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Abstract 

 
Despite the many health benefits of eating fresh fruits and vegetables, there is a risk of 

foodborne illness. Fresh produce, since it is consumed raw, never receives a kill step to rid of 

harmful pathogens. Being able to predict the risk of illness associated with fresh produce is 

important to prevention. However, before any inferences can be made, the underlying 

statistical distribution of pathogens, and their associated indicators, needs to be understood 

in order to make accurate risk predictions. This study assessed the fit of 5 commonly used 

distributions (normal, lognormal, Poisson, gamma, negative binomial) among 4 indicators 

(aerobic plate count, coliforms, Escherichia coli, Enterococci spp.), sampled from cabbage (n= 

109), cantaloupe (n= 42) and cilantro (n= 141), which were collected on the U.S. side of the 

United States – Mexico border. Distributions were assessed by comparing the Pearson’s chi-

square values, along with the Akaike’s information criterion, to determine which 

distributions fit each of the indicators. If more than one distribution fit an indicator, the best 

fitting distribution was determined. Of the 12 different sets of indicator-produce 

combinations, 10 were found to fit at least one of the assessed distributions. The lognormal 

fit all 10 of these indicator-produce combinations, while the gamma and negative binomial 

also fit 6 of the 10 indicator-produce combinations. The normal and Poisson did not fit any 

of the indicator–produce combinations. For the indicators in which more than one 

distribution fit, the lognormal was consistently found to have the best fit. This study 

emphasizes the value in assessing different distributions before making any risk predictions.  
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LITERATURE REVIEW 

Introduction 

Fresh produce consumption has increased dramatically in recent decades [1, 2]. With 

an increasing emphasis on health, new trends in foods, and increased availability, Americans 

are more likely than ever before to eat fresh fruits and vegetables [2]. However, there is no 

kill step to rid fresh produce of the many microorganisms that may reside on them [3], 

leading to foodborne illness. For example, in 2006, more than 200 people in at least 26 states 

became sickened after consuming Escherichia coli contaminated spinach [4, 5]. In 2008, more 

than 1,200 individuals fell ill after eating Salmonella contaminated jalapeno peppers [6, 7]. 

With raw produce consumption at an all time high, and an ever more complex food 

production chain, it is critical to have the capability to detect contamination events before 

produce consumption. 

 

Sources of Contamination 

 There are many opportunities for pathogens to make contact with fresh produce 

both during pre- and post-harvest. During these opportunities, there are a wide array of 

contamination vehicles, such as animals, water, soil, human handlers, and packing houses, 

and these will be discussed below.  

 Much of the food we eat is grown outside, where it is exposed to environmental 

factors, such as wild animals. Cattle are known to be a primary reservoir for E. coli O157:H7 

[3, 8], which is a severe foodborne pathogen. In 2006 there was an E. coli O157:H7 outbreak 

that was linked to baby spinach, where the strain was isolated in cattle feces [5]. Following 

the outbreak, researchers were also able to isolate the strain in feral swine [8]. It is 

exceptionally difficult to prevent all wildlife from entering growing fields, as fences are not 
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sufficient to prevent many types of animals [3, 8]. This is especially true when trying to 

control birds, which have the capability to transfer pathogens from outside sources [9]. 

Furthermore, it was also noted that once wildlife deposited feces in the field, it might be 

further spread via lawn mowers and sprinklers [9].  

 One of the more frequently suspected methods of contamination in the field occurs 

through surface and irrigation water [3, 9, 10]. The temperatures and pH levels of water 

sources can be optimal for bacterial survival and growth [10]. Ijabadeniyi et al. [10] were able 

to establish an association between local water turbidity and intestinal Enterococcus of 

surrounding animals. Since water characteristics can influence microbial concentrations, it is 

essential to test or treat the water before applying it to the fields [10]. Even a small amount 

of contamination has the opportunity to propagate once it comes in contact with plants [10]. 

Barak et al. [3] found that the surface waters in California, where there is high leafy green 

production, contained E. coli O157:H7 and Salmonella enterica. Finally, water is not just used 

for irrigation; it may also be applied as a pesticide diluent and for cooling [6]. 

 Soil ecology consists of a highly diverse ecological niche that contains countless 

microorganisms. Normal soil flora includes Clostridium species as well as Bacillus cereus [9], 

which can both be pathogenic. Organisms are able to enter soil through a variety of 

mechanisms, including water, as described above. Another route is through the application 

of manure fertilizers. The application of manure fertilizers is economical and returns 

nutrients to the soil [11], but potentially contains harmful human pathogens. One study 

showed that Salmonella spp. persisted in soil for months after it was applied via manure based 

fertilizer [11]. This emphasizes the point that manure should be treated and applied 

strategically to avoid excess contamination. 
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 Another point of concern regarding produce contamination is worker hygiene. Farm 

workers’ hands have been shown to contain Norovirus and fecal coliforms [12]. The study 

population was comprised of pickers, classifiers, and packers. They found Norovirus present 

on up to 53% of a work group at the beginning of a shift. The subsequently handled green 

bell peppers, also tested positive for Norovirus.  De Roever [13] reviewed fresh produce 

associated outbreaks prior to 1998. Given the sources of the outbreaks, the conclusion was 

that hands are a critical risk factor for produce contamination and special attention to 

handling practices is necessary for Good Agricultural Practices. However, while workers may 

be aware of good hygiene practices,  workers may not have easy access to latrines and hand 

washing stations [6]. Soon & Baines [14] performed a study focused on training farm 

workers to wash their hands. They found that to effectively increase hand washing, the 

training needed to not only be specifically targeted to the workers, but the workers also 

needed to have easy access to hand washing stations.  

 The equipment and surfaces in packing houses are yet another source of potential 

contamination. Of special concern are water baths in which the produce is ‘dipped’ into. If 

warm produce is dipped into a cold water bath, tissues contract and draw in water [6]. If the 

water bath is contaminated, those pathogens have then entered the internal tissues of the 

produce, essentially protecting the now internal pathogens from surface disinfectants. 

