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Abstract 
 

Bar Diagramming in School Mathematics: 
A Review of the Literature 

By 
Zendré Yvette Sanders 

 
This thesis is a review of the extant empirical literature about the school mathematics 
practices of bar diagramming, strip diagramming, tape diagramming, the Model Method, 
and bar modeling. For a few decades, policy makers, curriculum designers, and educators 
in several of the nations that have repeatedly ranked as top performers in mathematics 
have prioritized the introduction and featuring of these diagrammatic classroom practices. 
As incorporation of these diagrammatic practices has increased, so has the need to 
provide stakeholders with additional information about the effective and ineffective 
handling of diagrams in the classroom. In response to this need, I conducted a review of 
the empirical literature surrounding these diagrammatic practices. A total of 16 studies 
across 15 research articles met the literature search criteria. Major findings are as follows: 
(1) Bar diagrams can represent mathematical concepts in ways that show their connection 
to other mathematical concepts. (2) Bar diagrams can simultaneously show the informal, 
qualitative aspects of a concept and the formal, quantitative aspects of the concept. (3) 
Bar diagrams allow students to become comfortable with operating upon unknowns, 
undoing operations, and maintaining balance across the equal sign. (4) Habituation to the 
visual nature of bar diagrams and circumvention of algebra via arithmetic can cause some 
students problems. Further research about how stakeholders can better employ bar 
diagramming to develop and deepen students’ understanding of problem structure and 
students' appropriation of algebraic concepts and principles is suggested. 
 

Keywords: bar diagramming, bar modeling, diagrammatic reasoning, instructional 
technique, mathematics instruction, school mathematics, the Singapore Model Method, 
strip diagramming, tape diagramming  
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Statement of the Problem 

At its essence, mathematical thinking consists largely of reasoning about structure 

and relationship, or diagrammatic reasoning (Bakker & Hoffmann, 2005; Dörfler, 2001, 

2005; Hoffmann, 2005, 2007; Hoopes, 1991; Otte, 2011, pp. 276–278). Thus it is perhaps 

unsurprising that diagrams and diagramming are central features of the mathematics 

curricula of countries whose students repeatedly rank highest on international 

mathematics assessments, as the table in Appendix A shows. Singapore Math, for 

example, is the national curriculum of top-ranking Singapore, and throughout the 

curriculum arithmetic, prealgebra, and early algebra are structured to be taught, learned 

and performed via diagrams and diagramming. 

Due to Singapore’s repeated international ranking as first or second in 

mathematics, Singapore Math has garnered much attention, with one U.S. writer even 

referring to it as “Miracle Math” (Garelick, 2006). As appealing as the notion of a 

miracle math might be, it would be a "technocratic" and "somewhat simplistic" view to 

deem didactic materials as “somehow miraculously [able to] develop mathematical 

knowledge” (Gellert, 2004, pp. 163-164). Didactical materials cannot work miraculously: 

They are “a means for setting ideas and intentions into teaching practice” (p. 163) and 

students do not appropriate ideas and intentions automatically (Biesta, 2007). Rather, 

student appropriation of ideas and intentions requires acts of mutual interpretation on the 

parts of students and teachers (Biesta, 2007). 

For this reason, it is important for teachers to know the ideas and intentions 

behind didactic material. My initial survey of the literature reveals that some teachers 

have an incomplete understanding of the ideas and intentions behind bar diagramming 
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and have incomplete models of or ways of interpreting bar diagramming. For instance, a 

research report detailing the adoption of Math in Focus® in Georgia’s Hall County 

school district documents such mixed experiences with and mixed sentiments about bar 

diagramming as the following (Badger, Spence, & Velatini, 2010): 

• Many teachers stated that bar modeling, number bonds, and manipulatives 
were important approaches to foster students’ conceptual learning of 
mathematics rather than simply memorizing them. Some reported 
difficulties, however, to effectively teach word problems and bar modeling 
strategies thus presenting further challenges for students’ learning. (p. 71) 

• While a few teachers noted they were confident and comfortable 
demonstrating bar modeling to solve word problems—with others stating 
that they found it difficult to teach bar modeling because they did not 
understand why a bar model would be drawn in such a manner—they 
noted that students expressed confusion with bar modeling. (p. 91) 

• One Grade Three teacher wrote in a journal entry in the second year, “I 
would LOVE to have more training on bar modeling!” (p. 135) 

The authors of the report viewed these and other findings as indicative of issues with 

fidelity of implementation and a need for “specific areas of training and ongoing support 

from the county and school administration” (p. 95). Because some teachers experience 

challenges when working with bar diagrams, and because knowledge of the ideas 

underlying bar diagrams affects the utility of bar diagrams, a synthesis of research 

knowledge about helpful and unhelpful handling of bar diagrams would be useful.  

Purpose of the Literature Review 

My purpose in conducting this review is to examine the relevant empirical 

research surrounding the practice of bar diagramming in classroom mathematics. 

Specifically, the review addresses the following questions: 

1. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of their capacity for mathematical representation? 
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2. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of supporting student problem solving? 

3. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of their capacity to support students' growth in mathematical understanding? 

Significance of the Review 

How students learn mathematics matters at least as much as what mathematics 

students learn: As Boaler found, a three-way interaction occurs among a learner’s way of 

practicing mathematics, his or her mathematical knowledge, and his or her identity as a 

mathematics learner (see Appendix B). It is therefore important to not only understand 

what the learning outcomes of an educational intervention are, but how and why an 

intervention supports or hampers learning and understanding. By including context-

specific recommendations and details about bar diagramming, the findings of the 

proposed review have the potential to provide decision makers and practitioners with 

further insight about how to handle bar diagrams in the classroom.  

The social significance of the proposed study lies in its potential to contribute 

practical knowledge about how to guide students along the arithmetic-to-algebra 

trajectory, preparing them for algebra instruction in a timely fashion. Students who 

complete algebra early enough can complete more advanced mathematics courses and 

other STEM courses in high school to position themselves for greater access to a wider 

variety of college majors and for greater success in college. Currently, scalable ways to 

equitably foster timely algebra preparedness are not clearly articulated in the United 

States (Stein, Kaufman, Sherman, & Hillen, 2011). Bar diagramming is a practice 

reportedly employed successfully in top-performing countries to teach students Early 
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Algebra and prealgebra in preparation for algebra. It is a low-tech intervention thus 

accessible independent of a school’s technological resources. Greater understanding of 

the intended ideas and optimal handling of bar diagramming might benefit U.S. students 

and teachers in this area. 

Literature Review Search Strategy 

I completed a background familiarization search as part of an earlier, informal 

literature review about bar diagramming. During that informal literature review, I began 

collecting articles containing theory to plausibly explain the mechanisms underlying bar 

diagrams and bar diagramming. I also began collecting empirical studies about bar 

diagrams and bar diagramming.  

As Table 1 shows, searched databases included Dissertations and Theses, 

Educational Resources Information Center (ERIC), PsycInfo, and Web of Science. 

Search strings included the following: bar diagram* & math*, bar model* & math*, 

model method, Singapore Math, strip diagram* & math*, and tape diagram* & math*. 

Search results were screened to include only peer-reviewed reports in either English or 

Spanish. Additionally, I contacted researcher Swee Fong Ng and research team Julie 

Booth and Kenneth Koedinger to inquire about additional bar diagramming studies.  
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Table 1 

Preliminary Search Hits for Empirical Studies about Bar Diagramming 

 Dissertations and Theses ERIC PsycInfo Web of Science 
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bar diagram* 
& math* 185 1 1 2 1 1 4 1 1 8 1 1 

bar model* & 
math* 266 15 2 4 2 2 2 0 N/A 80 1 1 

“Model 
Method” 2408 63 1 31 3 2 144 6 5 1276 5 3 

Singapore 
Math 86 17 3 6 1 1 2 1 1 4 0 N/A 

strip diagram* 
& math* 10 4 0 0 N/A N/A 0 N/A N/A 0 N/A N/A 

tape diagram* 
& math* 5 2 0 1 1 1 0 N/A N/A 0 N/A N/A 

Totals   7   7   7   5 
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Definition of Key Terms 

 Two key terms are central to this study. 

Bar diagram 

A bar diagram is a rectangular figure (or group of rectangular figures) used in 

school mathematics to depict mathematics objects, concepts, and word problems. 

Synonyms include strip diagram, tape diagram, and bar model (Booth & Koedinger, 

2012, p. 494). Appendices D and E contain images, illustrations, explanations, and 

applications of bar diagrams and bar diagramming. As one can see from Appendices D 

and E, a bar diagram can be singular in nature or can consist of several related bar 

diagrams. Many times, two or three bar diagrams are drawn pointedly adjacent for the 

purposes of comparison, equalizing, etc. One important note is that the physical length of 

a bar diagram, but never its height, is what indicates relative magnitude of the quantities 

that adjacent bar diagrams represent.  

Bar diagrams can depict a wide variety of mathematical objects, such as the 

particular fraction three-fourths, a known or unknown quantity, or a mathematics word 

problem in its entirety. A bar diagram that depicts the fraction 3/4, for instance, can be 

converted to a bar diagram depicting the percentages 25% and 75%, the ratio 3:4, or the 

decimals 0.25 and 0.75. Notably, this conversion is possible simply by converting only 

the labels on the bar diagram and not the bar diagram itself. This can demonstrate for 

students the fact that fractions, percents, ratios, and decimals can be equivalent and are all 

different ways of doing the same thing—namely, of “talking about” parts and wholes.  

Booth and Koedinger (2012, p. 494) provide the following useful discussion that 

defines bar diagrams and explains their use: 
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Diagrams are often used in math instruction in Singapore (Beckmann, 2004) and 

Japan (Murata, 2008), two countries in which mathematics achievement is 

consistently outstanding by world standards (National Center for Education 

Statistics, 2003). The style of diagrams used in these countries, sometimes called 

tape diagrams (Murata, 2008), strip diagrams (Beckmann, 2004), or bar models 

(Hoven & Garelick, 2007), uses strings of objects and/or strips of different lengths 

to represent the magnitude of and relationships between the quantities in the 

problem. Like algebraic equations (but unlike symbolic arithmetic problems), 

these diagrams are not meant to help users carry out operations, but to help them 

decide what operations to use and to understand why those operations are 

conceptually sound (Beckmann, 2004). Tape diagrams are also found in textbooks 

and some educational software (e.g., Carnegie Learning, 2009) in the United 

States, but their use is less frequent and inconsistent (Murata, 2008). 

For the purposes of the proposed study, I will use one term—the term bar diagram—to 

refer to each and any of the above-mentioned constructions and any like constructions I 

may encounter in the literature that are largely indistinguishable from these. 

Bar diagramming 

Bar diagramming (creating bar diagrams) is likely to function differently—that is, 

is likely to present different opportunities for learning—than viewing bar diagrams, thus 

the emphasis upon distinguishing the two. For the scope of this study, I define bar 

diagramming as the school mathematics representational and problem solving technique 

that consists of two practices: the practice of creating one or more rectangles to depict 

mathematical objects or situations and the practice of acting mathematically (either 
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mentally or physically) upon said rectangle(s). Bar diagrams and the rectangular 

subcomponents comprising bar diagrams can be named, partitioned, lengthened, 

shortened, labeled, and assigned numerical value. Thus for the scope of this study, I 

include these acts in the definition of bar diagramming.  

