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Abstract

Nonnegative Matrix Factorization for Music - Tuning the NMF Algorithm with
Regularization

By Jonathan Valyou

The mathematics behind music is a work of art in itself. Mathematicians have
been utilizing mathematical tools to analyze music for decades. One such tool is
Nonnegative Matrix Factorization (NMF) which has been used to decompose an audio
signal into fundamental components in a source separation application. The NMF
algorithm in a musical interpretation takes a spectral object known as a spectrogram
represented by a matrix and separates the spectrogram into a two nonnegative sparse
matrix product where one matrix takes temporal information of the sources, and the
other matrix gives the frequency information of the sources. While the basic NMF
algorithm excels at handling small in complexity problems with little noise, it fails to
successfully separate the sources for problems with many sources or bad-quality audio
data. One solution to this limitation is the implementation of regularization into the
NMF algorithm. Regularization aims to induce qualities into our matrix factorization
such as promoting sparsity or smoothing temporal readings that will improve the
source separation accuracy. In this paper, we hope to introduce the simple NMF
algorithm, display the source separation application of NMF, and demonstrate the
effects of a regularized NMF algorithm.
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Chapter 1

Introduction

Nonnegative Matrix Factorization (NMF) is an algorithm that aims to achieve the

notable data science task of feature extraction and separation for nonnegative infor-

mation. As a diverse array of disciplines are constrained to nonnegative data, this

factorization method has proven to be useful in its application across a spectrum of

contexts including learned image representations and topic modeling via text mining

[10], spatial resolution of astronomical spectra [6], and liquid chromatography/mass

spectrometry [28].

In this thesis, we explore the application of NMF in source separation of acoustic

data, specifically music. Source separation is the process of dividing up an object or

data set into distinct groupings. In terms of music, we are trying to cluster audio

data into groups based on their pitches and/or instrumentation. This is an important

topic to study because it might be hard to hear everything in a piece simply through

the human ear. While it is easy to pick out the notes and instrumental voices in

simple examples, music can become very complicated when given a piece with several

instruments and these instruments each are playing a wide range of notes throughout

the arrangement making it more difficult for the listener to separate the instruments

and pitches within the audio. Source separation allows us to break down the compli-
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cated pieces into simpler lines for instrumentation separation or into simple notes for

pitch separation. This is where NMF can play a critical role by making the source

separation of a complex piece a much easier process.

The goal of NMF mathematically is to approximate X ≈ WH where X is a

nonnegative matrix of size m×n, W is a nonnegative matrix of size m× r, and H is

a nonnegative matrix of size r×n. The given inputs for NMF are X, a set number of

basis vectors considered rank r, and some measurement of distance for minimizing the

distance between our given matrix X and the product of our approximate factorization

WH. This method should yield an approximate factorization of X in the form of

WH. We now have the following optimization problem:

min
W,H

D(X,WH) s. t. W ∈ Rm×r
+ ,H ∈ Rr×n

+ (1.1)

Due to the method’s representation of all of the data points through a set of linear

combinations of basis vectors that is determined by the rank r, NMF is considered a

linear dimensionality reduction method. Additionally, the reason for restricting the

matrix input and outputs to be nonnegative is for both the mathematical formulation

of the methodology as well as the units of measure in applications driven by this

restriction. For example, in this project, we are focusing on frequencies and time

which are nonnegative measurement tools.

Academics unfamiliar with NMF may question why the matrix approximation is

WH instead of the typically seen WH> in factorization methods. WH is perfectly

fine for a factorization as long as the columns of W and the rows of H are equivalent

and in this case equal to the matrix rank, or number of sources. By our definition in

Equation (1.1), this factorization should work just fine while maintaining the rules of

matrix multiplication such that X ≈WH.

Additionally, it is worth noting why NMF is preferred for this music analysis
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problem as opposed to Singular Value Decomposition (SVD) which is likewise able

to extract meaningful insights through dimensionality reduction. While the SVD is

almost always a useful factorization, it is not guaranteed to yield positive entries

thus making it ineffective in extracting data points corresponding to nonnegative

measurements involved in music. Additionally, the SVD promotes orthogonality in

order to extract eigenvalues/eigenvectors. This promotion often causes a lack of

sparsity making visual interpretations of the matrices much more difficult. Meanwhile,

NMF as discussed previously does have these positive entry restrictions which means

its matrix decomposition provides much more useful information in the context of

source separation. In contrast to SVD, NMF encourages sparsity through a parts-of-

a-whole feature separation. This allows the identification and interpretation of the

features of the data through visual matrix representations much easier.

In this paper, we show the effectiveness of utilizing NMF for audio source sepa-

ration in music. Additionally, we demonstrate that source separation with NMF can

be challenging when ”noise” is present in the audio data and present a regularized

NMF algorithm that is more robust to noisy data. The thesis is organized as follows,

we give a brief overview of the NMF literature, including common algorithms and

applications in Section 2. Then, we set up a crucial NMF input through the process

of converting an audio file into a visual representation of matrix X known as a spec-

trogram in Section 3. Next, we derive the NMF algorithm in Section 4 followed by

some illustrative examples in Section 5 of NMF for source separation of both pitches

and instruments. Then, in Section 6, We introduce the challenges of source separa-

tion through NMF such as audio remnants (background and artificial noise) and how

regularization can circumvent these challenges. Then we conduct experiments and

explore the effectiveness of both NMF and Regularized NMF in source separation in

Section 7. In Section 8, we discuss some key takeways and consider some intriguing

future directions.
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Chapter 2

Related Works

NMF was first used in analytical chemistry during the 1960s. The early years of NMF

involved scientists using a linear mixing mathematical model for analyzing sample

chemical spectra and determining the elemental composition of solutions [35]. After

approximately three decades, the first modernly utilized NMF model was created in

1994 under the name of Positive Matrix Factorization (PMF) [26]. Prior to the late

1990s, researchers had not ventured to utilize NMF for purposes outside of physics,

chemistry, and similar fields. However, the release of a paper by Lee and Seung in

1999 coined the modern name Nonnegative Matrix Factorization and expanded the

applications into a variety of new fields such as feature extraction and data mining

for image and text data [11, 17]. Chemists expanded the utilization of NMF for

spectroscopy in determining and analyzing absorption spectra over the time of a

reaction [19]. NMF has even aided cancer studies [36, 9].

