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Abstract 

 

Accordance of the Unified Theory of Reinforcement’s Model of Behavior with the 

Modern Quantitative Law of Effect 

By Nicholas T. Calvin 

 

Virtual organisms animated by the Unified Theory of Reinforcement’s neural network 
model of behavior responded on random interval schedules in a method that was largely 
consistent with the quantitative law of effect.  The virtual organisms were evolved using 
an evolutionary algorithm to determine an optimum set of parameters that maximized the 
number of collected reinforcers while simultaneously minimizing the number of 
extraneous responses that were emitted.  The behavior of the evolved virtual organisms 
was compared to the quantitative law of effect (Herrnstein, 1961), a modified version of 
the quantitative law of effect informed by the modern matching law (Soto et al., 2005), 
and to four comparison functions.  The modern quantitative law of effect best described 
the data with 99.7% of the variance accounted for, but showed non-random standardized 
residuals.  The median exponent was 0.74 for the best fits to the modern quantitative law 
of effect.  The observed k was greater than the possible number of responses that the 
virtual organisms could emit in a time period, which supports an interpretation of k as 
simply a parameter rather than as the constant rate of responding (Dallery et al., 2000; 
McDowell, 2005).  Although the virtual organisms exhibited very slight discrepancies 
from the modern quantitative law of effect, these results expand the number of 
phenomenon that can be demonstrated by the neural network models to include the 
quantitative law of effect.  
  
Key Words:  selection by consequences, behavior dynamics, quantitative law of effect, 
computational modeling, random interval schedules, neural networks, evolutionary 
algorithm 
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Accordance of the Unified Theory of Reinforcement’s Model of Behavior with the 

Modern Quantitative Law of Effect 

 The Donahoe Unified Theory of Reinforcement asserts that operant and 

respondent behaviors are generated by the same underlying biological reinforcement 

model and only appear to differ due to contingencies of reinforcement (Donahoe et al., 

1993).  This theory is grounded in biological findings and emphasizes the ventral 

tegmental area (VTA) and corpus ammon area 1 (CA1) neurons of the hippocampus as 

detecting changes in neural activation.  These changes in activation in turn alter the 

strength of neural connections based on the presence or absence of reinforcement 

provided by the environment.  Over time these changes generate the behavior that is 

observed in experimental settings.  To test the assertions of this theory, neural network 

models were designed with constraints based on the biological components of the theory.   

It is important to understand the distinction between theories and models in this 

paper.  As used in this paper, a theory is an explanation of how living organisms function, 

whereas a model is an implementation of the dynamics of a theory which can be 

examined in laboratory settings.  Fundamentally, a model cannot prove that a theory is 

the true explanation of how living organisms function; only the behavior of living 

organisms can demonstrate that.   However, it can support the theory by demonstrating 

that it is capable of generating behavior similar to that of live organisms. 

The neural networks based on this theory have successfully mimicked a number 

of phenomena, but have not been applied to operant behavior.  In the first paper on the 

Donahoe neural networks, the networks were shown to be capable of operant and 

respondent acquisition, extinction, and reacquisition, as well as blocking (Donahoe et al., 
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1993).  Over the last 19 years, the Donahoe neural networks have successfully modeled 

revaluation, latent inhibition, and autoshaping (Donahoe & Burgos, 2000; Burgos, 2003; 

Burgos, 2007).  Although the theory asserts that it applies to operant behavior, it has not 

been extensively tested using operant contingencies. 

These successes have led Donahoe to assert that when neural networks are 

combined with genetic/neurodevelopmental algorithms (G/ND), they provide a method of 

examining the cumulative properties of selection by consequence (Donahoe, 2002).  This 

method could serve as the foundation for an important behavioral perspective by 

demonstrating that the fundamental mechanism of selection by consequence could 

underlie all behavior.  By showing the dynamic mechanisms of behavior, it allows for 

understanding why the environment and behavior correspond in very particular ways 

(McDowell, 2004).  This method could serve as the basis for an understanding of 

behavior that unifies our understanding of operant and respondent behavior through the 

underlying method of selection by consequence.  However there have been other 

approaches of modeling the process of selection by consequences (Catania, 2005; 

McDowell, 2004, e.g.).   

The McDowell Theory of Selection by Consequences has been very successful at 

reproducing behavior in accordance with live organisms on single and concurrent 

schedules (McDowell, 2004; McDowell et al., 2008).  The McDowell and Donahoe 

theories have theoretical similarities although the model implementations are very 

different.  Both theories rely upon the concept of selection by consequences (McDowell, 

2004; Donahoe et al., 1993; Skinner, 1981).  They both emphasize that the dynamic 

processes of behavior provide important and unique information.  The theories differ in 
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their neurobiological interpretation, with the Donahoe theory emphasizing functional 

neuroanatomy (Donahoe, 1993) and the McDowell theory only recently drawing parallels 

with neurobiology through the Edelman theory of Neural Darwinism (Edelman, 1987; 

McDowell, 2010).  When implemented as models, the Donahoe neural networks differ 

from the McDowell evolutionary algorithms, with the McDowell implementations being 

more abstract, not directly attempting to show biological processes, and currently being 

restricted to operant behavior. 

 The first phenomenon that the McDowell Theory of Selection by Consequences 

successfully modeled was the quantitative law of effect (McDowell, 2004).  The 

quantitative law of effect is a robust phenomenon that has been shown to follow the 

hyperbolic form of, 

     𝑅 = 𝑘𝑟
𝑟+𝑟𝑒

  (1) 

where R represents response rate, r represents the rate of reinforcement, and k and re are 

parameters of the equation (Herrnstein, 1970).  Although this form is fairly accurate, it is 

based on the classical matching law, which does not include the exponent and bias 

parameters that are found in the modern matching law (Herrnstein, 1961; Baum, 1974).  

The modern matching law has been found to more accurately represent data on 

concurrent schedules than the classic matching law (McDowell, 2005).  It is possible to 

modify the modern matching law to create an exponentiated-hyperbola version of the 

quantitative law of effect in the same way that the quantitative law of effect is generated 

from the classical matching theory (Soto et al., 2005).  The resulting exponentiated-

hyperbola is  

𝑅 = 𝑘𝑟𝑎

𝑟𝑎+𝑟𝑒
𝑎
𝑏

  (2) 
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where a allows for deviations of responding termed undermatching and overmatching to 

reinforcement, b is the bias parameter, and all other parameters have been defined 

previously. 

 The purpose of the present article was to determine what form of behavior 

Donahoe neural networks generate on single component random-interval (RI) schedules.  

Ideally the neural networks should generate behavior demonstrating a hyperbolic or 

hyperbolic-exponentiated relationship between response and reinforcement.  The current 

experiment utilizes similar methodology to that advocated by Donahoe (2002) and 

utilized in experiments by Burgos (1996, 1997).  Experiment 1 assessed the faithfulness 

of the current implementation of Donahoe neural networks and experiment 2 examined 

what form of behavior the networks generate on single component schedules. 