Delimitations 

 I delimited the empirical studies I include in the review to peer reviewed 

empirical articles published after January 1, 1970 that report in English or Spanish on bar 

diagrams or bar diagramming of school mathematics  

Limitations of the Review 

 Although bar diagramming has been an official component of Singapore’s 

mathematics curriculum since the 1980s, researchers have published relatively little 

empirical research about bar diagramming. The review thus addresses a relatively small 

number of empirical studies.  

Review of the Literature 

To familiarize the reader with the literature and to lay the groundwork for 

addressing my research questions, I begin the review by introducing each text and 

identifying the texts’ main claims. I have arranged this introductory discussion of the 

texts according to the main type of data used as the basis of the texts’ claims. Data 

examined in this collection of studies includes (1) curricular materials, (2) participants’ 

assessment scores, (3) participants’ mathematics work, (4) interview data, (5) transcripts 

of classroom conversation, (6) videotaped teaching sessions, and (7) neuroimaging data 

captured as participants performed mathematical tasks. Appendix F contains a table of 
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major findings relevant to the review questions, along with details about each study’s 

sample. 

Researchers’ Examinations of Curricular Materials 

Ng (2004) and Murata (2008) both primarily examined curricular materials, 

however their research aims differed: Ng looked at Singapore’s primary mathematics 

curriculum to determine how it develops algebraic thinking. Murata looked at Japanese 

curricular materials to determine how tape diagrams might be mediating the teaching and 

learning of mathematics from Grade 1 to Grade 6. An additional aim of Murata’s was to 

ascertain any differences in US and Japanese instructional approaches as suggested by 

differences in the mathematical representations in US and Japanese textbooks.  

Ng’s (2004) study. Ng (2004) made four main claims after examining four types 

of curricular materials (the syllabi, teachers’ notes, textbooks, and workbooks) produced 

by Singapore’s Ministry of Education for primary grade levels one to six. Ng’s first main 

claim is that algebraic thinking in general develops via various approaches, including a 

problem solving approach, a generalizing approach, and a functional approach. Ng’s 

second main claim is that when Singapore’s mathematics curriculum emphasizes thinking 

about parts and wholes, the curriculum is employing the problem solving approach to 

developing algebraic thinking. Similarly, Ng’s third main claim is that when Singapore’s 

curriculum emphasizes the acts of generalizing and specializing, the curriculum is 

employing the generalizing approach to developing algebraic thinking. Ng’s fourth and 

final main claim is that when the curriculum emphasizes doing and undoing, the 

curriculum is employing a functional approach to developing algebraic thinking.  
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Ng presented strong evidence to support her claims that Singapore’s primary 

mathematics curriculum emphasizes thinking about part-and-whole relationships, 

generalizing and specializing, and doing and undoing. For instance, to back her third 

claim she provided excerpts of curriculum pages containing number pattern and 

geometrical pattern activities that clearly constituted generalizing and specializing. Ng, 

however, did not provide a definition of algebra or a discussion of what constitutes 

algebraic thinking. Her third claim would have been strengthened had Ng clarified why 

completing a number pattern or geometrical pattern develops, entails, or constitutes 

algebraic thinking. The same critique applies to Ng’s second and fourth claims, though to 

a lesser extent as the curriculum excerpts Ng provided to back those claims more clearly 

connected to algebra.  

Murata’s (2008) study. Unlike Ng’s singular aim to determine how Singapore’s 

primary mathematics curriculum supports development of algebraic thinking, Murata’s 

(2008) aim was two-fold: Murata sought to understand and describe how tape diagrams 

support mathematics teaching and learning from grades one to six, and she sought to 

compare and contrast US and Japanese instructional approaches as suggested by 

representations in textbooks.  

Murata’s (2008) investigation is significant because it gets at the question of 

whether it is powerful to maintain use of one representation (among others) to 

consistently undergird the learning and teaching of a large variety of mathematics for 

one’s entire elementary mathematics education. Does it matter that tape diagrams travel 

with learners, so to speak, from Grade 1 to Grade to 2, all the way to Grade 6 and 

beyond? What is gained from use of tape diagrams year after year, and are those gains in 
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any way dependent on long term use of tape diagrams? These questions are important 

because such gains might be forfeited in curricula that do not emphasize a consistent 

mathematical representation. 

In her analysis, Murata paid special attention to units on addition and subtraction, 

as addition and subtraction are foundational skills and honing in on them allowed for 

greater depth of analysis. Also, when examining US and Japanese representations to 

compare instructional approaches, Murata focused on the top five most prevalent 

representations and sought to report on findings different than those previously reported 

in the literature. 

Before presenting her findings, Murata led with an extensive discussion of theory 

that explicated how representations function as tools, how working with tools forms the 

mind, and how representations “become a part of the learners’ cognition” (p. 376). This 

initial theoretical discussion lay a strong foundation for Murata’s subsequent presentation 

of a model of mathematics learning that she and a colleague had developed, namely the 

Zone of Proximal Development Math Learning Model. In this four-phase model of 

learning, visual representations “work as a tool to support the development of 

understanding and to carry potential meanings from one context to the next” (p. 378). 

Visual representations “bring . . . the new concept close to students at the initial stage” 

and later “provide ‘self-assistance,’” connect various concepts, and enable deep 

understanding (p. 378). 

Murata made three main claims regarding differences in representations between 

the US and Japanese textbooks. First, representations in the Japanese textbooks more 

often accompany word problems, while representations in the US textbooks more often 
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accompany computational exercises. Second, representations in the Japanese textbooks 

were presented to help students analyze the mathematical information in word problems, 

whereas representations in the US textbooks were presented to guide the solving of the 

word problem. Third, to represent the concept of addition (i.e., that a part plus a part 

equals a whole), the US textbooks use three rectangles: one rectangle for each part and a 

third rectangle as the new sum, or whole. Japanese textbooks only present the two parts, 

and the sum of those two parts is considered to be the length of the two parts taken 

together. No third rectangle is presented to represent the sum, which Murata deemed a 

more accurate representation. 

 Murata’s claims regarding the mediating power of tape diagrams were numerous 

and detailed. She identified both the mathematics that tape diagrams represent in grades 

one through six along with the meaning supports possible with tape diagrams. Regarding 

the mathematics that tape diagrams represent in the Japanese curriculum, Murata 

concluded that tape diagrams represent concepts and relationships such as whole 

numbers, rational numbers, the four basic operations for both whole number and rational 

numbers, how operations relate, how rational numbers relate, how ratio works, and how 

proportion works. Tape diagrams are simple enough to evoke students’ earlier addition 

and subtraction work on strings of concrete objects and complex enough to depict 

multiplication, division, ratios, and proportions—all of these with rational numbers. 

Finally, tape diagrams work flexibly in conjunction with single and double number lines. 

 Regarding meaning supports possible with tape diagrams, Murata determined that 

tape diagrams relate different quantities, allow understanding of word problems before 

abstract numbers are involved, relate different mathematical operations, freeze 



13 
 

mathematical problems in time, provide continuity across mathematics topics, render 

mathematics as systematic, and support (classroom) mathematical discussion. Overall 

Murata’s claims were well-founded. She included sample images and pages from the 

textbooks. She presented a mathematics learning model with explanatory power for 

justifying her claims. She exercised caution and acknowledged that representations do not 

have inherent meaning and that her findings were simply what could occur. 

Researchers’ Analyses of Participants’ Assessment Scores 

Student assessment scores served as the main source of data in two of the studies 

under review: Mahoney’s (2012) dissertation study and the first of Booth and 

Koedinger’s (2012) two studies. Mahoney aimed to determine whether learning the 

Model Method increases student performance on multiplicative comparison word 

problems and fraction word problems (see Appendix D). Alternatively, Booth and 

Koedinger had three research purposes. Their first aim was to determine whether middle 

school students enjoy a textual advantage, that is, whether these students perform better 

at solving the textual (story) version of algebraic word problems versus the equation 

version. Their second aim was to determine whether middle school students enjoy a 

diagrammatic advantage, that is, whether these students benefit from the presence of a 

bar diagram with the story version of an algebraic word problem. Lastly, their third aim 

was to determine whether the textual advantage or diagrammatic advantage varies by 

students’ mathematical ability levels. 

Mahoney’s (2012) study. Mahoney (2012) conducted a single case, experimental 

research design four times individually with one female and three male fourth grade 

students from a rural, mostly lower middle-class area in New Hampshire. Pre-



14 
 

intervention, each participant completed an assessment probe several times to establish a 

baseline score on solving multiplicative comparison word problems and fraction word 

problems. Mahoney then delivered separately to each student a researcher-designed 

teaching intervention. For each of 8 teaching sessions, participants received instruction 

on using bar diagrams to solve multiplicative comparison and fraction word problems and 

then completed an assessment probe. Participants later completed two post-intervention 

assessment probes, the first one week and the second three to four weeks after the 

teaching intervention had ended. 

The assessment probes were researcher-designed. They contained five 

multiplicative comparison word problems and five fraction word problems. Participants 

completed 13 parallel-designed assessment probes in all—three assessment probes at the 

beginning in order to establish a baseline performance score, one assessment probe to 

close each of eight intervention teaching sessions, and two post-intervention assessment 

probes. 

  The eight-session teaching intervention that participants received was scripted, 

and the scripted instruction followed a version of the “I do, we do, you do” instructional 

model. For the “I do” component the instructor demonstrated solving a problem while the 

student watched and asked questions. For the “we do” component the instructor and 

student solved the same problem separately and then compared their work. Subsequently, 

the student solved a word problem independently, explaining his or her steps to the 

instructor. Lastly, for the “you do” component of the teaching intervention, the student 

solved a word problem independently, and the instructor asked the student questions as 

desired. 
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  Mahoney’s methodology had many strengths: He took efforts to reduce researcher 

bias, to screen participants, to administer a social validity survey, and to establish inter-

rater reliability for the participants’ assessment probe scores. To form his conclusions, he 

generated and analyzed line graphs depicting the trajectory of each participant’s 

assessment probe scores.  

  Mahoney concluded that instruction in bar diagramming increases students’ 

performance on multiplicative comparison and fraction word problems. He noted that a 

“correct schema choice led to a correct problem solution among the four participants 

83.75% of the time” and surmised that “the fact that 95% of correctly drawn models led 

to correct solutions is further convincing evidence of the effect of model drawing on 

problem-solving performance” (p. 107). 

  One weakness of Mahoney's study was that all of the word problems on the 

assessment probes were either multiplicative word problems or fraction problems. No 

distractor word problems such as fraction addition, fraction subtraction, or fraction 

division problems were included. As such, the mere presence or absence of a fraction in 

the word problem may have automatically cued participants to configure their bar 

diagrams in a certain way. If so, the assessment probe would not have necessarily 

assessed students' mathematical understanding of problem situations. 

