 91 85 

 80/80  44.7 90 88 
10.0 20/20 283 9.4 86 87 

 40/40  21.0 94 89 

 60/60  33.2 93 90 
 80/80  44.5 89 87 

12.5 20/20 260 9.3 88 91 

 40/40  20.8 96 89 
 60/60  32.5 94 89 

 80/80  43.5 89 87 
15.0 20/20 240 9.0 89 91 

 40/40  19.6 97 91 

 60/60  31.1 93 88 

 80/80  41.4 87 86 
17.5 20/20 223 8.7 89 91 

 40/40  18.9 97 90 

 60/60  29.5 94 88 
 80/80  39.0 89 86 

20.0 20/20 210 8.6 90 92 

 40/40  18.5 97 90 
 60/60  28.4 95 90 
  80/80   37.3 90 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
  



319 
 

Table L.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For 

Mutation 
Rate 

Reinforcer 
Magnitude 

  %VAF 
k c QLOE ML 

5.0 20/20 332 23 44 84 

 40/40   82 76 
 60/60   88 82 

 80/80   73 83 
7.5 20/20 285 23 55 87 

 40/40   82 85 

 60/60   91 85 

 80/80   77 88 
10.0 20/20 256 23 49 87 

 40/40   88 89 

 60/60   94 90 
 80/80   75 87 

12.5 20/20 235 22 54 91 

 40/40   90 89 
 60/60   95 89 

 80/80   77 87 
15.0 20/20 217 22 56 91 

 40/40   90 91 

 60/60   95 88 

 80/80   77 86 
17.5 20/20 202 21 60 91 

 40/40   91 90 

 60/60   95 88 
 80/80   79 86 

20.0 20/20 194 22 65 92 

 40/40   91 90 
 60/60   96 90 
  80/80     81 88 

Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = 
Matching Law. The ML fit for this model is identical to Model 6. 
 
  



320 
 

Table L.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 2786 230 4 403 12* 
3   Constant a, c1 = c2 9 1587 228 7 406 7* 
4   Constant a & c 6 31412 967 10 409 32* 
5   Constant a, c & k 3 25459 1001 13 412 25* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 10728 411 8 407 26* 
7  Constant k, a = 1, c1 = c2 5 10557 482 11 410 22* 
8  Constant k & c, a = 1,  2 29078 1183 14 413 25* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table L.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 326 126 4 403 3* 
3   Constant a, c1 = c2 9 214 125 7 406 2 
4   Constant a & c 6 26393 766 10 409 34* 
5   Constant a, c & k 3 21523 799 13 412 27* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 6453 248 8 407 26* 
7  Constant k, a = 1, c1 = c2 5 8266 342 11 410 24* 
8  Constant k & c, a = 1,  2 23699 923 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table L.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 390 84 4 403 5* 
3   Constant a, c1 = c2 9 239 84 7 406 3* 
4   Constant a & c 6 22236 623 10 409 36* 
5   Constant a, c & k 3 18200 653 13 412 28* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 4781 173 8 407 28* 
7  Constant k, a = 1, c1 = c2 5 6854 263 11 410 26* 
8  Constant k & c, a = 1,  2 19715 747 14 413 26* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table L.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 296 57 4 403 5* 
3   Constant a, c1 = c2 9 155 56 7 406 3* 
4   Constant a & c 6 19446 529 10 409 37* 
5   Constant a, c & k 3 16227 565 13 412 29* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 3292 118 8 407 28* 
7  Constant k, a = 1, c1 = c2 5 5934 212 11 410 28* 
8  Constant k & c, a = 1,  2 17205 636 14 413 27* 

Note. N = 416; * p < 0.05 that model 1 is different from this model  
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Table L.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 36 27 4 403 1 
3   Constant a, c1 = c2 9 27 27 7 406 1 
4   Constant a & c 6 17794 462 10 409 39* 
5   Constant a, c & k 3 14715 491 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2671 79 8 407 34* 
7  Constant k, a = 1, c1 = c2 5 5439 172 11 410 32* 
8  Constant k & c, a = 1,  2 15329 546 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model 
 
