
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Xiaoyuan Guo Date





Medical Image Analysis with Deep Learning under Limited Supervision

By

Xiaoyuan Guo
Doctor of Philosophy

Computer Science and Informatics

Imon Banerjee, Ph.D
Advisor

Judy Wawira Gichoya, MD, MS
Committee Member

Jun Kong, Ph.D.
Committee Member

Xiaofeng Yang, Ph.D
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date



Medical Image Analysis with Deep Learning under Limited Supervision

By

Xiaoyuan Guo
B.S., TianJin University of Technology, Tianjin, CN, 2014

M.S., University of Chinese Academy of Sciences, Beijing, CN, 2017

Advisor: Imon Banerjee, Ph.D

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2022



Abstract

Medical Image Analysis with Deep Learning under Limited Supervision
By Xiaoyuan Guo

Medical imaging plays a significant role in different clinical applications such as detec-
tion, monitoring, diagnosis, and treatment evaluation of various clinical conditions.
Deep learning approach for medical image analysis emerges as a fast-growing research
field and has been widely used to facilitate challenging image analysis tasks, for ex-
ample, detecting the presence or absence of a particular abnormality, diagnosis of a
particular tumor subtype. However, one important requisite is the large amount of
annotated data for supervised training, which is often lacking in medicine due to ex-
pensive and time-consuming expert-driven data curation process. Data insufficiency
in medical images is also limited by healthcare data privacy requirements, which leads
to barriers in the usage of deep learning methods across institutions. This thesis fo-
cuses on facilitating the applications of deep learning approaches to solve automatic
medical image analysis tasks efficiently under limited supervision. Three situations
are in consideration: (1) no annotated data; (2) limited annotated data; (3) curation
of additional annotated data with minimal human supervision. The research cov-
ers multiple medical image modalities starting from fluorescence microscopy images
(FMI), histopathological microscopy images (HMI) to mammogram images (MG),
computed tomography (CT), chest radiographs (X-ray). A variety of medical im-
age related tasks have been researched, including clumped nuclei segmentation in
FMI, clustered liver steatosis segmentation in HMI, segmentation and quantification
of breast arterial calcifications (BAC) on MG, out-of-distribution (OOD) detection
for medical images, shift data identification from unseen external datasets, image
retrieval in external datasets with OOD-awareness and accurate multi-label medical
image retrieval. Due to the reality of limited supervision in medicine, unsupervised,
weakly-supervised, and supervised deep learning techniques have been investigated
in this thesis to solve the medical tasks under different situations. The diversity
and concreteness of the thesis can be a guide to facilitate the efficient usage of deep
learning approaches in future medical image analysis with minimal cost.
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Chapter 1

Introduction

1.1 Motivation

In the current clinical practice, medical imaging is one of the primary diagnostic tools

for various diseases detection and characterization of abnormalities, applications such

as pre-screening and triaging, cancer staging, treatment response assessment, recur-

rence monitoring, and prognosis or survival prediction [25]. Over the last decades, we

have witnessed the quick development of medical imaging, e.g., Positron Emission To-

mography (PET), Magnetic Resonance Imaging (MRI), Computed tomography (CT),

Mammography. In the clinic, the medical image interpretation has mostly been per-

formed by human experts such as radiologists and physicians. Researchers and doctors

have recently begun to benefit from computer-assisted interventions. However, it is

belated for the advances in computational medical image analysis due to the lack of

enough supervision information, or in other word lack of labeled data [137]. Devel-

opment of computational medical image analysis models usually requires large image

datasets for training, validation and testing of algorithms. The need is underscored

by the deep learning revolution and the dominance of machine learning in recent

medical image analysis research. Nevertheless, due to ethical and legal constraints,
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commercial conflicts and the dependence on busy medical professionals, medical im-

age analysis researchers have been described as “data starved”. Obtaining relevant

medical images to create such large datasets is challenging and expensive, requiring

the cooperation of medical professionals and institutes – thus in high demand and

short supply [74].

Lack of annotations in medical images often cause data insufficiency and conse-

quently a small sample learning dilemma when dealing with medical images [175].

However, the first and the major prerequisite to use deep learning methods is massive

amount of training dataset as the quality and evaluation of deep learning models

heavily rely on quality and amount of the data. As can be seen in Table 1.1, most

of the deep learning models in natural images are trained on thousands of images

except for U-Net, which is specifically designed for medical images. In comparison,

the volume available of typical medical imaging datasets is clearly still several orders

of magnitude behind.

Table 1.1: Dataset information used by different deep learning models.

Models Dataset Train Val Test Task

Mask R-CNN [59] COCO [87] 115,000 5,000 20,000
Instance

Segmentation

DeepSnake [107]
KINS [114] 7,474 - 7,517 Instance

SegmentationCityscapes [34] 2,975 500 1,525

SegNet [13] SUN RGB-D [140] 5,285 - 5,050
Semantic

Segmentation

U-Net [124]
ISBI cell tracking

challenge 2015
30 - -

Semantic

Segmentation

Swin UNETR[57] Decathlon[138] 2,633 - -
Semantic

Segmentation

Faster R-CNN [120]
PASCAL

VOC 2007
5,000 - 5,000

Object

Detection

SSD [93]
PASCAL VOC

2007&2012
21,503 - 10,991

Object

Detection
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1.2 Research contributions

The research work in this thesis primarily lies in the area of medical AI, utilising

the key potential of state-of-the-art AI technologies to facilitate medical image anal-

ysis under limited supervision. Generally speaking, this thesis mainly contributes to

three limited supervision situations: (1) no annotated data; (2) limited annotated

data; (3) curation of additional annotated data with minimal human supervision.

Several representative medical image analysis tasks (e.g., image segmentation, OOD

identification, automated dataset curation and image retrieval) have been considered

accordingly. By experimenting on diverse medical images, such as fluorescence mi-

croscopy images (FMI), histopathological microscopy images (HMI), mammogram

images (MG), computed tomography (CT), radiographs (X-ray), different proposed

strategies have demonstrated the high possibilities of solving difficult problems.

1.2.1 Medical image segmentation with limited supervision

Image segmentation has been a critical step for further medical image analysis. How-

ever, the task becomes challenging when supervision information is limited. We have

explored (1) clumped nuclei segmentation; (2) liver steatosis segmentation; and (3)

breast arterial calcification (BAC) segmentation under different supervision scenarios.

(1) Clumped nuclei segmentation: With the annotated data unavailable, we

proposed an automatic algorithm for clumped nuclei segmentation in fluorescence

microscopy image, which only relies on the object morphology and image intensity

and can output accurate segmentation.

(2) Liver steatosis segmentation: Since the above nuclei segmentation method

does not require annotations, we modified the algorithm and generated initial seg-

mentation masks for liver steatosis patches obtained from the whole-slide images.

By filtering the imperfect masks, we created a liver steatosis dataset with gener-
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ated masks as weak supervision, and applied a powerful instance segmentation model

Mask-RCNN to separate clustered steatosis. Experimental results show significant

improvements from weak supervision.

(3) BAC segmentation: Breast arterial calcifications often occur along with

vessels, which are extremely narrow and hard to annotate accurately. Therefore,

the annotations are limited and inaccurate. To solve the problem, we proposed a

lightweight segmentation model SCU-Net to distinguish BACs in patches cropped

from the original mammograms and optimized the model with a dice loss function to

maximize the overlapping part between the predictions and annotations. To evaluate

and quantify the BAC detection more accurately, we have suggested five evaluation

metrics which consider the prediction possibilities, area of prediction, intensities of

prediction together. With the metrics, our predictions show high correlations with

ground-truth.

1.2.2 Medical OOD identification with limited supervision

OOD identification helps exclude the unexpected data from input images, which

greatly safeguards the correctness and reliability of deployed deep learning mod-

els. However, OOD samples can be numerous and difficult to enumerate all possible

classes. Without OOD data available, we have researched on self-supervised learn-

ing and proposed two methods - TEND and CVAD, detecting intra-class OOD data

and generic OOD data. TEND is built on top of autoencoder(AE), which can learn

image features by reconstructing inputs; and CVAD takes the advantage of cascade

variational autoencoder (VAE), extracting normal image features with latent Gaus-

sian’s distribution normalization. Both of the two algorithms have demonstrated

effectiveness in various medical datasets.
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1.2.3 Medical dataset curation with limited supervision

Medical dataset curation aims to help curate more annotations from various sources

and contributes to future medical AI development. Without the knowledge of the

source image qualities, we have suggested a dataset shift detection pipeline by utilizing

the self-supervised anomaly detectors to identify shift data among noisy external

datasets, which can automatically detect the outliers to clean external datasets.

1.2.4 Medical image retrieval with limited supervision

Medical image retrieval in noisy external dataset can be challenging as the outliers

that show intra-class variations fail to be distinguished. Our OOD-sensitive image

retrieval method learns intra-class variations from generated pseudo intra-class labels,

which can help retrieve target samples, especially outliers, in the external dataset and

facilitate the labeling process. Moreover, a multi-label medical image retrieval system

is proposed to rank images with multi-class similarities. This can be beneficial for

handling challenging datasets like chest X-ray.

1.3 Organization of the thesis

We organize the thesis according to the medical task types. In Chapter 2, we in-

troduce the background knowledge of relevant research topics and the related works

along each topic. In Chapter 3, we present our works for solving medical image seg-

mentation tasks under limited supervision, including nuclei segmentation in Sec. 3.1,

liver steatosis segmentation in Sec. 3.2 and BAC segmentation in Sec. 3.3. In Chap-

ter 4, we show two medical OOD detection methods with self-supervised learning to

overcome the limited supervision issue, with TEND (intra-class OOD detection) in

Sec. 4.1 and CVAD (generic OOD detection) in Sec. 4.2. In Chapter 5, we propose

a unified pipeline MedShift to help identify shift data in external datasets based on
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unsupervised anomaly detection. In Chapter 6, we design efficient medical image

retrieval methods under limited supervision. The outlier-sensitive medical image re-

trieval work is in Sec. 6.1 and the multi-class radiology image retrieval is in Sec. 6.2. In

Chapter 8, we conclude the thesis with future research directions and plans suggested.
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Chapter 2

Background & Related Work

This chapter provides a comprehensive review of the current research works consider-

ing limited supervision situations in medical image related tasks, including medical

image segmentation, medical OOD identification, medical dataset curation

and medical image retrieval problems.

Training models from limited labeled data and readily available unlabeled data

is crucial for the successful application of deep learning methods in clinical usage

and health care. These challenges have inspired many research efforts on learning

with limited supervision, where the training data only have a limited amount of

annotated examples, accurate but sparse annotations, inaccurate annotations, coarse-

level annotations, and combinations of them. Previous works have been introduced

below for different medical image tasks under limited supervision respectively.

2.1 Medical image segmentation with limited su-

pervision

Image segmentation draws boundaries of objects within an image at the pixel level. It

has two sub-types: semantic segmentation and instance segmentation. Semantic seg-
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mentation denotes per-pixel classification without differentiating instances; whereas

instance segmentation requires the correct detection of all the objects in an image

while also precisely segmenting each instance [59]. The labeling costs for medical im-

ages are very high, especially in medical image segmentation, which typically requires

intensive pixel/voxel-wise labeling. Therefore, the strong capability of learning and

generalizing from limited supervision, including no annotations, a limited amount of

annotations, sparse annotations, and inaccurate annotations, is crucial for the suc-

cessful application of deep learning models in medical image segmentation [106].

Unsupervised segmentation: Traditional segmentation does not require anno-

tations. Take the clumped nuclei segmentation for example, many efforts [160, 86,

47, 171, 173, 12, 15] have been done to analyze the shape, contour, intensity of

the image for nuclei separation. These conventional approaches can segment objects

automatically without the supervision information, yet they often output under/over-

segmentation due to the variance of image density and object complexity.

Supervised segmentation: Supervised segmentation refers using annotated masks

of objects to guide the model learning in separating the objects from background,

which is a common strategy for mainstream deep learning-based models. Popular

semantic segmentation models include SegNet [13], U-Net [124], FCN [97]; instance

segmentation representatives are Mask-RCNN [59], PANet [92], DeepSnake [107].

These models have achieved significant improvement or performance on large public

image datasets compared with classical image segmentation methods. Despite the

good performance, it is often challenging to apply supervised segmentation methods

to medical image tasks due to the requirements of abundant annotations (class masks

for semantic segmentation and object masks for instance segmentation). Models de-

signed for natural images possibly fail to perform well when facing medical images

because of the image quality, modality, size, and variations among different classes.
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2.2 Medical OOD identification with limited su-

pervision

There have been a lot of research works that summarize state-of-the-art anomaly

detection methods [23, 79, 104, 61, 22, 39]. Because OOD data samples are in-

numerate to enumerate and hard to define, they are commonly unavailable during

training. Without any supervision information available, the current methods aiming

for anomalous image data detection can be generally divided into the following three

categories:

AutoEncoder-based methods AutoEncoder [35] (AE) models can help extract

significant embedding features by reconstructing the original images unsupervised.

Trained with ID data, the architectures learn the “normality” and should lead to

large reconstruction error when working on OOD dataset. Thus, the reconstruction

error acts as the anomaly score to separate ID and OOD data [130, 178, 17]. However,

AutoEncoder risks learning the identity function by simply outputting the original

inputs, which largely limits its discriminative ability of anomalies. Other improved

versions of AE are also used for anomaly detection [146, 110, 98, 9], e.g., Variational

Autoencoders (VAE) [10] provides probabilistic way of describing the latent space to

reconstruct input data. Nevertheless, the reconstruction is often blurry and not good

enough for clear discrimination of outliers. Similar with VAE, UAV-AdNet [19] uses

the Kullback-Leibler divergence to regularize losses for anomaly detection but focuses

on autonomous surveillance systems with GPS label used.

Generative adversarial network (GAN) based methods Similar to the AE

models, GAN [52] framework can also learn latent feature representations by training

a fake image generator and a real-vs-fake image discriminator [169, 109]. With the

adversarial feature learning, GAN-based anomaly detectors can acquire discrimina-
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tive latent features that can be used for separating the ID data from the OOD data.

To further improve the discriminative ability of latent representations, BiGAN [40]

adopts a bidirectional mapping learning. GANomaly [4] minimizes the distance of the

ID data and the generated ones in latent feature space to detect the OOD data with

large distance. Even so, the performance of GAN-based anomaly detectors largely de-

pends on the training of GAN models, which always require large amounts of training

data for OOD and often fail to handle inputs with large image size. Instead of select-

ing AnoGAN [132], which detects pixel-wise anomalies rather than in image-level, we

compare TEND with GANomaly [4] and f-AnoGAN [133], AnoGAN’s extension, for

experiments given the better performance.

Classifier-based methods As the novelty detection in medical images can be

reduced to a one-class classification (OCC) [70] problem with the one-vs-rest setup,

one-class classifiers are often used for identifying unseen classes, e.g., OC-SVM [134],

FCDD [94], DOC [108], DeepSVDD [128]. With only ID data as training inputs,

one-class classifiers often optimize a kernel-based objective function and minimize

a hyper-sphere to threshold out the anomaly data based on distance. In common,

the one-class classifiers exploit in-distribution data with specific object functions to

threshold out anomalies. Nonetheless, their detection abilities on intra-class OOD

data are not effective as the intra-class OOD data shares a lot of similarity with

the ID data. Except for the one-class classifiers, ODIN [84] works on multi-classes

datasets by adding perturbations of the input and temperature scaling to the score

function to distinguish in-distribution and OOD data. Despite the efficiency and

sophisticated methodology, the prerequisites of multiple OOD classes of the dataset

is not typical in the medical image area and thus classifier-based methods have limited

applicability in healthcare.
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2.3 Medical dataset curation with limited super-

vision

Supervised deep learning requires plenty of annotations to train models, which are

often in a limited amount, even unavailable for lots of medical image tasks. To utilize

deep learning methods, many institutions label their own data locally. Therefore, it

will be beneficial to curate the annotated data from various sources and contribute

to a large standard dataset for the research community usage.

Data curation aims to provide quality data as input for meaningful Deep Learning-

based analysis, which can be a costly and challenging process while curating extensive

volumes of disorganized data. Therefore, an automatic dataset curation pipeline is

highly demanding. However, the medical datasets from different institutions can

be heterogeneous and with distribution shifts. To address the problems, a whole

dataset curation involves data denoising, outlier detection, imputation, balancing

and semantic annotation of the noisy, incomplete, insufficient data [174]. Among

the operations, outlier detection plays the most important role for data cleansing

and dataset quality improvement. Current dataset outlier detection are classified

as statistical methods [3], distance-based methods [2], density-based methods [18]

and cluster-based methods [48]. These methods are limited when handling high-

dimensionality and nonlinearity. Most recent deep learning-based methods have been

reported to detect outliers(see Sec. 2.2).

However, there is still a huge challenge for medical applications since it lacks an

effective way to identify the difference for a bunch of datasets from the same medi-

cal domain because of inaccessibility to external medical datasets. Privacy concerns

around sharing personally identifiable information are a major barrier to data sharing

in medical research [135]. To address these privacy concerns, there has been an im-

pressive number of large-scale research collaborations to pool and curate de-identified
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medical data for open-source research purposes [32]. Nevertheless, most medical data

is still isolated and locally stored in hospitals and laboratories due to the worries

associated with sharing patient [150].

2.4 Medical image retrieval with limited supervi-

sion

Generally, there are two mainstream image retrieval categories: real-value based

[153, 20, 157, 144] and hash-based approaches [122, 82, 155, 166]. Real-value based

metric learning methods can be further classified into anchor-based [72] and pair-

based methods such as pairwise (CircleLoss[144]), tripletwise (DeepRank [153]) and

listwise (FastAP [20]) methods.

One limitation of existing approaches is that they focus on natural images and

only consider single-label during sampling. The other limitation of existing retrieval

methods is the intra-class similarity problem. These existing efforts all emphasize the

inter-class similarity but neglect the intra-class similarity. It’s not clear if they can

be applied to the medical domain. To our best knowledge, most medical retrieval

systems are also restricted to single-label similarity measure. For example, Qayyum

et. al. [113] propose to retrieve images for a dataset that is composed of lungs, brains,

livers, ect. The dataset studied exhibits clear inter-class variations and can be dis-

tinguished based on a single class label. In contrast, retrieval in a multimorbidity

dataset is much more challenging as multiple diseases or conditions can present in

one single patient. The exact matching for all the labels is difficult as the occurrence

of multiple conditions should all be identified by a retrieval system. In another camp,

deep supervised hashing methods learn compact similarity-preserving binary code [90]

and can be applied to the multi-label image retrieval [176]. Popular works include

DPSH [82], CSQ [166], DTSH [155], DBDH [177]. However, such approaches sacrifice
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the semantic information when encoding the learnt features into a fixed-length bi-

nary code to obtain fast image retrieval, which results in degradation of performance

accuracy.
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Chapter 3

Medical Image Segmentation with

Limited Supervision

3.1 Clumped nuclei segmentation

Fluorescence microscopy images are commonly used in clinical and biomedical re-

search to help visualize cellular components, such as membranes and nuclei. Analysis

of fluorescence microscopy images often requires an accurate identification of indi-

vidual cell nuclei. However, clumped nuclei due to a high cell density often make

it challenging to achieve an accurate nuclei segmentation. Although a large num-

ber of clumped nuclei segmentation methods have been proposed for fluorescence

microscopy image analysis, they are subject to salient defects [118, 159]. For ex-

ample, shape-based methods are sensitive to clumped nuclei shape variance which

often leads to under-segmentation [159, 152, 85, 46]. Similarly, under-segmentation

occurs in concavity-based methods that heavily rely on the clumped nuclei contour

concavity [46, 170, 172]. By contrast, existing watershed-based methods usually yield

over-segmentation due to the variance of image intensity [11, 16]. A 3D method is
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developed to segment clumped nuclei for improved segmentation accuracy [11]. How-

ever, its computational cost is expensive. In this paper, we propose a segmentation al-

gorithm that identifies point pair connection candidates and evaluates adjacent point

connections with a formulated ellipse fitting quality indicator. After connection rela-

tionships are determined, we recover the resulting dividing paths by following points

with specific eigenvalues from the image Hessian in a constrained searching space.

We validate our algorithm with 560 image patches from two classes of tumor regions

of seven brain tumor patients. Both qualitative and quantitative experimental results

suggest that our algorithm is promising for dividing overlapped nuclei in fluorescence

microscopy images widely used in various biomedical research.

3.1.1 Contribution

We summarize our contributions as below:

• We propose a new algorithm that fully exploits the boundary shape of nuclei

clumps to identify connecting point pairs by local high curvature voting and

point pair screening. This is followed by a novel method that connects point

pairs with dividing curves derived from local shape-based intensity analysis.

• Our method shows significant improvements over an existing marker-controlled

watershed method [16] on a set of 560 fluorescence microscopy image patches.

We also make the code publicly available at https://github.com/XiaoyuanGuo/

EMBC2018_clumped_nuclei_segmentation.

Publication:

• Guo, Xiaoyuan, Hanyi Yu, Blair Rossetti, George Teodoro, Daniel Brat, and

Jun Kong. “Clumped nuclei segmentation with adjacent point match and lo-

cal shape-based intensity analysis in fluorescence microscopy images.” In 2018

https://github.com/XiaoyuanGuo/EMBC2018_clumped_nuclei_segmentation
https://github.com/XiaoyuanGuo/EMBC2018_clumped_nuclei_segmentation
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Figure 3.1: The overall method flowchart for our proposed clumped nuclei segmenta-
tion is demonstrated. Nuclei are shown in blue with additional nuclear components
shown as red and green interior regions.

40th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), pp. 3410-3413. IEEE, 2018.

3.1.2 Method

Our algorithm utilizes the contour shape of clustered nuclei to generate candidate

point pairs and local shape based intensity analysis to separate overlapped nuclei

with dividing curves. The work-flow consists of four main steps: (1) Voting for high

curvature candidate points; (2) Screening close point pairs by a curvature-based dis-

tance metric for adjacent point pairs and a comprehensive metric taking into account

curvature, distance, and matched normal vector angle for non-adjacent point pairs;

(3) Assessing adjacent point pair connections via an ellipse fitting quality indica-

tor; and (4) Identifying dividing curves by local shape based intensity analysis (see

Figure 3.1).
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High Curvature Candidate Point Voting

The blue-fluorescent DAPI nucleic acid stain preferentially binds to DNA within nu-

clei. Thus, we focus on the blue image channel for overall nuclear contour detection.

We obtain the boundaries of such clustered nuclei using a global adaptive threshold.

We propose a new method to find high curvature points on clump contours based

on neighboring high curvature point votes. Curvature value of each point on the

boundary is computed by κ = x′y′′−y′x′′

(x′2+y′2)3/2
, where x and y are coordinates of points

on the denoised contour convolved with a smoothing Gaussian filter [159]. Different

from high curvature point detection methods that select points with curvature values

higher than a specified threshold [159], our method can avoid redundant candidate

point detection with local high curvature point votes. As the following segmentation

analysis depends on these initial candidate points, limiting the number of redun-

dant candidate points can substantially reduce the computational cost and improve

segmentation accuracy. In our data, it is quite common to have a long set of high

curvature points along a concave contour segment defined by the curvature sign, as

demonstrated in Figure 3.1(I). For those high curvature points in spatial proximity,

it is unreasonable to mark all these points as candidates. Thus, we propose to vote

for the optimal candidate point representation for a group of adjacent high curvature

points by:

s∗ =

∫
∂C
κ(s)sds∫

∂C
κ(s)ds

(3.1)

where s ∈ [0, 1] represents the normalized boundary arc length on a cell concave

contour segment ∂C; κ(s) is the curvature value at s; s∗ is the normalized arc length of

the optimal point representation for a segment of adjacent concavity points engaged in

local voting. The bottom image in Figure 3.1(I) demonstrates the final high curvature

point representation (in yellow circle) voted by all local high curvature points detected

in the top image in Figure 3.1(I). With this procedure, we detect all high curvature
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point representations on each contour.

Close Point Pair Screening

Let us denote P = {pi, |i = 1, 2, . . . , N} as a set of high curvature candidate points

detected from Subsection 3.1.2. As demonstrated in Figure 3.1(II), we next identify

all pairs of points (pi, pj) in spatial proximity by two circular searching regions of

radius r1 and r2 (r1 < r2) for under-segmentation reduction. Specifically, r1 is used

to detect the pairs of both adjacent and non-adjacent points, whereas the ring area

defined by r2−r1 is for detecting pairs of non-adjacent points in a neighboring area. In

our analysis, they are set to 45 pixels and 70 pixels, respectively. In this way, we can

alleviate under-segmentation suffered by numerous shape-based methods. The spatial

proximity in our study is measured by the Euclidean distance. In addition, unlike the

“bottleneck” points defined as close points presenting opposite gradient directions in

previous research [152, 85], we relax this constraint and classify close points as either

adjacent or non-adjacent point pairs. Plotted in the left panel in Figure 3.1(II), the

search regions for close point pairs are represented by the red circle with radius r1

and the green ring with inner radius r1 and outer radius r2, respectively. Here we use

the searching region in the red circle of radius r1 for detecting pairs of both adjacent

and non-adjacent points in spatial proximity, whereas we only use the green ring

for detecting pairs of non-adjacent points in a neighboring area. In the left plot of

Figure 3.1(II), points 9 and 11 in the red circle region are close adjacent points of

point 10, while point 5 in the green area is also close but not adjacent to point 10.

Although these two types of close point pairs are processed in different ways in our

proposed method, they both are important for an accurate segmentation.

(1) Analysis for Pairs of Adjacent Points in Proximity: Let us denote C+ =

{(pi, qi)|i = 1, 2, . . . , N1} as the set of neighboring adjacent point pairs given the

searching circular area of radius r1. For each such pair demonstrated in the right panel



19

of Figure 3.1(II), we evaluate the associated Walking Energy to determine if we merge

them (i.e. discard the undesired point and keep the point with the higher curvature

value). Walking Energy is defined as Ep,q =
∫ q(s)

p(s)
κ(s)ds, where κ(s) is the curvature

of the corresponding curve segment s ∈ [p(s), q(s)]. Walking Energy represents the

amount of ”effort” required for a walk from a point p(s) to its close adjacent point

q(s). In our formulation, we assume it consumes more energy to walk along a convex

than non-convex contour. Demonstrated in the right panel of Figure 3.1(II), point 6

has two close point neighbors, i.e. point 5 and 7. The true walking route from point

6 to 7 is illustrated in a red curve, while that from point 6 and 5 is shown in green.

Those pairs of neighboring adjacent points requiring low Walking Energy are merged.

For each such pair of points under investigation, the point with higher curvature value

is retained after points get merged. Adjacent points associated with a high Walking

Energy would be retained, as shown in the right panel of Figure 3.1(II) where the

Walking Energy for points 6 and 7 is sufficiently high to keep them separated. For

any pair of such adjacent points presenting a high Walking Energy, it is highly likely

that such points should be connected to separate overlapped nuclei. Therefore, we

further evaluate the boundary segmentation quality in such cases by an ellipse fitting

method discussed in Subsection 3.1.2.

(2) Analysis for Pairs of Non-Adjacent Points in Proximity: The resulting set of

non-adjacent point pairs in close proximity can be represented as C−
1 = {(pi, qi)|i =

1, 2, . . . , N2} when we use the circular searching area of radius r1. To alleviate under-

segmentation, we next expand the searching space to a ring searching region with

radius between r1 and r2. To assess if such pairs of non-adjacent points (pi, qi) result

from intersection of overlapped nuclei, we formulate and use the following measure

to evaluate such point pairs:

V (pi, qi) =
αθ(pi, qi)

D(pi, qi) + β(κ(pi) + κ(qi))
(3.2)
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where θ is the angle between two normal vectors of the nuclear contour at pi and qi;

D is the Euclidean distance between (pi, qi); α and β are weights set as 100 and 0.34,

respectively. If V (pi, qi) is larger than a specified threshold (e.g. 200 in our analysis),

and (pi, qi) are non-adjacent points in a ring searching space between the radius of

r1 and r2, such point pair is added to C−
2 = {(pi, qi)|i = 1, 2, . . . , N3}. After this

evaluation analysis, the finalized set of non-adjacent point pairs in close proximity is

C− = C−
1

⋃
C−

2 . For each pair in C−, we next link the associated points to partition

the whole contour into multiple subsets. Demonstrated in Figure 3.1(III), a whole

nuclei cluster can be partitioned into multiple subsets by connecting points (2, 15),

and (5, 10). As each candidate subset can produce new possible adjacent point pairs,

the method for pairs of adjacent points in proximity discussed above is applied to

each candidate subset.