Alongside these application expansions, NMF was beginning to be employed for

audio data. NMF has been used to analyze music through applications such as

source separation, music structure identification, and audio mosaicing using spatial-

temporal data [21, 20, 29, 27]. In particular, using NMF for source separation would

allow people to separate voices, sounds, and/or instruments nearly blind to the audio
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source content (besides the number of sources present). Thus, source separation can

be used for nearly automatic music composition transcription and could aid in the

restoration of written musical scores that may have been lost over time [4].

In the NMF application of source separation, audio data is pre-processed into a

nonnegative matrix which is visually represented by what is called a spectrogram [22].

With pre-processing completed, an NMF algorithm is equipped to be applied [12].

Other methods, such as deep neural networks [33], have been successful at audio data

analysis, but our focus is on NMF.

To account for the variety of NMF applications, researchers created NMF variant

algorithms [7] of the multiplicative update algorithm proposed by Lee and Seung [17].

Each proposed algorithm has an accompanied convergence analysis [16]. Some no-

table NMF variant algorithms for audio source separation include Sparse NMF [34],

Convolutive NMF [30], and NMF Deconvolution [15]. These algorithms are well-

suited for audio data as they promote a greater degree of source separation in often

fewer iterations as opposed to the standard multiplicative update NMF. These varia-

tions were utilized for polyphonic, multiple part, music decomposition for which the

basic NMF algorithm has challenges in source separating such as having voice parts

of similar frequencies or the presence of background noise.

Regularization is one such modification to the NMF algorithm. We utilize regu-

larization to encourage desirable properties of the factor matrices, W and H, such

as smoothness or sparsity and make sure that the NMF algorithm does not overfit

the data to undesirable features present in an audio recording such as feedback noise

or whispers that are picked up by the recording device. There have been several

papers introducing various regularized NMF algorithms in a variety of fields. These

include a sparse graph regularized method [1], a Huber Loss regularized method [36],

and a method combining L1 Regularization and Tikhonov Regularization [32]. These

proposed regularized NMF algorithms are specifically designed to make the NMF
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application more effective at its given application but a common trend among regu-

larized NMF regularization expressions is the promotion of sparsity and separation

between points in space.
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Chapter 3

From Recording to Spectrogram

Before NMF can aid in distinguishing the musical voices, we must first construct

our matrix X from the audio data. Here, X is a spectrogram, a visualization of

the embodied matrix where the time is represented along the columns of X and the

frequency is represented across the rows of X. The entries of X denote the amplitude

or volume of the pitch for a specified pitch i and time j. In the spectrogram, we

denote each different voice or instrumental part (the sources for which we want to

distinguish), with a source number and sometimes a different color for a low total

number of sources. For the purposes of reading this thesis, we have created a diagram

in Figure 3.1 that will aid readers in understanding how to read certain visuals as

encountered throughout this paper when and where we visualize X, W, and H.

In order to obtain the spectrogram, we must go through a process to mathemati-

cally represent music. We start by taking an audio file that was recorded using any

standard recording device. These audio files contain sound waves that give informa-

tion about frequency and time in a given musical arrangement.

The audio is spliced into short, segmented, slightly overlapping parts such that

the amplitude and frequencies occurring at tiny intervals in time can be focused on.

This process is called windowing. The smaller the window, the more time points and
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Figure 3.1: Visual Aid For Interpreting Diagrams – The spectrogram X is the bottom
right corner with axes of time(seconds) and frequency(Hz). The visual representation
of the frequency data for each source W is in the bottom left of the diagram. The
visual representation of the temporal data for each source H is in the top right corner
of the diagram.

therefore the better we can approximate the frequencies and the times at which they

occur.

We proceed with a Fourier transformation to take these small audio intervals and

translate them into mathematical points conveying frequency and time values. To do

this, we model our segmented audio clips with sinusoidal functions. Therefore, we

define a Discrete Fourier Transform (DFT):

D(k) =
N−1∑
n=0

x(n) exp(−2πikn/N) (3.1)

that yields the Fourier coefficient D(k) for a given window where k/N corresponds to

one of a finite subset of frequencies and x(n) is a finite sample from the window. This

function is a one-to-one mapping from the signal space to the Fourier space. This is

a discrete mapping as the sound signals are not continuous due to the windowing of

the signal into a finite number of segments.



9

While the DFT reveals information about the frequencies in an audio recording,

we also require the time values for when these frequencies occur. For this, we use the

discrete Short-Time Fourier Transform (STFT). We piece together the DFT’s into

the STFT by defining a windowing function w(n) to denote the segment of the audio

that we are looking to transform, a hop size h to denote how much in time we move

forward when we move to the next segment, and the time frame number m that we

are currently looking at. Thus, we can write the STFT for a given time frame as:

X(m, k) =
N−1∑
n=0

x(n+mh)w(n) exp(−2πikn/N) (3.2)

Unlike the DFT, the STFT is now able to give us frequencies associated with

the audio recording and when those frequencies are occurring which is all of the

information needed to create the spectrogram.

