
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the
non-exclusive license to archive, make accessible, and display my thesis in whole or in
part in all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part of the online
submission of this thesis. I retain all ownership rights to the copyright of the thesis. I
also retain the right to use in future works (such as articles or books) all or part of
this thesis.

Wenxuan Cai April 9, 2024

Kernel and Lengthscale Selection on the Performance of the Sparse Cholesky
Factorization Algorithm

By

Wenxuan Cai

Yuanzhe Xi
Advisor

Tianshi Xu
Advisor

Department of Mathematics

Yuanzhe Xi
Advisor

Tianshi Xu
Advisor

Julianne Chung
Committee Member

Alessandro Veneziani
Committee Member

2024

Kernel and Lengthscale Selection on the Performance of the Sparse Cholesky
Factorization Algorithm

By

Wenxuan Cai

Yuanzhe Xi
Advisor

Tianshi Xu
Advisor

An abstract of
a thesis submitted to the Faculty of the Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2024

Abstract

Kernel and Lengthscale Selection on the Performance of the Sparse Cholesky
Factorization Algorithm

By Wenxuan Cai

In the realms of science and engineering, many challenges arise that demand the
repeated solving of intricate systems of partial differential equations (PDEs) across
various parameter values. Such scenarios are common in fields like molecular dynam-
ics, micro-mechanics, and turbulent flows. Machine learning methods have shown
promising capabilities in automating scientific computations, especially in PDE solving.
Among these methods, Gaussian Process (GP) and kernel methods are notable for
their interpretable and theoretically grounded function representation. In our study,
we initially focused on the Sparse Cholesky-accelerated Gauss-Newton Algorithm [6].
However, we identified a need for further exploration regarding the choice of kernel
and its parameters. Utilizing provided code, we conducted experiments to investigate
the impact of different kernels and their lengthscales on accuracy, identifying optimal
lengthscales. Moreover, we explored nonlinear elliptic PDEs, testing various solutions
and observing limitations in achieving low relative error as high frequency terms
became more significant, leading to non-convergence of some solutions. We also
adjusted algorithm parameters and saw some accuracy improvements, although some
questions still remain unanswered.

Kernel and Lengthscale Selection on the Performance of the Sparse Cholesky
Factorization Algorithm

By

Wenxuan Cai

Yuanzhe Xi
Advisor

Tianshi Xu
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2024

Acknowledgments

My thanks to Dr. Xi and Dr. Xu, my co-advisers, who guided me through the

background knowledge and showed me the direction of the research when I got lost.

In addition to my other committee members, Julianne Chung and Alessandro

Veneziani were very supportive throughout this project and gave me a lot of constructive

suggestions, for which I am grateful.

Contents

1 Introduction 1

1.1 Linear PDE . 2

1.2 Non-Linear PDE . 2

1.2.1 Semi-linear equations . 3

1.2.2 Quasi-linear equations . 3

1.2.3 Fully nonlinear equations . 4

1.3 Classical numerical methods for solving non-linear PDEs 4

1.3.1 Finite-difference methods . 4

1.3.2 Finite-element methods . 5

1.4 Machine learning methods . 6

1.4.1 Neural Networks . 7

1.4.2 GP and kernel methods . 7

1.5 Contributions . 8

2 Overall Process to solve non-linear PDE 10

2.1 Solving nonlinear PDEs via GPs . 10

2.2 Sparse Cholesky factorization algorithm 12

2.2.1 Ordering of the measurement 12

2.2.2 Select non-zero entries of Uρ 15

2.2.3 Optimize Uρ . 15

i

2.3 Second order optimization methods 16

3 Our Purpose 18

3.1 Kernel and Lengthscale . 18

3.2 Truth function of Nonlinear Elliptic PDEs 19

3.3 GN Steps and other parameters . 19

4 Experiments 21

4.1 Kernel and Lengthscale influence on accuracy 22

4.1.1 Nonlinear elliptic PDEs . 22

4.1.2 Viscous Burgers’ equation . 23

4.1.3 Monge-Ampère equation in two-dimensional space 25

4.2 Change truth function in Nonlinear elliptic PDEs 26

4.2.1 Truncate the low-frequency terms 26

4.2.2 Change the degree of k . 28

4.2.3 Representative truth functions 29

4.3 Improvements . 30

4.3.1 Increase Gauss-Newton steps 30

4.3.2 Increase small (Algorithm 2) KNN value 31

4.3.3 Increase big KNN value . 32

4.3.4 Increase small ρ value . 32

4.3.5 Increase big ρ value . 33

4.4 Summary . 33

4.4.1 Kernel and Lengthscale . 33

4.4.2 Truth function of Nonlinear Elliptic PDEs 34

4.4.3 GN Steps and other parameters 34

5 Conclusion 42

Bibliography 44

List of Figures

1.1 Demonstration of FD method on graph (a), and FEM method on graph

(b). The solution region is the turbine blade profile. Derived from [13]. 6

2.1 Demonstration of maximum-minimum distance ordering. This graph is

generated through maximum-minimum distance ordering. From graph

(a) to graph (d), each subsequent graph is based on the previous one.

Each point represents a sample point, and each red point indicates that

it has been selected. At any given stage of the ordering process, the

selected points exhibit homogeneity. 14

4.1 Demonstration of Lengthscale ρ’s relationship with L2 relative error

for different kernels in Nonlinear Eliptic Equation. For lengthscale less

than 10−3, the L2 relative error for all five kinds of kernel is 1. When

lengthscale is greater than 100, the L2 relative error keeps increasing,

and the error will be greater than the result itself. 22

iv

4.2 Demonstration of lengthscale ρ’s relationship with L2 relative error

for different kernels in Burgers’ equation. This graph only shows the

lengthscale between 10−4 and 100, and L2 relative error between 10−4

and 100. For the Matérn 7/2 and the Matérn 5/2, they both have an

extreme error at a certain lengthscale. Unlike what we drew here, not

all lengthscale values are valid. To check which lengthscale is valid for

a certain kernel, check Table 4.1. 24

4.3 Demonstration of lengthscale ρ’s relationship with L2 relative error for

different kernels in Monge-Ampère equation in two-dimensional space.

Like previous experiments, the lengthscale proceeds 100.1 during each

iteration, until the stop. In this experiment, however, there is no such

interval as Table 4.1 since no values greater than the stopping point

are still valid. 26

4.4 Demonstration of Lengthscale ρ’s relationship with L2 relative error for

different a in Nonlinear elliptic PDEs. In this figure, different subfigures

represent different kernels. Each graph reveals the interval of lengthscale

between 10−3 to 100. The label ”Frequency x” means a = x. 27

4.5 Demonstration of Lengthscale ρ’s relationship with L2 relative error for

different s in Nonlinear elliptic PDEs. Subfigure 4.5a shows the case

when a = 1, or no truncation case of nonlinear elliptic PDEs. Subfigure

4.5b shows the case when a = 10, or we truncate 9 lowest frequency of

the truth function of nonlinear elliptic PDEs. 28

4.6 The performance of five truth equations in non-linear elliptic PDE. . 30

4.7 Demonstration of the relationship between the number of GN steps and

L2 relative error for different truth solutions in Nonlinear elliptic PDEs.