Booth and Koedinger’s (2012) first study. Noting the inconclusive nature of 

prior research on the benefits of diagrams, one of Booth and Koedinger’s (2012) aims 

was to determine whether it is advantageous for middle school students if a bar diagram 

accompanies the text of difficult algebraic word problems. They also sought to determine 

whether a textual advantage is in effect for middle schoolers, that is, whether middle 
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school students perform better at solving the textual version as opposed to the equation 

version of difficult algebraic word problems. Booth and Koedinger’s third and final aim 

was to determine whether any such diagrammatic advantage or textual advantage 

depended upon the middle school student's level of mathematical ability. 

  Three hundred seventy-three students (121 sixth, 117 seventh, and 135 eighth 

graders) from an ethnically diverse middle school in the Midwestern United States 

participated in their study. Booth and Koedinger employed what amounts to a cross-

sectional correlation methodology, treating each grade level as a cohort.  

  The assessment items that Booth and Koedinger scored consisted of three algebra 

problems embedded in a larger algebra assessment. They used three different assessment 

forms constructed such that each form contained the three different problems and each 

form contained three different formats (equation, story, or story + diagram). Participants 

randomly received one of the three forms. 

  Analyses of variance, follow-up repeated measures ANOVAs, and follow-up t-

tests yielded the following results: When comparing the story format (i.e., text format) to 

only the equation format, a textual advantage manifested for students in all grade levels 

for both single-reference and double-reference problems (problems in which a single 

variable is referenced once or twice, respectively). The story + diagram format was 

beneficial for double-reference problems and for seventh and eighth graders in general, 

but not for sixth graders in general. Regarding low ability students, low ability sixth 

graders performed worse when a bar diagram accompanied a word problem. On the 

contrary, low ability eighth graders performed much better when a bar diagram 

accompanied a word problem.  
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  Booth and Koedinger’s conclusions were well-supported and convincing to the 

extent that they applied to the participants in the study and not necessarily to middle 

school students generally. The participants in this study learned mathematics using the 

reform-based Connect Mathematics curriculum. This would not be the case for many 

other middle school students. Also, unlike the students in Mahoney’s dissertation study, 

these participants had little to no experience with bar diagramming upon taking the 

assessment as they received no formal instruction in bar diagramming prior to or during 

the study. Another important note is that overall, study participants did not typically 

perform well on any of the problems of interest, regardless of format. 

Researchers’ Examinations of Participants’ Mathematical Work 

Participants’ work served as the main data source in four of the studies under 

review: Koedinger and Terao’s (2002) task analysis study, Van den Heuvel-Panhuizen’s 

(2003) longitudinal study, Ng and Lee’s (2005) task analysis study, and Booth and 

Koedinger’s (2012) longitudinal study. Two of these studies share the common purpose 

of determining how students use bar diagrams. In a third one of these studies, the 

researchers sought to ascertain whether bar diagrams support sixth grade students in 

solving algebraic word problems and to determine which types of algebraic problems are 

difficult for sixth grade students to solve via bar diagramming. In the remaining study, 

the researchers sought to determine whether students who initially did not benefit from 

bar diagrams benefitted over time. 

Koedinger and Terao’s (2002) study. Koedinger and Terao’s (2002) participants 

had received no formal instruction in algebra upon participating in their study. However, 

prior to completing the study’s assessment instrument, participants did receive bar 
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diagramming instruction in solving algebraic word problems. Findings had implications 

for improving their instructional approach. 

  Koedinger and Terao (2002) examined student work in order to ascertain which 

type of algebraic word problem is more difficult for students: word problems with three 

unknown quantities, word problems with “less-than” relationships between 

variables/quantities, or word problems containing both of these dimensions of difficulty. 

They also sought to determine whether the representation phase or the solution phase of 

bar diagramming is more difficult for students.  

Their sample consisted of 35 sixth graders. Though demographic information was 

not specified, these students were likely US students, given that Koedinger and Terao 

referred to bar diagramming as “Picture Algebra” and described it as “part of a new 

middle school mathematics curriculum” (Koedinger & Terao, 2002, p. 542).  

The student work that Koedinger and Terao analyzed consisted of students’ 

solutions to three word problems referred to in the study as the Cans problem, the Beanie 

problem, and the CD problem. Half of the students were provided a bar diagram for the 

Cans problem, half of the students were provided a bar diagram for the Beanie problem, 

and no students were provided a bar diagram for the CD problem.     

Sixty-eight percent of the participants solved the Beanie problem correctly, 68% 

solved the Cans problem correctly, and 32% solved the CD problem correctly. 

Participants were much more successful on the CD problem when they drew a correct 

diagram than otherwise (68% correct with a diagram versus 17% with no diagram or an 

incorrect one). This reinforced Koedinger and Terao’s conclusion that students can use 

bar diagrams successfully. Overall these students performed better on these problems 
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than much older students had performed on similar problems, according to Koedinger 

and Terao. 

Koedinger and Terao employed task analysis methods. They also created and 

analyzed production rule traces that documented common problem solving moves that 

students made. From this data Koedinger and Terao made two main claims.  Typically 

when students draw horizontal, rectangular bars in the bar diagramming process, drawn 

bars stand for existing amounts. When students attempted to draw abstract bar diagrams 

with rectangular parts to indicate missing amounts, students encountered problems.  

Booth and Koedinger also found that under certain conditions students struggled 

to draw bar diagrams that convert “y is d less than x” to “x is d more than y.” The 

challenge occurred for three-variable word problems wherein two of the variables were 

both described as less than the third variable.  

The evidence Koedinger and Terao presented consisted of images and 

descriptions of student work and was thus convincing. A note of interest is that instead of 

attributing student failures to students’ inadequacies or any inadequacies of bar diagrams, 

they interpreted their findings to indicate that their own bar diagramming instruction 

could be improved. Their study could have been strengthened had they provided 

demographic information about their participants and had they detailed any scoring and 

reliability procedures. 

Van den Heuvel-Panhuizen’s (2003) study. Though Van den Heuvel-Panhuizen 

(2003) and Ng and Lee (2005) commonly examined how students use bar diagrams, their 

approaches, ultimate purposes, mathematical topics, and likely their participants’ 

demographics differed vastly. Van den Heuvel-Panhuizen conducted a longitudinal study 
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(participant demographics unspecified) as part of a Realistic Mathematics Education 

curriculum design project, focusing on students’ developing understanding of percent as 

supported by bar diagrams. Ng and Lee conducted a task analysis study with 151 Grade 5 

Singaporean students to determine how they used the Model Method to solve one 

arithmetic and four algebraic word problems. 

Researcher Van den Heuvel-Panhuizen sought to determine how bar diagrams 

were used to support student growth in understanding of percent over an extended 

learning trajectory. Her study is of particular interest due to its emphasis on the Realistic 

Mathematics Education (RME) approach to student handling of mathematical models. In 

RME, models for general use emerge from situation-specific representational activities so 

that models-of become models-for. That is, educators guide students’ natural, problem-

specific representational activities such that students eventually view models of a 

particular problem situation as suitable to model categories of problem situations. 

  Van den Heuvel-Panhuizen examined student work and curriculum pages from 

units being developed for the US textbook series Mathematics in Context. While 

participant demographics were unspecified, the pertinent curriculum units were fifth and 

sixth grade units. Van den Heuvel-Panhuizen made several claims. She asserted that 

students drew bar diagrams spontaneously when prompted to draw models showing 

percent. She noted that students did not receive direct instruction in bar diagramming. 

Instead, bar diagrams emerged naturally in the process of guided problem solving. She 

also concluded that bar diagrams functioned in several ways for students: as an 

estimation model, a calculation model, and a thought model.  
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  Van den Heuvel-Panhuizen provided clear evidence for most of her claims: She 

provided images depicting students’ spontaneously drawn, informal bar diagrams beneath 

a prompt to represent a certain percentage. She provided a sample assignment evidencing 

how students—as opposed to receiving direct instruction in bar diagramming—shaded in 

a rectangular image of theater which developed into a bar diagram on which students 

independently equated percents with fractions.  

  According to Van den Heuvel-Panhuizen, when students began viewing the 

rectangle as useful for modeling other situations, this was the first shift toward context-

free (more generic) usage of the bar diagram. She asserted that such a shift from a model-

of (i.e., a model of a specific situation or word problem) to a model-for (i.e., a model for 

generally showing x amount out of y amount) constitutes a rise in students’ level of 

mathematical understanding. 

  Overall Van den Heuvel-Panhuizen provided strong evidence that students used 

the bar diagram as an estimation model, as a calculation model, and as a thought model. 

Bar diagrams appeared particularly suited for aiding estimation. For example, images of 

students’ bar diagrams showed how students used benchmark fractions of one-half and 

three-fourths used to estimate that about 60% of the bar was shaded.  

  Using the term “calculation model” to mean that the bar diagram indicated for 

students which operations they should perform, she shared a student’s bar diagram with 

1% of 1,603 labeled as 16 that supported the student in choosing division to estimate that 

91 is roughly 5% of 1,603. Though she asserted that the 100-segment bar helped students 

to connect percents to decimals and to understand the role of decimals in computing 

percents, that was unclear from the included images of student work.  
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  Van den Heuvel-Panhuizen included several images of bar diagrams used as 

thought models. A particularly illustrative image was a vertical stack of bar diagrams 

placed on a graph to help students visualize how and why 6% growth gets larger over 

time and how to compute exponential growth. Another use of the bar diagram as a 

thought model depicted $96 as a sales price at 25% off of the original price. The student 

labeled the three-fourths marker on the bar diagram with $96, independently determined 

the original price, and encountered further instruction that connected the bar diagram to 

the solution strategy of dividing $96 by 0.75. 

  Van den Heuvel-Panhuizen noted that it was not just one form of the bar diagram 

but a chain of slightly changing forms of the bar diagram that over time led to growth in 

students’ understanding of mathematics. In her estimation, quite powerful for supporting 

student learning is the ability of the bar diagram to continue to hold initial lower-level 

meanings of a mathematical topic while simultaneously displaying higher-level, formal 

meanings. In this way, bar diagrams can at once accommodate students with various 

levels of understanding of a mathematical topic. 

Ng and Lee’s (2005) study. Ng and Lee examined the work of 151 Primary 5 

students in order to determine how they use the model method. These students were from 

lower-middle class to middle-class areas. In terms of achievement level, top stream 

students comprised 21% of the sample, and the rest were middle stream students. 

All participants received a problem set containing one arithmetic problem and 

four algebra problems. The percent of students who solved each problem correctly was 

63% for the arithmetic word problem and 44%, 37%, 20%, and 15% for the four algebra 

word problems. 
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Ng and Lee made several assertions about students’ successes and difficulties 

with the model method. Students with a correct bar model of the arithmetic problem used 

one of two ways to solve it. Most students used only arithmetic, but some performed an 

elegant combination of multiplication and arithmetic that the bar diagram demonstrated 

was possible. Unsuccessful students included those who made computational errors 

despite having generated a correct bar diagram, as well as students who possibly lacked 

understanding of terms such as “more than.” 

Ng and Lee made observations and drew several conclusions after analyzing 

student work on the four algebra problems. Successful students structured their bar 

models as pictorial equations with the left sides of their equations consisting of bars 

representing the relationship between known and unknown numbers, a right brace serving 

as an equal sign, and the right sides of their equations consisting of known values (written 

as a numeral) or unknown values (written as a question mark). Successful students’ work 

revealed understanding of the efficacy of using inverse operations to solve problems. 