One note to make is that the STFT and the DFT, like most Fourier transforma-

tions, have an output that typically exists in the complex vector spaces and therefore

makes it difficult to visualize the result graphically. Thus, we take the log-spectral

distance of the STFT to transform these complex values into real space to make

them easier to visualize through the spectrogram. We illustrate the spectrogram in

Figure 3.2.

As the amplitudes of the audio wave graph on top are much higher, the spectro-

gram below is shaded in with more color to indicate a louder volume of sound at the

corresponding times. These sound intensities are entries in a matrix representation

of the spectrogram. As these sound intensities are restricted to nonnegative values,

we have the ability to factorize the spectrogram through NMF.
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Figure 3.2: An Audio File And Its Respective Spectrogram - The top image is the vi-
sualization of a recorded audio signal with time (50000 units/1 second) and amplitude
measuring the volume. The bottom image is the respective spectrogram W of the
top image with time(seconds) and frequency(Hz). The yellow color in this diagram
represents an existing frequency at a point in time of the recording whereas the blue
represents the absence of a frequency at a particular point in time [8].
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Chapter 4

Deriving the NMF Algorithm

With the spectrogram obtained, the input X for the NMF algorithm, it is necessary to

derive the NMF algorithm. We further detail the preliminary optimization problem

(1.1). First, we define D(X,WH) using the Frobenius norm: ‖X−WH‖2F . Then we

can rewrite our constraints where wij are the entries in W and hjk are the entries in

H such that i = 1, 2, ...,m, j = 1, 2, ..., r, k = 1, 2, ..., n. Therefore, the optimization

problem becomes:

min
W,H

1

2
‖X−WH‖2F s. t. W ∈ Rm×r

+ ,H ∈ Rr×n
+ (4.1)

This is a constrained optimization problem that is non-convex due to the optimiza-

tion of both W and H simultaneously making it difficult to minimize the objective

function. Typical algorithms use an alternating approach where we fix either W or

H and take a step towards optimizing the matrix that is not fixed. Then we fix

the other matrix and take a step to optimize the now not fixed matrix. Then, we

keep switching which matrix is fixed and which is being updated until we reach some

pre-defined tolerance level as described at the end of this section.

There are many ways to proceed with the updates of W and H such as the

commonly used multiplicative and additive update rules. These update rules can be
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derived from the Karush-Kuhn-Tucker (KKT) conditions [13, 14, 3] of (4.1).

The KKT conditions are the optimality conditions upon the constrained optimiza-

tion problems that are necessary to indicate that a feasible point is optimal. In order

to utilize the KKT conditions to determine optimality, the objective function must

be convex and there must exist a feasible solution x∗. Then, we can determine an

optimal solution when there exist λ ∈ R+ such that the four KKT conditions are met:

Theorem 4.0.1. Necessary Conditions for KKT Conditions

Consider the minimization problem:

min
x
f(x) s. t. a>i x ≥ bi, i = 1, 2, ...,m (4.2)

where f is a continuously differentiable objective function, ai ∈ Rn, bi ∈ R, and x∗ be

a feasible solution and local minimum. Then there exist λi ≥ 0 such that:

∇xL(x∗, λi) = ∇f(x∗) +
m∑
i=1

λiai = 0 (4.3)

where L is the Lagrangian and

λi(a
>
i x
∗ − bi) = 0 (4.4)

For our given optimization problem (4.1), there is at least one feasible solution

where the KKT conditions in Theorem 4.0.1. hold true. So, we utilize the KKT

conditions to derive the Euclidean Update rule for the NMF algorithm.

First, we rewrite the objective function f of the optimization problem (4.1):

f(W,H) =
1

2
‖X−WH‖2F =

1

2

m∑
i=1

n∑
k=1

(xik −
r∑
j=1

wijhjk)
2 (4.5)
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In order to write the KKT conditions, we must find the Lagrangian:

L(W,H,Λ,M) =
1

2

m∑
i=1

n∑
k=1

(xik −
r∑
j=1

wijhjk)
2 +

m∑
i=1

r∑
j=1

λij(−wij) +
r∑
j=1

n∑
k=1

µjk(−hjk)

=
1

2
‖X−WH‖2F − 〈Λ , W〉 − 〈M , H〉

(4.6)

where each λij,µjk ∈ R+ are the KKT multipliers that make up the entries of

Λ ∈ Rm×r and M ∈ Rr×n respectively and 〈· , ·〉 is defined as an inner product.

Additionally, we define � to signify point-wise matrix multiplication.

The stationarity conditions for each entry are:

∇WL = (WH−X)H> −Λ where ∇WL ∈ Rm×r (4.7)

∇HL = (WH−X)W> −M where ∇HL ∈ Rr×n (4.8)

The complementary slackness conditions are:

Λ�W = 0, M�H = 0 (4.9)

The primal feasibility conditions are:

W ∈ Rm×r
+ , H ∈ Rr×n

+ (4.10)

The dual feasibility conditions are:

Λ ∈ Rm×r
+ , M ∈ Rr×n

+ (4.11)
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Based on the stationarity conditions:

∇WL = (WH−X)H> −Λ = 0→ (WHH> −XH>) = Λ (4.12)

We plug this into our complementary slackness conditions:

Λ�W = 0→W � (WHH> −XH>) = 0 (4.13)

→W � (WHH>) = W � (XH>) (4.14)

Through point-wise matrix division, we find:

W = W � XH>

WHH>
(4.15)

The above formulation is the multiplicative update. When W is not changing, the

first order optimality conditions are met. Note that the computation utilizes point-

wise division to produce a matrix of approximately ones theoretically from XH>

WHH>

if WH ≈ X. This is a point-wise operation to maintain the shape of W over all

iterations and as we update each entry in W individually by a scalar multiplicative

update.