The truth solutions is u(x) =
∑600

k=1
1
ks
sin
(
(k+ a)πx1

)
sin
(
(k+ a)πx2

)
,

and is different in 5 subgraphs by choosing different s and a. 36

4.8 Demonstration of the relationship between the number of GN steps

and L2 relative error for Monge-Ampère equation, with truth function

u(x) = exp(0.5((x1 − 0.5)2 + (x2 − 0.5)2)). 37

4.9 Demonstration of the relationship between the value of small KNN

(labeled as ks) and L2 relative error for different truth solutions in

Nonlinear elliptic PDEs. The truth solutions is u(x) =
∑600

k=1
1
ks
sin
(
(k+

a)πx1

)
sin
(
(k + a)πx2

)
, and is different in 5 subgraphs by choosing

different s and a. 38

4.10 Demonstration of the relationship between the value of big KNN (la-

beled as kb) and L2 relative error for different truth solutions in Non-

linear elliptic PDEs. The truth solutions is u(x) =
∑600

k=1
1
ks
sin
(
(k +

a)πx1

)
sin
(
(k + a)πx2

)
, and is different in 5 subgraphs by choosing

different s and a. 39

4.11 Demonstration of the relationship between the value of small ρ (labeled

as rhos) and L2 relative error for different truth solutions in Nonlin-

ear elliptic PDEs. The truth solutions is u(x) =
∑600

k=1
1
ks
sin
(
(k +

a)πx1

)
sin
(
(k + a)πx2

)
, and is different in 5 subgraphs by choosing

different s and a. 40

4.12 Demonstration of the relationship between the value of big ρ (labeled

as rhob) and L2 relative error for different truth solutions in Nonlin-

ear elliptic PDEs. The truth solutions is u(x) =
∑600

k=1
1
ks
sin
(
(k +

a)πx1

)
sin
(
(k + a)πx2

)
, and is different in 5 subgraphs by choosing

different s and a. 41

List of Tables

4.1 The starting and ending point of invalid lengthscale interval for different

kernels. Note that the start and end point is the last lengthscale that

is still valid. Recall that the lengthscale is distributed exponentially

with an interval of 100.1. 24

vii

Chapter 1

Introduction

Partial Differential Equations (PDEs) are mathematical expressions describing func-

tions that rely on multiple independent variables. They incorporate these independent

variables, the function itself, and partial derivatives of the function [12].

The most general form of a first-order PDE with two independent variables is

expressed as [22]:

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = 0

PDEs are prevalent across various disciplines such as mathematics, physics, chem-

istry, and biology, and find applications in numerous real-world scenarios.

Broadly, PDEs fall into two main categories: linear and non-linear. Within non-

linear PDEs, there are various degrees of nonlinearity. Typically, tackling non-linear

PDEs poses greater difficulty compared to their linear counterparts, particularly as

the level of nonlinearity intensifies.

1

2

1.1 Linear PDE

Let L represent an operator. This implies that, for any function u, the expression Lu

denotes a new function. For instance, L could denote a partial derivative operation,

such as L = ∂/∂x = ux, where it computes the partial derivative of u, or L =

∂x + y∂/∂z = ux + yuz.

An operator L qualifies as linear if and only if the following two equations hold

true for any functions u and v, and any constant c [22]:

L(u+ v) = Lu+ Lv L(cu) = cLu

Linear operators possess several advantageous properties, including the superposi-

tion principle, the method of eigenfunctions, and transform methods.

The superposition principle states that if u1, u2, . . . , un are solutions to the ho-

mogeneous equation Lu = 0, then for arbitrary constants c1, c2, . . . , cn, the linear

combination c1u1 + c2u2 + . . .+ cnun is also a solution.

1.2 Non-Linear PDE

Nonlinear partial differential equations (PDEs) pose greater challenges compared to

their linear counterparts as they might fail to converge to a satisfactory solution without

an adequate initial guess [11]. Unlike linear equations, nonlinear ones do not adhere

to the superposition principle, rendering traditional techniques like eigenfunction

methods and transform methods inapplicable.

PDEs can be classified according to their varying degrees of nonlinearity. At the

lowest level are linear equations, which exhibit no nonlinearity. Beyond these are

semi-linear equations, quasi-linear equations, and fully nonlinear equations.

3

1.2.1 Semi-linear equations

The most basic form of nonlinear PDEs is represented by semilinear equations. In

semilinear equations, the nonlinear components do not manifest in the leading-order

terms of the equation [21]. They can be expressed as follows:

∑
|α|=k

cα(x)D
αu+ c0(x,∇k−1u, . . . ,∇u, u) = 0

An instance of such an equation is the reaction-diffusion equation:

ut = uxx + u2

Here the leading order is uxx, which is also linear, and u2 is the nonlinear part,

thus it is a semilinear equation.

1.2.2 Quasi-linear equations

Following semilinear equations are quasilinear equations, where the highest-order

terms has the nonlinear coefficients. The constrain is that these coefficients cannot

rely on the highest-order derivatives [21]:

∑
|α|=k

cα(x,∇k−1u, . . . ,∇u, u)Dαu+ c0(x,∇k−1u, . . . ,∇u, u) = 0

An example of such an equation is Burgers’ equation:

ut + uux = νuxx

Here the leading order term is νuxx, where ν is the diffusion coefficient or kinematic

viscosity, which is generally nonlinear. Thus, it is a quasilinear equation.

4

1.2.3 Fully nonlinear equations

And finally, we have the hardest equations: fully nonlinear equations, which have the

form: ∑
|α|=k

cα(x,∇ku, . . . ,∇u, u)Dαu+ c0(x,∇k−1u, . . . ,∇u, u) = 0

An example of such an equation is the Monge-Ampère equation [3]:

det(D2u) = f, x ∈ (0, 1)2

Here, D2u denotes the Hessian matrix of the function u, and its determinant is

equal to f .

1.3 Classical numerical methods for solving non-

linear PDEs

There are several classical numerical methods for solving nonlinear PDEs, with three

of the most notable being Finite-Difference Methods (FDM), Finite Element Methods

(FEM), and Finite Volume Methods (FVM).

1.3.1 Finite-difference methods

Finite-difference methods (FDM) constitute a set of numerical approaches employed to

solve differential equations through the estimation of derivatives using finite differences.

These methods find applications in solving both ordinary differential equations (ODEs)

and partial differential equations (PDEs). The approximations of derivatives stem

from the Taylor series. For instance, considering a one-dimensional problem on a

uniform grid with a mesh size h, we can express the Taylor series expansion at y(x)

5

as follows:

y(x+ h) = y(x) + y′(x)h+
1

2
y′′(ξ1)h

2, y(x− h) = y(x)− y′(x)h+
1

2
y′′(ξ2)h

2.

Thus, the first order derivative can be approximated as

∂y

∂x
≈ yi+1 − yi−1

2h
.

Let’s consider the following 1D model problem (ODE) as an example.

For this differential equation

y′′ + (y′)2 + y = ln(x) 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln 2.

with u = 0 at boundary in [1, 2], and we want to approximate the actual solution for

any value in this interval.Thus we use the discretization on a uniform mesh, which

can be written as

yi+1 − 2yi + yi−1

h2
+ (

yi+1 − yi−1

2h
)2 + yi = ln (1 + ih) i = 1, 2, . . . , n.

We can then solve this problem using Newton’s method.

1.3.2 Finite-element methods

Finite element methods (FEM) offer an approach where the governing equations

are approximated piecewise, assuming that a solution region can be represented

analytically or by discretizing it into discrete elements [13].

In certain scenarios, FEM proves more suitable than the FD method. As illustrated

in Figure 1.1 from [13], while a uniform finite difference mesh may adequately cover the

blade, the boundaries need to be approximated by a series of horizontal and vertical

6

lines. In contrast, the finite element model provides a more accurate representation of

the boundary shape.

Figure 1.1: Demonstration of FD method on graph (a), and FEM method on graph
(b). The solution region is the turbine blade profile. Derived from [13].

1.4 Machine learning methods

Those classical numerical methods of solving PDEs with computers are a great starting

point. However, they have some drawbacks. It can take a very long time to calculate

accurate answers for complex PDEs, especially if things are changing over time. Also,

if we want to change the boundaries of the problem or the way we’ve divided it up,

we often need to start the calculations all over again, which makes it hard to try out

different ideas during product design.

Machine learning algorithms offer a potential alternative to address some of the

limitations of classical numerical methods. A significant advantage of many machine

learning algorithms is their mesh-free nature, which makes them more adaptable to

changes in problem mesh. Additionally, they often provide a much faster time-to-

solution compared to classical methods. However, it’s important to note that machine

learning-based PDE solvers can have limitations in terms of accuracy and may require

long time to train.

