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Abstract 

Acute respiratory infections (ARI) are a leading cause of mortality, especially in low- and middle-
income countries (LMIC). Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are 
recognized as leading causes of lower respiratory infection morbidity and mortality. Household air 
pollution (HAP) from cooking with solid fuels is the leading environmental risk factor. Quantifying 
the etiologic role of respiratory pathogens, describing their patterns, and identifying effective 
interventions targeting the environmental drivers of disease are essential to reduce respiratory 
disease burden. The overarching goal of this dissertation is to shed light on the etiology and patterns 
of ARI in LMIC in order to better inform vaccine strategies and environmental interventions. 
 
In Aim 1, we characterized RSV seasonality in Guatemala. We found substantial variability in the 
timing of seasonal epidemics such that two differential patterns of RSV seasonality were identified: 
an early season starting in June-July and a late season starting in October-November. This variability 
suggests that age-based vaccination would be more effective than seasonal vaccination. 
 
In Aim 2, we assessed whether prenatal HAP exposure is associated with respiratory illness in two-
year-old children using data from a liquified petroleum gas stove intervention during gestation and 
the first year of life in Guatemala, India, and Rwanda. In an intent-to-treat analysis, we did not find 
an effect of the intervention on illness with a cough in two-year-old children. Similarly, we did not 
find evidence of an association between HAP and illness with cough in an exposure-response 
analysis. 

In Aim 3, we estimated the fraction of hospitalized ARI attributable to S. pneumoniae, and assessed 
whether a semi-quantitative measure of bacterial load (PCR quantification cycle [Cq] values) could 
improve understanding of the etiologic role of S. pneumoniae in hospitalized ARI in adults in six 
LMIC. Population attributable fraction estimates that incorporated Cq values were higher than those 
that relied on qualitative PCR. The proportion of hospitalized ARI attributed to S. pneumoniae varied 
across countries, ranging from 0.1% to 18.5%. 
 
These findings further our understanding of the etiology, patterns, and environmental risk factors of 
ARI in low-resource settings, and can inform vaccine strategies, environmental interventions, and 
healthcare management practices. 
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Chapter 1. Introduction 

Acute respiratory infections (ARI), comprising both upper and lower respiratory tract infections, 

exert a considerable burden and cost on health care systems.1,2 In 2019, lower respiratory tract 

infections (LRI), defined as pneumonia or bronchiolitis, resulted in 489 million incident cases and an 

estimated 2.5 million deaths and among all ages, making them the fourth leading cause of mortality 

for all ages and the second leading cause of death among children younger than 5 years worldwide.2 

While upper respiratory infections (including cough, acute nasopharyngitis, sinusitis, pharyngitis, 

tonsillitis, laryngitis, tracheitis, epiglottitis, rhinitis, rhinosinusitis, rhinopharyngitis, and supraglottitis) 

typically do not result in severe disease, they can significantly impair quality of life and productivity.  

In 2019, there were an estimated 17.2 billion incident cases of upper respiratory tract infections 

worldwide, contributing to 9,460 deaths and 6.39 million DALYS.2  

Low- and middle-income countries bear a disproportionate burden of LRI, which strongly correlates 

with poverty. Historically, poverty was blamed for LRI, and it remains an important underlying 

cause.3 While microorganisms are a necessary (but not sufficient) cause of LRI, people at highest risk 

for contracting or dying from LRI often lack access to adequate nutrition, clean cooking fuel, 

vaccines, and WASH (water, sanitation and hygiene).4 Thus, the causes and risk factors for LRIs can 

be thought of in terms of the traditional epidemiologic triad: the host, the microorganism, and the 

environment. Disease results from the interaction between the microorganism and the susceptible 

host in an environment that supports transmission of the microorganism and contributes to the 

vulnerability of the host. 

In terms of microorganisms, modeling studies have attributed the majority of LRI deaths to four 

etiologies, namely Haemophilus influenzae type B (HiB), Streptococcus pneumoniae, influenza virus, and 

respiratory syncytial virus (RSV).5 However, the etiological agents of LRI include a wide range of 
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bacterial and viral pathogens, and in a given case of LRI, it is difficult to determine the causal 

microbial agent.6 This difficulty arises because many pathogens, particularly bacteria, colonize the 

upper respiratory tract, and it is difficult to distinguish pathogen carriage from infection.  For 

example, S. pneumoniae is known to be an important cause of LRI, but a case-control study of severe 

acute respiratory infections (SARI) in adults found that it was detected with similar frequency in 

SARI cases and asymptomatic adults, suggesting it has a minor etiologic role in SARI.7  

An approach proposed for differentiating pathogen carriage from clinically significant infection is 

the quantification of pathogen load.8,9 Higher pathogen load in the upper respiratory tract has been 

associated with pneumonia, and for some respiratory pathogens, it has been associated with more 

severe outcomes.10-16 For diarrheal illness, the quantity of nucleic acid in a specimen is also thought 

to distinguish clinical infection from asymptomatic shedding in children.17-22 Since 2017, re-analyses 

of two major studies of the etiology and burden of pediatric diarrheal infections have used 

quantitative PCR to adjust population attributable fractions for the high prevalence of asymptomatic 

pathogen carriage.17,23 A similar approach could be used to improve understanding of respiratory 

disease etiology.  

In terms of environmental causes, exposure to household air pollution (HAP), largely from the use 

of solid fuels for cooking, is a leading risk factor for childhood pneumonia.24,25 HAP exposure likely 

begins to impact lung development during gestation, increasing the risk of future respiratory 

disease.26 To date, however, interventions to reduce HAP have struggled to show reductions in 

pneumonia incidence.27,28 A possible reason for the inability of past interventions to show an effect 

on respiratory outcomes is that they did not achieve sufficient exposure contrast between 

intervention and control arms.28 The recently completed Household Air Pollution Intervention 

Network (HAPIN) trial has overcome this limitation, achieving a substantial reduction in personal 
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exposure to fine particulate matter (PM2.5).
29 HAPIN provided liquefied petroleum gas (LPG) stoves 

and fuel to intervention households with pregnant women in four countries. HAPIN children from 

three of the original four study sites are participating in a cohort study to assess the longer-term 

health impacts of the intervention. Analysis of these data will improve our understanding of the 

impact of gestational and infant HAP exposure on respiratory health in early childhood.  

Other important environmental drivers of respiratory infection are climate and weather patterns. 

While we cannot intervene to change these factors, understanding the seasonality of respiratory 

pathogens can guide decisions about when to deploy vaccines, non-pharmaceutical interventions, 

and therapeutics. RSV is the most common pathogen identified in children with pneumonia and is 

an important future vaccine target, with many candidate vaccines in clinical development.30-32 To 

identify optimal vaccination strategies and provide a baseline to assess possible future vaccine 

effects, it is important to characterize RSV seasonality. An eventual vaccine strategy will likely 

include a combination of maternal and infant immunization. A maternal vaccine would provide 

passive immunity to infants but the protection conferred would be of limited duration.  

Understanding RSV seasonality is important to ensure that maternal vaccines are administered 

during periods that will provide protection to infants during the RSV season.33 Global reviews have 

served as a guide to RSV seasonality34 but characterizing local seasonality patterns is needed to 

inform effective national vaccine strategies. Thus, WHO has identified the description of local 

seasonality patterns in RSV incidence as a priority research activity.35 

Reducing the global burden of ARI requires effective interventions targeting the different causes of 

disease. The most effective interventions for reducing ARI are vaccinations against respiratory 

pathogens. In order to prioritize pathogens for vaccine development and to guide national vaccine 

policy, it is important to estimate the proportion of disease attributable to specific etiologic agents. 
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Once vaccines are developed, effectively deploying them and assessing their impact requires 

knowledge of pathogen seasonality. Reducing the burden of ARI also requires identifying effective 

interventions to reduce environmental factors, such as HAP, that affect the infectious agent and 

host defenses. The overarching research goal of this dissertation is to shed light on the etiology 

and patterns of acute respiratory infections in low- and middle-income settings in order to better 

inform vaccine strategies, environmental interventions, and healthcare management practices. 

Specific aims 

AIM 1. To characterize RSV seasonality in Guatemala. 

Aim 1 uses data from Vigilancia Integrada Comunitaria (VICo), an integrated infectious disease 

surveillance system in Guatemala. Among other syndromes, VICo includes surveillance of 

hospitalized ARI. ARI cases were tested for a range of pathogens including RSV.  

AIM 2. To assess whether prenatal HAP is associated with the prevalence of illness with a cough in 

the second year of life.  

Aim 2a. To estimate the longer-term effect of an LPG stove intervention during gestation 

and the first year of life on the prevalence of illness with a cough in children at 24 months of 

age.  

Hypothesis: children born in intervention households have lower prevalence of illness with a 

cough at age 2 years relative to those born in control households. 

Aim 2b. To estimate the effect of prenatal HAP exposure on the prevalence of illness with a 

cough in children at 24 months of age. 
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Hypothesis: exposure to HAP pollutants during gestation (a critical developmental period) is 

positively associated with the prevalence of illness with a cough at age 2 years. 

Aim 2 uses data from the HAPIN trial, which provided LPG stoves and fuel to intervention 

households with pregnant women in four countries, and followed children until 1 year of age 

to assess a range of health outcomes, including pneumonia. Control households cooked 

primarily with solid biomass fuels. To assess longer-term health impacts, including the 

prevalence of respiratory infections, three of the original four study sites (Guatemala, India, 

and Rwanda) are participating in a cohort study to follow HAPIN children through age 2 

years.  

AIM 3. To determine whether bacterial load (as measured by real-time PCR Cycle threshold (Ct) 

values) can improve understanding of SARI etiology. 

AIM 3a. To assess the association between S. pneumoniae load in the upper respiratory tract 

and SARI among adults in six low- and middle-income countries. 

Hypothesis: On average, among adults who test positive for S. pneumoniae by PCR, adults with 

SARI have lower Ct values (i.e. higher bacterial loads) than asymptomatic adults. 

AIM 3b. To estimate the proportion of SARI attributable to S. pneumoniae among adults in 

six low- and middle-income countries, incorporating the association between PCR Ct values 

and SARI. 

Hypothesis: Compared to a conventional analysis using qualitative PCR results, using PCR Ct 

values from quantitative PCR will yield a higher estimated population attributable fraction 

for S. pneumoniae.  
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Aim 3 uses data from the TAC study, a case-control study of community acquired 

pneumonia among adults in Bangladesh, China, Egypt, Guatemala, Kenya, and Thailand. 

Upper respiratory tract samples were collected from SARI cases and asymptomatic adults in 

each country and tested for a panel of respiratory pathogens using the Taqman Array Card.   
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Chapter 2. Background and Literature review 

Case definitions 

Pneumonia is of keen interest to public health researchers because of its high disease burden and 

severity. However, it is not straightforward to define so studies use different, usually non-specific 

case definitions depending on their purpose (e.g. clinical management, research, surveillance).3 The 

various commonly-used case definitions cover a broad spectrum of disease severity. The definitions 

below provide a general description of commonly used case definitions in research and surveillance 

but these case definitions vary over time and across studies. This dissertation uses data from three 

different studies, each with its own case definition of acute respiratory infections. 

Lower respiratory tract infection (LRI) 

LRI refer to all infections that extend into the chest. The Global Burden of Disease Study defines 

lower respiratory tract infections as pneumonia or bronchiolitis.36  

Pneumonia 

Pneumonia is the most severe manifestation of lower respiratory tract infections. It is an infection of 

the lung caused predominantly by bacteria, viruses, or fungi. Pathological definitions of pneumonia 

are generally considered the gold standard and usually define pneumonia as alveolar inflammation in 

which the alveoli fill with pus and other liquid. However, pathological examinations of the lung are 

often not feasible. 

Acute respiratory infection (ARI) 

ARI covers all infections of the respiratory system with a duration less than 2 weeks. Most of these 

infections are limited to the upper respiratory tract (i.e. the nose and throat) such as pharyngitis, 

tonsillitis, sinusitis, and laryngitis. ARI is commonly used for surveillance purposes but the specific 

case definition has varied over time and across surveillance systems. For surveillance purposes, it is 
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typically defined as illness with a sudden onset of symptoms and at least one respiratory system 

(shortness of breath, cough, sore throat, or coryza).37,38 

Severe acute respiratory infection (SARI) 

SARI case definitions have changed over time but refer to a subset of ARI requiring 

hospitalization.39   

Disease burden 

Worldwide, LRIs contributed to 2.49 million (2.27–2.74) deaths, representing over 4% of global 

deaths among all ages in 2019.40 Among children younger than 5 years of age, they were the second 

leading cause of death after neonatal disorders, accounting for over 13% of deaths in this age group 

in 2019.41 Proportionate mortality is u-shaped, declining with increasing age after early childhood 

and increasing among older adults. In people aged ≥70 years, LRI comprise over 4% of deaths (1.23 

million [1.06-1.32]). Upper respiratory infections comprise a much smaller proportion of global 

mortality, contributing to 9,460 deaths (5,540–14,900) among all ages in 2019.40 However, they result 

in substantial morbidity and burden on healthcare systems.  In 2019, there were an estimated 17·2 

billion (95% UI 15·4–19·3) incident cases and 237 million (212–265) prevalent cases of upper 

respiratory infections.40 

Between 2000 and 2019, under-5 LRI mortality decreased markedly following reductions in risk 

factors for LRI.2,42 Where they have been introduced, Haemophilus influenzae type b vaccine and 

pneumococcal conjugate vaccine have shifted the epidemiology and etiology of respiratory 

infections.  However, parallel improvements have not been seen in adults for whom the etiology of 

and risk factors for pneumonia differ. The causes and risk factors for LRIs can be thought of in 

terms of the traditional epidemiologic triad: the host, the microorganism, and the environment. 



P a g e  | 9 

 

Disease results from the interaction between the microorganism and the susceptible host in an 

environment that supports transmission of the microorganism from a source to the host.  

Host risk factors among all age groups include sex, malnutrition, comorbidities (e.g. HIV), and 

smoking/secondhand smoke.43 In infants, inadequate nutrition and feeding practices (e.g. non-

exclusive breastfeeding), short gestation, and low birth weight are also recognized as risk factors.  

Environmental risk factors include exposure to household air pollution from solid fuels, ambient 

particulate matter, crowding, poor hygiene, and the climate or seasonality of ARI. In terms of the 

microorganism or etiologic agent of disease, key risk factors for pediatric pneumonia include 

incomplete vaccination against respiratory pathogens including Haemophilus influenzae type b, 

pneumococcal infections, measles, and pertussis. In adults, pneumococcal and influenza vaccination 

prevent disease.43  

Etiologic agents 

Identifying the etiologic agents of ARI is important in order to select vaccine targets and vaccination 

strategies. Although modeling studies have attributed the majority of LRI deaths to four etiologies 

(HiB, Streptococcus pneumoniae, influenza virus, and RSV),5 respiratory infections can be caused by 

many bacterial and viral pathogens. For this reason, a typical respiratory pathogen panel tests for 

many viral and bacterial targets, including adenovirus, coronavirus (229E, HKU1, NL63, OC43), 

human metapneumovirus, human rhinovirus/enterovirus, influenza viruses, parainfluenza viruses, 

respiratory syncytial virus, Bordetella pertussis, Haemophilus influenzae type B (HiB), Streptococcus 

pneumoniae, and Mycoplasma pneumoniae. Before the advent of molecular diagnostics, understanding the 

etiology of lower respiratory tract infections was limited because testing for multiple viruses and 

bacteria required an assortment of assay modalities, which were cumbersome and resource-

intensive.44 Improved diagnostics, including multiplex real-time PCR assays, have allowed for more 
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comprehensive investigations of the etiology of pneumonia as demonstrated by the Pneumonia 

Etiology Research for Child Health (PERCH) study and the Etiology of Pneumonia in the 

Community (EPIC) study.  

The PERCH study was designed to shed light on the etiology of childhood pneumonia in 

developing countries using different types of specimens and laboratory tests.44 From 2011 to 2014, 

the study enrolled children under 5 years of age with pneumonia and asymptomatic controls in 

seven countries and tested them for over 30 potential pathogens.30 A small set of pathogens 

(respiratory syncytial virus, parainfluenza virus, human metapneumovirus, influenza virus, S. 

pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii) accounted 

for most hospitalized pneumonia cases but the etiological fraction of pneumonia differed by age. 

Viruses accounted for 61.4% of pneumonia cases, bacteria for 27.3%, and M. tuberculosis for 5.9%. 

The study greatly improved our understanding of pneumonia etiology in children, providing an 

evidence base for strategies to accelerate reductions in pediatric pneumonia morbidity and 

mortality.45  

The EPIC study investigated the etiology of pneumonia among both children and adults in the U.S. 

between 2010 and 2012.46 The study prospectively enrolled 2,024 patients with community acquired 

pneumonia and 759 asymptomatic controls to compare the prevalence of 13 viruses in the upper 

respiratory tract of cases and asymptomatic controls. The study found that detections of influenza, 

RSV, and human metapneumovirus indicate an etiologic role in community acquired pneumonia but 

no evidence for a causal role of parainfluenza, coronaviruses, rhinovirus, and adenovirus. These 

findings suggested that the viral etiology of pneumonia may have been previously underestimated 

because of a limited range of diagnostic methods.47  Although EPIC and several other studies that 

used molecular diagnostics provided important information on the etiology of community acquired 
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pneumonia in adults, most were conducted in the developed world and their findings may not be 

generalizable to developing countries.48-50  

The “Study of the etiology of community-acquired pneumonia in adults: Use of TAC multiple 

pathogen detection platforms in the International Emerging Infections Program (IEIP) sites” (TAC 

study) was a prospective case-control study that used a real-time PCR-based multiple pathogen 

detection platform to understand the etiology of severe respiratory disease among hospitalized adults 

across six low- and middle-income countries in Africa, Asia, and the Americas. The main study 

analysis provided estimates of the proportion of SARI in adults caused by specific pathogens using a 

Bayesian analytic method developed for the PERCH study.51 Nevertheless, the accurate 

determination of the specific causes of SARI was limited because of the high prevalence of 

asymptomatic carriage of some pathogens—particularly bacteria--and ability of PCR to detect small 

amounts of nucleic acid in upper respiratory tract samples of both SARI cases and adults without 

respiratory symptoms. While the most commonly detected pathogens among TAC study 

participants were Streptococcus pneumoniae and Haemophilus influenzae, these bacterial pathogens were not 

found to be the most common causes of SARI because there were also high numbers of detections 

in asymptomatic adults, indicating colonization. 

Streptococcus pneumoniae 

The aforementioned etiology studies demonstrated that most cases of pneumonia in high-income 

and low- and middle-income countries are caused by viruses. However, the proportion of 

pneumonia cases caused by bacteria increases with the severity of disease.3 In children in low- and 

middle-income countries, and in high-income countries in the much of the 20th century, the most 

common causes of bacterial pneumonia are/were Haemophilus influenzae and Streptococcus pneumoniae.3 

However, the epidemiology of pneumonia is evolving with the introduction of vaccines against these 
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pathogens. It is estimated that pneumococcal deaths declined by 51% (7–74) and Hib deaths by 90% 

(78–96) from 2000 to 2015.52 Globally, an estimated 294 000 pneumococcal deaths (uncertainty 

range [UR] 192 000–366 000) and 29 500 Hib deaths (18 400–40 700) occurred in HIV-uninfected 

children aged 1–59 month in 2015.52 Approximately 50% of all pneumococcal deaths in 2015 

occurred in four countries in Africa and Asia: India (68 700 deaths, UR 44 600–86 100), Nigeria 

(49 000 deaths, 32 400–59 000), the Democratic Republic of the Congo (14 500 deaths, 9300–

18 700), and Pakistan (14 400 deaths, 9700–17 000]).52 

Vaccine probe studies suggest that pneumococcus causes a substantial proportion of radiologically 

confirmed pneumonia, a smaller proportion of severe, non-radiologically confirmed pneumonia, and 

a smaller proportion still of non-severe pneumonia.53 Results from a pediatric PCV trial in the 

Gambia estimated the vaccine effectiveness for radiologically confirmed pneumonia was 37%, 

suggesting that at least a third of all pneumonia episodes are caused by the nine serotypes of 

pneumococci included in the vaccine54 

In adults, Streptococcus pneumoniae is the most common bacterial cause of pneumonia. Although 

pneumococci were found in just 5% of adults in the EPIC study,55 CDC estimates that pneumococci 

account for 10% to 30% of adult community-acquired pneumonia.56 PCV13 trials suggest that 

pneumococci are responsible for 6% to 11% of hospitalized community acquired pneumonia, and 

between 4% and 12% of primary and secondary care  pneumonia outcomes.57 Possible reasons for 

the variability in estimates could relate to differences in the populations studied including rates of 

asymptomatic carriage, outcome definitions, and diagnostics used. 