Having yet learned algebra, successful students bypassed using algebra and used 

arithmetic instead. 

When one value is defined in a word problem in terms of another, for example if a 

word problem indicates that Brian has 7 more than Sheila has, students have a choice: 

Students can first draw a rectangle for Brian’s amount and then base the size of the 

rectangle for Sheila’s amount off of the size of Brian’s rectangle. Likewise, students can 

first draw a rectangle for Sheila’s amount and base the rectangle for Brian’s amount off 

of the size of Sheila’s rectangle. In the model method this is referred to as selecting the 

generator. Ng and Lee noted that a handful of students chose generators strategically. 
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Strategic choice of generator was important. Echoing Koedinger and Terao, Ng 

and Lee noted that some students encountered problems after attempting to draw 

rectangles to indicate missing or negative amounts. Later in the problem solving process 

these students treated such rectangles as positive amounts to be subtracted instead of 

negative amounts to be added back. Had these students chosen a different generator, 

drawing missing or negative amounts would have been unnecessary. 

The algebra problem that contained a fraction posed a significant challenge for 

students. Generating a correct bar model required prior knowledge of how to find 

common denominators and create equivalent fractions. The small percentage of students 

who modeled and solved the problem correctly typically solved the problem by dividing 

and multiplying whole numbers instead of dividing by a fraction—a skill yet learned. 

Ng and Lee noted that the two-variable systems of linear equations problem was 

less amenable to bar diagramming than were the other three algebra problems. Few 

students attempted the problem. Students who persevered in modeling the problem with 

bar diagrams used the individual rectangles in their models in unconventional ways.  

Ng and Lee concluded that, overall, successful students had the prerequisite 

conceptual knowledge of the mathematics involved in the problem. They understood 

language such as “more than,” “less than,” “as times as much,” and “as times as many.” 

Unsuccessful students—aside from those who only made computational errors—made 

conceptual errors such as interpreting phrases the phrase “as many times” to mean “as 

many times more.” When stalled they erroneously converted algebraic relationships into 

simple arithmetic relationships, deleting pertinent unknowns from the problem.  
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Booth and Koedinger’s (2012) second study. Having determined in a first study 

that many sixth graders benefitted less from the presence of bar diagrams than did 

seventh and eighth graders, in their second study Booth and Koedinger set out to 

determine whether and how bar diagrams became beneficial to sixth graders later in the 

seventh or eighth grades. In the process, they analyzed student errors each year in the 

attempt to gain a deeper understanding of students’ struggles and successes. 

Participants were 84 of the sixth graders who had participated in Booth and 

Koedinger’s first study. The procedures in this longitudinal study were a repeat of the 

procedures followed in the initial study. Participants completed the same assessment 

instrument in their seventh and eighth grade years as they had in their sixth grade year. 

Booth and Koedinger came to several conclusions based on their ANOVA of the 

participants’ scores. The textual advantage remained intact: Over time these participants 

still performed better on the story version of the algebraic problems verses the equation 

version. While students improved over time on the story + diagram version of problems, 

there was no improvement over time on the story version of problems. Analysis revealed 

that this applied not only for the group overall but for low ability students when viewed 

as a subgroup. Specifically, Booth and Koedinger found that “low-ability students are 

much more avoidant of diagram problems than story problems in sixth grade (65% vs. 

39% no response errors)” (p 504). 

The study followed a cross-sectional correlational design. Given the research 

question, the study may have benefitted from inclusion of within-subject comparison. 

However, given the design of the studies, Booth and Koedinger’s claims were 
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convincing. Assessment forms were randomly assigned to participants and initial 

ANOVAs were followed up with additional analyses to clarify findings.  

This study’s findings are significant in that they call into question the notion that a 

more concrete representation such as bar diagrams will necessarily aid lower ability 

students. Likewise, these findings call into question assumptions that more accomplished 

students do not benefit from such concrete representations. This study revealed the 

opposite effect, for reasons which might be clarified with further research. 

Researchers’ Analyses of Interview Data 

In four of the reviewed research articles, the authors interviewed participants in 

addition to analyzing participants’ assessment scores or mathematical work. These 

studies include Ng’s (2003) task-based interviews, Ng and Lee’s (2008) task-based and 

semi-structured interviews, Looi and Lim’s (2009) quasi-experimental study and clinical 

interviews that were part of a larger curriculum design research project, and Ng and Lee’s 

(2009) task analysis and interviews. Besides sharing in common the use of interviewing, 

one common thread among the studies is an interest in the quality and nature of the 

algebraic knowledge of students who have spent years in school learning and performing 

mathematics with bar diagrams.   

Ng’s (2003) study. Ng (2003) conducted task-based interviews with the purpose of 

answering four questions: (1) Which method would secondary two express stream 

students use to solve a given problem? (2) Were secondary two express stream students 

able to recall the model method? (3) Were secondary two express stream students able to 

identify how unknowns are represented in the model method? and (4) What were 

secondary two express stream students’ perceptions of the model method? Ng’s 
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participants were 145, express stream, secondary two students (87 females and 58 males), 

ages 14+, from four classes. Sample A (77 of the 151 students) was differentiated from 

Sample B (n = 68) in that Sample A students completed the topic of simple linear 

equations and simultaneous equations one week earlier than Sample B. 

Given a maximum time allotment of one hour, participants completed a four-item 

assessment instrument. Ng audio recorded 15-minute interviews with ten randomly 

selected students (five from each sample) directly after the written assessment. The 

written assessment contained four items. Item 1 was a prompt to solve a mathematics 

word problem using any method of the participant’s own choosing. Only 4 of the 145 

students opted to use bar diagrams alone to solve the problem in Item 1, while 9 of the 

students used a combination of bar diagrams and algebra. The vast majority of the 

students solved the problem using algebra (others used a listing method or a grouping 

method or were incorrect).  

Interview data revealed that though a few students appreciated how the visual 

nature of bar diagrams increased their grasp of the problem, students deemed algebra to 

be quicker, less exacting, and less tedious than bar diagramming. Students had recently 

learned algebra and one student had forgotten how to use bar diagrams. One student 

noted that algebra was easier to check for correctness. Another student mentioned that bar 

diagramming required extra thought and was actually harder than algebra. Some students 

mentioned that their secondary teacher discouraged use of bar diagrams. 

Item 2 asked students to assess a bar diagram solution and use bar diagrams to solve 

a similar problem if they agreed with their usage in the provided, solved problem. Over 

94% of the participants correctly assessed the provided solution as correct and used bar 
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diagrams to solve a similar provided problem. Item 3 prompted students to identify the 

unknowns in a solved model method problem. Sixty-seven students (less than half) did so 

successfully. Item 4 asked students for their perceptions of bar diagrams. The vast 

majority spoke favorably of bar diagrams for their ability to help students visualize 

mathematics problems. However, most students noted drawbacks about bar 

diagramming: Bar diagrams were too exacting (one mistake during the representation 

phase usually renders the final solution incorrect), bar diagrams for large numbers or 

more complex equations are not as useful, bar diagrams are for younger or less 

accomplished students, and algebra is simpler and more powerful. 

Ng (2003) interpreted the study data to indicate that although students were 

competent in the Model Method, a link between the Model Method and algebra was not 

strong. The inability of students to identify the unknowns in a bar diagram suggested to 

Ng (2003) that perhaps requiring students to translate bar diagrams into algebraic 

equations would access the full benefits of bar diagrams. 

Ng and Lee’s (2008) study. While one of Ng’s (2003) research questions centered 

on students’ perception of the Model Method as a technique, Ng and Lee (2008) were 

interested in students’ perception specifically of the Model Method’s rectangle itself. Ng 

and Lee’s study participants were 10 Primary 5 students (3 females and 7 males) from 

neighborhood schools. Using a clinical interview approach, Ng and Lee presented each 

participant with an assessment instrument that contained a written production task and a 

written validation task. Immediately after the written tasks, which took approximately 30 

minutes, Ng and Lee interviewed participants. Each participant’s semi-structured 
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interview lasted between 30 and 60 minutes. Analysis consisted of comparing across-

participant and within-participant analysis of written and verbal data. 

Ng and Lee’s first major claim was that participants were abstract thinkers if their 

bar diagram representing numbers in the tens were relatively the same size as their bar 

diagram representing numbers in the hundreds and thousands. Ng and Lee’s second claim 

was that most of the students were abstract thinkers. Ng and Lee’s third major claim was 

that interview data confirmed that participants agreed that for word problems having the 

same structure, the same bar diagram can be used regardless of the order of magnitude of 

the input numbers.  

Ng and Lee’s fourth and final claim was strong: They interpreted student written 

and verbal data to indicate that students were viewing the rectangles in bar diagrams as 

variables and not simply as unknowns. Because Ng and Lee did not provide definitions 

for their usage of the terms unknown and variable, the reader was left unclear as to the 

meaning and significance of this fourth claim.  

Looi and Lim’s (2009) study. Concerned about students’ challenges with 

transitioning from use of bar diagrams to use of traditional symbolic algebra, Looi and 

Lim (2009) designed pedagogy and software (ALGEBAR) to help students bridge bar 

diagrams with algebraic expressions and equations. They conducted a quasi-experimental 

study and clinical interviews to assess the effectiveness of the pedagogy and software 

(ALGEBAR).  

Looi and Lim’s participants were 68 secondary one students in two class of 34 

students each. The intervention lasted for four weeks. The control class and experimental 

class matched on pertinent variables. The two teachers used the same lesson plans. 
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The experimental class replaced one hour a week of class instruction with one hour 

in the computer lab using the ALGEBAR software. Also, instruction in the experimental 

class weaned students off of bar diagrams and prioritized use of algebraic symbolization. 

The instruction in the control class emphasized bridging, that is, creating bar diagrams 

and then translating them into equivalent algebraic equations. 

Both classes took post-intervention tests that were analyzed and scored for use of 

algebraic symbolization. Looi and Lim conducted pre-intervention and post-intervention 

clinical interviews with three students from the experimental class (one weak, one 

average, and one high achieving student). Finally, Looi and Lim interviewed both 

teachers. 

Looi and Lim conducted t-tests comparing the control and experimental classes’ 

scores on the test instrument and found that the experimental class used more algebra. 

They conducted an ANCOVA to control for mathematics ability and the finding was the 

same. Looi and Lim found that pre-intervention, the three interviewed students were 

successful at solving routine problems with bar diagrams. However, when a complex 

problem required a more sophisticated bar diagram, this posed a problem for students.  

Looi and Lim’s major claim was that “after 4 weeks of intervention, the stronger 

student is able to define variables and formulate equations, the average student is able to 

define variables and formulate equations for routine questions, but the weaker student is 

only able to define variables correctly” (p. 370). Teachers’ interview data indicated that 

students had difficulty transitioning from years of using the highly visual bar 

diagramming technique to use of algebraic symbols. Teachers felt that students could 

perform arithmetic and algebra separately from a word problem, but modeling a word 
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problem with algebraic symbolization was challenging for students. Looi and Lim noted 

that bar diagramming acclimates students to writing equations using a forward 

calculations process that allows students to bypass using algebraic methods. Looi and 

Lim observed that students seemed to be confusing forward calculation equations with 

algebra. 