Point Pair Segregation Assessment by Ellipse Fitting

We proceed with evaluating the segregation quality Qi,i+1 of each adjacent point

pair (pi, pi+1) by ellipse fitting. For each sub-contour segment under evaluation, an

optimal ellipse, shown in red in Figure 3.1(IV), is fit to a candidate nucleus region

with a closed sub-contour consisting of a contour arc and a dividing line between

(pi, pi+1). An ellipse fitting quality measurement is defined as:

Qi,i+1 =
µS+

i,i+1 + νψi,i+1

(∆xi,i+1 + ∆yi,i+1) + γ1∆Li,i+1 + γ2ηi,i+1

(3.3)

where S+
i,i+1 is the ratio of overlapped area between the candidate nucleus and fitting

ellipse to their union; ψi,i+1 is the fitting angle formed by the line segment connecting

the ellipse center and pi and that connecting the ellipse center and pi+1; ∆xi,i+1

and ∆yi,i+1 are the centroid coordinate difference between the fitting ellipse and the

evaluated nucleus region; ∆Li,i+1 is the perimeter difference between the fitting ellipse
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and the evaluated nucleus contour; ηi,i+1 is the ratio of major to minor axis length

derived from the fitting ellipse. µ, ν, γ1 and γ2 are weights set to 10.70, 10.70, 0.67

and 3.40 in our experiment.

With the formulated ellipse fitting quality measurement, we connect those neigh-

boring adjacent point pairs when the associated Q is larger than a threshold (e.g. 0.7

in our analysis). This ellipse fitting evaluation process is carried out in an iterative

manner. Each time, we connect the pair with the largest Q. In the post-processing

step, we prune intersected connections and dividing lines that form a sharp angle to

avoid over-segmentation. Finally, we obtain pairs of points to be connected in a set

C∗ = {(p∗i , q
∗
i )|i = 1, 2, . . . , NC}.

Identification of Dividing Curves

Given identified point pairs for connection, a vast majority of nuclei segmentation

methods connect each such pair with a straight separating line. However, it is our

observation that a better division is given by a curve following the image gradient

information, as shown in Figure 3.1(V). Therefore, we next aim to recover a dividing

curve for each such pair with local shape-based intensity analysis. Denoting I(x, y)

as the fluorescence microscopy image, we can represent it by Taylor series expansion

as:

I(x, y) ≈ I(x0, y0) + ▽I(x0, y0)

x− x0

y − y0

 (3.4)

+
1

2

[
x− x0 y − y0

]
HI(x0, y0)

x− x0

y − y0


where HI(x0, y0) is the Hessian matrix representing the second derivative values of I

at the specific point (x0, y0). In order to have a better dividing path than a straight

line connecting two contour points (p, q), we start off from one end point p and look
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for the next adjacent pixel with its local neighboring intensity change almost zero

in one direction and drastically increased in its orthogonal direction. As a natural

dividing curve passes along pixels with local intensity minimum, we can detect such

adjacent pixels by computing two eigenvalues of Hessian matrix HI satisfying such

properties: 0 ≈ λ1 ≪ λ2. The adjacent pixel with a near zero λ1 and the maximum

λ2 is considered as the next pixel on the dividing curve.

To ensure that the final optimized connection path can merge to the other end

point q smoothly, we search forward in a targeting region with a constrained deviation

angle (i.e. ±45◦ in our experiment) from the vector connecting the current dividing

point to q at each step. Within such a sector-shaped searching space, we can force the

resulting optimal connection path to remain in intensity “valley” with large gradient

variance and to converge smoothly to the other end point q. This is demonstrated by

the connection between point 5 and 9 in Figure 3.1(V) where our method is able to

recover a dividing curve along a local minimum intensity route for overlapped nuclei

segmentation.

3.1.3 Experiments

To validate the performance of the proposed algorithm, we tested our method with

a dataset of 112 images (1024 × 1376 pixels) from two brain tumor regions of seven

patients. As such images contain a large number of nuclei that are not overlapped,

five image patches with overlapped nuclei clusters are randomly selected from each

image. This results in 560 image patches for method evaluation.

We visually inspect the resulting nuclei segmentation results and compare our

method with the marker-controlled watershed method [16]. Representative results of

four overlapped nuclei clusters in our dataset are presented in Figure 3.2. We present

the instances of clumped nuclei from original images in the first row, and ground-truth

annotations on the second. Nuclei segmentation results from marker-controlled wa-
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tershed segmentation and our proposed method are presented in the third and forth

rows, respectively. It is noticed that our method is able to produce segmentation

results similar to human annotations. In particular, those dividing curves recovered

from local shape based intensity analysis can help improve segmentation results. By

contrast, watershed method fails to identify and separate some overlapped nuclei

clusters in the third row. To quantitatively evaluate the performance of our proposed

method, five metrics including Jaccard index, Precision, Recall, F1 score, and Haus-

droff distance are used. The resulting quantitative evaluation results are presented in

Table 3.1. For each patient, both marker-controlled watershed method and our pro-

posed method are tested on 40 images of Bulk Tumor (BT) and another 40 of Tumor

Margin (TM). There are four rows of results associated with each patient in Table 3.1.

The top two lines present quantitative results of watershed based method on BT and

TM images, while the bottom two demonstrate results from our method on BT and

TM images. Note that our method presents superior performance as measured by

most of the metrics. Specifically, Jaccard index values from our proposed method

are much higher than those of watered based method while Watershed method has

better Precision as it tends to miss a large number of nuclei segregation events. One

limitation of our method is that it could fail for cases where overlapped nuclei result

in internal holes, as it uses contours of clustered nuclei. This will be improved in

future work.

3.1.4 Conclusion

This paper presents a novel segmentation method for clumped nuclei in fluorescence

microscopy images. Our analysis first generates precise candidate point represen-

tations based on a high curvature point voting method, followed by detection of

connecting point pairs based on spatial proximity, shape convexity, and curvature

information via close point pair screening. An ellipse model is proposed to fit to each
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Figure 3.2: Comparisons of segmentation results over four representative overlapped
nuclei regions are presented with original images, ground truth, results of marker-
controlled watershed method, and outcomes of our proposed method from top to
bottom rows, respectively.
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Table 3.1: Quantitative method evaluation and comparison with 560 image patches
from BT and TM tissue regions: (mean,std).

Patient Jaccard Precision Recall F1 score HD (pix.)

1

0.44,0.19 0.96,0.08 0.46,0.21 0.58,0.22 34.3,19.1
0.38,0.18 0.97,0.07 0.40,0.20 0.53,0.20 34.6,18.7
0.75,0.20 0.86,0.18 0.86,0.17 0.84,0.17 22.0,25.6
0.81,0.14 0.93,0.13 0.87,0.11 0.89,0.11 15.0,19.6

2

0.60,0.16 0.96,0.11 0.62,0.16 0.73,0.16 20.2,15.5
0.64,0.16 0.98,0.07 0.66,0.16 0.77,0.13 24.3,17.9
0.80,0.15 0.90,0.13 0.89,0.12 0.88,0.11 13.8,18.4
0.83,0.15 0.91,0.12 0.91,0.12 0.90,0.11 13.6,20.1

3

0.49,0.18 0.94,0.11 0.52,0.21 0.63,0.19 32.2,23.5
0.54,0.17 0.97,0.10 0.55,0.17 0.68,0.15 31.7,20.3
0.70,0.23 0.89,0.14 0.79,0.25 0.80,0.21 21.7,24.3
0.77,0.17 0.89,0.11 0.85,0.16 0.86,0.13 13.8,18.2

4

0.44,0.18 0.94,0.13 0.46,0.20 0.59,0.20 33.6,22.0
0.47,0.15 0.97,0.09 0.48,0.16 0.62,0.16 34.5,17.9
0.75,0.18 0.80,0.19 0.93,0.11 0.84,0.14 27.1,29.3
0.80,0.19 0.87,0.15 0.92,0.16 0.88,0.15 22.0,29.0

5

0.57,0.16 0.95,0.10 0.59,0.17 0.71,0.15 28.9,19.3
0.49,0.16 0.97,0.10 0.50,0.16 0.64,0.17 36.4,19.6
0.80,0.17 0.85,0.16 0.93,0.13 0.88,0.14 21.4,30.8
0.86,0.12 0.90,0.10 0.95,0.09 0.92,0.08 15.5,20.4

6

0.51,0.19 0.93,0.13 0.55,0.21 0.65,0.19 26.6,19.5
0.67,0.20 0.93,0.17 0.71,0.20 0.78,0.19 22.2,24.7
0.71,0.21 0.84,0.18 0.84,0.20 0.81,0.17 23.8,25.4
0.82,0.14 0.88,0.13 0.93,0.09 0.90,0.10 13.1,18.1

7

0.58,0.20 0.95,0.11 0.61,0.21 0.71,0.19 33.3,25.0
0.44,0.20 0.96,0.08 0.45,0.21 0.58,0.22 33.0,18.7
0.78,0.18 0.86,0.14 0.91,0.16 0.86,0.14 19.2,30.3
0.78,0.17 0.86,0.15 0.90,0.14 0.86,0.14 18.5,26.1

resulting area associated with each point pair candidate. We define a fitting quality

as a function of fitting angle, fitting area, fitting ellipse center shift, fitting perimeter

change, and fitting area elongation. Only point pairs presenting good fitting quality

are connected. Instead of separating overlapped nuclei by a straight line, we recover

dividing curves by local shape based intensity analysis in a sector-shaped searching

space. We validate our algorithm with 560 image patches from two classes of tumor

regions associated with seven brain tumor patients. Both qualitative and quantita-
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tive validation results suggest that our algorithm is promising for dividing overlapped

nuclei in fluorescence microscopy images widely used in various biomedical research.

3.2 Liver steatosis segmentation

Due to abnormal retention of lipids in hepatocytes, liver steatosis can result from

alcohol, obesity, and type II diabetes mellitus [80]. In addition, it serves as the

hallmark of a large number of diseases, including non-alcoholic fatty liver disease

(NAFLD), alcoholic fatty liver disease, and hepatotoxicity in diverse medical con-

ditions [24]. Therefore, it is essential to achieve accurate quantification of steatosis

droplet regions for an accurate disease diagnosis and liver transplantation evalua-

tion [30]. The prevalent gold standard for steatosis assessment is via human visual

inspections of liver tissue sections, a process known to be time-consuming and subject

to observer variability [101]. Hailed as a new alternative solution, digital pathology

is an emerging field that uses digital high-resolution images of tissue sections for

machine-based image processing. Although multiple automated methods for liver

steatosis measurement have demonstrated computational advantages over human re-

viewing process [101, 168, 88, 45, 126, 62, 75], they are not sufficiently accurate to

support precise steatosis quantification, especially when overlapped steatosis regions

with weak separating borders are in presence. As a result, it still remains challenging

to develop a robust image analysis program to support precise liver steatosis analysis.

As each tissue slide is projected to a two-dimensional microscopy image space, it is

not unusual to identify a large number of tissue regions with overlapped steatosis

droplets in clumps. Such spatial alignment nature, combined with substantial varia-

tions of size, staining color, and structure appearance, presents a technical barrier for

individual steatosis droplet segmentation, leading to erroneous steatosis feature com-

putation and size quantification. In this paper, a deep learning model Mask-RCNN
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is used to segment the steatosis droplets in clumps. Extended from Faster R-CNN,

Mask-RCNN can predict object masks in addition to bounding box detection. With

transfer learning, the resulting model is able to segment overlapped steatosis regions

at 75.87% by Average Precision, 60.66% by Recall, 65.88% by F1-score, and 76.97%

by Jaccard index, promising to support liver disease diagnosis and allograft rejection

prediction in future clinical practice.

3.2.1 Contribution

We summarize our contributions of this work as follows:

• We adopt the Mask-RCNN based deep learning method [59] and successfully

customize it to segment overlapped steatosis droplets in whole-slide histopathol-

ogy images of live tissue sections.

• To establish a large training data efficiently, we propose to transfer our prior

work on nuclei segmentation and have a domain expert to screen results for an

accurate training data set generation [53].

• The proposed method can separate highly clumped steatosis droplets and re-

cover their precise contours with promising accuracy.

Publication:

• Guo, Xiaoyuan, Fusheng Wang, George Teodoro, Alton B. Farris, and Jun

Kong. “Liver steatosis segmentation with deep learning methods.” In 2019

IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp.

24-27. IEEE, 2019.
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3.2.2 Method

Our work for steatosis analysis is enlightened by the Mask-RCNN segmentation

method proposed for object instance segmentation [59]. Extended from Faster R-

CNN [120], Mask-RCNN replaces the Region of Interest (ROI)-pooling operation with

‘ROI-Align’ for solving the misalignment problem. This change in architecture enables

segmentation of individual objects from different categories and results in substantial

improvement in the segmentation accuracy. Due to the promising performance of

Mask-RCNN for instance segmentation, we propose to customize this architecture for

steatosis segmentation. The method schema is presented in Figure 3.3 where three

primary components are presented: training data preparation with our prior work

on nuclei segmentation [53], model training with transfer learning, and overlapped

steatosis segmentation in testing images.

Training Data Preparation

Due to the two-dimensional image space projection, a large amount of densely aligned

steatosis droplets can touch together with blurred dividing boundaries. Therefore, it

is not feasible for pathologists to annotate all steatosis masks for efficient training

data production. This is a common problem for deep learning model training in a

wide scope of research investigations.

To facilitate training data preparation, we modify our previous nuclei segmen-

tation method [53] and generate initial segmentation masks for steatosis instances.

As our previous method aims at separating clumped nuclei in fluorescence in-situ hy-

bridization images, it can not be directly applied to bright field histopathology images

for steatosis droplet segmentation. As a result, we modify such method as follows.

First, we convert the input color image to its gray-scale representation that is further

binarized by a normalized threshold. All non-tissue areas in the image background are

excluded for further analysis. Next, overlapped steatosis candidates are identified by
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rejecting connected foreground regions where solidity is over 0.95. A high curvature

point voting method is used to detect dividing candidate points. They are connected

based on the fitting quality evaluation by an ellipse fitting model, spatial proximity,

shape convexity, and curvature information. Finally, we recover dividing curves by

local shape based intensity analysis in a sector-shaped searching space, and produce

the corresponding isolated steatosis masks [53].

Although this process produces satisfied results for a large number of touching

steatosis droplets, there are partitioned steatosis instances that are not matched with

their histology structures as reviewed by the domain expert. Such results are removed

from the training data set. As the number of such instances is limited, these unlabeled

foreground regions would have little impact on the generalization ability of the trained

model. In this way, a good training data set is established in an efficient manner. The

resulting data set includes 451 images of 1024 × 1024 × 3 with corresponding mask

sets. Each image patch I has multiple masks {M1,M2,M3, · · · ,Mn}, with each mask

image containing one steatosis droplet, essential for solving the overlapped steatosis

problem. With this training data set, Mask-RCNN is able to learn how to segregate

overlapped steatosis droplets through image-mask pairs.

Deep Learning Model

There are three primary components in Mask-RCNN: the backbone, Region Proposal

Network(RPN), and “ROI-Align”. The backbone is composed with Convolutional

Neural Networks (CNNs) that can extract multi-level image features. We use modified

resnet41, resnet50, and resnet65 [58] as our backbone CNNs. The second component

RPN scans the input image with a sliding-window and detects steatosis droplet regions

in our study. “ROI-Align” further analyzes ROIs from the RPN and interpolates the

feature maps from the neural network backbone at multiple locations. In this way,

it can handle the incorrect alignment from Faster R-CNN [120]. With these deep
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learning components, the resulting model can classify objects into different classes,

provide object positions with bounding boxes, and produce a mask for each detected

object. In the training process, these three components are orchestrated to minimize

the following multi-mask loss function for each steatosis instance [59]:

 L =  Lcls +  Lbbx +  Lmask (3.5)

where  Lcls,  Lbbx, and  Lmask are classification loss, bounding box loss, and mask predic-

tion loss, respectively. More specifically,  Lcls = − log(pi) where pi is the class prob-

ability of the instance i;  Lbbx =
∑

ci(j)∈{xi,yi,wi,hi} SmoothL1(ci(j) − Ci(j)), where ci

and Ci are the centroid coordinates, width, and height of predicted and ground-truth

bounding box for the instance i. Additionally, we have the function SmoothL1(·)

defined as: SmoothL1(x) =

 0.5x2, if |x| < 1

|x| − 0.5, otherwise
.

 Lmask = − 1
N2

∑
1≤i,j≤n

[Pij log pij + (1−Pij) log(1−pij)], where pij is the predicted mask

probability and Pij is the ground-truth mask label at pixel (i, j) in a N ×N region.

Typical steatosis segmentation results are demonstrated at the bottom part of

Figure 3.3. The output image on the left presents the steatosis mask prediction with

individual steatosis objects color-coded, whereas output images in the middle and

right illustrate the predicted steatosis bounding boxes and the classification proba-

bilities, respectively.

3.2.3 Experiments

With our prior segmentation method for nuclei [53], we generate segmentation masks

at the highest image resolution. Our training data set is efficiently generated after a

domain pathologist removes erroneous masks. The final data set contains 451 liver

images of 1024 × 1024 × 3 with ground-truth masks of which 387, 45, and 19 images

are used for training, validation, and testing, respectively.
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Random neural network initializations can result in an overwhelmingly expensive

time cost for model training. Demonstrating its strength for problem solving at a

reduced computational cost, transfer learning [105] enables the pre-trained models

to serve as the initial point for customized training, and has become popular in a

large number of deep learning studies. In our experiment, network weights from the

pre-trained COCO model are adopted to initialize our training process. Three back-

bones network structures, i.e. modified Resnet41, Resnet50 and Resnet65, are used,

respectively. For these network backbones, we train the head layer for 30, 20, and

30 epochs, respectively. After head training, all layers are trained to achieve the

best segmentation accuracy with 80, 50, 50 epochs, respectively. These epoch num-

bers are determined heuristically. To minimize the total loss in the training process,

back-propagation and Stochastic Gradient Descent(SGD) are utilized. We run exper-

iments on two GPUs (12GB RAM Tesla K80, NVIDIA Inc.) for 300 iterations, with

six images per GPU for each mini-batch. The initial learning rate is 0.02, decreased

by 10-fold for each 300 iterations. Additionally, online data augmentation techniques

are used to further scale up data set size, improve the training performance, and in-

crease generalizability and robustness of the trained model. These techniques include

random affine transform, random flipping, and Gaussian blurring.

The process of applying the trained network to whole-slide microscopy images is

presented in Figure 3.4 where the left image presents the overall view of a represen-

tative whole-slide image, with a green box illustrating the close-up view of a small

tissue part. The image in the middle demonstrates clustered steatosis droplets in a

small liver tissue region at the full image resolution, while segmentation results of

steatosis droplets by our trained network are illustrated with distinct colors in the

right image.

To make this method flexible for diverse liver disease diagnosis and transplanta-

tion evaluation settings, we characterize each recognized steatosis candidate by the
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eccentricity, size, and perimeter, and record the segmentation score resulting from

the neural network prediction. We provide user-defined thresholds for these features,

enabling customized steatosis droplets retention. In this way, domain pathologists

can have a convenient way to select cutoff values for these features and get readily

informed of the number and the morphological profiles of the retained steatosis ob-

jects. We demonstrate the neural network segmentation results before and after such

post-processing in Figure 3.5 where we keep steatosis candidates with size, perimeter

and eccentricity within [0.001, 6], [0.5, 4], and [0.2, 1.5] times of the average steatosis,

respectively.

Representative segmentation results are presented in Figure 3.6 where the orig-

inal input images, ground-truth segmentation, results from our earlier method [53],

outputs of presented deep learning approach with modified Resnet41, Resnet50 and

modified Resnet65 backbones are presented in columns from left to right. It is noted

that deep learning methods, especially the network with backbone Resnet50, present

better results than our earlier work as they present less under-segmentation results.

Additionally, deep learning methods present good performances on handling clumped

steatosis clusters with complex topology.

To quantitatively evaluate the presented method, we compare results from deep

learning algorithm with the ground-truth data. Table 3.2 presents evaluation results

of averaged steatosis measures by four metrics, including Average Precision, Recall

Ratio, F1-score, and Jaccard index. It is noticed that the trained network with

Resnet50 achieves the best precision, recall ratio, F1-score, and Jaccard index.

3.2.4 Conclusion

We propose to use the deep learning method to solve the overlapped liver steatosis

segmentation problem. Due to lack of labelled steatosis droplets from liver microscopy

images for training, we modify our earlier nuclei segmentation method to generate
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liver steatosis training data after an efficient screening process by a domain expert.

The trained neural network model is demonstrated to segment liver steatosis droplets,

especially those in clumps with promising accuracy. Quantitative evaluations suggest

that deep learning technology enables accurate and high-performance steatosis seg-

mentation, a promising tool for enhancing liver disease diagnosis and transplantation

assessment.

Table 3.2: Method performance evaluation and comparison.

Method AP Recall F1-score Jaccard
Clump seg [53] 52.18% 45.50% 45.03% 67.42%

ResNet41 67.61% 58.37% 62.06% 73.18%
ResNet50 75.87% 60.66% 65.88% 76.97%
ResNet65 69.55% 55.60% 61.69% 74.38%
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Figure 3.3: Schema of steatosis segmentation method.
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Figure 3.4: Segmentation process for a whole-slide microscopy image.

Figure 3.5: Segmentation result (Left) before and (Right) after post-processing, with
black boxes in the left image indicating the discarded steatosis regions.

Figure 3.6: In columns from left to right, we demonstrate original images, ground-
truth, segmentation results from method [53], Mask-RCNN with modified Resnet41,
Resnet50, and modified Resnet65, respectively.
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3.3 Breast arterial calcifications (BAC) segmenta-

tion

Cardiovascular disease is a source of high morbidity and mortality in women [49].

One of the barriers to improving diagnosis outcomes is the lack of a simple, inex-

pensive, and reliable method for screening and for assessing efficacy of therapies.

Vascular disease commonly manifests as arterial calcifications, which are typically

assessed by computed tomography (CT) or CT angiography of the coronary arteries

and aorta [38]. However, these tests are expensive, usually performed only in symp-

tomatic patients, and associated with additional radiation exposure. Calcification

also occurs in breast arteries and can be readily observed on screening mammograms.

The prevalence of breast arterial calcifications (BAC) correlates with calcifications

in other arteries and is associated with an increased risk of cardiovascular disease

events [60, 43, 1, 21]. We recently showed that quantification of BAC through man-

ual measurements can more accurately stratify risk factors and provide a means to

follow progression [7, 6, 100].

Each year, more than 40M women over age 40 undergo screening mammography

for breast cancer screening [21]. Automatic detection and quantification of BAC in

these women may be helpful in identifying patients at high-risk for cardiovascular

events and following progression of vascular calcifications without additional cost or

radiation exposure [66]. Stored digital mammograms over the past decade would also

provide a vast dataset for robust retrospective research. Currently, there is no stan-

dardized method for accurate detection, segmentation and quantification of BAC on

mammography, which limits the utility of this potential biomarker. There are many

challenges in automated detection of BAC. First, BAC appear as slender, elongated

regions of fragmented high pixel intensity on mammograms and typically represent

fewer than 1% of a 4K × 3K image. Moreover, the narrow appearance and potential
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variable lengths make precise segmentation of BAC much more challenging compared

to general segmentation tasks. Second, there is no standard strategy for acquiring

groundtruth BAC segmentations due to the variations in vessel width, severity of

calcifications along the vessel, and tortuous vessel paths. Third, the large image size

(over 12MP) adds significant difficulty in image processing.

Although there have been a number of existing works relevant to breast arterial

calcifications, few have focused on accurate segmentation. Sulam et al. [143] examined

only prevalence and Abriele et al. [148], Juan et al. [154] and Hossain et al. [63] all

detected BAC with a patch-based method, but did not report detailed segmentation

performance or quantification metrics. Since BAC segmentation can be considered

as a type of semantic segmentation in the realm of general computer vision, current

semantic segmentation models can be attempted for BAC segmentation. Generally,

semantic segmentation models can be classified into two main categories: non-real-

time and real-time segmentation models. Non real-time models such as U-Net [124],

SegNet [13], DeepLabV3 [27] and LinkNet [26] usually have complex architectures and

a high number of trainable parameters. Thus, they may achieve high accuracy but

are slow to train and deploy. By contrast, real-time semantic segmentation models in-

cluding ERFNet [123], ESNet [158], FastSCNN [112], ContextNet [111], DABNet [81],

EDANet [96], FPENet [91], CGNet [161] have fewer trainable parameters but can still

attain comparable performance with the non-real-time models. At our institution, up

to 250 screening mammograms are performed daily constituting approximately 1,000

images. In live clinical deployment, it would be advantageous that BAC detection

and quantification occur in near real-time so that the results are available to the

interpreting radiologist in case patient referral is needed. Therefore, segmentation

models with a high number of trainable parameters (e.g., U-Net [124] has 13,395,329

parameters) would be prohibitive in their inference times, and lightweight models

would enable more clinically viable.
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3.3.1 Contribution

Our main contributions can be summarized as below:

• We propose Simple Context U-Net (SCU-Net), an automated lightweight seg-

mentation model, to segment BAC in mammograms in a patch-based way. SCU-

Net offers comparable performance of the most popular current segmentation

architectures with an order of magnitude fewer training parameters. It achieves

this by taking advantage of both dilated convolution operations and skip con-

nections to learn and fuse global features with low-level information efficiently

while maintaining far fewer trainable parameters.

• We demonstrate the efficacy of SCU-Net by visually and quantitatively present-

ing our BAC segmentation results as compared to a series of popular semantic

segmentation models.

• Furthermore, we present five novel metrics to quantify the severity of BAC

within the segmentation mask, compare our quantification metrics to breast

CT, and demonstrate the ability to track a longitudinal increase in BAC in a

cohort of patients with 10 years of retrospective mammograms. Thus, SCU-Net

model may serve as a potential research and clinical tool for early detection and

risk stratification of cardiovascular disease for women. The code is available at

https://github.com/XiaoyuanGuo/BAC_segmentation.

Publication:

• Guo, Xiaoyuan, Judy Wawira Gichoya, Hari Trivedi, W. Charles O’Neill, Rhakur

Priya, Weijia Sun, Manisha Singh, Kathiravelu Pradeeban, Thomas J. Kim,

Tianen Christopher Yang and Imon Banerjee. “Deeper Thinner UNet (DT-

UNet) for Fine Vessel Segmentation of Breast Arterial Calcification (BAC).”

CMIMI2020. https://cdn.ymaws.com/siim.org/resource/resmgr/mimi20/

abstracts/deeper_thinner_unet_guo.pdf

https://github.com/XiaoyuanGuo/BAC_segmentation
https://cdn.ymaws.com/siim.org/resource/resmgr/mimi20/abstracts/deeper_thinner_unet_guo.pdf
https://cdn.ymaws.com/siim.org/resource/resmgr/mimi20/abstracts/deeper_thinner_unet_guo.pdf
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• Guo, Xiaoyuan, W. Charles O’Neill, Brianna Vey, Tianen Christopher Yang,

Thomas J. Kim, Maryzeh Ghassemi, Ian Pan, Judy Wawira Gichoya, Hari

Trivedi, and Imon Banerjee. “SCU-Net: A deep learning method for segmenta-

tion and quantification of breast arterial calcifications on mammograms.” Med-

ical physics 48, no. 10 (2021): 5851-5861.

3.3.2 Method

Preprocessing

Mammograms contain a wide variety of pixel intensities with varying breast shapes

and proportions of breast tissue versus null background. Therefore, image pre-

processing is critical to identify breast tissue and normalize the image to maximize

the model performance. To this end, we first smooth the image using median filter-

ing [50] with a disk kernel of size 5 for cleaning the noise but also avoiding causing

serious blurring. This was chosen empirically among the evaluated range of [5-20]

based on visual evaluation during preliminary experiments. To extract breast tissue

only, we erode and then dilate the breast images with a disk kernel (size is 10 in

our experiment) to erase the scanner labels of mammograms such as view type (i.e.,

“RMLO” – right mediolateral oblique, “LMLO” – left mediolateral oblique, “RCC”

– right craniocaudal, “LCC” – left craniocaudal). With the same setting, we dilate

and then erode the binary mask to link together and smooth any nearby annotation

segments, producing a continuous vessel mask. Finally, we enhance image contrast

to maximize the difference between calcified vessel and background tissue. During

training, we normalize input image patches with zero-means method to minimize the

impact of variation contrast between vessels and background.
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Figure 3.7: Network architecture of SCU-Net.

Network architecture

To overcome the issue of large image sizes and the inability to downsample images

without data loss, we propose Simple Context U-Net (SCU-Net), whose inputs are

patches cropped at the highest resolution of mammography images. The architecture

of SCU-Net is shown in Figure 3.7. All the feature sizes in the figure are presented

same as our experimental settings. SCU-Net is a symmetric, U-shaped model, similar

to U-Net [124]. The model has input image patches with size of 3 × 512 × 512.