Surfaces within the packing house are another source of contamination. . Some studies have 

shown that, overall, packing house surfaces, such as belts, are relatively clean and depend on 

the type of produce processed on the equipment [15]. Others have indicated that produce 

that made contact with equipment was more likely to become contaminated [16]. Different 

results from different studies reinforce the importance of thoroughly considering each step 

in designing study protocols, as different settings and produce types have different concerns. 
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Sampling Methods 

 When designing a method to sample produce for contamination, several key factors 

may significantly affect the test results. Special considerations include the season sampling is 

performed, which affects temperature and humidity, and the point between the field and 

packing sheds where samples are collected. Since slight variations in these variables can yield 

different outcomes, it is imperative to consider each of these issues when designing a 

protocol. 

Temperature and humidity fluctuate seasonally, which in turn affects microbial 

growth. Most produce growing periods span several months and seasons. Therefore, it is 

reasonable to suspect that there might be higher and lower periods of microbial 

contamination throughout the changing conditions during growing periods. It has been 

shown that for produce grown near the United States-Mexico border, there were higher 

levels of contamination in the fall, when compared to winter and spring [16].  

The point in production between the farm and packing sheds is likely to influence 

test results. Samples can be taken from the field, shortly after picking but while still in the 

field, transport to the packing house, and at different post-harvest stages within packing 

houses. Each of these steps has unique features that potentially affect the level of 

contamination. For example, it has been demonstrated, with generic E. coli in particular, that 

microbial concentrations are higher at the final stages of preparation when compared to field 

samples [16]. In the same study, field samples were also consistently shown to have lower 

concentrations than boxed samples [16]. These data indicate that packing processes are 

potentially a significant source of contamination. Steps in processing that are designed to 
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reduce contamination, i.e. washing, may in fact increase the microbial burden if the water is 

not properly disinfected [17]. In contrast, other studies have shown that there is no 

significant change in the quality of certain produce items as they progress through the 

packing processes [15].  

 

Testing procedures, post sampling: 

 The goal of performing microbial sampling is to successfully collect all viable 

microbes and transfer them to a suitable culture medium, in order to provide accurate and 

representative test results of the microbial levels on produce and surfaces. The first step is to 

prepare the produce sample for testing. Oftentimes, the preparation process damages the 

sample as it is homogenized, shaken, or rubbed [18]. Many plants release antimicrobial 

compounds when they are damaged, therefore while testing for microbial activity the process 

might actually be killing the very microbes in question [9, 19]. In contrast, if the sample is 

not damaged as extensively as an attempt to preserve its integrity, there is the chance that a 

portion of the microbes remain attached to the item. Kim et al. [18] compared several 

methods (pummeling, pulsifying, sonication, & hand shaking). They found that, overall, 

pummeling and pulsifying were the most effective methods for recovery. Yet, certain items, 

such as tomatoes, had higher recoveries with methods that were not as damaging (such as 

rubbing), as they did not release antimicrobial compounds.  

Variation within samples should also be considered when performing microbial 

sampling. For example, if there is a wash bin containing produce, it is reasonable to 

hypothesize that there are different degrees of contamination when comparing the top of the 

bin to the bottom of the bin. This potential scenario was tested with bagged baby spinach 
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and romaine lettuce. Researchers compared spinach and romaine lettuce samples taken from 

the top of the bag to samples taken from the bottom of the bag [20]. The study showed that 

in some cases there were higher counts at the bottom of the bags, and rarely were the counts 

higher in the top of the bag. While the data was not consistently significant, the authors 

concluded that they could not reject the hypothesis that there is sample variation within the 

bags.  

 The plate count is subject to the technician’s technique and interpretation [21]. 

Different technicians might arrive to unequal final counts, as the counts are only as accurate 

as the skill of the technician. To assist with variability, plate counts are often done in 

duplicate or triplicate and sometimes by different operators. By replicating plate counts, the 

effect is an overall reduction in sampling variance and total variances [22]. It is often 

unknown to what magnitude the initial microbial population is, so it is useful to quantify 

several serial dilutions. In turn, more colonies and plates are counted, and a weighted average 

can be obtained. Serial dilutions have the added benefit that the technician is better able to 

‘catch’ the readable plates, but there can be increased error due to increased diluting and 

sampling [22].    

 Standard acceptable plate counts are between 30 and 300 colony forming units 

(CFUs) [21]. The terminology ‘colony forming unit,’ or CFU, takes into account that visible 

colonies of bacteria (or yeast and fungus) might be formed by more than one cell, or that 

smaller colonies have grown into each other and appear as one [21]. Counts greater than 300 

CFUs lead to overcrowding and a decreased ability to distinguish between colonies, and 

might inhibit further growth. Counts less than 30 are potentially inaccurate and not 

representing higher counts [21]. In the event that the plate counts yield results outside the 
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parameters, it is suggested the results should be noted as greater or less than the limits of 

detection [21]. Zero counts are discussed later, but do not necessarily represent a complete 

absence of the microorganism, but possibly a concentration below the limit of detection, and 

are often replaced with imputed values. It is infrequently described in the methods sections 

of peer-reviewed articles as to how these values were treated and why.  

  

Indicator Organisms 

 Indicator organisms are often used in place of an actual pathogen. Ideally, when 

testing produce for human pathogens, the pathogen itself would be directly enumerated. 

However, the pathogens in question are often rare, difficult to culture, and not evenly 

distributed [23]. This is an issue because some pathogens are infectious even at low doses 

and need to be detected in some way. As an alternative, organisms that theoretically co-exist 

with the actual pathogen serve as surrogates, and are referred to as indicator organisms. 

Despite the value of indicator organisms, there are also drawbacks that limit the usefulness 

of the data.  

 The presence of an indicator organism does not identify the source of contamination 

[23]. Indicators may come from a variety of hosts, whereas the interest and concern might be 

human or animal contamination. It may also be unclear whether or not the indicator is able 

to replicate in the environment in the same manner as the actual pathogen. Instead, the 

resulting enumeration may indicate that the indicator grew in the sample, rather than growth 

from the environment or an animal source [23]. Some studies have shown a negative 

correlation between fecal indicators and viral contamination [12, 24]. Indicators need to be 

carefully selected. Some research has shown that if the true pathogen is anaerobic, but 
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detected with an aerobic indicator, an aerobic test will represent a lower concentration than 

actually exists [10]. Therefore, aerobic counts are not necessarily indicators of pathogens that 

may be anaerobic. Busta et al. [25] suggest that an indicator is not appropriate if it exists 

when the pathogen is absent, or does not exist when the pathogen is present, and is only 

appropriate if it grows similarly to the pathogen. 