7

There are two primary approaches to solving PDEs using machine learning tech-

niques. Supervised learning methods operate akin to traditional function approxi-

mation, trained on a dataset consisting of PDEs and their corresponding solutions.

These data-driven approaches aim to capture the intricate mapping between a PDE

and its solution. Notable examples in this category include Fourier Neural Operators

(FNOs) [16] and Deep Operator Networks (DeepONets) [17].

In contrast, unsupervised learning methods, such as certain physics-informed neural

networks and Gaussian Process methods, leverage knowledge of the underlying physical

laws inherent in the PDE itself. These techniques typically necessitate minimal or no

datasets.

In this thesis, our focus lies on the unsupervised learning approach.

1.4.1 Neural Networks

One of the most widely recognized unsupervised learning algorithms based on neural

networks is the Physics-Informed Neural Network (PINN). Recent advancements in

PINN models, such as enhancing neural operators to learn mappings between function

spaces [15] and devising a comprehensive framework for data-driven approximation

of input-output mappings between infinite-dimensional spaces [2], have enabled the

provision of expressive function representations.

However, compared to traditional solvers like the Finite Element Method (FEM),

PINN typically requires more time and exhibits lower accuracy [9]. Consequently,

efforts have been directed towards stabilizing and accelerating the training process

[14, 23, 24, 8, 27].

1.4.2 GP and kernel methods

On the contrary, GP and kernel methods provide a more interpretable and theoretically

grounded function representation rooted in the Reproducing Kernel Hilbert Space

8

(RKHS) theory [25, 1, 18], which integrates hierarchical kernel learning [26, 19, 5, 7].

However, the scalability of these methods is often limited by the dense kernel matrix.

Unlike other problems that primarily focus on point-wise values, in PDE problems,

these kernel matrices may also encompass partial derivative values [4]. For the Sparse

Cholesky factorization algorithm [6], computing such matrices incurs a complexity of

O(N logd(N/ϵ)) in space and O(N log2d(N/ϵ)) in time.

1.5 Contributions

In this thesis, we review the state-of-the-art GP based algorithm for solving non-linear

PDEs. Through extensive experimentation and analysis, we provided valuable insights

into the influence of kernel and lengthscale choices, the significance of high-frequency

terms, and the impact of the number of preconditioned conjugate gradient (pCG)

steps on algorithm performance. These contributions advance our understanding of

GP-based approaches to non-linear PDE solving and pave the way for further research

and development in this domain.

The remaining chapters are organized as follows:

In Chapter 2, we introduces the framework for solving nonlinear PDEs using

Gaussian Process [6]. The purpose of this thesis is then stated: to address three main

questions. Firstly, whether the choice of kernel and lengthscale in the GP framework

affects algorithm performance. Secondly, whether increasing the significance of high-

frequency terms influences algorithm performance. Lastly, whether the number of

Gauss-Newton iterations (GN steps) have an impact on algorithm performance. These

questions are further expanded upon in Chapter 3.

To achieve this, experiments are conducted in Chapter 4, which is divided into

three parts. Firstly, we investigate whether the selection of kernel and lengthscale

influences accuracy, and determine a reasonable range for these parameters based

9

on sample functions provided in [6]. Next, we shift our focus to nonlinear elliptic

PDEs, observing algorithm performance as we reduce the significance or truncate

low-frequency terms. Finally, we evaluate whether parameters such as Gauss-Newton

steps that can improve algorithm performance.

In Chapter 5, the discoveries and conclusions drawn from the experiments are

summarized.

Chapter 2

Overall Process to solve non-linear

PDE

2.1 Solving nonlinear PDEs via GPs

To solve a non-linear PDE, like nonlinear elliptic PDEs


−∆u+ τ(u) = f in Ω,

u = g on ∂Ω,

(2.1)

where ∆ is Laplace Operator, Ω means the domain, and ∂Ω means the boundary.

The initial step involves sampling collocation points within the interior denoted

by xΩ = x1, . . . , xMΩ
⊂ Ω, along with M∂Ω points on the boundary denoted by

x∂Ω = xMΩ+1, . . . , xM ⊂ ∂Ω.

After that, a Gaussian Process (GP) prior is assigned to the unknown function u,

resulting in:

10

11


minimizeu∈U∥u∥

−∆u(xm) + τ(u(xm)) = f(xm) for m = 1, . . . ,MΩ,

u(xm) = g(xm) for m = MΩ + 1, . . . ,M .

(2.2)

Here, ∥·∥ is the Reproducing Kernel Hilbert Space (RKHS) norm corresponding to

the kernel/covariance function K.

Subsequently, leveraging a generalization of the Representer theorem [4], the

minimizer of (2.2) takes the form:

u†(x) = K(x, ϕ)K(ϕ, ϕ)−1z† (2.3)

where z† is a solution of a finite-dimensional problem that satisfies



minimize
z∈RM+MΩ

zTK(ϕ, ϕ)−1z

s.t. −z
(2)
m + τ(−z

(1)
m) = f(xm), for m = 1, . . . ,MΩ

z
(1)
m = g(xm), for m = MΩ + 1, . . . ,M

(2.4)

When consider the general PDEs, the methodology leads to the optimization

problem 
min
u∈U

∥ u ∥

s.t. PDE constraints at{x1, . . . , xM} ∈ Ω̄

(2.5)

and the equivalent to this finite dimensional problem:


minimize

z∈RN
zTK(ϕ, ϕ)−1z

s.t. F (z) = y

(2.6)

As we discussed in the background, K is the kernel. Since we intend to deal with

K−1, computing K−1 with Gauss Elimination results in O(N3) space/time complexity.

12

They changed the algorithm, and in the end they get

K(ϕ, ϕ)−1 ≈ P T
permU

ρUρTPperm (2.7)

where Pperm is a permutation matrix, and Uρ is a sparse matrix that approximates

the Cholesky factorization of the kernel matrix after the permutation.

2.2 Sparse Cholesky factorization algorithm

To get the approximation (2.7), they outline the general algorithmic procedure in

Algorithm 1.

Algorithm 1 Sparse Cholesky Factorization for K(ϕ, ϕ)−1

1: Input: Measurements ϕ, kernel function K, sparsity parameters ρ, supernodes
parameter λ

2: Output: Uρ, Pperm such that K(ϕ, ϕ)−1 ≈ P T
permU

ρUρTPperm

3: Step 1: Reorder measurements
4: Order Dirac measurements using maximin ordering.
5: Order derivative measurements arbitrarily.
6: Obtain permutation matrix Pperm such that Ppermϕ = ϕ̃.
7: Find the lengthscales l for each measurement in ϕ̃.
8: Construct aggregate sparsity pattern SP,l,ρ,λ using parameters
9: Step 2: Solve KL minimization
10: Solve (2.11) with Θ = K(ϕ̃, ϕ̃) to obtain Uρ.
11: Return: Uρ, Pperm

Overall, they initially establish the ordering of the measurements to acquire the

permutation matrix Pperm, followed by determining which entries of the approximation

Uρ should be non-zero. Finally, they optimize the values of those non-zero entries.

2.2.1 Ordering of the measurement

In order to render formula (2.2) computationally tractable by transforming it into a

finite-dimensional problem, specific notations are introduced for measurements [6]:

13

The measurement functions are defined as follows:

ϕ(1)
m = δxm , 1 ≤ m ≤ M and ϕ(2)

m = δxm ◦∆, 1 ≤ m ≤ MΩ,

where δx is the Dirac delta function centered at x. They are in U , the dual space

of U , for sufficiently regular kernel functions. Those measurements contains local

functions values and derivatives, and are used to train the physical-informed GP.

When arranging the measurements, the maximin ordering strategy [10] is employed

to order non-derivative types of measurements.