1 The original input is fed into three 3 × 3 convolutional layers. To preserve the

original image information, the input patch is downsampled with scale factor of 1

and 2. The obtained two downsampled input features are in size of 3 × 256 × 256

and 3 × 128 × 128 corresponding to the second and third green additional inputs

of Figure 3.7. These two downsampled inputs will be concatenated with later high-

level features. Each concatenation is followed by BatchNormalization and Parametric

ReLU operations, enabling smooth fusion of high-level information with low-level

1Although the mammogram image is grayscale and has only one image channel, three duplicates
of the mammogram patch are stacked together to form a three-channel image same as RGB image
format. This setting ensures the model to work for both natural and grayscale images, and can be
comparable with existing segmentation models.
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features. Feature fusing is important, but the surrounding context is also very helpful

for semantic segmentation [161]. Inspired by CGNet [161] and DilatedNet [164],

SCU-Net adopts two different dilated convolutional layers (Dconv1 and Dconv2 in

Figure 3.7) to aggregate multi-scale contextual information. In the decoder arm of

the network, the learned image features are upsampled with bilinear interpolation and

then concatenated with the corresponding encoder features of the same size. “Up”

in Figure 3.7 means upsampling layer. Two 3 × 3 convoultional layers follow each

concatenation. In total, there are three upsampling layers to get the network back

to the original size. Finally, two 3 × 3 convolutional layers helps reduce the channel

numbers to the class number, 1 in our case, and a Sigmoid layer is used to get the

final mask prediction. All the convolutional layers including conv, Dconv1, Dconv2

and Up layers in Figure 3.7 are followed with BatchNormalization and Parametric

ReLU operations. To avoid overfitting, we use online data augmentation techniques

during training, including randomly vertical or horizontal flipping, randomly rotation

by 90 or 270 degrees, and randomly changing the brightness, contrast and saturation

of image.

Implementation details: In our experiments, binary cross entropy loss converges

much more slowly than dice loss, therefore we adopt dice loss to optimize all the

segmentation networks. For optimization, we use Adamw optimizer with a learning

rate of 0.001 for model training. Each network is trained with 50 epochs. The

pipelines are developed using Pytorch 1.5.0, Python 3.0. and Cuda compilation tools

V10.0.130 on a machine with 4 NVIDIA Quadro RTX 6000 with 24GB memory.

Experimental setup

With the approval of Emory Institutional Review Board (IRB), three cohorts of sub-

jects were identified from previous studies [7, 6, 100]. All mammograms extracted

were 2D full-field digital mammograms (FFDM) obtained during routine screening
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exams on Hologic (Marlborough, PA) mammography scanners in accordance with

Mammography Quality Standards Act (MQSA) requirements. Screening exams con-

sisted of four standard views - LCC, LMLO, RCC, RMLO.

• Cohort A – 661 FFDM from 216 subjects were annotated and used for deep

learning model training and validation. The mean age was 70 ± 11 and 37%

were African-American. Because the previous studies focused on kidney dis-

ease, 35% had chronic kidney disease, end-stage renal disease (ESRD), or renal

transplantation. Mean breast density was 2.23 ± 0.77 as reported according to

Breast Imaging Reporting and Data System (BI-RADS) guidelines (A=1, B=2,

C=3, D=4). The majority of patients were density B (scattered fibroglandu-

lar tissue - 43.6%) and C (heterogeneously dense - 41.7%) with a minority of

density A (mostly fat - 7.2%) and D (extremely dense - 7.5%).

• Cohort B for comparison to breast CT calcification - A previously reported

cohort of 10 subjects with contemporaneous measurement of BAC by breast

CT. Mean age was 69 ± 11 and all but one were Caucasian. Mean breast

density was slightly lower at 2.08 ± 0.76.

• Cohort C for longitudinal analysis - 26 additional subjects with BAC and at

least 5 yearly mammograms were studied in order to assess the ability to detect

progression of BAC. The mean age was 65 ± 12 and 54% were African-American.

Of these, 9 had ESRD or had undergone kidney transplantation. Mean breast

density was similar at 2.19 ± 0.70.

Groundtruth acquisition: Mammograms from Cohort A were annotated by four

annotators - one physician (CO) with 15 years experience and three other annotators

trained and monitored by CO. Groundtruth segmentations are performed manually

on whole images using the online platform Md.ai2 and standardized by annotating a

2www.md.ai

www.md.ai
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multi-segmented line down the center of any calcified vessel continuously until there

is at least a 1cm length of non-calcified vessel, at which point a new segmentation

is started where the calcification resumes. These annotations serve as groundtruth

training and validation data.

Data preparation: To prepare high-quality datasets for training deep learning mod-

els, the whole mammogram dataset is randomly divided into training and validation

parts with 527 mammography images for training and 134 for validation. The mam-

mography images are either sized 4096 × 3328 pixels or 3328 × 2560 pixels, which

require a large amount of memory to load and analyze. Therefore, we crop images

into fixed-size patches of 512×512 with 64 pixels of overlap between adjacent patches.

The overlapping ensures the ability to connect BAC segmentations from adjacent

patches and improves the overall segmentation accuracy. We exclude black back-

ground image patches to eliminate unnecessary calculations. Moreover, only patches

that contain calcifications are left for segmentation training given the fact that the

calcification mask prediction is pixelwise classification. Ultimately, this yields 3,455

effective patches for training and 901 patches for validation.

Model comparison: Experiments are performed with SCU-Net and state-of-the-art

deep learning models including SegNet [13], DeepLabV3 [27], U-Net [124], LinkNet [26],

ERFNet [123], ESNet [158], FastSCNN [112], ContextNet [111], DABNet [81], EDANet [96],

FPENet [91] and CGNet [161]. Their number of trainable parameters, including SCU-

Net, are compared in Figure 3.8. The larger the circle area for a model is, the more

parameters the model contains. As can be seen, SegNet [13] has the most parameters

while FPENet [91] contains the least. Our model, SCU-Net, has the second fewest

parameters (marked in blue). Models with fewer parameters have lower complexity,

consume less memory, and achieve faster training. Since mammograms (along with

most radiology images) are very large in size, the number of model parameters is an

important factor for real-world implementation as it is directly related to speed.
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Figure 3.8: Trainable parameters comparison of segmentation models. The circle
area is proportional to the total parameters of the model. Comparatively, SCU-Net
is roughly two orders of magnitude smaller than other models.

Evaluation metrics for BAC segmentation: We evaluate both patch-wise seg-

mentation results and final whole image segmentation results of all the models with

five metrics: Recall, Precision, Accuracy, F1-score/Dice score, Jaccard Index value.

The definitions are shown in Equations 3.6 and 3.7. In the equations, TP , FN , TN

and FP calculations refer to pixelwise results.

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, Accuracy =

TP + TN

TP + TN + FP + FN

(3.6)
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F1− score =
2 ×Recall × Precision

Recall + Precision
, JaccardIndex =

TP

TP + FP + FN
(3.7)

To further demonstrate the differences across all the models, we also perform pair-

wise t-test to compute the statistical significance of state-of-the-art models compared

with SCU-Net. The p-value table is present in the supplementary material.

Evaluation metrics for BAC quantification: Beyond typical semantic segmen-

tation evaluation metrics (Recall, Precision, Accuracy, F1-Score/Dice Score and Jac-

card Index ), we propose five BAC quantification metrics in Equations 3.8 and 3.9

to further measure the effectiveness of BAC detection in the predicted segmentation

masks. Because of the segmentation challenges with BAC, we anticipated acceptable

but imperfect segmentation results. However, unlike cancer detection where localiza-

tion is extremely important, vessel segmentation can be considered an intermediate

task to achieve BAC quantification. Slight differences in vessel segmentation region

or width may have strong negative effects on standard evaluation metrics like Dice

score and Jaccard index, but may still provide excellent results in terms of capturing

clinically relevant calcifications. Therefore, we developed the following five metrics to

capture the total segmented area, intensities of pixels within the segmented area, and

thresholded pixel intensities and counts within the segmented area. Equations 3.8

and 3.9 show the definitions for Sum of Mask Probability Metric (PM), Sum of Mask

Area Metric (AM), Sum of Mask Intensity Metric (SIM), Sum of Mask Area with

Threshold Intensity X Metric (T AMX) and Sum of Mask with Intensity Threshold

X Metric (T SIMX). In the equations, m and n refer to the width and height of the

mammogram, pi,j is the probability value at < i, j > returned by the trained model,

Ii,j means the intensity value of pixel at < i, j > and X is the intensity threshold.
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PM =

m,n∑
i=0,j=0

pi,j, AM =

m,n∑
i=0,j=0

1pi,j>0.5, SIM =
∑

0≤i≤m,0≤j≤n|pi,j>0.5

Ii,j

(3.8)

T AMX =
∑

0≤i≤m,0≤j≤n|pi,j>0.5

1Ii,j>X, T SIMX =
∑

0≤i≤m,0≤j≤n|pi,j>0.5,Ii,j>X

Ii,j

(3.9)

Specifically, PM summates all predicted probabilities for an image to evaluate the

confidence of the model’s prediction; AM is the total number of pixels that are clas-

sified as BAC in a mammogram; SIM is the sum of the intensities of the pixels

classified as BAC; T AMX is the total number of BAC-classified pixels greater than

intensity threshold X, as the BAC pixels usually have higher intensity values than

background tissue area; T SIMX is the sum of intensities for BAC-classified pixels

with intensity value greater than the threshold X. In our experiment, we set X to be

100 as the best threshold for T AMX and T SIMX metrics based on visual observa-

tions of threshold values of 50, 75, 100, 150, 200. Metrics AM, SIM, T AMX , and

T SIMX are all calculated with a model prediction cutoff of p > 0.5.

Comparison of BAC quantification metrics against breast CT measure-

ments: To compare our quantification with a previously clinically validated mea-

surement system [100], we evaluated our quantification metrics on mammograms of

10 patients in Cohort B who had contemporaneous breast CT exams. All BAC quan-

tification metrics on mammograms were compared to calcified voxels and calcium

mass as measured on breast CT.

Evaluation of BAC quantification metrics longitudinally: To evaluate the util-

ity of BAC quantification metrics to track calcification longitudinally, we examined

26 new subjects (Cohort C) not included in the original dataset with serial mammo-
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grams. Each patient had 5∼12 years imaging history with all four standard screening

mammography views per exams, totalling 961 images across all subjects. SCU-Net

was applied to each image to obtain the segmentation masks and T AM100 was cal-

culated (based on top-performing correlation as shown in Figure 3.11). Plotting

T AM100 over time per view initially yielded very noisy results in which calcification

quantity appeared to oscillate over time, which typically would physiologically not

occur. We then took the sum of the T AM100 for all views plotted against time, which

somewhat decreased the fluctuation but did not eliminate it. Finally, we realized that

each year the patient’s breast position and magnification of the mammogram could

vary, meaning that the raw number of pixels as counted in the T AM100 metric would

be dependent on breast magnification. To normalize for this effect, we took T AM100

metric divided by the breast area for each image and then sum this result across all

four views. This was the final method used for longitudinal analysis.

3.3.3 Experiments

Evaluation of BAC detection based on standard metrics - Figure 3.9 shows

the patch-wise segmentation results of SCU-Net as compared to several semantic seg-

mentation models including SegNet [13], ContextNet [111],U-Net [124], CGNet [161]

and SCU-Net. The first row is of particular interest as it demonstrates ductal calcifi-

cations which are benign and unrelated to BAC, but can appear similar. SegNet [13],

ContextNet [111], and U-Net [124] each erroneously detect these ductal calcifications

to varying degrees, however SCU-Net correctly ignores these. Interestingly, SCU-Net

demonstrates similar performance to CGNet [161] as they both utilize dilated convolu-

tion operations to learn context features. The second row of Figure 3.9 demonstrates

a patch with overall lower image contrast and overlapping breast tissue which mimics

linear calcifications. In this case, ContextNet [111] detects the most false positive

pixels. The third and fourth cases contain less noise and a clear difference from the
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Figure 3.9: Examples of patch-wise segmentation results for BAC across multiple
architectures as compared to the groundtruth. From left to right: original image
patches, groundtruth mask, and prediction results of SegNet, ContextNet, U-Net,
CGNet and SCU-Net.

background tissue, in which case all the models perform well at detecting BAC. In

brief, image noise, low image contrast, and overlapping background tissue can all af-

fect the quantitative accuracy of segmentation. The same types of errors are noticed

on whole-image-size mask prediction as shown in Figure 3.10. For better visualiza-

tion, only the breast region are kept by truncating the unnecessary background from

the original mammograms.

In this figure, the dice scores for the predicted masks of each case are labelled in

the top right corner. As can be seen, overall performance for BAC segmentation is

quite good although each model suffers from varying degrees of false positives due

to issues with image noise, tissue contrast, and lookalike findings. We also see that

some images are intrinsically more difficult with lower dice scores across the board

for rows 1 and 2 in as compared to rows 3 and 4 in Figure 3.10. In general, the



49

Figure 3.10: Examples of whole image segmentation results for BAC across multiple
architectures as compared to groundtruth. From left to right: original mammography
images (cropped to exclude background), groundtruth mask, prediction results of
SegNet, ContextNet, U-Net, CGNet and SCU-Net. The F1-Score for each model is
shown in the top right of the predicted mask. Higher F1-score means more overlap
between groundtruth and the predicted mask.

segmentation masks of ContextNet [111] contain more false positive fragments than

other results. Nevertheless, most of the BAC is captured by all the models. Notably,

SCU-Net achieves comparable dice scores compared to SegNet [13], U-Net [124] and

CGNet [161] despite significantly fewer parameters.

Furthermore, we evaluate the segmentation results for both patches and whole
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images to demonstrate the fine vessel calcification segmentation accuracy. Table 3.3

presents the quantitative performance metrics for all tested models including SCU-

Net, for both invidual patches (columns with clear background) and whole mammog-

raphy images (columns with gray background). For patch-wise quantitative results

in Table 3.3, ERFNet [123] has the highest recall value, FPENet [91] achieves the

best precision value, and SCU-Net has the best F1-score and ties with CGNet [161]

for top Jaccard Index value. Accuracy values of all the models are relatively similar

due to the high number of negative pixels in the image. Whole-image-size results

are generated by concatenating the corresponding patches for each whole mammo-

gram. Compared with patch-wise results, nearly all the evaluation metrics for the

whole image are higher and are tightly grouped across all models. The reason lies

in the overlapping 64 pixels with neighboring patches which helps enhance the seg-

mentation accuracy by avoiding boundary effects3. On whole images, ERFNet [123],

FPENet [91], DeepLabV3 [27] still maintain their advantages in recall, precision and

accuracy respectively. U-Net [124] and DeepLabV3 [27] in Table 3.3 have the best

F1-score/Dice-score (0.735) and Jaccard Index value (0.59) for full image segmenta-

tion. With many fewer parameters (79x less), SCU-Net also performs very well with

0.729 of F1-score and 0.581 of Jaccard Index value compared with SegNet [13] and

FPENet [91].

Evaluation of BAC quantification based on defined metrics - Universal se-

mantic segmentation evaluation metrics are helpful in evaluating segmentation results

by performing pixel-to-pixel evaluation. However, the ultimate goal of this work is

to quantify the amount of BAC within a mammogram for eventual correlation with

cardiovascular outcomes. To evaluate the practical performance of SCU-Net’s seg-

mentations in capturing BAC, we computed the correlation for all metrics computed

3Cropped patches may only contain a very small piece of calcification along the cropped boarder,
which is hard to segment accurately. However, the larger calcification can be more easily detected
in the adjacent patches. Thus, concatenating the predictions of adjacent patches can eliminate the
boundary effects.
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Table 3.3: Quantitative evaluation results for image patches (columns without
background) and whole images (columns with gray background) in the validation
dataset, subscripts denote standard deviation.

Method Recall Precision Accuracy F1-score Jaccard
SegNet [13] 0.707±0.100 0.764±0.159 0.704±0.095 0.743±0.128 0.981±0.005 0.998±0.002 0.676±0.084 0.734±0.098 0.554±0.079 0.589±0.113

DeepLabV3 [27] 0.742±0.099 0.781±0.154 0.709±0.088 0.726±0.134 0.981±0.005 0.998±0.002 0.692±0.084 0.735±0.100 0.568±0.081 0.590±0.118

U-Net[124] 0.738±0.092 0.789±0.144 0.704±0.088 0.723±0.141 0.981±0.005 0.998±0.002 0.689±0.074 0.735±0.097 0.562±0.073 0.590±0.112

LinkNet [26] 0.748±0.095 0.801±0.151 0.675±0.096 0.690±0.137 0.979±0.006 0.997±0.002 0.676±0.082 0.720±0.101 0.550±0.080 0.572±0.114

ERFNet [123] 0.788±0.088 0.826±0.133 0.669±0.086 0.673±0.151 0.979±0.006 0.997±0.002 0.694±0.075 0.724±0.106 0.568±0.077 0.578±0.123

ESNet [158] 0.757±0.096 0.796±0.164 0.684±0.091 0.707±0.137 0.980±0.005 0.997±0.002 0.687±0.083 0.727±0.108 0.563±0.081 0.581±0.122

FastSCNN [112] 0.687±0.105 0.738±0.171 0.662±0.100 0.695±0.136 0.979±0.006 0.997±0.002 0.647±0.096 0.697±0.112 0.522±0.092 0.545±0.124

ContextNet [111] 0.723±0.093 0.765±0.165 0.631±0.090 0.628±0.150 0.977±0.006 0.997±0.003 0.643±0.083 0.671±0.123 0.509±0.081 0.517±0.130

DABNet [81] 0.750±0.096 0.804±0.143 0.692±0.095 0.706±0.142 0.981±0.005 0.998±0.002 0.686±0.082 0.734±0.102 0.564±0.079 0.589±0.118

EDANet [96] 0.771±0.094 0.810±0.150 0.666±0.096 0.682±0.137 0.980±0.005 0.997±0.002 0.685±0.085 0.723±0.102 0.559±0.083 0.575±0.117

CGNet [161] 0.766±0.090 0.798±0.149 0.689±0.087 0.703±0.138 0.980±0.005 0.997±0.002 0.696±0.074 0.730±0.102 0.569±0.075 0.584±0.118

SCU-Net 0.778±0.085 0.789±0.137 0.682±0.082 0.708±0.140 0.980±0.005 0.997±0.002 0.698±0.074 0.729±0.093 0.569±0.074 0.581±0.110

FPENet [91] 0.682±0.106 0.730±0.173 0.715±0.095 0.750±0.130 0.981±0.005 0.998±0.002 0.666±0.092 0.721±0.114 0.544±0.087 0.575±0.129

Figure 3.11: Statistical analysis on validation data for Cohort A. First row: R2-
correlation of whole-image SCU-Net calcification quantification results for predicted
masks (Y-axis) as compared to the groundtruth (X-axis). All X-axis and Y-axis values
are in scientific format. R2-correlation values (r2) and standard errors (std err) are
also reported for each metric in each subfigure. Second row: Bland Altman test to
compare each metric computed from SCU-Net against the groundtruth. There are
134 data elements in total for each subfigure, with each point representing one image
in the validation dataset.

using SCU-Net segmentations against the same metrics computed on the ground truth

segmentation. The upper row of Figure 3.11 shows the R2-correlation of whole-image-

size segmentation results of SCU-Net compared to the groundtruth based on the same

metrics, demonstrating correlation >0.95 for all metrics. On the 134 validation scans,

SCU-Net has the highest R2-correlation value of 0.973 between the predicted mask

and groundtruth when using the T AM100 metric, which measures the total number
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of pixels with intensity >100 in the segmented mask. The second row of Figure 3.11

indicates the Bland Altman test results [51] for the same validation data. The plots

show the differences between quantitative metrics computed from the groundtruth

and SCU-Net against the mean of the two measurements. Most metrics demonstrate

very few outliers, and in particular PM does not have a single outlier.

Results of BAC quantification compared to breast CT: Evaluation of BAC

quantification against breast CT in cohort B yielded good results. For calcification

volume (voxels), R2-correlation values were 0.834, 0.843, 0.832, 0.798, and 0.800 for

the PM,AM,SIM, T AM100, T SIM100 metrics, respectively. For calcium mass,

R2-correlation values were comparable at 0.866, 0.873, 0.840, 0.774, and 0.798 for

the same metrics. Although breast CT is not performed clinically, this demonstrates

that BAC quantification on mammography is comparable to a previously validated

calcification quantification metric.

Results of BAC longitudinal analysis: Results of longitudinal analysis using the

T AM100 metric showed the ability to automatically track BAC over time. Plots for

five subjects shown in Figure 3.12 demonstrate a gradual increase in BAC over time.

Figure 3.12 also shows five mammograms that demonstrate the progression of BAC

in one subject over an 11 year period with predicted BAC masks highlighted in green.

Figure 3.12: Longitudinal quantification of BAC in 5 patients. Left: The top-
performing T AM100 metric applied to SCU-Net segmentations for five subjects plot-
ted over time over time, wherein p1, p2, p3, p4, p5 represent different subjects. Right:
Sampled mammograms from one subject over 11 years demonstrating an increase in
detected BAC over time. BAC are highlighted in green. Each mammogram is cropped
to exclude background with its exam date shown below.
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3.3.4 Conclusion

We present a lightweight and accurate semantic segmentation model Simple Context

U-Net (SCU-Net) designed for efficient vessel calcification segmentation on mammo-

grams. It incorporates dilated convolution operations to learn context features and

fuses multi-level features to enhance prediction accuracy. Due to the large size of

mammograms, each image is processed in patches for both training and validation

and the resultant masks are re-stitched to obtain whole-image predictions. Extensive

experimental results for both patches and whole mammography images of 216 sub-

jects showed comparable or better performance of SCU-Net as compared to current

state-of-the-art models while maintaining far fewer training parameters. A further

advantage of our model is that it does not require raw mammography data and can be

applied retrospectively. This will enable analysis of the vast datasets of prior digital

mammograms, allowing for large retrospective studies.

In addition to accurate segmentation of BAC, we applied quantification metrics

to assess the extent of calcification and demonstrated excellent correlation between

quantification values obtained on the predicted mask as compared to the groundtruth.

Correlation was best using the T AM100 metric which counts all pixels above intensity

100 to differentiate between calcified and non-calcified portions of the vessel inside the

mask. We also showed strong correlation of all metrics to calcium volume and mass

obtained on breast CT for 10 subjects. Lastly, we were able to track and quantify the

progression of BAC in 26 subjects longitudinally using this metric. Thus we believe

this tool can accurately quantitatively measure and track BAC progression in patients

and could be used to assess the efficacy of therapies and risk factors modification.

In summary, a robust, minimally complex, deep learning method for segmenting

and quantifying breast arterial calcifications has been developed that can be applied

retrospectively to routine screening mammograms. This will allow for analysis of

large populations without additional imaging costs or radiation exposure. Future
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studies will determine the performance of this tool for predicting clinical outcomes

and determining the efficacy of prevention approaches.

3.4 Discussions and future works

In this chapter, we have explored three different segmentation tasks - nuclei segmenta-

tion, liver steatosis segmentation and BAC segmentation - under limited supervision.

To cope with the challenges in the process, we have utilized traditional segmentation,

inaccurate annotation generation and transfer learning and supervised learning with

post-processing methods. No universal standard approach could solve all the prob-

lems, thus, the strategy should be decided according to the task and label quantities

and qualities. Although our segmentation methods have shown promising perfor-

mance, there are some limitations and future works we can further work on.

Nuclei segmentation: Without supervised annotations, our clumped nuclei seg-

mentation method has only experimented on a limited number of nuclei images with

a certain number of patients involved. Extensive experimental results on more rele-

vant images can be helpful for further demonstrating the method effectiveness. The

other limitation of this approach is the requirement of clean background tissue and

the round shape of objects. This is decided by nucleus’s characteristics, and may fail

to work on irregular object segmentation. In the future, it is worthwhile to utilize our

segmentation model and generate initial clumped nuclei segmentation results. With

the labels, we can try more advanced machine learning and deep learning techniques

to handle clumped nuclei segmentation.

Liver steatosis segmentation: This work has exploited the potentials of deep

learning segmentation methods. Even with inaccurate annotations, the model can

eventually predict correct and accurate instance boundaries and exceed the traditional

segmentation methods significantly. Nonetheless, the model can only take images
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with small sizes, 512×512×3 for instance and cannot deal with the original whole-

slide images without pre-processing. This is caused by the original requirement of

GPU memory and network architecture. In the future, it is suggested to develop a

multi-scale segmentation method which can first identify the foreground tissue area

from the background and then learn to process the large tissue areas.

BAC segmentation: The limitation is that the model is developed at a single

institution using a single brand of scanners. It is possible that the model could

underperform on external data, however we believe that the model can be successfully

fine-tuned to re-optimized as needed, particularly due to its low number of parameters.

The model is developed using only 661 images so fine-tuning can likely be achieved

using an even smaller segmented dataset if needed. Another current limitation is that

although our quantification metrics show strong correlation to breast CT data and

track increases in BAC over time, they have not yet been validated against clinical

outcomes in these patients. To address this in future work, we plan to evaluate our

model and quantification metrics against outcomes data or existing validated risk

assessment tools such as calcium scores on coronary CT.



56

Chapter 4

Medical OOD Identification with

Limited Supervision

4.1 Medical novelty identification

With recent prominent developments of machine learning techniques in computer

vision, integrating machine learning tools to solve medical image problems is becoming

more and more popular due to the powerful computation and efficiency [89]. However,

when deploying machine learning models in real-world applications, models trained

on in-distribution (ID) data may fail to deal with out-of-distribution (OOD) inputs

and assign incorrect probabilities [139]. This can severely contaminate the reliability

of artificial intelligence models, especially in medical areas as the safety in clinical

decisions is much more critical than other fields. For example, a classifier trained

on existing bacterial classes wrongly classified a new type of bacteria as one of the

classes from the training data with high confidence [119], which could be concerning

for clinical usage but may be avoided by combining an OOD detection model. Thus, a
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successful open-world deployment with OOD detection should be sensitive to unseen

classes and distribution-shifted samples and also be resilient to potential adversarial

attacks [136].

However, medical OOD detection poses great challenges due to the heterogeneity

and unknown data characteristics of medical data. 1) Mutations can happen. Dif-

ferent from natural objects with fixed attributes, known diseases may progress to

other mutated versions and generate anomalous data; 2) Heterogeneous data is a big

concern. Medical images collected from different race groups can introduce hetero-

geneity; 3) Distribution shifting always exists. Data scanned with different machines

or institutes may have distribution shifting; 4) Data with defects is common. Medical

images can be overexposed or scanned with incorrect positions/angles.

OOD data, also called anomaly, outlier, usually refers to data that shows dissim-

ilarity from the training distribution. Given an image x, the goal of OOD detection

is to identify whether x is from ID dataset Din or OOD dataset Dout. There are two

types of OOD data commonly targeted to identify - (i) intra-class data: OOD data

belonging this type, which is also called novelty data, often shares severe similarity

with the ID classes and is extremely challenging to distinguish, e.g., the pneumonia

chest X-ray presents close appearance with the normal images; (ii) inter-class data:

this data is significantly different from ID samples, e.g., a head CT image is much

different in shape and color from the skin cancer image. Even though many anomaly

detection methods have been proposed [131, 94], most of them focus on natural im-

ages and follow the one-vs-rest setup [145] for benchmark natural image datasets (e.g.,

MNIST [78], Fashion-MNIST [162], CIFAR-10 [76], ImageNet [37], etc.). Thus, the

performance reported on the benchmark datasets is actually for inter-class prediction

due to the clear class variation and often trivial to detect. In contrast, the anomaly

detection in medical images is more of an intra-class identification problem, which

can be also called novelty detection.
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To train a novelty detector with only ID data available, learning high-quality

“normality” features is the fundamental step to identify the OOD samples during

inference. AutoEncoder [35] architecture, as an unsupervised model to learn efficient

data features through reconstruction, is the most straightforward way to extract

features for ID data [128]. For anomaly detection, the reconstruction error is treated

as the score of outliers based on the assumption that the AutoEncoder [35] is unable

to reconstruct the anomalies well and causes large reconstruction errors. However,

in the intra-class detection where the variations among the in-class and out-of-class

medical images of the same category are very subtle, the AutoEncoder [35] often fails

owing to the lack of discriminative ability for intra-class detection.

To enhance the discriminative ability of AutoEncoder [35], we propose Transformation-

based Embedding learning of Novelty Detection (TEND) to distinguish intra-class

OOD inputs in an unsupervised fashion. Based on the vanilla AutoEncoder [35]

model to learn the “normality” of ID data in the first stage and function as a feature

extractor in the second stage, TEND utilizes distorted images generated by adding

transformations on the ID data, and treats the data as non-ID data (marginal OOD,

see Sec. 4.1.2). A binary classifier of TEND is trained with the ID data as normal class

and the non-ID data as OOD class. Hence, the classifier is aware of the existence of

outliers and gains certain identification ability of true outliers during inference with-

out being trained on any true OOD data. To further separate OOD data from the ID

ones, we learn a distance metric objective to encourage clustering of ID data during

training and enforce a margin between OOD versus ID data in the embedding space.

4.1.1 Contribution

In summary, the main contributions of our paper are as follows:

• We propose a new novelty detection model TEND that utilizes the AutoEn-

coder’s feature extraction and adds discrimination ability for outliers with trans-
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formations of in-distribution data and embedding distance as auxiliary. No

out-of-distribution data is required for training the model.

• Although there have been a lot of anomaly detection research work done, the

accurate detection performance results are lacking. We compare and report the

novelty detection performance details of the unsupervised TEND model with

state-of-the-art anomaly detection models and one supervised model on three

public medical image datasets following two experimental settings - one-vs-rest

and rest-vs-one.

• We validate our method on diverse image datasets and demonstrates our model’s

effectiveness. Extensive evaluations include the detection of intra-class out-of-

distribution data from the original datasets and the corresponding generated

with unused transformations on in-distribution data. Given the experimental

observations, our model will be beneficial in discovering new anomaly cases

in medical applications without any preconceived OOD training data. The

corresponding code is available at https://github.com/XiaoyuanGuo/TEND_

MedicalNoveltyDetection.