The experimental teacher felt that ALGEBAR helped participants by making bar 

diagramming easier. Once students had created diagrams of word problems, students 

were then able to translate bar diagrams into algebraic equations, which ALGEBAR 

allowed students to check for consistency. Teachers noted that algebraic ratios were not 

amenable to representation in ALGEBAR and that this had the potential to help students 

value the representational power and flexibility of algebra. 

Ng and Lee’s (2009) study. Ng and Lee (2009) presented students with five 

mathematics word problems of increasing difficulty to determine how children would use 

the Model Method to solve them. They analyzed students’ resultant work and then 

interviewed teachers and department heads to determine when and how teachers 

introduce children to the Model Method. Ng and Lee’s (2009) participants were 151 

middle-class to lower-class Primary 5 students (74 females and 77 males). Regarding 

their mathematics achievement level, 21% were top stream (high ability) students and 

79% were middle stream (average ability) students. 

  The assessment instrument used was researcher-designed (based on problems 

from curricular materials), piloted, and approved by nonparticipating teachers. Student 

participants had one hour to complete the assessment. Problems were coded first by 

accuracy and then by type of error. Interviews with department heads and teachers lasted 



32 
 

about one hour. Teachers completed the assessment instrument during the interview 

which was audio recorded. 

Ng and Lee drew their first main claim from the interview data. Teachers reported 

that the model method is helpful because its visual format supports student 

understanding. The model method was also valuable in that it revealed to teachers 

students’ processes and thinking. Teachers noted that students should draw rectangle 

lengths to reflect their appropriate proportions in magnitude. Teachers noted that in bar 

diagramming, a detail as small as using a dotted line versus a solid line to partition a bar 

diagram matters. Finally, teachers explained how students were able to use the model 

method to solve algebra problems prior to learning algebra: Using what is known as the 

unitary method, students represented the relationships in the bar diagram via a series of 

arithmetic equations that allowed students to undo operations in order to solve for 

unknowns. This allowed students to circumvent writing and manipulating algebraic 

equations. 

From the student work, Ng and Lee drew several major claims: Complete models 

included every detail. Partly correct models—even those with a single missing detail—

could yield incorrect solutions. One error that students made was to change generators 

midway into solving the problem. A generator is the variable or rectangle from which 

other quantities in the word problem are defined. In rare instances students drew a correct 

model yet failed to answer the question asked in the word problem. This error accounted 

for less than 3% of all errors.  

Students with conceptual knowledge of fractions were able to model and solve an 

algebra problem containing fractions but bypassed computing with fractions. Instead 
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students used division and multiplication. Lastly, about one-fifth of the students correctly 

solved a two-variable system of equations problem. Another third of the students had 

successfully modeled the problem though ultimately they did not answer it correctly. 

Researchers’ Analyses of Classroom Conversation 

Shreyar, Zolkower, and Pérez’s (2010) study is the one study under review 

wherein researchers primarily analyzed classroom conversation. Shreyar, Zolkower, and 

Pérez based their claims upon their analysis of a sixth grade classroom conversation 

about percents. Their aim was to answer the following two research questions: (1) What 

meanings were realized in the whole-class conversation by the teacher and students and 

how were these meanings realized? and (2) How did the teacher’s lexico-grammatical 

choices guide the students’ choices?  

The terms realized and lexo-grammatical in Shreyar, Zolkower, and Pérez’s 

research questions are inspired by Halliday’s theory of systemic functional linguistics 

(SFL). According to Shreyar and colleagues, in Halliday’s SFL theory, meanings are 

realized when they become words, and words are realized when they become sound or 

writing. Lexo-grammatical choices are choices related to semantics and syntax (lexical 

sets and grammatical sets). Thus, Shreyar and colleagues’ research questions indicate that 

they sought to determine the meanings that became spoken and written text in the 

classroom and that they sought to determine how the teacher’s speech influenced 

students’ choices. 

  The study sample consisted of one class of 21 sixth graders (of medium to high 

economic status) in a private bilingual (English/Spanish) school in Argentina. Shreyar, 

Zolkower, and Pérez audiotaped and generated a transcript of a whole-class conversation 
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that focused on determining which was the better buy: 20% off of $68.99 or 25% off of 

$74.99. Four coders including the teacher coded the transcript according to SLF theory. 

This included identifying speakers, conversational turns, clause types, and clause speech 

function. 

  Most of the students had previously solved the problem, and thus the focus of the 

classroom conversation was to develop ideas about percent and about why various 

solution attempts were appropriate or not. Twenty of the 21 students spoke, and student 

contributions were balanced among genders and mathematical performance level. The 

conversation consisted of almost 600 speaking turns, which Shreyar, Zolkower, and Pérez 

divided into 12 phases, or topics. 

Ms. P. guided students to compare and make connections among the various plans 

and solution attempts that she and the students wrote on the whiteboard or chart paper. 

She guided students to refer to written plans and solution attempts as ideas. Such ideas 

were written in the form of ratio tables, bar diagrams, and expressions, and Ms. P used 

questions and declarative statements to guide students to see if “something from there 

coincides with the ideas that are here” (Shreyar et al., 2010, p. 35). 

  Shreyar et al. documented several examples of the roles that bar diagrams had in 

supporting meaning making. When students wondered if 20% of off $69 could be 

computed by dividing $69 by 20, Ms. P. asked students to make sense of $69 divided by 

20 as shown on a bar diagram divided into 20 pieces. When a student offered a way to 

repair this solution idea, Ms. P. again guided students to use the bar model as a sense-

making tool to understand the student’s suggestions. 
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  When a student offered a standard algorithm for computing 20% off of $69 and 

25% off of $75, Ms. P. guided the students to see the connection between the standard 

algorithm and the 1% strategy. The 1% strategy consists of first calculating 1% of a 

number and then multiplying the result by 5 to find 5%, by 20 to find 20%, and so forth. 

Students offered the idea of replicating their ratio table work on a bar diagram, which 

eventually resulted in students understanding how the calculations in the standard 

algorithm accomplished the same process as the ratio table and bar diagramming work 

did. 

  Regarding the teachers’ lexico-grammatical choices, Ms. P. spoke 

overwhelmingly in the positive tense and spent a large amount of time using present 

simple modal clauses such as Could that work? Rather than prompting much 

metacognition, Shreyar, Zolkower, and Pérez felt that Ms. P used language intended to 

elicit the quick offering of as many ideas as possible. Her language left assessment of 

ideas up to the students.  

The evidence that Shreyar, Zolkower, and Pérez provided to support their claims 

was strong. They included coded excerpts of the analyzed conversation, and they 

provided tables that presented data about the interpersonal grammar of the conversation, 

the mood and speech function of the teacher, the main grammatical subjects the teacher 

used, and the teache’'s lexico-grammatical choices. 

  Overall, it was clear that the multimodal nature of the conversation (use of 

gesture, words, and diagramming) was a key part of the progression of ideas in the 

classroom. Also key was the teacher’s use of tense, modulation, and questions to invite 

the students to offer, assess, and reconcile ideas. This study’s findings were significant in 
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that it demonstrated the role of the teacher’s language in guiding students to use 

representations to make their own sense of the mathematics involved. Such a use for bar 

diagrams differed vastly from the approach of presenting bar diagrams to students as 

assumed-to-be correct representations of problems and solutions. 

Researchers’ Examinations of Teaching Sessions and Students’ Session Work 

Green’s (2009) study is the one study under review wherein the researcher 

primarily examined teaching sessions and students’ session work. Green examined video 

recordings of teaching sessions in order to determine the nature of the algebraic 

understandings students developed as a result of solving algebra problems with bar 

diagrams. She sought to determine how students developed their algebraic 

understandings and to determine what aspects of the environment seemed to afford or 

constrain students’ development of algebraic understandings. 

Green’s (2009) sample consisted of three, sixth-grade students from a 

predominately African American school in Philadelphia. Employing a teaching 

experiment methodology, Green worked with each student individually. For each 

learning goal, Green assessed the participant’s understanding, modeled the participant’s 

understanding, designed a learning trajectory plan for developing desired understandings, 

and videotaped subsequent instructional lessons conducted with the participant. This 

cycle was repeated throughout the experiment, after which Green conducted a retroactive 

analysis of the data. 

Green (2009) noted the following findings: First, after working with known 

numbers (in bar diagram form) as examples, participants spontaneously understood to 

operate upon unknowns (in bar diagram form) as if they were knowns. Second, 
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participants learned that an additive quantity is decomposable and recomposable. Third, 

they gained understanding of the relationship between quantities in equations of the form 

ax + b = cx and ax + b = cx + d. Fourth, they gained understanding that the parts of a 

quantity are commutative. Fifth, participants were able to anticipate that creating 

equivalence is helpful in solving unknowns. Sixth, participants gained understanding that 

operating on one side of an equation must be balanced out with operating on the other 

side of the equation. Particularly noteworthy is that participants transitioned to use of 

symbolic algebra without the typical pitfalls and with seeming understanding. The one 

drawback to working with bar diagrams was that some of the participants inappropriately 

overrode quantitative information when visual cues were confusing or unhelpful. 

Green (2009) provided robust, credible evidence to back her claims, including 

extensive amounts of transcript excerpts and many images of student work. Green’s 

write-up of her findings was quite detailed and included awareness and acknowledgment 

of rare moments when her instruction may have led students to particular courses of 

action.  

Researchers’ Examinations of Neuroimaging 

Neuroimaging scans served as the main data source in the final two of the studies 

under review. The purpose of both studies was to determine whether use of the model 

method engages different cognitive processes than use of traditional symbolic algebra. 

The first study focused on the representation phase of algebraic problem solving, and the 

second study focused on the solution phase of algebraic problem solving. 

Lee, Lim, Yeong, Ng, Venkatraman, and Chee’s (2007) study. Eighteen right-

handed adults (10 males, 8 females) between the ages of 20 and 25 participated in Lee 
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and colleague’s (2007) study. The study followed a 2 (method: model vs. symbolic) x 2 

(type: experimental vs. control) within-subject design. Each participant viewed all four 

conditions—the model experimental condition, the model control condition, the symbolic 

experimental condition, and the symbolic control condition.  

In the model experimental condition, participants viewed a worded algebra 

problem and then were asked to “hold in mind” a bar diagram representation of the word 

problem. The goal was to select the correct bar diagramming image that represented the 

word problem, once the image later appeared. In the model control condition, participants 

viewed text that contained similar content as an algebra word problem but that had no 

mathematical meaning that would prompt computation. 

In the symbolic experimental condition, participants viewed a worded algebra 

problem and then were asked to “hold in mind” an algebraic equation to represent the 

word problem. The goal was to select the image with an algebraic equation matching the 

word problem, once the image appeared. In the symbolic control condition, the text 

contained wording and numbers, but the text was not a solvable word problem. It was not 

clear from the report what the goal was for the symbolic control condition. 

  Findings indicate that the model and symbolic experimental conditions activate 

the brain in both similar and different ways.  Use of both the model method and symbolic 

algebra activated the precuneus and the posterior superior parietal lobules (PSPL)—

regions of the brain associated with attentional resources. However, the symbolic algebra 

method activated those areas more strongly, suggesting that use of symbolic algebra is 

more taxing. Both the model and symbolic experimental conditions activated an area of 
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the brain associated with a mental number line, an area known as the horizontal segment 

of the intra-parietal sulcus, or HIPS. 