The maximin ordering strategy selects the initial point at the center, which could

be determined by the mean location or another measure of centrality. Subsequently, it

iteratively selects the next point to maximize the minimum distance from all previously

selected points, as described by [10]:

τ(1) = arg min
i∈1,...,n

∥ xi − x̄ ∥,

τ(j) = arg max
i/∈τ(1),...,τ(j−1)

min
k∈1,...,j−1

∥ xi − xτ(k) ∥, j > 1.

(2.8)

A Schematic diagram is shown in Figure 2.1, an advantage of this ordering the

selected points always evenly distributed.

In [6], they want to select two groups of points: interior and boundary. They

revised the strategy, and use the revised definition of the Maximin Ordering (2.2.1[6])

Definition. (Conditioned Maximin Ordering)

The Maximin ordering conditioned on a set A for points xi, i ∈ I is achieved by

iteratively selecting the point xi that is farthest from A and the previously chosen

points. If A is an empty set, we designate an arbitrary index i ∈ I as the starting

point. Otherwise, we select the first index as

i1 = argmax
i∈I

dist(xi, A).

14

(a) 1 point selected (b) 5 points selected

(c) 25 point selected (d) 81 point selected

Figure 2.1: Demonstration of maximum-minimum distance ordering. This graph is
generated through maximum-minimum distance ordering. From graph (a) to graph
(d), each subsequent graph is based on the previous one. Each point represents a
sample point, and each red point indicates that it has been selected. At any given
stage of the ordering process, the selected points exhibit homogeneity.

For the first q indices already chosen, we choose

iq+1 = arg max
i∈I\{i1,...,iq}

dist(xi, {xi+1, . . . , xiq} ∪ A). (2.9)

In this scenario, they designate the set A = ∅ when choosing boundary conditions

and A = ∂Ω when selecting interior points. Consequently, during the selection of

interior points, the Conditioned Maximin Ordering process identifies each unselected

point by maximizing its distance from both the boundary and previously selected

points.

15

After they use the Conditioned Maximin Ordering to order the non-derivative

type of measurement, they use an arbitrary ordering to order the derivative type of

measurement. This kind of permutation will generate a new order of those measure-

ments, thus they can have the permutation matrix Pperm accordingly. We denote the

permuted kernel matrix as K(ϕ̃, ϕ̃).

2.2.2 Select non-zero entries of Uρ

Next, they define the lengthscale parameter lj of each ordered point as the shortest

distance from the corresponding measurement to other measurements, which has the

formula [6]

li = dist(xP (i), xP (1), ..., xP (i−1) ∪ A). (2.10)

To establish the selection radius, they define the parameter ρ. For every column

of Uρ, only rows within a distance of ρlj from this measurement can have non-zero

values. This approach ensures that the non-zero entries in the matrix are sparse, as

dictated by the algorithm.

2.2.3 Optimize Uρ

Finally, they use Kullback-Leibler (KL) minimization to have the approximation

K(ϕ̃, ϕ̃) ≈ UρUρ⊤ , which minimize

U = arg min
Û∈SP,l,ρ

KL
(
N (0, K(ϕ̃, ϕ̃)) ∥ N (0, (Û ÛT)−1)

)
(2.11)

In other words, instead of approximating the matrix based on the matrix norm,

they put both matrices into two multivariable normal distributions and measure the

difference between both distributions.

Based on Theorem 2.1 in [20], j-th column of the matrix U can be represented as

16

Usj ,j =
(K(ϕ̃, ϕ̃)sj ,sj)

−1e#sj√
eT#sj

(K(ϕ̃, ϕ̃)sj ,sj)
−1e#sj

(2.12)

where #sj is the number of non-zero entry in j-th column. e#sj ∈ R#sj is the standard

basis vector with the last entry being 1 and other entries equal 0.

In this algorithm, there is no construction of a kernel matrix. Also, based on

Theorem 4.2 in [6], this algorithm has a provably accurate sparse factors when

ρ = O(log(N/ϵ)).

2.3 Second order optimization methods

Based on the previous algorithm, we obtain the approximation of the inverse of the

kernel matrix K using formula (2.7). Subsequently, the Gauss-Newton algorithm is

employed to compute z, as outlined in Algorithm 3.

By incorporating the nonlinear constraint, equations (2.4) or (2.6) can be reformu-

lated as an unconstrained problem. Initially, Gauss-Newton iterations are utilized.

Below are the Gauss-Newton iterations for equation (2.6):

zk+1 = K(ϕ, ϕ)(DF (zk))Tγ (2.13)

where γ ∈ RM satisfies

K(ϕk, ϕk)γ = y − F (zk) +DF (zk)zk (2.14)

Here, zk means the vector z in k-th iteration, ϕk is the reduced set of measurements,

which has the equation ϕk = DF (zk)ϕ. DF (zk) ∈ RM×N is the Jacobian of F at zk.

Now the dimension is reduced. The computational bottleneck lies in the linear

system with the reduced kernel matrix K(ϕk, ϕk).

Now they use similar method to obtain the approximation of K(ϕk, ϕk), they apply

17

Algorithm 2 Sparse Cholesky Factorization for K(ϕk, ϕk)−1

1: Input: Measurements ϕk, kernel function K, sparsity parameters ρr, ρr, supern-
odes parameter λ

2: Output: Solution Uρr
r , Qperm

3: Step 1: Reorder and create sparsity pattern
4: Order boundary measurements using maximin ordering.
5: Order interior measurements using maximin ordering conditioned on ∂Ω.
6: Obtain permutation matrix Qperm based on ordering such that Qpermϕ

k = ϕ̃k.
7: Calculate lengthscales l for each measurement in ϕ̃k.
8: Construct aggregate sparsity pattern SQ,l,ρr,λ.
9: Step 2: Solve KL minimization
10: Solve (2.11) with Θ = K(ϕ̃k, ϕ̃k).
11: Use (2.12) to obtain Uρr

r .
12: Return: Uρr

r , Qperm

Algorithm 2 here. However, since the dimension is reduced, this algorithm is different

from Algorithm 1. One key thing is that they need to order boundary condition

first. The reason is that the interior points are now containing derivative type of

informations, whereas boundary points still don’t.

Algorithm 3 Sparse Cholesky Accelerated Gauss-Newton for Solving (2.6)

1: Input: Measurements ϕ, data functional F , data vector y, kernel function K,
number of Gauss-Newton steps t, sparsity parameters ρ, ρr, supernodes parameter
λ

2: Output: Solution zt

3: Factorize K(ϕ, ϕ)−1 ≈ P T
permU

ρUρTPperm using Algorithm 1
4: Set k = 0, zk = 0 or other user-specified initial guess
5: while k < t do
6: Form the reduced measurements ϕk = DF (zk)ϕ
7: Factorize K(ϕk, ϕk)−1 to get QT

permU
ρr
r Uρr

r
TQperm using Algorithm 2

8: Use PCG to solve (2.14) with the preconditioner QT
permU

ρr
r Uρr

r
TQperm

9: zk+1 = P T
permU

ρUρTPperm \ ((DF (zk))T)γ
10: k = k + 2
11: end while
12: return zt

After Algorithm 2, they apply pCG method, and with enough iteration, they get

z.

Chapter 3

Our Purpose

The Sparse Cholesky factorization algorithm in [6] is innovative, providing a faster

algorithm for solving the kernel matrix with derivative-type information. Nevertheless,

it leaves room for discussion, most notably, in the selection of the kernel.

3.1 Kernel and Lengthscale

In [6], they used Matérn kernels with parameters ν = 5
2
, ν = 7

2
, ν = 9

2
, ν = 11

2
, and a

Gaussian kernel. Let me first introduce those two kind of kernels.