Publication:

• Guo, Xiaoyuan, Judy W. Gichoya, Saptarshi Purkayastha, and Imon Banerjee.

“Margin-aware intraclass novelty identification for medical images.” Journal of

Medical Imaging 9, no. 1 (2022): 014004.

4.1.2 Method

TEND focuses on novelty identification for medical images. By following the one-vs-

rest setup [94] and its revsered version - the rest-vs-one setup, one or more certain

classes of the datasets in use are treated as normal classes. Unsupervised learning of

feature embeddings for the normal classes is the fundamental step for outlier detection.

https://github.com/XiaoyuanGuo/TEND_MedicalNoveltyDetection
https://github.com/XiaoyuanGuo/TEND_MedicalNoveltyDetection
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Figure 4.1: Network architecture of TEND. - Stage 1: Training AutoEncoder with
in-distribution data; Stage 2: Joint training of the classifier and the margin learner.

GANs and AEs are all good options for this work. Nonetheless, GANs often require

large amounts of data for training and are unstable for large images, we choose the

vanilla AE [52] to encode the ID data. Moreover, as introduced in Sec. ??, AEs

are designed for compressing inputs and have no strong discriminative ability, which

makes them inappropriate for medical novelty detection because of the minute intra-

class variations of medical image datasets. Thus, to enhance the discriminative ability

of TEND, we train a binary classifier and a margin-aware objective function (also

called margin learner) jointly to separate the normal class data from the anomalies.

Architecture

Fig. 4.1 shows the network architecture of TEND, which is a two-stage novelty de-

tector with an AutoEncoder [35] as the feature extractor backbone. In order to train

the feature extractor with only ID data, the AutoEncoder [35] model (shown in the
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dotted blue box of Fig. 4.1) is optimized with a reconstruction loss function Lrec.

The learnt bottleneck section will be frozen as indicated by the purple lock in Fig. 4.1

and used for encoding/extracting image features in the second stage. To train the

following binary discriminator without OOD data available, we add transformations

on the original images to construct distribution-shifted OOD samples based on the

observation that some augmentations can be useful for OOD detection by considering

them as fake OOD data [145]. The details of how to construct the transformations

are explained in Sec. 4.1.2. The generated OOD data should be first fed to the trained

encoder to obtain the corresponding deep features. Both of the encoded features of

normal and transformed data are fed to the classifier simultaneously. With a convolu-

tional (conv) layer and a fully connected layer (FCN ), the classifier learns to identify

the in-distribution data as normal class and the transformed images as outliers. A

latent decision boundary between the two classes is optimized, the detection on true

anomaly data is still not promising given the fact that the transformed images can

not represent the true outliers’ distribution. The decision boundary may not work for

the anomalies in the feature space. To solve this problem, TEND adopts the margin-

aware learning idea of DeepSVDD [128] to optimize a distance objective function

simultaneously. Different from the objectives only for ID data [128], TEND works on

both the ID data and the fake OOD data by enforcing the embeddings of ID data to

cluster around a voted center O (see Sec. 4.1.2 for more details) whereas pushing out

the embeddings of the generated abnormal class with a predefined margin R.

Transformations for generating fake OOD data

SimCLR [28] has performed an extensive study on which family of augmentations

leads to a better self-supervised learning, i.e., which transformations should be con-

sidered as positives. The authors report that some of the examined augmentations

(e.g., rotation), could lead to degraded performance. Based on the observation, such
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Figure 4.2: Examples of transformations used for generating fake OOD data. Three
image examples from IVC-Filter (1st row), RSNA (2nd row) and ISIC2019 (3rd
row) datasets are presented. The original data in the green box are inputs from
in-distribution class, the transformed in-distribution images in the blue box are aux-
iliary data as anomalies feed to TEND’s classifier during training, other possible
transformations shown in the yellow box are for validation.

augmentations can be useful for OOD detection by considering them as fake OOD

data. Therefore, we leverage a family of transformations and utilize more complex

transformations and distortion functions that will change the visual features of the

original inputs to generate fake abnormal data for training in OOD model. The

generated auxiliary data are fed to the forehead of the TEND backbone and then

to the classifier, which helps separate the embedding features of the ID data from

those of the unknown OOD data. Different from the most common transformations,

e.g., rotation, used in classic data augmentation, we adopt a range of different dis-

tortions, i.e., barrel, perspective, arc, polar, tile, affine defined in the Image.distort

method of Wand package1. The blue box in the middle part of Figure 4.2 shows

the six different transformations on the three datasets. These transformations bring

significant difference to the original inputs and generates intra-class OOD samples.

We treated these extreme distortions of ID data as outliers for training. Expect for

the six distortions used in this paper, there are more transformations worthwhile be-

ing explored. To further demonstrate the benefits of training the TEND model using

1https://docs.wand-py.org/en/0.6.5/guide/distortion.html
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extreme transformations, we use moderate distortions, such as randomly cutting, ran-

domly cropping and resizing, addition of noises, Gaussian blurring only for validation

(shown in the right yellow box of Figure 4.2). The package usage and parameters

selection for the six training distortions and the four validation transformation are

present in our code repository.

Joint training

With an AutoEncoder [35] as the backbone, TEND incorporates a classifier and a

margin-aware embedding mapping to gain discriminative ability for anomalies. In

the first stage, the backbone is trained only on ID data. Suppose that the input

image I and reconstructed image I
′

is with size of M ×N , a reconstruction objective

frec defined in Eqn. 4.1 is used to optimize the learning embedding representations of

the normal class. This first-stage training ensures the feature extractor to focus on

learning the “normality” of in-class data.

frec = min
1

M

1

N

M,N∑
i=1,j=1

∥∥∥Iij − I
′

ij

∥∥∥2

(4.1)

Lcls =
1

S

S∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (4.2)

With the distorted ID data as anomalies in the second stage, the binary discrim-

inator is able to train with a final output indicating the data class. Notably, the

inputs of this classifier are the encoded features extracted by the backbone. Here,

the AutoEncoder model is fully frozen and only used for extracting image features.

The encoded features e, eT are processed by a following convolutional layer (conv)

and a fully connected layer (FCN) of the classifier. Thus, the embeddings learnt by

the encoder are mapped to a new compressed space as c, cT with size of K (512 in our

case). The classifier enables the separation of the compressed features of the ID data
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and the distorted data. A binary cross entropy loss function Lcls shown in Eqn.4.2

is utilized for optimizing, with the S to be the total number of the training data, yi

representing the ith data’s binary label and p(yi) being the corresponding probabil-

ity of the prediction. Nonetheless, the transformations T can only introduce limited

class variations, hence the identification for real OOD data is still not ideal. Thus,

a margin-aware objective is jointly trained to force the clustering of the compressed

features of the ID data and the surrounding of the transformed ID data outside the

margin as illustrated by Figure 4.2.

In experiments, we test three margin R values (150, 250 and 500). Similar to

DeepSVDD [128], the compressed feature center O is calculated by the mean of all

the ID data’s compressed features. Before calculation, TEND’s classifier block is

trained with several warm-up epochs, (e.g., 10 epochs), then the center O is defined

with the same size of K as the compressed feature c. Since then, the margin learner

of TEND is trained together with the discriminator. Importantly, the margin learner

has different learning objectives for the normal class (gin) shown in Eqn. 4.3 and the

generated abnormal class (gout) shown in Eqn. 4.4.

gin = min
1

K

K∑
i=1

∥ci −O∥2 (4.3)

gout = min
1

K

K∑
i=1

max(R−
∥∥cTi −O

∥∥2
, 0) (4.4)

In summary, TEND has two stage-wise losses. The first-stage loss is for the

reconstruction of the AutoEncoder training, i.e., L1st = Lrec. The second-stage loss

includes the binary classifier and the margin learner, i.e., L2nd = Lcls + Lmrg. In

experiments, we use mean square error (MSE) loss for Lrec and binary cross entropy

(BCE) loss for Lcls. Marginal loss Lmrg equals the summation of the mean of distance

errors for ID data and the mean of the errors for distorted data.
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Implementation details

An AutoEncoder architecture is trained as our baseline, the trained model later on is

treated as the backbone of TEND. We report the encoder, decoder, Conv, FCN parts

of TEND in Table 4.1. FC is fully connected layer, Conv stands for the convolutional

layer , TConv means the transposed convolutional layer. channel indicates the image

channel. All the Conv and TConv layer use kernel filter size 4, stride 2 and padding 1.

The encoder encodes input images as e, while the Conv layer compresses e to c with

smaller sizes. Each Conv and TConv is followed by a standard batch-normalization

layer and a relu function.

Table 4.1: TEND architecture details.

Dataset Encoder Decoder Conv FCN

IVC-Filter/
RSNA/
ISIC

Conv(channel,16)
Conv(16,32)
Conv(32,64)
Conv(64,128)
Conv(128,256)

TConv(256,128)
TConv(128,64)
TConv(64,32)
TConv(32,16)

TConv(16,channel)

Conv(256,512)
FC(2048,512)
FC(512,1)

In our experiments, we use Adam optimizer with a learning rate of 0.001 for model

training. Each network is trained with 50-150 epochs depending on the dataset size

and the data complexity as datasets with more complex data or large amounts of

samples often take more time to get the loss decreased to a satisfactory level. When

training with the margin-aware metric, we run 10 warm-up epochs first and then

calculate the embedding center O. The pipelines are developed using Pytorch 1.5.0,

Python 3.0. and Cuda compilation tools V10.0.130 on a machine with 3 NVIDIA

Quadro RTX 6000 with 24GB memory.

Anomaly score

As a standard evaluation procedure for anomaly detectors, the ID and outliers are

mixed for computing the accuracy while different detectors have different anomaly
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score definitions. For the baseline AutoEncoder model, we set the reconstruction

error as the OOD data score. TEND does not focus on the reconstruction, therefore,

the final anomaly score of TEND is the classification probability adding the marginal

distance. Giving the fact that the classification probability p is in range [0− 1] while

the distance value d is in [0,+∞), we scale down the distance value d by dividing

the predefined margin R, i.e., d
′

= d
R

. Therefore, the final anomaly score for TEND

is Si = λpi + (1 − λ)d
′
i. The value of λ is set as 0.5 in our experiments as default.

To further demonstrate the effectiveness of each component of TEND, we have done

ablation study of TEND and reported the results in Sec. 4.1.3. TEND without the

binary classifier is called MarginLearner (the anomaly score is d
′
).

Evaluation metrics

Having the anomaly prediction score, the detection accuracy largely depends on the

threshold setting. To be fair, the detection evaluation should be threshold-invariant.

Following the standard evaluation metrics used in other works [165, 83], we adopt

AUROC (AUC in short) to showcase the performance difference among the models.

AUROC is the Area Under the Receiver Operating Characteristic curve, which is a

threshold independent metric. The AUROC can be interpreted as the probability

that a positive example is assigned a higher detection score than a negative example.

To find an optimal threshold for receiver operating characteristic (ROC) curve by

tuning the decision thresholds, we use the Geometric Mean (G-Mean) as the metric

to determine the best threshold values and report the resulted true positive rate

(TPR = TP
TP+FN

) and false positive rate (FPR = FP
FP+TN

). The difference between

the TPR and FPR given the optimal selection, DIFF = TPR−FPR, is also reported

for model comparison. Large difference stands for better true and false positive

predictions.
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4.1.3 Experiments

In this section, we perform empirical evaluations of TEND on publicly available med-

ical image datasets with varying complexity. For evaluating the accuracy in identify-

ing novel class data, we compare our results with state-of-the-art unsupervised OOD

models, starting from simple vanilla AutoEncoder (AE) [35] model and a variational

AutoEncoder (VAE) [9], to DeepSVDD [128], GANomaly [4], f-AnoGAN[133] mod-

els. We also compare our unsupervised TEND model against a supervised binary

classifier which was trained on both ID and OOD data for the detection task.

Datasets

In our experiments, we have three medical datasets in use, including inferior vena cava

(IVC) filters on radiographs [103] and RSNA chest x-ray dataset [156], ISIC2019 [33].

IVC-filter dataset has 14 classes in total. The details are ALN (73 images), BardSi-

monNitinol (59 images), Optease (129 images), BardDenali (50 images), Celect (75

images), Option (196 images), BardEclipseG2X (84 images), CelectPlatinum (48 im-

ages), Trapease (100 images), BardG2 (45 images), Greenfield12Fr (122 images), Tulip

(99 images), BardMeridian (55 images), GreenfieldTitanium (101 images). RSNA

has 3 classes - normal, with opacity, not normal in total. ISIC2019 [33] consists of 8

classes, i.e., Melanoma (MEL, 4148 images), Melanocytic nevus (NV, 11559 images),

Basal cell carcinoma(BCC, 3323 images), Actinic keratosis (AK, 867 images), Benign

keratosis (BKL, 2240 images), Dermatofibroma (DF, 239 images), Vascular lesion

(VASC, 253 images), Squamous cell carcinoma (SCC, 628 images). The IVC-filter

and ISIC2019 image are with varying sizes, with the width size ranging from 150 to

1500, height size ranging from 150 to 1500 roundly, e.g., 469 × 365 × 3. The RSNA

dataset is in dicom format, each dicom file has the pixel array of size 1024 × 1024.

To unify the training pipeline, we resize all the IVC-Filter, RSNA and ISIC data in

256 × 256 × channel.
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For the one-vs-rest setting, the in-class and rest classes data details are summa-

rized in Table 4.2. Due to the data imbalance, we usually pick the class with the most

data as our in-distribution data and all the left classes as intra-class OOD data. For

IVC-filter, we select the Option type as the normal class; for RSNA dataset, we treat

the normal class as ID data; for ISIC2019 dataset, we choose the NV class with the

most samples as ID inputs. The total numbers of ID and OOD data for each dataset

are reported in the column of #images in Table 4.2. Notably, the rest-vs-one setting

experiments treat the classes conversely.

Table 4.2: Three publicly available dataset used in the study - total number of images
in the dataset, In-distribution data (Din) and out-of-distribution data (Dout) with
one-vs-rest setting.

Dataset total classes
Din Dout

class #images class #images
IVC-Filter [103] 14 Option 196 BardSimonNitinol, ALN... 1,040
RSNA [156] 3 normal 8,851 with opacity, not normal 21,376
ISIC [33] 8 NV 11,559 MEL, BCC... 11,698

Training and evaluation settings

To train and evaluate OOD detectors’ performance, we split the in-distribution data

with 80% as training set Dtr
in and 20% as test set Dte

in and use all the left classes as

Dout. For OOD detection evaluation, we mixed Dte
in and Dout by assigning the ID

data with label 0 and OOD data with label 1. Since this paper focuses on intra-class

OOD detection, we will report the OOD detection results within the same dataset

instead of crossing different datasets.

Quantitative results

One-vs-rest results Following the one-vs-rest setting, Table 4.3 presents the AUC

scores and the corresponding FPR, TPR values determined by the optimal thresholds

for AutoEncoder [35], VAE [9], DeepSVDD [128], GANomaly[4], f-AnoGAN[133] and
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TEND models with margin 150 (i.e., TEND 150), 250 (i.e., TEND 250) and 500

(i.e., TEND 500). The difference between the TPR and FPR is also reported in the

DIFF column in Table 4.3. ↓ means the lower the value the better the model is while

↑ stands for the higher the value the better the model performs. Thus, we expect

the model to have high AUC score and prefer low FPR and high TPR values when

deploying the models with the optimal threshold as decision boundary, which means

the larger the difference between TPR and FPR the better. The best and second best

DIFF and AUC results are highlighted by bold and underline respectively. Among

the unsupervised anomaly detectors, our model TEND 150 attains the sub-optmial

DIFF result 0.359 for IVC-Filter dataset and second best AUC score 0.616 for RSNA

datasets; TEND 250 achieves the second highest AUC score 0.683 for IVC-Filter

dataset and the highest DIFF 0.179 for RSNA dataset and second highest DIFF

0.344 for ISIC dataset2019. Meanwhile, TEND 250 reaches the second best AUC

score 0.720 for ISIC2019 datasets compared to other methods with f-AnoGAN reaches

the top DIFF 0.386 and AUC 0.740; TEND 500 reaches the highest AUC score 0.704

for IVC-Filter dataset and 0.627 for RSNA dataset and has the largest DIFF value

0.492 for IVC-Filter dataset and the second largest DIFF value 0.172 for RSNA

dataset and 0.269 for ISIC2019. GANomaly performs better than DeepSVDD on

IVC-Filter and RSNA datasets with higher DIFF and AUC values, while DeepSVDD

exceeds GANomaly on ISIC2019 dataset. Observing the results on IVC-Filter, RSNA

and ISIC2019 datasets, the performance of f-AnoGAN gradually improves as the

training dataset becomes larger. Nevertheless, our model TENDs show advantages in

acquiring better accuracy and exhibits competitive performances compared with other

unsupervised models. Notably, we implement TEND with three different margins to

show the difference with changing settings. By observing our results in Table 4.3, no

unique margin in TEND provide the optimal result on all the datasets and thus it

needs to be tuned for specific experiments. The effects of applying different radius are
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present in Sec. 4.1.3. The MarginLearner and the supervised model BinaryClassifier

are also discussed in ablation study (see Sec. 4.1.3).

Table 4.3: FPR, TPR values, difference of TPR and FPR values, and AUC scores
of various OOD detection methods trained on IVC-Filter [103], RSNA [156] and
ISIC2019 [33] datasets with the one-vs-rest setting. Bold numbers are the best
results and underlined numbers are the second best. Models with * are supervised
and those without * are unsupervised.

Methods
IVC-filter RSNA ISIC2019

↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC
AutoEncoder [35] 0.198 ± 0.104 0.350 ± 0.075 0.152 ± 0.067 0.436 ± 0.040 0.318 ± 0.014 0.461 ± 0.009 0.143 ± 0.010 0.566 ± 0.004 0.833 ± 0.060 0.186 ± 0.059 −0.648 ± 0.025 0.096 ± 0.003
AE GMM 0.224 ± 0.138 0.153 ± 0.008 −0.071 ± 0.134 0.464 ± 0.067 0.496 ± 0.012 0.321 ± 0.003 −0.175 ± 0.013 0.412 ± 0.006 0.083 ± 0.006 0.211 ± 0.003 0.128 ± 0.006 0.564 ± 0.003
VAE [9] 0.489 ± 0.097 0.707 ± 0.076 0.218 ± 0.117 0.542 ± 0.080 0.473 ± 0.001 0.462 ± 0.001 −0.011 ± 0.012 0.487 ± 0.001 0.351 ± 0.011 0.395 ± 0.007 0.045 ± 0.007 0.471 ± 0.005
MarginLearner 0.426 ± 0.099 0.549 ± 0.033 0.123 ± 0.098 0.568 ± 0.055 0.475 ± 0.016 0.478 ± 0.013 0.003 ± 0.010 0.491 ± 0.005 0.517 ± 0.020 0.584 ± 0.024 0.067 ± 0.010 0.530 ± 0.005
DeepSVDD [128] 0.503 ± 0.106 0.672 ± 0.042 0.170 ± 0.130 0.500 ± 0.075 0.508 ± 0.021 0.413 ± 0.023 −0.095 ± 0.015 0.421 ± 0.009 0.348 ± 0.021 0.621 ± 0.021 0.273±0.006 0.677 ± 0.003
GANomaly[4] 0.446 ± 0.172 0.627 ± 0.227 0.181 ± 0.200 0.518 ± 0.103 0.524 ± 0.005 0.678 ± 0.015 0.154 ± 0.009 0.576 ± 0.005 0.396 ± 0.030 0.481 ± 0.027 0.086 ± 0.012 0.551 ± 0.009
f-AnoGAN[133] 0.419 ± 0.077 0.511 ± 0.070 0.092 ± 0.045 0.544 ± 0.022 0.365 ± 0.033 0.541 ± 0.029 0.176±0.008 0.614 ± 0.005 0.366 ± 0.007 0.600 ± 0.007 0.234 ± 0.005 0.647 ± 0.003
TEND 150 (ours) 0.219 ± 0.077 0.749 ± 0.086 0.531±0.071 0.772±0.030 0.425 ± 0.029 0.590 ± 0.026 0.165 ± 0.010 0.615±0.006 0.377 ± 0.016 0.596 ± 0.015 0.220 ± 0.009 0.650 ± 0.006
TEND 250 (ours) 0.160 ± 0.091 0.684 ± 0.035 0.524±0.082 0.752 ± 0.051 0.389 ± 0.045 0.561 ± 0.043 0.172 ± 0.009 0.615±0.006 0.326 ± 0.017 0.669 ± 0.020 0.343±0.011 0.717±0.006
TEND 500 (ours) 0.122 ± 0.099 0.639 ± 0.095 0.517±0.042 0.760±0.028 0.438 ± 0.040 0.616 ± 0.041 0.178±0.008 0.627±0.005 0.351 ± 0.012 0.618 ± 0.011 0.268 ± 0.009 0.678±0.006
BinaryClassifier* 0.280 ± 0.006 0.847 ± 0.003 0.567±0.006 0.853±0.003 0.417 ± 0.007 0.589 ± 0.006 0.172 ± 0.008 0.593 ± 0.003 0.497 ± 0.023 0.340 ± 0.015 −0.157 ± 0.010 0.363 ± 0.004

Rest-vs-one results To further compare the models’ performances, the comple-

mentary experimental setting - rest-vs-one is implemented with the results reported

in Table. 4.4. Same as the one-vs-rest experiments, we keep the tested models con-

sistent, and change the in-distribution class as OOD classes and the previous OOD

data as our in-distribution data. The training and testing processes are the same as

reported in Sec. 4.1.3. Our model TEND 150 gets the best DIFF 0.298 and AUC

score 0.658 for IVC-Filter dataset, and obtains the sub-optimal AUC score 0.584

for RSNA dataset. GANomaly performs the best for RSNA dataset. TEND 250

reaches the sub-optimal results for ISIC2019 dataset whereas f-AnoGAN can achieve

the best. Generally the detection of anomalies under rest-vs-one setting is more chal-

lenging than the one-vs-rest setting and nearly no model can work well for all the

situations. Still, TEND has satisfactory performances across the three datasets with

the rest-vs-one setting.

Ablation studies

To further explore the effectiveness of each module in TEND, we perform the abla-

tion studies with the settings of removing the binary classifier from TEND (Margin-
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Table 4.4: FPR, TPR values, difference of TPR and FPR values, and AUC scores
of various OOD detection methods trained on IVC-Filter [103], RSNA [156] and
ISIC2019 [33] datasets with the rest-vs-one setting. Bold numbers are the best
results and underlined numbers are the second best. Models with * are supervised
and those without * are unsupervised.

Methods
IVC-filter RSNA ISIC2019

↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC
AutoEncoder [35] 0.706 ± 0.163 0.312 ± 0.159 −0.394 ± 0.059 0.165 ± 0.027 0.760 ± 0.022 0.544 ± 0.046 −0.216 ± 0.024 0.321 ± 0.005 0.593 ± 0.023 0.383 ± 0.024 −0.210 ± 0.012 0.353 ± 0.007
AE GMM 0.728 ± 0.053 0.748 ± 0.022 0.020 ± 0.058 0.510 ± 0.029 0.600 ± 0.008 0.584 ± 0.004 −0.016 ± 0.009 0.492 ± 0.005 0.159 ± 0.005 0.059 ± 0.002 −0.100 ± 0.006 0.450 ± 0.003
VAE [9] 0.359 ± 0.082 0.464 ± 0.088 0.105 ± 0.063 0.560 ± 0.035 0.518 ± 0.029 0.453 ± 0.027 −0.065 ± 0.007 0.461 ± 0.036 0.518 ± 0.032 0.658 ± 0.045 0.140 ± 0.016 0.575 ± 0.005
MarginLearner 0.617 ± 0.022 0.619 ± 0.045 0.003 ± 0.043 0.484 ± 0.025 0.510 ± 0.018 0.527 ± 0.016 0.017 ± 0.006 0.514 ± 0.004 0.510 ± 0.018 0.527 ± 0.016 0.017 ± 0.006 0.514 ± 0.004
DeepSVDD [128] 0.514 ± 0.043 0.475 ± 0.045 −0.039 ± 0.065 0.439 ± 0.043 0.514 ± 0.028 0.552 ± 0.032 0.038 ± 0.007 0.522 ± 0.004 0.530 ± 0.007 0.540 ± 0.013 0.010 ± 0.011 0.487 ± 0.007
GANomaly[4] 0.595 ± 0.060 0.622 ± 0.040 0.027 ± 0.051 0.449 ± 0.036 0.396 ± 0.014 0.638 ± 0.014 0.242±0.004 0.656±0.003 0.462 ± 0.0166 0.583 ± 0.019 0.121 ± 0.009 0.570 ± 0.005
f-AnoGAN[133] 0.419 ± 0.077 0.511 ± 0.070 0.092 ± 0.045 0.544 ± 0.022 0.295 ± 0.029 0.276 ± 0.012 −0.019 ± 0.019 0.406 ± 0.005 0.276 ± 0.004 0.677 ± 0.006 0.401±0.007 0.718±0.004
TEND 150 (ours) 0.359 ± 0.057 0.640 ± 0.031 0.291±0.051 0.650±0.028 0.452 ± 0.022 0.578 ± 0.024 0.126±0.007 0.584±0.003 0.336 ± 0.015 0.501 ± 0.006 0.164 ± 0.014 0.608 ± 0.007
TEND 250 (ours) 0.427 ± 0.061 0.582 ± 0.071 0.155 ± 0.058 0.573±0.039 0.492 ± 0.016 0.577 ± 0.015 0.084 ± 0.006 0.549 ± 0.004 0.386 ± 0.014 0.623 ± 0.011 0.237±0.011 0.637±0.008
TEND 500 (ours) 0.428 ± 0.069 0.584 ± 0.081 0.156±0.038 0.573±0.025 0.487 ± 0.015 0.550 ± 0.014 0.063 ± 0.008 0.541 ± 0.005 0.412 ± 0.018 0.533 ± 0.016 0.121 ± 0.013 0.582 ± 0.009
BinaryClassifier* 0.617 ± 0.022 0.619 ± 0.045 0.003 ± 0.043 0.484 ± 0.025 0.510 ± 0.018 0.527 ± 0.016 0.017 ± 0.006 0.514 ± 0.004 0.471 ± 0.014 0.599 ± 0.017 0.128 ± 0.005 0.584 ± 0.004

Learner) and training a supervised binary classifier (BinaryClassifier) respectively.

For the one-vs-rest setting, the results are showed as MarginLearner with radius set-

ting 150 in Table 4.3, with slight DIFF and AUC improvements compared to the base-

line AutoEncoder on IVC-Filter and ISIC2019 datasets. Comparatively, TEND 150

enlarges the DIFF with 0.236, 0.037 and 0.147 improvements, and increases the AUC

scores by 0.086, 0.051, 0.117 respectively on IVC-Filter, RSNA and ISIC2019 datasets.

For the rest-vs-one setting, compared with the MarginLearner, TEND 150 achieves

the DIFF with 0.25, 0.261, 0.074 improvements for IVC-Filter, RSNA and ISIC2019

dataset respectively; and enhances the AUC score with 0.156, 0.189, 0.065 for the

three datasets. These observations indicate the effectiveness of TEND’s architecture.

We also report the performance of an AE extension, AE GMM, which clusters the

embeddings from the AutoEncoder backbone and predicts the data classes - ID or

OOD. From both Table 4.3 and Table 4.4, a GMM head can improve the discrimina-

tive ability of AutoEncoder to certain extent, however, when testing on transformed

OOD data in Table4.5 and Table4.6, the advantages fail to remain. In comparison,

TEND’s heads on AE have more generalization ability and demonstrate consistent

detection performance.

Instead of training the binary classifier of TEND model in an unsupervised fashion,

we include partial true OOD data in training data. Since IVC-Filter and ISIC2019

datasets have multiple classes, we randomly select 2-3 OOD classes for training and
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the left classes for validation.

One-vs-rest setting: For RSNA datasets, we use the class not normal (see Table 4.2

for details) for known OOD data and test the model on the left with opacity data.

The supervised BinaryClassifer is also evaluated with quantitative results appended

in the end of Table 4.3. With prior knowledge about OOD data, the BinaryClassifer

can achieve very high AUC scores, especially for IVC-Filter (+0.149 compared to the

best of unsupervised results) and RSNA (0.178 compared to the best of unsupervised

results) datasets. Similarly, BinaryClassifier has the largest DIFF values on IVC-

Filter and RSNA datasets. Nonetheless, this advantage fails to remain on ISIC2019

dataset, which indicates the benefits from prior knowledge are limited.

Rest-vs-one setting: For RSNA datasets, we use the class normal as known OOD

data and not normal as ID data, the left class is used for evaluation. Different from

the observation above, the corresponding results in Table 4.4 for BinaryClassifier

fail to exceed the unsupervised models, more results can be observed in Table 4.6.

In conclusion, the supervised BinaryClassifier may lack generalization ability when

dealing with unexpected data. Please refer Sec. 4.1.3 for more experimental results

and discussions.