  Differences in brain activity between the two conditions suggest that use of 

symbolic algebra may involve procedural retrieval more than does the model method. 

This was suggested by greater activation of the caudate area of the brain. Another 

difference, higher activation of the occipital lobe in the symbolic experimental condition, 

suggested that perhaps participants spent more time viewing symbolic stimuli than 

viewing bar diagrams. 

  Lee and colleagues claims seem well-founded. A within-subject design ensured 

that individual brain differences did not factor into the results. Additionally, the 

researchers included control conditions so that results measured were due to 

mathematical cognition and not simply the stimuli's modality (diagram versus symbols). 

Their design and methodology were strong. 

Lee, Yeong, Ng, Venkatraman, Graham, and Chee’s (2010) study. In a second 

neuroimaging study, 17 right-handed adults (10 males, 7 females) between the ages of 20 

and 29 participated in the study (Lee et al, 2010). The study followed a 2 (method: model 

vs. symbolic) x 2 (type: experimental vs. control) within-subject design. Each participant 

viewed all four conditions—the model experimental condition, the model control 

condition, the symbolic experimental condition, and the symbolic control condition—

distributed over 144 trials. 

  In the model experimental condition, participants viewed two bar diagram 

rectangles juxtaposed to represent a system of algebraic equations in two variables, J and 

M. The task was to solve for J and select the stimulus representing the correct solution. In 
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the model control condition, participants viewed two bar diagram rectangles configured 

to have no mathematically useful meaning. The task was to identify the number 

associated with J and select the corresponding image. 

The symbolic experimental and symbolic control conditions were analogous to 

the model conditions. In the symbolic experimental condition, participants viewed a pair 

of simple, linear algebraic equations in two variables (J and M), configured as a system 

of equations. The task was to solve for J and select the stimulus representing the correct 

solution.  

  Both the model and symbolic experimental conditions activated the  

intraparietal sulcus, an area of the brain associated with the mental number line. The 

symbolic experimental condition activated this area more strongly, suggesting that 

traditional algebraic symbolization might rely more on numerical processing than does 

bar diagramming. Also, the symbolic experimental condition activated the brain’s left 

hemisphere’s portion of the intraparietal sulcus more than it did the right hemisphere’s. 

This hemispheric asymmetry could indicate either that symbolic algebra was more reliant 

upon basic fact retrieval than bar diagramming or that it was more language-like than bar 

diagramming. Lee and colleagues felt the latter explanation was more likely. 

  Another difference between the two methods was that use of symbolic algebra 

more strongly activated a part of the precuneus. This suggests that symbolic algebra 

demands more attentional and executive resources. The symbolic method activated areas 

in the occipital lobe less strongly, suggesting that it is less visually taxing than the model 

method. 
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Lee and colleagues were tentative about their findings, acknowledging that one 

limitation of their study was that the tasks performed were more difficult than typically 

used in functional magnetic resonance imaging studies. Their design and methodology 

were strong: A within-subject design ensured that individual brain differences did not 

factor into the results. Additionally, the researchers included control conditions so that 

results measured were due to mathematical cognition and not simply the stimuli’s 

modality (diagram versus symbols). Follow-up t-tests were conducted after the initial 

ANOVA.  

  Because the participants were adults screened to perform very well at solving 

algebra problems (both using bar diagrams and symbolic algebra), study findings do not 

necessarily apply to younger, less skilled learners. Also, the study’s participants 

performed all of their tasks mentally, which is a restriction not likely to be placed upon 

student learners. It is unknown whether the ability to use paper and pencil would render 

the symbolic experimental condition less taxing. 

Literature Review Findings 

This aim of this review is to address the following questions: 

1. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of their capacity for mathematical representation? 

2. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of supporting student problem solving? 

3. What is beneficial, detrimental, and challenging about bar diagrams in terms 

of their capacity to support students’ growth in mathematical understanding? 
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Given the previous analysis of the reviewed studies, below is a discussion of the claims 

relevant to the review questions. 

Benefits of Bar Diagrams for Representing Mathematics 

Bar diagrams have the capacity to represent a wide variety of mathematics. Murata 

(2008) identified all of the mathematical concepts and relationships that tape diagrams 

displayed in the Japanese textbook series she examined, and her list included all core 

concepts, operations, and problem types from Grade 1 to Grade 6 for both whole numbers 

and rational numbers (p. 388-389). 

One particularly noteworthy representational benefit of bar diagrams is their 

capacity to represent each of the different types of arithmetic and subtraction problems in 

a way that clarifies the distinction among problem types. Consider the problem situation 

“Austin has 12 cookies and gives 7 away” versus the problem situation “Seven of 

Austin’s 12 cookies are sugar cookies and the rest are chocolate chip.”  For both of these 

problem situations, 12-7 is an appropriate numerical (abstract) representation. This means 

that subtraction is both an appropriate operator for situations involving loss or removal of 

items as well as for situations where no items were lost or removed. This can be 

confusing for some students. Bar diagrams can clarify and demystify this state of affairs 

by making it explicit that as a Separate (Result-Unknown) problem, the first situation 

differs from the second situation as a Part-Part-Whole (Part Unknown) problem.     

Bar diagrams can be configured in a variety of ways. Multiple bar diagrams can be 

associated or used in conjunction (Murata, 2008; Van den Heuvel-Panhuizen, 2003). A 

bar diagram can emerge from a model of a rectangular garage (Van den Heuvel-

Panhuizen, 2003). A stack of bar diagrams can visually and mathematically represent 
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exponential growth (Van den Heuvel-Panhuizen, 2003). Bar diagrams can be used in 

conjunction with ratio tables and double number lines (Shreyar, Zolkower, & Pérez, 

2010; Van den Heuvel-Panhuizen, 2003). Bar diagrams themselves can function as 

double number lines (Van den Heuvel-Panhuizen, 2003).  A 100-segment bar diagram 

can show percentage and its relationship to decimals (Shreyar, Zolkower, & Pérez, 2010; 

Van den Heuvel-Panhuizen, 2003). 

Bar diagrams add a visual support to the abstract symbolization of mathematics, and 

bar diagrams can display both a qualitative and quantitative sense of a math concept—

simultaneously. Van den Heuvel-Panhuizen (2003), for example, noted that as a 

representation of percentage, bar diagrams show a qualitative sense of fullness while also 

functioning as a calculation model. 

Detriments of Bar Diagrams for Representing Mathematics 

Though the number of representational benefits discussed in the literature largely 

outweighed the detriments, a number of representational problems stemming from the 

concrete nature of bar diagrams surfaced. Green (2009) noted that two of her students 

tended to rely on the visual features of bar diagrams instead of their numerical or logical 

features (p. 338). Also, Koedinger and Terao (2002) found that when students creatively 

attempted to represent negative numbers or “less-than” amounts with physically-present 

marks such as rectangles containing negative numbers, this created a visual miscue: 

Students attempted to subtract off the physical presence of these rectangles and thus used 

the mathematical operation of subtraction, but subtraction of a negative number requires 

addition, an algebraic principle that was not visually cued (p. 546).  
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A detriment unique to bar diagrams is that it is possible to select a problematic, 

initial quantity to use as a generator of subsequent quantities in the problem (Ng & Lee, 

2009, p. 310). With traditional, symbolic algebra it typically makes no difference whether 

the variables are defined, for example, as x = y + 5 or y = x - 5. On the contrary, 

depending on the relationship between quantities, drawing a bar diagram of x in terms of 

y can render the problem solving process very different from drawing a bar diagram of y 

in terms of x. This favors student problem solvers who are efficient and poses challenges 

for those who are not.  

Lastly, although the breadth of elementary mathematics that bar diagrams can 

represent is extensive, bar diagrams are limited in the scope of mathematics they can 

represent. Looi and Lim (2009) noted that when algebra problems reached a certain level 

of challenge or when algebra problems contained algebraic ratios, these problems could 

not be represented with bar diagrams (p. 373). Students who had been trained to translate 

bar diagrams into algebra thus could not proceed (p. 370). 

Challenges with Bar Diagrams for Representing Mathematics 

The main challenge with bar diagrams, in terms of representing mathematics, is 

that bar diagrams are so exacting that a single, small error can lead to an incorrect 

solution (Ng & Lee, 2009, p. 310). The teachers in Ng and Lee’s (2009) study confirmed 

that students needed to proceed carefully when bar diagramming: Teachers felt that it 

could matter whether dotted or full lines were used to partition rectangles and felt that 

rectangles should be drawn in proportion when representing known amounts (p. 296). 

The students in an earlier study by Ng and Lee (2008) relaxed the latter requirement, 

however, and were still successful problem solvers. 
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Green (2009) noted that two of her participants encountered a challenge with 

operating upon unknown rectangles (p. 340). However, after working with known values 

as examples, these students were able to successfully transition to operating upon 

unknown rectangles with understanding.  

Ng and Lee (2005) noted that lack of conceptual knowledge of fractions 

prevented some students from solving a word problem containing fractions. This was 

noteworthy because often bar diagrams allow students to circumvent otherwise necessary 

prerequisite knowledge and use arithmetic to solve problems successfully. For example, 

even if a student cannot perform calculations with the fraction 3/4, the way a bar diagram 

depicts 3/4 usually empowers the student to understand that dividing by four and then 

multiplying by three will yield 3/4 of an amount. However, the fraction problem Ng and 

Lee’s participants attempted necessitated some knowledge of fractions.  

Benefits of Bar Diagrams for Supporting Students’ Problem Solving 

Bar diagrams clearly benefitted students in terms of providing students with 

access to solving algebra problems that otherwise would have been beyond their 

mathematical ability (Booth & Terao, 2002; Ng & Lee, 2005, 2008). For example, after 

receiving instruction in bar diagramming, Booth and Terao’s (2002) sixth grade students 

outperformed much older students on basic algebra problems (p. 543). Even without 

instruction in bar diagramming, seventh and eighth graders benefitted from the presence 

of bar diagrams that modeled algebraic story problems (Booth & Koedinger, 2012).  

Students’ problem solving success in Mahoney’s (2012) and Looi and Lim’s 

(2009) studies may have been influenced by other factors, such as lack of diversity of 

problem type and increased focus due to a computer environment, respectively. However, 
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teachers and researchers did share, anecdotally, that student usage of bar diagrams 

permits teachers and researchers to gain insight into student thinking and conceptual 

understanding or misunderstanding. 

Detriments of Bar Diagrams for Supporting Students’ Problem Solving 

Regarding support of students’ problem solving, one clear detriment of bar 

diagrams discussed in the reviewed literature is that sixth graders who lack prior 

instruction in bar diagramming are less likely to attempt algebraic word problems if a bar 

diagram accompanies the problem (Booth & Koedinger, 2012, p. 500, 505). In other 

words, sixth grade students attempted story problems that lacked accompanying bar 

diagrams, but in many cases bar diagrams they could have ignored seemed to distract 

them away from the story problems that they otherwise typically attempted.  