Table L.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 186 19 4 403 10* 
3   Constant a, c1 = c2 9 123 19 7 406 6* 
4   Constant a & c 6 15564 397 10 409 39* 
5   Constant a, c & k 3 12838 422 13 412 30* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 2217 61 8 407 37* 
7  Constant k, a = 1, c1 = c2 5 5250 158 11 410 33* 
8  Constant k & c, a = 1,  2 13425 472 14 413 28* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   
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Table L.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0% 

Comparison 
Model 

    df  
Assumptions Parameters Num Den Num Den F 

Modern Quantitative Law of Effect       
2   c1 = c2 12 38 13 4 403 3* 
3   Constant a, c1 = c2 9 35 13 7 406 3* 
4   Constant a & c 6 13793 349 10 409 39* 
5   Constant a, c & k 3 11316 369 13 412 31* 

Classic Quantitative Law of Effect       
6   a = 1, c1 = c2 8 1883 49 8 407 38* 
7  Constant k, a = 1, c1 = c2 5 4709 138 11 410 34* 
8  Constant k & c, a = 1,  2 11603 405 14 413 29* 

Note. N = 416; * p < 0.05 that model 1 is different from this model   



324 
 

Table L.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2227 2018 1843 1678 1390 1203 1060 
2   c1 = c2 12 2272 2021 1855 1692 1387 1237 1065 
3   Constant a, c1 = c2 9 2266 2017 1850 1684 1383 1237 1066 
4   Constant a & c 6 2865 2768 2682 2613 2557 2495 2441 
5   Constant a, c & k 3 2876 2782 2698 2638 2579 2517 2461 

Classic Quantitative Law of Effect        
6   a = 1, c1 = c2 8 2510 2300 2152 1992 1826 1714 1627 
7  Constant k, a = 1, c1 = c2 5 2574 2431 2322 2233 2146 2109 2055 
8  Constant k & c, a = 1 2 2944 2841 2753 2686 2623 2562 2499 

 
Table L.17. Akaike Information Criteria (AIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -954 -1014 -1050 -1135 -1228 -1296 -1297 
2   c1 = c2 8 -943 -1019 -1053 -1139 -1232 -1291 -1302 

3, 4, 5   Constant a & c 2 -952 -1029 -1061 -1143 -1225 -1284 -1306 
Classic Quantitative Law of Effect        

6, 7, 8   a = 1, c1 = c2 0 -653 -670 -678 -689 -699 -705 -713 
 
  



325 
 

Table L.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits 

   Mutation Rate 
Model Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 16 2291 2083 1908 1743 1454 1267 1124 
2   c1 = c2 12 2321 2070 1903 1741 1435 1286 1113 
3   Constant a, c1 = c2 9 2302 2053 1886 1721 1419 1273 1103 
4   Constant a & c 6 2889 2792 2706 2638 2581 2519 2465 
5   Constant a, c & k 3 2888 2794 2710 2650 2592 2529 2473 

Classic Quantitative Law of Effect         
6   a = 1, c1 = c2 8 2543 2333 2184 2024 1858 1747 1659 
7  Constant k, a = 1, c1 = c2 5 2594 2451 2342 2253 2167 2130 2075 
8  Constant k & c, a = 1 2 2952 2849 2761 2694 2631 2570 2507 

 
Table L.19. Bayes Information Criteria (BIC) for Matching Law Fits 

   Mutation Rate 
Model(s) Assumptions Parameters 5.0 7.5 10.0 12.5 15.0 17.5 20.0 
Modern Quantitative Law of Effect        

1   None 12 -914 -974 -1010 -1095 -1188 -1256 -1256 
2   c1 = c2 8 -917 -992 -1026 -1113 -1205 -1264 -1276 

3, 4, 5   Constant a & c 2 -946 -1022 -1054 -1137 -1218 -1278 -1299 
Classic Quantitative Law of Effect         

6, 7, 8   a = 1, c1 = c2 0 -653 -670 -678 -689 -699 -705 -713 
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Table L.20. Quadratic Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c CMax CΔ %VAF 