Accurately estimating the etiologic role of S. pneumoniae in pneumonia is complicated by the high rate 

of carriage of pneumococci in the respiratory tract. While the absence of pneumococci excludes it as 
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an etiological agent, its detection in non-sterile sites (e.g. the upper respiratory tract) could be 

attributed to either infection or asymptomatic carriage. Pneumococci can be isolated from the 

nasopharynx of 5% to 90% of healthy persons. Rates of asymptomatic carriage vary with age, 

environment, and the presence of upper respiratory infections. Among school-age children, 

colonization ranges from 20% to 60%. In contrast, only 5% to 10% of adults without children are 

colonized, although in some settings and populations it has been found to be much higher. For 

example, colonization in military service personnel has been estimated to range between 50% and 

60%.56 

While many surveillance studies rely on PCR using upper respiratory tract samples for the detection 

of S. pneumoniae, a definitive diagnosis of infection with S. pneumoniae generally relies on isolation of 

the organism from blood or other normally sterile body sites (e.g., CSF, middle ear fluid, joint fluid, 

and peritoneal fluid).56 A urinary antigen test is available to detect the C-polysaccharide antigen of S. 

pneumoniae as a cause of community-acquired pneumonia among adults (but not children).56 The test 

is rapid and has the ability to detect pneumococcal pneumonia after antibiotic therapy has been 

started.56 

Associations of Pathogen Load with Disease 

The challenge of differentiating between pathogen carriage in the nasopharynx and infection of the 

lower respiratory tract speaks to a fundamental problem in pneumonia etiology research—the 

difficulty of sampling the lung and reliance instead on upper respiratory tract samples as a proxy for 

the site of infection.45 For diagnostic purposes, bronchoalveolar lavage has high sensitivity for 

detection of bacteria and viruses in the lower respiratory tract but it requires bronchoscopy, which is 

an invasive procedure.58 For surveillance and research purposes, nasopharyngeal (NP) and 

oropharyngeal (OP) swabs are the most logistically feasible specimen to collect, but they have low 
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specificity due to the high prevalence of bacterial colonization of the nasopharynx. While case-

control studies can demonstrate which pathogens are more strongly associated with disease, it is 

difficult to ascribe etiology to pathogens that are known to colonize the upper respiratory tract 

because they are frequently detected by PCR in upper respiratory tract specimens of both cases and 

controls.9  

An approach proposed for differentiating pathogen carriage from clinically significant infection is 

the quantification of pathogen load.8,9 Real-time PCR (also called quantitative PCR—qPCR) can be 

used to quantify pathogen load.59 In real-time PCR, a fluorescent marker is used to monitor the rate 

of generation of amplification target. After each amplification cycle, the intensity of the fluorescent 

signal reflects the quantity of DNA amplicons in the sample at that specific time. The point at which 

the fluorescence intensity increases above the threshold or background level corresponds 

proportionally to the initial number of template DNA molecules in the sample. This point is called 

the quantification cycle (Cq). The Cq value can be used to determine the absolute quantity of target 

DNA in the sample by constructing a calibration curve from serially diluted standard samples with 

known concentrations or copy numbers. In the absence of serially diluted samples, Cq values can be 

considered semi-quantitative measures of the amount of pathogen in a clinical specimen. Cq levels 

are inversely proportional to the amount of nucleic acid in a sample, with etiological relevance 

assumed when Cq values are low, suggesting high pathogen loads.60  

Higher pathogen load in the upper respiratory tract has been associated with pneumonia, and for 

some pathogens, it has been associated with more severe outcomes.10-16 However, there is still 

limited information on the association between colonization density of the upper respiratory tract 

and pneumonia, and no definitive thresholds in pathogen density identify a pathogen as causing a 

given case of pneumonia.9 Findings from previous studies on the association between colonization 



P a g e  | 15 

 

density and respiratory disease differ across populations and pathogens.10-12,61-69 In pediatric 

populations, the PERCH study evaluated differences in bacterial colonization densities between 

pneumonia cases and controls, and found evidence that colonization densities of Streptococcus 

pneumoniae and Haemophilus influenzae are associated with microbiologically-confirmed pathogen-

specific pneumonia.10,70 The researchers did not find meaningful differences between pneumonia 

cases and community controls in nasopharyngeal colonization densities of M. catarrhalis, S. aureus, or 

P. jirovecii.70 In adults, a study in Kenya found an association between Ct values for influenza A virus 

and respiratory illness, but did not find a difference in Ct values of other respiratory viruses among 

respiratory patients and asymptomatic controls.12 Other pathogens for which colonization density 

has been linked to disease status or severity include RSV, parainfluenza virus 2, and human 

rhinovirus.13-16 For Streptococcus pneumoniae, the association between bacterial density in the 

nasopharynx and pneumonia is fairly consistent across studies.10,11,61-63,66 The focus of most studies 

has been the identification of bacterial load cutoffs that could be useful for diagnostic purposes, and 

the consensus is that Cq values are not useful for diagnostic purposes in individual patients. To our 

knowledge, no studies have used the association between bacterial load and disease to understand 

the etiologic role of S. pneumoniae in respiratory infections at the population level. 

In the absence of assays to determine pathogen density in the upper respiratory tract directly, 

examining the association between Cq values (a proxy for pathogen density) and case-control status 

could help to distinguish clinically relevant infection from colonization, thereby improving our 

understanding of the etiology of respiratory infections. This approach has been applied in studies of 

diarrheal disease etiology, where the high prevalence of pathogen carriage also poses a 

methodological challenge.17-22 Since 2017, re-analyses of two major studies of the etiology and 

burden of diarrheal infections in children have used PCR Ct values to estimate population 
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attributable fractions adjusted for the high prevalence of asymptomatic pathogen carriage.17,23 A 

similar approach could contribute to our understanding of the etiology of respiratory infections. 

Respiratory Syncytial Virus 

Disease burden 

RSV is the major viral respiratory tract infection of early infancy and the most common cause of 

hospitalization in infants globally.6 Infection occurs with the greatest frequency during the first 2 

years of life but infection during the first month of life is rare, presumably due to maternal 

immunity.71 Exposure to RSV does not lead to long-lasting protection so people can have many 

infections over their lifetimes, although subsequent infections tend to be less severe. Infection 

mainly leads to mild disease, and mortality in children admitted to hospitals in low- and middle-

income countries with RSV-associated acute lower respiratory infections (ALRI) is low (1-3%).3 

However, in very young children, older adults, and immunocompromised patients it can result in 

serious disease or death.3 In infants, it is the major causative agent of bronchiolitis but it also causes 

pneumonia, croup, bronchitis, otitis media, and febrile upper respiratory tract illness.71 Moreover, it 

can lead to persisting abnormalities in gas exchange and to wheezing; about half of children 

admitted to hospital with RSV disease experience later episodes of wheezing.3  

Globally, RSV has been estimated to cause about 34 million episodes of acute lower respiratory 

infections in children under 5 years of age each year, with over 3 million severe enough to cause 

hospitalization.72 In terms of mortality, RSV is associated with an estimated 66,000–199,000 deaths 

in children under 5 years old, the vast majority in low- and middle-income countries.72 Data on the 

burden of RSV-associated ARI among older adults in low- and middle-income countries is limited. 

Based on available data, RSV-associated ARI causes between 4,800 and 50,500 in-hospital deaths 

and between 186,000 and 614,000 hospitalizations in older adults aged ≥65 years.73 
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In 2015, the WHO Product Development for Vaccines Advisory Committee highlighted RSV as a 

pathogen for which there is major vaccine pipeline activity and likelihood of a candidate emerging 

for licensure in the near term.74 However, a number of obstacles have impeded vaccine 

development.75 In the 1960s, a formalin-inactivated RSV vaccine induced an exaggerated clinical 

response to wild-type RSV infections in infants who were RSV naïve before vaccination. In one 

study, nearly 80% of vaccine recipients were hospitalized with lower respiratory illness compared to 

5% of controls.75 Since then, considerable progress has been made in the development of RSV 

subunit and nanoparticle vaccines.75 Although the burden of RSV is greatest in infants, the primary 

targets of these vaccines are older adults and pregnant women. The latter are targeted for 

vaccination because very young infants may not respond adequately to vaccination due to 

immunologic immaturity and because maternal antibodies may interfere with the immune response 

to vaccination.75     

Although the exact characteristics of a future maternal or infant vaccine are unknown, seasonality 

might influence the deployment of these vaccines, as with seasonal influenza vaccine.76 Evidence 

from previous studies in temperate regions suggests that birth month is associated with the risk of 

RSV-associated hospitalizations, with infants born just before the start of the RSV season having the 

greatest risk of RSV-associated hospitalization.77 Thus, infants born just before or during the RSV 

season could potentially benefit from maternal RSV immunization, while infants born outside this 

period are unlikely to do so.33 In temperate regions, RSV infection tends to occur in predictable 

annual epidemics, while in tropical regions RSV seasonality tends to be more variable and more 

prolonged. Thus, a year-round maternal immunization strategy might be appropriate in tropical 

regions. However, in temperate regions, the optimal maternal immunization strategy might target 

infants due to be born just before the RSV season, depending on the duration of immune 

protection.33 This highlights the importance of understanding and characterizing the temporal and 
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geographic patterns of RSV circulation at the local, regional, and national levels to target vaccination 

strategies once a vaccine is approved.78 In 2017, WHO’s RSV Vaccine Research and Development 

Technology Roadmap identified the description of local seasonality patterns as a priority activity to 

inform the seasonal versus aged-based vaccination strategies.35 

Global RSV seasonality 

RSV seasonality is largely dependent on geographic location and climate. In temperate regions, RSV 

activity tends to occur in the coldest months and the season duration is about 5-6 months. In 

contrast, in subtropical and tropical climates, peak activity typically occurs during the warmest 

months and RSV seasons last longer, up to 10 months.79,80 However, seasonality can be variable 

within countries, particularly those spanning large geographical areas.81 The start, end, and/or peak 

of RSV activity usually differs by 1-3 weeks from season to season but there are exceptions to this 

general pattern in seasonality. For example, in Finland, RSV epidemics follow a 2-year cycle with a 

small epidemic in the spring in one season followed by a major epidemic that starts in November-

December and extends into spring. In Mexico, a 2-season year is followed by a milder year, where 

the outbreak starts in spring and activity is maintained almost all year round with no clear peaks.80  

In Germany, two differential patterns of RSV seasonality have been detected: an early season 

starting in October-November and finishing in March–April and a late season starting in December 

and finishing in May, with both seasons having similar duration. 

A recent global overview of RSV seasonality found that most countries with available data on RSV 

have consistent seasonal patterns.80 However, seasonal parameters have changed over time in 

various places and most countries also showed major variations of 1 month at least once during the 

period studied.80 For example, an analysis of RSV data in England between 1981 and 2004 showed 

that the RSV season shortened and ended earlier over time.82 In Sao Paulo, Brazil, RSV epidemics 
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have shifted to earlier onsets.83 Numerous explanations for these seasonal patterns have been 

proposed, including the possibility that inclement weather modifies human behavior, increasing 

indoor crowding that enhances exposure to and transmission of RSV, or that low temperatures and 

absolute humidity increase the risk of disease. Regardless of the cause, identifying seasonal patterns 

is important when planning prevention strategies such as vaccination.33 As RSV seasons can vary 

substantially by year and location, local RSV data are needed to accurately define the onset and 

offset of RSV seasons to inform the timing of local prevention measures. 

LRI burden and RSV seasonality in Guatemala 

According to the Global Burden of Disease Study 2017, Guatemala has the highest modeled LRI 

incidence in children under 5 years of age in the world.42 However, estimates vary substantially 

across disease burden modeling studies depending on the methodology and data sources used.84 A 

systematic analysis of national, regional, and global pneumonia morbidity and mortality in children 

under 5 years ranked Guatemala as having one of the lowest pneumonia incidence rates among low- 

and middle-income countries in 2015.85 An estimate of childhood pneumonia incidence in 2010 

ranked Guatemala’s incidence at about the median for low- and middle-income counties.86 The 

methods used to produce these estimates incorporate data on the prevalence of known risk factors 

for childhood pneumonia. 

Few Central American countries have published RSV-related research.87-91 A recent global overview 

of RSV seasonality included two years (2015-2017) of data from Guatemala. This analysis defined 

the onset of the RSV season as the first two consecutive weeks when at least 10% of total tested 

samples for respiratory pathogens were positive for RSV. The season offset was defined similarly as 

the time when RSV positivity was less than 10% for two consecutive weeks. During this two-year 

period, the RSV season started between weeks 16-23 (April/May), peaked between weeks 30-34 
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(July/August), and ended between weeks 43-47 (October/November). The epidemic period was 

between 25-31 weeks with no evidence of regional variability.80 As RSV seasons can vary both within 

countries and over time, a longer period of observation is needed to accurately characterize national 

RSV seasonality. 

Since 2007, Guatemala has conducted surveillance for hospitalized ARI under a collaboration 

between the CDC’s International Emerging Infections Program, the Guatemala Ministry of Public 

Health and Welfare, and the Universidad del Valle de Guatemala. Epidemiologic analyses of data 

collected under this surveillance system between 2007 and 2012 described the epidemiology of RSV 

infection as well as trends in ARI.92,93 Based on visual inspection of epidemiologic curves during this 

period, the peak of the RSV season occurred between July and November in most years. While 

visual inspection of past data to define epidemic thresholds (the level of virus activity that signals the 

start and end of the annual epidemic season) is easy to implement and understand, it can be overly 

simplistic and does not capture trend changes over time.94 Since these analyses were published, RSV 

vaccine development has rapidly progressed and other methods for characterizing respiratory virus 

epidemics have been developed.76,94,95 As shifts in RSV seasonality have occurred in other locations, 

it is timely to characterize RSV seasonality using more recent surveillance data. 

Methods for characterizing seasonality 

There is no standard method for characterizing respiratory virus seasonality. Averaging methods 

have been used to determine epidemic thresholds for influenza that divide the season into pre-

epidemic, epidemic, and post-epidemic periods.94 These methods involve calculating the pre- and 

post-epidemic rates for historical seasons. Examples include a WHO method proposed in 2012 and 

the moving epidemic method (MEM), which has been used to define influenza epidemic thresholds 

in Europe.94,96 The WHO method determines an average epidemic curve by aligning data from past 
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seasons around their peaks to identify the average amplitude of a peak. The WHO epidemic 

threshold is defined as the annual median amplitude of the plotted data.  The MEM calculates the 

epidemic threshold as the one-tailed 95% confidence interval of the arithmetic mean of a subset of 

the highest 30 pre-epidemic weekly values of past seasons. The MEM method has recently been 

used to describe the seasonality of RSV in the Netherlands and in Slovenia.97,98 

In the United States, RSV seasonality used to be defined on the basis of weeks during which 

antigen-based tests detect RSV in >10% of specimens. However, with the increase in PCR tests for 

RSV, in 2017, the United States switched to the retrospective slope 10 (RS10) method to define RSV 

seasonality.76 The method is based on normalized RSV detections and defines the season onset as 

the second of two consecutive weeks when the slope of the epidemic curve exceeds 10 normalized 

detections per week, provided that the slope exceeds 10 from that week forward. This method was 

chosen because it consistently captures 96-98% of annual detections nationally within a season. 

Recent studies of global respiratory virus seasonality (including RSV) used an “average annual 

percentage” method to determine seasonality.34,99 This method calculates the average annual 

percentage of cases for each week, then sorts weeks in descending order, and classifies as epidemic 

weeks the first weeks to add up to at least 75% of the annual average percentage.  The start and end 

of the epidemic are then identified as the first and last week of the longest consecutive epidemic 

weeks with a 2-week gap allowed.  

Household air pollution (HAP) 

According to the most recent estimates from the Global Burden of Disease Study published in 2020, 

approximately 2.3 million deaths each year can be attributed to household air pollution.41,100 The 

burden of disease from HAP exposure is particularly high in young children. HAP nearly doubles 
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the risk of pneumonia in children and is responsible for close to half of all pneumonia deaths in 

children under 5 years of age.100 It also increases the risk of acute lower respiratory tract infections in 

adults, and contributes to 28% of all adult pneumonia deaths.100 

In nearly all populations worldwide, people spend the majority of their time indoors.101 Exposure to 

high levels of household air pollution is widespread in low- and middle-income countries, where up 

to 90% of rural households burn coal or biomass fuel (wood, dung, crop waste) on traditional stoves 

to meet their basic energy needs.3,100,102 Globally, it is estimated that 2.6 billion people rely on solid 

fuels for cooking and heating.103 Burning biomass fuels in open fires or poorly functioning stoves is 

a major source of exposure to toxic particles such as fine particulate matter, carbon monoxide, 

nitrogen dioxide, and polycyclic aromatic hydrocarbons.104 

Air pollution increases the risk of childhood pneumonia through several mechanisms.3 Smoke 

paralyzes the cilia that normally clear pathogens, causing the upper airways to become lined with a 

thick layer of mucus in which bacteria grow readily. Particulate matter in smoke penetrates deep into 

the lungs and is taken up by alveolar macrophages, which are then less efficient in phagocytosing 

and killing bacteria.105 When the number of bacteria in the lungs is large or when the immune system 

is not functioning well, bacterial multiplication surpasses the body’s defenses, and the child develops 

pneumonia.3 Often it is the combination of air pollution injury to the lung followed by a viral 

infection that permits this bacterial invasion. In pregnant women, smoke can also interfere with 

blood flow to the placenta, leading to smaller infants with smaller airways that put them at increased 

risk of pneumonia during infancy.3  

Evidence for the association between air pollution and ARI largely comes from observational 

studies, which have varied considerably in terms of design and quality.27 To date, nine review articles 

on the subject have reported that HAP is an important risk factor for childhood pneumonia.27,106-113 
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A systematic review published 2008 reported a pooled odds ratio estimate of 1.79 (95% CI: 1.46, 

2.21) for the association of high versus low indoor air pollution exposure with acute lower 

respiratory infections. A 2013 review (by some of the same authors as the 2008 review) used survey 

data on the self-reported use of solid fuel for cooking as the main indicator of household air pollution 

exposure to estimate the intervention effect of reducing household air pollution.107 Using data from 

26 studies, the authors of the 2013 review estimated a pooled odds ratio of 1.73 (1.47, 2.03) for the 

association between child acute lower respiratory infections (all severities) and HAP exposure 

(according to varying exposure definitions).107 

The dependence on self-report (rather than on direct exposure measurements) to understand how 

HAP exposure relates to health outcomes is an inherent limitation of previous research studies 

included in early reviews. Confounding by poverty is of particular concern in observational studies 

as fuel use is highly correlated with poverty, which is a strong determinant of ARI (including 

pneumonia). More recently, the technology to measure HAP has improved, enabling researchers to 

physically measure pollutant levels rather than relying on self-reported biomass fuel use as a proxy. 