A second detriment of bar diagrams is a side effect of a benefit: Bar diagrams 

permit students to use a series of forward calculation arithmetic equations to circumvent 

using algebra when solving algebra problems (Ng & Lee, 2009). Looi and Lim (2009) 

noted that this can become problematic once students begin learning algebra: Many 

students confuse forward calculation arithmetic equations with the algebraic equations 

they needed to be generating. Habituating to solving algebra problems without algebra 

may cause some students later problems, an idea supported by Ng’s (2003) finding that 

less than half of the study’s participants were able to identify the unknowns of a problem 

in bar diagram form. 
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Challenges with Bar Diagrams for Supporting Students’ Problem Solving 

Most challenges with bar diagramming for supporting students’ problem solving 

overlap or coincide with the challenges and detriments for representing mathematics. 

Because bar diagrams are so exacting, small and lone errors in representing mathematical 

situations can lead to a final incorrect solution. Because it can matter which variable is 

selected as the generator for drawing the other quantities in a problem, the sequence in 

which variables are presented can pose extra challenge. Because representing negative 

values or amounts “less-than” requires adding a physical mark, bar diagrams can miscue 

an incorrect choice of mathematical operation.  

One challenge not previously mentioned is the potential for inadvertently 

changing generators midway during the problem solving representation phase (Ng & Lee, 

2009). This is the mistake, for example, of accidently using the wrong bar as the base for 

drawing another variable in the problem. The equivalent error in traditional symbolic 

algebra would be, for example, to define z as y + 5 when z should be defined as x + 5.  

Benefits of Bar Diagrams for Supporting Students’ Growth in Mathematical 

Understanding 

Bar diagrams are particularly beneficial for supporting students’ understanding 

that real-world mathematical problem situations have underlying structure. Though not 

the main focus of Ng and Lee’s (2008) study about students’ perceptions of unknowns, 

one clear finding from the study was that bar diagrams capture and display problem 

structure and bring problem structure to the forefront for students. Participants in the 

study noted that as long as a problem situation had the same structure as another, then the 

same configuration of bar diagrams could be used for both. The study also clearly 
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revealed that students perceive empty bar diagrams as receptacles of yet-to-be-assigned 

values, and this successfully conveys to students the notion of an unknown value.  

Both Van den Heuvel-Panhuizen’s (2003) study and Shreyar, Zolkower, and 

Pérez’s (2010) study revealed that the visual nature of bar diagrams allow students to 

access the mathematical concept of percent from their current, individual level of 

understanding. Participants’ entry level understandings were on a spectrum from very 

informal and qualitative to formal and quantitative. Bar diagrams allowed students to use 

their own reasoning, for example, to see how determining 1% is helpful and inherent in a 

formal percent formula. The presence of bar diagrams permitted the teacher to step back 

and allow student participants to think, diagram, communicate, and demonstrate their 

way from sense-making visuals to formal and symbolic solutions (Shreyar, Zolkower, & 

Pérez, 2010).  

  Van den Heuvel-Panhuizen (2003) noted that general-use bar diagrams have the 

capacity to emerge from diagrams used to model single, specific situations. This was the 

mechanism for students’ mathematical growth documented in Van den Heuvel-

Panhuizen's study, and one of the most significant findings was that bar diagrams are of 

great benefit due to their ability to continue to display early, informal conceptions of a 

mathematics concept while also displaying later, high-level, formal conceptions of a 

mathematics concept.  

  One of the interesting side effects of the representational challenges and 

detriments of bar diagrams is that algebra students developed an appreciation for algebra 

(Ng, 2003) and an understanding of the value algebra’s increased abstractness adds. 

Specifically, because bar diagrams are exacting and are not able to represent more 
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complex problems, students saw value in the directness, efficiency, and representational 

power of algebra (Ng, 2003). 

Detriments of Bar Diagrams for Supporting Students’ Growth in Mathematical 

Understanding 

The only detriment of bar diagramming for supporting students’ growth in 

mathematical understanding overlaps with a detriment discussed above related to 

problem solving: That of student habituation to forward (arithmetic) calculations which 

later can interfere with some students’ understanding of how to generate algebraic 

equations to represent algebraic word problems. As Ng and Lee (2009) note, teachers in 

their study explained how primary students solved algebra problems without using 

algebra: 

Because they used the unitary method strategy to solve for the unknown unit, they 

avoided the need to construct equivalent equations. The objects of the procedural 

phase were a series of logical arithmetic equations, not a set of equivalent algebraic 

equations. Such a strategy circumvented the need to teach transformation of 

equations, which the teachers explained was beyond the primary school syllabus. 

(Ng & Lee, 2009, p. 297) 

As previously mentioned, resonating with this state of affairs is Ng’s (2003) finding that 

less than half of her participants could identify the unknowns in a bar diagram 

representation of an algebraic word problem. Weak connection between bar diagramming 

and algebraic symbolization was profound enough of a problem that Looi and Lim (2009) 

designed software and pedagogy for helping students bridge the two. 
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Challenges with Bar Diagrams for Supporting Students’ Growth in Mathematical 

Understanding 

 None of the major claims in the reviewed studies identified challenges with bar 

diagrams for supporting students’ growth in mathematical understanding.  

Conclusion 

 Bar diagrams have the capacity to represent a wide variety of primary 

mathematics in profound, empowering ways. Bar diagrams are uniquely adept at 

representing primary mathematical concepts in ways that show their connection to other 

mathematical concepts. Bar diagrams can represent mathematics in ways that 

simultaneously show informal, qualitative aspects of a concept and formal, quantitative 

aspects of the concept. However, the scope of mathematics that bar diagrams can 

represent is not unlimited: At some point, more complex algebraic equations and more 

abstract mathematics are not amenable to representation via bar diagrams. 

Bar diagrams provide prealgebraic students with the ability to solve algebra 

problems they otherwise would not be able to solve. When instructed in the use of bar 

diagrams, middle schoolers benefit from the presence of bar diagrams and from 

generating bar diagrams. On the other hand, without previous instruction with bar 

diagrams, only older and more accomplished middle schoolers benefit from the inclusion 

of bar diagrams with algebraic word problems.  

Bar diagrams bring to the fore the structure of mathematical concepts and of 

problem situations in a sense-making way accessible to students at various levels of 

understanding. Bar diagrams allow students to become comfortable with operating upon 

unknowns, undoing operations, and maintaining balance across the equal sign. However, 
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habituation to the visual nature of bar diagrams and circumvention of algebra via forward 

calculation arithmetic equations can cause some students problems, particularly once 

these students begin learning algebra. 

 Bar diagrams help students think, choose operations, estimate, understand formal 

procedures and formulas, communicate, and holistically represent mathematical problem 

situations. Bar diagrams grow with students from Grade 1 to Grade 6, from situation-

specific modeling to general-use modeling, and from informal understanding to formal 

understanding. Bar diagrams support students in using their own reasoning in sense-

making and problem solving and function as a common base to support classroom 

conversation and shared meanings. 

Suggestions for Further Research 

 One of the developers’ main goals for bar diagramming is that it facilitate 

mathematics word problem solving. From the literature under review, it is clear that bar 

diagramming aids some students’ problem solving of some types of problems. However, 

overall students missed many of the word problems included in the various studies, and 

many word problems were omitted from analysis because so few students attempted 

those word problems.  

Consequently, it would be valuable to more deeply explore the effect of bar 

diagramming upon word problem solving. In their work Children’s mathematics: 

Cognitively guided instruction, Carpenter et al. (1999) have provided an analysis that 

categorizes mathematical word problems. Their categorization of word problems into 

types such as joining, separating, and part-part-whole problems with either start 

unknown, change unknown, or result unknown components reveals why some word 
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problems are more challenging than others. It also lays the foundation for a schematic 

approach to mathematical word problem solving which is compatible with bar 

diagramming. A bar diagramming study incorporating Carpenter and colleague’s 

categorizations might address research questions such as, (1) Which problem types are 

more amenable to bar diagramming, if any? (2) Does bar diagramming facilitate students’ 

understanding of the similarities and differences among word problem types, and if so, 

how? (3) Can bar diagramming be used to help students understand why one operation 

can be appropriate for various problem types? 

Another of the developers’ goals for bar diagramming is that it facilitate the 

learning of algebra. From the literature under review, it is clear that while bar 

diagramming supports understanding of the concept of an unknown and permits students 

to work with algebraic problems earlier than otherwise, researchers and teachers believe 

that the link between algebra and bar diagramming can be improved. One problem 

revealed in the literature is the tendency of students to confuse forward calculations (bar 

diagramming inspired expressions that look like algebraic expressions but only demand 

arithmetic) with algebra.  

Final Word 

There is clearly potential for bar diagramming in the United States if it is 

implemented effectively, but as educators have learned in curriculum reform, no all-

encompassing “magic bullets” exist. The effectiveness of any approach lies in its 

implementation and educators must recognize that the power of the approach will 

necessarily vary across students and settings. This is further influenced by the attitudes 

and knowledge base of the teachers asked to implement any innovation. Bar 
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diagramming can provide mathematics educators with a potentially powerful tool for 

supporting student learning, and research to date does provide hints of the benefits, 

detriments, and challenges of implementing such an approach. The next question is: How 

do we best proceed from here? 
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Appendix A 

Countries Ranking Fifth or Higher on the Mathematics TIMSS and Whether Their Curriculum Features Bar Diagramming 

1999 Grade 4  

No Grade 4 TIMSS Mathematics assessment this year 

 

 1999 Grade 8  
Rank Country Features Bar Diagramming? 

1 Singapore   
2 Korea  
3 Chinese Taipei   
4 Hong Kong   
5 Japan   

 

2007 Grade 4 
Rank Country Curriculum Features Bar Diagramming? 

1 Hong Kong   
2 Singapore   
3 Chinese Taipei   
4 Japan   
5 Kazakhstan  

 

2007 Grade 8 
Rank Country Features Bar Diagramming? 

1 Chinese Taipei   
2 Korea  
3 Singapore   
4 Hong Kong   
5 Japan   

 

 

2003 Grade 4 
Rank Country Features Bar Diagramming? 

1 Singapore   
2 Hong Kong   
3 Japan   
4 Chinese Taipei   
5 Belgium Flemish  

 

2003 Grade 8 
Rank Country Features Bar Diagramming? 

1 Singapore   
2 Korea  
3 Chinese Taipei   
4 Japan   
5 Belgium Flemish  

 

 

2011 Grade 4 
Rank Country Features Bar Diagramming? 

1 Singapore   
2 Korea  
3 Hong-Kong   
4 Japan   
5 North Ireland  

 

2011 Grade 8 
Rank Country Features Bar Diagramming? 

1 Korea  
2 Singapore   
3 Chinese-Taipei   
4 Japan   
5 Russian Federation  
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Appendix B 

Boaler’s Model Depicting the Interrelationship Among Knowledge, Practice, and Identity 

 
 
Note. Boaler’s model depicting the interrelationship among knowledge, practice, and 
identity. It is not solely what a student learns but how the student does mathematics and 
learns mathematics that determines the student’s relationship with mathematics and self-
identity as a mathematics learner (or not). Thus Boaler (2002) discovered, for example, 
that learners’ classroom practice of engaging in a “dance of agency”—that is, of 
“working at the interplay of their own agencies and disciplinary agencies”—is the 
practice that enabled observed learners to have an adaptive disciplinary relationship with 
mathematics and persist when they “hit a wall” during mathematical tasks (p. 46).  