Qualitative results

As our model TEND has a margin learner module (see the Lmrg part of Figure 4.1) to

enforce ID data inside of a predefined margin R (illustrated as the green dotted circle

in Figure 4.1) as to the voted center O (represented as the red star in Figure 4.1)

and OOD data outside of the region, we hereby visualize the data samples based on

the obtained distance output by the MarginLearner. Take one-vs-rest setup results

for illustration, the voted center O, whose calculation details were introduced in

Sec. 4.1.2, is located at the origin of the 2D coordinate system. To visualize each

data sample, we utilize their distance to the voted center O as their corresponding
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radius values to the origin. Each sample is represented by randomly picking one point

along the circle that is defined with its corresponding radius. The x-axis and y-axis

values help indicate how far the point is from the origin. Given an example with

a distance value di, its corresponding coordinate (xi, yi) satisfies that d2i = x2i + y2i .

The data samples with in-distribution labels are marked in green and the left data

with OOD labels are in red. We draw the defined margin of the model with a blue

circle for reference. Please refer to the Appendix code snippet for the visualization

implementation details. Take RSNA dataset for example, in Figure 4.3, the voted

center O is represented by the point with coordinates (0, 0) and the area defined

by radius R is present with the plotted blue circles in each subfigure. For better

visualization and comparison, each subfigure has both the x-axis and y-axis ranging

from -1000 to 1000, those data points that have larger distance out of range will

be ignored. The first row shows the distance distribution of data with ground-truth

labels (i.e., ID (in green) and OOD (in red)) learnt by TEND with radius of 150 (1st

column), 250 (2nd column) and 500 (3rd column), while the second row indicates

the predictions after thresholding, with the green points for samples predicted as

ID and red points for samples predicted as OOD. To help inspect the data points

around the boundary, two cases based on the ground-truth information are illustrated

for TEND 250 GT, with the upper one as an ID data and the lower case for OOD

class. From the first row, the learnt distance distributions for ID and OOD data

are similar for TEND with different radius values. But the ID data can be outside

the circle with radius 150 (subfigure (1)) but will be inside the circle regions with

radius 250 (subfigure (2)) and 500 (subfigure (3)) of Figure 4.3, which suggests that

when using larger margin to divide ID and OOD data, ID samples will be easier to be

included while more OOD data will be inside the region, leading to more false positive

predictions. Therefore, it is not the larger the margin, the better the performance.

After having the distance values predicted by the margin learner module, we apply
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the Gmeans method to find the optimal threshold considering both the distance

predictions and the binary possibility. The second row illustrates the ID and OOD

predictions of TEND after thresholding. We can see that the boundary of predicted

ID data samples is very close to the margin circle of radius 150 (subfigure (4)), but

much smaller compared to radius 250 (subfigure (5)) and 500 (subfigure (6)). As they

are in the same scale, we can observe that the thresholding areas for ID are smaller

when the margin values increase.

Figure 4.3: 2D visualization of ID (green points) and OOD (red points) data distance
distributions for RSNA dataset learnt by TEND’s margin learner module with radius
150 (1st column), 250 (2nd column) and 500 (3rd column) under the one-vs-rest
setting. The first row is for distance distribution with ground-truth labels; the second
row shows the predicted results with the optimal threshold values. Blue circles are
the plotted based on the radius in each subfigure for reference.

To further analyze the OOD detection ability of TEND, we take RSNA dataset

for example and inspect part of the predications. As shown in Figure 4.4, four kinds

of predictions, namely true positive, true negative, false positive and false negative
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Figure 4.4: True Positive (TP, 1st row), True Negative (TN, 2nd row), False Positive
(FP, 3rd row), and False Negative (FN 4th row) predictions of TEND 500 on RSNA
datasets following the one-vs-rest setting. d: distance value from the margin
learner module, p: probability outputted by the binary discriminator module, s: final
score, t: optimal threshold (ID: s < t, OOD: s >= t).
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predictions, predicted by TEND 500 are present, with four representative cases for

each situation. TP means that true ID samples are correctly identified and TN is for

correct identification of OOD samples. FP refers to the OOD data is mis-classified

as ID data and FN stands for wrongly classified OOD data. From Figure 4.3, data

points close to the center are more confident of being ID category, which means the

smaller the distance, the lager the possibility the data being an ID sample. Observed

the TP cases in Figure 4.4, most of them are with distance values less than 50, which

is relatively small compared to the pre-defined margin 500; while the TN cases are

often with larger distances. The first chest X-ray image of TN cases has final score

0.0892, close to the threshold 0.0752, which indicates this case is a challenging case.

The third row of Figure 4.4 are the hard FP cases for TEND 500 to identify as they

are all with both small distance values and probabilities. The FN cases shown in the

fourth row of Figure 4.4 can be those ID data with irregular format or position shifting.

With imperfections, TEND 500 will treat them as outliers and assign larger distance

values by the margin learner module. Compared with others, the second FP case

is much more challenging as the data is inside the pre-defined margin but classified

wrongly due to the threshold setting. We also present the 2D distance visualization

and detection results with examples for IVC-Filter and ISIC2019 datasets in the

supplementary material.

Effects of transformations

To further compare the intra-class OOD detection ability, we generate validation data

by applying four unseen transformations to all the ID data defined in Sec. 4.1.2 and

showed in the right yellow box in Figure 4.2. As we have two experimental settings

- the one-vs-rest and the rest-vs-one, we report them in Table 4.5 and Table 4.6 re-

spectively. The best and the second best accuracy results are bolded and underlined

respectively. As all the validation data are in OOD category, we calculate the OOD
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detection accuracy based on the optimal threshold t determined in Table 4.3 (cor-

responding to Table 4.5) and Table 4.4 (corresponding to Table 4.6) for each model

and each dataset. Those data with score s >= t are labeled as OOD (which are

true negative samples, TN in short) and the data having score s < t are classified as

ID class (which are false positive samples, FP in short). Accordingly, the detection

accuracy is formulated as ACCval = TN/(TN + FP ).

Table 4.5: Accuracy of various OOD detection methods trained on IVC-Filter [103],
RSNA [156] and ISIC2019 [33] with the one-vs-rest setting. Bold denotes the
best results and underline shows the second best results. * indicates the model is
supervised.

Methods
IVC-filter RSNA ISIC2019

Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
AutoEncoder [35] 1.000±0.000 0.371 ± 0.036 0.988 ± 0.007 0.064 ± 0.009 0.001 ± 0.000 0.029 ± 0.002 0.422 ± 0.004 0.000 ± 0.000 0.252 ± 0.004 0.581 ± 0.005 0.428 ± 0.004 0.187 ± 0.002
AE GMM 0.110 ± 0.001 0.151 ± 0.000 0.142 ± 0.001 0.142 ± 0.001 0.660 ± 0.003 0.023 ± 0.001 0.577 ± 0.007 0.402 ± 0.007 0.055 ± 0.001 0.028 ± 0.001 0.086 ± 0.002 0.087 ± 0.002
VAE [9] 0.013 ± 0.006 0.137 ± 0.031 0.020 ± 0.013 0.008 ± 0.007 0.990 ± 0.001 0.288 ± 0.004 0.438 ± 0.005 0.424 ± 0.005 0.027 ± 0.001 0.241 ± 0.004 0.434 ± 0.003 0.364 ± 0.004
DeepSVDD [128] 1.000 ± 0.000 0.735 ± 0.039 0.607 ± 0.024 0.044 ± 0.018 0.604 ± 0.003 0.120 ± 0.005 0.642 ± 0.006 0.455 ± 0.005 0.985 ± 0.001 0.740 ± 0.003 0.567 ± 0.003 0.190 ± 0.004
GANomaly[4] 1.000 ± 0.000 0.792 ± 0.017 0.727 ± 0.030 0.690 ± 0.031 0.959 ± 0.003 0.910 ± 0.003 0.330 ± 0.005 0.313 ± 0.005 0.919 ± 0.003 0.608 ± 0.005 0.306 ± 0.002 0.348 ± 0.003
f-AnoGAN[133] 0.888 ± 0.024 0.699 ± 0.034 0.583 ± 0.035 0.501 ± 0.052 0.726 ± 0.005 0.729 ± 0.007 0.386 ± 0.003 0.413 ± 0.005 0.665 ± 0.007 0.431 ± 0.004 0.410 ± 0.005 0.391 ± 0.004
TEND 150 (ours) 0.951 ± 0.007 0.988 ± 0.006 0.921 ± 0.017 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.997±0.000 0.997±0.000
TEND 250 (ours) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.996 ± 0.001 0.942 ± 0.003 0.799 ± 0.005 0.741 ± 0.005
TEND 500 (ours) 0.752 ± 0.026 0.861 ± 0.026 0.797 ± 0.029 0.984 ± 0.008 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.950 ± 0.002 0.976 ± 0.001 0.905 ± 0.002 0.905 ± 0.003
BinaryClassifier* 0.963 ± 0.003 0.963 ± 0.005 0.509 ± 0.001 0.899 ± 0.001 0.499 ± 0.006 0.680 ± 0.003 0.281 ± 0.004 0.215 ± 0.004 0.271 ± 0.006 0.762 ± 0.004 0.498 ± 0.005 0.491 ± 0.006

One-vs-rest results of transformations Table 4.5 shows the accuracy of detect-

ing the generated validation OOD data with different models with the one-vs-rest ex-

perimental setting. Among all the models present in Table 4.5, the AutoEncoder [35],

VAE [9], DeepSVDD [128], GANomaly[4], f-AnoGAN[133] and our TENDs are all un-

supervised methods, while the BinaryClassifier marked with an asterisk is a supervised

model that is trained with both ID data and partial true OOD data. Compared with

RSNA and ISIC2019 datasets, IVC-Filter objects are often with more background,

thus the advantage of AutoEncoder, which is good at reconstruction, is eliminated

for datasets like IVC-Filter but still remains for RSNA and ISIC2019 in detecting

anomaly data with randomly cutting and noises. However, the randomly cropping

and resizing and Gaussian blur transformations are much difficult for AutoEncoder

to handle. VAE achieves the second best accuracy both for randomly cut RSNA data

and blurred ISIC2019 data. DeepSVDD [128] and GANomaly[4] generally perform

well in detecting randomly cut data for all the datasets, but TEND architectures
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with different margins nearly achieve all the best and the second best accuracy for

IVC-Filter and RSNA datasets. TENDs still remain the similar performance for the

randomly cutting and blurring of ISIC2019 datasets. In general, Gaussian blurring is

the most difficult scenario of ISIC2019 dataset for all the models and adding noise to

images is easy for AutoEncoder but potentially difficult for other models to deal with,

including TENDs and the supervised model BinaryClassifier. In summary, although

TEND is an unsupervised model, it can still obtain stronger intra-class OOD identi-

fication ability and even outperform other state-of-the-art models and the supervised

model BinaryClassifer on both IVC-Filter and RSNA datasets. This advantage is due

to the benefits of transformations during training.

Rest-vs-one results of transformations Table 6 presents the accuracy of detect-

ing the generated validation OOD data with different models following the rest-vs-one

experimental setting. AutoEncoder partially remains its sensitivity in random cut and

noise transformations for both IVC-Filter and RSNA datasets. In general, VAE shows

little advantages in transformed OOD detection except for the noise and gaussian blur

OOD detection for ISIC2019 dataset. DeepSVDD, GANomaly, f-AnoGAN occasion-

ally show advanced performance for different situations. Comparatively, TENDs show

more stable results in accurate detection of the transformed OOD data, especially for

both IVC-Filter and RSNA datasets. This stability for such intra-class OOD detec-

tion benefits from the learning process of training with transformation.

Table 4.6: Accuracy of various OOD detection methods trained on IVC-Filter [103],
RSNA [156] and ISIC2019 [33] with the rest-vs-one setting. Bold denotes the best
results and underline shows the second best results. * indicates the model is super-
vised.

Methods
IVC-filter RSNA ISIC2019

Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
Random
Cut

Random
Crop&Resize

Noise
Gaussian

Blur
AutoEncoder [35] 1.000±0.000 0.116 ± 0.009 0.627 ± 0.014 0.032 ± 0.005 0.999 ± 0.003 0.705 ± 0.004 0.901 ± 0.002 0.001 ± 0.000 0.782 ± 0.004 0.250 ± 0.005 0.388 ± 0.004 0.368 ± 0.004
AE GMM 0.131 ± 0.010 0.206 ± 0.011 0.212 ± 0.010 0.220 ± 0.010 0.361 ± 0.003 0.319 ± 0.004 0.383 ± 0.005 0.396 ± 0.005 0.067 ± 0.002 0.054 ± 0.002 0.158 ± 0.003 0.157 ± 0.003
VAE [9] 0.036 ± 0.002 0.460 ± 0.008 0.476 ± 0.011 0.487 ± 0.010 0.188 ± 0.002 0.849 ± 0.003 0.603 ± 0.005 0.596 ± 0.004 0.174 ± 0.003 0.627 ± 0.006 0.555 ± 0.007 0.544 ± 0.007
DeepSVDD [128] 0.858 ± 0.011 0.529 ± 0.006 0.495 ± 0.008 0.496 ± 0.008 0.905 ± 0.001 0.415 ± 0.004 0.494 ± 0.004 0.425 ± 0.003 0.827 ± 0.003 0.294 ± 0.004 0.524 ± 0.005 0.541 ± 0.005
GANomaly[4] 0.785 ± 0.008 0.583 ± 0.009 0.577 ± 0.013 0.629 ± 0.009 0.999 ± 0.000 0.682 ± 0.003 0.792 ± 0.003 0.238 ± 0.005 0.979 ± 0.001 0.694 ± 0.003 0.464 ± 0.004 0.476 ± 0.004
f-AnoGAN[133] 0.934 ± 0.008 0.594 ± 0.013 0.361 ± 0.014 0.344 ± 0.012 0.380 ± 0.004 0.373 ± 0.004 0.716 ± 0.003 0.300 ± 0.004 0.989 ± 0.001 0.825 ± 0.002 0.460 ± 0.005 0.464 ± 0.006
TEND 150 (ours) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
TEND 250 (ours) 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.995 ± 0.001 1.000±0.000 0.998 ± 0.000 0.997 ± 0.001
TEND 500 (ours) 1.000±0.000 0.997 ± 0.002 0.999 ± 0.001 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.984 ± 0.001 0.941 ± 0.002 0.902 ± 0.004 0.760 ± 0.002
BinaryClassifier* 0.025 ± 0.005 0.796 ± 0.010 0.659 ± 0.009 0.644 ± 0.012 0.927 ± 0.002 0.972 ± 0.001 0.984 ± 0.001 0.816 ± 0.003 0.100 ± 0.003 0.849 ± 0.003 0.470 ± 0.003 0.477 ± 0.003
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4.1.4 Conclusion

In this paper, we introduced an unsupervised novelty detector - TEND, which can

detect intra-class OOD data for medical applications in an open-world environment.

TEND is a two-stage anomaly detector with a vanilla AutoEncoder trained on in-

distribution data in the first stage to serve as feature extractors in the second stage

and two modules - a margin learner module and a binary discriminator module -

jointly trained in the second stage for separating in-distribution inputs from the non-

linearly transformed counterparts. With no OOD data used in training, TEND is

able to learn nuances from intra-class variations in medical image analysis problem

and provide a stepping stone for developing rare disease diagnosis model with no

sample images. Extensive results with the one-vs-rest and rest-vs-one experimental

settings on multiple public medical image datasets demonstrate the effectiveness of

our model. More general evaluations on data with unseen transformations further

evince our model’s generalization ability and robustness. In summary, an efficient

novelty detection method for medical images has been developed that can be applied

to discover unknown classes with only predefined normal data. We plan to extend this

work by integrating TEND into real time imaging pipelines for inference of medical

imaging models.

4.2 Generic medical anomaly detection

Despite recent advances in deep learning that have contributed to solving various

complex real-world problems [36], the safety and reliability of AI technologies remain a

big concern in medical applications. Deep learning models for medical tasks are often

trained with data from known distributions, and fail to identify out-of-distribution

(OOD) inputs and possibly assign high probabilities to the anomalies during inference
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Figure 4.5: ID, Intra- and Inter-class OOD examples for medical images. Compared
to natural images, medical OOD samples exhibit more subtle intra-class variations
(e.g., normal vs pneumonia in the 1st row and benign vs malignant in the 2nd row).

because of the insensitivity to distribution shifting. Medical anomalies, a.k.a., OOD

data, outliers, can arise due to various reasons such as noise during data acquisition,

changes in disease prevalence and incidence (e.g., the evolution of rare cancer types),

or inappropriate inputs (e.g., different modalities unseen during training) [44]. To

ensure the reliability of deep models’ predictions, it is necessary to identify unknown

types of data that are different from the training data distribution. A good anomaly

detector should be able to capture the variations between the in-distribution (ID) data

used in training and the OOD data from open word and thus identify the outliers.

However, the core challenges for medical anomaly detection are – (1) the OOD data

is usually unavailable at the time of model training; (2) in theory, there are infinite

numbers of variations of OOD data; and (3) different types of OOD data can be

identified with varying difficulties. In general, the OOD classifications [22] can be

refined based on the variation difference by summarizing them as inter-class OOD

data and intra-class OOD data. Inter-class OOD data has larger variations from

the ID data, whereas the intra-class OOD data is close to ID data, as observed

in Figure 4.5. Thus, identifying intra-class OOD data is more difficult than the
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inter-class OOD data given subtle differences with ID data. To cope with the OOD

unavailability and uncertainty challenges, we adopt an unsupervised way to design

our anomaly detector. To acquire high identification of hard OOD cases, we expect

our model can learn both coarser and finer features to screen the various dissimilar

inputs. Inspired by [77, 14], we propose a generative anomaly detector – Cascade

Variational autoencoder based Anomaly Detector (CVAD), which is built on top

of a branch-cascaded VAE – pchVAE [179]. With the cascade VAE architecture to

model the in-distribution representations, CAVD gains superior reconstructions and

learns good-quality features to threshold out the OOD data. The ability of CVAD

to detect anomalies is further enhanced through training a binary discriminator with

the reconstructed data with random perturbations on aforementioned cascade VAE’s

latent parameters as OOD category.

4.2.1 Contribution

In this paper, our contributions are three-fold:

• We propose a novel OOD detector – CVAD. By utilizing a cascade VAE to learn

latent variables of in-distribution data, CVAD owns good reconstruction ability

of in-distribution inputs and obtains discriminative ability for OOD data based

on the reconstruction error.

• We adopt a binary discriminator to further separate the in-distribution data

from the OOD data by taking the reconstructed image as fake OOD samples.

We add minor random disturbance in VAE latent parameters during fake data

generation to enrich data variations. Thus, our model has better discriminative

capability for the inter-class as well as intra-class OOD cases.

• We conduct extensive experiments on multiple public medical image datasets

to demonstrate the generalization ability of our proposed model. We evaluate
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Figure 4.6: Proposed CVAD architecture - CVAE as the generator and a separate
binary classifier (C) as the discriminator.

comprehensively against state-of-the-art anomaly detectors in detecting both

intra-class and inter-class OOD data, showing improved performance. The code

is available at https://github.com/XiaoyuanGuo/CVAD.

Publication:

• Guo, Xiaoyuan, Judy Wawira Gichoya, Saptarshi Purkayastha, and Imon Baner-

jee. “CVAD-An unsupervised image anomaly detector.” Software Impacts 11

(2022): 100195.

• Guo, Xiaoyuan, Judy Wawira Gichoya, Saptarshi Purkayastha, and Imon Baner-

jee. “CVAD: A generic medical anomaly detector based on Cascade VAE.”

MICCAI workshop (2022).

4.2.2 Method

Anomaly detection includes both intra- and inter-class OOD identification, of which

medical intra-class OOD data is much more challenging because of the minute dissim-

ilarity compared to ID data. With no prior knowledge available and no sophisticated

https://github.com/XiaoyuanGuo/CVAD
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pre-processing, we utilize a variation autoencoder to learn the “normality” of in-

distribution inputs via image reconstruction and enhance the discriminative ability

for both two OOD classes via a binary discriminator. Both the reconstruction and

discrimination contribute to accurate intra- and inter-class OOD detection.

CVAD architecture

Figure 4.6 shows the design of CVAD. Inspired by the GAN’s architecture, we adopt

the VAE architecture as the “generator” for modeling ID representations and a sep-

arate classifier as the “discriminator” to strengthen OOD discrimination.

A standard VAE module consists of two neural networks: an encoder and a de-

coder [73], with the encoder qϕ(z|x) (parameterized by ϕ) mapping the visible vari-

ables x to the latent variables z and the decoder pθ(x|z) (parameterized by θ) sampling

the visible variables x given the latent variables z [65]. Given a dataset D = {xi}Ni=1

with N input vectors drawn from some underlying data distribution p∗(x), ϕ and θ

are then learned by maximizing the variational lower bound (ELBO) L(ϕ, θ), which is

a lower bound to the marginal log-likelihood log p(x|θ) [36]. However, a vanilla VAE

exhibits limited potential in distinguishing unseen distributions due to the blurry re-

constructions for large-size images. Thus, we adopt a modified VAE architecture –

pchVAE [179] for high-quality reconstruction and better latent representations, which

improves the reconstruction by adding a branch VAE on the standard VAE pipeline

and then cascade the two representations for final outputs. For convenience, we use

pchVAE and CVAE interchangeably.

Generator: Different from the standard VAE, CVAE has two encoders E1, E2

and two decoders D1, D2. To learn the high-level features, a deep and standard

VAE architecture constructed by E1 and D1 formulates the deep latent variables z1

by sampling parameters µ1 and σ1 of size K. Meanwhile, the low-level features are

learnt by the branch VAE. Instead of using the original input, branch VAE utilizes the
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concatenation of two intermediate features from E11 and D11. Given original input

variables x, the input of branch VAE can be represented as f(x). The encoder of

branch VAE E2 is simpler than E1 whereas the decoder D2 owns the same architecture

as D12. This branch VAE formulates latent Gaussian distributions with parameters

µ2, σ2 of size 4K. After sampling, two sets of latent variables, i.e., z1, z2 are acquired

and decoded to image contexts I
′
1 and finer details I

′
2 respectively. I is the combination

of I
′
1 and I

′
2.

Discriminator: Since the CVAE itself has no awareness of distinguishing outliers,

we add a binary discriminator C to distinguish the reconstructed image I
′

and its

counterpart with minor disturbance I
′′

from the original input image I. As I
′
, I

′′

share very similar features with I after the first-stage training of the image generator,

the discriminator is much more sensitive to minor differences from the in-distribution

data, enhancing the accuracy of identifying both intra-class OOD data and inter-class

OOD data.

Network training

Instead of training CVAD in an adversarial way, we train the generator and the

discriminator in two stages. The reason is that training with adversarial losses often

leads to much sharper reconstructions but ignores the low-level information of ID data,

incurring high reconstruction errors and potential dangerous decisions for medical

applications. Therefore, CAVD is designed to first train the image generator and then

the binary discriminator to detect OOD data. This non-adversarial training enables

CVAD to inherit the merit of VAEs [73] and avoid the instability of GANs [52].

To optimize CVAE, we minimize two objectives for the primary VAE part in

Eqn. 4.5 and the branch VAE part in Eqn. 4.6, KL refers to Kullback-Leibler diver-
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gence.

L(x;ϕ1, θ1) = −Ez1∼qϕ1 (z1|x)[log pθ1(x|z1)] + DKL(qϕ1(z1|x)||pθ1(z1)) (4.5)

L(x;ϕ2, θ2) = −Ez2∼qϕ2 (z2|f(x))[log pθ2(x|z2)] + DKL(qϕ2(z2|f(x))||pθ2(z2)) (4.6)

Therefore, the CVAE loss can be formulated as Eqn. 4.7. α1 and α2 to balance the

weights of the two individual terms.

Lcvae = α1L(x;ϕ1, θ1) + α2L(x;ϕ2, θ2) (4.7)

The binary discriminator is trained to distinguish true/fake images using binary cross

entropy.

Anomaly score: An anomaly score is defined in Eqn. 4.8 based on errors during

inference and includes two parts: the reconstruction error S cvae and the probability

of being the anomaly class S dis. Instead of simply adding the two parts together, we

first scale the CVAE reconstruction errors into [0,1] and get the average score value

to avoid assigning imbalanced weights between the two parts:

S = 0.5 ∗ (
S cvae

S cvaemax − S cvaemin

+ S dis) (4.8)

Network Details

As illustrated in Figure 4.6, CVAE has a standard VAE part which consists of E11,

E12, D11 and D12 and a branch VAE composed by a shallow encoder E2 and a decoder

D2. The primary VAE is a symmetric network with five 4×4 convolutions with stride

2 and padding 1 followed by five transposed convolutions. Respectively, E11 stands for

the first three convolution layers; E12 refers the last two convolution layers; D11 is for

the first three transposed convolution layers and D12 means the last two transposed
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convolution layers. The input of the branch VAE is the intermediate features of E11

and the middle decoded features of D11. E2 here is a convolution layer which has a

same 4×4 kernel with stride 2 and padding 1. D2 shares the same decoder architecture

as the standard VAE, namely, D2 = D11 + D12. All convolutions and transposed-

convolutions are followed by batch normalization and leaky ReLU (with slope 0.2)

operations. We used a base channel size of 16 and increased number of channels by

a factor of 2 with every encoder layer and decreased the number of channels to half

for each decoder layer. The latent dimension K of z1 is set as 512 and z2 is with 4K,

i.e., 2048 dimensions.

The binary discriminator is composed of five convolution layers with the same

settings as above and a final fully connected layer to make a binary prediction. After

a sigmoid function, the final ID/OOD class probability is obtained.

4.2.3 Experiments

Datasets

We conducted extensive experiments, verifying the generalizability and effectiveness of

our approach on multiple open-access medical image datasets for intra- and inter-class

OOD detection. In total, we used four independent datasets, including three medical

image datasets – RSNA Pneumonia dataset [156], inferior vena cava filters (IVC-

Filter in short) on radiographs [102] and SIIM-ISIC Melanoma dataset [125] (identify

melanoma in lesion images) and one natural image datasets – Bird Species2. Among

the medical datasets, RSNA and SIIM datasets have binary classes – normal and

abnormal, whereas IVC-Filter dataset has 14 distinct types (classes). Table 4.8 lists

the class information and number of images for each dataset and the corresponding

usage in the Details column. Bird dataset, which contains 270 bird species with

38,518 training images, was only used as inter-class OOD for detection validation.

2https://www.kaggle.com/gpiosenka/100-bird-species

https://www.kaggle.com/gpiosenka/100-bird-species
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To unify the OOD detection pipeline and facilitate evaluation, we resized both the

medical images and the validation inter-class OOD images to a unified 256 × 256 ×

channel size, where IVC-Filter and RSNA datasets are in gray scale with channel as

1 and the SIIM images are in RGB format and have channel 3.

Implementation

We implemented our model using Pytorch 1.5.0, Python 3.6. α1, α2 were equal to

1. We ran the models on 4 NVIDIA Quadro RTX 6000 GPUs with 24 GB memory

each. In our model training, we used Adam optimizer with a learning rate of 0.001,

and each network was trained for 100-350 epochs.

Evaluation Metrics

We evaluated our anomaly detection model performance in terms of standard statis-

tical metrics - (i) area under the receiver operating characteristic (AUROC, AUC in

short): a performance metric for “discrimination” between ID and OOD data (close

to 1 gives optimal discrimination); (ii) True Positive rate (TPR): number of samples

correctly classified as OOD (higher yield indicates better performance); (iii) False

positive rate (FPR): number of samples wrongly classified as OOD (lower is better).

To classify ID and OOD classes, a threshold should be defined for the anomaly scores.

Notably, the AUC value is threshold-invariant, while the TPR and FPR are deter-

mined by the selection of the anomaly threshold. We adopted the Geometric Mean

(G-Mean) method to determine an optimal threshold for the ROC curve by tuning

the decision thresholds and reported the resulted FPR and TPR values. We also

reported the corresponding DIFF, which is the difference of TPR and FPR under

optimal selection, i.e., DIFF=TPR-FPR (larger is better). To be fair and thorough,

we ran all the experiments on both intra-class OOD and inter-class OOD to further

analyze the performance of anomaly detectors on the specific type of OOD detection.
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Quantitative results

To demonstrate the model’s effectiveness, we set the vanilla AE and VAE architectures

as baselines and compared our CVAD model with three state-of-the-art models with

varying architectures – pchVAE [179], a classifier-based approach DeepSVDD [127],

and a GAN-based method GANomaly [4]. Table 4.7 shows the models’ performance

for the intra-class OOD detection and Table 4.8 primarily presents the inter-class

OOD performance. The selection of in-class data, intra-class OOD and inter-class

OOD data are summarized in the Details column of Table 4.8.