5.0 20/20 0.0 0.0 0.0 0.0 0.0 4 
 40/40 0.0 -0.1 0.0 0.0 0.0 2 
 60/60 0.1 -0.1 0.0 0.0 0.0 2 
 80/80 0.0 0.0 0.0 0.1 0.0 0 

7.5 20/20 0.0 0.0 0.0 0.0 0.0 1 
 40/40 0.1 -0.1 0.1 0.0 0.0 2 
 60/60 0.0 -0.1 0.1 0.0 0.0 1 
 80/80 -0.1 0.1 0.1 0.1 0.0 0 

10.0 20/20 0.1 -0.1 0.1 0.1 0.0 1 
 40/40 0.0 0.0 0.1 0.1 0.0 1 
 60/60 -0.2 0.1 0.1 0.1 0.0 2 
 80/80 -0.1 0.1 0.1 0.1 0.0 0 

12.5 20/20 -0.1 0.1 0.1 0.1 0.0 1 
 40/40 -0.2 0.2 0.1 0.1 0.0 1 
 60/60 -0.3 0.3 0.1 0.2 0.1 1 
 80/80 -0.2 0.2 0.2 0.2 0.0 1 

15.0 20/20 -0.2 0.2 0.1 0.2 0.1 1 
 40/40 -0.4 0.3 0.1 0.2 0.1 2 
 60/60 -0.3 0.3 0.2 0.2 0.1 1 
 80/80 -0.3 0.3 0.2 0.3 0.1 1 

17.5 20/20 -0.4 0.3 0.2 0.3 0.1 2 
 40/40 -0.7 0.6 0.2 0.3 0.1 3 
 60/60 -0.7 0.6 0.2 0.3 0.1 3 
 80/80 -0.7 0.7 0.2 0.4 0.2 2 

20.0 20/20 -1.3 1.3 0.1 0.4 0.3 7 
 40/40 -1.0 1.0 0.2 0.4 0.2 3 
 60/60 -1.0 1.0 0.2 0.5 0.2 3 
  80/80 -0.9 0.8 0.4 0.5 0.2 2 

Note. %VAF = Percentage of Variance Accounted For. 
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Table L.21. Quadratic-Exponential Fit to Changeover Behaviors 
 
Mutation 

Rate 
Reinforcer 
Magnitude a b c d CMax CΔ% %VAF 

5.0 20/20 1.2 -1.4 0.8 0.072 0.8 -55% 94 
 40/40 0.6 -0.6 0.4 0.052 0.4 -42% 96 
 60/60 0.5 -0.6 0.5 0.056 0.5 -34% 96 
 80/80 0.4 -0.5 0.5 0.047 0.5 -30% 96 

7.5 20/20 -0.2 0.1 0.6 0.054 0.6 0% 96 
 40/40 0.3 -0.3 0.7 0.055 0.7 -12% 96 
 60/60 0.6 -0.7 0.9 0.052 0.9 -22% 98 
 80/80 0.0 0.0 0.8 0.048 0.8 -4% 96 

10.0 20/20 0.5 -0.5 0.9 0.049 0.9 -12% 97 
 40/40 0.6 -0.7 1.1 0.049 1.1 -18% 98 
 60/60 0.6 -0.6 1.2 0.049 1.2 -10% 98 
 80/80 0.5 -0.4 1.4 0.048 1.4 -5% 97 

12.5 20/20 2.0 -1.7 2.1 0.058 2.1 -17% 98 
 40/40 1.6 -1.8 2.2 0.054 2.2 -23% 98 
 60/60 0.9 -0.8 2.0 0.050 2.0 -8% 97 
 80/80 1.6 -1.7 2.4 0.047 2.4 -19% 97 

15.0 20/20 0.7 -0.9 2.2 0.047 2.2 -12% 98 
 40/40 2.1 -2.2 2.5 0.047 2.5 -22% 98 
 60/60 1.7 -1.6 2.6 0.046 2.6 -14% 98 
 80/80 1.3 -1.5 2.6 0.040 2.6 -17% 97 