The Matérn covariance between measurements taken at two points separated by d

distance units is given by

Cν(d) = σ2 2
1−ν

Γ(ν)

(
√
2ν

d

ρ

)ν

Kν

(
√
2ν

d

ρ

)
,

The Gaussian kernel is

lim
ν→∞

Cν(d) = σ2 exp

(
− d2

2ρ2

)
,

where Γ is the gamma function, Kν is the modified Bessel function of the second kind,

ρ is the lengthscale, and ν is a positive parameter that determines the smoothness of

18

19

the kernel. The kernel will be smoother as ν increases, and the Gaussian kernel is the

case when ν = +∞.

For lengthscale ρ, they set parameters for each PDEs. However, they didn’t explain

the method and the reason they selected those lengthscales, which may influence the

accuracy. Therefore, we aim to explore whether the lengthscale will influence the

accuracy, and what could be a reasonable range for the functions provided in [6]. The

corresponding experiment is conducted in Chapter 4.1.

3.2 Truth function of Nonlinear Elliptic PDEs

Upon observing the functions, we realized the unusual significance of the low-frequency

terms in the “truth function” of the nonlinear elliptic PDEs equation (2.1).

They set the truth function u(x) as

u(x) =
600∑
k=1

1

k6
sin (kπx1) sin (kπx2) (3.1)

When sin (kπx1) sin (kπx2) is a high frequency term, k is also large. Since this term

is bounded by 1, when k is large, the term 1
k6

sin (kπx1) sin (kπx2) will be insignificant.

Thus, we want to investigate the precision of the algorithm when we change the

“truth solution”, specifically, see its performance when high frequency term becomes

significant.The corresponding experiment is conducted in Chapter 4.2.

3.3 GN Steps and other parameters

In Algorithm 3, they use the Gauss-Newton to get the preconditioner. They claim that

pCG inside the Gauss-Newton iteration usually converges in 10-40 steps. However,

there is no theoretical guarantee the factor is as accurate as before. Therefore, we

want to explore whether the change in Gauss-Newton steps can have an influence on

20

the performance, especially when the algorithm not perform well.

We also want to going deep into their code to see if change in some of their

parameters, like KNN and ρ, will help improve the algorithm. The corresponding

experiment is conducted in Chapter 4.3.

Chapter 4

Experiments

Since our paper is largely based on [6], we use their code to process the experiment.

Their code is at https://github.com/yifanc96/PDEs-GP-KoleskySolver. It is compiled

in Julia, and some of its coefficients are changed during our experiment.

In the Numerical experiments part of [6], they used three equations to present the

algorithm:

(1). Nonlinear elliptic PDEs, by using ”main MongeAmpere2d.jl” file.

(2). Burgers’ equation, by using ”main Burgers1d.jl” file.

(3). Monge-Ampère equation in 2D space, by using ”main MongeAmpere2d.jl”

file.

We are interested in the accuracy performance under those three equations as the

hyper-parameter of the algorithm changes.

To better adapt our experiment to using his code, we made some changes. Different

functions have different magnitudes, instead of the absolute L2 error, we use the relative

L2 error to measure the preciseness. Also, we tested the lengthscale distributed

exponentially between from 10−7 to 100, with each point representing an interval of

100.1. These are the following results.

21

22

4.1 Kernel and Lengthscale influence on accuracy

We first see whether the selection of Kernel and Lengthscale will influence accuracy.

In this part, every other hyper-parameter, if is not mentioned, takes the default value

in [6]’s code.

4.1.1 Nonlinear elliptic PDEs

The Nonlinear elliptic PDEs are given by


−∆u+ τ(u) = f in Ω,

u = g on ∂Ω,

with τ(u) = u3. Here Ω = [0, 1]2, and they set the truth function as u(x) =∑600
k=1

1
k6

sin
(
kπx1

)
sin
(
kπx2

)
.

They set Gauss-Newton iterations steps to be 3, initial guess as zero function, and

lengthscale of the kernels ρ = 0.3. After looping through the lengthscale for Nonlinear

elliptic PDEs, the result is shown in Figure 4.1.

Figure 4.1: Demonstration of Lengthscale ρ’s relationship with L2 relative error for
different kernels in Nonlinear Eliptic Equation. For lengthscale less than 10−3, the L2

relative error for all five kinds of kernel is 1. When lengthscale is greater than 100, the
L2 relative error keeps increasing, and the error will be greater than the result itself.

23

We find that the Matérn 7/2, 9/2 and 11/2 kernel performs roughly equally well.

When the lengthscale is between 0.316 (10−0.5) and 1, all three kernels have an error

less than 10−5. Thus the best lengthscale for the equation presented here is between

0.1 and 1.

We realized that the selected kernel can influence the error. Here, the error of the

Matérn 5/2 kernel can’t be less than 10−5, while the Matérn 7/2, 9/2 and 11/2 kernel

can achieve that at ρ = 1.

The lengthscale parameter ρ can also influence the error. When the lengthscale

is small (less than 0.01 in this case), the relative error will be 1, which means zero

vector; when it is large, the result will be unstable.

Also, for the different kernels, their best lengthscale interval is different. Matérn

7/2, 9/2 and 11/2 kernel performs best when the lengthscale is in [0.1,1], while it is

[0.8, 5] for Matérn 5/2.

4.1.2 Viscous Burgers’ equation

The Burgers’ equation is

∂tu+ u∂xu− 0.001u∂xu = 0, ∀(x, t) ∈ (−1, 1)× (0, 1],

u(x, 0) = − sin(πx),

u(−1, t) = u(1, t) = 0.

To solve such PDE, they discretize the equation in time using the Crank–Nicolson

scheme with time stepsize ∆t to obtain:

û(x, tn+1)− û(x, tn)

∆t
+

1

2
(û(x, tn+1) + û(x, tn)∂xû(x, tn))

=
0.001

2
(∂2

xû(x, tn+1) + ∂2
xû(x, tn))

(4.1)

24

where û(tn, x) is an approximation of the true solution u(tn, x) with tn = n∆t.

Here, they set Gauss-Newton iterations to be 2, and the initial guess as the solution

at the last time step. the lengthscale ρ is chosen to be 0.02. Our result is shown in

Figure 4.2.

Figure 4.2: Demonstration of lengthscale ρ’s relationship with L2 relative error for
different kernels in Burgers’ equation. This graph only shows the lengthscale between
10−4 and 100, and L2 relative error between 10−4 and 100. For the Matérn 7/2 and
the Matérn 5/2, they both have an extreme error at a certain lengthscale. Unlike
what we drew here, not all lengthscale values are valid. To check which lengthscale is
valid for a certain kernel, check Table 4.1.

However, it is worth noticing that during the iteration of lengthscales, some

lengthscale is invalid when they lie in a certain interval. Table 4.1 shows the starting

and ending points of invalid lengthscale intervals for different kernels.

Kernel Start End
Matérn 5/2 10−0.2 = 0.501187234 100 = 1
Matérn 7/2 0.1 10−0.7 = 0.199526231
Matérn 9/2 10−1.4 = 0.039810717 10−1.1 = 0.079432823
Matérn 11/2 10−1.6 = 0.025118864 10−1.3 = 0.050118723
Gaussian 10−2.6 = 0.002511886 10−0.5 = 0.316227766

Table 4.1: The starting and ending point of invalid lengthscale interval for different
kernels. Note that the start and end point is the last lengthscale that is still valid.
Recall that the lengthscale is distributed exponentially with an interval of 100.1.

25

When we take an invalid lengthscale as our input, the Cholesky factorization

algorithm complains about the non-Hermitian matrix. Theoretically, however, the

matrix will be Hermitian. This error may caused by numerical error.

When choosing Matérn kernels, Matérn 7/2, 9/2 and 11/2 kernel performs roughly

equally well. To make sure that the lengthscale could make this algorithm work, it is

a good idea to make the length scale in the interval [0.01,0.025].

We find that the Gaussian kernel has the longest invalid lengthscale interval. Thus

before running this algorithm, one should also make sure that the lengthscale to be

valid.