Common indicators for human pathogens include total aerobic plate counts, E. coli, 

Enterococci spp, and coliforms. The total aerobic plate does not differentiate between different 

types of aerobic bacteria; it provides a count for a broad spectrum of pathogenic and non-

pathogenic microorganisms [26]. Since the plate count is not providing actual counts of 

pathogens, the plate count cannot be used as a measure of food safety [26]. Instead, the 

aerobic plate count provides a more general idea of the overall quality. E. coli, Enterococci spp, 

and coliforms are detected as a means to identify fecal contamination. These organisms have 

long been used as indicators of fecal contamination. E. coli was first used as a fecal indicator 

in water in 1892, and by the early 1900s Enterococci spp. and coliforms were being used as fecal 

indicators in various food products [27]. However, there are some concerns with relying on 

these indicators as representatives for fecal contamination. Kornackie et al. [27] bring up the 

issues that these organisms can live outside of warm-blooded intestinal tracts, can live in the 

environment, can become normal flora in food processing settings, and can grow in food 

products. Furthermore, establishing acceptable limits of fecal coliforms can be difficult. A 

lack of correlation is seen between many fecal indicators (Enterococcus spp. and E. coli) and 

actual levels of fecal contamination in food products [28]. This is also true in water testing, 

where fecal indicators and actual pathogens in water have shown to have weak correlations 

[29]. Instead of assuming that the indicator is either useless or highly accurate, it has been 

suggested to consider the presence of indicators as a sign of risk [25]. 
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Some microbes are able to be linked to a specific host through the use of microbial 

source tracking (MST). MST is based on the concept that certain markers are specific to 

certain hosts [23]. There are multiple methods to accomplish MST, such as culture-based, 

chemical, and molecular techniques. Not all microbes can be tested with MST, so it is not 

inclusive for all pathogens. However, it is an additional tool that may prove to be successful 

in certain studies.  

 

Contamination Distributions 

 The physical distribution of microbes between and within food items will have an 

impact on the test results [4, 30, 31]. Additionally, the statistical distribution that the data is 

assumed to fit will in turn influence risk inferences and predictions [32]. Understanding how 

contaminants are distributed physically, and how to statistically represent these distributions, 

has far reaching implications for food safety predictions. 

Physical distributions 

 Different locations within a production chain, and produce item, are likely to have 

different distributions of microbes [4, 31, 32]. Therefore, samples collected from different 

locations cannot be expected to have the same microbial concentrations. Likewise, 

depending on the portion of the produce item sampled, the concentration of microbes may 

vary within the produce item selected. It is possible that microbes are uniformly distributed 

throughout the item or surface, but it is more likely that concentrations are clustered [33]. 

Many produce types have natural defenses against pathogenic microbes, such as natural 

antimicrobials and surface morphology characteristics [19]. As these characteristics are not 

uniform throughout the entire produce type, the distributions of microbes will also vary. 
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Some of the factors that contribute to growth and death of microbial populations are known 

and measured, but there are also many factors that remain unknown [4].  

 Food and water microbial count data frequently display irregular and random 

fluctuations [4], as there are many variables that lead to the heterogeneity seen in microbial 

food items [31]. This should not be surprising since there are many factors involved in 

microbial growth. It seems exceptionally unlikely that one would observe a random 

distribution of microbes within a sample [34]. Jongenburger et al. [33] suggest using the ratio 

of variance to mean to indicate the degree of clustering (a high ratio indicates high levels of 

clustering) as a means of estimating the data’s heterogeneity. 

 It is important to remember that microbial testing is not completely accurate, and 

might not detect any indicators when they are in fact present. Closely related to the accuracy 

of results is the sample size. Gonzales-Barron & Butler [34] clearly explain how sample size 

not only affects the observed mean and variance from the sample, but also the observed 

prevalence of the microbes tested. Therefore, test results need to be treated as a 

representation of the true data. Despite even large sample sizes, it is common to not detect 

any microbes when testing for rare indicators such as E. coli. The most frequent result may 

be zero plate counts. The zero count can either represent an absence of the pathogen, or 

that the pathogen existed in a concentration below the limit of detection [33]. For example, 

perhaps one took a 10 gram sample from a 200 gram piece of produce. On this produce 

item, there might only be 18 CFU of a particular pathogen (which can be an infectious dose 

for some pathogens), meaning an average concentration of approximately less than 1 CFU 

per 10 gram sample. Therefore, there is a chance that by only testing 10 grams one fails to 

detect any of the indicators, but that does not mean that there was an absence of the 
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indicator, rather it existed below the limit of detection. So, even though one had a plate 

count of zero, one cannot report with confidence that there was a complete absence. Zero 

plate counts are a significant issue and worthy of a separate review, but needs to be 

considered when analyzing data [21, 35, 36]. Sometimes these counts are handled by 

imputing data, or leaving them as a zero value.  

Statistical Distributions 

 Historically, the lognormal distribution has been used to describe microbial data 

from food [31, 32]. However, the lognormal distribution is most suitable for uniformly 

distributed high concentration values, with no zero counts [32, 33]. Many indicators and 

pathogens found in food, especially fresh produce, may not exist in high concentrations. 

Instead, they occur with many sporadic numbers between zero counts [31, 33], meaning that 

the lognormal distribution may be inappropriate for such data.  

 There are several issues to consider when fitting a distribution to model plate counts. 

First, the events in the right tail of the distribution are the most significant in terms of public 

health impact [4, 33]. Second, the number of microbes present in a sample is a discrete value. 

It is impossible to have a fraction of a microbe, as is often represented in concentration data. 

However, concentration data can be represented with a continuous distribution. Third, 

microbial populations can grow to large sizes, but can never be less than zero [4].  