Virtual organisms, which are models built to interact with virtual environments, 

were implemented following the most current version of the neural network algorithm 

described in Sanchez, Galeazi, & Burgos (2010).  Although the algorithm has been fairly 

consistent there have been some variations in the parameters and function forms to allow 

it to generate certain behaviors (Burgos, 2003; Sanchez et al, 2010).  The algorithm can 

be broken down into two levels: structural and functional.  The structural level of the 

algorithm concerns the structure of the network and how the components of the network 

are interfaced.  The functional level delineates how the components of the network 

function and impact one another. 

 The structural level is held constant for any given experiment and is most bound 

by theory.  One of the strengths of the model’s implementation of the Unified Theory of 

Reinforcement compared to other neural networks is that it constrains the structural level 
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based on known neurobiological processes (Donahoe, 1993).  Neural networks are set up 

with four distinct layers as can be seen in Figure 1.  From left to right these are the 

input/stimulus, hippocampus interneuron, dopaminergic interneuron, and output/response 

layers, and their interconnections are unidirectional from one layer to the next.  Each 

layer has a number of neural processing units (NPUs) that interact with the layers around 

it.  Every NPU in this network has an activation level that roughly corresponds with the 

probability that the organism will respond to a stimulus.  At a given time point the 

activation level of a NPU is a function of the previous interactions with the environment 

and the current activation levels of the NPUs in the previous layer.  The activation level 

value is always within the range of 0 and 1. 

 There are two pathways in the structural layer that impact the behavior of the 

neural network.  The stimulus-response (S-R) pathway determines what behavior is 

expressed by the virtual organism based on what stimuli are presented.  The 

reinforcement/extinction (R/E) pathway alters the functioning of the S-R pathway based 

on the presence or absence of an US.  Over time the R/E pathway adjusts the S-R 

pathway so that the virtual organism expresses a response that has resulted in receiving 

reinforcement after the presentation of certain stimuli.  The delineation of these two 

pathways in the architecture of the model can be seen in Figure 1. 

 The input layer of the S-R pathway has a number of NPUs that are activated if the 

environment expresses certain stimuli.  These NPUs detect the presence of stimuli in the 

environment and have their activation levels set by the salience of the stimuli (usually to 

the maximum value of 1).  The input layer interacts with the hippocampal interneuron 

layer by connections (shown as thin black lines in Figure 1).  These interconnections 
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between NPUs modulate the effectiveness of the transmission of the activation values 

from one NPU to another.  Over time these connections fluctuate in their effectiveness of 

transmission (weight) based on activation of NPUs in the R/E pathway.  The 

hippocampal interneuron layer determines the activation level of each of its NPUs based 

on the activation of the NPUs in the input layer and the strength of the connections 

coming from the stimulus layer.  The hippocampal interneuron layer acts as a sensory-

association area which processes the combinations of sensory neurons.  The NPUs of the 

dopaminergic interneuron and response layers are updated by the activations of the NPUs 

and the efficiency of their projecting connections in the hippocampal interneuron and 

dopaminergic interneuron layers, respectively.  The dopaminergic interneuron layer 

behaves like the motor-association area which determines which responses the neural 

network will emit.  If the output layer NPUs have an activation level greater than 0 the 

virtual organism emits that response to the environment. 

 The R/E pathway is the part of the model that is most constrained by the Unified 

Theory of Reinforcement.  In the input layer the R/E pathway has NPUs which detect the 

presence of unconditioned stimuli.  When an unconditioned stimulus (US) is present in 

the environment the activation level of the corresponding US NPU is set based on the 

magnitude of the reinforcement.  This usually set to 1, but it has been shown that lower 

values delay the acquisition of responding to the stimulus (Donahoe, 1993).  Each US 

NPU is associated with an unconditioned response (UR) NPU in the response layer.  If 

the US NPU’s activation level is greater than 0 the UR NPU’s activation level is set to 

that value.  Otherwise, the UR NPU’s activation level is determined by the dopaminergic 

interneuron layer.  This connection gives the UR NPU the dual purpose of also acting as 
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a conditioned response (CR) NPU so that it can be activated even if the US is not present 

in the environment. 

In the R/E pathway there are two neurons which detect changes in activation of 

the S-R pathway.  The primary activation change detector is part of the dopaminergic 

interneuron layer.  According to the theory, this change detecting NPU corresponds with 

the ventral tegmental area (VTA).  The VTA detects the presence of a US in the 

environment and releases dopamine when it is present strengthening the interconnections 

of neurons that are coactivated at that time.  The VTA NPU mimics this behavior by 

having its activation level set to that of the US NPU if the US NPU’s activation is greater 

than 0.  If the US NPU is not activated than the activation level of the VTA NPU is 

determined by the activations of the dopaminergic interneuron layer.  The second change 

detector is in the hippocampal interneuron layer and its activation level is determined by 

the NPUs in the S/R pathway of that layer.  This change detecting NPU is supposed to 

serve the same function as the cornu ammonis area I (CA1) in the hippocampus in that it 

detects changes in the environmental stimuli through the sensory-association area of the 

brain.  Based on the amount of change in the level of activation from one time step to 

another, the two activation change detecting NPUs alter the effectiveness of transmission 

of the interconnections by modifying their weight values.  The weight value of a 

connection is an indication of its efficiency at transmitting the activation level from one 

NPU to another.  The CA1 NPUs affect the connection weights between the input and 

hippocampal interneuron layers and those between the hippocampal interneuron layer and 

themselves.  VTA NPUs alter the connection weights between the hippocampal and 

dopaminergic interneuron layers, the dopaminergic interneuron and output layers, and the 
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dopaminergic interneurons and VTA NPUs.  These connection changing pathways are 

shown in Figure 1 as the grey areas.  If the difference in activation levels is greater than a 

certain threshold the connections are strengthened; otherwise the connections become 

weaker.  For the CA1 NPUs the strength of the signal to the connections that determines 

whether or not they become more efficient is modulated by the signal coming from the 

VTA NPUs.   

 The functional level of the model consists of the processes that implement the 

dynamics of the algorithm.  This is largely atheoretic, with the exact forms of the 

equations being irrelevant so long as the correct behavior is generated.  This level is 

additionally devoted to dealing with how to abstract the processes of the brain that are 

part of the Unified Theory of Reinforcement.  There are three components of the 

functional level that influence the overall behavior of the model: number of NPUs, NPU 

algorithms, and connection algorithms. 