A recent 2019 review confirmed the positive association between exposure to solid fuel use and 

childhood pneumonia, but found that in the few studies where individual pollutants (i.e. carbon 

monoxide and PM2.5) were physically measured, there was no evidence of an association.106  

In contrast to findings from observational studies and despite biologic plausibility for the effect of 

household air pollution on respiratory health, RCTs of clean cookstove interventions have not 

definitively demonstrated an effect on respiratory outcomes. Although one of the first randomized 

trials of a clean cook stove intervention (RESPIRE) estimated a 22% reduction in physician-

diagnosed pneumonia incidence, this effect was not statistically significant.114  A subsequent 

intervention in Malawi, the Cooking And Pneumonia Study (CAPS), showed no effect of a cleaner 
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burning biomass-fueled cookstove intervention on WHO Integrated Management of Childhood 

Illness–defined pneumonia incidence.115,116 Similarly, the Ghana Randomized Air Pollution and 

Health Study (GRAPHS) three-arm household-level randomized controlled trial of LPG versus a 

cleaner-burning biomass-fueled cookstove compared with control conditions (traditional stove), saw 

no effect on the incidence of child pneumonia.117  

These findings from RCTs might indicate that HAP is not as harmful as previously thought or that 

HAP reduction interventions may not be sufficient to yield beneficial health effects in the context of 

high ambient air pollution exposure. However, limitations of these trials might also explain their null 

findings. One such limitation is that previous interventions may not have achieved sufficient 

exposure reductions to yield health benefits, either because cleaner-burning cookstoves are not clean 

enough or because intervention households continued to use traditional stoves alongside the 

interventions, a practice known as stacking. Although the chimney stove intervention used in the 

RESPIRE trial reduced carbon monoxide exposures by 50% on average, the exposure distributions 

of the intervention and control arms overlapped substantially.114 The CAPS intervention had no 

effect on carbon monoxide exposure, which was low in the study population overall.116 The 

improved biomass stove used in GRAPHS did not meaningfully reduce CO or PM2.5 exposure 

compared to three-stone fires. While the GRAPHS LPG intervention lowered carbon monoxide 

exposure significantly, post-intervention exposures still exceeded health-relevant targets.118 

Another limitation of these trials is that they used non-specific case definitions for pneumonia.28 

There is some suggestion that exposure to HAP has an effect on severe outcomes rather than on 

milder respiratory infections.28,114 Bruce et al.’s 2013 review reported pooled effect estimates for the 

association of HAP with all ALRI (21 studies), severe ALRI (4 studies), and fatal ALRI (4 studies); 

the magnitude of effect estimates increased with the severity of ALRI.107 RESPIRE did not find a 
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statistically significant reduction in fieldworker- or physician-assessed WHO-defined pneumonia but 

did find a statistically significant reduction in WHO-defined severe pneumonia. The primary 

outcome in CAPS was WHO Integrated Management of Childhood Illness (IMCI)-defined 

pneumonia in children under 5 years of age. Although secondary outcomes included severe IMCI-

defined pneumonia and severe pneumonia with oxygen saturation <90%, only a small number of 

participants met these case definitions. In general, case definitions with low specificity lead to non-

differential outcome misclassification, and thereby an expectation of bias towards the null. Using 

more specific pneumonia case definitions designed to capture severe disease could improve the 

ability of studies to detect an effect of HAP on pneumonia. 

The recent Household Air Pollution Intervention Network (HAPIN) trial has overcome limitations 

of previous trials by using a highly specific case definition capturing severe pneumonia and by 

achieving a strong exposure contrast. HAPIN randomized households with pregnant women in four 

countries to receive an LPG stove and fuel during pregnancy and until the child reached 1 year of 

age. The study measured personal exposures to carbon monoxide, black carbon, and PM2.5 on a 

quarterly basis during gestation and the child’s first year of life. The main analysis assesses the 

intervention’s effect on severe pneumonia in children through 1 year of life, the period of highest 

incidence of pneumonia in children. However, evidence suggests that exposure experienced during 

gestation and early life is linked to a range of longer-term outcomes.119 Although the mechanisms 

involved in the long-term effect of gestational HAP exposure on pneumonia risk have not been fully 

examined, there are critical periods of vulnerability to numerous adverse outcomes in early 

development. Fetal lung development occurs across gestation and PM2.5 can cross the placenta and 

may disrupt biological mechanisms that regulate fetal growth, maturation and development.119-122 

Nevertheless, relatively few studies have examined the effect of gestational exposure to pollution on 

infant lung function and early life respiratory infections.123-125  Findings of GRAPHS showed that 
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prenatal HAP exposure impairs lung function in infants potentially increasing their risk of 

pneumonia and severe pneumonia in the first year of life.125 Other studies have demonstrated that 

infants born to mothers with increased particulate matter exposure during pregnancy have higher 

respiratory rates and altered breathing flows.126-128 

To assess the longer-term health impacts of HAP exposure, three of the original four HAPIN study 

sites are participating in a cohort study to follow children through age 2 years. The study will not 

assess severe pneumonia outcomes at 2 years, but data on care-giver reported illness with a cough is 

being collected. Although illness with a cough is a non-specific outcome, which has been posited as 

a contributor to null findings in previous trials, we might expect to observe an effect of the 

intervention on this outcome because of the strong exposure contrast achieved by the HAPIN 

intervention. Notably, a recent meta-analysis that included 23 articles (including 7 RCTs) reported a 

relative risk of 0.59 (95% CI: 0.45, 0.77) for the non-specific outcome of ARI in people using 

improved cookstoves compared with traditional stoves.129   

ARIs, which include both upper and LRIs, exert a considerable burden and cost on health care 

systems.1 Upper respiratory infections alone account for some 17.2 billion illnesses each year.1 

Generating up-to-date estimates of the association between biomass fuel exposure and ARI is 

important for estimating the global burden of respiratory infections. Global disease burden estimates 

often use models based on the prevalence and effect sizes of risk factors for childhood 

pneumonia.86,130 Exposure to HAP or solid fuel use for cooking are risk factors used in these models. 

The prevalence and distribution of ARI and HAP/solid fuel use (as determined through DHS) and 

the estimated association between them are used to parameterize these models. As the global 

epidemiology of respiratory infections continues to evolve, it is important to generate up-to-date 

estimates of the association between HAP/solid fuel use and ARI. 
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Chapter 3. Respiratory syncytial virus seasonality in Guatemala, 2008-2018 
 

Abstract 

Background. Local respiratory syncytial virus (RSV) seasonality can inform prevention strategies 

including vaccination. WHO has identified the description of local seasonality patterns in RSV 

incidence as a priority research activity. We characterized RSV seasonality in Guatemala using the 

moving epidemic method (MEM).  

Methods. We used absolute counts of RSV-associated acute respiratory infections (ARI) from 

hospital surveillance in Santa Rosa and Quetzaltenango departments of Guatemala. We identified 

attributes of RSV seasons including the onset week, offset week, epidemic duration, and epidemic 

threshold–the level of virus activity that signals the onset of a seasonal epidemic.  

Results. From week 17 of 2009 through week 16 of 2018, 8,222 ARI cases tested positive for RSV 

by rRT-PCR. Season onsets varied up to 5 months such that two differential patterns of RSV 

seasonality were observed: an early season starting in June-July and finishing in September-

November, and a late season starting in October-November and finishing in March-April, with both 

seasons having similar durations ranging from 4 to 6 months. MEM epidemic thresholds calculated 

prospectively using previous seasons’ data ranged from 2.1 to 4.0 RSV-associated ARI cases/week 

and captured between 70% and 96% of annual RSV detections. Seasonal patterns diverged between 

surveillance sites; onset weeks differed by 2 to 10 weeks each season and offset weeks differed by 2 

to 16 weeks. 

Conclusion. Our results demonstrate subnational differences in seasonality and substantial 

variability in the timing of seasonal RSV epidemics in Guatemala. This variability speaks to the 

difficulty in precisely predicting the timing of seasonal RSV epidemics based on onset weeks from 



P a g e  | 28 

 

past seasons, and suggests that maximal reduction in RSV disease burden would be achieved 

through a year-round vaccination program. 

Introduction 

Respiratory syncytial virus (RSV) is the major viral respiratory tract infection of early infancy and the 

most common cause of hospitalizations in infants globally.6 It has been estimated to cause about 34 

million episodes of acute lower respiratory tract infections in young children each year, with over 3 

million severe enough to cause hospitalization.72 In terms of mortality, RSV is associated with an 

estimated 66,000–199,000 deaths in children under 5 years old, the vast majority in developing 

countries.72  

As a result, the World Health Organization (WHO) has recognized RSV as the most important 

future new vaccine target.31 In 2015, the WHO Product Development for Vaccines Advisory 

Committee highlighted RSV as a pathogen for which there is major vaccine pipeline activity and 

likelihood of a candidate emerging for licensure in the near term.74 Although the exact characteristics 

of future RSV vaccines are unknown, seasonality—i.e., cyclical patterns in infection incidence--

might influence the deployment of these vaccines, as is the case with seasonal influenza vaccine.76 

To identify optimal vaccination strategies and provide a baseline to assess possible future vaccine 

effects, it is important to characterize RSV seasonality. For example, potentially effective maternal 

vaccines against RSV would provide passive immunity of limited duration to infants (maternal 

antibodies wane by about 6 months) so understanding RSV seasonality is important to ensure that 

maternal vaccines are administered during periods that will provide protection to infants during the 

RSV season.33 Global reviews have served as a guide to RSV seasonality.34 However, seasonal 

patterns are often variable within as well as between countries so characterizing local seasonality 

patterns is needed to inform effective national vaccine strategies and the timing of prevention 
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measures.99 Thus, WHO has identified the description of local seasonality patterns in RSV incidence 

as a priority research activity.35  

RSV seasonality is correlated with geographic location and climate. In temperate regions, RSV 

activity tends to occur in colder, drier months and seasonal epidemics last about 5-6 months.80 

Numerous explanations for these patterns have been proposed, including the possibility that 

inclement weather modifies human behavior, increasing indoor crowding that enhances exposure 

and transmission of RSV, or that low temperatures and absolute humidity increase the risk of 

disease.131-133 In contrast, in subtropical and tropical climates, peak activity typically occurs during the 

warmest months and RSV seasons last longer, up to 10 months.79,80 A global overview of RSV 

seasonality found that most countries with available data on RSV have consistent seasonal patterns, 

but seasonal parameters can change over time.80 While the specific drivers of RSV seasonality remain 

unclear, identifying seasonal patterns and defining epidemic thresholds (the level of RSV activity that 

signifies the onset of a seasonal epidemic) are important when planning prevention strategies such as 

vaccination.33  

Few Central American countries have published research on RSV seasonality, and previous studies 

relied on only a few years of data, making it difficult to detect long-term trends. Analyses of 

hospitalized acute respiratory infections in Guatemala between 2007 and 2012 described temporal 

patterns of RSV infections using visual inspection of epidemiologic curves.92,93 A recent global 

overview of RSV seasonality included two years (2015-2017) of data from Guatemala. 80  However, 

as patterns in RSV seasonality can shift over time, it is important to characterize seasonality over 

many years to assess potential evolutions in seasonality.80  

There is no standard approach to characterizing respiratory virus epidemics. However, for influenza, 

a WHO average curve method proposed in 2012 and the moving epidemic method (MEM) have 
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been used to determine epidemic and alert thresholds that respectively signal the onset and severity 

of seasonal influenza epidemics. 22,94,96 The purpose of these methods is to define a baseline based on 

several years of data and to establish an epidemic threshold above which weekly virus activity is 

considered to be in the epidemic period. While these methods were designed primarily for influenza 

epidemic and pandemic severity assessment, they can also be used with any data that have a seasonal 

accumulation of cases to characterize key aspects of seasonality including season onsets, offsets, and 

durations. The MEM has recently been used to describe the seasonality of RSV in the Netherlands 

and in Slovenia.97,98  

The objective of this study was to characterize RSV seasonality in Guatemala from 2008 to 2018 

using the MEM and WHO methods.  

Methods 

Study setting and population 

The main data source for this analysis is Vigilancia Integrada Comunitaria (VICo), an integrated 

infectious disease surveillance system in Guatemala established through a collaboration between the 

US Centers for Disease Control and Prevention International Emerging Infections Program, the 

Guatemala Ministry of Public Health and Welfare, and the Universidad del Valle de Guatemala. The 

surveillance system has been described previously.92 Briefly, it was established in November 2007 in 

Santa Rosa Department and subsequently expanded to Quetzaltenango Department in February 

2009. Among other syndromes, VICo includes surveillance of hospitalized acute respiratory tract 

infections (ARI). We analyzed data on ARI from surveillance hospitals in Santa Rosa and 

Quetzaltenango, which consistently reported cases from February 2009 through June 2018.   

Surveillance for hospitalized ARI in Santa Rosa (coastal lowlands, with temperatures typically 

ranging from 15°C to 30°C134) was conducted at the department’s only hospital, the Cuilapa 
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National Hospital, a 176-bed regional referral government hospital. In Quetzaltenango (western 

highlands, with temperatures ranging from 6°C to 21°C134), surveillance was at Hospital Regional de 

Occidente, a 435-bed hospital. Both facilities include pediatric and adult intensive care units. While 

the age distributions of the surveillance populations in the two departments are similar, demographic 

characteristics and health-seeking behaviors differ. The populations of Santa Rosa and 

Quetzaltenango are 46% and 62% urban respectively, and the populations have different ethnic 

compositions.135 Healthcare utilization surveys carried out in Santa Rosa and Quetzaltenango in 2007 

and 2009, respectively, found that among those reporting pneumonia in the past year, 33% of those 

aged <5 years and 75% of those aged ≥5 years in Santa Rosa were admitted to the surveillance 

hospital whereas in Quetzaltenango 75% of those aged <5 years and 50% of those aged ≥5 years 

were admitted to the surveillance hospital.92,136 

Case definitions and study procedures  

A case of ARI was defined as a hospitalization with at least one sign or symptom of respiratory 

disease and evidence of acute infection within the first 24 hours of admission (Table 3.1). Study 

nurses identified eligible patients by reviewing the ward registers and emergency department logs for 

patients presenting with respiratory diagnoses. Study staff sought consent and enrollment of 

hospitalized patients meeting the ARI case definition at participating hospitals. All participants were 

asked to provide nasopharyngeal and oropharyngeal swabs, which were tested by rRT-PCR for a 

respiratory panel that included RSV. Samples were processed within 72 hours of collection.  

Study data and season attributes 

To describe RSV seasonality in Guatemala, we used the absolute numbers of RSV detections from 

ARI surveillance in Santa Rosa and Quetzaltenango from week 17 of 2009 to week 16 of 2018, 

covering nine consecutive surveillance seasons (defined as the period between troughs in RSV 

activity) with consistent data collection. Using methods described below, we identified attributes of a 
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given RSV season, including the onset (start) week, peak week, time from onset to peak week, offset 

(end) week, epidemic duration, percentage of annual RSV detections that occur within the epidemic 

period, and the epidemic threshold (i.e. the number of RSV detections that marks the start of the 

seasonal epidemic) (Fig 3.1). 

Moving epidemic method 

We used the MEM to define attributes of RSV seasonality including an epidemic threshold. The 

MEM is described elsewhere and was applied using the ‘mem’ R package and MEM Shiny Web 

Application.96,137 Briefly, the MEM divides each season separately into pre-epidemic, epidemic, and 

post-epidemic weeks. First, the optimum epidemic duration is estimated by drawing a smoothed 

curve of the weekly maximum accumulated percentage of total season RSV cases, starting with the 

epidemiologic week where the slope of the epidemic curve is greatest. The MEM includes several 

settings for determining the optimum season duration from the maximum accumulated percentage 

curve. We used the slope method, which estimates the optimum epidemic duration of a season as 

the number of weeks where the slope of the maximum accumulated percentage curve (i.e. the 

change in the cumulative weekly percentage of total season cases) is above the mean weekly slope. 

Once the optimum number of epidemic weeks in a given season is identified, epidemic weeks are 

classified as the consecutive weeks that include the greatest change in slope; pre-epidemic and post-

epidemic weeks are those preceding and following the epidemic weeks, respectively.  

After identifying the pre-epidemic, epidemic, and post-epidemic weeks in each season, the epidemic 

threshold is calculated using a set of pre-epidemic values. For each season, the highest n values from 

the pre-epidemic period are taken, where n=30/number of seasons. The epidemic threshold is the 

one-tailed 95% mean confidence interval of the arithmetic mean of this subset of the highest 30 pre-

epidemic weekly values of all seasons.  
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It is important to note that the MEM threshold largely depends on the settings that are used. To 

select optimal settings, we assessed the performance of the MEM epidemic threshold for detecting 

epidemics by calculating its sensitivity, specificity and positive and negative predictive values using a 

cross-validation (leave-one season out) procedure in the MEM web application. For example, for a 

particular target season, the MEM algorithm determines pre-, post, and epidemic weeks as described 

above. This is considered the “correct” classification. With the remaining seasons, the epidemic 

threshold is calculated and weekly counts in the target season are classified as above or below the 

threshold. Weekly counts above the threshold are considered observed epidemic weeks and weeks 

below the threshold are considered observed non-epidemic weeks. Thus, each week has a correct 

and an observed outcome so that sensitivity, specificity, and positive and negative predictive values 

can be calculated. We chose settings that balanced sensitivity and specificity and that included a high 

percentage of all detections within the epidemic period. Using this cross-validation procedure, the 

MEM threshold correctly identified 91% of epidemic weeks and 79% of non-epidemic weeks and 

captured a high percentage (85%) of RSV detections within what was considered the RSV season 

according to the MEM algorithm. 

Differences in RSV seasonality in Santa Rosa and Quetzaltenango were assessed by running the 

MEM algorithm on site-stratified data to calculate the season parameters described above. Data for 

the 2008-2009 season were available for Santa Rosa but not for Quetzaltenango. We also calculated 

Spearman’s rank order correlation coefficient to test whether weekly RSV counts in the two sites 

were correlated.  

WHO method 

To explore whether a simpler averaging method would yield results similar to the MEM, we adapted 

a method for establishing average epidemic curves and epidemic thresholds for influenza that is 
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described in the WHO Global Epidemiological Surveillance Standards for Influenza (Fig. 3.2).94 First, we 

drew smoothed weekly epidemic curves for the 2009/2012 to 2017/2018 seasons using a 4-week 

moving average comprised of the current weekly count and the three preceding weekly counts. 

Next, we aligned the peak weeks of all seasons on the median week of peak occurrence. The average 

epidemic curve was drawn by calculating the arithmetic mean for each week over all years. The 

epidemic threshold was defined as the annual median weekly number of cases for the average 

epidemic curve, which assumes that approximately half of the surveillance year is in-season and the 

other half is off-season. Based on this epidemic threshold, the onset and offset weeks of each season 

were identified as the first of two consecutive weeks above and below the epidemic threshold 

respectively.  

Assessing threshold performance 

To assess how well the MEM and WHO epidemic thresholds would perform prospectively, we 

calculated the proportion of annual RSV detections that would have occurred above thresholds 

calculated with previous seasons’ data. For example, the 2012/13 epidemic threshold was calculated 

using data from 2009/10 through 2011/12, and the 2013/14 threshold was calculated using data 

from 2009/10 through 2012/13, and so on. We did not calculate thresholds for the 2009/10 to 

2011/12 seasons as there were too few previous seasons of data available. We considered the onset 

and offset weeks of each season to be the second of two consecutive weeks above and below the 

epidemic threshold respectively. Assuming one RSV epidemic wave per surveillance season, we 

defined the epidemic period as the longest period of weekly counts above the epidemic threshold. 

False alerts were defined as weeks outside the epidemic period that had RSV counts above the 

epidemic threshold. 
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Assessing differences in seasonality by age 

Variability of age distributions among RSV cases over the nine consecutive seasons was assessed 

visually using proportional stacked bar graphs and using a chi-square test for differences in age 

groups across seasons. Age was categorized into 6 groups: 0-6 months, 6-12 months, 1-2 years, >2-5 

years, >5-65 years, and ≥65 years.  