We update H using a similar process. Thus, the following overall multiplicative

update rule is found where t is the current iteration number:

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)> (4.16)

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t)
(4.17)

After initializing W and H with nonnegative entries, our update rule preserves the

nonnegativity throughout the iteration process. We iterate until we hit the stopping

criteria. The stopping criteria is related to the optimality conditions in that we
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want the algorithm to terminate when our stationarity conditions (4.7) (4.8) are

satisfied. This would indicate that we have approximated a stationary point for our

optimization problem.

This criteria could be one of several options or even a combination of the tolerance

options. The stopping criteria could be set at a tolerance ε of convergence for both

W and H to attain on a given iteration:

‖H(t+1) −H(t)‖ < ε, ‖W(t+1) −W(t)‖ < ε (4.18)

Another option is to set the tolerance criteria at a minimum threshold ε for the

objective function:

‖X−W(t)H(t)‖ < ε (4.19)

4.1 NMF Convergence

We discuss the convergence theory for the multiplicative update. First, let F (h) be

the objective function for a single column of H:

F (h) =
1

2
||x−Wh||22 (4.20)

We define t to be the current iteration and ht as the current column of H. We

can approximate ht using a quadratic Taylor expansion:

F (h) ≈ F (ht) +∇F (ht)
T (h− ht) +

1

2
(h− ht)T∇2F (ht)(h− ht) (4.21)

where ∇F (ht) = −WT (x−Wht) and ∇2F (ht) = WTW.

If we were to try to minimize this quadratic expansion with respect to h, we would
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find that the nonnegativity of h is not guaranteed. Therefore, we instead create an

auxilary function G such that G is equal to the objective function F at the current

iterate and such that G majorizes F for all h:

G(ht, ht) = F (ht), G(h, ht) ≥ F (h) (4.22)

We further define the auxiliary function such that minimizing G results in the

derived multiplicative step. We repeatedly minimize to the local optimum of the G

and then build a new G at each iteration. This means that the local minima of the

updated auxilary function from iteration to iteration will be nonincreasing towards

the lower bounded F . We cannot guarantee that this update rule will converge as we

are taking infinite steps towards F and F does not guarentee nonnegative columns of

H. Pictorially, we can envision this in Figure 4.1.

For those interested in seeing how G is chosen and further details on NMF con-

vergence, a full length proof of convergence can be found at [16].
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Figure 4.1: NMF Algorithm Convergence – An example of a defined auxiliary function
G(h, ht) that is bounded below a given function F (h) to demonstrate the convergence
pattern of the NMF algorithm. With each iteration of the NMF algorithm, the current
solution to the optimization problem moves from ht to ht+1 and then the auxilary
function changes such that we can continue to minimize toward hmin[16].
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Chapter 5

Illustrative Examples

To visualize the NMF algorithm, we observe source separation through two examples:

an audio of a C major scale on a clarinet (§5.1) and an audio of three drums playing

simultaneously (§5.2). The NMF algorithm used comes from the NMF Toolbox [20]

known as a Nonnegative Matrix Factor Deconvolution (NMFD) [31]. NMFD differs

from NMF as it utilizes a convolution operator that shifts the columns of our spec-

trogram X to the right up to a set number of template frames. This allows NMFD

to account for more temporal data from the spectrogram and improve the accuracy

of the source separation by time within H. This is favorable for these examples as

we want to demonstrate the separation of sources application of NMF algorithms as

clearly as possible.

5.1 C Scale Example

In this example, we took an audio sample of the C major scale [24].

Following the process in Section 3, we split the signal into slightly overlapping time

frames and multiplied each frame by a window function to avoid numerical artifacts

from splitting the signal. Finally, we obtain the columns of the spectrogram by taking

a STFT at each time frame allowing us to create the spectrogram X of the C scale.
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Figure 5.1: C Major Scale – The 8 notes of the C major scale arranged as half notes
demonstrating how music is often visualized as a music score on sheet music. This
image was arranged by Jonathan Valyou using the application Notation Pad.

For this example, the spectrogram is present in the bottom right corner of Figure

5.2. After running the NMFD algorithm, we output W in the bottom left corner of

Figure 5.2 and H in the top right corner of Figure 5.2.

Each column of W represents a source. The entries within each column correspond

to the different frequencies detected for a source. The matrix size is m × r with m

frequencies r sources. In this case, we have 8 distinct notes in the C scale so we chose

the rank of the matrix to be r = 8.

Similarly, each row of H represents a source. The entries within each row corre-

spond to the time points where a source is active. The size of H is r × n where r is

the number of sources and n is the number of time points dependent on the STFT

set-up. In this visualization of matrix H, we can see the times where a specific note

is played as they are each represented by a large area of gray coloring. In fact, since

the time range runs in chronological order identically to the audio sample and the

knowledge that the audio sample is an ascending C scale, we can actually identify

which source maps to which note in this NMF output. For example, the left-most

gray section starting from time at 0 seconds occurs in the source row labeled 4 and

since the first note in the C scale is a low C, source 4 must correspond to the low C

in our NMF output. That means we can also look back at our visual representation
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Figure 5.2: Visualizing NMF Through C Major Scale- The NMFD algorithm was
utilized with input parameters of 8 sources for 8 distinct pitches, 300 iterations, 8
Template Frames to specify 8 Convolutions, randomly initialized W, and uniformly
initialized H. For information on how to interpret this diagram, see Figure 3.1.

of W at the column labeled source 4 and see the frequencies that will be associated

with the low C pitch of our scale. This process can be repeated for any of the other

notes in the C scale.