The number of NPUs in the interneuron layers has been repeatedly shown to 

impact the model’s behavior.  Recently, it was shown that the numbers of NPUs in the 

interneuron layers modify the rate of extinction of the network with more NPUs 

increasing the amount of time before extinction occurs after unconditioned reinforcement 

is halted (Sanchez et al., 2010).  This flexibility in NPUs is not limited to the number of 

NPUs within layers; and it also extends to the number of interneuron layers in 

evolutionary G/ND algorithms (Burgos, 1996, 1997).  When using the standard structure 

with no plurality in the number of hippocampal or dopaminergic interneuron layers, the 

following notation can be used to indicate the number of neurons in each layer: 11-31-31-

1.  The large numbers indicate the number of NPUs for each layer of the S-R pathway 
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and the subscripts indicate the number of NPUs for each layer of the R/E pathway going 

from the input to the output layers. 

As a necessary level of abstraction, the neural network functions in discrete time 

steps.  For each time step the virtual organism obtains the stimuli from the environment, 

randomly determines the order to process the NPUs, updates the weights of the inter-

NPU connections in a random order, and then emits the response to the environment.  It 

is very important to note that the network does not function by processing the activations 

of the NPUs sequentially from input to output, but by selecting NPUs in a random order.  

Asynchonous activation is required for this neural network model as it will not function 

properly with synchronous activation.  Asynchronous activation has the effect of 

blending the time steps together which may help compensate for the abstraction of time 

steps.   

All NPUs and their interconnections function identically.  Except when assigned a 

specific activation level, each NPU’s activation level is a function of the activation of 

each of the NPUs in the previous layers multiplied by the strength of the connection 

between the two.  Based on the activations of the change detecting NPUs the connection 

weights are altered.  When the weights of the connections are altered they compete with 

one another with the maximum total value of the weights projecting to a specific NPU 

being 1.  The exact equations used to manipulate these processes are written out in the 

Appendix but are not necessary to understand how this model operates. 
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Experiment I: Confirming the current implementation 

Method 

Subjects 

 The virtual organisms in this experiment used the same parameter values as were 

used in the Sanchez et al. paper (2010).  The parameters for the NPUs were: θt (µ= 0.20, 

σ= 0.15), τ t = 0.1, κt = 0.1, Logistic Function (δ = 0.5,γ = 0.1).  The parameters used for 

the connections were: dθ = 0.001, α = 0.5, β = 0.1.  The starting weights of the 

connections were 0.15 for the input layer NPUs to hippocampal interneuron NPUs and 

the hippocampal interneuron NPUs to hippocampal NPU.  The starting weights of the 

other connections were 0.01.  This is the same procedure that has been used in more 

recent testing of the neural network model (e.g., Burgos, 2003; Sanchez et al., 2010).   

The network structures varied for each phase of the experiment.  Please see the Appendix 

for a detailed description of the parameters. 

 

Apparatus and Materials 

 The software was written and experiments were conducted on a computer using 

the Windows 7 operating system.  The computer had a dual core 1.6 Ghz processor with 

6 GB of RAM.  The neural network and G/ND algorithms were written in VB.Net 2010.  

The environments that the virtual organisms behaved in were also implemented in 

VB.Net 2010.  The number of responses emitted and the number of reinforcers received 

by the virtual organisms were recorded and stored in standard databases and analyzed 

using standard software.  As needed, the activation levels of the US/CR and response 

NPUs were recorded using standard software. 
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Procedure 

Three tests were run to confirm that the current implementation was capable of 

respondent and operant acquisition, extinction, and reacquisition.  These were the first 

three phenomena that were demonstrated by the neural network model (Donahoe, 1993).  

Acquisition is the acquiring of behavior to reinforcement, extinction is the ceasing of 

behavior after the removal of reinforcement for behavior, and reacquisition is the faster 

acquiring of behavior after previous acquisition.  Operant and respondent refer to the 

conditions whereby reinforcement was delivered to the organism.  In an operant 

contingency the virtual organism had to emit a behavior to receive reinforcement and in a 

respondent contingency reinforcement occurred regardless of the virtual organisms 

behave at a certain time.  Tests were run to confirm that it was also capable of the 

blocking effect, which is the prevention of learning when presented compound stimuli 

after one of those stimuli was previously conditioned.   The purpose of these tests was to 

ensure that the model qualitatively produced results similar to the original 

implementation.  The networks in this experiment were not directly comparable to the 

original paper, because they include the hippocampal layer, which was not implemented 

in the original presentation of these behaviors. 

Respondent acquisition, extinction, and reacquisition consisted of 600 trials 

evenly divided between the three phases of acquisition, extinction, and reacquisition.  For 

each trial the environment emitted the CS for 7 time steps.  On the 7th time step (ts) of the 

acquisition and reacquisition trials the virtual organism received an US with a magnitude 

of 1 (maximum) giving an interreinforcement interval of 6 ts.  On extinction trials no US 

was presented.  At the 6th ts of each trial the activation level of the CR/UR NPU was 
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measured.  After the 7th ts the activation levels of the NPUs were reset to 0 to simulate 

the effect of an intertrial interval.  The neural network architecture used for this test was 

11-31-31-1. 

Operant acquisition, extinction, and reacquisition followed nearly the same 

environmental framework as the respondent acquisition, extinction, and reacquisition.  

Unlike the respondent test, the emission of an US from the environment was conditional 

upon the virtual organism’s behavior at the 6th ts.  At the 6th ts, if the activation of the 

response NPU was greater than 0 the virtual organism emitted the required response for 

reinforcement.  If the virtual organism emitted a response at the 6th ts it received 

reinforcement from the environment by the emission of an US on the 7th ts.  The neural 

network architecture used for this test was 11-31-31-2.   

The neural network architecture used to test for blocking was 21-31-31-1.   For 

this test 600 trials were broken across three phases.  Each trial consisted of 7 time steps of 

a stimulus presentation with an US presentation on the 7th ts.  For the first phase, only 

stimulus 1 was emitted for each trial.  During the second phase, stimulus 1 and 2 were 

emitted simultaneously. For the final phase only stimulus 2 was emitted.  On the 6th ts of 

each trial the activation level of the CR/UR NPU was measured and recorded. 

 

Results 

Respondent conditioning was exhibited by the neural network, consistent with 

Donahoe (1993).  As can be seen in Figure 2, the virtual organism successfully acquired 

conditioned responding after 180 trials (first panel), extinguished 150 trials after CS-US 

pairings ceased (second panel), and reacquired in approximately 30 trials after CS-US 
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pairings were reintroduced (third panel),.  As in the original experiment, the virtual 

organism more quickly acquired responding during the reaquisition phase than it did 

during the acquisition phase.  Unlike the original paper, this implementation of the neural 

network took much longer to acquire CR to the stimulus.  This difference is primarily due 

to the longer time it takes to build up the weights in the hippocampal interneuron layer 

which was not present in the original neural network.  According to Dr. Burgos, the 

neural network model is “extremely sensitive to parameter and architecture changes” 

(personal communication, September 19, 2011).  This precluded a stricter quantitative 

analysis of the timing of acquisition, extinction, and reacquisition. 