Results 

From week 17 of 2009 through week 16 of 2018, 8,222 ARI cases were enrolled and tested for RSV 

at the Cuilapa National Hospital in Santa Rosa (n=3,883) and Western Regional Hospital in 

Quetzaltenango (n=4,339) (Fig. 3.3). At Cuilapa and Western Regional Hospitals, 1,043 (27%) and 

1,278 (29%) ARI cases respectively tested positive for RSV by PCR. The median number of RSV 

detections per season was 223 (IQR: 198, 330). The majority (70%, n=1,618) of cases were in 

children less than 1 year of age. Adults aged ≥65 years comprised 2% (n=54) of cases.  

RSV seasons varied substantially by year such that two differential patterns of seasonality were 

observed: an early season starting in May/June, and a late season starting in October/November. 

Epidemic onsets ranged from week 20 in the 2011/2012 season to week 44 in the 2012/2013 season 

(Table 2). We did not observe a consistent pattern of late seasons oscillating with early seasons or 

small seasons oscillating with larger ones. The median peak week of the epidemic occurred at week 

33 (range: 28–9). Offset weeks ranged from week 38 in the 2011/2012 season to week 16 of 2013 in 

the 2012/2013 season. The epidemic period ranged from 17 to 24 weeks and included 70% to 95% 

of annual RSV detections.  

The WHO method produced similar seasonal parameters to the MEM method. Median season 

onsets (week 24, MEM range: 20–44, WHO range: 17–44), offsets (week 46, range: 38–16), epidemic 

durations (21 weeks, MEM range: 17–24, WHO range: 13–29), and times from onset to peak weeks 
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(8 weeks, range: 5–17) were the same with both methods (Table 3.2). Both covered a substantial 

proportion of annual RSV cases (on average, 84% with MEM, vs. 87% with WHO method).  

Using data from all surveillance seasons, the number of RSV detections that marks the start of the 

seasonal epidemic (epidemic threshold) was 4.1 cases/week under the MEM compared to 3.7 

cases/week using the WHO method. MEM (WHO) epidemic thresholds calculated prospectively 

using previous seasons’ data ranged from 2.1 (1.3) to 4.0 (3.3) RSV-associated ARI cases/week and 

captured between 70% (73%) and 96% (98%) of annual RSV detections (Table 3.3). The number of 

weeks in a given surveillance season that were above the epidemic threshold ranged from 15 (21) to 

37 (38). The MEM thresholds produced a false positive alert in three seasons whereas the WHO 

thresholds did not produce any false positive alerts.  

Although there was a strong positive relationship between weekly counts in the two sites 

(Spearman’s rank order correlation coefficient for the weekly counts was 0.63, p<0.01), the seasons 

in Santa Rosa and Quetzaltenango diverged somewhat (Fig. 3.4). Across the seasons, onset weeks in 

the two sites differed by 2 to 10 weeks each season and offset weeks differed by 2 to 16 weeks 

(Table 4). In most seasons epidemic onsets occurred earlier (7 of 9 seasons) and ended earlier (6 of 

9 seasons) in Quetzaltenango. However, there were exceptions to this pattern. For example, the 

2013/14 season started, peaked, and ended about two months earlier in Santa Rosa than in 

Quetzaltenango.  

Although inter-season differences in the proportions of RSV cases in each age group were 

statistically significant (p<0.02), the highest proportion of RSV cases was consistently in the ages <6 

months (range: 45%–57%) and the lowest proportions of RSV cases were in the age groups ≥65 

years (range: 1%–4%) and >2–5 years (range: 2%–4%). (Fig. 3.5) There was no correlation between 

the age distribution of RSV-associated ARI cases and the size or onset of seasonal epidemics.  
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Discussion 

Our analysis of data obtained from prospective surveillance of hospitalized ARI over nine 

consecutive seasons provides a detailed overview of seasonal patterns in RSV infections in 

Guatemala. Our results demonstrate substantial variability in the timing of seasonal RSV epidemics. 

Season onsets varied by as much as 5 to 6 months such that two differential patterns of RSV 

seasonality were observed: an early season starting in May-July and finishing in September-

November, and a late season starting in October-November and finishing in March-April, with both 

seasons having similar durations ranging from 4 to 6 months. This variability speaks to the difficulty 

in precisely predicting the timing of seasonal RSV epidemics based on onset weeks from past 

seasons and the value of epidemic thresholds as indicators of epidemic onset. 

To be useful, thresholds should capture a high proportion of annual RSV detections in a short 

period of time. MEM epidemic thresholds calculated separately for each season from previous 

seasons’ data gave an indication of how well the MEM epidemic threshold would perform 

prospectively. Thresholds calculated in this way performed well in terms of the proportion of annual 

RSV detections in the epidemic period. In each season, at least 70% of annual RSV detections 

occurred in weeks above the epidemic threshold. Typically, about 5 to 6 months were above the 

epidemic threshold but the epidemic period was particularly long (38 weeks) in the 2013/14 season 

because it was a large season preceded by seasons with much lower RSV activity. Because thresholds 

are calculated with previous seasons’ data, seasons with above average RSV activity tend to have 

longer epidemic periods. The WHO epidemic thresholds were lower than the MEM thresholds so 

they produced longer epidemic periods that included higher proportions of annual RSV detections 

in some seasons. Unlike the MEM thresholds, the WHO thresholds did not produce any false alerts. 
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The choice of threshold depends on balancing the epidemic percentage and number of false alerts 

with shorter epidemic periods. 

The WHO method produced similar seasonal parameters to the MEM during most seasons with the 

exception of the 2013/2014 season, which was the season with the greatest RSV activity. The 

general agreement between season parameters calculated using the MEM and WHO method 

supports the validity of the results but may also reflect that the two methods are based on similar 

assumptions and approaches. For example, both are averaging methods in that the WHO method 

determines the onset as the median number of weekly cases in the average epidemic curve, and the 

MEM settings we used determine the onset based on the mean slope of the epidemic curve. Other 

methods for estimating season parameters exist and there is no standard approach. Elsewhere, the 

different approaches used have resulted in varying and sometimes contradictory outcomes.99 

We hypothesized that climatic differences between Santa Rosa (coastal lowlands) and 

Quetzaltenango (western highlands) might result in differing seasonal patterns. Elsewhere, including 

the United States, there is substantial subnational variation in RSV seasonality, with the RSV season 

starting in the South East and then moving to the North West.99 Although seasonal patterns 

diverged to some extent between Santa Rosa and Quetzaltenango, there were no regular patterns in 

these differences. However, stratifying the analysis by site revealed important patterns that were 

masked in the pooled data. For example, the 2012/13 and 2013/14 seasons appear to be one 

prolonged season in the pooled data but stratification shows a distinct late epidemic followed by an 

early epidemic in Quetzaltenango that is masked by a delayed 2012/13 season that peaks in early 

2013 into in Santa Rosa. As has been noted elsewhere, this demonstrates that national pooling of 

data may misrepresent RSV activity and the need for local data to precisely define RSV outbreaks in 

a given community.138  
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We had hypothesized that the age distribution of RSV cases might differ across seasons, with cases 

being older on average in seasons with later onsets. Elsewhere, delayed or off-season RSV epidemics 

have been associated with increased age of RSV cases due to the accumulation of RSV-naïve 

children, notably during the COVID-19 pandemic.139 There was little inter-season variability in age 

distribution of RSV cases, and we did not find differences in the median age of children with RSV in 

delayed seasons and early seasons. This may be because delays in season onset were not of sufficient 

magnitude to result in shifted age distributions. 

The occurrence of clear seasonal epidemics with a stable duration in Guatemala was consistent with 

RSV patterns in other areas.34 Although epidemics in most countries are consistent over time with 

year-to-year variations of 1-4 weeks in the start, end, and/or peak of RSV activity, the multiyear 

periodicity we observed has been reported in a few countries.80,140 For example, in Mexico, a 2-

season year is followed by a milder year, where the outbreak starts in spring and activity is 

maintained almost all year round with no clear peaks.80 

The mechanisms that shape these seasonal RSV patterns are unclear, but include contact rates 

between susceptible and infected individuals and host immunity. Although meteorological factors 

have been found to predict RSV incidence, the correlations between RSV incidence, temperature 

and relative humidity are particularly variable and inconsistent in tropical regions.141 Moreover, 

mechanistic models have shown that undetectable seasonal changes in transmission can combine 

with population immunity to produce large oscillations in disease incidence.142 Although there is 

limited research on the impact of RSV subtype on RSV seasonality, the predominant circulating 

antigenic group might also play a role in shaping seasonal patterns. In Finland, RSV antigenic groups 

A and B alternate in two-year cycles, and in Korea different genotypes dominate the circulation in 

consecutive epidemics.143,144 A study in Beijing found that longer and earlier epidemics occurred 

during RSV A dominant seasons145 
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The observed variability in RSV seasonality has important implications for vaccine trials and 

eventual vaccine programs. If trials occur during seasons with relatively low RSV activity, they may 

not achieve adequate power to detect hypothesized effect sizes. Notably, a recent trial fell short of 

its projected number of RSV-associated, medically attended lower respiratory tract infections and 

failed to meet the prespecified criterion for success.146 RSV vaccine trials should span several seasons 

to ensure that they achieve the targeted number of endpoints. In terms of an eventual vaccine 

strategy, the variability in seasonality in Guatemala suggests that maximal reduction in the burden of 

RSV disease would be best achieved through a year-round maternal RSV vaccination program.  

Our study has several limitations and simplifying assumptions that bear noting. Although our 

analysis included nine seasons of consistently collected surveillance data – more than previous 

reports of RSV activity in Guatemala – the study period was not of optimal duration for assessing 

longer term trends and multiyear seasonality. We did not have data on RSV subtypes, which have 

been shown to correlate with different seasonality patterns in some settings.145 Finally, we assumed 

that the population under surveillance remained stable over the study period; unknown violations of 

this assumption would have affected our estimates. 

Despite these limitations, our study provided a detailed description of RSV seasonality in Guatemala 

that can guide the timing of eventual prevention strategies such as vaccination and 

immunoprophylaxis. Characterizing RSV seasonality is important for decision-making about vaccine 

timing and strategy, whereas setting epidemic thresholds that can be used prospectively to signal the 

start of a seasonal RSV epidemic can improve the accuracy of clinical diagnosis and the timely use of 

costly immunoprophylaxis. The inclusion of nine seasons of consistently collected surveillance data 

allowed for the identification of two differential patterns of seasonality, which was not possible in 

previous studies that covered shorter time periods. Ahead of the potential availability of new RSV 
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vaccines for pregnant women and young children, our findings can provide baseline information for 

immunization advisory groups to assess future RSV vaccine effects. 
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Tables and Figures 

Table 3.1. Surveillance case definitions for hospitalized acute respiratory infection in 
Guatemala  

Evidence of acute 
infection 

All ages 

≥ 1 of the following: 

Signs or symptoms of respiratory disease 

All ages 

≥ 1 of the following: 

Additional criteria for children <2 years 

≥ 1 of the following: 

fever (≥38°C) or history of 
fever 

tachypnea repeated pauses in breathing while 
breastfeeding or drinking  

hypothermia (<35.5°C) cough intercostal retractions 

abnormal white blood cell 
count  

expectoration (sputum 
production) 

nasal flaring 

abnormal white blood cell 
differential 

chest pain grunting 

 

hemoptysis not drinking or breastfeeding 
 

dyspnea (difficulty 
breathing) 

 

 

shortness of breath 

 

 

sore throat 

 

 

abnormal lung 
examination 

 

Notes. tachypnea was defined as: age <2 months: ≥ 60 breaths/minute, age 2-12 months: ≥ 50 breaths/ 
minute, age> 12 months-5 years: ≥ 40 breaths/ minute, age> 5 years: ≥ 20 breaths/minute). Abnormal white 
blood cell count (in children <5 years: <5,500 / cm³ or> 15,000 / cm³, in people ≥5 years: <3.000 / cm³ or> 
11,000 / cm³). Any white blood cell differential abnormality as defined by the automated blood cell analyzer 
at each surveillance site. 

  



P a g e  | 43 

 

Table 3.2. Characteristics of Respiratory Syncytial Virus (RSV) Seasons using RSV Counts from Hospital Surveillance of Acute 
Respiratory Infections in Guatemala, April 2009–April 2018 

Surveillance 
season 

peak 
week 

onset week offset week 
epidemic duration, 

weeks 

percentage of RSV 
detections in 

epidemic period 

Time from onset 
to peak, weeks 

WHO* MEMⱡ WHO MEM WHO MEM WHO MEM WHO MEM 

2009/2010 35 21 22 45 43 24 21 95% 90% 14 13 

2010/2011 41 33 31 49 48 16 17 82% 84% 8 10 

2011/2012 30 25 20 38 38 13 18 80% 90% 5 10 

2012/2013 9 44 44 16 16 24 24 92% 92% 17 17 

2013/2014 28 17 23 46 44 29 21 87% 74% 11 5 

2014/2015 48 43 43 5 11 15 21 70% 83% 5 5 

2015/2016 29 24 24 45 46 21 22 75% 76% 5 5 

2016/2017 33 20 25 47 47 27 22 92% 83% 13 8 

2017/2018 30 24 24 45 45 21 21 95% 95% 6 6 

Median 33 24 24 46 46 21 21 87% 84% 8 8 

Notes. *WHO: WHO average curve method (adapted from WHO Global Epidemiological Surveillance Standards for Influenza) ⱡMEM: moving 
epidemic method 
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Table 3.3. Epidemic thresholds for Respiratory Syncytial Virus, Guatemala, April 2012–April 2018 

Target 
season 

Epidemic threshold, 
RSV detections/week 

Percentage of RSV 
detections above 

threshold 

Weeks above 
epidemic threshold, 

no. 

False alerts, no. 

WHO* MEMⱡ WHO MEM WHO MEM WHO MEM 

2012/2013 1.25 2.16 98% 90% 31 24 0 1 

2013/2014 1.94 2.36 96% 96% 38 37 0 0 

2014/2015 3.06 3.51 82% 70% 21 15 0 1 

2015/2016 3.10 3.47 73% 73% 22 22 0 1 

2016/2017 3.31 3.78 92% 92% 28 28 0 0 

2017/2018 3.31 3.98 93% 93% 22 22 0 0 

Notes. *WHO: WHO average curve method (adapted from WHO Global Epidemiological Surveillance Standards for Influenza) ⱡMEM: moving 
epidemic method. Epidemic thresholds for each target season were calculated using data from previous seasons, starting with the 2009/2010 season.  
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Table 3.4.  Characteristics of Seasons of Respiratory Syncytial Virus, by Surveillance Site, using the Moving Epidemic Method, 
Guatemala, April 2008–April 2018 

  
onset week peak week offset week 

epidemic 
duration, weeks 

percentage of RSV 
detections 

occurring within 
epidemic period 

Time from onset 
to peak, weeks 

SR QU SR QU SR QU SR QU SR QU SR QU 

2008/2009 33 - 42 - 50 - 17 - 72% - 9 - 

2009/2010 23 21 30 35 42 44 19 23 93% 89% 7 14 

2010/2011 34 31 40 41 50 48 16 17 90% 82% 6 10 

2011/2012 24 17 30 27 40 37 16 20 93% 91% 6 10 

2012/2013 51 42 11 9 16 13 17 23 69% 89% 12 19 

2013/2014 19 28 28 45 36 52 17 24 85% 86% 9 17 

2014/2015 42 40 49 48 7 11 18 24 88% 84% 7 8 

2015/2016 20 24 29 39 36 46 16 22 76% 75% 9 15 

2016/2017 27 17 34 25 46 43 19 26 94% 88% 7 8 

2017/2018 27 24 36 27 45 42 18 18 93% 88% 9 3 

Abbreviations. SR: Santa Rosa, QU: Quetzaltenango. 
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Figure 3.1. Illustration of season attributes   



P a g e  | 47 

 

A  

 

B  

 

C 

 

D    

 

0

5

10

15

20

25

171921232527293133353739414345474951 1 3 5 7 9 111315

C
o

u
n

t 
o

f 
R

SV
 d

et
ec

ti
o

n
s

epidemiologic week

2010/2011 2011/2012 2012/2013 2013/2014

2014/2015 2015/2016 2016/2017 2017/2018

0

5

10

15

20

25

171921232527293133353739414345474951 1 3 5 7 9 111315

C
o

u
n

t 
o

f 
R

SV
 d

et
ec

ti
o

n
s

epidemiologic week

2009/2010 2010/2011 2011/2012

2012/2013 2013/2014 2014/2015

2015/2016 2016/2017 2017/2018

0

5

10

15

20

25

171921232527293133353739414345474951 1 3 5 7 9 111315

A
ve

ra
ge

 c
o

u
n

t 
o

f 
R

SV
 d

et
ec

ti
o

n
s

epidemiologic week

0

5

10

15

20

25

171921232527293133353739414345474951 1 3 5 7 9 111315

A
ve

ra
ge

 c
o

u
n

t 
o

f 
R

SV
 d

et
ec

ti
o

n
s

epidemiologic week



P a g e  | 48 

 

 

Figure 3.2. Illustration of the WHO method to establish an epidemic threshold using respiratory syncytial virus detections from 
surveillance in Guatemala, April 2009–April 2018 (adapted from WHO Global Epidemiological Surveillance Standards for 
Influenza) 

A. Draw smoothed (4-week moving average) epidemic curves with calendar week on the x-axis and the number of RSV detections on the y-axis. 

B. Shift data to the point where peak weeks align on the median peak week  

C. Calculate the average epidemic curve 

D. Define epidemic threshold as the median weekly number of RSV detection
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Figure 3.3. Selection of RSV-associated acute respiratory infection cases for analytic data set 
from hospitalized surveillance in Guatemala, 2009-2018  

10,196 eligible for respiratory disease 
surveillance in Santa Rosa and 

Quetzaltenango 
(Week 17 2009 – Week 16 2018) 

8,852 (87%) consented and enrolled 

8,222 (93%) tested for RSV by 
PCR 

No consent/enrollment 
(n=1,344) 

No NP/OP swab provided 
(n=511) 

RSV not tested (n=119) 

2,321 (28%) specimens positive 
for RSV 

RSV not detected 
 (n=5,901) 
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Figure 3.4. Epidemic curve of RSV cases reported through by surveillance site, Guatemala, 2007/08–2017/18 (n = 2,367 patients) 
 
  

2008/2009 2009/2010 2010/2011 2011/2012 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 
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Figure 3.5. Distribution of patients with respiratory syncytial virus infections in 9 consecutive seasons, according to age group, 
Guatemala, 2009/10–2017/18 (n = 2321 patients) 
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Chapter 4. Effects of a 500-day liquefied petroleum gas stove intervention 

during gestation and infancy on respiratory illness in 2-year-old children  

Introduction 

Acute respiratory infections (ARI) exert a considerable burden and cost on health care systems.1,2 

Most of these infections are limited to the upper respiratory tract (i.e. the nose and throat). Globally 

in 2019, there were 237 million (95% UI: 212–265) prevalent cases of upper respiratory infections, 

contributing to 9,460 deaths (95% UI 5540–14 900) and 6·39 million (95% UI: 3·96–9·72) 

DALYs.147 Findings from observational studies have established exposure to household air pollution 

(HAP) from solid fuels as an important risk factor for ARI.1,148 Worldwide, it is estimated that 3 

billion people rely on solid fuels (such as wood, charcoal, animal dung and agricultural residue) for 

cooking and heating.103,149 Exposure to HAP from cooking with solid fuels is responsible for an 

estimated 2.3 million deaths and additional morbidity burden every year.150 As the primary cooks, 

women bear the brunt of this exposure, and for their children, exposure begins in the prenatal 

period and often continues throughout the life course.  

Many diseases have been linked to exposures experienced during gestation and early life. 