4.1.3 Monge-Ampère equation in two-dimensional space

Monge-Ampère equation is given by

det(D2u) = f, x ∈ (0, 1)2

and truth function is defined as u(x) = exp(0.5((x1 − 0.5)2 + (x2 − 0.5)2)).

Here, they set Gauss-Newton iterations to be 3, and initial guess u(x) = 1
2
∥x∥2.

Matérn kernel with ν = 5/2. The lengthscale ρ of the kernel is set to be 0.3. The

result is presented in Figure 4.3.

In the Monge-Ampère equation, they didn’t provide code for the Matérn 9/2 and

11/2 kernel. When looping through the lengthscale ρ, we fail to proceed for those

kernels because of the same “non-Hermitian matrix” error mentioned in Burgers’

equation.

We realized that the kernel and ρ selected in [6] is not optimal. Matérn 7/2 kernel

with ρ in the interval [0.3, 2] outperforms Matérn 5/2 kernel at ρ = 0.3.

We realize that some kernels may not have a small error regardless of the lengthscale

we choose. The Gaussian kernel has an error greater than 0.1 for all valid lengthscales.

26

Figure 4.3: Demonstration of lengthscale ρ’s relationship with L2 relative error for
different kernels in Monge-Ampère equation in two-dimensional space. Like previous
experiments, the lengthscale proceeds 100.1 during each iteration, until the stop. In
this experiment, however, there is no such interval as Table 4.1 since no values greater
than the stopping point are still valid.

4.2 Change truth function in Nonlinear elliptic

PDEs

Examining the function u(x) in Nonlinear elliptic PDEs, we find something interesting:

the factor 1
k6

will make k = 10 roughly 10−6 of k = 1, which makes the high-frequency

term, and the term afterward insignificant, since sin
(
kπx1

)
sin
(
kπx2

)
∈ [−1, 1]. In

this case, we want to explore how the precision of the algorithm will change as

we change the “truth solution”, especially when reducing the significance of the

low-frequency terms.

4.2.1 Truncate the low-frequency terms

The first way is to remove the low-frequency terms, in other words, change the a in

the following equation.

27

u(x) =
600∑
k=a

1

k6
sin
(
kπx1

)
sin
(
kπx2

)
Here we let a ranging from 1 to 10, and we look at all four Matérn kernels.

(a) Matérn 5/2 kernel (b) Matérn 7/2 kernel

(c) Matérn 9/2 kernel (d) Matérn 11/2 kernel

Figure 4.4: Demonstration of Lengthscale ρ’s relationship with L2 relative error for
different a in Nonlinear elliptic PDEs. In this figure, different subfigures represent
different kernels. Each graph reveals the interval of lengthscale between 10−3 to 100.
The label ”Frequency x” means a = x.

As we see in Figure 4.4, the L2 relative error increases for all four Matérn kernels

as a increases from 1 to 10. The smallest L2 relative error for a = 10 is 10−3, whereas

a = 1 is 10−6. Thus truncating the low-frequency terms will cause a larger error for

this algorithm.

Another interesting fact is the best lengthscale interval also changed as the frequency

changed. For Matérn 11/2 kernel, the best lengthscale interval is [0.2, 1] when a = 1

and is [0.03, 0.15] when a = 10. For the pattern we observed, the best lengthscale gets

smaller when more low-frequency terms are removed.

28

4.2.2 Change the degree of k

The other way to reduce the significance of low-frequency terms is to reduce the degree

of k. In other words, we reduce the parameter s in the following equation.

u(x) =
600∑
k=a

1

ks
sin
(
kπx1

)
sin
(
kπx2

)
Here we try s = 1, 2, 3, 4, 5, 6, and we use Matérn 7/2 kernel, the result is shown

in Figure 4.5.

The result is significant. When we fix the low frequency as 1 (a = 1), the algorithm

doesn’t converge for s = 1 and s = 2, and s = 3 has an error greater than 0.01. Next,

we truncate the low-frequency terms. When fixing the lowest frequency as 10 (a = 10),

all values of s except for s = 6, which is the original u(x), fail to have an error less

than 0.01. Thus reducing the significance of low frequency will cause larger errors.

From those two experiments, we realized that we need further research on the

behavior of the algorithm when operating on higher frequencies.

(a) a = 1 (b) a = 10

Figure 4.5: Demonstration of Lengthscale ρ’s relationship with L2 relative error for
different s in Nonlinear elliptic PDEs. Subfigure 4.5a shows the case when a = 1, or
no truncation case of nonlinear elliptic PDEs. Subfigure 4.5b shows the case when
a = 10, or we truncate 9 lowest frequency of the truth function of nonlinear elliptic
PDEs.

29

4.2.3 Representative truth functions

From previous part, we realized that the algorithm fails in some truth functions. Now

we want to explore further how to improve the algorithm’s performance as we use

higher frequency in truth functions. Since we want to make sure the magnitude is

roughly the same, we use the truth function:

u(x) =
600∑
k=1

1

ks
sin
(
(k + a)πx1

)
sin
(
(k + a)πx2

)
Since the ”Matern 7/2” kernel is fast and is similar to the behavior of the other

four kernels, we now only use that to continue our experiment.

We pick five representative sets of s and a:

1. s = 6, a = 20

2. s = 6, a = 100

3. s = 3, a = 50

4. s = 3, a = 0

5. s = 1, a = 0

Under the default setting, their L2 relative error are presented as Figure 4.6.

These five truth equations will be used in later parts to show the improvement of

algorithms.

We have two main objectives for improving those five truth equations. The first

one is to improve its accuracy, for cases like improving the error for Case 1(s = 6,

a = 20), and Case 4 (s = 3, a = 50). We aim to narrow the error down or increase

the ”good” interval of the Lengthscale. The other is convergence. For Case 2(s = 6,

a = 100), Case 3(s = 3, a = 50), and especially Case 5 (s = 1, a = 0), their error can

be easily greater than itself. Therefore, we want to see whether they can converge by

changing hyperparameters.

30

Figure 4.6: The performance of five truth equations in non-linear elliptic PDE.

4.3 Improvements

4.3.1 Increase Gauss-Newton steps

In [6], Gauss-Newton (GN) steps is always less than 10. The number of steps may

be insufficient when the algorithm didn’t perform well. Thus we want to see whether

increase GN steps can improve the algorithm performance.

4.3.1.1 Nonlinear elliptic PDEs

The default number of GN steps is 3 for Nonlinear elliptic PDEs. We tested steps to

be 10 and 30, to see if this could change. Our result is presented in Figure 4.7.

The default number of GN steps is efficient for all five truth equations. In Figure

31

4.7a and 4.7c, there are no clear accuracy improvements in the optimal lengthscale

when we increase the GN step from 3 to 30. In Figure 4.7b, 4.7d, and 4.7e, the GN

step also didn’t solve the convergence problem caused by high frequency.

Overall, an increase in GN steps only have minor help in improving performance.

4.3.1.2 Monge-Ampère equation

The default number of GN steps is 3 for Monge-Ampère equation. We tested steps to

be 10 and 30, to see if this could change. In Figure 4.8, we realized that this change

of GN steps have minor influence on performance.

Since an increase in GN steps did minor help in improving performance, for later

part, we fixed the number of GN step as default, which is 3.

4.3.2 Increase small (Algorithm 2) KNN value

K-nearest-neighbor (KNN) is the algorithm makes predictions based on the majority

class or average value of the K nearest data points in the feature space. In this

algorithm, KNN value is another parameter that influence the precision, increasing it

will increase the precision of the algorithm. It is not presented Algorithm 1, but in

their code. We aim to increase the value of KNN to see if this will help increase the

accuracy.

The original code uses the same KNN value for the Sparse Cholesky factorization

outside and Algorithm 2 inside. We decided to separate them, to see whether the

KNN value in Algorithm 1 and Algorithm 2 will change the result.

To make a good notation, we define all parameters that belongs to Sparse Cholesky

factorization, or Algorithm 1, as ”big”, and those belongs to Algorithm 2 as ”small”.