Results for Intra-class OOD Detection Intra-class OOD images are the most

challenging outliers to identify since they often share similarity to the ID data but

belong to a different class with unique characteristics. This similarity leads to the

difficulty in identifying this type of OOD data, especially for medical images. As

illustrated in Figure 4.5, e.g., the variations of benign and malignant skin cancer im-

ages are not as obvious as the natural objects. Still, CVAD exhibits its superiority in

detecting intra-class OOD for medical images. On the RSNA dataset, CVAD achieves

the best DIFF value 0.322 and AUC score 0.699 (+0.129 from DeepSVDD’s AUC score

0.570, +0.123 from GANomaly’s AUC score 0.576); for IVC-Filter, though GANomaly

obtains the highest DIFF and AUC values, CVAD shows competitive performance

and improves its AUC score 0.582; and for the RSNA dataset, DeepSVDD has the

largest DIFF value 0.407 but CVAD reaches the second best DIFF 0.393. Moreover,

CVAD acquires the optimal AUC score 0.750. Overall, CVAD performs stably and

effectively for intra-class OOD detection except the sub-optimal results for IVC-Filter

dataset. The reason behind this is the training data size. With 196 training images

of IVC-Filter, CVAD may not be able to learn enough ID feature representations.

Nevertheless, CVAD still outperforms GANomaly on IVC-Filter dataset.
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Table 4.7: Intra-class OOD detection results (FPR, TPR, DIFF and AUC values)
of various anomaly detectors trained on RSNA, IVC-Filter and SIIM datasets. Best
results are highlighted.

Methods
RSNA IVC-Filter SIIM

↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC ↓FPR ↑TPR ↑DIFF ↑AUC
AE [129] 0.318 0.461 0.143 0.566 0.443 0.526 0.083 0.520 0.403 0.685 0.282 0.673
VAE [9] 0.381 0.611 0.230 0.614 0.426 0.525 0.099 0.524 0.442 0.740 0.298 0.676
pchVAE [179] 0.498 0.737 0.239 0.604 0.475 0.567 0.092 0.529 0.399 0.568 0.169 0.616
DeepSVDD [127] 0.399 0.509 0.110 0.570 0.545 0.713 0.168 0.522 0.276 0.683 0.407 0.740
GANomaly [4] 0.524 0.678 0.154 0.576 0.409 0.603 0.194 0.584 0.553 0.495 -0.058 0.418
CVAD (ours) 0.321 0.643 0.322 0.699 0.541 0.706 0.165 0.582 0.381 0.774 0.393 0.750

Table 4.8: AUC scores predicted by OOD detectors for inter-class identification on
RSNA, IVC-Filter and SIIM datasets. The total number of samples of each dataset
is reported in the bracket of Details column. Bold indicates the best performance.

Dataset Details Methods
AUROC score

InterClass1 InterClass2 InterClass3

RSNA

In-class: normal (8,851)
Intra-class: pneumonia (9,555), abnormal (11,821)
InterClass1: BIRD (38,518)
InterClass2: SIIM (33,125)
InterClass3: IVC-Filter (1,258)

AE [129] 0.680 0.608 0.616
VAE [9] 0.752 0.604 0.613

pchVAE [179] 0.795 0.776 0.619
DeepSVDD [127] 0.838 0.834 0.604

GANomaly [4] 0.775 0.819 0.594
CVAD (ours) 0.865 0.806 0.706

IVC-Filter

In-class: type 11 (196)
Intra-class: type 0-10, 12,13 (1,062)
InterClass1: BIRD (38,518)
InterClass2: SIIM (33,125)
InterClass3: RSNA (30,227)

AE [129] 0.372 0.353 0.237
VAE [9] 0.666 0.400 0.706

pchVAE [179] 0.775 0.321 0.846
DeepSVDD [127] 0.864 0.979 0.889

GANomaly [4] 0.829 0.525 0.740
CVAD (ours) 0.916 0.705 0.844

SIIM

In-class: benign (32,541)
Intra-class: malignant (584)
InterClass1: BIRD (38,518)
InterClass2: IVC-Filter (1,258)
InterClass3: RSNA (30,227)

AE 0.572 0.013 0.752
VAE [9] 0.712 – 0.759

pchVAE [179] 0.943 0.992 0.684
DeepSVDD [127] 0.986 0.992 0.804

GANomaly [4] 0.686 0.989 0.442
CVAD (ours) 0.993 0.993 0.831
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Figure 4.7: ROC curves of different models for intra- and inter-class OOD identifi-
cation on RSNA, IVC-Filter and SIIM dataset. Performance of different models are
highlighted with different colors with the corresponding AUC scores labeled in the
brackets.
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Results for Inter-class OOD detection To fairly evaluate all the models, we

tested them on multiple inter-class OOD data types and presented the corresponding

AUC scores in Table. 4.8. As the OOD image datasets may have different image

channels and image sizes from the ID training images, we adjusted the image channels

and resized the images to ensure consistent input data format for evaluation3. CVAD

obtains the highest AUC values on RSNA (except for inter-class2) and SIIM datasets

across three inter-class OOD detection evaluations. The inter-class OOD detection

of CVAD on IVC-Filter is also satisfying with stable performance.

To further show the models’ performance difference, we plotted the Receiver op-

erating characteristic (ROC) curves of all the datasets for all the models evaluated on

four OOD situations – intra-class, inter-class1, inter-class2, inter-class3 OOD data.

Figure 4.7 shows the plots for RSNA, IVC-Filter and SIIM datasets with the corre-

sponding AUC scores included. Notably, the difficulties in detecting intra-class and

inter-class OOD data are reflected on the AUC scores, with most scores on inter-class

OOD data are much higher than detection on intra-class OOD samples, especially in

the RSNA results of Figure 4.7.

Ablation Study Generally, CVAD can exceed the baseline’s performance with cer-

tain improvements and show competitive performances for both intra- and inter-class

OOD detection. Here we analyze the functionality of the “generator” and “discrimi-

nator” of CVAD. As CVAD utilizes pchVAE to learn latent ID representation, we also

report the performances of pchVAE itself on detecting intra- and inter-class OODs in

Table. 4.7 and Table. 4.8 respectively.

For intra-class OOD detection, CVAD improves DIFF value from pchVAE’s 0.239

to 0.322 (+0.083) and AUC score from pchVAE’s 0.604 to 0.699 (+0.095) on the

RSNA dataset; similarly on IVC-Filter dataset, CVAD enhances the DIFF from pch-

3For example, to evaluate trained models on RSNA, we converted the BIRD and SIIM
images to grayscale mode and resized them to the same in-distribution image size.
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VAE’s 0.092 to 0.165(+0.073), AUC from pchVAE’s 0.529 to 0.582 (+0.053); for

SIIM dataset, CVAD also increases DIFF from pchVAE’s 0.169 to 0.393 (+0.224),

AUC from pchVAE’s 0.616 to 0.750(+0.134). The same observation also exists in

the inter-class OOD detection results in Table. 4.8. This performance improvement

can be attributed to the discriminator’s learning with the exposure of generated OOD

data samples, which enables CVAD to gain better discriminative ability than pchVAE

itself.

Additionally, the standard AE and VAE are evaluated as baselines for various

OOD detection. Although pchVAE reconstructs image with higher quality than VAE,

it fails to exceed VAE in OOD detection. Autoencoder, which can also output good

reconstruction, exhibits the weakest OOD detection accuracy according to the results

reported in Table. 4.7 and Table. 4.8. In conclusion, good image reconstruction

does not ensure strong OOD identification ability and adding a discriminator can be

functional and contribute to discriminative learning.

Qualitative Results

Here we provide visualizations for anomaly detection of CVAD on different datasets

and the reconstruction effects of CVAE.

Anomaly Detection Figure 4.8 shows experimental results for RSNA dataset.

Each column represents a specific type of input data. From left to right, they are

in-distribution data, intra-class OOD data, inter-class OOD1 data, inter-class OOD2

data and inter-class OOD3 data, respectively. There are two examples for each type

of data. The corresponding anomaly score predicted by CVAD is on top of each

example. A high anomaly score means high possibility the data is with to be in

OOD category. As can be seen in Figure 4.8, the two intra-class OOD samples

are alike as the in-distribution data but the inter-class OOD examples show very
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Figure 4.8: Anomaly scores output by CVAD for different types of input data (experi-
ments for RNSA dataset). Columns from left to right, ID, intra-class OOD, inter-class
OOD1, inter-class OOD2, inter-class OOD3.

Figure 4.9: Anomaly scores for IVC-Filter dataset, from the left to right: in-
distribution data, intra-class OOD, inter-class OOD1, inter-class OOD2, inter-class
OOD3

different appearance from in-distribution data. Correspondingly, the anomaly scores

of intra-class OOD are close to the scores of ID samples and difficult to separate

whereas the intra-class OOD cases with clear variations are assigned higher anomaly

scores and easy to identify. This phenomenon further demonstrates the challenges of

identifying intra-class OOD data. The predicted anomaly scores for IVC-Filter and

SIIM experiments are present in Figure 4.9 and Figure 4.10, respectively.
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Figure 4.10: CVAD prediction examples of SIIM dataset. From left to right, ID,
intra-class OOD, inter-class OOD1, inter-class OOD2, inter-class OOD3 respectively.
Anomaly scores are labeled on top of each case.

Figure 4.11: Reconstruction details visualization of CVAE trained on RSNA dataset
for different data types.

Visualization of reconstruction effects CVAD gains good latent in-distribution

features via its “generator” – CVAE, which learns both low-level and high-level repre-



95

sentations. To demonstrate the effectiveness, we took RSNA dataset as a representa-

tive and showcased the reconstruction details in Figure 4.11, with the first column for

branch VAE reconstruction I
′
2, the second column for standard VAE part reconstruc-

tion I
′
1, the third column for ultimate reconstruction I

′
and the last column for the

original input image I (following the same notations indicated in Figure 4.6). To fur-

ther reveal the effects of CVAE on different OOD samples, we also presented example

images for ID (i.e., normal class, 1st row), intra-class OOD (i.e., pneumonia or with

opacity, 2nd row), inter-class OOD1 (i.e., gray-scale bird images, 3rd row), inter-class

OOD2 (i.e., skin cancer images from SIIM dataset,4th row) and inter-class OOD3

(i.e., images from IVC-Filter dataset, 5th row) in Figure 4.11. Compared with the

intra-class medical OOD data, reconstructions on inter-class OOD inputs are more

messy and dissimilar to the original OOD data, which leads to larger reconstruction

errors and thus easier to distinguish. This observation reveals the varying difficulties

of detecting different types of OOD data – intra-class OOD is much more challenging

than inter-class OOD.

4.2.4 Conclusion

We propose an effective medical anomaly detector CVAD that can reconstruct coarse

and fine image components by learning multi-scale latent representations. The high

quality of generated images enhances the discriminative ability of the binary discrimi-

nator in identifying unknown OOD data. We demonstrate the OOD detection efficacy

for both intra-class and inter-class OOD data on various medical and natural image

datasets. Our model has no prior assumptions on the input images and application

scenarios for OOD, thus can be applied to detect OOD samples in a generic way for

multiple scenarios.
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4.3 Discussions and future works

In this chapter, we have researched on medical image OOD detection under limited

supervision. Specifically, we have proposed TEND and CVAD to handle intra-class

OOD detection and generic OOD detection, respectively.

We implement TEND with three different margins and show our results across

various medical datasets under different settings. Although our models show com-

petitive performance and surpass other methods under certain situations, the margin

parameter has to be tuned for specific usages. Depending on the data complexity

and variance across classes of a dataset, 250 is a good starting point. The ability of

separation OOD from ID does not always improve as the margin increases due to the

data complexity. For datasets with clear class variations, the margin can be set larger

accordingly and vice versa. Besides, TEND utilizes transformation to generate fake

OOD samples for discriminative learning. Due to the large amount of possibilities,

this work only exploits a limited number of possible transformations. In the future,

more variations of fake OOD generations can be explored to check the effectiveness

of each different transformation.

We design CVAD based on a cascade VAE model to learn the normality of in-

distribution data. Because of the characteristics of VAE, the generator of CVAD

requires an extremely small learning rate to avoid the gradient explosions and a long

time to get the model converged. Our work only considers 2D X-ray images and

natural images, more data modalities and application scenario should be researched,

including the common used MRI image data, 3D images, etc.
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Chapter 5

Medical Dataset Curation with

Limited Supervision

Supervised deep learning has been promising in solving various medical image-

related tasks, and often requires well-annotated datasets for training and validation

which must be extracted and curated to a high quality standard before being us-

able for model development [149]. Medical datasets from different institutions can

be heterogeneous due to equipment, acquistion techniques, and patients, resulting in

data distribution shifts between sets. Models trained on an internal dataset A from

a specific institute may show degraded performance on an external dataset B from

other sources due to the possible noisy data, distribution shift and poor-quality data,

which are called shift data in this paper. Dataset/Distribution shift is a common

problem in predictive modelling and present in most practical applications, for rea-

sons ranging from the bias in introduced by experimental design the irreproducibility

of the testing conditions at training time [115], of which imbalanced data, domain

shift, source component shift, may be the most common forms [142]. The shift data

introduces out-of-distribution (OOD) in the dataset, and should account for the per-
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formance dropping of well-trained models. Thus, identifying the shift data is crucial

for cleaning the datasets and helpful in enhancing the model’s generalization with fu-

ture training. Unfortunately, it still lacks an effective way to identify the difference for

a bunch of datasets from the same medical domain. The main challenge lies in the in-

accessibility to external medical datasets. Privacy concerns around sharing personally

identifiable information are a major barrier to data sharing in medical research [135].

To address these privacy concerns, there has been an impressive number of large-scale

research collaborations to pool and curate de-identified medical data for open-source

research purposes [32]. Nevertheless, most medical data is still isolated and locally

stored in hospitals and laboratories due to the worries associated with sharing patient

data [150]. Therefore, an efficient way of external dataset curation/cleaning without

sharing data is desired.

To overcome the obstacle, we propose MedShift, a pipeline for identifying shift

data, which takes advantage of the accessible models trained on the internal dataset to

gain the in-distribution knowledge. As observed by Ref. [116], domain-discriminating

approaches tend to be helpful for characterizing shifts qualitatively and determining

if the are harmful. Therefore, we utilize unsupervised anomaly detectors to learn the

“normality” of in-domain features. Suppose the internal dataset has multiple classes,

the feature representation of each class is learnt by an OOD detector. Without sharing

the internal dataset with others, the shift data is theoretically under-represented

and should be detected by the accessible anomaly detectors as outliers from the

external datasets. Since the supervised deep learning suffers from the performance

dropping when facing the distribution/dataset shifting, especially when training data

and test data are from two sources, two intuitions for example, the shiftness of the

identified data can be reflected via the performance variance of a well-trained model.

Instead of checking the shift sample one by one, MedShift quantifies the shiftness

for each class in small groups. Based on the assigned anomaly scores, each class of
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the external datasets is clustered into multiple groups. Data samples with similar

qualities will be grouped together. A multi-class classifier is then trained on the

internal dataset and evaluated on the external datasets. Each group of each class

in external datasets is gradually dropped in the decreasing order of anomaly scores.

Meanwhile, the classification performance on the updated external data is recorded.

The corresponding variation in performance, hence, reflects the significance of the

distribution shift based on the fact that subtle changes in data distribution may

affect the performance of well-trained classifiers. Additionally, we adapt a dataset

quality metric (OTDD [8]) for helping facilitate the comparison of differences among

a series of datasets coming form the same medical domain.

5.1 Contribution

We summarize our contributions as follows:

1. We propose an automatic pipeline of identifying shift data for medical data cu-

ration applications and evaluating the significance of shift data without sharing

data between the internal and external organizations;

2. We employ two unsupervised anomaly detectors to learn the internal distribu-

tion and identify samples showing the significant shiftness for external datasets,

and compared their performance;

3. We quantify the effects of the shift data by training a multi-class classifier that

learns internal domain knowledge and evaluating the classification performance

for each sub-group of each class in external domains after dropping the shift

data;

4. We adapt a data quality metric to quantify the dissimilarity between the internal

and external datasets;
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5. We experiment on two pairs of representative medical datasets and show ef-

fective qualitative and quantitative results, which prove the usefulness of the

suggested pipeline for future medical dataset curation. The code is available

at https://github.com/XiaoyuanGuo/MedShift. An interface introduction

video to visualize our results is available at https://youtu.be/V3BF0P1sxQE.

Publication:

• Guo, Xiaoyuan, Judy Wawira Gichoya, Hari Trivedi, Saptarshi Purkayastha,

and Imon Banerjee. “Shift data identification for external medical datasets.”

SIIM 2022.

• Guo, Xiaoyuan, Judy Wawira Gichoya, Hari Trivedi, Saptarshi Purkayastha,

and Imon Banerjee. “MedShift: identifying shift data for medical dataset cu-

ration.” Joural of Biomedical and Health Informatics 2022 (under 2nd round

review).

5.2 Method

In Section 5.2.1 and 5.2.2, we formulate the dataset shift identification problem and

introduce the necessary notations. Then, we propose and illustrate the pipeline of

shift identification in Section 5.2.3; we further dive deep in the shiftness evaluation

in Section 5.2.5. To complement, we introduce the details of our anomaly detection

architecture used for MedShift pipeline in Section 5.2.4. Additionally we introduce

the dataset quality measurement in Section 5.2.6.

5.2.1 Problem statement

In view of the fact that the digital healthcare research is hugely limited by the data

sharing and privacy issues because of the regulation imposed by Health Insurance

https://github.com/XiaoyuanGuo/MedShift
https://youtu.be/V3BF0P1sxQE
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Portability and Accountability Act (HIPPA), MedShift aims to overcome the barrier

by exploiting the advantage of sharing data quality evaluation models across the orga-

nizations and inspects the shiftness of external datasets based on the learnt internal

domain.

5.2.2 Formulation and notation

Given two datasetsDA andDB of the same medical domain with the same classes (say

c1, c2, ..., cn, n is the total number of classes) from two intuitions A and B (e.g., a chest

X-ray dataset from Emory University DA and a chest X-ray dataset from Stanford

University DB), let DA be the internal dataset and DB be the external dataset.

Dataset distribution shift is termed the situation where PDA
(Y |X) = PDB

(Y |X)

but PDA
(X) ̸= PDB

(X), where Y and X represent the class labels and input data

respectively.

Suppose we are given i.i.d. internal data {XA
ci
}ni=1 with n classes, and input

samples {xAci
j }N

A
ci

j=1 ⊂ XA
ci

(NA
ci

is the sample number of dataset A’s class ci) from

the internal input distribution, and i.i.d. external data {XB
ci
}ni=1 and input samples

{xBci
j }N

B
ci

j=1 ⊂ XB
ci

(NB
ci

is the sample number of dataset B ’s class ci) from external

distribution, the detection of class-wise distribution shift for dataset DB based on DA

is to identify the anomalous samples X̄B
ci
⊆ XB

ci
. Take DA class data as in-distribution

(ID) data and train machine learning models (e.g. classification models), the models

can learn the distribution of DA’s classes and make predictions P (yAci |x
A
ci

) for some

targets yAci given data samples xAci for class ci. Theoretically, given the target model

trained on the ID data XA
ci

, the predictions over set XB
ci
− X̄B

ci
should produce more

relevant results than on the whole set XB
ci

.
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5.2.3 Shift identification

In this section, we introduce the methodology for identification of image data distribu-

tion shift to discriminate the poor-quality, noisy and under-represented samples from

the external data in an automatic way. The pipeline is built on top of the anomaly

detection architecture to leverage the anomaly score as illustrated the framework in

Figure 5.1, which involves two separate phases - internal training and test phase. An

interesting challenge of shift identification is that the anomaly detectors should be

able to identify unknown anomalous patterns of an external dataset without includ-

ing any anomalous data samples in training since in the real situation, exchanging

healthcare data among institutions and manually identifying noisy or anomalous data

are not trivial tasks.

Figure 5.1: Shift data identification pipeline

During the training phase, only internal data samples and the anomaly detection

models (see introductions in Sec. 5.2.4) are involved. As shown in the left blue

part of Figure 5.1, a set of anomaly detectors Fs for each targeted categories of

DA are trained on the internal dataset in an unsupervised fashion, considering the

unavailability of external data sources. Each class will then obtain a unique OOD

detector Fc. The anomaly detector learns to assign each data item with a specific
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anomaly score, a higher score means more possibility of being an anomalous data.

Notably, the anomaly detectors are trained with accessible internal data, and then

shared with the external validation sites.

In the test phase, no internal data will be shared but the trained anomaly detector

model with shift identification capability will be exchanged. As represented with pink

figures and dotted flows in Figure 5.1, each trained anomaly detector is evaluated on

each corresponding class of dataset DB and assigns anomaly scores for the external

dataset. To prepare for the shiftness quantification in Sec. 5.2.5, an unsupervised

clustering algorithm is sub-sequentially applied to each class and clusters the data

items into k groups based on the learnt anomaly scores. For each class, the optimal

number of cluster k is determined by the Elbow Method. As observed during our ex-

periments, data collected from the same source usually presents similar distributions.

Therefore, we keep k as same across all the classes.

5.2.4 Anomaly detection

Architecture. As claimed in Sec. 5.2.3, we propose to utilize anomaly detection

models to not only identify distribution shifts in the external dataset but also auto-

mated cleaning of the external data without any data sharing. First, we briefly de-

scribe our anomaly detection model - Cascade Variational autoencoder-based Anomaly

Detector (CVAD) [54] used in MedShift, which was previously been tested on both

generic and medical image datasets. As shown in Figure 5.2, CVAD is a self-

supervised variational autoencoder-based anomaly detection model which combines

latent representation at multiple scales using the cascade architecture of variational

autoencoders and thus, can reconstruct the in-distribution image x with high qual-

ity. Both the original image x and the reconstruction x
′

are then fed into a binary

discriminator D to separate the synthetic data from the in-distribution ones.

Optimization. A standard VAE’s encoder qϕ(z|x) (parameterized by ϕ) maps
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the visible variables x to the latent variables z and the decoder pθ(x|z) (parameterized

by θ) samples the visible variables x given the latent variables z. Given a dataset

D = {xi}Ni=1 with N input vectors drawn from some underlying data distribution

p∗(x), ϕ and θ are then learned by maximizing the variational lower bound (ELBO)

L(ϕ, θ), which is a lower bound to the marginal log-likelihood log p(x|θ) [36].

To optimize the generator, we minimize two objectives for the primary VAE part

in (5.1) and the branch VAE part in (5.2), KL refers to Kullback-Leibler divergence.

L(x;ϕ1, θ1) = −Ez1∼qϕ1 (z1|x)[log pθ1(x|z1)] +DKL(qϕ1(z1|x)||pθ1(z1)) (5.1)

L(x;ϕ2, θ2) = −Ez2∼qϕ2 (z2|f(x))[log pθ2(x|z2)] +DKL(qϕ2(z2|f(x))||pθ2(z2)) (5.2)

where f(x) is the input of branch VAE, encoded by E11. Therefore, the “generator”

loss can be formulated as Eqn. 5.3. α1 and α2 to balance the weights of the two

individual terms.

Lrec = α1L(x;ϕ1, θ1) + α2L(x;ϕ2, θ2) (5.3)

The binary discriminator is trained to distinguish true/fake images using binary cross

entropy loss (i.e., Ldis).

Anomaly score. The final anomaly score includes two parts: the reconstruction

error Srec in the first stage and the probability of being the anomaly class Sdis in

the second stage. To adapt the application of detecting abnormal data for multiple

unknown external sources, we modified that anomaly score computation by simply

adding the two parts together S = Srec + Sdis. This gives us the advantage that

when dealing with heavy noisy data, the reconstruction error will be the dominant

indicator for shiftness ; when facing the hard distinguished cases the class probability

plays the decision role.

Implementation. We resize all the medical images to 256×256×channel for

simplicity considering the irregular image sizes. To train, we use the Adam optimizer
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with a batch size of 256 and 2,048 for MURA and chest X-ray dataset, respectively; we

set the learning rate of 1× 10−5 and 1× 10−3 for the generator and the discriminator

of proposed method(CVAD), respectively; we train the generator with 250-500 epochs

and the discriminator with 10-20 epochs.

Figure 5.2: CVAD architecture - a cascade VAE as the generator (G) and a separate
binary classifier (D) as the discriminator. The main VAE pipeline is composed by the
encoder E1 shown as the orange part and the decoder D1 in the dark green part; the
branch VAE has the pink part as the encoder E2 and the light green for its decoder
D2. Given an input image x, the main VAE learns to reconstruct x

′
1 via latent

representations µ1 and σ1; the branch VAE takes the outputs of the results of the
main VAE encoder intermediate part E11 and the intermediate decoder D11 as inputs
and feeds the concatenated features to E2 to formulate the branch latent variables µ2

and σ2, which gives a low-level reconstruction x
′
2 via the corresponding decoder D2.

By adding the two reconstructions - x
′
1 and x

′
2 together with a sigmoid function, a

final reconstruction x is generated and later treated as fake OOD data as compared
to the original input x. The binary discriminator D will learn to distinguish them.

5.2.5 Shiftness quantification

The above pipeline can be applied to detect the shift data and assign each data with

an anomaly score for indicating its contribution to the dataset shift. Nonetheless, the

shiftness of the identified data is not simple and straightforward to evaluate in relation

with the targeted task. We suggest to evaluate them in group. As prepared in the



106

Figure 5.3: Shiftness quantification pipeline

first stage of the whole pipeline, the clustering has split each class of dataset DB into

multiple groups according to the anomaly scores. For simplicity, we assume that each

class has k groups. To evaluate the significance of detected outliers, we train a multi-

class classifier G for DA and test on DB. As presented in Figure 5.3, we gradually drop

one group that has the largest anomaly scores among current groups for each class

until only one group remains. The corresponding class-wise classification performance

is recorded. The performance variation thus is an indicator of the shiftness of the

specific group.

Multi-class classifiers’ details. To quantify the shiftness of each clustered

group for each class of external dataset DB, we first train a multi-class classifier

G for the internal dataset DA. The classifier learns the class latent features of the

internal domain and is able to predict class labels for test data. For MURA data, we

train ResNet152 [58] on the Emory MURA dataset with the publicly available pre-

trained weights as initialization. We optimize the classifier using the Adam optimizer

with a batch size of 512, a learning rate of 1 × 10−3 for 50 epochs. For chest X-ray

data, we utilize the model proposed by Ref. [167], which originally aims for multi-

label classification of the CheXpert dataset, and modifies it for the Emory CXR
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14-class classification task. Following the same implementations in Ref. [167], we

use DenseNet121 [64] as the feature extraction backbone and initialize it with the

public pretrained model weights. We train the classifier with a batch size of 256 for

20 epochs. The corresponding classification performances, including the Precision,

Recall, F1-score and AUC score are reported in Sec. 5.3.4.

5.2.6 Dataset quality measurement

To further quantify the efficacy of identifying the shift data among external datasets,

we measure the quality of external datasets compared to the internal dataset and

observe the difference after removing the shift data from the external sources in an

iterative fashion. We apply the Optimal Transport Dataset Distance [8] (OTDD)

measure to calculating similarities, or distances, between classification datasets. It

relies on optimal transport[151], which is a flexible geometric method for comparing

probability distributions, and can be used to compare any two datasets, regardless

of whether their label sets are directly comparable. Formally, the optimal transport

dataset distance is defined as:

OTDD(DA,DB) = minπ∈
∏

(PA,PB))

∫
Z×Z

d(z, z
′
)dπ(z, z

′
) (5.4)

, of which

d(z, z
′
) = (d(x, x

′
)2 +W2(Py, Py′ )

2)
1
2 (5.5)

, where DA, DB are the two datasets, Wp denotes the p-Wassertein distance. Please

refer Ref. [8] for more details.
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HAND FOREAMR FINGER SHOULDER ELBOW WRIST HUMERUS
Emory MURA 2,473 (21.33%) 368 (3.17%) 368 (3.17%) 3,451 (29.77%) 1,521 (13.12%) 2,858(24.65%) 553(4.77%)
Stanford MURA 3,851 (17.94%) 1,097 (5.11%) 3,660 (17.05%) 5,621 (26.18%) 2,397 (11.16%) 3,993(18.60%) 852(3.97%)

No
Finding

Enlarged
Cardiome-
diastinum

Cardio-
megaly

Lung
Lesion

Lung
Opacity

Edema
Consoli-
dation

Pneu-
monia

Atele-
ctasis

Pneumo-
thorax

Pleural
Effusion

Pleural
Other

Fracture
Support
Devices

Emory CXR
57,973

(11.35%)
7,825

(1.53%)
27,019

(5.29%)
6,157

(1.21%)
64,439

(12.62%)
22,540

(4.41%)
6,906

(1.35%)
9,188

(1.80%)
66,150

(12.95%)
11,550

(2.26%)
51,828

(10.15%)
2,325

(0.46%)
2,114

(0.41%)
174,768

(34.22%)

CheXpert
22,381

(4.34%)
10,798

(2.09%)
27,000

(5.24%)
9,186

(1.78%)
105,581

(20.48%)
52,246

(10.13%)
14,783

(2.87%)
6,039

(1.17%)
33,376

(6.47%)
19,448

(3.77%)
86,187

(16.72%)
3,523

(0.68%)
9,040

(1.75%)
116,001

(22.50%)

MIMIC
143,352

(22.62%)
84,073

(13.26%)
76,957

(12.14%)
76,423

(12.06%)
65,047

(10.26%)
64,346

(10.15%)
36,564

(5.77%)
26,222

(4.14%)
14,675

(2.32%)
14,257

(2.25%)
10,801

(1.70%)
10,042

(1.58%)
7,605

(1.20%)
3,460

(0.55%)

Table 5.1: Dataset details, with total image number and the percentage (in brackets)
of each class presented. Upper part of the table present the MURA datasets and the
lower is for Chest X-ray datasets.