It should be noted that our W and H are both sparse as represented with white

space in our visualization in 5.2. In fact, W and H appear to have a greater degree

of sparsity than the spectrogram X.
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Convergence in C Scale Example

We can validate the NMF convergence claim from the end of (§4) by graphing the

value of the objective function, ‖X −WH‖F , over several iterations of the basic

NMF algorithm. In Figure 5.3, we see that as the iteration number increases for the

Scale Example, the value of the objective function decreases monotonically. Since this

graph is on a logarithmic scale, we can see that the change in the objective function

quickly decreases within the first few iterations and has relatively smaller changes but

can always be minimized further.

Figure 5.4 shows the change in W and H that occurs at each iteration. These

graphs computed the relative residuals, ‖H(t+1) −H(t)‖F and ‖W(t+1) −W(t)‖F , of

each matrix using the Frobenius Norm. Scaled logarithmically, we see the differences

in both W and H between iterations tend to decrease, indicating that we may be

converging upon a solution to the objective function. It is worth noting that unlike

the previous figure measuring the change in the objective function, we do not see that

the change in W and H is always monotonically decreasing. This is due to the fact

that we are trying to minimize both W and H at each iteration using the alternating

approach derived from the KKT conditions. As outlined in (§4), if the changes in

both matrices reach a small enough point, we could utilize this as a stopping criteria

for convergence. However, in this case for testing convergence, our stopping criteria

was when the total number of iterations reached 50.

Overall, this demonstrates some methods of implementing stopping criteria on the

NMF algorithm as previously mentioned in (§4).

5.2 Drum Sound Separation

Not only can NMF separate tones on a single instrument, but the algorithm can also

distinguish between instruments in an audio recording as many instruments play at
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Figure 5.3: Convergence of the Objective Function Associated with NMF - The curve
of this diagram measures how the objective function f(W,H) changes from iteration
to iteration.

Figure 5.4: Measuring Change in H and W - The plot on the left depicts how much W
changes between iterations while the plot on the right depicts how much H changes
between iterations.
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distinct frequency ranges. We want to show a more complicated example where the

times at which sources occur overlap. For this example, an audio recording of 3 types

of drums (a kick drum, a snare drum, and a ride cymbal) playing simultaneously was

taken. Percussion instruments tend to emit an almost unique frequency combination

allowing the NMF algorithm to perform source separation quite effectively. This is a

slightly adapted version of a pre-existing example found in the Toolbox [20].

Figure 5.5: Visualizing NMF Through Drum Beats - The NMFD algorithm was
utilized with input parameters of 3 sources for 3 distinct instruments, 30 iterations, 8
Template Frames to specify 8 Convolutions, randomly initialized W, and uniformly
initialized H. The three colors represent each of the three percussion instruments:
red represents the kick drum, green represents the snare drum, and blue represents
the ride cymbal. For information on how to interpret this diagram, see Figure 3.1.

As one can see in Figure 5.5, our visualization is color-coded such that red rep-

resents the kick drum, green represents the snare drum, and blue represents the ride



24

cymbal. The same processes of setting up the spectrogram and running the NMFD

algorithm as in the C scale example was utilized. However, one will note that the

spectrogram is much more convoluted as we cannot discern an obvious pattern from

the spectrogram like previously seen in the step-wise pattern of the C scale in Figure

5.2. This is most prominently due to the overlapping beats of the drums in the audio

files. This makes it difficult to visualize the times and frequencies established and

without the color scheme, it would be near impossible given simply the spectrogram.

However, The NMFD algorithm factors out W and H to reveal the separated

sources as visualized in the bottom left corner and upper right corner of Figure

5.5 respectively allowing us to see the musical patterns of the audio more clearly.

The spikes in the visualization in H represent the moments where one of our three

percussion instruments is struck. Specifically, Source 1 corresponds with the kick

drum, Source 2 corresponds with the snare drum, and Source 3 corresponds with the

ride cymbal. The colored regions in W represent the range of frequencies that are

attributed to each source throughout the audio file. An interesting aspect to note

with this example is that Source 3, the ride cymbal, appears to have a much greater

range of frequencies. This is due to the physical construction of the cymbal where

the place where the cymbal is hit will vary with the frequency much for than the hit

locations of the kick drum and the snare drum. Additionally, we can attribute this

extended range to the ringing nature of a cymbal.

It should be noted that in H, we see that there is additional small levels of sound

that are being picked up for each of the drums when they are not being struck.

The majority of this additional sound recognition is due to the vibrations of the

drums after the striking of one of the drums. These vibrations reverberate and so

the audio file is able to capture this additional sound artifact. This is yet another

complication that demonstrates why we need NMF to reveal details that we cannot

see in a convoluted spectrogram of a given audio file.
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Chapter 6

Regularized NMF

While NMF can separate sources well for audio files of higher quality (lack of feed-

back or noise, advanced recording captures, etc.), the NMF algorithm has a much

harder time separating sources from a poor audio recording or a recording with back-

ground noise. A popular technique to perform source separation given noisy data is

to implement regularization. This technique is often applied to circumvent overfitting

to a data set and in terms of our noisy data problem, regularization aims to avoid

overfitting the objective function to noise that is within our audio data.

In general, regularization is the act of adding a penalty expression to the cost

function to promote desirable properties in the matrices over which we are optimizing,

W and H. We write our general regularized objective function as the following:

min
W,H

1

2
‖X−WH‖2F + βR(W) + γS(H) (6.1)

where β, γ ∈ R are our regularization parameters corresponding to the respective

regularization functions R(W) and S(H). In Equation (6.1), we focus on the stan-

dard practice of adding the regularization expression(s) to our given cost function

in Equation (4.5). Some of the most popular types of regularization are Tikhonov
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Regularization and L1 Regularization. We also want to determine our regulariza-

tion parameter(s) β and/or γ which are constants that impact how much effect the

regularization expression will have on our NMF model.