This implementation of the neural network model also exhibited operant 

conditioning.  The behavior of the neural network can be seen in Figure 3 with the 

activation levels of the UR/CR NPU shown as the filled points and the operant response 

NPU as the unfilled points.  As was observed in the respondent conditioning test, the 

virtual organism successfully acquired the behavior, extinguished, and reacquired operant 

responding.  As was shown previously by Donahoe (1993) the virtual organism began 

showing increased activation on the UR/CR NPU sooner than on the response NPU.  This 

was the major feature of the original implementation when the virtual organisms were 

placed in this environment.  It is noteworthy that activation of the operant response NPUs 

continued to increase even after the extinction procedure was implemented (second panel 

of Figure 3).  Continued increases in the weights between NPUs can still increase even 

after CS-US pairings cease, because the VTA NPUs can still be activated by the NPUs in 

the dopaminergic interneuron layer. 
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The virtual organism also demonstrated the phenomenon of blocking.  As can be 

seen in Figure 4, the virtual organism effectively acquired conditioning to stimulus 1 after 

180 trials. After 200 paired associations with stimulus 1 and the US, stimulus 2 was 

unable to acquire conditioned responding to the US within 200 trials despite repeated 

pairings.  This result was consistent with Donahoe (1993) which showed no responding 

on probe trials when stimulus 2 was presented. 

 Overall, this implementation of the Donahoe neural network has the same 

qualitative characteristics as Donahoe's (1993) implementation.  The virtual organism 

qualitatively demonstrated acquisition, extinction, and reacquisition for both operant and 

respondent procedures, and these phenomena had the same features as Donahoe (1993) 

reported for his implementation.  The virtual organism also successfully demonstrated 

blocking, with no responding occurring in 200 trials where stimulus 2 was presented 

alone (third panel of Figure 4). Although this implementation is not quantitatively 

identical to the original implementation, it is a faithful reimplementation of the Donohoe 

group's current model.   

 

Experiment II: Behavior on single RI schedules 

Method 

Subjects 

 The subjects for this experiment consisted of 11-31-31-2 architecture neural 

networks.  These neural networks were identical to those used in Experiment 1 except for 

the addition of one parameter.  Previous research has used the assumption that an 

activation level greater than 0 was sufficient for the organism to emit a response.  In 
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preliminary testing, this resulted in the number of measureable responses on single 

random interval (RI) schedules always being equal to the number of opportunities to 

respond, because the activation levels of the output layer NPUs were always above 0.   

 To counteract this, a threshold parameter that determined what constituted a 

response was added to the organism.  When determining whether the virtual organism 

emitted a response, the activation levels of the CR/UR and response NPUs were 

compared to the value of this parameter and if they exceeded, it the virtual organism 

emitted that response to the environment.  In preliminary testing a very small value of 

0.0005 was sufficient to prevent constant responding.  Additionally, a response activation 

threshold (rt) parameter value this low does not prevent spontaneous activation from 

occurring.  The addition of this parameter did not affect the ability of the model to 

demonstrate the findings in Experiment 1. 

 

Procedure 

 For this experiment, 11 single component random interval (RI) schedules were 

presented to virtual organisms in a random order within a virtual operant chamber.  The 

scheduled RI rates were 2, 3, 5, 8, 12, 17, 25, 45, 85, 145, and 225.  An RI rate of 1 was 

not included, because in preliminary testing, an RI 1 schedule resulted in slightly fewer 

emitted behaviors than were observed on poorer schedules of reinforcement due to the 

difficulty of differentiating between reinforcement for responding and non-responding.   

 Previous experiments that have tested Donahoe neural networks have made the 

simplifying assumption that every stimulus-response trial is distinct.  This assumption 

does not hold for single component RI schedules where the timing of reinforcer delivery 
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depends on when a reinforcer is available, and the organism’s behavior at that time.  In an 

operant chamber with a single component RI schedule, the stimulus is presented 

constantly and there are no breaks in stimulus presentation between reinforcements.  The 

absence of distinct trials does not allow the activation levels of the NPUs to be set to 0. 

 Thus it was necessary to modify the environment-organism interaction so that a 

stimulus could be presented continuously.  Each schedule presented a stimulus to the 

virtual organism for either 10,500 or 20,500 ts.  During this time if the virtual organism 

emitted a response, the environment checked to see if a reinforcer was available.  If a 

reinforcer was available the virtual organism was presented with an US that maximally 

activated the US NPU.  For analyses, the first 500 ts of a schedule were discarded and 

only the remaining ts were analyzed. 

 Prior to testing on single RI schedules the virtual organisms were conditioned to 

acquire responding to the stimulus.  The virtual organism was presented with 500 trials of 

stimulus-US pairings.  For each trial the environment emitted the stimulus for 5 time 

steps.  On the 4th time step if the response NPU’s activation of the virtual organism 

exceeded the response threshold it was presented with an US that maximally activated the 

US NPU.  If the activation level of the response NPU was never greater than 0.8 at the 4th 

ts during the 500 trials it was deemed to have failed at acquiring responding to the CS 

and the virtual organism was not run on the RI schedules. 

 This experiment can be broken down into two phases.  During the first phase, 

virtual organisms were evolved using an evolutionary algorithm to determine an optimal 

set of parameters.  During the second step of the experiment, this set of optimal 

parameter values was used in 10 virtual organisms to examine what function form best 
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described the responding of a virtual organism.  Each RI schedule was presented for 

10,500 ts during the evolutionary algorithm fitness testing and 20,500 ts for the testing of 

the evolved parameters. 

 

Evolutionary Algorithm 

An evolutionary algorithm was used to evolve a population of neural networks.  

Evolutionary algorithms are an engineering method that recursively determine a point of 

optimality.  This technique is especially useful if it is not well understood how the 

parameters affect the results of an algorithm.  In this case, the parameter space of the 

neural networks that the Donahoe model uses has not been thoroughly examined.  The 

goal of this evolutionary algorithm was to determine the set of parameters which when 

implemented in the neural network maximized the number of collected rewards while 

simultaneously minimizing the number of extraneous responses. 

The evolutionary algorithm implemented virtual organisms in test environments 

and observed their behavior.  With every generation, virtual organisms were selected to 

be parents based on how fit they were, children were created from the selected organisms, 

and the children were then subjected to mutation.  Every virtual organism was exposed to 

the virtual environment of 11 single RI schedules to determine their fitness.  A population 

of 100 organisms (neural networks) was evolved over 100 generations generating a total 

of 10,000 neural networks.   