Nevertheless, relatively few studies have examined the effect of prenatal exposure to air pollution on 

infant lung function and early life respiratory infections, and most of these studies focused on 

ambient air pollution or maternal smoking.123-125,151,152 Only two previous studies, the Drakenstein 

Child Health Study and the Ghana Randomized Air Pollution and Health Study (GRAPHS) have 

reported associations between prenatal HAP exposure and childhood respiratory outcomes.125,153,154  

Although the mechanisms involved in the long-term effect of prenatal HAP exposure on respiratory 

illness have not been fully examined, there are critical periods of vulnerability to numerous adverse 
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outcomes in early development. Fetal lung development occurs across gestation and PM2.5 can cross 

the placenta and may disrupt biological mechanisms that regulate fetal growth, maturation and 

development.119-122 Findings from GRAPHS showed that prenatal HAP exposure impairs lung 

function in infants, potentially increasing subsequent risk of respiratory infections.153 Prenatal HAP 

exposure is also associated with low birthweight, which in turn increases the risk of respiratory 

infections.155-157   

Despite biologic plausibility for the effect of HAP exposure on pediatric respiratory health and 

consistent evidence from observational studies supporting the association, interventions aimed at 

reducing HAP exposure have struggled to demonstrate an impact on respiratory outcomes.28,106,158,159 

For example, one of the first randomized trials of a clean cook stove intervention (RESPIRE) 

estimated a 22% reduction in the primary outcome of physician-diagnosed pneumonia incidence, 

but this effect was not statistically significant.114 However, RESPIRE found meaningful and 

statistically significant reductions for secondary outcomes of severe pneumonia.  In Nepal, an 

improved biomass stove intervention showed weak evidence for a modest decline in the incidence 

of acute lower respiratory tract infections in children.158 A subsequent intervention in Malawi, the 

Cooking And Pneumonia Study (CAPS), showed no effect of a cleaner burning biomass-fueled 

cookstove intervention on WHO Integrated Management of Childhood Illness–defined pneumonia 

incidence.115,116 Similarly, GRAPHS saw no effect of a liquefied petroleum gas (LPG) intervention 

(compared to traditional stoves) on the incidence of child pneumonia.117  

Findings of exposure-response analyses from these trials varied. RESPIRE exposure-response 

analyses demonstrated a protective effect of reductions in infant carbon monoxide (CO) exposure 

on physician-diagnosed pneumonia and severe pneumonia, whereas CAPS exposure-response 

analyses found no evidence of an association between CO exposure and pneumonia.114,116 Both 



P a g e  | 54 

 

analyses focused on the postnatal period. The GRAPHS exposure-response analysis focused on 

prenatal exposure and found that the risk for pneumonia and severe pneumonia in the first year of 

life increased by 10% and 15% respectively, per 1-part per million (ppm) increase in average prenatal 

CO exposure.125 

A possible reason for the inability of past interventions to detect an effect on respiratory outcomes 

is that they did not achieve sufficient exposure contrast between intervention and control arms due 

to the continued use of traditional stoves and elevated ambient air pollution concentrations. For 

example, although RESPIRE reduced exposure by 50% on average (from 2.2 to 1.1 ppm carbon 

monoxide), exposure distributions for the intervention and control groups overlapped 

substantially.114 In Nepal, the mean 20-hour kitchen PM2.5 concentration was reduced from 1380 

mg/m3 to 936 mg/m3, but this still exceeded WHO standards of 35 μg/m3.160,161 Similarly, although 

mean maternal PM2.5 exposure in GRAPHS was 32% lower in the LPG arm compared to the 

control arm (52 ± 29 μg/m3 vs 77 ± 44 μg/m3), post-intervention exposures exceeded health-

relevant targets.118 In Malawi, median exposure to CO in both the intervention and control groups 

were below the WHO air quality guideline for CO (4 ppm). 

The Household Air Pollution Intervention Network (HAPIN) trial has overcome this limitation, 

achieving a substantial reduction in personal exposure to PM2.5, CO, and black carbon. HAPIN 

randomized households with pregnant women in four countries to receive an LPG stove and a 

continuous supply of fuel at no cost (ClinicalTrials.gov NCT02944682).29 The intervention 

continued after pregnancy until the child reached 1 year of age, at which point fuel distribution 

ended. Post-randomization PM2.5 exposures in the intervention arm were at the lower end of what 

has been reported for LPG and other clean fuel interventions, with 69% of PM2.5 samples falling 

below the WHO Annual Interim Target of 35 μg/m3.
162 Post-randomization CO levels were below 
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the WHO air quality standard in both arms (2.2 ppm in the intervention arm and 0.7 ppm in the 

control arm), and CO reductions exceeded those of RESPIRE (68% reduction vs. 50%).114,162 For 

black carbon, post-randomization measurements were 11.1 ppm in the intervention arm and 4.0-4.3 

ppm in the control arm.162 The trial’s primary health outcomes in children are birth weight, stunting 

at 12 months of age, and severe pneumonia in the first 12 months of life.  

In primary HAPIN analyses, pneumonia was defined as (1) the presence of cough and/or difficult 

breathing and at least one general danger sign as defined by WHO, and primary endpoint 

pneumonia on a lung ultrasound or chest x-ray, or (2) the presence of cough and/or difficult 

breathing and hypoxemia (measured via pulse oximetry, SpO2), or (3) death as a result of pneumonia 

as determined by verbal autopsy. This highly specific case definition for pneumonia was selected to 

minimize the possibility of nondifferential misclassification of pneumonia, which generally biases 

results towards the null hypothesis. For comparability with previous studies, the WHO definition of 

severe pneumonia is being assessed as a secondary outcome. A follow up period of 1 year was 

chosen because children younger than 1 year have the highest incidence of severe pneumonia. 

However, young children remain highly vulnerable to respiratory illness after the first year of life, 

and reducing morbidity and mortality in children under 5 years of age is a global health priority 

(SDG 3.2.1). 

To assess the longer-term health impacts of the HAPIN intervention, three of the original four 

study sites are participating in a follow-up cohort study to follow HAPIN children through age 2 

years and measure a range of exposures and outcomes including respiratory illness. Given the lower 

rate of respiratory illness in this age group, a more sensitive case definition is being used in this 

follow-up study than in the primary HAPIN analysis: care-giver reported illness with a cough at 24 

months of life. Cough is a key symptom included in ARI case definitions that are commonly used 
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for surveillance purposes.37,38 Few intervention studies have examined the effect of HAP on the 

mild-to-moderate spectrum of disease.163,164 However, a recent water filter and improved cook stove 

intervention trial in Rwanda reduced the prevalence of reported ARI in children <5 years by 25% 

(PR 0.75, 95% CI 0.60–0.93). Although ARIs are not as serious as acute lower respiratory infections, 

they pose a burden for children, their families, and healthcare providers.1 According to the 2014-15 

Demographic Health Surveys, the 2-week period prevalence of ARIs in children under five years 

was 11% in Guatemala, 3% in India, and 6% in Rwanda, with higher rates among children age 6-23 

months.165-167 More than half of children with ARI sought advice or treatment from a health facility 

or provider.  

Here we report on the effect of the original HAPIN intervention on the prevalence of illness with a 

cough in HAPIN children at age 2 years through an intent-to treat analysis, and examine exposure-

response associations between prenatal HAP exposure and the prevalence of illness with a cough at 

24 months of life. 

Methods 

Study population 

Participants were from HAPIN, a multi-country randomized controlled trial of an LPG stove and 

fuel distribution intervention in 3,200 households in four low- and middle-income countries (India, 

Guatemala, Peru, and Rwanda) that has been described elsewhere.29 The trial enrolled 800 pregnant 

women (aged 18-<35 years, 9 to <20 weeks gestation confirmed by ultrasound) in each study site 

and randomly assigned half to receive LPG stoves and an 18-month supply of fuel (ending when the 

child reached age 1 year). Participants in the control group continued using the stove and fuel of 

their choice, generally biomass stoves. To be eligible for enrollment, pregnant women had to be 

non-smokers and to cook with biomass stoves predominantly. To ensure balance between arms, 
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households were randomly allocated to intervention or control arms as and when they consented to 

participate; randomization was implemented at the site level after baseline exposure measurements 

were taken. In India, enrollment took place at two study sites (Nagapattinam and Villupuram). 

Guatemala and Rwanda had one study site each.   

Upon exiting the study, participants in Guatemala, India, and Rwanda were invited to participate in a 

cohort study to follow children until age 2 years and evaluate whether the intervention had benefits 

beyond pregnancy and the child’s first year of life. In Guatemala and Rwanda, LPG use was 

expected to be low after exiting the study due to lack of access and expense.  In India, all control 

households received a free LGP stove and vouchers for 18 months of LPG fuel after exiting the 

study. Anticipated completion of follow up in the cohort study is June 2022.  

Outcome ascertainment 

Trained field workers conducted home visits at 24 months to assess child health status. The 

outcome was defined as caregiver-reported illness with a cough in the past 7 days. This case 

definition captures the mild-to-moderate spectrum of disease severity, predominantly upper 

respiratory tract infections, which nevertheless impair quality of life and productivity.116 

Exposure assessment 

Personal monitoring equipment was used to assess exposures to PM2.5, CO, and BC over a 24-hour 

period in intervention and control participants. Full details on the method of assessment have been 

reported elsewhere.162 Twenty-four-hour personal exposure for pregnant women was measured at 

baseline (prior to randomization), 24-28 weeks gestation, and 32-36 weeks gestation.  At each 

monitoring period, pregnant participants were asked to wear a garment with instrumentation 

situated in the breathing zone, and asked to keep it nearby when sleeping, bathing, or conducting 

other activities for which the equipment could not be safely worn.168 Prenatal exposure was defined 

as the time-weighted average of exposure measurements taken at baseline and at first and second 
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follow up visits during pregnancy. For participants in the control group, an average prenatal 

exposure was calculated from all available measurements. For participants in the intervention group, 

prenatal days prior to LPG installation were assigned the baseline measurement, and prenatal days 

following LPG installation were assigned to the average of all post-randomization measurements 

before birth. Future analyses will include exposure data collected at 6 months, 12 months, and 24 

months. At 6 months and 12 months, BC and PM2.5 in the home were measured. At 24 months, 

direct exposure measurements (monitor on child) are taken in Guatemala and Rwanda, and indirect 

measurements (mother wore a censor and child wore a beacon) are taken in India. 

Covariates 

At enrollment, a baseline survey was administered by trained field workers to obtain a range of 

information including the number of people who sleep in the home (a proxy for crowding), maternal 

health insurance status, passive smoking, and primary fuels used for cooking and heating. 

Household food insecurity was determined using a dietary diversity questionnaire and a food 

insecurity experience scale following methodology developed by FAO.169 Breastfeeding through the 

first 6 months of life was determined through an infant feeding questionnaire. Child malnutrition 

(defined based on WHO simplified field table weight-for-length charts) was determined through 

anthropometry measurements and taken at 24 months of age. Child sex, birth weight, weight for 

gestational age z-score, and date of delivery were recorded at birth. Vaccination status was assessed 

at 9 and 12 months of age both by querying the mother and inspection of the child’s vaccination 

card. Up-to-date vaccination at one-year of life was defined as receipt of 3 doses of pneumococcal 

conjugate vaccine, 3 doses of Haemophilus influenzae type b vaccine, and one dose of measles vaccine. 

Statistical analysis 

To identify imbalances in covariates between study arms, we compared characteristics of children in 

intervention and control households using means for continuous variables and proportions for 
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categorical variables. We also compared baseline characteristics of those who enrolled in the follow-

up cohort and those who did not, using chi-square tests for categorical variables and the Wilcoxon 

rank sum test for continuous variables. 

The outcome variable in all analyses was the prevalence of caregiver-reported illness with a cough (a 

key component of ARI case definitions) at 24 months of life. In an intent-to-treat analysis, we aimed 

to demonstrate the effect of the 500-day intervention over the most important period of early 

childhood development. We hypothesized that children born in intervention households have lower 

prevalence of illness with a cough at age 2 years relative to those born in control households.  In an 

exposure-response analysis, we aimed to provide generalizable information transferable to other 

settings and interventions. We hypothesized that exposure to HAP pollutants during gestation (a 

critical developmental period) is positively associated with the prevalence of illness with a cough at 

age 2 years.  

In the intent-to-treat analysis, we fit a log binomial regression model to estimate the prevalence ratio 

of illness with a cough in the intervention compared to the control group adjusting for 

randomization strata. The effect estimate from this model can be interpreted as the impact of the 

LPG intervention including any longer-term effects it may have on fuel use after the intervention 

ended. We did a sub-analysis with country-specific models because study participants in India 

received LPG stoves after the intervention period, resulting in bias towards the null.  

We hypothesized that the effect of the intervention may be modified by country (India, Guatemala, 

and Rwanda), child sex, and gestational age at intervention (above vs. below the median of 18 

weeks). To detect interaction by country and sex, we used a likelihood ratio test comparing the full 

model with interaction terms to the reduced model without the interaction terms. Because 

gestational age at intervention is measured in the intervention arm only, we ran two models: one 
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restricted to intervention participants below the median gestational age and the other restricted to 

intervention children above the median.  

In the exposure-response analysis, we used log binomial regression to model the association between 

the prevalence of illness with a cough at 24 months and exposure to HAP pollutants (PM2.5, BC, and 

CO) during gestation. We explored various transformations (e.g. linear, quadratic, cubic, natural log, 

or quintiles) of household air pollutants during gestation and selected the quadratic transformation 

because it gave the best model fit based on both the likelihood ratio test and Akaike Information 

Criterion. We estimated crude associations and associations adjusted for a priori confounders 

identified based on the literature and using the directed acyclic graphs (Figure 4.1). Hypothesized 

confounders included primary fuel used at 24 months, food insecurity score, vaccination status, 

breastfeeding in the first 6 months of life, number of people who sleep in the house, and season of 

birth (respiratory vs. non-respiratory season). We used likelihood ratio tests to assess interaction of 

prenatal exposure with country and sex. We also ran models stratified by gestational age at 

intervention. 

Log binomial models were run in SAS version 9.4 (Cary, NC). All other models and analyses were 

run in R version 4.0.4 software (R Foundation for Statistical Computing). 

Results 

Study population 

Of the 2,317 children enrolled in the HAPIN trial in Guatemala, India, and Rwanda, 2,171 (96%) 

enrolled in the follow-up cohort (Figure 4.2). Of these, 1783 (82%) had completed the 24-month 

child health status follow up visit (during which the prevalence of illness with a cough was 

ascertained) by February 2022. Of the 623 who did not have a 24-month follow up visit, 388 (62%) 

had not yet reached the follow up window (i.e. they were not yet 24 months of age) and 235 (38%) 

had reached 24 months of age but missed the health status follow up visit. Thus, 1548 (71%) 
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children enrolled in the follow-up cohort were included in the intent-to-treat analysis. Of these, 1440 

(89%, or 66% of the follow-up cohort) had valid maternal prenatal PM2.5 exposure assessments, 

1478 (95%, or 68% of the follow-up cohort) had valid maternal prenatal CO assessments, and 1384 

(89%, or 64% of the follow-up cohort) had valid maternal prenatal black carbon exposure 

assessments. Exposure measurements were more often missing in intervention arm children 

compared to control arm children (Figure 4.2).  

In some countries, there were differences in those who did and did not enroll in the follow-up 

cohort in terms of study arm assignment, weeks during pregnancy with the intervention, maternal 

prenatal carbon monoxide exposure, food insecurity index, and stove use at baseline (Table 4.1). In 

Rwanda, a greater proportion of children in the intervention arm (9%) vs. the control arm (5%) did 

not enroll in the follow-up cohort, and those not enrolled in the follow-up cohort had lower average 

maternal prenatal CO exposure (1.2 vs 2.0 ppm). In India, those not enrolled in the follow-up 

cohort also had lower average maternal prenatal CO exposure (0.7 vs 1.6 ppm). In Guatemala and 

Rwanda, the number of weeks during pregnancy with the intervention was on average 2 weeks 

longer in those who did versus those who did not enroll in the follow-up cohort. In India, those not 

enrolled had a higher proportion of moderate/severe food insecurity (12% vs. 3.5%) and were less 

likely to use traditional cookstove for heating at baseline (0% vs 8.2%).  

Among the 1548 children included in the intent-to-treat analysis, baseline characteristics were well 

balanced between intervention and control arms in all countries except for Rwanda, where a higher 

proportion of control households reported having a smoker (3.9% vs. 0.5%), moderate/severe food 

insecurity (39% vs. 24%), and wood as the primary fuel type at baseline (78% vs. 66%) (Table 4.2). 

In Guatemala and India, nearly all participating households used wood for cooking at baseline 

(n=1102, 99%). Half of the children included in the analyses were girls (n=727, 47%). Haemophilus 

influenzae type b vaccination rates were high, with 562 (82%), 414 (83%), and 421 (96%) children 
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receiving 3 doses by the first year of life in Guatemala, India, and Rwanda respectively. 

Pneumococcal vaccination coverage was high in Rwanda, where 386 (88%) children received 3 doses 

in the first year of life, but low in Guatemala (n=88, 14%) and India (n=2, 0.4%). Receipt of at least 

one dose of measles vaccine was highest in Rwanda (n=408, 93%), followed by India (n=380, 76%), 

and Guatemala (n=80, 13%).  

During child health status visits at 24 months, 233 caretakers reported that their child had illness 

with a cough in the past 7 days. The prevalence of illness with a cough at 24 months was much 

higher in Rwanda (n=165, 38%) than in Guatemala (n=49, 8%) and India (n=18, 4%). There was no 

association between report of illness with a cough at 24 months and the type of fuel used for 

cooking at 24 months (Table 4.3). 

Although maternal prenatal pollutant exposure distributions overlapped, the trial achieved strong 

contrasts in maternal prenatal pollutant exposure between intervention and control arms (Figure 

4.3). In the intervention arm, the time-weighted average CO level was 1.3 (SD 1.8) ppm in the 

intervention arm compared to 2.0 (SD 2.6) ppm in the control arm. For black carbon, the time-

weighted average level was 8.8 (SD 6.8) µg/m3 in intervention arm compared to 12.0 (SD 7.0) in the 

control arm. For PM2.5, the time-weighted average level was 82.9 (SD 67.0) µg/m3 in intervention 

arm compared to 116.6 (SD 85.1) in the control arm. These strong contrasts were observed across 

study sites (Table 4.2). 

Intent-to-treat analysis 

The intention-to-treat analysis used randomization allocation as the indicator of exposure. In both 

crude analyses and analyses adjusted for randomization strata, passive smoking, primary fuel used at 

baseline, and food insecurity at baseline, we did not find evidence that the intervention had an effect 

on the prevalence of illness with a cough at 24 months of age (Table 4.4). We did not find statistical 

evidence of interaction between study arm and child sex or country. Moreover, we did not find 
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meaningful differences in prevalence ratios by sex using sex-specific models (PR for males: 1.04 

[95%CI: 0.76, 1.41], PR for females: 1.05 [95%CI; 0.78, 1.41]). Country-specific prevalence ratios 

were heterogeneous and were not statistically significant (Table 4.4). The estimated prevalence ratio 

from the model restricted to intervention participants below the median gestational age at 

intervention initiation (PR: 1 .07 [95%CI: 0.82, 1.38]) was similar to that from the model restricted 

intervention children above the median gestational age at intervention initiation (PR: 1.02 [95%CI: 

0.79, 1.33]).  

Exposure-response analyses 

In exposure-response analyses, we did not detect an association between any pollutant and the 

prevalence of illness with a cough at 24 months of life (Figure 4.4). Confidence intervals were wide 

and included the null at most exposure levels. Models adjusted for hypothesized confounders (sex, 

food insecurity index at 24 months [ordinal], exclusive breast feeding until 6 months of life, the 

number of people who sleep in the house, season of birth, and randomization strata) had little 

impact on prevalence estimates (Figure 4.4). We did not find statistical evidence of interaction 

between pollutant levels and sex or country. However, country-specific models suggested some 

heterogeneity in the association between pollutant levels and the outcome across countries (Figure 

4.5). Prevalence estimates diverged somewhat in sub-analyses stratified by intervention arm 

participants who received the intervention prior to 18 weeks gestation (the median gestational age at 

intervention initiation) and those who received the intervention after 18 weeks gestation. However, 

all estimates had wide confidence intervals that included the null (Figure 4.6).  