For example, if we want to add the following regularization expression to the cost

function in Equation (4.5): β
2
‖W‖2F . Then, our objective function would take the

form:

min
W,H

1

2
‖X−WH‖2F +

β

2
‖W‖2F s. t. W ∈ Rm×r

+ ,H ∈ Rr×n
+ , β > 0 (6.2)

This regularization term aims to make W more favorable for source separation

by punishing large entries in W. This means that after applying the regularization

term, W will have more smaller values.

The regularized objective function corresponds to different optimality conditions.

We derive the optimality conditions and corresponding update rules for Equation

(6.2) in Appendix A. The multiplicative update rules corresponding to this regularized

objective function are:

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)> + βW(t)
(6.3)

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t)
(6.4)

And the derivation process as presented in (§8) will hold true for similar regu-

larization expressions. Below, we have listed some additional types of regularized

NMF problems that were tested on the experiment audio data with their respectively

derived update rules:
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min
W,H
‖X−WH‖2F +

γ

2
‖H‖2F s. t. W ∈ Rm×r

+ ,H ∈ Rr×n
+ , γ > 0 (6.5)

with update rules

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)>

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t) + γH(t)

min
W,H
‖X−WH‖2F + β‖W‖sum s. t. W ∈ Rm×r

+ ,H ∈ Rr×n
+ , β > 0 (6.6)

with update rules

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)> + β1W

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t)

where ‖W‖sum =
∑

i,j |wij| and 1W ∈ Rm×r is a matrix of ones. This regularization

expression encourages sparsity in W [23].

min
W,H
‖X−WH‖2F + γ‖H‖sum s. t. W ∈ Rm×r

+ ,H ∈ Rr×n
+ , γ > 0 (6.7)

with update rules

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)>

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t) + γ1H
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where ‖H‖sum =
∑

j,k |hjk| and 1H ∈ Rr×n is a matrix of ones. Finally, this regular-

ization expression is similar to the previous expression as it encourages sparsity, but

this time in H.

There are several other regularization expressions that we could use. For example,

a cancer data analysis paper [36] utilizes a manifold/graph regularization that aims to

promote distance separation between more distinct data points. For more examples

of regularization expressions, see the papers referenced at the end of (§2).

It is worth noting how we choose our constant regularization parameters β, γ.

If β is too small, then there will be barely any difference between our regularized

NMF and the non-regularized NMF algorithms making regularized NMF ineffective

at source separating noisy data. If β is too large, then we are no longer trying to

fit the data to our initial objective function but rather the regularization expression

leading us to fit to the noise. Thus, when utilizing a regularization expression, we

want to find a value for β that demonstrates effects from regularization but that does

not over-regularize our problem. The same is true for γ.
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Chapter 7

Experiments

All numerical experiments were run on a MacBook Pro 2018 model. Experiments were

written in Python and run using PyCharm and Jupyter Notebooks. The NMF algo-

rithms used originated from The NMF Toolbox written by Patricio López-Serrano,

Christian Dittmar, Yiğitcan Özer, and Meinard Müller [20].

7.1 NMFD: Higher Complexity Audio Sample

This experiment aims to demonstrate how well NMF algorithms can handle source

separation for higher complexity audio samples. The audio source used for this ex-

periment came from [24], and it is a recording of Johann Sebastian Bach’s Choral in

BWV80 known as Ein feste Burg ist unser Gott in Equal Temperament. The score

provided in Figure 7.1 that was taken from [25] shows the musical complexity of the

piece.

The piece is much more complex than the examples from (§5) as it involves multi-

ple melodies being played simultaneously through a Baroque music technique known

as counterpoint. This means that we have multiple voices playing multiple notes

(some different and some identical) in each of their melodic lines.

Figure 7.2 is a visualization of the starting spectrogram and the visualized output



30

Figure 7.1: BWV80 Ein feste Burg ist unser Gott Score by Johannes Sebastian Bach
- This is a polyphonic piece with 5 organ parts where three voices are in the alto clef
range and two voices are in the bass clef range.

of the NMF model. Once again, the NMFD model from [20] was utilized. The

algorithm was set to run for 200 iterations and the rank r = 8 was set. This rank

was chosen to track the roughly 8 notes, ranging over various octaves, that seem to

appear in the piece. As the five melodic lines of the choral are all played on the

same instrument, the organ, we cannot simply distinguish the melodic lines based on

the instrument as the melodic lines overlap in frequencies and thus making it much

harder for NMF to distinguish the five melodic lines. It is also worth noting that

the run time of the algorithm was approximately 10 minutes due to a high number

of iterations but also due to the piece being 49 seconds in length as opposed to the

previous examples being under 15 seconds.
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Figure 7.2: NMF Source Separation of Bach Choral BWV80 in Equal Temperament
- The NMFD algorithm was utilized with input parameters of 8 sources for 8 distinct
pitches, 200 iterations, 8 Template Frames to specify 8 Convolutions, randomly ini-
tialized W, and uniformly initialized H. For information on how to interpret this
diagram, see Figure 3.1.
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As one can see in Figure 7.2, the spectrogram appears much more convoluted and

unable to pick out an easy pattern as we could in the scale example. However, similar

to the drum example in (§5.2), after running the NMFD algorithm, we have some

apparent patterns. Listening to the deconstructed recording that NMF produced,

one can hear that each audio source contains primarily a single note that is played

throughout the piece.

In, the visualization of W. We can see that compared with the scale example in

(§5.1), each source appears to have a much greater range of frequencies within the

frequency combinations. This is due to the audio recording not being bound within

an octave as it previously was in the scale example. But as we see the ladder-like

structure of frequencies in each source, it seems to confirm that often the two notes

that are the same note in distinct octave ranges were categorized under the same

source. That is, for example, a C note and an octave higher C note are both being

categorized under the same source for all C notes and the same appears primarily

true for most of the notes of the scale. Musically, this makes sense as notes of the

same letter all share at least some of the volume at a certain frequency that is distinct

from notes of a different letter.