In addition to the lognormal distribution, other distributions that have been 

investigated for food sampling data include the normal, Poisson, gamma, negative binomial, 

and Poisson-lognormal distributions [33]. The normal distribution is continuous, does not 

allow for zeros, and is symmetric. This is not ideal for food microbiology, as a distribution 

should allow for zero counts, accommodate discrete counts, and is rarely symmetric. Poisson 
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distributions allow for zero counts, model discrete values, and subtypes are able to 

accommodate for over-dispersion. The gamma distribution, defined by the parameters scale 

and shape [32], is another continuous model that does not allow for zero counts, and is not 

suitable for low counts but can be used as a generalizing distribution for the Poisson 

distribution [33]. Discriminating between the lognormal and gamma distribution is 

oftentimes difficult as they are very similar ([32], reviewed in [37, 38]). The negative-binomial 

distribution arises when the gamma distribution generalizes the mean of a Poisson 

distribution, and is especially useful when the distribution is over-dispersed, as the negative 

binomial has additional parameters to accommodate this situation [33]. The negative-

binomial allows for zero counts and discrete values, while approximating the lognormal. The 

Poisson-lognormal arises from when the lognormal distribution generalizes the mean of a 

Poisson distribution [33]. This type of distribution is valuable for food safety data since it 

allows for zero counts, discrete values, approximates the lognormal, and may be appropriate 

for a mixture of distributions [33]. Gonzales-Barron & Butler [31] found that the Poisson-

Lognormal distribution was the best representation for low microbial counts with zero 

values.  

To actually determine the best distribution, Jongenburger et al. [33] state that fitting 

the actual observations is necessary, not just considering theoretical assumptions. They 

provide these guidelines when considering which distribution to fit: 

1) The Normal, Lognormal, and Gamma distributions typically model continuous 

data, such as concentrations. 

2) The Poisson, Zero-Inflated Poisson, Negative Binomial, and the Poisson-

Lognormal are used for discrete distributions.  
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 Given the above considerations, Jongenburger et al. [33] suggest 5 criteria to assess 

the underlying distribution of microorganisms: 

1) The distribution should be non-negative. 

2) The distribution should allow for zero values. 

3) The distribution should be discrete.  

4) The distribution should reduce to the Poisson distribution.  

5) The distribution should approximate the lognormal distribution at high numbers.  

Using these criteria, researchers should see which distributions best fit their data. Once the 

proper distribution is fit, better inferences can be made.  

 While there has been some research, as described above, on characterizing the 

underlying microbial distributions in food microbiology, there has been no research within 

the area of fresh produce contamination. As described, fresh produce is an important part of 

the American diet and has a history of causing illness. Characterizing the contamination 

distributions is the first step to making risk predictions, and further statistical inferences. 

 

Needs 

There is a need to characterize the underlying microbial distributions in fresh 

produce, where zero counts and heterogeneous data can be expected. In addition to there 

being relatively little literature available on the underlying distributions of microbes on 

produce, there is also a lack of microbial testing of produce at the farm level. However, in 

order to statistically model the distributions, these characterizations need to be performed 

[33, 34]. By first understanding how to interpret test results, further decisions and protocols 
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can be developed that may eventually lead to more frequent testing as a means to assess 

associated risk due to consumption.  

 

Goals and Aims 

Goals: 

 To assess the fit of 5 different statistical distributions (normal, lognormal, Poisson, 

gamma, negative binomial) for the concentrations of 4 indicators (aerobic plate 

count, coliforms, E. coli, Enterococci spp.) on cabbage, cantaloupe, and cilantro samples 

collected from the U.S. side of the United States – Mexico border.  

 

Aims 

 To determine which, if any, of the distributions fit the data, decided by the Pearson’s 

chi-square statistic. 

  

 To determine which, if any, of the 5 assessed distributions has the best fit for each of 

the indicator – produce combinations.  

 

Significance  

 If the underlying distributions and contamination patterns of microbial 

contamination occurring at the field and farm level were better understood, there would be 

more incentive for a farmer to test produce before it leaves the packing shed. From the 

perspective of farmer growing in the United States-Mexico growing region, microbial testing 

is rather expensive. If it is not even established as to how to treat the resulting data, sampling 
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procedures are less efficient and the test results have little meaning. At this point, there is 

little motivation for a farmer to initiate testing. However, knowing how to model the data 

with appropriate distributions means that better risk predictions can be made, and in turn 

provide more incentive for a farmer to test their produce for contamination.  
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INTRODUCTION 

 

Foodborne illness outbreaks associated with fresh produce consumption have 

increased in recent years (reviewed in [39]).  Despite the many nutritional benefits of fresh 

fruits and vegetables, there is also an inherent risk of illness in consuming foods that are not 

treated (either thermally or chemically) to rid of harmful pathogens [3]. Fresh fruits and 

vegetables are especially prone to contamination since there are many opportunities for 

pathogens to come in contact with produce through soil, water, animals, and workers 

(reviewed in [16, 39]). The result has been large outbreaks that generate serious illness, and 

even death. Coupled with the effects on consumers is the detrimental effect an outbreak has 

on a farmer (reviewed in [40]). Being able to predict and detect contamination of fresh 

produce prior to consumption is paramount to protecting the health of consumers and 

farmers worldwide. 

Obtaining representative samples that contain enough information to make valid risk 

predictions is particularly difficult, as the pathogens are often relatively rare, and not 

necessarily homogenously distributed. Many of the pathogens that cause serious illness (i.e. 

Escherichia coli O157:H7) exist at very low prevalence levels [41, 42], and are challenging to 

detect [23]. Therefore, microbial indicators with similar physical properties are used, and 

even these organisms are often difficult to detect [23]. Consequently, testing procedures 

often indicate an absence of these indicators on the tested sample, even when they are 

present in the larger sample [33]. Furthermore, the spatial distribution of indicators is not 

necessarily homogeneous, instead they tend to be clustered and distributed irregularly within 

the item [30]. This is likely to due to the fact that there are many variables affecting the 

distribution, including environmental fluctuations [16] and physical characteristics that alter 
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the ability for pathogens to persist [18].  For these reasons, further investigation of how 

microorganisms are physically and statistically distributed in the larger sample needs to be 

examined, prior to performing any modeling or risk predictions.  