Discussion 

Upper respiratory infections, including cough, are one of the most common diseases. Exposure to 

household air pollution from cooking with solid fuels is recognized as a key risk factor for upper 
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respiratory infection. Few previous studies have examined the effect of prenatal HAP exposure on 

early childhood respiratory infections.  

Neither intent-to-treat nor exposure-response analyses of children enrolled in the HAPIN follow-up 

cohort provided evidence of an association between prenatal HAP exposure and the prevalence of 

illness with a cough in children at 24 months of life. Although our study was restricted to low-

income households in low- and middle-income countries, we found considerable variability in the 

prevalence of illness with a cough across countries.  

We had hypothesized that prenatal HAP exposure would affect the prevalence of illness with a 

cough in young children through various pathways. In utero exposure to HAP may alter fetal lung 

development, predisposing infants to future respiratory infections. This hypothesis was supported 

by findings from the GRAPHS study, which demonstrated that increased prenatal HAP exposure 

was associated with impaired infant lung function, which in turn, increased the risk of child 

pneumonia.125 HAP exposure is also a risk factor for low birthweight, which is associated with 

respiratory illness in children.129 

Despite biological plausibility for the association between prenatal HAP exposure and illness with a 

cough in early childhood, there are several reasons why we may have failed to detect an effect. 

Firstly, our outcome definition was highly sensitive but non-specific. Evidence from previous studies 

suggests that HAP exposure has a greater effect on the severe spectrum of respiratory disease.28 

Secondly, we had low power to detect an effect, as demonstrated by the wide confidence intervals 

around our estimates. Thirdly, prenatal exposure may be too distal to respiratory outcomes in 

children at 24 months of age. The few previous studies that reported the association between 

prenatal HAP exposure and respiratory outcomes in children looked at outcomes during the first 

year of life, when the incidence of respiratory infections is highest.125,154Finally, while the HAPIN 
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trial achieved a strong exposure contrast between study arms, our time-weighted measure of prenatal 

exposure included baseline exposure measurements taken before the intervention was initiated, 

dampening the exposure reduction (and contrast) resulting from the LPG intervention.    

Few studies have examined the influence of prenatal household air pollution exposure on early 

childhood respiratory infections, and differences in outcome definitions across studies make direct 

comparisons difficult. To our knowledge no previous study used our outcome (illness with a cough 

at 24 months of life). The GRAPHS study examined the association of prenatal and postal HAP 

exposure on pneumonia and severe pneumonia in the first year of life. That study found a linear 

exposure-response relationship between prenatal CO exposure and the risk of pneumonia and 

severe pneumonia. In South Africa, the Drakenstein Child Health Study also reported associations 

between prenatal household air pollution (specifically, PM10 of more than the ambient standard) and 

childhood lower respiratory tract infections during the first year of life.154 A cohort study in Poland 

found that prenatal exposure to PM2.5 increased odds of recurrent (five or more) broncho-pulmonary 

infections by 7 years of age.”124 

Underlying reasons for the substantially higher prevalence (38%) of illness with a cough in Rwanda 

relative to India and Guatemala are unclear and warrant further research. However, this finding is 

consistent with other reports. For example, a large-scale, combined water filter and cookstove 

intervention trial in Western Province, Rwanda that used a more specific case definition (cough 

accompanied by reported rapid breathing or difficulty breathing) found an ARI prevalence of 9.9% 

in the intervention arm and 14.3% in the control arm.170 Furthermore, the main HAPIN trial found 

that Rwanda had a considerably higher pneumonia rate than other trial sites (to be reported in the 

as-yet-unpublished main HAPIN analysis). It is also possible that differences in the interpretation of 
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study questionnaires (which are translated into local languages in each site) accounts for some of the 

difference in the prevalence of caregiver-reported illness with a cough across countries.  

We note several strengths of our study. The experimental design with good balance of baseline 

covariates between intervention and control arms minimized the potential for confounding in 

intent-to-treat analyses. We prospectively measured exposure to three maternal household air 

pollutants at three time points prenatally, and achieved a good exposure contrast between 

intervention and control arms. The restriction of our study population to pregnant women from low 

socioeconomic communities in three low- and middle-income countries mitigated the potential for 

confounding by socioeconomic status in exposure-response analyses, and ensured that our study was 

representative of the populations most affected by HAP. Moreover, our study cohort was well-

characterized with both individual- and household-level measures of potential confounders and 

mediators. 

This study had several limitations that bear noting. Firstly, our outcome definition (caregiver-

reported illness with a cough) was non-specific and captured mild respiratory illnesses, on which 

HAP exposure is less likely to have an effect. The impact of HAP exposure on severe pneumonia in 

the first year of life will be reported elsewhere. Secondly, although the study enrolled a high-risk 

population, exposures in the control arm were not as high as those reported in some earlier studies, 

such as RESPIRE; larger effects may be seen in children born to mothers with higher exposures.114 

Thirdly, although our exposure measurement strategy exceeds that of previous HAP studies, we did 

not measure maternal prenatal exposure continuously over the entire study period; 24-hour exposure 

measurements might not be representative of exposures over longer periods of time. Finally, at this 

writing, follow up in the HAPIN cohort is ongoing, so this analysis was based on partial data, which 
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did not include postnatal HAP exposure measurements. Nevertheless, exposure-response analyses 

adjusted for primary fuel type at 24 months (a strong predictor of exposure).  

In conclusion, upper respiratory infections are among the most common diseases, and symptoms 

can significantly impair quality of life and productivity.  HAP is considered a key risk factor for 

upper respiratory tract infections. However, our results do not suggest that reducing HAP exposures 

in the prenatal period can reduce the prevalence of early childhood illness with a cough. The non-

specificity or our outcome definition was an important limitation, and our findings support previous 

evidence suggesting that the measurable effects of HAP are restricted to more severe outcomes. 

Future work will examine the role of postnatal HAP on prevalence of illness with a cough. 
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Tables and Figures 

 
• The intervention arm assignment (Z) is an instrumental variable when examining the effect of the LPG 

stove on prevalence of illness with cough. After the intervention ends, we expect that the intervention 

might influence the primary fuel type used by households (LPG→Primary fuel type at 24M). Participants 
who received the intervention might be more likely to continue to use LPG in Rwanda and Guatemala. 
Conversely, in India, LPG fuel was provided to control households after the intervention, hence the 
arrow from Z to primary fuel type at 24M. 

• HAP exposure during gestation is a hypothesized risk factor for small for gestational age (SGA) and 
prematurity (gestational age),171,172 which are risk factors for acute respiratory infections173,174 (ARI, 
proxied by illness with a cough in this analysis).  

• IRC (i.e. study country) might modify the effect of the exposure on the outcome but it can also be 
conceptualized as a confounder. Cooking practices differ across countries (IRCs) and this could affect 
exposure to household air pollution. Cooking practices may also affect nutrition, which is a risk factor for 
ARI. There are many other risk factors for ARI that we would expect to correlate with IRC. They include 
the number of people who sleep in the house (i.e. crowding), ambient air pollution exposure, population 
density of the community of residence (a proxy for contact rate), breastfeeding, vaccination status, 
number of children living in a household, preschool attendance, and food insecurity. 

• SES might affect the type of fuel used for cooking175 after the intervention ends and is also a risk factor 
for ARI. However, within the narrow SES stratum enrolled in the trial, variation in assets/wealth might 
not have an impact on ARI.  

• Season or month of birth might affect exposure to HAP pollutants because fuel use and cooking patterns 
can differ by season. For example, in colder months families might burn biomass fuels for heating. 
Respiratory pathogens (a necessary but not sufficient cause of ARI) also tend to circulate in season 
patterns.  

Figure 4.1. Directed acyclic graph depicting hypothesized causal relationships for the effect of 
prenatal household air pollution exposure on the prevalence of illness with a cough at 24 months in 
the HAPIN follow-up cohort study.  
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Figure 4.2. Flow diagram of participation in the HAPIN follow-up cohort study  
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Table 4.1. Characteristics of eligible households and children who did and did not enroll in the HAPIN follow-up cohort study 

Characteristic 

Guatemala  India  Rwanda  Pooled  

not 
enrolled, 
N = 261 

enrolled,  
N = 7441 

p-
value2 

not 
enrolled,  
N = 651 

enrolled,  
N = 7091 

p-
value2 

not 
enrolled,  
N = 551 

enrolled, 
N = 7181 

p-
value2 

not 
enrolled, 
N = 1461 

enrolled,  
N = 2,1711 

p-
value2 

Sex     0.9     0.3     0.2     >0.9 

Male 13 (50%) 384 (52%)   31 (48%) 385 (54%)   33 (60%) 
370 

(52%) 
  77 (53%) 

1,139 
(52%) 

  

Female 13 (50%) 360 (48%)   34 (52%) 324 (46%)   22 (40%) 
348 

(48%) 
  69 (47%) 

1,032 
(48%) 

  

Study arm     >0.9     0.7     0.025     0.11 

Control 13 (50%) 373 (50%)   31 (48%) 355 (50%)   20 (36%) 
374 

(52%) 
  64 (44%) 

1,102 
(51%) 

  

Intervention 13 (50%) 371 (50%)   34 (52%) 354 (50%)   35 (64%) 
344 

(48%) 
  82 (56%) 

1,069 
(49%) 

  

Gestational age at birth (weeks) 37.4 (4.4) 39.2 (1.4) 0.041 38.9 (1.5) 38.9 (1.5) 0.9 38.8 (3.7) 40.0 (1.6) 0.2 38.6 (3.1) 39.3 (1.6) 0.2 

No. of weeks during pregnancy with 
intervention 

19.1 (4.1) 21.3 (3.5) 0.038 19.6 (3.1) 19.9 (3.6) 0.6 20.0 (4.2) 21.9 (3.4) 0.022 19.7 (3.7) 21.0 (3.6) 0.003 

N/A (control arm) 13 373   31 355   20 374   64 1102   

Gestational age at intervention 19.3 (4.1) 17.9 (3.2) 0.3 19.4 (2.6) 19.0 (3.5) 0.4 18.7 (2.9) 18.1 (3.2) 0.2 19.1 (3.0) 18.3 (3.3) 0.031 

N/A (control arm) 13 373   31 355   20 374   64 1102   

Carbon Monoxide (ppm) 1.8 (1.3) 1.5 (1.6) 0.076 0.7 (0.7) 1.6 (2.3) <0.001 1.2 (1.3) 2.0 (2.7) 0.016 1.1 (1.1) 1.7 (2.2) <0.001 

Unknown 1 24   4 34   3 37   8 95   

Black Carbon (µg/m3) 11.6 (4.3) 10.9 (6.4) 0.3 9.5 (7.7) 10.6 (8.6) 0.2 9.4 (4.5) 10.5 (6.5) 0.4 9.8 (6.2) 10.7 (7.2) 0.11 

Unknown 3 72   5 70   11 129   19 271   

PM2.5 (µg/m3) 
134.5 
(84.8) 

112.1 
(83.4) 

0.2 75.0 (48.7) 
96.4 

(93.9) 
0.3 86.4 (65.2) 

94.4 
(72.6) 

0.2 89.5 (65.5) 
101.2 
(84.0) 

0.11 

Unknown 3 46   5 58   3 54   11 158   

No. of people who sleep in home 5.7 (3.3) 5.2 (2.6) 0.6 3.9 (1.5) 3.8 (1.5) 0.5 3.2 (1.3) 3.5 (1.5) 0.13 4.0 (2.1) 4.2 (2.1) 0.2 

Mother's health insurance at baseline     >0.9     0.4     0.2     0.9 

None 26 (100%) 722 (97%)   65 (100%) 679 (96%)   5 (9.1%) 46 (6.4%)   96 (66%) 
1,447 
(67%) 

  

Public 0 (0%) 12 (1.6%)   0 (0%) 21 (3.0%)   48 (87%) 
660 

(92%) 
  48 (33%) 693 (32%)   

Private 0 (0%) 8 (1.1%)   0 (0%) 8 (1.1%)   2 (3.6%) 12 (1.7%)   2 (1.4%) 28 (1.3%)   

Unknown 0 2   0 1         0 3   

Someone in house smokes at 
baseline 

    0.2     0.9     0.4     0.069 

No 23 (88%) 706 (95%)   44 (68%) 486 (69%)   52 (95%) 
691 

(97%) 
  119 (82%) 

1,883 
(87%) 

  

Yes 3 (12%) 38 (5.1%)   21 (32%) 223 (31%)   3 (5.5%) 25 (3.5%)   27 (18%) 286 (13%)   

Unknown             0 2   0 2   

Low birth weight (<2500g)     <0.001     0.082     0.008     0.004 

No 9 (38%) 617 (85%)   46 (71%) 423 (60%)   40 (80%) 
651 

(91%) 
  95 (68%) 

1,691 
(79%) 

  

Yes 15 (62%) 110 (15%)   19 (29%) 285 (40%)   10 (20%) 62 (8.7%)   44 (32%) 457 (21%)   

Unknown 2 17   0 1   5 5   7 23   

Household food insecurity at baseline     >0.9     0.007     0.4     0.5 

None 15 (58%) 409 (56%)   46 (72%) 582 (82%)   24 (45%) 
261 

(37%) 
  85 (59%) 

1,252 
(58%) 

  

Mild 9 (35%) 237 (32%)   10 (16%) 99 (14%)   12 (23%) 
206 

(29%) 
  31 (22%) 542 (25%)   



P a g e  | 71 

 

Moderate/Severe 2 (7.7%) 89 (12%)   8 (12%) 25 (3.5%)   17 (32%) 
234 

(33%) 
  27 (19%) 348 (16%)   

Unknown 0 9   1 3   2 17   3 29   

Primary fuel type at baseline     >0.9           0.5     0.3 

Wood 26 (100%) 
737 

(100%) 
  65 (100%) 

709 
(100%) 

  39 (71%) 
522 

(73%) 
  130 (89%) 

1,968 
(91%) 

  

Other 0 (0%) 3 (0.4%)         0 (0%) 18 (2.5%)   16 (11%) 176 (8.1%)   

Unknown 0 4         0 2   0 (0%) 21 (1.0%)   

Charcoal             16 (29%) 
176 

(25%) 
  0 6   

Primary heating source at baseline     0.7     0.024     0.077     0.003 

None 18 (69%) 493 (66%)   65 (100%) 644 (91%)   54 (98%) 
710 

(99%) 
  137 (94%) 

1,847 
(85%) 

  

Traditional cookstove 6 (23%) 211 (28%)   0 (0%) 58 (8.2%)   0 (0%) 6 (0.8%)   6 (4.1%) 275 (13%)   

Other 2 (7.7%) 40 (5.4%)   0 (0%) 7 (1.0%)   1 (1.8%) 0 (0%)   3 (2.1%) 47 (2.2%)   

Unknown             0 2   0 2   
1 n (%); Mean (SD)    

2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test    
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Table 4.2. Characteristics of participants in the HAPIN follow-up cohort by study arm and country 

Characteristic 

Guatemala India Rwanda Pooled 

Control Intervention Control Intervention Control Intervention Control Intervention 

N = 2981  N = 3111 N = 2561 N = 2431 N = 2311 N = 2091 N = 7851 N = 7631 

Sex                 

Male 151 (51%) 169 (54%) 141 (55%) 129 (53%) 123 (53%) 108 (52%) 415 (53%) 406 (53%) 

Female 147 (49%) 142 (46%) 115 (45%) 114 (47%) 108 (47%) 101 (48%) 370 (47%) 357 (47%) 

Gestational age at birth 
(weeks) 

39.1 (1.4) 39.2 (1.5) 38.9 (1.4) 38.8 (1.6) 40.0 (1.5) 39.9 (1.5) 39.3 (1.5) 39.3 (1.6) 

Weight for Gestational age 
z-score (median, IQR) 

-0.9 (-1.5, -0.2) 
-0.8 (-1.4, -

0.2) 
-1.5 (-2.0, -

0.9) 
-1.5 (-2.1, -

1.0) 
-0.8 (-1.3, -

0.2) 
-0.7 (-1.3, -

0.0) 
-1.1 (-1.7, -

0.4) 
-1.0 (-1.6, -

0.4) 

Unknown 4 5     6 3 10 8 

No. of weeks during 
pregnancy with 
intervention 

NA (NA) 21.1 (3.5) NA (NA) 19.3 (3.5) NA (NA) 21.7 (3.4) NA (NA) 20.7 (3.6) 

Unknown 298 0 256 0 231 0 785 0 

Gestational age at 
intervention 

NA (NA) 18.1 (3.3) NA (NA) 19.5 (3.4) NA (NA) 18.3 (3.3) NA (NA) 18.6 (3.4) 

Unknown 298 0 256 0 231 0 785 0 

Carbon Monoxide 1.9 (1.9) 1.2 (1.2) 2.1 (3.0) 1.1 (1.6) 2.2 (3.0) 1.8 (2.6) 2.0 (2.6) 1.3 (1.8) 

Unknown 0 24 1 20 0 25 1 69 

Black Carbon 12.6 (5.4) 9.0 (7.5) 11.7 (9.5) 8.9 (7.4) 11.5 (5.2) 8.2 (4.1) 12.0 (7.0) 8.8 (6.8) 

Unknown 5 56 4 38 5 56 14 150 

PM2.5 136.2 (91.7) 88.4 (62.8) 106.5 (93.7) 79.3 (82.8) 102.8 (57.6) 78.3 (49.9) 116.6 (85.1) 82.9 (67.0) 

Unknown 5 32 3 32 2 34 10 98 

No. of people who sleep 
in home 

5.2 (2.7) 5.2 (2.5) 3.7 (1.5) 3.7 (1.5) 3.4 (1.4) 3.5 (1.5) 4.2 (2.1) 4.3 (2.1) 

Mother's health insurance 
at baseline 

                

None 292 (98%) 299 (97%) 246 (96%) 229 (94%) 14 (6.1%) 15 (7.2%) 552 (70%) 543 (71%) 

Public 2 (0.7%) 7 (2.3%) 8 (3.1%) 9 (3.7%) 216 (94%) 192 (92%) 226 (29%) 208 (27%) 

Private 4 (1.3%) 3 (1.0%) 2 (0.8%) 5 (2.1%) 1 (0.4%) 2 (1.0%) 7 (0.9%) 10 (1.3%) 

Unknown 0 2         0 2 

Mother's health insurance 
at 24M 

                

None 287 (97%) 296 (95%) 253 (100%) 243 (100%) 35 (16%) 18 (9.6%) 575 (75%) 557 (75%) 

Public 4 (1.4%) 8 (2.6%)     176 (82%) 165 (88%) 180 (24%) 173 (23%) 

Private 3 (1.0%) 5 (1.6%) 1 (0.4%) 0 (0%) 3 (1.4%) 4 (2.1%) 7 (0.9%) 9 (1.2%) 

Other 1 (0.3%) 1 (0.3%)         1 (0.1%) 1 (0.1%) 

Unknown 3 1 2 0 17 22 22 23 

Malnutrition at 24M                 

No 294 (99%) 306 (98%) 251 (98%) 243 (100%) 105 (100%) 82 (100%) 650 (99%) 631 (99%) 

Yes 4 (1.3%) 5 (1.6%) 5 (2.0%) 0 (0%)     9 (1.4%) 5 (0.8%) 

Unknown         126 127 126 127 
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Someone in house 
smokes at baseline 

                

No 284 (95%) 295 (95%) 173 (68%) 159 (65%) 221 (96%) 207 (100%) 678 (86%) 661 (87%) 