7.2 NMFD: Symphony with Real Noise

This experiment aims to demonstrate how NMFD can separate out real captured

“noise” from an audio sample. The audio sample once again comes from [24]. The

sample is a four second snippet from a symphonic arrangement involving a full or-

chestra with an individual coughing twice over the instruments.

As seen in Figure 7.3, NMFD was able to separate the coughing noise from the

orchestra by classifying the two distinct sources into different bins. Thus, NMF on

its own is able to separate real-life noises that may impede audio recordings allowing
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Figure 7.3: Visualizing NMF Separating Out Noise - The NMF algorithm with no
regularization parameter was utilized with input parameters of 2 sources for the music
and the noise, 200 iterations, randomly initialized W, and uniformly initialized H.
Blue corresponds with the coughing noise and red corresponds with the orchestra.

individuals to obtain a separate recording nearly or fully free of noise as long as the

noise does not match the frequency of the music. NMF was able to separate the

cough without regularization as the ”noise” is of a very distinct frequency compared

to the orchestra and thus can be treated as if it were a separate source.

Additionally, it is once again worth noting the frequency range that is captured

by the matrix W. We see that the frequency range of the coughing noise has very

distinct frequencies within a smaller range compared to the sound produced by the

orchestra which is not as distinct and varies to a much greater magnitude. This

difference is due to the sources themselves. The cough is by a singular person who’s
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cough is at some position in their vocal range whereas the orchestra is full of a variety

of instruments each playing notes with different emitted frequencies.

7.3 Regularized NMF: C Scale with Induced Noise

This experiment aims to demonstrate the practical use adding regularization to the

NMF algorithm. In this experiment, we manually induced noise by perturbing the

initial matrix X. For the purpose of this example, we wrote the following code:

n_lev = 0.001

A = A + n_lev * np.linalg.norm(A) * abs(np.random.randn(*A.shape))

Figure 7.4: Visualizing NMF Through C Scale with Induced Noise - The NMF al-
gorithm with no regularization parameter was utilized with input parameters of 8
sources for 8 distinct pitches, 50 iterations, randomly initialized W, and uniformly
initialized H.

As we can see in Figure 7.4, the spectrogram in the bottom right corner now has

some additional black dots throughout the visualization. This indicates the added
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noise. We see that the non-regularized NMF algorithm struggles to separate all of the

sources as we previously did in the illustrative examples (§5). While the algorithm

was able to separate several of the sources, the algorithm was unable to pick out all

8 notes of the scale individually. We see in the visualization of H that the seventh

source, the second from the top row, from the figure is registering several spikes in

sound and that two of the notes are being combined to make up the fifth source.

Based on the times of the spikes in the seventh source of the H visualization and our

knowledge that there are breaks in sound between each note in the audio recording,

we can infer that the seventh source is picking up induced noise that was added to

any point where there is silence.

Additionally, it is worth noting that the two notes that are being combined on the

scale are the E and the F of the scale. From a music perspective, the E and the F are

the two closest notes of the scale in terms of frequency. This is due to the two notes

being only a half step apart. Thus, it makes sense that when the silence induced with

noise is distinct enough from the other tones to take up one of the source bins, NMF

would try to combine the two most similar notes of the scale.

To overcome these challenges, we find a regularization expression that source sep-

arates the notes more effectively. The regularized NMF algorithm using the objective

function and updates rules in Equation (6.7) was selected as the most favorable reg-

ularized NMF algorithm. The added regularization expression γ‖H‖1 was selected

to promote sparsity in H so therefore, small amounts of noise added during very

low volume levels should tend towards zero in the objective function. Meanwhile our

regularized NMF should distinguish between the pitches that are more prominent in

the audio by leaving their volume level further from zero.

In Figure 7.5, we have implemented and run the regularized NMF algorithm as

presented in Equation (6.7) on the C Scale example with the same amount of added

noise as in Figure 7.4. The regularization parameter was set as γ = 5 × 10−6. Now,
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Figure 7.5: Visualizing Regularized NMF Through C Scale with Induced Noise - The
Regularized NMF algorithm with regularization expression γ‖H‖1 was utilized with
input parameters of a regularization parameter of γ = 5×10−6, 8 sources for 8 distinct
pitches, 50 iterations, randomly initialized W, and uniformly initialized H.

the visualization of H reflects nearly all eight notes of the scale distinctly. We see

that the seventh source is now one block in time rather than reflecting the added

noise as it previously did. However, it is not perfect as the fifth source still has some

of the sound of the F combined with the E (but most of the F is now classified in

the seventh source). Yet, this source separation is much better and has essentially

been able to avoid overfitting to the noise and still performing an excellent source

separation.

It is worth noting why this noisy scale example required regularized NMF while

the noisy symphony example (§7.2) did not. In the noisy symphony example, we are

trying to separate a human cough, our noise, from the symphony. Thus, the noise

is being treated as a separate source. Meanwhile, in this noisy scale example, we

want to source separate out the 8 notes of the scale without treating the noise as an
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extraneous source. We cannot simply treat the induced noise as another source since

the noise has not only altered silence in the audio but also the notes themselves.
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Chapter 8

Conclusions and Future Directions

In this paper, we have shown the applicability of Nonnegative Matrix Factorization

to audio data, specifically music. We described NMF (§1) and derived the NMF

algorithm utilizing KKT conditions (§4). We showed that the basic NMF algorithm

works well on some simple audio recordings (§5) as well as a longer and more com-

plex audio recordings (§7.1). We were able to utilize the NMF application of source

separation to distinguish both notes (§5.1) and instruments (§5.2). NMF was able to

reveal musical patterns that one could not simply make from looking at a cluttered

spectrogram that occurs when music moves from monotonic to polyphonic.