Before any models or predictions can be made, it is essential to identify the 

underlying statistical distribution of an indicator. Several studies have examined the 

underlying microbial distributions in meat [34], dairy [4], and drinking water [43]. They have 

found that the lognormal distribution, which is traditionally used for microbial data, is not 

always appropriate as it fails to properly model data with an excess of zero counts. These 

zero counts might actually be values below the limit of detection, and inaccurately indicating 

a complete absence of an indicator. Instead, it has been recognized that distribution fitting 

procedures should be performed to determine a distribution that is capable of 

accommodating the features of data involving rare organisms. These features are not limited 

to, but include, an excess of values below the limit of detection, sparse data, and heavily 

skewed results [32, 34]. Possible distributions that can be assessed are the normal, lognormal, 

Poisson, gamma, and negative binomial. These 5 distributions are common for modeling 

food safety data (reviewed in [32]). As a consequence of sparse counts, it has also been 

suggested that the sample size needs to be much larger than expected, maybe as high as 100 

samples in the case of drinking water [43]. Despite the body of research on this topic for 

other food types, fitting the underlying statistical distributions has not been performed with 

fresh produce. Assessing the underlying statistical distributions is a necessary step in order to 

make accurate risk predictions, which can thereby decrease the risk of illness and adverse 

effects on farmers. 
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Thus, to address these needs, the goal of this study is to assess the fit of 5 statistical 

distributions (normal, lognormal, Poisson, gamma, negative binomial) in fresh produce 

samples collected between November 2002 and November 2004, from the U.S. side of the 

United States-Mexico border. The produce samples were collected as part of the Clean 

Greens I-II study, performed by Emory University and North Carolina State University. A 

subset of the samples, cabbage, cantaloupe, and cilantro, were fit to the five different 

distribution types using proc genmod in SAS 9.3 (SAS Institute Inc., Cary, N.C.). The results 

indicate that the lognormal distribution has the best fit of the 5 assessed distributions. The 

findings of this analysis can be used to make further risk predictions and distribution 

assessments for this data set. It may also highlight the importance of distribution fitting 

procedures for future studies on fresh produce contamination.   
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METHODS 

 

Sample Collection 

Produce samples (n=490) were collected from 8 packing sheds on the U.S. side of 

the United States – Mexico border, between November 2002 and November 2004. The 

analysis included 13 different produce types (broccoli, cabbage, cantaloupe, celery, Swiss 

chard, cilantro, collards, curly parsley, dill, kale, parsley, root parsley, turnip greens). Within 

the packing shed, produce was sampled from 8 locations (bin, box, conveyor belt, dump 

tank, merry-go-round, rinse cycle, wash tank). Samples were aseptically collected in duplicate, 

at 150g per sample.  

 

Sample Processing 

Following sample collection, samples were packed on ice and shipped overnight to 

the Department of Food Sciences at North Carolina State University. All samples were 

processed within 24 hours of collection. Samples were tested for total aerobic bacteria 

(APC), total coliforms, total Enterococcus, and total Escherichia coli. Samples were divided into 

25g sub-samples, and diluted 1:10 in 0.1% peptone buffer (Becton Dickinson, Sparks, MD). 

Total aerobic bacteria assays were performed using Aerobic Count Plate PetrifilmTM (3M, 

Saint Paul, MN). Total coliform and E. coli assays were performed using Coliform/ E. coli 

PetrifilmTM(3M, Saint Paul, MN). Total Enterococcus assays were performed using KF 

streptococcal agar (Becton Dickinson, Sparks, MD). All data were treated as continuous. To 

accommodate samples below the limit of detection (LOD), a value of 5 cfu/ml was imputed. 

The imputed value of 5 cfu/ml is halfway between the LOD (10 cfu/ ml) and 0. Further 
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information regarding sample collection and processing are detailed in previous studies [15, 

41]. 

 

Statistical Analysis 

Data were analyzed using SAS 9.3 (SAS Institute Inc., Cary, N.C.) at alpha= 0.05. 

The normal, lognormal, Poisson, gamma, and negative binomial distributions were fitted to 

the data. This was accomplished by modeling intercept-only models using proc genmod. To 

model the lognormal distribution, the data was first transformed by taking the natural 

logarithm of the indicator concentration (performed in SAS 9.3). Of the 13 types of produce 

collected, 3 types were analyzed individually: cabbage (n=109), cantaloupe (n=42), and 

cilantro (n=141). These produce types were selected because they had the greatest number 

of samples. The concentration results from all locations and collection dates were combined. 

The number of samples for the 13 produce types was as low as 3, and as high as 141.  

Histograms representing the concentrations were created using Microsoft Excel (2010). A 

secondary analysis was done for each of the produce-indicator combinations with values 

below the LOD removed.  

The Pearson’s Chi-square (χ2) statistic test was used to test the goodness of fit. It is 

capable of comparing the observed frequencies of values with the expected frequency from a 

theoretical distribution [44]. The χ2 test statistic can be calculated with the following 

equation: 
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where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i. The 

degrees of freedom for the Chi-square tests are n-1. Expected values were computed with 

maximum likelihood estimation [45]. A p-value greater than 0.05 indicated that there was no 

evidence to imply a lack of fit. If the p-value was less than 0.05, it was determined that the 

distribution did not fit the data.  In other words, if the p-value was greater than 0.05, the 

distribution was considered to fit the data. 

Following examination of the χ2 values, Akaike’s Information Criterion (AIC) 

statistics were compared between distributions that did not indicate a lack of fit, from the 

Pearson’s Chi-square analysis. The AIC is another goodness of fit statistic. The AIC is a 

likelihood-based statistic that compares the probability that a distribution fits the data 

(reviewed in [46]). The model with the smallest AIC value was considered to have the best fit 

[46]. The AIC can be calculated with the following equation: 

 

               

 

where k is the number of parameters in the model (k=1 for the tested models, since no 

predictors were included), and L is the value of the maximized likelihood function. The final 

choice for the best model was the model that had a Chi-square p-value greater than 0.05, and 

the lowest AIC value.   

 



23 
 

  



24 
 

RESULTS 

 

Goal 

The goal of this study was to assess the fit of 5 different statistical distributions 

(normal, lognormal, Poisson, gamma, negative binomial) for the concentrations of 4 

indicators (aerobic plate count, coliforms, E. coli, Enterococci spp.) on cabbage, cantaloupe, and 

cilantro samples collected from the U.S. side of the United States – Mexico border. 