Here we represent the k-nearest neighbors value in Algorithm 1 as the ”big” KNN

value, while the KNN value of Algorithm 2 as the ”small” KNN value.

We first explore the effectiveness of increasing the small KNN value.

32

In Nonlinear elliptic PDEs, the default small KNN value is 3 for all five truth

equations. We changed the small KNN to be 10 and 30, to see if this could change.

Our result is presented in Figure 4.9. In this case, we will keep the default value 3 for

small KNN.

For all five experiments, an increase in small (Algorithm 2) KNN value did no help

either improve its accuracy or on convergence. So I fixed the small KNN value to be 3.

4.3.3 Increase big KNN value

In Nonlinear elliptic PDEs, the default big KNN value is 3 for all five truth equations.

We changed the big KNN to be 10 and 30, to see if this could change. Our result is

presented in Figure 4.10.

For all five experiments, an increase in big KNN value did improve the accuracy

in some cases, especially s = 6, a = 20, where an increase of big KNN from 3 to 10

reduce the L2 relative error from 10−2 to 10−3.

However, it didn’t fix the convergence problem in case s = 3, a = 50 and s = 1, a =

0.

Since the improvement of big KNN from 10 to 30 is minor, I set big KNN value to

10 in later part of my experiment.

4.3.4 Increase small ρ value

Next we want to change the ρ value. In [6], they claimed that they observe a consistent

decay of the KL errors when the sparsity parameter ρ increases. Thus I want to see

how much this parameter can improve the performance.

Similar to KNN value, we need to discuss about ρ value separately. The ρ value in

Algorithm 1 is called ”big” ρ, and for Algorithm 2 is ”small” ρ.

In Nonlinear elliptic PDEs, the default small ρ value is 3 for all five truth equations.

We changed the small ρ value to 10 and 30, to see if this could solve accuracy and

33

convergence problems. Our result is presented in Figure 4.11.

The result is surprising, the change in small ρ didn’t make any change to the

performance of the algorithm. Their result overlap with each others. Thus we fix it as

3 for later part of experiments.

4.3.5 Increase big ρ value

Next we want to change the big ρ value for those Nonlinear elliptic PDEs.

The default big ρ value is 3 for all five truth equations. We changed the small ρbig

value to 10 and 30, to see if this could solve accuracy and convergence problems. Our

result is presented in Figure 4.12.

When changing the big ρ value, the performance of the algorithm improved a little,

but still fail to solve the convergence problem in case s = 1, a = 0.

4.4 Summary

4.4.1 Kernel and Lengthscale

Our experiment demonstrates that the selection of kernel and its corresponding

lengthscale parameter, denoted as ρ, influences the performance of the Sparse Cholesky

factorization algorithm in [6].

We found that the optimal lengthscale intervals for different kernels vary, and

the Gaussian kernel exhibited instability, while the Matérn 7/2 and 9/2 kernels

performed optimally under certain conditions. Specifically, for equations like Burgers’

equation, certain lengthscales may lead to a non-Hermitian matrix during the Cholesky

factorization algorithm, indicating the need for further research to enhance the stability

of this algorithm.

Moreover, our experiments suggest that neither too small (e.g., 10−4) nor too large

(e.g., 100) values are suitable for the algorithm. Generally, small lengthscales result

34

in a 100% relative error, while large lengthscales fail to converge. Therefore, if the

algorithm converges, the appropriate range for the lengthscale typically lies in the

middle.

Furthermore, for different kernels or the same kernel applied to different testing

functions, the optimal range of lengthscales varies.

4.4.2 Truth function of Nonlinear Elliptic PDEs

When running nonlinear elliptic PDEs using the Sparse Cholesky factorization algo-

rithm, truncating or reducing the significance of the low-frequency terms in the truth

function leads to a larger error for this algorithm. In some cases, convergence is not

achieved. Moreover, the optimal lengthscale interval changes when the low-frequency

terms are removed.

In particular, when the problem still converges, we observed a pattern where the

best lengthscale range decreases as higher frequency terms become more significant,

both by truncating lower frequency terms and by decreasing the degree of k.

4.4.3 GN Steps and other parameters

For this part of experiment, we pick 5 truth function for

u(x) =
600∑
k=1

1

ks
sin
(
(k + a)πx1

)
sin
(
(k + a)πx2

)
which we sets the parameter s and a to be:

1. s = 6, a = 20

2. s = 6, a = 100

3. s = 3, a = 50

4. s = 3, a = 0

5. s = 1, a = 0

35

We adjusted five different parameters: the Gauss-Newton iteration steps (GN

steps), large KNN (KNN of Algorithm 1), small KNN (KNN of Algorithm 2), large ρ

(ρ of Algorithm 1), and small ρ (ρ of Algorithm 2).

From our experiments, we have not yet identified a hyper-parameter that resolves

the convergence problem for cases like s = 1 and a = 0. However, we observed

improvements in accuracy when increasing the large KNN and large ρ.

Despite the absence of a theoretical guarantee for the sparse Cholesky factorization

in Algorithm 2, the GN steps remain adequate even when set to 3. However, we did

not observe an increase in accuracy by increasing the GN steps.

Similarly, increasing the small KNN and small ρ did not lead to improved accuracy.

This suggests that Algorithm 3 may not be the cause of non-convergence in some

cases.

The default settings of the program only show improvement when the hyper-

parameters of the outer Sparse Cholesky factorization, which is Algorithm 1, are

improved.

36

(a) s = 6, a = 20 (b) s = 6, a = 100

(c) s = 3, a = 0 (d) s = 3, a = 50

(e) s = 1, a = 0

Figure 4.7: Demonstration of the relationship between the number of GN steps and
L2 relative error for different truth solutions in Nonlinear elliptic PDEs. The truth
solutions is u(x) =

∑600
k=1

1
ks
sin
(
(k + a)πx1

)
sin
(
(k + a)πx2

)
, and is different in 5

subgraphs by choosing different s and a.

37

Figure 4.8: Demonstration of the relationship between the number of GN steps and L2

relative error for Monge-Ampère equation, with truth function u(x) = exp(0.5((x1 −
0.5)2 + (x2 − 0.5)2)).

38

(a) s = 6, a = 20 (b) s = 6, a = 100

(c) s = 3, a = 0 (d) s = 3, a = 50

(e) s = 1, a = 0

Figure 4.9: Demonstration of the relationship between the value of small KNN (labeled
as ks) and L2 relative error for different truth solutions in Nonlinear elliptic PDEs.
The truth solutions is u(x) =

∑600
k=1

1
ks
sin
(
(k+a)πx1

)
sin
(
(k+a)πx2

)
, and is different

in 5 subgraphs by choosing different s and a.

39

(a) s = 6, a = 20 (b) s = 6, a = 100

(c) s = 3, a = 0 (d) s = 3, a = 50

(e) s = 1, a = 0

Figure 4.10: Demonstration of the relationship between the value of big KNN (labeled
as kb) and L2 relative error for different truth solutions in Nonlinear elliptic PDEs.
The truth solutions is u(x) =

∑600
k=1

1
ks
sin
(
(k+a)πx1

)
sin
(
(k+a)πx2

)
, and is different

in 5 subgraphs by choosing different s and a.

40

(a) s = 6, a = 20 (b) s = 6, a = 100

(c) s = 3, a = 0 (d) s = 3, a = 50

(e) s = 1, a = 0

Figure 4.11: Demonstration of the relationship between the value of small ρ (labeled
as rhos) and L2 relative error for different truth solutions in Nonlinear elliptic PDEs.
The truth solutions is u(x) =

∑600
k=1

1
ks
sin
(
(k+a)πx1

)
sin
(
(k+a)πx2

)
, and is different

in 5 subgraphs by choosing different s and a.