The initial generation of the evolutionary algorithm was produced using a 

prototype organism and heavily mutating it.  The prototype organism was based on some 

preliminary sampling, because it generated a curvilinear pattern of behavior that showed 
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increasing responding with increasing reinforcement (See figure 5).  This pattern of 

behavior was not ideal, because it showed a slight decrease in responding on very rich 

schedules.  The parameters for the NPUs were: θt (µ= 0.20, σ= 0.15), τ t = 0.1, κt = 0.1, 

Logistic Function (δ = 0.5, γ = 0.1), & rt = 0.0005.  The parameters used for the 

connections were: dθ = 0.005, α = 0.7, β = 0.15. This prototype organism was copied 100 

times and these copies were mutated (see below) with a mutation rate of 5% to generate 

the initial population. 

 

Fitness 

The fitness of every organism was a function of the costs and benefits of 

responding when placed in the aforementioned set of environments.  For each reinforcer 

presented by the environment due to the virtual organism’s behavior, the virtual 

organism’s fitness value was increased by 20 points.  To simulate the opportunity cost of 

behavior, each time the organism emitted a behavior its fitness value was reduced by one 

point.  The observed fitness can thus be expressed as, 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑜𝑏𝑠 = (𝑟 ∗ 20) − (𝑅 ∗ 1) 

where R represents the number of responses and r represents the number of 

reinforcements.  This was how the fitness of every virtual organism was determined, 

except in cases where the virtual organism was unable to acquire operant responding.  If 

the virtual organism was unable to acquire responding within 500 trials of operant CS-US 

reinforcement pairings it was assigned the minimum possible fitness value.  
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Parental Selection 

Parental selection occurred after all of the organisms were assigned fitness values based 

on their behavior.  Tournament selection was used with 5 competitors per tournament.  In 

tournament selection a number of competitors are selected from the population of virtual 

organisms.  Among these competitors the one with the highest fitness was selected to be 

one of parents of the next generation.  In the event of a tie among the competitors, no 

parent was selected and another set of competitors was drawn.  This process was repeated 

until 100 parents were selected.  It is important to note that theoretically this process 

could select the same organism to be each of the 100 parents.  To ensure that this did not 

occur, if there was only one unique parent, then the entire set of 100 parents was 

discarded and the process was repeated until a set of 100 parents was selected that had at 

least two unique parents. 

 

Reproduction 

Two parents were randomly chosen with replacement from the selected parents to 

generate a child.  A method of generating children is to translate the parameter values of 

both parents into bit strings and then use crossover recombination.   To translate the 

parents into bit strings each of the parent’s 10 parameter values was translated into a 10-

bit string creating a total parent bit string consisting of 100 bits.  The parent’s parameter 

values, which ranged between 0 and 1, were multiplied by 1023 (max binary value of 10-

bits) and then translated to binary.  This method gave the parameter values a fixed 

precision of about 0.001 .  The exceptions to this were the response and reinforcement 

threshold parameter values, which were divided by 10 because in the model their values 
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were required to be much smaller than the other parameters.  These two parameters were 

precise to 0.0001 and ranged in value from 0 to 0.1. 

After the two parents were translated into bit strings, single point crossover 

recombination occurred.  In single point crossover recombination a single point along one 

of the parent’s bit string is selected.  To the left and including this point the bits from one 

of the parents and to the right of it the bits from the other parent are used.  These are then 

combined to create a new bit string that is a child of both parents.  To ensure that no 

clones of the parents were created the crossover points that could be selected were 

restricted to the range from the second to the next to last bit.  This process of 

reproduction was repeated 100 times to create the next generation of virtual organisms. 

 

Mutation 

 After the new generation of organisms was created it underwent random bitwise 

mutation.  For each of the children, every bit of its bit string representation was subjected 

to a percentage chance of its bit value flipping from 0 to 1 or 1 to 0.  The percentage 

chance of each bit mutating was set at 1%.  At one percent mutation, the probability of an 

organism having at least one mutation in its bit string representation is 64% (1 – 0.99100).  

Although this may seem high, the probability of any given parameter value mutating was 

about 10% (1 – 0.9910); with 10 parameters this gives an expected value of 1 parameter 

changing per organism mutation.  After each of the organisms in the new generation was 

mutated the bit string representation was translated back into parameter values.  Once the 

new generation was returned to parameter values, the entire evolutionary process was 

repeated. 
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Testing the Evolved Parameters 

Once all 100 generations of virtual organisms had been tested, the ideal 

parameters that the evolution had converged upon were used to animate 10 virtual 

organisms.  These virtual organisms were tested in the same virtual environments that 

were used during the evolutionary algorithm run.  Each schedule was run for 20500 time 

steps and the number of reinforcements and operant responses were counted.  The 

resulting patterns of behavior were then examined to see what function form best 

described their distribution of responses and reinforcements. 

 

Results 

Evolutionary Algorithm 

 The evolutionary algorithm converged on a set of parameters within the first 20 

generations.   The parameter values found by the evolutionary algorithm for the NPUs 

were: θt (µ= 0.20, σ= 0.15), τ t = 0.10, κt = 0.10, Log. Function (δ = 0.50, γ = 0.10), & rt 

= 0.0005.  The evolved parameter values for the connections were: dθ = 0.0054, α = 0.83, 

β = 0.15.  Each of the evolved parameter values was rounded to the nearest hundredth 

except for the delta threshold and response threshold that were rounded to the nearest ten 

thousandth before being used in phase 2.  The effect of the evolution was localized to the 

connection parameters.  Compared to the prototype virtual organism used to seed the 

evolutionary algorithm, the connection parameters of the delta threshold, acquisition, and 

extinction parameters were higher.  This set of parameters still showed the same 

qualitative features in operant and respondent acquisition, extinction, and reaquisition and 

blocking as was shown in Donahoe (1993).   
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Evolved Parameter Values 

The response and reinforcement frequencies of each scheduled RI for each of the 

10 virtual organisms was averaged over 40 500-ts blocks after discarding the first 500-ts 

block.  This gave a total of 440 blocks of data for each of the virtual organisms.  

Averages of fewer blocks of data result in more variability in the observed responses, 

which is more typical of live organisms.  Equations 1 and 2 were fitted to data from each 

of the 10 virtual organisms by the method of least squares.  The proportion of variance 

accounted for and the parameter values estimated from the fits are listed in Table 1.  The 

parameters for Equation 1 (hyperbola) are listed in columns 2 and 3 and the parameters 

for Equation 2 (exponentiated-hyperbola) are listed in columns 5, 6, and 7.  The mean of 

the proportion of variance accounted for by both equations was nearly 1.00.  Based on a 

Wilcoxon matched-pairs signed-rank test, the exponentiated-hyperbola accounted for a 

higher proportion of variance than the hyperbola (Tobs = 0, p < 0.01). 