 

Histograms 

Histograms allow a visual assessment of the non-transformed concentration data and 

are able to quickly provide information on the overall distribution shape, and display 

skewness characteristics. A total of 12 histograms were produced, one per each indicator 

(aerobic plate count, coliforms, Escherichia coli, Enterococcus spp.) for the 3 produce types 

(cabbage, cantaloupe, cilantro) (Figures 1, 2, 3). All histograms showed a right skew with the 

majority of indicator (excluding the aerobic plate count) concentration values below the limit 

of detection (LOD, 5 cfu/ ml). The right tail consistently had a very low number of extreme 

concentration values, which are the values of most interest when making risk predictions. It 

is clearly evident that the data were not normally distributed, and the events of most interest 

(the highest concentrations) occurred rarely.  

The cabbage (n= 109) histograms are shown in Figure 1. The aerobic plate count (a) 

had values ranging from 9,000 to 29,000,000 cfu/ ml, with very few concentrations between 

9,550,000 and 29,000,000 cfu/ ml. The coliform concentrations (b) had values ranging from 

5 to 3,000 cfu/ ml, with very sparse data throughout, including 33 out of 109 (30%) samples 
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below the LOD. The E. coli (c) values were highly concentrated below the LOD, with 84 out 

of 109 (77%) values being reported as 5 cfu/ ml. The remaining 15 concentrations were 

from 15 to 3,350 cfu/ ml, and were distributed sporadically. The Enterococcus (d) data had the 

most consistent distribution of concentrations, ranging from 5 cfu/ ml to 380,050 cfu/ ml. 6 

out of the 109 (6%) samples were below the LOD. However, the data was still heavily right 

skewed. 

The cantaloupe (n= 42) histograms are shown in Figure 2. The aerobic plate count 

(a) had values ranging from 1,490,000 to 35,000,000 cfu/ ml, with concentrations 

sporadically distributed throughout. The coliform (b) samples only had 3 out of 42 (7%) 

concentrations below the LOD, with the remaining values distributed relatively consistently 

from 20 to 26,300 cfu/ ml, but at low frequencies. The E. coli (c) concentrations were mostly 

aggregated (29 out of 42, 69%) below the LOD, with the few remaining concentrations 

scattered between 15 and 1,850 cfu/ ml. The Enterococcus (d) concentrations were the least 

skewed of any indicator, amongst all produce types. The distribution displays what appear to 

be two separate peaks occurring near 5,000 cfu/ ml and 24,000 cfu/ ml, with the most 

extreme concentration at 69,000 cfu/ ml, and no concentrations below the LOD. 

The cilantro (n= 141) histograms are shown in Figure 3. The aerobic plate count (a) 

had a cluster of values near 3,000,000 cfu/ ml, and then a second peak of values near 

2,500,000 cfu/ ml, with the concentration of values slowly decreasing until the maximum 

concentration at 70,000,000 cfu/ ml. The coliform concentrations (b) had a large portion (32 

out of 141, 23%) of concentrations below the LOD, with the remaining concentrations 

randomly distributed until the highest concentration reported at 30,000 cfu/ ml. The E. coli 

concentrations (c), as with cabbage and cantaloupe, were mostly accumulated below the 
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LOD (93 out of 141, 66%), with rare concentrations reported between 10 and 10,350 cfu/ 

ml. The Enterococcus concentrations (d) ranged from below the LOD to 265,000 cfu/ ml, but 

many concentrations (27 out of 141, 19%) were below the LOD, with several concentrations 

reported from 10 to 265,000 cfu/ ml, and no concentrations reported between 69,000 and 

235,000 cfu/ ml.  

 

Distribution Fitting 

Fitting different distributions to each of the indicator concentrations was performed 

to determine which of the five tested distributions was the most appropriate for each of the 

indicator types, within each of the produce types. The output statistics, including Pearson’s 

chi-square values, Akaike’s information criteria (AIC), and the full log likelihood values, can 

be seen in Tables 1, 2, 3. For 10 of the 12 indicators, one of the 5 distributions was selected 

as the best fit. If only one distribution fit the data, then that was considered the best fit by 

default. The two exceptions were the coliform and Enterococci indicators in cilantro, which did 

not fit any of the assessed distributions. The lognormal distribution fit all 10 of the 

indicators that had at least one distribution that fit the data. It was also consistently the best 

fit for all of the indicators that had two or more distributions indicating a goodness of fit. 

The normal and Poisson distributions did not fit for any of the indicators, within any of the 

produce types. The final distribution selections are summarized in Table 4. 

The cabbage results are shown in Table 1. For the aerobic plate count and the 

Enterococcus data, there were 2 distributions that statistically indicated a goodness of fit. The 

lognormal and gamma distributions fit the aerobic plate count, and the lognormal and 

negative binomial fit the Enterococcus concentration. Therefore the AIC was used to select the 
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best distribution, which was the lognormal distribution for both indicators. The full log 

likelihood value was in agreement with the AIC. For both the coliform and E. coli 

concentrations, the lognormal was the only distribution that statistically fit.  

The cantaloupe results are shown in Table 2. The aerobic plate count, coliform, and 

Enterococcus indicators all statistically fit the lognormal, gamma, and negative binomial 

distributions. Using the AIC to select the most appropriate model, the lognormal was 

preferred. The AIC scores were very close for both the gamma and negative binomial, but 

not nearly as low as the AIC for the lognormal. The full log likelihood value was in 

agreement with the AIC. The coliform data only fit the lognormal distribution.  

The cilantro results are shown in Table 3. The aerobic plate count data statistically fit 

the lognormal, gamma, and negative binomial distributions. Again, using the AIC score, the 

lognormal distribution was selected to be the most appropriate. The full log likelihood value 

was in agreement with the AIC.  The E. coli indicator only statistically fit the lognormal 

distribution. The coliform and Enterococcus data did not statistically fit any of the 5 selected 

distributions. This does not mean that the data does not fit any distribution; rather it needs to 

be examined with distributions not included in this analysis.  

As a secondary analysis, values below the LOD were removed for all indicator-

produce combinations to determine if the best fitting distributions would be different from 

the first analysis. The aerobic plate counts did not have concentrations below the LOD; 

therefore the distribution fitting results were not affected. The results for the coliform 

indicators varied. Only the lognormal distribution fit the coliform data for cabbage samples. 

The lognormal, gamma, and negative binomial distributions fit the coliform data for 

cantaloupe samples. None of the distributions fit the coliform data for cilantro samples. For 
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the E. coli indicator, in all 3 produce types, no distributions were found to fit the data when 

the values below the LOD were removed. The results for the Enterococcus indicator varied. 