When students learn mathematics with bar diagrams, are there various ways for 
students to handle the bar diagrams? If so, do differing ways of handling bar diagrams 
make a difference in how students see mathematics and themselves as learners? Because 
each pair in Boaler’s disciplinary relationship model has a relationship, understanding the 
how of a mathematics intervention such as bar diagramming is important. Adapted 
from “The development of disciplinary relationships: Knowledge, practice and identity in 
mathematics classrooms” by J. Boaler, 2002, For the Learning of Mathematics, 22(1), p. 
46 
  

Disciplinary  

relationship 
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Appendix D 

Bar Diagrams Can Depict How the Same Situation Can Be Discussed with Different 

Mathematical Language Corresponding to Different but Related Concepts 

 
Note. What is the conceptual relationship among fractions, ratios, and multiples? How 
bar diagrams show the relatedness of various ways of comparing numbers. Reprinted 
from The Singapore model method for learning mathematics p. 40, by T.H. Kho, S.M. 
Yeo, & J. Lim, 2009, EPB Pan Pacific: Publisher.  
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Appendix E 

Bar Diagrams Can Represent Algebra Equations in Addition to Arithmetic Equations 

 
Note. Bar diagramming that permits use of arithmetic to solve algebra problems. This bar 
diagram enables students to use arithmetic to solve this word problem, which is otherwise 
typically solved with algebra or via the guess-and-check problem solving heuristic. 
Reprinted from The Singapore model method for learning mathematics p. 53, by T.H. 
Kho, S.M. Yeo, & J. Lim, 2009, EPB Pan Pacific: Publisher.  
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Note. Two ways: Example of an algebra problem solved with arithmetic then algebra. 
Students can bypass the guess-and-check heuristic—and bypass algebra as well—and still 
determine the correct solution. Reprinted from The Singapore model method for learning 
mathematics p. 54, by T.H. Kho, S.M. Yeo, & J. Lim, 2009, EPB Pan Pacific: Publisher.  
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Note. Bar diagrams that show multiple ways of assigning variables in the same algebra 
problem. Reprinted from The Singapore model method for learning mathematics p. 55, 
by T.H. Kho, S.M. Yeo, & J. Lim, 2009, EPB Pan Pacific: Publisher. 
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Appendix F 

Table A1 
Studies’ Locations, Sample Characteristics, and Relevant Research Findings 

Year, 
author(s) 

Sample 
location 

Sample 
characteristics 

Relevant research findings 
 

(2002) 
Koedinger & 
Terao 

not specified 35 6th grade students Diagramming helps students solve algebra problems typically inaccessible to them and 
frequently missed by older students. Students’ devising of abstract diagrams (e.g., diagrams 
representing negative quantities) typically led to error. The representation phase is difficult 
for these students when not one but multiple quantities are constructed in terms of a “less-
than” relationship with a base quantity. 

(2003) Ng Singapore Secondary two 
express stream 
students, ages 14+, 
females = 87, males 
= 58 

Only 6.2% of the students opted to use the model method to solve the given word problem. 
About 95% of the students successfully recalled (verified and used) the model method when 
prompted. About 46% of the students articulated relatively fully how unknowns are 
represented in the model method. Some students viewed the model method as good for 
supporting understanding while others viewed the model method as too exacting and/or 
unsophisticated. 

(2003) van 
Den Heuvel-
Panhuizen 

not specified not specified The bar model: (1) functions as on occupation meter to show fullness, (2) supports students’ 
conception of percentage; (3) shows the relationship between percentage and fractions; (4) 
allows students to work flexibly at once with both low level aspects of percentage and 
increasingly advanced aspects; (5) easily shifts from a context-laden representation to a 
context-free representation; (6) supported student understanding of the 1% calculation 
strategy for understanding percents; (7) supported student understanding of the 1% estimation 
strategy for understanding percents; and (8) supported student understanding of complex 
percentage problems requiring backwards reasoning. 

(2004) Ng not applicable not applicable The model method helps develop algebraic thinking by supporting students in analyzing parts 
and wholes, working with unknowns, working with proportional reasoning, and doing and 
undoing. 

Continued  
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Year, 
author(s) 

Sample 
location 

Sample 
characteristics 

Relevant research findings 
 

(2005) Ng & 
Lee 

Singapore 151 students: male = 
77, female = 74, 
average age = 10.7, 
grade = Primary 5, 
middle-class to 
lower middle-class 

Students’ success rate for the first of five assessment problems was 63%, 44%, 37%, 20%, 
and 15% respectively. Students set up diagram models to function as equations. On one 
problem, students used the bar model to bypass fractional computation that was beyond their 
present skill level. The last problem was less amenable to bar diagramming than typical. 
Errors revealed computational mistakes, lack of understanding of less-than and more-than 
relationships between quantities, and selection of a “generator” variable that increased the 
likelihood that students would make mistakes in defining remaining variables in the word 
problem. 

(2007) Lee, 
Lim, Yeong, 
Ng, 
Venkatraman, 
& Chee 

Singapore 18 adults: right-
handed, 20-25 years 
old, male = 10, 
female = 8 

During the problem representation phase, compared to the model method, symbolic algebra: 
(1) seemed more demanding on attentional resources; (2) activated the caudate region of the 
brain more, suggesting that symbolic algebra relies more on procedural retrieval; and (3) 
activated a part of the precuneus thought to be involved in attention orientation and 
information retrieval. 

(2008) 
Murata 

Not 
applicable 

Not applicable Tape diagrams: (1) assign related meanings to quantities in the word problem; (2) allow for 
understanding of the problem before use of abstract (numerical) representations; (3) allow for 
the relating of different mathematical operations; (4) allow the problem to be frozen in time at 
various times; (5) provide continuity in mathematics from grades 1 to 6; (6) allow students to 
experience mathematics as a subject of systematic relationships; and (7) support classroom 
discussion. Japanese tape diagrams were presented in such a way as to help students (1) 
analyze the givens in word problems and (2) ask and solve multiple questions about the same 
data. With Japanese tape diagrams, the sum of two addend bar diagrams is represented by the 
total lengths of the two bars (no third bar is drawn to function as the sum). On the contrary, 
US tape diagrams were presented in such a way as to model the solution of the word problem. 
A third, extra bar diagram is drawn to represent the sum of two addend bar diagrams. 

(2008) Ng & 
Lee 

Singapore 10 students: Primary 
5, males = 7, 
females = 3, 
neighborhood 
school students 

Each student perceived the rectangles as variables and not simply as unknowns. 

Continued  
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Year, 
author(s) 

Sample 
location 

Sample 
characteristics 

Relevant research findings 
 

(2009) Green Philadelphia 
 

6th grade, from a 
predominately 
African American 
school: 3 students 
for Phase 1, 3 
students for Phase 2 

These students spontaneously understood to operate upon unknowns as if they were knowns 
(contradicting prior research findings.) They learned that an additive quantity is 
decomposable and recomposable. They gained understanding of the relationship between 
quantities in equations of the form ax + b = cx and ax + b = cx + d. They gained 
understanding that the parts of a quantity are commutative. They were able to anticipate that 
creating equivalence is helpful in solving unknowns. They gained understanding that 
operating on one side of an equation must be balanced out with operating on the other side of 
the equation. They transitioned to use of symbolic algebra without the typical pitfalls and 
with seeming understanding. Some of these students inappropriately overrode quantitative 
information because visual cues were confusing or unhelpful. 

(2009) Looi 
& Lim 

Singapore 2 classes, each 
containing 34 
secondary 1 students 

After four weeks of the treatment (i.e., utilizing the ALGEBAR software and receiving 
algebra instruction lacking bar diagrams), the experimental class performed symbolic algebra 
better than did the control group. Pre-intervention, students had difficulty diagramming 
complex word problems. Post-intervention, a strong student correctly defined variables and 
set up equations, an average student did the same for routine word problems, and a weak 
student defined variables correctly. ALGEBAR seemed to improve students’ facility with 
symbolic algebra in a round-about way—by making diagramming easier which led to 
increased problem comprehension that then made equation production easier for students. 
Inability to diagram word problems often coincided with inability to algebraically define 
variables. The ability to check for consistency between diagrams and algebraic representation 
gave students feedback and some independence from teachers. 

(2009) Ng & 
Lee 

Singapore 4 department 
heads, 14 teachers, 
151 students 
 
Students: male = 
77, female = 74, 
average age = 10.7, 
grade = Primary 5, 
middle-class to 
lower middle-class, 
21% from the top 
stream, 79% from 
the middle stream 

Students used bar models to solve a system of equations problem bypassing the traditional 
solution method. Students used bar models to solve fraction-containing word problems 
without use of fractions. Bar diagramming was exacting, and students were unsuccessful 
when they made the slightest errors in the representation phase. Some students inadvertently 
changed generators midway, resulting in incorrect solutions. Some students created correct 
bar diagrams but failed to answer the question asked in the word problem. 

Continued  
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Year, 
author(s) 

Sample 
location 

Sample 
characteristics 

Relevant research findings 
 

(2010) Lee, 
Yeong, Ng, 
Venkatraman, 
Graham, & 
Chee 

Singapore 17 adults: right-
handed, 20-29 
years old, male = 
10, female = 7 

During the problem solution phase, compared to the model method, symbolic algebra: (1) 
activated the intraparietal sulcus more strongly suggesting that symbolic algebra instigates 
more numerical processing; (2) yielded hemispheric asymmetry with higher left-side 
activation possibly indicative that symbolic algebra is more language-like or more dependent 
upon fact retrieval; (3) more strongly activated a part of the precuneus, suggesting that 
symbolic algebra demands more attentional and executive resources; (4) prompted stronger 
activation in the basal ganglia (no conclusive inferences made); and (5) activated areas in the 
occipital lobe less strongly, suggesting that symbolic algebra is less visually taxing than the 
model method. 

(2010) 
Shreyar,  
Zolkower, & 
Pérez 

Argentina 1 class of 21 
students at a 
private bilingual 
(English/Spanish) 
school: 6th grade, 
medium to high 
economic status 

Class participants used the bar diagram: (1) to connect a standard algorithm for calculating 
percents with a 1% strategy for calculating percents; (2) to demonstrate and record ideas; (3) 
to compare ideas with possible solutions; (4) to show the commutative property; and (5) to 
show the practicality of doing particular mathematical operations. Bar diagrams supported the 
teacher’s use of questions to guide student thought, reflection, understanding, and learning. 

(2012) Booth 
& Koedinger 

American 
Middle West 

373 6th-8th grade 
students, ethnically 
diverse 

Typically the presence of diagrams did not aid these sixth graders’ problem solving and may 
have even harmed it. However, these sixth grade students, including the low ones, improved 
with age on story + diagram problems, though not on story problems. These seventh graders 
and eighth graders benefitted from diagrams: Diagrams particularly aided these seventh and 
eighth grade students’ problem solving of double reference problems. 

(2012) 
Mahoney 

Rural New 
Hampshire 

4 students: 9-10 
years, male = 3, 
female = 1 

Model drawing instruction improved students’ performance on multiplicative comparison and 
fraction word problems. 
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