17.5 20/20 1.8 -2.3 3.2 0.046 3.2 -21% 98 
 40/40 2.7 -3.0 3.5 0.046 3.5 -23% 99 
 60/60 1.3 -1.6 3.0 0.042 3.0 -15% 98 
 80/80 2.1 -1.9 3.2 0.039 3.2 -12% 98 

20.0 20/20 1.3 -1.4 3.4 0.042 3.4 -12% 98 
 40/40 1.9 -1.8 3.5 0.042 3.5 -12% 99 
 60/60 2.2 -2.5 4.2 0.042 4.2 -17% 98 
  80/80 1.4 -1.5 3.7 0.037 3.7 -10% 98 

Note. %VAF = Percentage of Variance Accounted For. 
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Appendix M: Experiment 2 Bivariate Matching Fitting Measures 

 
Table M.1. Bivariate Matching Fits to the Behavior of the Exponential-Bitwise-Bitflip Creature 
Type 
 

 

Note. %VAF = Percentage of Variance Accounted For. 0.5, 1.0, and 2.5% mutation rates were unable to be run 
using this algorithm. 
 
Table M.2. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Bitflip Creature 
Type 
 

 

Note. %VAF = Percentage of Variance Accounted For.   

Mutation Rate ar am b %VAF 
0.5     
1.0     
2.5     
5.0 0.84 0.55 1.01 100 
7.5 0.87 0.55 1.01 100 
10.0 0.87 0.53 0.99 100 
12.5 0.85 0.52 1.00 100 
15.0 0.82 0.49 0.99 100 
17.5 0.78 0.47 0.99 100 
20.0 0.74 0.45 1.01 99 
25.0 0.65 0.40 1.00 99 
30.0 0.57 0.37 1.00 99 
35.0 0.51 0.34 1.00 98 
40.0 0.46 0.31 1.00 98 
45.0 0.40 0.29 1.00 97 
50.0 0.36 0.27 1.00 97 

Mutation Rate ar am b %VAF 
0.5 0.57 0.31 0.95 97 
1.0 0.67 0.27 0.98 100 
2.5 0.76 0.35 0.98 100 
5.0 0.80 0.39 1.00 100 
7.5 0.80 0.43 0.99 100 
10.0 0.79 0.44 0.98 100 
12.5 0.75 0.44 1.01 100 
15.0 0.72 0.43 1.00 100 
17.5 0.69 0.41 1.00 99 
20.0 0.65 0.40 1.00 99 
25.0 0.57 0.37 1.00 99 
30.0 0.51 0.34 1.00 99 
35.0 0.45 0.31 1.01 98 
40.0 0.41 0.29 1.00 98 
45.0 0.37 0.26 1.01 98 
50.0 0.34 0.25 1.00 98 
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Table M.3. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Uniform 
Creature Type 
 

Mutation Rate ar am b %VAF 
0.5 0.54 0.36 0.96 96 
1.0 0.64 0.42 0.97 99 
2.5 0.71 0.33 1.00 100 
5.0 0.77 0.35 0.96 99 
7.5 0.75 0.30 1.00 100 
10.0 0.73 0.28 1.01 100 
12.5 0.73 0.29 1.00 100 
15.0 0.71 0.27 1.00 100 
17.5 0.70 0.26 0.99 100 
20.0 0.69 0.25 1.00 100 
25.0 0.68 0.24 1.00 100 
30.0 0.67 0.21 1.00 100 
35.0 0.66 0.19 1.00 100 
40.0 0.65 0.18 1.00 100 
45.0 0.63 0.17 0.99 100 
50.0 0.61 0.16 1.00 100 

Note. %VAF = Percentage of Variance Accounted For.  
 
Table M.4. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Linear 
Creature Type 
 

 

Note. %VAF = Percentage of Variance Accounted For. 
  