The lognormal and negative binomial distributions fit the cabbage Enterococcus samples. The 

lognormal, gamma, and negative binomial distributions fit the cantaloupe data. However, as 

with other indicators, none of the distributions fit the Enterococcus cilantro samples. When 

one or more distributions were found to fit an indicator, the AIC score determined that the 

lognormal distribution consistently had the best fit. In summary, there was no overall effect 

of removing the values below the LOD, since the lognormal distribution remained the best 

fitting distribution for produce-indicator combinations with concentration values that fit at 

least one of the five assessed distributions. 
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DISCUSSION 

 

The primary goal of this analysis was to assess the fit of 5 different statistical 

distributions (normal, lognormal, Poisson, gamma, negative binomial) to characterize 4 

indicator concentrations (aerobic concentration, coliforms, Escherichia coli, Enterococci spp.) 

among cabbage, cantaloupe, and cilantro samples that were collected on the U.S. side of the 

United States-Mexico border region. This analysis found that, of the 5 assessed distributions, 

the lognormal distribution consistently fit most (10 out of 12) indicators, while the gamma 

and negative binomial distributions also fit several of the indicators (6 out of 12). For the 

indicators where either the gamma and negative binomial distributions fit, in addition to the 

lognormal, the lognormal was consistently selected as the best fit (based on the AIC 

statistic).  

 

The lognormal distribution 

For 10 of the 12 sets of produce-indicator combinations, the lognormal distribution 

was found to fit the concentration data based on goodness of fit statistics (Tables 1-3). The 

coliform and Enterococcus indicators in cilantro did not fit any of the assessed distributions. 

The lognormal likely fit these data because it transformed the shape of the distribution, 

making it less skewed and more normally distributed. For this study, the data were right 

skewed, with very few high concentration values, leading to a highly skewed shape with a 

long right tail (Figures 1-3). By applying a lognormal transformation, the skew shifted 

towards the center, and the overall shape became more normal. Given that these data result 

from microbial growth, it was expected that the shape of the distribution would be similar to 
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other microbial studies, where exponential growth of microorganisms leads to a right skew 

with rare, high concentration values in the right tail (reviewed in [47]). Highly skewed data, 

such as microbial concentration data, consequently becomes less skewed after natural log 

transformation [48]. Further studies on the actual growth of these indicators would provide 

more insight into the shape of the distribution under different factors influencing the 

presence and growth of these indicators on produce. 

 

The gamma and negative binomial distributions 

The gamma and negative binomial distributions also fit several of the indicators from 

each of the produce types, namely the aerobic plate counts (Tables 1-3). Both of these 

distributions work well with over-dispersed data, and both have an additional parameter to 

assist with accommodating such data [32, 33]. The indicator concentrations (aerobic plate 

count, coliforms, E. coli, Enterococci spp.) were very over dispersed, with concentrations 

reported as low as 5 cfu/ml, to concentrations exceeding 7 million cfu/ ml (aerobic plate 

count from cilantro, Figure 3). In addition to the gamma and negative binomial distributions 

working well with over-dispersed data, they also work with well with skewed data [33]. Since 

these data were both over-dispersed and highly skewed, it is reasonable to expect these 

distributions to fit this data. These results were not completely unexpected, since previous 

literature has identified both the gamma [49] and negative binomial [50] as distributions that 

can be applied to microbiological data. However, these distributions did not fit all of the 

indicators. In particular, the gamma and negative binomial did not fit indicators that were 

exceptionally concentrated below or near the LOD (see figures 1-3), with hardly any 

concentration values in the right tail, such as for E. coli. The shape of these particular 
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indicator concentrations is inconsistent with the gamma and negative binomial distributions, 

which have a slightly more continually decreasing slope in the right tail (as opposed to a 

drastic reduction in values). Even though all of the distributions are right skewed, with 

relatively few values in the right tail, the indicators that fit the gamma and negative binomial 

distributions still have more information between the peak concentration and highest values 

compared to the indicators that did not fit these distributions.  

 

The lognormal distribution was consistently the best of the 5 distributions 

In all cases where 2 or more of the assessed distributions statistically fit the data 

(determined by the Pearson’s chi-square value), the lognormal was determined to be the best 

fitting distribution (determined by the AIC statistic). There is a large body of literature 

discussing the similarities between the lognormal and gamma distributions (reviewed in [51], 

[52]). However, despite the likeness, the lognormal was still found to be the best fit. 

Incidences where the two tend to be distinguished from each other are when there is sparse 

information for high concentration values, and the distributions can become prone to over- 

or under-estimating the mean and variance [52]. The calculated mean and variance are then 

used for maximum likelihood techniques, which are factored into the overall goodness of fit 

tests [52].  It is plausible that for this study, where there was sparse information regarding 

high concentrations, the lognormal distribution performed better at calculating the mean and 

variance, and leading to an overall better fit. Whereas the lognormal and gamma are 

continuous distributions, the negative binomial is a discrete distribution.  In situations where 

the variance is high, the sample size is small, and the overall shape is large, the negative 

binomial becomes less robust, decreasing the ability for MLE techniques to fit the negative 
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binomial [51]. As seen in figures 1-3, this data was widely dispersed with a large variance, 

possibly leading to MLE techniques not being capable of fitting the negative binomial to 

these particular samples.  

 

Strengths and Limitations 

This study had both strengths and limitations. The most notable limitation in this 

analysis was that only 5 distributions were assessed. It would be worthwhile to examine 

compound distributions, such as the Poisson-lognormal, to determine if these types of 

distributions can offer a better fit. Strengths of this study include that both continuous and 

discrete distributions were compared. The data is treated as concentration values 

(continuous), but these values arise from plate counts, which are discrete. Therefore, both 

types of distributions can and should be considered since they both have the potential to 

reflect the resulting shape of the distribution.  