41

(a) s = 6, a = 20 (b) s = 6, a = 100

(c) s = 3, a = 0 (d) s = 3, a = 50

(e) s = 1, a = 0

Figure 4.12: Demonstration of the relationship between the value of big ρ (labeled as
rhob) and L2 relative error for different truth solutions in Nonlinear elliptic PDEs.
The truth solutions is u(x) =

∑600
k=1

1
ks
sin
(
(k+a)πx1

)
sin
(
(k+a)πx2

)
, and is different

in 5 subgraphs by choosing different s and a.

Chapter 5

Conclusion

This study has delved into the framework for addressing nonlinear PDEs using Gaussian

Process [6]. It has been observed that the choice of kernel, PDE type, and selection of

truth function and parameters can significantly influence the algorithm’s performance.

Regarding kernel selections, it has been noted that selecting a suitable lengthscale

for different kernels is crucial. Either too large or too small will be inappropriate.

Generally, smoother Matérn kernels exhibit better performance, but further research

is warranted to validate this observation, especially since the Gaussian kernel, despite

being the smoothest, does not yield the best performance.

In the context of nonlinear elliptic PDEs, it has been observed that the algorithm’s

performance deteriorates when high-frequency terms of the truth function u are

weighted more heavily.

Efforts to enhance the algorithm involved adjustments to the number of Gauss-

Newton iterations, KNN value, and lengthscale ρ for Algorithm 1 and 2. Interestingly,

changes to the Gauss-Newton iteration and KNN value, as well as the lengthscale ρ

in Algorithm 2, did not yield improvements in algorithm performance. Conversely,

adjustments made to Algorithm 1 demonstrated some enhancements. Consequently,

further exploration is warranted to devise strategies to enhance Algorithm 1 and

42

43

bolster accuracy. Potential avenues for future research include parameter adjustments,

refining the algorithm’s structure, or devising novel algorithms derived from it.

Bibliography

[1] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces

in probability and statistics. Springer Science & Business Media, 2011.

[2] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M

Stuart. Model reduction and neural networks for parametric pdes. The SMAI

journal of computational mathematics, 7:121–157, 2021.

[3] Susanne Brenner, Thirupathi Gudi, Michael Neilan, and Li-yeng Sung. c0 penalty

methods for the fully nonlinear monge-ampère equation. Mathematics of Compu-

tation, 80(276):1979–1995, 2011.

[4] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving

and learning nonlinear pdes with gaussian processes. Journal of Computational

Physics, 447:110668, 2021.

[5] Yifan Chen, Houman Owhadi, and Andrew Stuart. Consistency of empirical

bayes and kernel flow for hierarchical parameter estimation. Mathematics of

Computation, 90(332):2527–2578, 2021.

[6] Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse cholesky factorization

for solving nonlinear pdes via gaussian processes. arXiv preprint arXiv:2304.01294,

2023.

[7] Matthieu Darcy, Boumediene Hamzi, Giulia Livieri, Houman Owhadi, and Pey-

44

45

man Tavallali. One-shot learning of stochastic differential equations with data

adapted kernels. Physica D: Nonlinear Phenomena, 444:133583, 2023.

[8] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Rethinking

the importance of sampling in physics-informed neural networks. arXiv preprint

arXiv:2207.02338, 2022.

[9] Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-

Bibiane Schönlieb. Can physics-informed neural networks beat the finite element

method? arXiv preprint arXiv:2302.04107, 2023.

[10] Joseph Guinness. Permutation and grouping methods for sharpening gaussian

process approximations. Technometrics, 60(4):415–429, 2018.

[11] Yipeng Huang, Ning Guo, Mingoo Seok, Yannis Tsividis, Kyle Mandli, and

Simha Sethumadhavan. Hybrid analog-digital solution of nonlinear partial differ-

ential equations. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 665–678, 2017.

[12] Victor Ivrii and University of Toronto Department of Mathematics. Partial dif-

ferential equations. Technical report, 2022. URL https://www.math.utoronto.

ca/ivrii/PDE-textbook/PDE-textbook.pdf.

[13] Vishal jagota, Amanpreet Sethi, and Dr-Khushmeet Kumar. Finite element

method: An overview. Walailak Journal of Science & Technology, 10:1–8, 01

2013. doi: 10.2004/wjst.v10i1.499.

[14] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W

Mahoney. Characterizing possible failure modes in physics-informed neural

networks. Advances in Neural Information Processing Systems, 34:26548–26560,

2021.

https://www.math.utoronto.ca/ivrii/PDE-textbook/PDE-textbook.pdf
https://www.math.utoronto.ca/ivrii/PDE-textbook/PDE-textbook.pdf

46

[15] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik

Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator

for parametric partial differential equations. arXiv preprint arXiv:2010.08895,

2020.

[16] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik

Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator

for parametric partial differential equations, 2021.

[17] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Kar-

niadakis. Learning nonlinear operators via deeponet based on the univer-

sal approximation theorem of operators. Nature Machine Intelligence, 3(3):

218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL

http://dx.doi.org/10.1038/s42256-021-00302-5.

[18] Houman Owhadi and Clint Scovel. Operator-Adapted Wavelets, Fast Solvers,

and Numerical Homogenization: From a Game Theoretic Approach to Numerical

Approximation and Algorithm Design, volume 35. Cambridge University Press,

2019.

[19] Houman Owhadi and Gene Ryan Yoo. Kernel flows: From learning kernels from

data into the abyss. Journal of Computational Physics, 389:22–47, 2019.

[20] Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. Sparse cholesky factor-

ization by kullback–leibler minimization. SIAM Journal on scientific computing,

43(3):A2019–A2046, 2021.

[21] L Ridgway Scott. Introduction to automated modeling using fenics. 2017.

[22] Walter A Strauss. Partial differential equations: An introduction. John Wiley &

Sons, 2007.

http://dx.doi.org/10.1038/s42256-021-00302-5

47

[23] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating

gradient flow pathologies in physics-informed neural networks. SIAM Journal on

Scientific Computing, 43(5):A3055–A3081, 2021.

[24] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train:

A neural tangent kernel perspective. Journal of Computational Physics, 449:

110768, 2022.

[25] Holger Wendland. Scattered data approximation, volume 17. Cambridge university

press, 2004.

[26] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing.

Deep kernel learning. In Artificial intelligence and statistics, pages 370–378.

PMLR, 2016.

[27] Qi Zeng, Yash Kothari, Spencer H Bryngelson, and Florian Tobias Schaefer.

Competitive physics informed networks. In The Eleventh International Conference

on Learning Representations, 2023. URL https://openreview.net/forum?id=

z9SIj-IM7tn.

https://openreview.net/forum?id=z9SIj-IM7tn
https://openreview.net/forum?id=z9SIj-IM7tn

	Introduction
	Linear PDE
	Non-Linear PDE
	Semi-linear equations
	Quasi-linear equations
	Fully nonlinear equations

	Classical numerical methods for solving non-linear PDEs
	Finite-difference methods
	Finite-element methods

	Machine learning methods
	Neural Networks
	GP and kernel methods

	Contributions

	Overall Process to solve non-linear PDE
	Solving nonlinear PDEs via GPs
	Sparse Cholesky factorization algorithm
	Ordering of the measurement
	Select non-zero entries of U
	Optimize U

	Second order optimization methods

	Our Purpose
	Kernel and Lengthscale
	Truth function of Nonlinear Elliptic PDEs
	GN Steps and other parameters

	Experiments
	Kernel and Lengthscale influence on accuracy
	Nonlinear elliptic PDEs
	Viscous Burgers’ equation
	Monge-Ampère equation in two-dimensional space

	Change truth function in Nonlinear elliptic PDEs
	Truncate the low-frequency terms
	Change the degree of k
	Representative truth functions

	Improvements
	Increase Gauss-Newton steps
	Increase small (Algorithm 2) KNN value
	Increase big KNN value
	Increase small value
	Increase big value

	Summary
	Kernel and Lengthscale
	Truth function of Nonlinear Elliptic PDEs
	GN Steps and other parameters

	Conclusion
	Bibliography