Mutation Rate ar am b %VAF 
0.5 0.55 0.39 1.06 98 
1.0 0.61 0.41 1.06 99 
2.5 0.72 0.31 1.00 100 
5.0 0.75 0.32 1.03 100 
7.5 0.74 0.30 1.02 100 
10.0 0.73 0.29 1.00 100 
12.5 0.71 0.27 0.99 100 
15.0 0.70 0.28 1.00 100 
17.5 0.70 0.27 1.00 100 
20.0 0.68 0.25 1.01 100 
25.0 0.67 0.23 1.00 100 
30.0 0.66 0.21 1.01 100 
35.0 0.65 0.20 1.00 100 
40.0 0.63 0.18 1.00 100 
45.0 0.62 0.17 1.00 100 
50.0 0.60 0.16 1.00 100 
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Table M.5. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Exponential 
Creature Type 
 

Mutation Rate ar am b %VAF 
0.5 0.56 0.29 0.98 97 
1.0 0.63 0.34 1.03 99 
2.5 0.71 0.33 1.00 100 
5.0 0.71 0.30 1.01 100 
7.5 0.70 0.31 1.00 100 
10.0 0.69 0.31 1.01 100 
12.5 0.69 0.29 1.00 100 
15.0 0.68 0.28 1.00 100 
17.5 0.67 0.26 1.01 100 
20.0 0.68 0.26 1.00 100 
25.0 0.66 0.23 1.00 100 
30.0 0.64 0.21 1.00 100 
35.0 0.62 0.20 1.00 100 
40.0 0.61 0.19 1.00 100 
45.0 0.58 0.17 1.00 100 
50.0 0.57 0.16 1.00 100 

Note. %VAF = Percentage of Variance Accounted For.  
 
Table M.6. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Gaussian 
Creature Type 
 

 

Note. %VAF = Percentage of Variance Accounted For. 
  

Mutation Rate ar am b %VAF 
0.5 0.51 0.41 1.04 94 
1.0 0.60 0.38 1.14 97 
2.5 0.68 0.32 1.00 99 
5.0 0.74 0.29 0.95 100 
7.5 0.74 0.32 0.98 100 
10.0 0.73 0.30 0.99 100 
12.5 0.73 0.31 1.00 100 
15.0 0.72 0.26 1.00 100 
17.5 0.71 0.28 1.01 100 
20.0 0.71 0.28 1.01 100 
25.0 0.70 0.24 1.00 100 
30.0 0.68 0.23 1.01 100 
35.0 0.67 0.22 1.00 100 
40.0 0.67 0.20 1.00 100 
45.0 0.66 0.20 1.00 100 
50.0 0.65 0.19 1.00 100 
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Table M.7. Bivariate Matching Fits to the Behavior of the Linear-Bitwise-Bitflip Creature Type 
 

 

Note. %VAF = Percentage of Variance Accounted For. 0.5, 1.0, and 2.5% mutation rates were unable to be run 
using this algorithm. 
 
Table M.8. Bivariate Matching Fits to the Behavior of the Linear-Clone-Bitflip Creature Type 
 

 

Note. %VAF = Percentage of Variance Accounted For.  
  

Mutation Rate ar am b %VAF 
0.5     
1.0     
2.5     
5.0 0.81 0.69 1.01 100 
7.5 0.83 0.68 1.01 100 
10.0 0.81 0.62 1.01 100 
12.5 0.79 0.59 1.01 100 
15.0 0.75 0.58 0.98 99 
17.5 0.72 0.54 0.99 99 
20.0 0.67 0.52 1.01 99 
25.0 0.58 0.47 1.00 98 
30.0 0.50 0.42 1.00 97 
35.0 0.44 0.37 1.00 97 
40.0 0.38 0.34 1.00 97 
45.0 0.34 0.31 1.00 97 
50.0 0.30 0.28 1.00 96 

Mutation Rate ar am b %VAF 
0.5 0.59 0.41 0.95 99 
1.0 0.65 0.46 0.96 100 
2.5 0.75 0.57 1.00 99 
5.0 0.73 0.53 0.99 100 
7.5 0.74 0.56 0.99 99 
10.0 0.72 0.55 1.00 99 
12.5 0.67 0.52 1.00 100 
15.0 0.63 0.50 1.01 99 
17.5 0.60 0.48 1.00 99 
20.0 0.55 0.46 1.00 98 
25.0 0.48 0.41 1.00 98 
30.0 0.42 0.37 1.00 98 
35.0 0.37 0.34 1.00 97 
40.0 0.33 0.31 1.00 97 
45.0 0.29 0.28 1.00 96 
50.0 0.26 0.26 1.00 96 
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Table M.9. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Uniform 
Creature Type 
 