 

Implications 

The findings in this analysis can direct future comparisons of microbial 

concentration data that are collected from fresh produce, and thereby lead to more accurate 

risk predictions. A concern in this comparison of distributions was the small sample sizes for 

some of the sampled produce (i.e. curly parsley, excluded from this analysis due to a small 

sample size of only 3), which is likely to be a recurring issue for studies examining rare 

indicators.  Once the concentration data is examined to determine a best fitting distribution, 

researchers will have more confidence in their risk predictions.  
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Conclusions 

In conclusion, this analysis found that the lognormal was consistently the best 

distribution, compared to the normal, Poisson, gamma, and negative binomial, for the 

majority of the indicators on cabbage, cantaloupe, and cilantro samples. However, all 

indicator frequencies indicated a left skew, very few high concentrations, and heterogeneity, 

suggesting that other distributions should probably be assessed before make any statistical 

inferences. Not assessing the fit of a distribution can result in an over or underestimation of 

risk.  
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Tables 

Indicator Distribution Pearson 
Chi Square 
(d.f.= 108) 

AIC Full Log(LL) 

Aerobic 
Plate Count 
 

Normal 135702 x 1010 3599.98 1797.99 
Lognormal  36.12a 192.94b -94.47 
Poisson 505154270.01 325624664.26 -1628112331.10 
Gamma 84.38 a 3481.78 -1738.89 
Negative Binomial 163.41 3447.73 -1721.86 

Coliforms Normal 49599422.94 1733.40 -864.70 
Lognormal  88.59 a 290.73b -143.37 
Poisson 135837.62 90169.16 -45083.58 
Gamma 372.02 1404.69 -700.35 
Negative Binomial 141.79 1406.54 -701.27 

E. coli Normal 14799947.25 1601.58 -798.79 
Lognormal  44.82 a 216.34b -106.17 
Poisson 173089.52 42410.39 -21204.20 
Gamma 2024.33 1030.05 -513.03 
Negative Binomial 635.41 1033.97 -514.99 

Enterococcus Normal 10772632454.60 2319.90 -1157.95 
Lognormal  116.55 a 320.63b -158.32 
Poisson 1401121.53 1244349.11 -622173.55 
Gamma 182.24 2098.62 -1047.31 
Negative Binomial 78.88 a 2099.01 -1047.50 

Table 1 
Goodness of fit test statistics for cabbage (n=109) 
aRepresents models that statistically ‘pass’ Goodness of Fit test 
bLowest AIC score, indicating best fit compared to other listed models 
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Indicator Distribution Pearson 
Chi Square 
(d.f.= 41) 

AIC Full Log(LL) 

Aerobic 
Plate Count 
 

Normal 280.76 1460.20 -728.10 
Lognormal  5.35a 36.66b -16.33 

Poisson 266105651.52 244668202.27 -122334100.10 
Gamma 19.30a 1443.78 -719.89 
Negative Binomial 44.31a 1439.74 -717.87 

Coliforms Normal 2955825103.00 882.10 -439.03 
Lognormal  50.31a 130.77b -63.39  
Poisson 372097.21 390408.05 -195203.02 
Gamma 46.84a 817.21 -406.53 
Negative Binomial 21.12a 817.25 -406.62 

E. coli Normal 6772991.07 626.80 -311.40 
Lognormal  29.10a 107.78b -51.89  
Poisson 42808.97 22150.14 -11074.07 
Gamma 270.58 441.82 -218.91 
Negative Binomial 80.12 443.11 -219.55 

Enterococcus Normal 10505440297.56 935.37 -465.68 
Lognormal  8.97a 58.36b -27.18  
Poisson 546785.05 531075.35 -265536.16 
Gamma 28.46a 915.11 -455.55 
Negative Binomial 36.22a 915.11 -455.55 

Table 2 
Goodness of fit test statistics for cantaloupe (n=42) 
aRepresents models that statistically ‘pass’ Goodness of Fit test 
bLowest AIC score, indicating best fit compared to other listed models 
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Indicator Distribution Pearson 
Chi Square 
(d.f.= 140) 

AIC Full Log(LL) 

Aerobic 
Plate Count 
 

Normal 1.578 x 1013 4965.39 -2480.70 
Lognormal  81.33a 326.56b -161.28 
Poisson 1760894512.00 1412690848.50 -70635423.20 
Gamma 101.23a 4811.77 -2403.88 
Negative Binomial 131.10a 4783.18 -2389.59 

Coliforms Normal 2794908248.90 2773.27 -1384.63 
Lognormal  185.43 442.77 -219.38 
Poisson 1468701.78 756555.81 -3738276.91 
Gamma 771.79 2129.74 -1062.87 
Negative Binomial 212.64 2131.34 -1063.67 

E. coli Normal 224678131.21 2417.82 -1206.91 
Lognormal  104.60a 362.04b -179.02 
Poisson 696638.07 210083.99 -105041.00 
Gamma 2159.99 1532.01 -764.01 
Negative Binomial 511.13 1535.65 -765.82 

Enterococcus Normal 193434269654.00 3370.70 -1683.35 

Lognormal  255.88 488.17b -242.08 

Poisson 17773188.04 5881799.65 -2940898.83 

Gamma 1633.05 2422.33 -1209.17 

Negative Binomial 343.94 2423.42 -1209.71 

Table 3 
Goodness of fit test statistics for cilantro (n=141) 
aRepresents models that statistically ‘pass’ Goodness of Fit test 
bLowest AIC score, indicating best fit compared to other listed models 
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Produce Type Indicator Best fitting distribution  

Cabbage Aerobic Plate Count Lognormal 
Coliforms Lognormal 
E. coli Lognormal 
Enterococcus  Lognormal 

Cantaloupe Aerobic Plate Count Lognormal 
Coliforms Lognormal 
E. coli Lognormal 
Enterococcus  None 

Cilantro Aerobic Plate Count Lognormal 
Coliforms Lognormal 
E. coli Lognormal 
Enterococcus  None 

Table 4 
Summary of best fitting distribution type, according to AIC score, by produce type and indicator 
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Figures 

 

 

 

Fig. 1. Histograms of the observed frequencies of CFU counts from cabbage samples (n=109), by
a) aerobic plate count, b) coliforms, c) E. coli, d) Enterococcus. Concentrations below the LOD 
reported as 5 cfu/ ml.
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Fig. 3. Histograms of the observed frequencies of CFU counts from cilantro samples (n=141), by 
a) aerobic plate count, b) coliforms, c) E. coli, d) Enterococcus. Concentrations below the LOD 
reported as 5 cfu/ ml.
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APPENDIX A: IRB CLEARANCE 
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