After adding noise to simulate a poor-quality audio recording with background

sound, we saw that the basic NMF struggles to separate all sources. We derived

and implemented a regularized NMF algorithm once again using the KKT conditions

(§6). After implementing the regularized NMF, we saw that the algorithm was able to

avoid overfitting to added background noise in the perturbed audio data and produce

a cleaner source separation(§7.3).

NMF can prove to be an extremely powerful tool for musicians with a lack of

resources. If a musician wants to play a piece but only has an audio file without the

sheet music, NMF can help the musician piece together the sheet music. As long as
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they have knowledge of what notes correspond to certain frequency combinations and

access to an NMF algorithm, one can run NMF or regularized NMF for noisy data

and they would get W where they can identify which source corresponds to which

note and then use H to piece together the rhythm of the notes leading them to have

nearly all the information they need to transcribe the piece onto sheet music. This is

valuable for if one loses their written score or if one does not have perfect pitch and

cannot identify notes by ear [4].

Figure 8.1: Future NMF Research Avenues

There are several future directions that this project could take on after this thesis.

The most obvious option is to explore other types of regularized NMF algorithms.

For example, one could look into a finite-difference based approach where we apply a

matrix B formed from discretizing finite difference approximations to either W or H

within a chosen norm creating a regularization expression such as β‖HB‖1. Another

regularization approach that we are currently working towards is an NMF algorithm

with sparse graph/manifold regularization as discussed in [36]. This regularization

would take the discretized audio data and promote both sparsity and distance sepa-

ration. We have begun the implementation of this regularization within our code and

hope to continue working on this future direction in the coming months.

Another interesting direction would be to explore automatic hyperparameter se-

lection such as a rank predictor for NMF. Currently, the NMF and regularized NMF

algorithms require one to know the rank (or how many pitches for each distinct in-
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strument) in order to produce a favorable source separation output. However, if NMF

could predict the rank, one would not need to have any knowledge of the number of

pitches and instruments present in the audio recording. One idea is to use cross-

validation to identify a potential predicted rank through machine learning training

and validate the predicted rank through machine learning validation [18].

Additionally, there are two direct extensions of this project to higher dimension-

ality. Since NMF works well for matrices, we could extend the project to create

a Nonnegative Tensor Factorization (NTF) and look into regularizing the algorithm.

NTF would allow us to extract music features from more than one audio file at a time

and has previously been used in genre classification [5]. Also, our matrix systems are

all linear. So it would be interesting to look into Nonlinear Nonnegative Factorization

[2]. These two approaches could lead to even better results for complicated audio files

that are on a much larger scale such as performing NMF on a large audio dataset, a

symphony recording, or on a pop-song mashup.

For anyone interested in our edited NMF Toolbox code, please see the following

GitHub repository: Regularized NMF Toolbox.

https://github.com/B3jonathanv/NMF_Music_Git
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Appendix A

Example Derivation of Regularized

NMF

The optimization problem (6.2) corresponds to a Euclidean Update rule as well. We

rewrite the objective function f2 of (6.2):

f2(W,H, β) = |X−WH‖2F +
β

2
‖W‖2F =

1

2

m∑
i=1

n∑
k=1

(xik−
r∑
j=1

wijhjk)
2 +

β

2

m∑
i=1

r∑
k=1

w2
ij

(A.1)

In order to write the KKT conditions, we form the Lagrangian:

L(W,H, β,Λ,M) = |X−WH‖2F +
β

2
‖W‖2F +

m∑
i=1

r∑
j=1

λij(−wij) +
r∑
j=1

n∑
k=1

µjk(−hjk)

(A.2)

To establish the stationarity conditions, we need to calculate the partial derivatives

of the Lagrangian in Equation (A.2) with respect to every possible entry point in W

and H. We can see that the stationarity conditions are where we see the biggest

changes and this stems from the partial derivative calculations.
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The stationarity conditions are:

∇WL = (WH−X)H> + βW −Λ (A.3)

∇HL = (WH−X)W> −M (A.4)

The complementary slackness conditions are:

Λ�W = 0, M�H = 0 (A.5)

The primal feasibility conditions are:

W ∈ Rm×r
+ , H ∈ Rr×n

+ (A.6)

The dual feasibility conditions are:

Λ ∈ Rm×r
+ , M ∈ Rr×n

+ (A.7)

Therefore, we can see that only the stationarity conditions were affected by adding

our regularization term to the minimization problem and we are about to see this

affect the multiplicative update rules as these are reliant upon the stationarity condi-

tions. We can utilize the stationarity conditions in order to create the multiplicative

update:

∇WL = (WH−X)H> + βW −Λ = 0→ (WHH> −XH> + βW) = Λ

We can now plug this into our complementary slackness condition:

Λ�W = 0→W�(WHH>−XH>+βW) = 0→W�(WHH>+βW) = W�(XH>)
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Using point-wise division:

W = W � XH>

(WHH> + βW)

Note that this particular regularization expression simply changed the denomina-

tor of our update rule by taking into account the size of the wij found in W. Like

we previously did in the original derivation of the update rules, we can do a similar

process to find the update rule for each iteration of H. However, as our regulariza-

tion expression does not involve H, we saw that ∇HL remained unchanged and so

the update rule for H is the same as the non-regularized NMF algorithm.

Thus, the following overall multiplicative update rule is found for a regularization

expression involving taking the Frobenius norm of W:

W(t+1) = W(t) � XH(t)>

W(t)H(t)H(t)> + βW(t)
(A.8)

H(t+1) = H(t) � W(t+1)>X

W(t+1)>W(t+1)H(t)
(A.9)
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