Mutation Rate ar am b %VAF 
0.5 0.59 0.58 1.09 96 
1.0 0.64 0.61 0.99 99 
2.5 0.68 0.52 1.00 99 
5.0 0.70 0.41 1.03 100 
7.5 0.69 0.37 0.97 100 
10.0 0.70 0.34 0.99 100 
12.5 0.68 0.32 1.00 100 
15.0 0.67 0.30 1.00 100 
17.5 0.66 0.28 1.00 100 
20.0 0.67 0.27 0.98 100 
25.0 0.65 0.25 1.01 100 
30.0 0.64 0.22 0.99 100 
35.0 0.63 0.21 1.00 100 
40.0 0.62 0.18 1.00 100 
45.0 0.61 0.17 1.01 100 
50.0 0.59 0.16 0.99 100 

Note. %VAF = Percentage of Variance Accounted For.  
 
Table M.10. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Linear Creature 
Type 
 

 

Note. %VAF = Percentage of Variance Accounted For. 
  

Mutation Rate ar am b %VAF 
0.5 0.53 0.72 1.06 99 
1.0 0.65 0.66 1.07 98 
2.5 0.70 0.51 1.00 100 
5.0 0.70 0.41 1.02 100 
7.5 0.70 0.38 1.01 100 
10.0 0.68 0.35 0.99 100 
12.5 0.68 0.33 1.00 100 
15.0 0.67 0.30 0.99 100 
17.5 0.67 0.29 1.01 100 
20.0 0.66 0.27 1.00 100 
25.0 0.65 0.25 1.00 100 
30.0 0.64 0.23 1.00 100 
35.0 0.63 0.21 1.00 100 
40.0 0.62 0.19 1.00 100 
45.0 0.60 0.18 1.00 100 
50.0 0.58 0.16 1.00 100 
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Table M.11. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Exponential 
Creature Type 
 

Mutation Rate ar am b %VAF 
0.5 0.55 0.57 1.04 98 
1.0 0.64 0.51 1.04 99 
2.5 0.65 0.48 1.00 100 
5.0 0.66 0.41 1.00 100 
7.5 0.65 0.39 1.00 100 
10.0 0.64 0.35 0.99 100 
12.5 0.64 0.33 1.01 100 
15.0 0.64 0.31 1.00 100 
17.5 0.64 0.29 1.00 100 
20.0 0.64 0.27 1.00 100 
25.0 0.63 0.25 1.00 100 
30.0 0.62 0.22 1.01 100 
35.0 0.60 0.21 1.00 100 
40.0 0.59 0.19 1.00 100 
45.0 0.57 0.18 1.00 100 
50.0 0.54 0.16 1.00 100 

Note. %VAF = Percentage of Variance Accounted For.  
 
Table M.12. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Gaussian 
Creature Type 
 

 

Note. %VAF = Percentage of Variance Accounted For 

Mutation Rate ar am b %VAF 
0.5 0.57 0.83 0.99 94 
1.0 0.55 0.60 1.07 97 
2.5 0.65 0.57 1.00 99 
5.0 0.69 0.44 1.02 100 
7.5 0.71 0.42 1.02 100 
10.0 0.72 0.38 1.04 99 
12.5 0.70 0.35 1.01 100 
15.0 0.68 0.34 1.01 100 
17.5 0.68 0.31 0.98 100 
20.0 0.68 0.31 0.99 100 
25.0 0.67 0.27 1.00 100 
30.0 0.65 0.25 1.01 100 
35.0 0.65 0.24 1.00 100 
40.0 0.64 0.22 1.00 100 
45.0 0.64 0.21 1.00 100 
50.0 0.63 0.19 1.01 100 
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