5.3 Experiments

5.3.1 Datasets

There are two categories of medical datasets used in this paper: (1) Musculoskeletal

radiographs - Emory MURA dataset (internal) and Stanford MURA dataset [117]

(external); (2) Chest radiographs - Emory Chest X-rays (internal, Emory-CXR in

short), CheXpert dataset [68] (external 1) and MIMIC dataset [69] (external 2).

MURA (musculoskeletal radiographs) is a large dataset of bone X-rays. Each

MURA dataset has seven classes, XR HAND, XR FORARM, XR FIGER, XR SHOULDER,

XR ELBOW, XR WRIST, XR HUMERUS. Image examples are illustrated in Fig-

ure 5.4a for each class. To demonstrate the effectiveness of detecting shift data, we

have Emory MURA and Stanford MURA datasets as a pair and treat Emory MURA

as the internal dataset with Stanford MURA as the external one. More class-wise

details of the datasets are presented in the upper of Table. 5.1.

For chest X-ray, we used three dataset - Emory-CXR (XX images retrieved from

Emory Healthcare system), CheXpert and MIMIC datasets. The bottom part of

Table. 5.1 shows the details of the three datasets. All the chest X-ray dataset has

14 classes (or diagnosis) in total. The classes are No Finding, Enlarged Cardiome-

diastinum, Cardiomegaly, Lung Lesion, Lung Opacity, Edema, Consolidation, Pneu-

monia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture, Support

Devices. Image examples are displayed in Figure 5.4b. Different from MURA dataset
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(a)

(b)

Figure 5.4: Sample images from the datasets: (a) Musculoskeletal radiographs ex-
amples for each anatomical joint class. (Intensity contrasts are changed for better
visualization); (b) ChestXray examples for each class. (Image are resized for better
visualization);
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where class labels are mutually exclusive, each chest X-ray data may have multiple

common diagnosis.

5.3.2 Anomaly detectors in use

Main anomaly detector. OOD detection plays an important role in identify-

ing shift data in external datasets. We have proposed a self-supervised anomaly

detector - CVAD [54], whose introduction will be present in Sec. 5.2.4. As this

method poses no assumption on the input data and the applied situations, we uti-

lize this anomaly detection architecture in our pipeline called MedShift w CVAD

across all the experiments. The implementation code of CVAD is available at https:

//codeocean.com/capsule/3191573/tree/v1.

Baseline anomaly detector. Apart from our anomaly detection model CVAD,

we select f-AnoGAN [133] as the baseline and apply the method in MedShift for

comparison (MedShift w f-AnoGAN in short). f-AnoGAN is a generative adversarial

network to identify anomalous images unsupervised. Two training steps are necessary

for its anomaly detection - (1) GAN training, and (2) encoder training based on the

trained GAN model. Only normal images are fed into the GAN model to learn in-

distribution representations. And the encoder is trained to learn difference in feature

space level. During reference, a combination of image reconstruction residual and the

discriminator residual in feature level yields the anomaly score to detect anomalies.

To train f-AnoGAN, we use the default Adam optimizer with a learning rate of

2 × 10−4 and the same batch sizes as CVAD for the corresponding datasets; we run

the generative adversarial training for 1000-1500 epochs and the encoder training for

300-500 epochs.

The reason for comparison with f-AnoGAN [133] is its superiority over experiments

on three public medical image datasets (RSNA Pneumonia dataset [156], inferior

vena cava filters (IVC-Filter in short) on radiographs [102] and SIIM-ISIC Melanoma

https://codeocean.com/capsule/3191573/tree/v1
https://codeocean.com/capsule/3191573/tree/v1
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Figure 5.5: Shift identification with anomaly detection on Stanford MURA HAND
data - (left) anomaly score distributions of MedShift w CVAD ; (right) anomaly score
distributions of MedShift w fAnoGAN. Distributions are truncated on samples with
large anomaly scores for better visualization.

dataset [125] (identify melanoma in lesion images)) with other representative anomaly

detectors (DeepSVDD [127], GANomaly [4], etc.) evaluated in the meantime. More

experimental details can be found in [54, 56].

5.3.3 Experimental setup

We implement the pipeline using Pytorch 1.5.0, Python 3.7.3 and Cuda compilation

tools V10.0.130 on a machine with 4 NVIDIA RTX A6000 GPUs with 48 GB memory.

More details about the training of anomaly detectors and classifiers are introduced

below.

5.3.4 Results

In this section, we evaluate the performance of our pipeline on three objectives -

(i) shift data identification, (ii) shift data partition and (iii) shift data significance

evaluation.
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Figure 5.6: Shift identification with anomaly detection on CheXpert and MIMIC Frac-
ture data - (left) anomaly score distributions of MedShift w CVAD ; (right) anomaly
score distributions of MedShift w fAnoGAN. Distributions are truncated on samples
with large anomaly scores for better visualization.

Shift Identification with Anomaly Detection

In the process of identifying the shift data from the external source, each class of

the internal dataset will obtain its own anomaly detector. Figure 5.5 presents the

anomaly score distributions of the representative class from both MURA and Chest

X-ray. The X-axis represents the anomaly score and Y-axis stands for the number of

images that have anomaly scores in the corresponding range. In both cases, Emory

data is considered as internal data.

For MURA dataset, the anomaly score distribution of MedShift w CVAD for

XR HAND is shown in the left of Figure 5.5, with the blue curve for Emory XR HAND

and the orange distribution curve for Stanford XR HAND data. As can be observed,

the peaks of the two distributions are clearly separated, the Stanford data gener-

ally gets higher OOD scores than the internal Emory data. The difference between

the internal and external anomaly score distributions can be easily observed. The

closer and more similar the two distributions are, the less shift the external dataset

has. Comparatively, the internal and external anomaly score distributions of Med-

Shift w fAnoGAN heavily overlap with each other, indicating a limited discriminative

ability of detecting shift data.
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The similar phenomenon can also be seen in chest X-ray data when being tested

on two external datasets. For chest X-ray dataset, the OOD detection for Fracture

is shown in Figure 5.6, with the blue histogram and curve for internal Emory CXR

dataset, the orange for CheXpert dataset and the green for MIMIC dataset. The

differences in the distributions reflect how different the external chest X-ray data is

from the internal domain. Both CheXpert and MIMIC Fracture distributions show

significant shifts with the internal Emory CXR distribution, which indicates that

external Fracture shift data exists and can be identified by CVAD.

Figure 5.7: Elbow distortion curves for Stanford MURA HAND data - (left) Med-
Shift w CVAD results; and (right) MedShift w fAnoGAN results.

Shift data clustering results

In this section, we showcase the clustering results based on anomaly scores for both

MURA and chest X-ray datasets. Specifically, Stanford MURA dataset, CheXpert

and MIMIC data are clustered into different groups according to their anomaly scores

obtained in the previous step. The selection of group numbers is decided by the Elbow

distortion curves. Take MURA HAND class as an example, Figure 5.7 illustrates the

curve plots of MedShift w CVAD and MedShift w fAnoGAN. For both situations, we

pick 5 for group numbers.

The corresponding clustered examples can be seen in Figure 5.8. There are 5
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Figure 5.8: Clustering examples on Stanford MURA HAND data - (left) Med-
Shift w CVAD results; and (right) MedShift w fAnoGAN results. Each row repre-
sents one group with five example images. The groups are illustrated in ascending
order based on the anomaly scores from top to bottom. The corresponding anomaly
score is on top of each image.

Figure 5.9: MedShift w CVAD examples of clustering results - (left) clustering results
on CheXpert Fracture data; and (right) clustering results on MIMIC Fracture data.
Styles follow Figure 5.8.
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cluster groups in total, with each row representing one cluster. The groups are sorted

in ascending order, namely, the top row is with the lowest anomaly scores and the

bottom has the largest anomaly scores. For better understanding, their corresponding

scores are labelled on top of each example item. As can be observed, the hand data

of left figure gradually shows more and more variations in terms of image quality, po-

sitioning, and noise, as the anomaly score becomes large, especially when comparing

the group 1 (first row with lowest anomaly score) to group 5 (last row with highest

anomaly score). The variance exhibiting in the abnormal data indicates the exis-

tence of distribution shift in the external dataset. Nonetheless, the significance of the

detected under-represented/shift data samples in affecting deep learning models’ pre-

diction/classification remains to be explored. In comparison, the results of f-AnoGAN

fail to demonstrate a clear variation pattern for each cluster group. The mixture of

shift data across different groups hinders the detection of shift data identification.

Similarly, an example of chest X-ray Fracture is presented in the right of Fig-

ure 5.9. Following the same arrange order, the difference for each group can be clearly

captured by our model.

Classification results for shiftness evaluation

As introduced in Sec. 5.2.5, a multi-class classifier has to be trained on the internal

dataset to quantify the effect of removing the shiftness of external datasets for the

two targeted classification tasks. In this section, we report the classification train-

ing and testing performance on the internal dataset, and the performance on the

external datasets after dropping the highest anomaly score group gradually. The

external group-wise shiftness is thus revealed by the performance variation. An ev-

ident decrease suggests a significant distribution shift in the dropped group. For

comparison, we report the classification outcomes on external dataset based on the

clustering results obtained with both anomaly score computed with CVAD [54] and
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Table 5.2: MURA classification class-wise results with CVAD (left) and f-AnoGAN
(right). The best classification values are in bold for each method.

Dataset Metric HAND FOREARM SHOULDER FINGER ELBOW WRIST HUMERUS
Average

Macro Weighted

Emory test

#images 495 74 691 74 305 572 111 2,322
Precision 0.842 0.704 0.979 0.312 0.929 0.957 0.875 0.800 0.903
Recall 0.970 0.770 0.999 0.068 0.862 0.942 0.820 0.776 0.915
F1-score 0.901 0.735 0.989 0.111 0.895 0.950 0.847 0.775 0.905
AUC 0.960 0.880 0.995 0.531 0.926 0.964 0.907 0.984 0.992

Stanford TOP 5

#images 3,851 1,097 5,621 3,660 2,397 3,993 852 21,471
Precision 0.921 0.758 0.977 0.765 0.695 0.380 0.395 0.699 0.754
Recall 0.450 0.160 0.746 0.188 0.701 0.983 0.664 0.556 0.604
F1-score 0.605 0.264 0.846 0.301 0.698 0.548 0.496 0.537 0.594
AUC 0.721 0.578 0.870 0.588 0.831 0.808 0.811 0.902 0.915

Stanford TOP 4

#images 3,098 / 3,838 880 / 1,091 4,499 / 5,584 2,904 / 3,658 1,923 / 2,387 3,182 / 3,933 686 / 848 17,172 / 21,339
Precision 0.921 / 0.921 0.758 / 0.758 0.986 / 0.978 0.768 / 0.765 0.695 / 0.695 0.426 / 0.379 0.545 / 0.404 0.728 / 0.700 0.772 / 0.755
Recall 0.558 / 0.452 0.195 / 0.160 0.827 / 0.750 0.233 / 0.188 0.777 / 0.704 0.990 / 0.987 0.691 / 0.665 0.610 / 0.558 0.665 / 0.605
F1-score 0.695 / 0.606 0.311 / 0.265 0.899 / 0.849 0.358 / 0.302 0.734 / 0.700 0.596 / 0.548 0.609 / 0.503 0.600 / 0.539 0.654 / 0.596
AUC 0.774 / 0.722 0.596 / 0.579 0.911 / 0.872 0.609 / 0.588 0.867 / 0.832 0.843 / 0.811 0.833 / 0.812 0.938 / 0.903 0.949 / 0.916

Stanford TOP 3

#images 2,331 / 3,814 661 / 1,079 3,368 / 5,419 2,159 / 3,648 1,443 / 2,367 2,380 / 3,066 517 / 808 12,859 / 20,201
Precision 0.913 / 0.920 0.759 / 0.758 0.986 / 0.981 0.789 / 0.765 0.690 / 0.698 0.471 / 0.329 0.589 / 0.414 0.743 / 0.695 0.784 / 0.764
Recall 0.661 / 0.455 0.253 / 0.162 0.821 / 0.769 0.279 / 0.188 0.831 / 0.710 0.988 / 0.991 0.747 / 0.666 0.654 / 0.563 0.701 / 0.595
F1-score 0.767 / 0.609 0.379 / 0.267 0.896 / 0.862 0.413 / 0.302 0.754 / 0.704 0.638 / 0.494 0.659 / 0.511 0.644 / 0.535 0.692 / 0.593
AUC 0.823 / 0.723 0.624 / 0.580 0.908 / 0.882 0.632 / 0.588 0.891 / 0.834 0.867 / 0.814 0.862 / 0.813 0.953 / 0.905 0.961 / 0.916

Stanford TOP 2

#images 1,553 / 3,761 440 / 1,068 2,234 / 3,839 1,429 / 3,483 959 / 2,335 1,587 / 2,048 345 / 717 8,547 / 17,251
Precision 0.894 / 0.921 0.763 / 0.771 0.984 / 0.979 0.801 / 0.765 0.666 / 0.724 0.520 / 0.262 0.592 / 0.483 0.746 / 0.701 0.788 / 0.770
Recall 0.748 / 0.461 0.359 / 0.164 0.795 / 0.818 0.324 / 0.195 0.842 / 0.719 0.986 / 0.991 0.754 / 0.658 0.687 / 0.572 0.724 / 0.575
F1-score 0.815 / 0.614 0.488 / 0.270 0.879 / 0.891 0.461 / 0.311 0.744 / 0.722 0.681 / 0.414 0.663 / 0.557 0.676 / 0.540 0.717 / 0.582
AUC 0.864 / 0.725 0.677 / 0.580 0.895 / 0.907 0.654 / 0.590 0.894 / 0.838 0.889 / 0.808 0.866 / 0.814 0.963 / 0.904 0.968 / 0.908

Stanford TOP 1

#images 773 / 3,697 219 / 1,042 1,110 / 1,921 711 / 2,417 477 / 2,236 795 / 1,023 172 / 463 4,257 / 12,799
Precision 0.855 / 0.925 0.779 / 0.799 0.989 / 0.966 0.816 / 0.751 0.612 / 0.767 0.575 / 0.184 0.559 / 0.467 0.741 / 0.694 0.788 / 0.784
Recall 0.814 / 0.468 0.434 / 0.168 0.730 / 0.791 0.368 / 0.257 0.881 / 0.743 0.974 / 0.997 0.738 / 0.590 0.705 / 0.573 0.732 / 0.547
F1-score 0.834 / 0.622 0.557 / 0.278 0.840 / 0.869 0.508 / 0.382 0.722 / 0.755 0.723 / 0.310 0.637 / 0.521 0.689 / 0.534 0.726 / 0.580
AUC 0.892 / 0.726 0.714 / 0.582 0.863 / 0.893 0.676 / 0.618 0.905 / 0.848 0.904 / 0.806 0.857 / 0.782 0.969 / 0.909 0.971 / 0.907

f-AnoGAN [133] architectures. Their results are present with the style of CVAD’s/f-

AnoGAN’s.

Table. 5.2 shows the classification results for the MURA data, including the test

results of Emory MURA and evaluation on Stanford MURA groups. Both the class-

wise and average performances are reported, including Precision, Recall, F1-score and

AUC scores. As the classification is evaluated in the order of TOP k, TOP k-2, ...,

TOP 1 order, which is TOP 5, TOP 4, TOP 3, TOP 2, TOP 1 for our experiments,

meaning that we gradually drop the group that with the highest anomaly scores and

evaluate the classification performance on the remaining data. There are five groups

being clustered for each class. Therefore, the TOP 5 clusters constitute the whole

external dataset and the corresponding classification results for CVAD version and

f-AnoGAN version are the same. For simplicity, only one version is present (see

Table. 5.2 Row Stanford MURA TOP 5). The total number of images being

evaluated on is listed in the row #images for each class. The amount of data samples

in the dropped group is the number difference between the adjacent groups. Take

XR HAND for example, group 5 of MedShift w CVAD has 753 samples by calculating
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the difference of total image number of TOP 5 clusters (3851) and TOP 4 clusters

(3098), (i.e., 753 = 3851−3098) and group 5 of MedShift w f-AnoGAN has 13 samples

(13 = 3851−3838). As can be observed in the table, the classifier’s predictions become

more and more accurate as the groups are discarded gradually based on their anomaly

score order. Look into the AUC scores of XR HAND from TOP 5 to TOP 1, the

values of both CVAD and f-AnoGAN are growing, which means the removed group

contains data with certain shiftness and will affect the in-domain model’s ability.

The extent of shiftness can be inferred via the change of classification measurements

for a notable improvement indicates a severe shifting exists in the dropped group.

Although the same trend is noted for both CVAD and f-AnoGAN versions in general,

the CVAD version can get more increase in performance after expelling the most

anomalous group than the f-AnoGAN version, which demonstrates the effectiveness

of our MedShift framework in determining shift data among external datasets. We

report the classification performance on chest X-ray datasets in Table. 5.3.

Dataset quality measurement results

We report the Stanford MURA dataset quality in the top left of Figure 5.10 calcu-

lated via the OTDD metric (i.e., Eqn. 5.4 and Eqn. 5.5). We respectively evaluate the

quality for TOP 5, TOP 4, TOP 3, TOP 2, TOP 1 cases as indicated by the X-axis

values of the plots. To compare, we test our pipeline with both CVAD and f-AnoGAN

anomaly detection architectures. As can be seen, the distance between Stanford

MURA and Emory MURA datasets is decreasing when the anomalous groups with

shift data are removed gradually. Nevertheless, our CVAD version (in blue) shortens

the distance more and faster than the f-AnoGAN (in orange) version. The general

external dataset quality achieves the best when it is composed by the group with the

lowest anomaly scores, which follows the same conclusion as the average classification

performance in Table 5.2.
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For the reason that the OTDD method computes the distance values with label-

data pairs, it was not designed for multi-label datasets. To adapt for the chest X-ray

scenario, we report the class quality instead of the whole dataset. Due to the space

limitation, we randomly select 5 representative classes (Fracture, No Finding, Edema,

Consolidation, Pleural Other) and present the quality variations in Figure 5.10. To

compare, we show the two chest X-ray datasets (CheXpert and MIMIC) class-wise

quality obtained by both the CVAD and f-AnoGAN versions. Generally, the dis-

tances between the internal and external are shortened in a limited way with Med-

Shift w CVAD model, but the distance values are enlarged by the f-AnoGAN version.

Since the distance represents the dissimilarity between the evaluated dataset pair, an

increase of distance indicates a failure of identifying shift data in the external domain.

Here, the CVAD version shows better performance than the MedShift w f-AnoGAN

model.

Moreover, an increase of distance is also an indicator of stop sign for detecting

shift data of a well-performed shift identification model. From the anomaly score

distribution plots of Figure 5.10, it is clear that external MURA HAND has more

variance than the external chest X-ray Fracture data. Thus, shift data identification

is relatively difficult for the chest X-ray dataset, and the quality improvement is

limited when little shiftness exists in the external dataset. Depending on the quality

expectations, users can decide to remain the original Fracture class or remove one or

two top groups from Fracture.
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Figure 5.10: Dataset quality measurement results. From left to right, top to bottom,
there are Stanford MURA whole dataset’s quality, CheXpert and MIMIC Fracture,
No Finding, Consolidation, Edema and Pleural Effusion class quality. X-axis values
represent situations of the groups in use, and Y-axis values indicate the distance
between the internal and external datasets (the lower the better). Distance mean
and stdev values of ten rounds of evaluations are present in the plots.
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5.4 Conclusion

In this paper, we have designed an automated pipeline - MedShift, for medical dataset

curation based on anomaly score. Under-the-hood, MedShift identifies image data

distribution shift based on anomaly detection and unsupervised clustering to dis-

criminate the poor-quality, noisy and under-represented samples from the external

data in an automatic way. The anomaly detection architecture involves two sepa-

rate implementation phases - (1) internal training - time consuming and needs to

trained for each targeted class labels, and (2) test phase - quick, only forward pass

which needs minimal data pre-processing and cleaning from the external sites. Once

trained, the anomaly detectors should be able to identify unknown anomalous pat-

terns from an external dataset without ever seeing such any anomalous data examples

in training. This quality makes the proposed pipeline particularly suitable for medi-

cal image dataset curation since exchanging healthcare data among institutions and

manually identifying noisy or anomalous data are both extremely challenging in the

current healthcare situation.

5.5 Discussions and future works

Our pipeline is flexible towards the particular anomaly detector architectures. We

evaluated two use-cases - diagnosis from chest X-ray and classifying anatomical joints

from MURA and applied two different anomaly detector CVAD and fAnoGAN. Even

though our CVAD version efficiently shortens the data quality matrix (OTDD) faster

than f-AnoGAN and reaches convergence for the shift data removal by dropping lower

number of cases from external data, the targeted final classification performance stays

similar for both architectures.

Our experiments showed that being trained only on internal Emory datasets, deep

learning models classification accuracy is gradually rising on the external dataset af-
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ter removing the shift data items via MedShift and ultimately achieved performance

close to the internal data. The improvement of classification accuracy represent the

fact that the MedShift can identify relevant shift data that will degrade the perfor-

mance of an in-domain model and able to reproduce the internal performance on an

unseen external data. Moreover, the brief cluster exploration on the external dataset

showed that higher anomaly cluster groups contains more variations in terms of image

quality, positioning, noise, and the pipeline correctly identified the shift data. As an

immediate future study, we plan to conduct a reader study with expert radiologists

to interactively evaluate the proposed platform and quantify the performance based

on user-feedback matrix.

In it’s current state, the proposed pipeline MedShift can server for domain-specific

quality checks and derive powerful and actionable insights. The suggested workflow

will be beneficial in future non-shareable healthcare collaboration where the MedShift

pipeline will be setup as a browser-based service within the local firewall for automated

dataset curation with multi-class labels.

MedShift has been only validated on the medical image classification problem.

Similar pipeline can also be evoked for segmentation and detection. For multi-class

classification problem, the pipeline needs anomaly detectors trained for each class

which ultimately increase the training time and computational complexity. In future,

we are planing to incorporate novel proxy-based multiclasss similarity architecture for

anomaly detection. The dataset quality metrics have only been computed on MURA

and Chest Xray datasets. More evaluations need to be perform for generalizing these

quality measures.
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Chapter 6

Medical Image Retrieval with

Limited Supervision

6.1 Outlier-sensitive radiography retrieval

With the widespread adoption of radiology in diagnosis and treatment planning,

the amount of medical image data is rapidly increasing [67]. Fast and effective re-

trieval in large-scale medical image repositories has been demanding to support data

management, research and clinical applications [141]. One common way to retrieval

images is content-based, which has been widely researched and applied to the med-

ical field [153, 42, 31, 29]. For a given query image, a content-based image retrieval

(CBIR) system returns a ranked list of images from the database based on a similar-

ity measure between the query and retrieved images [41, 121]. The core idea behind

CBIR is to minimize the distance of an anchor image a to its positive counterparts

ps and maximize the distance to the corresponding negative images ns in the feature

space. Usually, the positive images are in the same class as the anchor image. How-
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Figure 6.1: (Left) Examples of intra-class variations. 1st column shows samples from
Stanford MURA HAND class and 2nd column presents CheXpertNo Finding class
data. (Right) Oscars learns the intra-class and inter-class similarity simultaneously.
Images with intra-class similarity p should be closer to the given image a than the
samples that show inter-class similarity nintra in the feature space.

ever, adopting this strategy can be problematic as it only considers the inter-class

variation. The assumption - as long as a and p are from the same class, they show

similar visual features - is not realistic as samples from one class often exhibit certain

intra-class variations. Noisy, under-represented data can exist, also called outliers.

This phenomenon is more common in radiology as images are often acquired via dif-

ferent equipment from different sources and varies based on acquisition protocols.

These variations, as shown in the left part of Figure 6.1, pose specific challenges in

the consumer domain and need to be recognized in assessing image similarity [5].

In this paper, we focus on relevant radiograph image retrieval in external datasets

which can contain lots of noisy data compared to the clean internal dataset. Such

a system will help to collect cleaner external image dataset with minimal human

effort and accelerate AI evaluation. To achieve the goal, we propose an Outlier-
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Sensitive Content-based rAdiologhy Retrieval System (OSCARS), which takes both

the intra-class and inter-class variations into consideration. To acquire the intra-class

variation information, we adopt the unsupervised anomaly detectors trained on the

internal dataset and utilize the assigned anomaly scores to the external dataset to split

each class into several bins, with each bin in a certain range regarding the anomaly

scores. Based on which, we construct the quadruplet data (a, p, nintra, ninter) with

an anchor image a, a positive image p from the same class and same bin, an intra-

class negative image nintra from the same class but different bins, and an inter-class

negative image ninter that is from a different class.

With the proposed quadruplet sampling strategy, we incorporate the intra-class

discriminative information into the training data and hence improve the retrieval of

sensitivity outlier-related queries after model training. All the images in a quadruplet

are fed into the feature extractor to learn their latent embeddings (ea, ep, enintra
, eninter

).

As illustrated in the right of Figure 6.1, we then learn the intra-class embedding sim-

ilarity to achieve (Sim(ea, ep) > Sim(ea, enintra
)) with an intra-class triplet loss Lintra

and the inter-class similarity for (Sim(ea, enintra
) > Sim(ea, eninter

)) with an inter-

class triplet loss Linter in a weighted way.

6.1.1 Contribution

Our summarized contributions are:

1. We introduce the task of outlier-sensitive image retrieval for noisy external med-

ical image dataset and propose an effective image retrieval system OSCARS

to enhance the relevance of outlier-related results.

2. We propose to acquire intra-class information of external datasets via anomaly

detectors trained unsupervised. By training on clean internal datasets, the

anomaly detectors assign each sample of the external dataset with a specific
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anomaly score. Based on which, we split each class into several bins with

different intra-class variations.

3. We sample both the intra-class and inter-class negative images to construct

quadruplets for intra-class and inter-class similarity learning.

4. We demonstrate the model effectiveness with two public representative radiogra-

phy datasets - Stanford Muscoloskeletal Radiography (MURA) [117] and CheX-

pert [68]. The code is available at https://github.com/XiaoyuanGuo/oscars.

Publication:

• Guo, Xiaoyuan, Jiali Duan, Saptarshi Purkayastha, Hari Trivedi, Judy Wawira

Gichoya, and Imon Banerjee. 2022. “OSCARS: An Outlier-Sensitive Content-

Based Radiography Retrieval System.” In Proceedings of the 2022 International

Conference on Multimedia Retrieval (ICMR ’22). Association for Computing

Machinery, New York, NY, USA, 11–18. https://doi.org/10.1145/3512527.3531425

6.1.2 Method

Given a clean internal dataset DI and a noisy external dataset DE, the external data

of class c can contain outliers visually different from the internal class. Therefore, a

conventional image retrieval system for the external dataset will be insufficient as it

merely treats all the samples from one class as the same without considering the intra-

class variations. Thus, the system will lack sensitivity to the outliers, undermining

the retrieval accuracy. Our objective is to train an image retrieval model that will

prioritize the images with both intra-class and inter-class dissimilarity during retrieval

ranking. Figure 6.2 summarizes the whole framework of our model. There are mainly

two steps involved. First, we design to learn intra-class information in an unsupervised

way (introduced in Sec. 6.1.2). Second, we propose to sample training data that are

with intra-class bin information and inter-class information (introduced in Sec. 6.1.2).

https://github.com/XiaoyuanGuo/oscars
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Figure 6.2: OSCARS architecture involves two main steps. Step1: train anomaly
detectors on the internal dataset for each class Ci

I ; learn clean in-distributions with
anomaly scores assigned to C

′i
I ; apply the trained anomaly detectors on each class

Ci
E of the external dataset and split the data into several bins C

′i
E according to the

anomaly scores. (Dark colors mean more distribution shifts.) Step2: generate quadru-
plets (a, p, nintra, ninter) by sampling the intra-class positive, negative and inter-class
negative simultaneously; learn the intra-class and inter-class similarity in feature space
with the intra-class triplet loss Lintra and inter-class triplet loss Linter.

With these steps, images with the same labels and similar contents are pulled together

by maintaining intra-class similarity.

Learning intra-class information

Due to the difficulties of collecting annotated data with intra-class information pro-

vided in the medical domain, the outlier-sensitivity research on medical images has

been delayed. To overcome the problem, we propose to generate intra-class labels au-
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tomatically inspired by a recent work - MedShift [55]. Given a clean internal dataset

DI , MedShift has suggested an approach to identify outliers for noisy external dataset

DE. Following the same steps of MedShift, we first obtain the internal distribution

information by training an unsupervised outlier detector named CVAD [54] for each

class on the same internal datasets used in [55]. Then, the trained anomaly detectors

are evaluated on the external datasets as they have learnt intra-class discriminative

features. Thus, each external data has its anomaly score, based on which we split

each class into B bins with the K-Means clustering techniques [95, 99]. B (5 in our

paper) is determined by the Elbow method [147]. The resulting bins are in different

anomaly score ranges. With the data from different bins, we get the intra-class labels.