Yes 14 (4.7%) 16 (5.1%) 83 (32%) 84 (35%) 9 (3.9%) 1 (0.5%) 106 (14%) 101 (13%) 

Unknown         1 1 1 1 

Someone in house 
smokes at 24M 

                

No 275 (99%) 282 (99%) 223 (88%) 213 (89%) 222 (96%) 204 (98%) 720 (94%) 699 (95%) 

Yes 4 (1.4%) 3 (1.1%) 30 (12%) 27 (11%) 9 (3.9%) 5 (2.4%) 43 (5.6%) 35 (4.8%) 

Unknown 19 26 3 3     22 29 

Month of birth                 

Jan 39 (13%) 42 (14%) 38 (15%) 25 (10%) 21 (9.1%) 20 (9.6%) 98 (12%) 87 (11%) 

Feb 28 (9.4%) 33 (11%) 18 (7.0%) 18 (7.4%) 7 (3.0%) 6 (2.9%) 53 (6.8%) 57 (7.5%) 

Mar 14 (4.7%) 21 (6.8%) 9 (3.5%) 12 (4.9%) 18 (7.8%) 16 (7.7%) 41 (5.2%) 49 (6.4%) 

Apr 19 (6.4%) 20 (6.4%) 15 (5.9%) 12 (4.9%) 24 (10%) 33 (16%) 58 (7.4%) 65 (8.5%) 

May 21 (7.0%) 26 (8.4%) 13 (5.1%) 15 (6.2%) 26 (11%) 24 (11%) 60 (7.6%) 65 (8.5%) 

Jun 19 (6.4%) 20 (6.4%) 15 (5.9%) 18 (7.4%) 19 (8.2%) 13 (6.2%) 53 (6.8%) 51 (6.7%) 

Jul 18 (6.0%) 14 (4.5%) 23 (9.0%) 19 (7.8%) 21 (9.1%) 17 (8.1%) 62 (7.9%) 50 (6.6%) 

Aug 33 (11%) 23 (7.4%) 29 (11%) 19 (7.8%) 23 (10.0%) 21 (10%) 85 (11%) 63 (8.3%) 

Sep 27 (9.1%) 36 (12%) 21 (8.2%) 29 (12%) 23 (10.0%) 22 (11%) 71 (9.0%) 87 (11%) 

Oct 31 (10%) 28 (9.0%) 31 (12%) 30 (12%) 19 (8.2%) 13 (6.2%) 81 (10%) 71 (9.3%) 

Nov 26 (8.7%) 24 (7.7%) 25 (9.8%) 25 (10%) 13 (5.6%) 8 (3.8%) 64 (8.2%) 57 (7.5%) 

Dec 23 (7.7%) 24 (7.7%) 19 (7.4%) 21 (8.6%) 17 (7.4%) 16 (7.7%) 59 (7.5%) 61 (8.0%) 

Low birth weight (<2500g)                 

No 244 (83%) 258 (84%) 155 (61%) 140 (58%) 209 (91%) 192 (92%) 608 (78%) 590 (78%) 

Yes 50 (17%) 48 (16%) 101 (39%) 103 (42%) 20 (8.7%) 17 (8.1%) 171 (22%) 168 (22%) 

Unknown 4 5     2 0 6 5 

Household food insecurity 
at baseline 

                

None 161 (55%) 174 (57%) 209 (82%) 203 (84%) 71 (31%) 94 (46%) 441 (57%) 471 (63%) 

Mild 98 (33%) 97 (32%) 38 (15%) 30 (12%) 66 (29%) 60 (30%) 202 (26%) 187 (25%) 

Moderate/Severe 36 (12%) 36 (12%) 8 (3.1%) 8 (3.3%) 89 (39%) 49 (24%) 133 (17%) 93 (12%) 

Unknown 3 4 1 2 5 6 9 12 

Household food insecurity 
at 24M 

                

None 249 (85%) 253 (83%) 206 (80%) 202 (84%) 64 (28%) 73 (35%) 519 (67%) 528 (70%) 

Mild 31 (11%) 30 (9.9%) 41 (16%) 31 (13%) 49 (21%) 52 (25%) 121 (16%) 113 (15%) 

Moderate/Severe 14 (4.8%) 20 (6.6%) 9 (3.5%) 8 (3.3%) 117 (51%) 83 (40%) 140 (18%) 111 (15%) 

Unknown 4 8 0 2 1 1 5 11 

Primary fuel type at 
baseline 

                

Wood 293 (99%) 310 (100%) 256 (100%) 243 (100%) 179 (78%) 137 (66%) 728 (93%) 690 (91%) 

LPG/electric 2 (0.7%) 1 (0.3%)     2 (0.9%) 3 (1.4%) 4 (0.5%) 4 (0.5%) 

Unknown 3 0     1 1 4 1 

Charcoal         49 (21%) 68 (33%) 49 (6.3%) 68 (8.9%) 

Primary fuel type at 24M                 
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Wood 265 (95%) 245 (86%) 18 (7.1%) 70 (29%) 182 (79%) 140 (67%) 465 (61%) 455 (62%) 

LPG/electric 14 (5.0%) 40 (14%) 235 (93%) 170 (71%) 9 (3.9%) 14 (6.7%) 258 (34%) 224 (30%) 

Unknown 19 26 3 2     22 28 

Cow dung     0 (0%) 1 (0.4%)     0 (0%) 1 (0.1%) 

Charcoal         40 (17%) 55 (26%) 40 (5.2%) 55 (7.5%) 

Primary heating source at 
baseline 

                

None 199 (67%) 215 (69%) 239 (93%) 218 (90%) 228 (99%) 207 (100%) 666 (85%) 640 (84%) 

Traditional cookstove 90 (30%) 90 (29%) 14 (5.5%) 23 (9.5%) 2 (0.9%) 1 (0.5%) 106 (14%) 114 (15%) 

Other 9 (3.0%) 6 (1.9%) 3 (1.2%) 2 (0.8%)     12 (1.5%) 8 (1.0%) 

Unknown         1 1 1 1 

Primary heating source at 
24M 

                

None 260 (93%) 266 (93%) 253 (100%) 241 (100%) 231 (100%) 209 (100%) 744 (98%) 716 (97%) 

Traditional cookstove 19 (6.8%) 18 (6.3%)         19 (2.5%) 18 (2.4%) 

Other 0 (0%) 1 (0.4%)         0 (0%) 1 (0.1%) 

Unknown 19 26 3 2     22 28 

Exclusive Breastfeeding 
until 6 months 

                

No 259 (100%) 263 (100%) 212 (85%) 217 (90%) 189 (94%) 174 (94%) 660 (93%) 654 (95%) 

Unknown 39 48 6 3 31 24 76 75 

Yes     38 (15%) 23 (9.6%) 11 (5.5%) 11 (5.9%) 49 (6.9%) 34 (4.9%) 

Haemophilus influenzae 
type b vaccine 

                

No 20 (6.7%) 27 (8.7%) 37 (14%) 48 (20%) 9 (3.9%) 10 (4.8%) 66 (8.4%) 85 (11%) 

Yes 278 (93%) 284 (91%) 219 (86%) 195 (80%) 222 (96%) 199 (95%) 719 (92%) 678 (89%) 

Pneumococcal vaccine                  

No 248 (83%) 273 (88%) 254 (99%) 243 (100%) 25 (11%) 29 (14%) 527 (67%) 545 (71%) 

Yes 50 (17%) 38 (12%) 2 (0.8%) 0 (0%) 206 (89%) 180 (86%) 258 (33%) 218 (29%) 

Measles                 

No 253 (85%) 276 (89%) 55 (21%) 64 (26%) 13 (5.6%) 19 (9.1%) 321 (41%) 359 (47%) 

Yes 45 (15%) 35 (11%) 201 (79%) 179 (74%) 218 (94%) 190 (91%) 464 (59%) 404 (53%) 

Illness w/cough at 24M                 

No 277 (93%) 283 (91%) 247 (96%) 233 (96%) 144 (62%) 131 (63%) 668 (85%) 647 (85%) 

Yes 21 (7.0%) 28 (9.0%) 9 (3.5%) 10 (4.1%) 87 (38%) 78 (37%) 117 (15%) 116 (15%) 
1 Mean (SD); n (%)   
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Table 4.3. Association between the prevalence of illness with a cough and type of fuel used for cooking at 24 months among children in 
the HAPIN follow-up cohort 

 

Primary fuel type at 
24M 

Guatemala  India  Rwanda  Pooled  
Illness with a cough  Illness with a cough  Illness with a cough  Illness with a cough  

No 
N = 5601 

Yes 
N = 491 

p-
value2 

No  
N = 4801 

Yes  
N = 191 

p-
value2 

No 
N = 2751 

Yes  
N = 1651 

p-
value3 

No  
N = 1,3151 

Yes  
N = 2331 

p-
value2 

     >0.9     >0.9     0.7     <0.001 

Wood 
470 

(90%) 
40 

(91%) 
  85 (18%) 3 (16%)   

200 
(73%) 

122 
(74%) 

  755 (59%) 
165 

(72%) 
  

Other 50 (9.6%) 4 (9.1%)   
389 

(82%) 
16 

(84%) 
  13 (4.7%) 10 (6.1%)   452 (36%) 30 (13%)   

LPG/electric 40 5   5 0         45 5   

Cow dung       1 (0.2%) 0 (0%)         1 (<0.1%) 0 (0%)   

Charcoal             62 (23%) 33 (20%)   
62 

(4.9%) 
33 (14%)   

1 n (%) 
2 Fisher's exact test 
3 Pearson's Chi-squared test 
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Figure 4.3. Boxplots displaying distributions of maternal prenatal pollutant levels in each study arm and according to presence of illness 
with a cough in HAPIN children at 24 months of age. 
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Table 4.4. Prevalence ratios estimated from intent-to-treat analyses for the effect of a liquefied 
petroleum gas stove intervention during pregnancy and the first year of life on illness with a cough 
at 2 years of age 

  
Model 

Prevalence ratio (95% CI) 

pooled Guatemala India Rwanda 

unadjusted* 1.04 (0.84, 1.29) 1.28 (0.74, 2.20) 0.90 (0.37, 2.17) 0.99 (0.78, 1.26) 

adjusted**  0.99 (0.80, 1.23) 1.18 (0.68, 2.04) 1.19 (0.49, 2.87) 0.95 (0.74, 1.22) 
*adjusts for randomization strata in pooled analysis and in the analysis restricted to India 
**adjusts for randomization strata, tobacco use in household at baseline, primary fuel at baseline, and food insecurity at 
baseline 

 
A 

 
B 

 
Figure 4.4. Graphs showing dose-response relationships between prenatal PM2.5, CO, and black 
carbon exposure and care-giver reported illness with a cough in HAPIN children at 24 months. 
Crude models include the randomization strata (design element). Adjusted model 1 additionally includes 
season of birth, and type of fuel (solid vs. LPG/electric) used for cooking at 24 months. Adjusted model 2 
additionally controls for sex, food insecurity index at 24 months (ordinal), exclusive breast feeding until 6 
months of life, the number of people who sleep in the house. Panel A are results of models including all 
exposure data and panel B are results models with outlying observations (≥10ppm for CO, >25 µg/m3 for 
BC, and >300 µg/m3 for PM2.5) removed.  
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Figure 4.5. Exposure-response association between pollutant levels and the prevalence of illness 
with a cough at 24 months of life estimated with crude, country-specific models.  
N.B. Estimates for Guatemala for black carbon and for Rwanda for carbon monoxide were generated with 
logistic regression because log binomial models did not converge.  
 

 
Figure 4.6. Exposure-response association between pollutant levels and the prevalence of illness 
with a cough at 24 months of life from models stratified by gestational age at interventions (above. 
vs. below median gestational age of 18 weeks as the start of intervention)  
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Chapter 5. Real-Time PCR quantification cycle values to estimate the 

population attributable fraction of Streptococcus pneumoniae in severe acute 

respiratory infections in adults in six countries: a prospective case-control 

study 

 

Abstract 

Background. Qualitative interpretation of quantitative RT-PCR (qPCR) results from upper 

respiratory tract specimens has limited utility for understanding the etiologic role of S. pneumoniae in 

WHO-defined severe acute respiratory infections (SARI) because pneumococcal carriage in the 

respiratory tract is common. Previous studies have shown an association between PCR 

quantification cycle (Cq) values (a proxy for bacterial load) and respiratory disease. We aimed to use 

the strength of this association to estimate the population attributable fraction (PAF) of SARI due to 

S. pneumoniae in adults.  

Methods. Between 2013 and 2015, we enrolled 2,388 adults hospitalized with SARI and 1,135 

frequency matched asymptomatic adults (from clinics, non-infectious disease wards, and the 

community) in a case-control study of SARI etiology among adults in 6 countries: Bangladesh, 

China, Egypt, Guatemala, Kenya, and Thailand. Nasopharyngeal and oropharyngeal specimens from 

study subjects were tested for 29 pathogens using the Taqman Array Card. We used logistic 

regression adjusting for matching factors and hypothesized confounders (age, sex, enrollment 

month, HIV, smoking status, underlying medical conditions, antibiotic use, and pathogen co-

detections) to model the association between S. pneumoniae Cq values and SARI, and estimated the 

PAF of S. pneumoniae. 
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Results. In multivariable analyses, we found a non-linear association between Cq values and SARI 

that increased with increasing bacterial load (i.e. lower Cq values). The proportion of SARI cases 

attributed to S. pneumoniae varied across countries, ranging from 0.1% (95% Confidence Interval 

(CI): 0-1.3%) in Egypt to 18.5% (95% CI: 4.8%-35.2%) in Kenya. In Thailand, Guatemala, 

Bangladesh, and China, the PAFs were 12.3% (95% CI: 6.6%-19.9%), 11.3% (95% CI: 3.5%-18.1%), 

10.7% (95% CI: 3.3%-19.0%), and 3.8% (95% CI: 0.1%-8.4%) respectively.  

Conclusions. Compared to qualitative PCR, qPCR Cq values improved understanding of the 

etiologic role of S. pneumoniae in SARI at a population level. When more comprehensive diagnostics 

are not available, using qPCR can help understand the changing etiology of respiratory infections 

and the potential benefits gained from prevention measures. 

Introduction 

Globally, lower respiratory tract infections (LRI), defined as pneumonia or bronchiolitis, resulted in 

an estimated 2.49 million (2.27–2.74) million deaths in 2019, making them the fourth leading cause 

of mortality for all ages.2 Rapid progress has been made in reducing the burden of LRI in children 

but parallel improvements among the oldest adults have not been observed.2,36 Low- and middle-

income countries bear a disproportionate burden of LRI, which strongly correlates with poverty.2 

Understanding the etiology of LRI and the disease burden attributed to specific pathogens (the 

population attributable fraction [PAF]) helps guide policymakers in planning public health 

interventions against respiratory pathogens.176 

Streptococcus pneumoniae is recognized as an important cause of community-acquired pneumonia, and is 

the most frequently detected pathogen in upper respiratory tract specimens among adults with 

WHO-defined severe acute respiratory infection (SARI).7,177 However, identifying pneumococci as 



P a g e  | 81 

 

the specific etiologic agent of pneumonia is challenging because pneumococcal carriage in the 

respiratory tract is common and because it is difficult to sample the lung. Obtaining lower 

respiratory tract samples such as lung aspirates and pleural fluid is invasive and infeasible in most 

research settings.  Instead, researchers rely on upper respiratory tract samples as a proxy for the site 

of infection.45 These samples are of limited utility for understanding pneumonia etiology because 

bacteria frequently colonize the upper respiratory tract and commonly used diagnostics such as PCR 

can detect small amounts of nucleic acid. Thus, it is not possible to distinguish infection from 

colonization based on a qualitative (the presence or absence of a target sequence) PCR result.  

An approach proposed for differentiating pathogen carriage from clinically significant infection is 

the quantification of pathogen load.8,9 Studies of diarrheal disease etiology, for which the high 

prevalence of pathogen carriage also poses a methodological challenge, have used the association 

between Real-Time PCR (qPCR) quantification cycle (Cq) values (semi-quantitative measures of the 

amount of pathogen in a clinical specimen) and disease status to distinguish clinically relevant 

infection from colonization, and to estimate the attributable fractions for specific pathogens.17-23 A 

similar approach could contribute to our understanding of the etiology of respiratory infections as 

several studies have found that higher pathogen load in the upper respiratory tract is associated with 

pneumonia, and for some pathogens, including S. pneumoniae, it is associated with more severe 

outcomes.10-16,61-69 Many of these studies attempted to identify diagnostic cutoffs to distinguish 

colonization from clinically relevant infection in individual cases; we are not aware of any studies 

that used the association between bacterial load and disease to estimate population-level parameters 

such as the population attributable fraction.   

The “Study of the etiology of community-acquired pneumonia in adults: Use of TAC multiple 

pathogen detection platforms in the International Emerging Infections Program sites” (hereafter 
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referred to as the TAC study) was conducted to understand the etiology of community-acquired 

pneumonia among hospitalized adults across six low- and middle-income countries in Africa, Asia, 

and the Americas.7 In this study, the accurate determination of the specific causes of disease was 

challenging because of the high prevalence of asymptomatic carriage of some pathogens, particularly 

bacteria. While S. pneumoniae was the most frequently detected pathogen among cases of SARI, it was 

detected with similar frequency in asymptomatic adults, leading to the conclusion that it was not an 

important cause of SARI.7 The main study analysis applied a non-parametric Bayesian regression 

extension of a partially latent class model approach to estimate proportions of SARI caused by 

specific pathogens.7 

We aimed to determine whether an alternative approach using bacterial load (as measured by Cq 

values) could improve estimates of the fraction of SARI attributable to S. pneumoniae.  Specifically, 

we sought to assess the association between S. pneumoniae Cq values and SARI and to use the 

strength of this association to estimate the PAF of S. pneumoniae among adults with SARI in six low- 

and middle-income countries.  

Methods 

Study population and setting 

The TAC study was a prospective case-control study that used a real-time PCR-based multiple 

pathogen detection platform to understand the etiology of severe respiratory disease among 

hospitalized adults in Bangladesh, China, Egypt, Guatemala, Kenya, and Thailand. The study 

methods have been described previously.7,178  

Briefly, over a 12- to 24-month period in each country, the study enrolled adults at least 18 years of 

age who were hospitalized with SARI, defined as an acute respiratory infection with 

history/measured fever ≥ 38°C and cough with onset within the last 10 days. As a comparison 
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group, adults without symptoms of respiratory infection in the prior week were enrolled and 

frequency matched to cases by age group, month of enrollment, catchment area, and HIV infection 

status (Kenya only). Depending on the participating country, asymptomatic adults were enrolled 

from the community or from non-infectious disease departments in the same facilities in which 

cases were enrolled.7 Demographics, clinical data, and nasopharyngeal and oropharyngeal specimens 

were collected from both SARI cases and asymptomatic adults.  

Laboratory procedures  
Specimens were tested for 29 pathogens using Taqman® Array Card (TAC, Thermo Fisher 

Scientific, Carlsbad, CA) molecular assay at field laboratories in each participating study site. The 

Taqman Array Card is a microfluidic, multiple pathogen detection platform that uses solid-phase 

real-time PCR technology.179 Bacterial load was measured by qPCR Cq values. The Cq value is the 

number of qPCR cycles of amplification needed for the fluorescence of a PCR target to be detected. 

Cq levels are inversely proportional to the amount of target nucleic acid in the sample (i.e. the lower 

the Cq value the greater the amount of target nucleic acid in the sample). Every 3.3 increase in the 

Cq value correlates with approximately 10-fold less bacterial load in the clinical specimen. Cq values 

greater than 45 were considered negative or non-detects. Valid results required proper functioning 

of controls.  