The observed exponents showed systematic undermatching with values that 

ranged from 0.82 0.64 with a median of 0.73 across the 10 virtual organisms.  The value 

of the exponentiated-hyperbola’s asymptote for every virtual organism exceeded the 

possible number of responses per 500-ts block with a median of 572.  The value of the 

asymptote of the hyperbolic fit for each virtual organism also exceeded the possible 

number of responses per 500-ts block with a median of 516. 

Four additional function forms were fitted to the data of the ten virtual organisms 

to examine the uniqueness of the exponentiated-hyperbola fit.  The four functions were 

an asymptotic exponential, 
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𝑅 = 𝑎(1 −  𝑒−𝑏𝑟), 

an asymptotic power, 

𝑅 = 𝑎(1 − 𝑟−𝑏), 

a logarithmic, 

𝑅 = 𝑙𝑜𝑔𝑏(𝑟), 

and a ramp, 

𝑅 =  �
𝑏𝑟,    0 ≤ 𝑟 ≤  

𝑎
𝑏

𝑎,      0 >  
𝑎
𝑏

         
. 

For all of these equations, R and r represent the rates of response and reinforcement, 

respectively.  a represents the asymptote or upper limit of each function and b represents 

the rate of change.  The asymptotic exponential, asymptotic power, and logarithmic have 

differential properties that are similar to those of a hyperbola.  The piecewise continuous 

ramp function provides a base line for comparison to continuous, monotoically increasing 

functions. It is the simplest description of data that increase rapidly and then reach an 

asymptote (Beardsley & McDowell, 1992).  The ramp function consists of a line with 

slope b that connects to a horizontal line with a constant value of a once the 

reinforcement rate is greater than a / b. 

 The proportions of variance accounted for by least squares fit of these four 

equations are shown in Table 1. The median proportion of variance accounted for by the 

asymptotic exponential, asymptotic power, logarithmic, and ramp functions were 0.989, 

0.989, 0.985, and 0.971, respectively.  Wilcoxon matched-pairs signed-ranks tests 

confirmed that both the hyperbola and hyperbolic-exponentiated accounted for a greater 
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proportion of the variance than the four comparison functions (Tobs = 0, p = 0 for all eight 

comparisons). 

 The randomness of the residuals for all 6 function forms were tested by fitting 

cubic polynomials to the pooled standardized residuals.  Both the hyperbolic-

exponentiated and the hyperbola showed significant cubic polynomial trends in the 

standardized residuals (R2 = 0.72 and 0.78, respectively).  The standardized residuals for 

the exponentiated-hyperbola and the hyperbola are shown in Figures 6.  Significant 

polynomial trends were also found in the standardized residuals of the asymptotic 

exponential, asymptotic power, logarithmic, and ramp fits. 

 The evolutionary algorithm successfully evolved a set of parameter values that 

when implemented in Donahoe neural networks generated behavior similar to that of 

biological organisms.  The exponentiated-hyperbola best accounted for the observed data 

with only 0.3% of the variance unaccounted for.  However, the remaining 0.3% was non-

random with significant polynomial trends in the residuals.  Despite this weakness this 

function form is the best description of the data when compared to the other function 

forms tested.  

 

Discussion 

There are two parts to the following discussion which separately discuss the 

current implementation of the model and this methodological approach.  The first part 

focuses on the success of the current implementation and the likely ways to modify it to 

generate behavior that is more in accordance with live organisms.  The second part of the 
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discussion deals with some potential problems with the methodology and proposes an 

alternative method of building the model. 

 

Accordance with the Modern Quantitative Law of Effect 

This implementation of Donahoe neural networks generated behavior that was 

consistent with previous research.  A G/ND algorithm was used to discover parameters 

that when implemented in a 11-31-31-2 neural network architecture were capable of 

generating behavior that is well described by the exponentiated-hyperbola version of the 

quantitative law of effect.  This was accomplished by balancing the benefits of attained 

reinforcements while simultaneously minimizing the opportunity costs of responding.  

The estimated exponents of the exponentiated-hyperbola fits (median = 0.73) were within 

the range of exponents typically observed in live organisms.  In a recent meta-analysis of 

the concatenated matching law the average exponent of the matching to reinforcement 

rate component was found to be 0.74 (Cording et al., 2011).   

 The asymptotes of the exponentiated-hyperbola and hyperbola fits exceeded the 

number of responses that the virtual organisms could possibly express.  The parameter 

that governs the asymptote, k, was originally conceptualized as the sum of the number 

instrumental responses (R) plus all extraneous responses (Re) (Herrnstein, 1970), and was 

theoretically required to remain constant.  However, more recent experiments have 

shown that k is not constant and thus cannot be equal to the sum of R and Re (Dallery et 

al., 2000; McDowell, 2005).  To the extent that this model reflects the behavior of live 

organisms, the finding that k is greater than the possible number of responses supports the 
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notion that k is simply a parameter that can be used to describe the form of behavior that 

organisms express in RI schedules. 

The non-randomness of the residuals is the most problematic feature of the 

exponentiated-hyperbola and hyperbola fits.  There are no existing data from live 

organisms that suggest there is a significant cubic polynomial trend in the residuals for 

the modern quantitative law of effect (McDowell, 2005), and competing theories do not 

show this trend (McDowell, 2004).    Although unlikely, previous examinations of the 

residuals may have failed to detect these very small trends in the residuals due to the 

larger amount of error in measurement that is not averaged out in smaller samples of 

behavior. 

The combination of non-random residuals and the very high k are not ideal 

despite the high percentage of variance accounted for.  Future research should focus on 

eliminating the pattern in the residuals and possibly generating a set of parameters that 

would reduce the value of k.  The pattern of results obtained in this study may have been 

affected by features of the experimental design, such as the choices of the reinforcement 

schedules and the cost-benefit ratio that was used to calculate fitness.  Leaner schedules 

of reinforcement and a higher cost-benefit ratio might reduce the observed k.  It also 

might be possible to remove the non-random residuals by using different network 

architectures or by modifying the equations that are used by the algorithm.  Another 

approach would be to add the inhibitory pathways that have been discussed conceptually, 

but have never been implemented in the model.  The current model does not produce 

behavior that is fully in accordance with what has been observed in live organisms, but it 
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is very close, and it is possible that small changes would render the model fully consistent 

with the behavior of live organisms. 

If these details can be corrected, then the modern Matching Law (Baum, 1974) is 

the next step in expanding the number of phenomena that the neural network models of 

the Unified Theory of Reinforcement can reproduce.  Examining the behavior of these 

neural networks on concurrent schedules would expand the flexibility of the model by 

allowing them to dynamically handle two or more mutually exclusive responses.  

Generating behavior that followed the modern Matching Law while simultaneously being 

capable of respondent phenomena would allow for unique, testable hypotheses.  