Given that both the intra-class and inter-class labels are available, for each image a,

we randomly sample one intra-class positive image p, one intra-class negative sam-

ple nintra and one inter-class negative sample ninter accordingly, thus collecting the

quadruplets (a, p, nintra, ninter) for training.

Balancing the inter- and intra-class influence

With the sampled quadruplets data, we feed each of the image to a CNN-based feature

extractor to acquire latent embeddings (ea, ep, enintra
, eninter

). For simplicity, we adopt

the ResNet18 [58] pre-trained on ImageNet [37] as the network backbone. OSCARS

is designed to consider both the inter-class similarity and the intra-class similarity

at the same time, which brings the model advantages of acquiring the sensitivity of

intra-class outlier relevance during image retrieval. However, balancing the effect of

the two parts is a challenging problem. Too much weight on intra-class information

will distract the general retrieval accuracy of inter-class data. Therefore, we design

an intra-class triplet margin loss and an inter-class triplet margin loss to optimize the

model architecture. To balance the influence of intra-class and intra-class information

on final ranking, we adopt a weighted loss formulated as:
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L = λLintra(ea, ep, enintra
) + (1 − λ)Linter(ea, enintra

, eninter
)

= λ(max{d(ea, ep) − d(ea, enintra
) + Mintra, 0})

+ (1 − λ)(max{d(ea, enintra
) − d(ea, eninter

) + Minter, 0})

(6.1)

where d(xi, yi) = ∥xi − yi∥2. λ, Mintra and Minter are set as 0.05, 1 and 2 in our

experiments respectively.

When we have a query image unseen during training, we first acquire the query

representation with the trained image feature backbone and then compute the cosine

similarity between the representative features of the query image and dataset images.

Images are ranked based on the similarity scores in the descending order.

6.1.3 Experiments

We have evaluated our approach on two publicly available large-scale radiograph im-

age datasets. The first is Stanford MURA dataset, a large dataset of bone X-rays,

which contains seven classes - HAND, FORARM, FIGER, SHOULDER, ELBOW,

WRIST, HUMERUS. The second is CheXpert dataset, which in total has 14 classes

- No Finding, Enlarged Cardiomediastinum, Cardiomegaly, Lung Lesion, Lung Opac-

ity, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion,

Pleural Other, Fracture, Support Devices. As the chest x-ray images are with two

views - frontal and lateral. We here only use frontal view and leave the lateral view

for future studies. See more details in the supplementary materials.

Evaluation Metrics: For the retrieval task, we report the retrieval recall at rank K

(R@K, K ∈ {1, 5, 10, 50, 100}), precision at rank K (P@K, K ∈ {1, 5, 10, 50, 100}),

outlier sensitivity (S@K, K ∈ {1, 5, 10, 50, 100}). The metric recall is the percentage

of relevant images retrieved over the total number of retrieved images, defined as

recall = NR

K
where R represents the relevant images retrieved. The metric precision

is assigned based on the existence of the same labels between the query image and
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the retrieved images. If δ(·) ∈ {0, 1} is an indicator function, the precision is defined

as precision =
∑K

i=1 δ(R
i>0)

K
. Additionally, we evaluate the outlier sensitivity by calcu-

lating the anomaly score difference with sensitivity =
∑NR

i=1
|Ai

R−Aq |
NR

, where A means

anomaly score. We scale the anomaly scores of MURA dataset into [0,1] with the

sigmoid function due to the large variations of its anomaly scores.

Implementation Details: The pipelines are developed using Pytorch 1.9.0, Python

3.7.3 and Cuda compilation tools V11.4 on a machine with 4 NVIDIA Quadro RTX

A6000 GPUs with 48GB memory. The training for all the models is run for 50 epochs

with a start learning rate 0.001 and a SGD optimizer.

Figure 6.3: Hand results, left is the query image, right shows retrieval results. Green
boxes mean both intra- and inter-class correct; blue boxes are for inter-class correct
predictions. Each retrieval image has its label on top of itself. For correct predictions,
we also put the anomaly scores on them. Closer anomaly scores mean more similarity.

Search Results As a representative image retrieval method with triplet data in

training, we select DeepRank as our baseline. State-of-the-art CBIR approaches

including FastAP, MultiSimilarity, CircleLoss and SupCon are used to compare the

model performance. Notably, we keep the feature extractor consistent for all the
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Table 6.1: Quantitative performance on Stanford MURA and CheXpert datasets .
Bold indicates the best.

Method
MURA CheXpert

R@1↑ R@5↑ R@10↑ R@50↑ R@100↑ P@1↑ P@5↑ P@10↑ P@50↑ P@100↑ R@1↑ R@5↑ R@10↑ R@50↑ R@100↑ P@1↑ P@5↑ P@10↑ P@50↑ P@100↑
DeepRank [153] 0.912 0.914 0.912 0.906 0.903 0.912 0.964 0.972 0.984 0.988 0.734 0.694 0.716 0.721 0.442 0.734 0.911 0.961 1.000 1.000
FastAP [20] 0.927 0.930 0.931 0.932 0.933 0.927 0.956 0.961 0.973 0.977 0.734 0.742 0.733 0.716 0.710 0.734 0.943 0.968 1.000 1.000
MultiSimilarity [157] 0.923 0.921 0.919 0.915 0.913 0.923 0.955 0.968 0.977 0.980 0.695 0.680 0.677 0.676 0.682 0.695 0.957 0.975 1.000 1.000
CircleLoss[144] 0.929 0.932 0.933 0.934 0.934 0.929 0.960 0.964 0.979 0.985 0.727 0.703 0.718 0.717 0.726 0.727 0.936 0.968 1.000 1.000
SupCon [71] 0.930 0.933 0.936 0.938 0.937 0.930 0.964 0.971 0.981 0.985 0.776 0.730 0.720 0.734 0.726 0.776 0.936 0.950 1.000 1.000
OSCARS (ours) 0.931 0.922 0.920 0.913 0.910 0.931 0.965 0.974 0.986 0.991 0.787 0.763 0.747 0.745 0.743 0.787 0.908 0.950 1.000 1.000

methods to ensure fair comparisons.

Quantitative Results: Table 6.1 presents the recall and precision performance

for both Stanford MURA and CheXpert datasets respectively. Since the data in

CheXpert can have multiple labels, we calculate the correct hit with the strategy

- loose match, which means that for a query chest X-ray with multiple labels, a

retrieval image is relevant as long as it has one label matched. Compared to the

baseline DeepRank, Oscars can enhance the recall and precision performances on

both datasets and achieve the best recall at 1 and precision at 1. In general, SupCon

has the highest recall for MURA dataset. Nonetheless, Oscars achieves the best

precision for MURA dataset and recall for CheXpert. Additionally, we report the

sensitivity results in the supplementary materials.

Qualitative Results: Figure 6.3 shows an example of a HAND query image in

MURA dataset. The corresponding retrieval results including ours are present in

different rows. As can be seen, although many methods can achieve high recall and

precision (see Table 6.1), they fail to distinguish the intra-class variations. Especially,

MultiSimilarity and SupCon exhibit little sensitivity to the noisy query. Compara-

tively, our method can prioritize intra-class similarity and rank the images with sim-

ilar anomaly semantics ahead. Please refer to the supplementary materials for more

results.

Impact of Lambda: We also explore the impacts of applying different λ values to

the loss function (Eqn. 6.1). A good balance between the intra-class and inter-class

information will enable the retrieval system to acquire both accurate inter-class and

outlier-sensitive intra-class results. Figure 6.4 illustrates the performance variations
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Figure 6.4: Effects with different lambda values on different datasets.

in different datasets under different settings. λ decides how the model learns to weight

the intra-class and inter-class information simultaneously. We observe that too much

weight on the intra-class similarity will degrade the inter-class similarity predictions.

Experiments suggest 0.05 can work well.

6.1.4 Conclusion

In this work, we propose an outlier-sensitive radiography image retrieval system OS-

CARS, which goes beyond retrieving images with the most inter-class similarity but

also inspects the intra-class similarity implicitly when query images show certain vari-

ations. Utilizing the automatic learning of clean internal distribution, the intra-class

variations of external sources are captured and used to generate intra-class labels by

splitting the class into several groups. Feeding the sampled quadruplets consisting of

both the intra, inter-class positive and negative samples to the image feature learner,

a weighted margin loss is adopted to optimize the retrieval network. The resulting

retrieval system is sensitive to outlier-related queries as it has learnt to rank the

retrieved results based on both intra-class and inter-class similarities. This outlier-

sensitive image retrieval approach provides clinical users the access to receive more

relevant medical images and allow radiologists to process and analyze radiography

images more effectively.
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6.2 Multi-label medical image retrieval

Multi-label image retrieval is a challenging problem in the medical area. First, com-

pared to natural images, labels in the medical domain exhibit higher class-imbalance

and much nuanced variations. Second, pair-based sampling for positives and negatives

during similarity optimization are ambiguous in the multi-label setting, as samples

with the same set of labels are limited. To address the aforementioned challenges, we

propose a proxy-based multi-class similarity (PMS) framework, which compares and

contrasts samples by comparing their similarities with the discovered proxies. In this

way, samples of different sets of label attributes can be utilized and compared indi-

rectly, without the need for complicated sampling. PMS learns a class-wise feature

decomposition and maintains a memory bank for positive features from each class.

The memory bank keeps track of the latest features, used to compute the class prox-

ies. We compare samples based on their similarity distributions against the proxies,

which provide a more stable mean against noise. We benchmark over 10 popular met-

ric learning baselines on medical datasets and experiments show consistent stability

of our approach under both exact and non-exact match settings.

In light of recent progress of AI applications in medical image domain, building

large data collection for training and testing has become a necessity among insti-

tutions and hospitals. One commonly-desired application is content based image

retrieval (CBIR). Given a query image, the goal is to retrieve a ranked list of images

from the database based on a certain similarity measure [41]. An efficient image re-

trieval system can help accelerate image annotations, disease diagnosis and history

queries, etc.

In this paper, we address the challenges by proposing a Proxy-based Multi-

Similarity (PMS) framework and benchmark against representative metric learning

approaches on two commonly-used medical datasets MIMIC-CXR [69] and CheX-

pert [68]. Figure 6.5 explains the core idea of our method. Instead of comparing sam-
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Figure 6.5: We propose to compare multi-label samples via their similarity distri-
butions with respect to the proxies, produced by the memory bank. Each proxy is
updated based on a set of latest activated-class features from each sample, designed
to be robust to noise.

ples directly, where each sample exhibits a combination of multi-labels, we compare

them indirectly by comparing their similarity distributions against the class proxies.

In other words, we decompose multi-label representations into a linear combination

of single-label representations via proxies. These proxies can be interpreted as class

centroids and we enforce the decomposed feature representations corresponding to

the class to be close to its centroid while far from other centroids. We dynamically

adjust the class proxies based on the votings in the memory bank and update the

memory bank in a First-In-First-Out (FIFO) manner. Our approach jointly optimizes

the feature backbone, feature decomposition and feature-centroid metric in an unified
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framework as in Figure 6.6. During inference, we fix the memory bank while using

the computed proxies to compute multi-class similarity.

We evaluate our approach against competitive baselines under full (exact-match: a

hit requires matching all class labels) and partial (non-exact match: at least one label

matches) settings on two benchmarks. Our approach shows a significant margin on

the MIMIC partial and CheXpert full and is more stable compared to other methods.

6.2.1 Contribution

The core contributions of this work are summarized as follows,

1. We propose an unique solution for multi-label medical image retrieval, by ad-

dressing the complexity of label imbalance and class variations (Section 6.2.2).

2. We propose a proxy-based multi-class similarity metric (PMS), where multi-

label samples are compared based on their similarity distributions against the

proxies (Section 6.2.2). This obviates the need for complicated positive/negative

sampling, as pairs with the same set of labels are limited.

3. We benchmark over 10 popular metric learning baselines, both real-valued and

hash-based, on two common medical datasets (Section 6.2.3).

Publication:

• Guo, Xiaoyuan, Jiali Duan, Judy Gichoya, Hari Trivedi, Saptarshi Purkayastha,

Ashish Sharma, and Imon Banerjee. “Multi-Label Medical Image Retrieval Via

Learning Multi-Class Similarity.” AI in Medicine, 2022, (under review).
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Figure 6.6: We train PMS via two stages. In the first stage, we warm up the memory
bank by queuing in the decomposed features corresponding to the activated-classes
from each sample (Section 6.2.2). The memory bank in turn votes class proxies (Sec-
tion 6.2.2) which will be used in the second stage: proxy-based multi-class similarity
learning (Section 6.2.2). During inference, the proxies are used to compute multi-class
similarity between the image and candidates for retrieval (Section 6.2.2).

6.2.2 Method

Framework Overview

Figure 6.6 illustrates the architecture of PMS, which mainly consists of a feature

backbone, a multi-branch feature decomposition and a memory bank. In experiments,

we use ResNet18 [163] as our representation learning backbone for fair comparison

with other baselines. However, the feature backbone is model agnostic, thus any

deep learning architecture can be used for feature extraction. The proposed loss

operates on features from the penultimate layer of the network and discriminates

them using the class-specific classification heads. We train PMS into two phases -

(i) We warm-up the model for several epochs by optimizing multi-label classification

loss. In this stage, decomposed positive features will be used to queue up the memory

bank for producing meaningful class proxies. Let X = {xi}Ni=1 and Y = {y1, y2, ..., yk}

denote the images and the associated label space respectively, k is the total number

of classes. Each xi is associated with a subset of labels yi ∈ Y . For decomposed
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class embeddings e = {e1, e2, ..., ek−1, ek}, only embeddings corresponding to positive

classes (i.e., yi = 1) will be stored into the memory bank. (ii) The proxies will be

used to update the feature representations as introduced in Section 6.2.2.

Proxy Computation

Memory bank update: We keep a record of latest activated-class features from

each sample in a memory bank B. Suppose the dataset has k classes in total, for each

class i, we cache M samples. Therefore, a memory bank is a k ×M matrix. The

memory bank is only updated during the first stage training in a First-In-First-Out

(FIFO) manner. When the model is stable and the validation loss stops decreasing,

the memory bank will stop updating and be applied to vote class-wise centers for

usage in the second stage.

Figure 6.7: Multi-class similarity calculation.

Classwise voted center (proxy) computation: After the first stage, k center

embeddings {c1, c2, ..., ck−1, ck} are computed via calculating the mean of all the class-

wise representations stored in the memory bank. For one class i, the voted center is

calculated via ci =
∑M

j=1 Bi,j

M
. The centers will be used as proxy anchors to optimize
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the classwise feature compactness.

Proxy-based Multi-class Similarity Learning

Although a multi-branch classifier is able to learn the optimal decision boundary in

the feature space to classify inputs into different classes, the positive representation

compactness of each class is not optimized. To enhance the discriminative ability

of classwise negative samples, we propose to optimize the mutli-class similarity ob-

jective by maximizing the cosine similarity between the positive features and the

corresponding classwise proxy, and simultaneously maximizing the dissimilarity be-

tween the negatives and the proxy with a certain margin. Epos
i and Eneg

i are for the

total classwise positives and negatives for class i. After the warm-up, we compute

the latent class-wise representation learning via the proxy-based multi-class similar-

ity objective defined as Lpms = 1
k
(Lpos

pms + Lneg
pms), where Lpos

pms and Lneg
pms are defined in

Eqn. 6.2 and Eqn. 6.3 respectively.

Lpos
pms =

k∑
i=1

∑
(1 − τi)(1 −COS(ci, E

pos
i ))

NEpos
i

(6.2)

Lneg
pms =

k∑
i=1

∑
τi| − 1 −COS(ci, E

neg
i )|

NEneg
i

(6.3)

where COS(a, b) = aT b/(||a||2||b||2) is the cosine similarity, and τ is the imbalance

ratio vector, which records the imbalance ratio for each class. As introduced in

Sec. 6.2.2, given a multi-label dataset which has N samples, the total number of class

i’s positives Npos
i and negatives Nneg

i equals N , namely, N = Npos
i + Nneg

i . The

occurrence of different classes can be highly imbalanced. To handle the challenge, we

weight the PMS learning for each class with the imbalance ratio τi = Npos
i /N . The

reason that we use cosine similarity to optimize the representation learning instead of

euclidean distance lies in the controllable value range. As cosine similarity naturally

scales the output into [-1, 1], it can avoid dealing with negative values during the
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optimization. During the warm-up stage, we optimize the classification loss with the

definition Lcls =
∑k

i=1BCE(Ŷi, Yi); in the second stage, we incorporate the PMS loss

and thus the overall loss is defined as Loverall = λLcls + (1 − λ)Lpms.

Multi-class Similarity for Inference

To get more relevant images, we suggest a multi-class similarity to rank the retrieved

images. Figure 6.7 illustrates the computation process. Given a query image q, we first

obtain its class-wise representations Eq = {eq1, e
q
2, ..., e

q
k} and class-wise probability

P q = {pq1, p
q
2, ..., p

q
k} predicted by the classifier. Based on the proxy anchors C =

{c1, c2, ..., ck}, we then calculate the classwise cosine similarity Sq = {sq1, s
q
2, ..., s

q
k}

following the Eqn. 6.4:

sqi = COS(ci, e
q
i ) (6.4)

Therefore, for a candidate image t in the database, we follow the same procedure to

obtain its similarity vector St. With the similarity values of both the query image and

candidate image to the same class center anchors available, the overall dissimilarity

value is calculated via Eqn. 6.5:

DS =
k∑

i=1

pqi |s
q
i − sti| (6.5)

A low dissimilarity value indicates high similarity between the query image and the

candidate image. For convenience, we use weighted PMS to represent the foregoing

defined DS in the following sections, and use unweighted PMS for comparison by only

computing the dissimilarity as DS =
∑k

i=1 |s
q
i −sti|, without the class-wise probability

involved.
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Figure 6.8: Chest X-ray examples from MIMIC dataset.

6.2.3 Experiments

Datasets

We experimented on the two public Chest Radiograph(CXR) dataset - MIMIC-CXR-

2.0.0 [69] datasets (227,835 studies, MIMIC for short) and CheXpert [68] (114,526

frontal-view training images, 197 frontal-view test images). We split the MIMIC-CXR

into training and validataion datasets with the ratio of 8:2. The chest X-ray data in

both datasets has 14 classes - No Finding (NF), Enlarged Cardiomediastinum (EC),

Cardiomegaly (CM), Lung Lesion (LL), Lung Opacity (LO), Edema (EM), Con-

solidation (CD), Pneumonia (PN), Atelectasis (AT), Pneumothorax (PX), Pleural

Effusion (PE), Pleural Other (PO), Fracture (FT), Support Devices (SD). Examples

from MIMIC dataset can be seen in Fig. 6.8. To unify the training pipelines, we resize

all the chest X-rays into size of 224 × 224 × 3.

Comparative Baselines

For classification, we compare the performance with the standard binary cross en-

tropy loss while keeping the same backbone architecture. For image retrieval, we

compare our approach with 10 SOTA image retrieval methods - including 6 deep

metric learning representatives - DeepRank [153], FastAP [20], MultiSimilarity [157],
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CircleLoss[144], ProxyAnchor [72], SupCon [71], and 4 deep hashing representatives

- DPSH [82], DTSH [155], CSQ [166] and DBDH [177]. For fair comparison, we use

the same backbone to extract features and encode the representations into 32-bits for

deep hashing approaches.

Experimental Setup

We set d = 512, M = 1000 and fix λ to 0.25. For PMS model training, the initial

learning rate is set as 1e-3, with the pretrained weights (on ImageNet [37]) to initial-

ize the backbone, we warm up the multi-branch classifier with 5 epochs, and then

optimize the classification objective and the discriminative representation learning

objective with 10 epochs. We implement all the pipelines with Pytorch with 4 GPUs.

Image Retrieval Performance

The voted class-wise centers function as proxy anchors, and based on which, we per-

form content-based image retrieval via calculating the weighted total dissimilarity

with Eqn. 6.4. A small distance indicates more closeness. By ranking the distances in

ascending order, we get the retrieved results and calculate the metrics by considering

top K results (K ∈ {1, 5, 10, 50}). For quantitative comparison, we report the preci-

sion at K (P@K). Although our paper focuses on exact match (a.k.a., full match) for

multi-label image retrieval, we present both the full match and partial match perfor-

mance in Tab. 6.2. Partial match means that for a query image with multiple labels,

a retrieval image is relevant if it shares at least one same label as the query data.

Table 6.2 shows image retrieval performances on both MIMIC [69] and CheX-

pert [68] datasets, with MIMIC full for full match results for MIMIC dataset. Others

follow the same name style. We present the deep metric learning approaches first and

then deep hashing algorithms. For MIMIC full match, deep hash approaches CSQ and

DBDH can reach very high precision for top 1 retrieval and exceed other algorithms
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clearly. But the advantage fails to remain when considering more retrieval candidates

and the performance of them drops significantly. In comparison, deep metric learning

methods can output stable predictions for different numbers of retrieval candidates.

Nonetheless, PMS (both the unweighted and weighted versions) outperforms others

for P@5, P@10 and P@50. Interestingly, our model PMS maintains its advantages

for MIMIC partial match and achieves the best over all the metrics. It is notable that

full match performance on CheXpert is very low, the possible reason behind this is

the noisy annotations. It also indicates that exact match retrieval for CheXpert is

relatively challenging. Even so, PMS gets the best full match performance compared

to all the other models while exhibiting satisfying partial match results.

To demonstrate the effectiveness of applying the class-wise probabilities to dissim-

ilarity calculation, we present both the unweighted PMS and weighted PMS results at

the bottom of Table 1. As can be observed, the weighted PMS generally surpasses the

unweighted version on both the MIMIC and CheXpert dataset. The performance im-

provement shows the classification probability can be an indicator of the importance

for the specific class, and eventually contributing to the retrieval accuracy.

Table 6.2: Image retrieval performance on MIMIC-CXR and CheXpert datasets .
Bold indicates the best.

Method
MIMIC full MIMIC partial CheXpert full CheXpert partial

P@1 P@5 P@10 P@50 P@1 P@5 P@10 P@50 P@1 P@5 P@10 P@50 P@1 P@5 P@10 P@50
DeepRank [153] 21.2 22.5 23.0 23.1 49.6 52.0 52.9 53.5 1.0 2.3 1.6 1.2 73.4 69.3 71.6 72.1
FastAP [20] 20.1 22.7 22.6 23.0 53.1 53.6 53.2 53.4 0.7 0.7 1.2 1.1 73.4 74.2 73.3 71.5
MultiSimilarity [157] 22.9 22.5 22.7 23.1 53.7 53.8 53.7 54.0 0.4 1.1 1.1 1.1 69.5 68.0 67.6 67.5
CircleLoss[144] 22.1 22.9 23.9 23.3 53.1 53.5 54.9 53.4 0.0 0.0 0.2 0.6 72.6 70.2 71.8 71.7
ProxyAnchor [72] 22.3 22.9 23.1 23.2 55.9 56.2 56.9 57.0 0.7 1.2 1.3 1.0 73.7 72.3 72.0 71.8
SupCon [71] 23.4 23.4 23.4 23.3 54.6 53.8 53.7 53.5 2.8 1.8 1.6 1.9 77.6 72.9 71.9 73.4
DPSH 32bits [82] 6.1 6.9 6.7 6.8 14.4 14.7 14.6 14.8 0.5 0.6 0.5 0.4 11.7 16.8 16.8 16.8
DTSH 32bits [155] 6.5 17.0 10.8 7.8 12.3 27.9 21.9 17.5 5.1 5.7 5.9 6.0 10.2 10.3 10.6 9.9
CSQ 32bits [166] 25.9 6.1 6.3 2.8 42.9 24.0 24.3 20.5 2.0 0.9 0.7 0.6 22.3 21.5 20.9 22.7
DBDH 32bits [177] 32.2 13.6 10.6 12.4 35.8 34.6 30.7 33.8 0.0 5.4 3.2 2.0 72.5 48.1 55.7 62.1
Unweighted PMS(ours) 21.9 23.7 24.3 23.2 57.0 59.2 59.5 59.3 8.6 9.0 9.1 8.5 73.4 73.8 73.0 71.9
Weighted PMS (ours) 25.8 24.2 24.3 23.7 63.7 60.1 60.9 60.0 10.2 9.1 9.0 8.2 73.1 74.0 73.9 72.8

Classification Performance

Since the metric learning part of PMS compacts the class-wise latent space and forces

the negatives to be distant, jointly optimizing the classification objective with this
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metric can improve the classification to a certain extent. Thus, we compare the

classification AUC score for each class considering with and without the metric learn-

ing. Table 6.3 reports the class-wise AUC score for the classification tasks on both

MIMIC and CheXpert datasets. The class names are in short abbreviation to save

space. As can be seen, the general accuracy for classifying the 14 distinct classes for

both MIMIC and CheXpert has increased.

Table 6.3: Classification AUC performance for each class for MIMIC-CXR and CheX-
pert datasets.

Dataset Methods NF EC CM LL LO EM CD PN AT PX PE PO FT SD Micro Macro Weighted

MIMIC
Baseline 77.5 50.0 60.6 50.2 51.8 59.4 50.0 51.2 64.6 57.9 81.3 50.0 50.0 80.0 67.8 59.6 66.0

PMS 77.2 50.0 62.9 50.0 56.7 70.9 50.0 52.0 58.6 51.5 77.9 50.0 50.0 79.9 68.2 59.8 66.4

CheXpert
Baseline 65.3 51.3 62.1 50.0 69.7 75.3 50.0 50.0 50.0 63.1 82.1 50.0 54.6 75.5 71.9 60.7 67.7

PMS 71.6 52.3 63.4 50.0 61.8 69.2 52.0 51.7 53.4 64.4 81.9 50.0 51.9 77.7 70.5 60.9 67.5

6.2.4 Conclusion

Multi-label medical image retrieval upholds the promise to empower a variety of

applications such as image annotations, disease diagnosis and history queries etc. The

challenges reside in the gap between natural domain and medical domain, in terms of

the imbalance of label combinations and the nuance of variations in medical datasets.

In this paper, we bridge this gap by designing a proxy-based multi-class similarity

metric, which compares and contrasts samples based on their similarity distributions

with respect to the class proxies. We benchmark over 10 popular real-valued and

hash-bashed metric learning methods on two medical datasets. Experiments show

the effectiveness of our approach under both exact and non-exact settings across two

common medical datasets.

6.3 Discussions and future works

In this chapter, we have investigated medical image retrieval under limited supervi-

sion and addressed outlier-sensitive image retrieval and multi-label radiology image
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retrieval problems. Nonetheless, our outlier-sensitive image retrieval mainly works on

noisy external medical image datasets, requiring a clean internal dataset as the dataset

quality standard. Moreover, our method can perform well for dataset that shows clear

intra- and inter-class variations, and may fail when facing classes that share heavy

similarities. Different from the outlier-sensitive image retrieval, our multi-label med-

ical image retrieval approach focuses on learning the similarities of different samples

by considering all the classes the dataset has. Although our model outputs decent

results, there is still a big gap compared to the single-label image retrieval perfor-

mance. We would like to design more effective models in the future that can capture

multi-label similarities and retrieve the images efficiently.
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Chapter 7
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Chapter 8

Conclusion and Future works

To summarize, this thesis has focused on designing and applying deep learning meth-

ods to solve various medical image tasks with limited supervision situation. Specif-

ically, we have addressed problems under no supervision, weak supervision, limited

supervision and collecting more supervisions, respectively. For no supervision, we

have worked on nuclei segmentation and designed a classical segmentation method

to avoid the necessity of annotations; and based on the segmentation algorithm, we

have generated weak annotations for liver steatosis data to facilitate the application

of deep learning methods. For weak supervision, there are two main tasks involved

- BAC segmentation and outlier-sensitive image retrieval. Facing the weak and lim-

ited supervision, we have proposed a lightweight model for BAC segmentation and

five quantification metrics to measure the relevance between predictions and ground-

truth masks, which can quantify model performance more accurately instead of di-

rectly evaluating on pixel-level segmentation; for image retrieval, we have generated

pseudo labels and assigned a small weight during optimization for learning intra-class

variations, which enables the model to learn outlier-sensitive knowledge without af-

fecting the normal image retrieval. For limited supervision, we have explored the

OOD detection task. Due to the inaccessibility of all possible OOD categories, we
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designed unsupervised anomaly detection approaches following the one-vs-rest train-

ing procedure and verified the effectiveness on the several medical datasets. For more

supervision data collection, we have proposed a unified automated pipeline to detect

shift data among external datasets based on the self-supervised learning on a clean

internal dataset. This pipeline can provide domain knowledge without sharing data

across different institutions, which can be utilized widely. Generally speaking, the

thesis conducts research on different medical tasks under different supervision scenar-

ios and primarily addresses the problems from model design and algorithm efficiency

perspective.

Nonetheless, there are still more complicated scenarios with different image modal-

ities (e.g., Magnetic Resonance Imaging (MRI) images, 3D medical images, etc.) in

real life, which are worthwhile more efforts to investigate. Specifically, the anomaly

detection for MRI images, which is a more challenging task as the modality is much

more noisy than the others. Besides, the algorithms we have adopted are mainly

supervised and unsupervised learning. In the future, we can exploit semi-supervised

learning, few-shot learning, meta learning techniques to address more challenging

medical image tasks.
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