Additionally, by being capable of generating behavior that is in accordance with the 

modern matching law it would strengthen the argument that operant and respondent 

behavioral phenomenon can be explained by the Unified Theory of Reinforcement.  

However this is only the case if there is an architecture and set of parameters that can be 

implemented in the model that is simultaneously capable of generating both respondent 

and operant behavior, which has not been demonstrated yet. 

 

Methodological Weaknesses 

Although the combination of G/ND algorithms and neural networks as a method 

of inquiry is capable of generating behavior that describes important phenomenon, there 

are some weaknesses to this approach. This experiment limited the number of parameters 

that could be varied and the structure of the network, unlike previous efforts which have 

permitted much more parameter variance across individual NPU layers, number of 

interneuron layers, and number of NPUs in those layers (Burgos, 1996; Donahoe and 
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Burgos, 1999; Donahoe, 2002).  The methodological approach that Donahoe advocates 

allows for infinite degrees of freedom, although it is somewhat restricted by the format of 

the neural network structure.  Furthermore, the exact forms of the equations that are used 

to animate the neural networks are also not part of the theory and are thus also subject to 

change if the model is not capable of generating appropriate behavior.  For this reason the 

current approach to testing the model is nearly unfalsifiable and may provide misleading 

evidence for the Unified Theory of Reinforcement.  

 The main problem with this approach is that, at best, it can only demonstrate that 

something is possible, but not necessarily that it is probable.  As has been pointed out 

previously there are a large number of parameters in this model that can be manipulated 

to generate behavior, which suggests that it might be possible to obtain any desired 

outcome (Marr, 1997).  With an infinite number of possible parameters and possible 

structures, there are also an infinite number of possible combinations that could generate 

similar results.  As a clear example, if the fitness of a G/ND algorithm were set to 

maximize the length of time a virtual organism could maintain flight in a virtual 

environment with perfect physics implemented, all that one could say about the resulting 

virtual organism would be that it can fly.  Without further testing it would be impossible 

to know whether it flew like a plane, helicopter, glider, balloon, bird, or some other 

mechanism.  All of these options could generate behavior that met the criterion, but if our 

goal is to mimic the dynamic behavior of living organisms we would still be no closer to 

that goal.  The purpose of using this model is to provide evidence that the Unified Theory 

of Reinforcement is possibly correct, but by allowing an infinite number of possibilities it 

in effect provides no evidence that it is probably correct.  
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In previous research Donahoe neural networks have been allowed to vary in 

structure across experiments.  The usual justification of this approach is that the 

important components of the neural networks can be separated from a theoretically 

complete network that would exhibit all behaviors.  However, this assumption is 

inconsistent with the actual implementation of the model, and it limits its future utility.  

The competitiveness of the connections between NPUs violates the assumption of the 

independence of components of a complete neural network because the strength of 

connections that are not being activated, but that nevertheless connect to the same NPUs, 

can interfere with the process of learning. This is further exacerbated by the effect of the 

number of NPUs on the rate of extinction (Sanchez et al., 2010).  Thus the assumption 

that parts of a theoretical complete network can be separated from one another is false.  

This does not invalidate previous research, but it does suggest that future research should 

focus on a specific network structure that can be added to and developed, so long as it 

maintains the ability to generate the behaviors it has previously expressed.  Eventually 

this could lead to a neural network model that would simultaneously generate a wide 

range of both operant and respondent behaviors, which is more in accordance with the 

Unified Theory of Selection by Reinforcement than the current mix and match approach.   
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Figures 

 

Figure 1. Example of a standard neural network architecture.  The structure of the 

network is denoted by 21-31-31-2.  The large numbers indicate the number of NPUs 

in the S-R pathway and the subscripts indicate the number of NPUs in the R/E 

pathway.  The order of the numbers corresponds to the individual layers (input, 

hippocampal interneuron, dopaminergic interneuron, and output).  The division 

between the stimulus-response (S-R) and extinction/reinforcement (E/R) pathways is 

shown by the dashed line.  NPUs are symbolized by squares (sensory units) and 

circles (processing units).  S = sensory input NPU, S* = US input NPU, Hip = 

hippocampal like NPU, Dop = dopaminergic like NPU, INT = interneuron, R = 

response NPU, R* = CR/UR NPU.  Shaded areas indicate the connection weight 

changing pathways and the small arrow connecting them indicates the modulatory 

effect of the dopaminergic discrepancy signal on the hippocampal weight changing 
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pathway.  The thick black lines indicate fixed, maximally strong connections and the 

thinner lines indicate flexible connections. 

 

 

 

 

Figure 2. CR/UR NPU activation level at time step 6 during respondent based 

acquisition, extinction, and reacquisition training using a 11-31-31-1 architecture 

with standard parameters.   
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Figure 3. Activation levels of CR/UR and response NPUs at time step 6 during 

operant based acquisition, extinction, and reacquisition training using a 11-31-31-2 

architecture with standard parameters.  The filled and unfilled points are the 

activation level for each trial of the CR/UR and response NPUs, respectively.  
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Figure 4. Activation levels of the CR/UR NPU at time step 6 during a blocking 

demonstration using 21-31-31-1 architecture with standard parameters.  In the first 

panel (S1 => US) the environment emits the first conditioned stimulus and pairs 

that with an US.  In the second panel (S1 + S2 => US), the environment emits a 

compound stimuli and pairs that with an US.  During the final panel just the second 

stimulus was paired with the US. 
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Figure 5.  Plot of the response rate (R) versus reinforcement rate (r) on RI schedules 

of three virtual oganisms.  The unfilled points represent the behavior of a virtual 

organism using standard parameters.  The x’s represent the behavior or the 

prototype virtual organism used to seed the evolutionary algorithm.  The filled 

points represent the behavior of the evolved virtual organism. 
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Virtual 
Org. 

Hyperbola Hyperbola-Exp Proportion VAF 

k re pVAF k 
𝑟𝑒
𝑏�  a pVAF A Exp A Pow Log Ramp 

1 514 7.2 0.995 582 5.0 0.70 0.997 0.987 0.990 0.984 0.966 
2 514 7.1 0.998 549 5.5 0.81 0.999 0.992 0.989 0.986 0.980 
3 515 7.7 0.995 579 5.3 0.71 0.997 0.988 0.990 0.986 0.967 
4 516 7.3 0.995 576 5.1 0.72 0.997 0.988 0.990 0.984 0.969 
5 527 8.4 0.997 560 6.5 0.82 0.998 0.992 0.988 0.988 0.975 
6 517 7.1 0.995 571 5.1 0.74 0.997 0.988 0.989 0.984 0.968 
7 516 7.6 0.996 570 5.5 0.74 0.998 0.989 0.990 0.987 0.970 
8 523 8.5 0.996 569 6.2 0.78 0.997 0.990 0.988 0.987 0.973 
9 503 6.5 0.995 589 4.4 0.64 0.998 0.985 0.992 0.982 0.969 
10 517 7.3 0.995 572 5.1 0.73 0.997 0.989 0.989 0.982 0.975 
Median 516 7.3 0.995 572 5.2 0.73 0.997 0.989 0.989 0.985 0.971 

Table 1. Parameters of the best fitting hyperbola and exponentiated-hyperbola and 

the proportion of variance accounted for (pVAF) by the hyperbola, exponentiated-

hyperbola, asymptotic exponential (A Exp), asymptotic power (A Pow), logarithmic 

(Log), and ramp functions.   
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Figure 6. Standardized residuals of the exponentiated-hyperbola and hyperbola fits 

to the data across all 10 virtual organisms. 
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APPENDIX 

 Let j be a generic NPU as can be seen in Figure 1A. This NPU can be influenced 

by excitatory and inhibitory connections that are projected to it.  The weight of each 

connection governs its efficiency of transmission to the NPU.  Although listed for 

completeness inhibitory connections were not used in this experiment, because there has 

not been a published study that implemented them. 

 At a specific instance in time (t) the NPUs activation level is determined by the 

stimulation that is transmitted to it via connections and its previous activation level.  The 

incoming stimulation is the inner dot product of the activation levels of the NPUs that 

project a connection to the NPU and the weights of the associated connection.  This 

inhibitory or excitatory stimulation can be expressed as, 𝑠 =  ∑ 𝑎𝑖,𝑡𝑤𝑖,𝑗,𝑡
𝑛
𝑖=1 , where a is 

the activation level of a NPU that projects to j (i) at time t, w is the weight of the 

connection from NPUs i to j at time t, and n is the number of units that project to j.  The 

logistic of the resulting excitatory and inhibitory stimulations is then calculated using the 

formula, 𝐿(𝑥) =  1 �1 + 𝑒−(𝑠− 𝜇)/𝜎�⁄ .  This logistic function ensures that the resulting 

inhibition and excitation values are in the range of 0 and 1.  The resulting excitation and 

inhibition values are then used to determine whether or not the activation level of the 

NPU should increase (reactivation), decrease (decay), or be set to 0 (deactivation).  The 

activation value of the NPU at t (𝑎𝑗,𝑡) is determined using the following equation, 

𝑎𝑗,𝑡 =  

⎩
⎪
⎨

⎪
⎧𝐿�𝑒𝑥𝑐𝑗,𝑡� + τ𝐿�𝑒𝑥𝑐𝑗,𝑡−1��1− 𝐿�𝑒𝑥𝑐𝑗,𝑡�� − 𝐿�𝑖𝑛ℎ𝑗,𝑡�,                             

             𝑖𝑓 𝐿(𝑒𝑥𝑐𝑗,𝑡) > 𝐿(𝑖𝑛ℎ𝑗,𝑡) 𝑎𝑛𝑑 𝐿(𝑒𝑥𝑐𝑗,𝑡) > 𝜃𝑡  (𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛);
𝑎𝑗,𝑡−1 −  κ𝑎𝑗,𝑡−1�1 −  𝑎𝑗,𝑡−1�,                                                                       

𝑖𝑓 𝐿(𝑒𝑥𝑐𝑗,𝑡) > 𝐿(𝑖𝑛ℎ𝑗,𝑡) 𝑎𝑛𝑑 𝐿(𝑒𝑥𝑐𝑗,𝑡) < 𝜃𝑡  (𝑑𝑒𝑐𝑎𝑦);    
0,         𝑖𝑓 𝐿(𝑒𝑥𝑐𝑗,𝑡) < 𝐿(𝑖𝑛ℎ𝑗,𝑡) (𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛).                                      

  (1A)  
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where τ is the temporal summation parameter, κ is the decay parameter, and θt is the 

Gaussian activation threshold.  The Gaussian activation threshold, θt, is a randomly 

generated value that follows a Gaussian distribution with a mean, µ and standard 

deviation, σ.   Equation 1A is overridden if the NPU receives activation greater than 0 

from the US NPU, in which case 𝑎𝑗,𝑡 is equal to that value. 

 Equation 2A shows the formula used to calculate the change in weights. 

∆𝑤𝑖,𝑗,𝑡+1 =  �
𝐺𝑎𝑖𝑛: 𝛼(𝑎𝑗,𝑡𝑑𝑡𝑝𝑖,𝑡𝑟𝑗,𝑡), 𝑖𝑓 𝑑𝑡 ≥  𝑑𝜃; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
𝐿𝑜𝑠𝑠: − 𝛽(𝑤𝑖,𝑗,𝑡𝑎𝑖,𝑡𝑎𝑗,𝑡)                                           (2A) 

where α is the rate of weight gain, β is the rate of weight loss, 𝑑𝜃 is the threshold between 

weight gain and loss.  The other rules of the term are defined as follows: 

dt = �
𝑑𝐷𝑜𝑝 =   𝑎𝑗,𝑡 − 𝑎𝑗,𝑡−1, 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑙𝑡𝑒𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑉𝑇𝐴 𝑁𝑃𝑈            
𝑑𝐻𝑖𝑝 =  �𝑎𝑗,𝑡 − 𝑎𝑗,𝑡−1� + 𝑑𝐷𝑜𝑝,𝑡(1 −  �𝑎𝑗,𝑡 − 𝑎𝑗,𝑡−1�𝑎𝑗,𝑡−1, 𝑖𝑓 𝑏𝑦 𝑡ℎ𝑒 𝐶𝐴1 𝑁𝑃𝑈

; 

𝑝𝑖,𝑡 = 𝑎𝑖,𝑡𝑤𝑖,𝑗,𝑡 𝑠𝑡𝑖𝑚⁄ , where s = excj,i if i is excitatory, or N = inhj,i if i is inhibitory; 

𝑟𝑗,𝑡 = 1 −  ∑ 𝑤𝑖,𝑗,𝑡
𝑛
𝑖=1 , where n is the total number of units connected to j and wi,j,t is the 

weight of the connection from i to j at t. 
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Appendix Figure 

 

Figure 1A. A generic neural processing unit (NPU).  The NPU (j) receives 

stimulation from NPUs that project to it (i).  These projections can be either 

excitatory or inhibitory.  The efficiency of these connections (weight) is indicated by 

wi,j,t.  The total inhibitory and excitatory stimulations are calculated separately by 

taking the inner dot product of the activations and connection weights of the NPUs 

that project to NPU j.  The resulting total excitation (Excj,t) and inhibition (Inhj,t) of 

NPU unit j at time t are then passed to the activation function (Equation 1A).  Based 

on the values of Excj,t and Inhj,t the NPU’s activation level will either increase 

(reactivation), decrease (decay), or be set to 0 (deactivation). 
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