Statistical analysis  

We compared the frequencies of basic demographics, underlying medical conditions, antibiotic use, 

and pathogen detections among SARI patients and asymptomatic adults. We used chi-square and 

Fisher’s exact tests for categorical variables and calculated odds ratios to assess the association of 

each pathogen detection with SARI in each country. For pathogens that were frequently detected 

(≥5%), including S. pneumoniae, we assessed whether Cq value distributions differed between SARI 

cases and asymptomatic adults using density plots and the Wilcoxon rank sum test. This preliminary 
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analysis of Cq value distributions guided subsequent modeling decisions about whether to specify 

co-detected pathogens as binary (detect/no detect) or continuous (Cq value).  

The Cq value is undefined when the PCR test is negative. Thus, for regression analyses, we 

transformed Cq values such that samples in which S. pneumoniae was not detected were assigned a 

transformed Cq value of zero, the sample with the highest Cq value (i.e., smallest pathogen load) 

among those with detectable S. pneumoniae was assigned a transformed Cq value of 1, and all other 

samples with detectable S. pneumoniae were assigned a Cq value relative to the maximum Cq value 

using the following formula: transformed Cq value = - (Cq value – maximum Cq value – 1). Thus, 

the transformed Cq values represent relative measures of pathogen load, with a maximum 

transformed Cq value of 25.   

To estimate the strength of association between S. pneumoniae Cq values and SARI, we fitted a 

multivariable logistic regression model where the outcome was disease status (SARI vs. 

asymptomatic) and the exposure was the transformed S. pneumoniae Cq value. We used a quadratic 

transformation of Cq values because it improved model fit as assessed by the Akaike information 

criterion. We also considered log and exponential transformations of Cq values but they did not 

improve model fit. We adjusted for matching factors180 (age, enrollment month, and HIV), and 

hypothesized confounders including sex, smoking status, underlying medical conditions, antibiotic 

use in the 24 hours before admission, and the co-detection of viral pathogens (a composite term 

denoting the detection vs. no detection of any one of adenovirus; influenza A, B and C; human 

metapneumovirus; enterovirus/rhinovirus; human coronavirus 229E, NL64, OC43, and HKU1; 

parainfluenza viruses 1-4, and frequently detected bacterial pathogens (i.e. bacteria detected in ≥5% 

SARI cases and asymptomatic adults, specifically Haemophilus influenzae all types, Klebsiella 

pneumoniae, Moraxella catarrhalis, Staphylococcus aureus).181-183 We included interaction terms 

between Cq value and country because it improved model fit based on the likelihood ratio test, and 
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country stratified models suggested heterogeneity in the association across countries. The odds 

ratios (OR) from this model depend on the Cq value used as the reference level and can be 

interpreted as the relative odds of being a SARI case vs. an asymptomatic adult for a 1 cycle increase 

in transformed Cq value, adjusting for all covariates.  

The PAF was estimated by calculating the attributable fraction among those exposed to a given Cq 

value (1 – 1/OR) and summing the attributions across each of j cases with the following equation:  

∑ 𝐴𝐹𝑖
𝑗
𝑖   where AFi = 1/j x (1 - 1/ORi).

17,184 

The lower bound of Cq-specific odds ratios was set to one so that attributable fractions could not be 

negative. Bootstrapping with 1000 iterations was used to estimate 95% confidence intervals.  

We performed three sensitivity analyses to understand how our modeling assumptions impacted 

estimates. In the first sensitivity analysis, we aimed to assess how the estimated PAFs of a 

conventional analysis using binary qualitative PCR results (S. pneumoniae positive vs. negative) 

compare to those from our main analysis, holding all other modeling assumptions constant. In the 

second sensitivity analysis, we aimed to examine how the assumption of a quadratic relationship 

between Cq values and SARI affected PAF estimates. In this analysis, we ran the multivariable 

model with a categorical exposure variable representing quartiles of Cq values, holding all other 

modeling assumptions constant. In the third sensitivity analysis, we aimed to examine whether a Ct 

value cutoff of 31 cycles would yield similar results to our main analysis. We ran the same 

multivariable model with categorical exposure variable representing Cq values ≤31 cycles, Cq values 

>31 cycles, and non-detects. A cutoff of 31 cycles was chosen because it was the quantity for which 

the odds ratio exceeded 1 in the multivariable model that excluded the interactions between S. 

pneumoniae Cq values and country.  
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Results 

Between October 2013 and October 2015, 2,388 SARI patients and 1,135 asymptomatic adults were 

enrolled in the TAC study. Compared to asymptomatic adults, those with SARI were more likely to 

have underlying medical conditions including asthma (12.5% vs. 3.2%, p<0.01), chronic obstructive 

pulmonary disorder (6.1% vs. 0.5%, p<0.01), and diabetes (8.4% vs. 5.4%, p<0.01) (Table 5.1). In 

all countries except Kenya, SARI cases more frequently had immunosuppressive conditions (4.6% 

vs. 1.9%, p<0.01) and took antibiotics prior to enrollment (31.7% vs. 4.4%, p<0.01). Adults with 

SARI self-reported smoking less frequently than asymptomatic adults in China (24.9% vs. 45.1, 

p<0.01) and in Guatemala (6.2% vs. 19.0%, p<0.01), whereas smoking was higher among adults 

with SARI than among asymptomatic adults in Thailand (20.5% vs. 11.1%, p<0.01). 

At least one pathogen was detected in specimens from 1,821 (76.3%) SARI cases and 738 (65.0%) 

asymptomatic adults. Codetections were frequent; two or more pathogens were detected in 944 

(39.5%) and 349 (30.7%) SARI cases and asymptomatic adults, respectively. Viral detections were 

more frequent in SARI patients (n=1182, 49.5%) than in asymptomatic adults (n=153, 13.2%). 

Pathogens more frequently detected among SARI patients included influenza A (18.6% of SARI 

cases vs. 1.5% of asymptomatic adults); influenza B (7.7% vs. 0.3%), and respiratory syncytial virus 

(4.0% vs. 0.4%) (Table 5.2). S. pneumoniae and H. influenzae were the most commonly detected 

pathogens and were detected at similar frequency in SARI cases and asymptomatic adults (23.7% vs. 

25.2% for S. pneumoniae, and 22.7% vs. 26.3% for H. influenzae).  

The median S. pneumoniae Cq value was lower in SARI cases compared to asymptomatic adults (29.7 

vs. 32.4, p<0.01) across all sites combined but there was heterogeneity in Cq values across countries 

(Figure 5.1). Differences of ≥2 cycles in median Cq values between SARI cases and asymptomatic 

adults were found in Bangladesh (28.5 vs. 30.2, p<0.01), Guatemala (30.8 vs. 35.6, p<0.01), Kenya 
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(28.6 vs. 32.6, p<0.01), and Thailand (29.7 vs. 32.7, p<0.01), but not in China (32.6 vs. 33.1, p=0.74) 

or Egypt (31.8 vs. 32.4, p=0.16). Median rhinovirus Cq values also differed between SARI cases and 

asymptomatic adults (26.9 vs 29.0, p<0.01). However, Cq value distributions of other frequently 

detected bacteria (H. influenzae, K. pneumoniae, M. catarrhalis, and S. aureus) did not differ between 

SARI cases and asymptomatic adults (Figure 5.2).  

In multivariable analyses we found a quantity-dependent association between Cq values and SARI. 

The strength of the association increased with increasing pathogen load (i.e. lower Cq values) but 

there was heterogeneity across study sites (Figure 5.3). Associations were strongest in Thailand 

followed by Kenya, Guatemala, China, Bangladesh, and Egypt. However, confidence intervals 

around adjusted odds ratios were wide and included the null in China and Egypt and at high Cq 

values in other countries.  The proportion of SARI cases attributed to S. pneumoniae varied across 

countries, ranging from 0.1% (95% CI: 0-1.3%) in Egypt to 18.5% (95% CI: 4.8%-35.2%) in Kenya 

(Table 5.3). In Thailand, Guatemala, Bangladesh, and China, the PAFs were 12.3% (95% CI: 6.6%-

19.9%), 11.3% (95% CI: 3.5%-18.1%), 10.7% (95% CI: 3.3%-19.0%), and 3.8% (95% CI: 0.1%-

8.4%), respectively.  

The model that used qualitative PCR results estimated lower PAFs in all countries but China; 

confidence intervals were wide and included negative values. The model that used a 31-cycle cutoff 

for S. pneumoniae exposure produced similar PAFs to the main analysis (Table 5.3). Compared to 

non-detects, the odds of SARI in those with S. pneumoniae Cq values ≤ 31 were 1.7 (95%CI: 1.0, 2.7) 

times higher in Bangladesh, 2.1 (95%CI: 0.7, 6.4) times higher in China, 2.2 (95%CI: 1.1, 4.3) times 

higher in Kenya, 3.0 (95%CI: 1.4, 7.2) times higher in Guatemala, and 2.9 (95%CI: 1.6, 5.4) times 

higher in Thailand. In Egypt, the opposite association was observed but the odds ratio was not 

statistically significant (OR: 0.6, 95%CI: 0.3, 1.2). In all countries but China, those with S. pneumoniae 

Cq values >31 had lower odds of SARI compared to non-detects (Figure 5.4). The model that used 
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Cq quartiles as the exposure yielded PAFs that were consistent with but somewhat higher (<1.6%) 

than those generated using the quadratic transformation.  

Discussion 

In this analysis, we estimated the fraction of SARI attributable to S. pneumoniae in adults in six low- 

and middle-income countries.  A conventional analysis using binary (detect vs. no detect) qualitative 

PCR results may underestimate the causal attribution of S. pneumoniae to SARI. Incorporating S. 

pneumoniae Cq values from NP/OP specimens in our modeling approach suggested a larger etiologic 

role of S. pneumoniae in SARI. The proportion of SARI that could have been prevented through the 

elimination of S. pneumoniae during the study period varied across countries, ranging from 0.1% to 

18.5%.  

These results demonstrate that higher S. pneumoniae load in the upper respiratory tract is associated 

with SARI, and this association is useful in understanding the etiologic role of S. pneumoniae in SARI 

on a population level. As the PAF is a function of both the prevalence of S. pneumoniae in SARI cases 

and the strength of the association between Cq values and SARI, inter-country heterogeneity in 

PAFs can be explained by variation in these parameters across populations. The prevalence of S. 

pneumoniae in cases ranged from 11% in China to 46% in Kenya, which had the highest estimated 

PAF. Heterogeneity in the odds ratios for the association between S. pneumoniae Cq values and SARI 

could be due to different characteristics of the study populations, as well as different severity 

thresholds for hospital admission, and different criteria for the selection of asymptomatic adults. For 

example, the Kenyan study site was an impoverished rural area with limited access to clean water, 

whereas the Chinese study site was in an urban setting with a much higher socioeconomic status. In 

China, asymptomatic adults were non-household members accompanying SARI patients whereas 

Kenya used community-based asymptomatic adults, and other sites recruited asymptomatic adults 
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from non-infectious disease departments. Carriage, as determined by S. pneumoniae prevalence in the 

upper respiratory tract of asymptomatic adults ranged from 7% in China to 41% in Kenya. 

Moreover, RSV was included in the testing panel in all sites except for China; elsewhere, high 

pneumococcal colonization density in the upper respiratory tract has been associated RSV 

coinfection.10 Antibiotic use, which lowers bacterial density, also varied considerably across 

countries, and could explain some of the inter-country variability in odds ratios. In Egypt, where S. 

pneumoniae detection was associated with lower odds of SARI, 74% of SARI cases took antibiotics in 

the 24 hours before admission compared to 7%-30% of SARI cases in the other sites. Although we 

adjusted for self-reported antibiotic use prior to study enrollment, there may have been residual 

confounding as many cases received antibiotics after admission and self-reported antibiotic use has 

been shown to be an unreliable predictor of serum antimicrobial activity.183  

The appearance of a protective effect at high Cq values might be a result of high antibiotic use in 

cases, which could reduce lower bacterial densities to undetectable levels. This hypothesis is 

supported by our finding that cases who took antibiotics prior to admission were half as likely to 

have a S. pneumoniae detection compared to cases who did not take antibiotics. Pathogen competition 

could also play a role in this finding. For example, production of hydrogen peroxide by 

pneumococci has been found to inhibit H. influenzae and S. aureus in vitro, and pneumocins have the 

potential to eliminate other pneumococcal strains. 185 

The analysis that used a 31-cycle S. pneumoniae cutoff produced similar PAFs to the main analysis. If 

we consider Cq values below the cutoff to be a proxy for infection, PAFs from this analysis can be 

interpreted as the fraction of SARI that could be eliminated by removing pneumococcal infection. 

While previous studies have found that cutoffs are not useful for diagnostic purposes,10 our analysis 

demonstrates that they can be useful for modeling population-level parameters such as the PAF.  
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As has been seen in previous studies, higher density of S. pneumoniae in the upper respiratory tract, as 

indicated by lower Cq values, was associated with a higher likelihood of SARI.10,11,62,70 While the 

difference in Cq values between cases and asymptomatic adults is not useful for diagnostic purposes 

in individual patients,10 at a population level it can improve our understanding of the etiology of 

infection. Comparisons of PAFs from previous studies in other populations is challenging because 

estimates vary substantially due to differences in rates of asymptomatic carriage, outcome 

definitions, and diagnostics used. However, CDC estimates that pneumococci account for 10% to 

30% of adult community-acquired pneumonia.56 Our estimates ranged from 0.1% in Egypt to 18.5% 

in Kenya.  

With the exception of China, PAF estimates from the main analysis using continuous Cq values 

were higher (and more precise) than those in an analysis that used binary, qualitative PCR results, 

holding all other modelling decisions constant. With the exception of Egypt, our estimates were also 

higher than those reported in the original analysis of these data that used a Bayesian latent class 

model without incorporating Cq values.7 In that analysis, SARI cases attributed to S. pneumoniae 

ranged from 0.3% in Egypt to 4.3% in Guatemala.7 A possible reason why the results of the original 

analysis were lower is that it estimated etiologic fractions for many pathogens simultaneously and 

restricted the etiologic fractions of all pathogens to sum to one, whereas our approach placed no 

such restriction on the output. Whether attributable fractions from a single model can sum to more 

than 100% is an area of debate. Due to pathogen interactions, we believe it is reasonable to assume 

that total PAFs can exceed 100%.186,187 

The subset of data from Thailand was previously analyzed using different methods and additional 

assays, including a urine antigen test for S. pneumoniae.178 That analysis found the prevalence of 

pneumococcal pneumonia to be 8% using urine antigen tests, 10% using binary PCR and urine 

antigen test results, and 11% by using a Bayesian latent class model with binary urine antigen test 



P a g e  | 91 

 

results and Cq values. We could not include data on urine antigen test results in our analysis as it was 

not available in all countries. Nevertheless, we estimated a PAF of 12.3% in Thailand, which is 

consistent with the previous Thai estimate. In contrast, the original analysis of the TAC data 

estimated an etiologic fraction under 5% for Thailand.  

Although this analysis includes data from six countries with systematic enrollment of SARI cases 

and asymptomatic adults using standardized enrollment criteria and procedures, it has several 

limitations. We were unable to calculate pathogen copy numbers from sample Cq values but instead 

had to rely on Cq values as relative measures of pathogen load. However, a study of diarrhea 

etiology found that analyses based on Cq values and pathogen copy numbers yield similar results.17,23 

Aspects of sample collection and specimen processing can affect Cq values, leading to non-

differential exposure mismeasurement and an expectation of bias towards the null.188 For example, 

all things being equal, more voluminous specimens will have lower Cq values than specimens of 

lower volume. The density of host DNA (as measured by human RNase P) gives some indication of 

specimen volume, and we found that RNase P Cq values were weakly correlated (ρ=0.3) with S. 

pneumoniae Cq values. However, RNase P Cq values varied little between SARI cases (mean: 25.7, 

SD: 2.6) and asymptomatic adults (mean: 25.8, SD: 2.3). In addition to these limitations, detection of 

genomic material by PCR does not require viable organism and thus does not necessarily indicate 

the presence of infectious pathogens. Pathogen load also varies over the course of infection and the 

cross-sectional design of our study is a limitation in this regard.  

While our data set included 3,523 subjects, this was insufficient to control for all pathogens included 

in the respiratory panel without introducing sparse data bias. It was also insufficient to investigate 

interactions between pathogens, which could play an important causal role in SARI. For example, 

the interaction between S. pneumoniae and influenza virus is well-recognized, with influenza virus 

infection being a risk factor for the subsequent development of pneumococcal disease.62,189,190 Future 
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research is needed to address the sequence and role of multiple pathogens in SARI etiology and 

pathogenesis.  

The results of this study should not be interpreted as the global fraction of adult SARI attributable 

to S. pneumoniae or as the etiologic fraction of S. pneumoniae at the national level for each participating 

country. The epidemiology and etiology of SARI changes over time with the introduction of 

vaccines and emergence of new pathogens, such as SARS-CoV-2.  When this study was initiated in 

2013, only Kenya and Guatemala had introduced pneumococcal conjugate vaccine (PCV), and 

coverage has varied over time. Bangladesh has since introduced PCV but China, Egypt, and 

Thailand have not.191 As vaccine coverage increases, vaccine preventable burden declines and other 

pathogens not included in vaccines become more important. Moreover, the COVID-19 pandemic 

has dramatically altered the epidemiology and etiology of respiratory infections. Thus, population 

attributable fractions estimated in 2013-2015 may differ substantially from those in other time 

periods. Nevertheless, this approach could be applied to future studies to understand the evolving 

etiology of SARI. 

Despite these limitations, we found that Cq values improve understanding of the etiologic role of S. 

pneumoniae in SARI.  Binary results from qPCR may underestimate the causal role of S. pneumoniae, 

which would suggest that it be given lower priority for SARI prevention. However, studies using 

diagnostics and samples that are not typically used in routine surveillance (which often relies on 

qPCR) show that S. pneumoniae is an important contributor to SARI. When more comprehensive 

diagnostics are not available, estimating PAFs with PCR Cq values could be useful for translating 

surveillance data into numbers that can help policymakers understand the changing etiology of 

respiratory infections and the potential benefits gained from prevention measures such as 

vaccination.  
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Tables and Figures 

Table 5.1. Basic Demographic and Underlying Medical Conditions for Asymptomatic Adults and Adults with Severe Acute 
Respiratory Infections (SARI) in Six Countries, 2013–2015 
 

  Bangladesh China Egypt 
 SARI  Asymptomatic  SARI  Asymptomatic  SARI  Asymptomatic 
 n=499 (no., %) n=198 (no., %) n=537 (no., %) n=216 (no., %) n=504 (no., %)  n=209 (no., %) 

Age (years)   
18-49  251 (50.3) 100 (50.5) 414 (77.1) 166 (76.9) 283 (56.2) 113 (54.1) 

50-64  132 (26.5) 52 (26.3) 78 (14.5) 31 (14.4) 170 (33.7) 70 (33.5) 
65+  116 (23.3) 46 (23.2) 45 (8.4) 19 (8.8) 51 (10.1) 26 (12.4) 

Male 321 (64.3) 134 (67.7) 310 (57.8) 111 (51.9) 240 (47.6) 118 (56.5) 
Medical History1     

 
 

Current smoker 97 (19.4) 45 (22.7) 131 (24.9) 97 (45.1) 111 (22.0) 53 (25.4) 
HIV/AIDS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Asthma 122 (24.5) 0 (0) 2 (0.4) 0 (0) 29 (5.8) 2 (1.0) 
COPD 61 (12.2) 2 (1.0) 12 (2.2) 3 (1.4) 8 (1.6) 0 (0) 
Diabetes 25 (5.0) 2 (1.0) 6 (1.1) 4 (1.9) 48 (9.5) 11 (5.3) 
Immunosuppression2 65 (13.0) 0 (0) 0 (0) 0 (0) 2 (0) 0 (0) 
Antibiotic use prior to hospital admission 114 (22.8) 3 (1.5) 160 (29.8) 0 (0) 372 (73.8) 0 (0)        

  Guatemala Kenya Thailand 

 SARI  Asymptomatic  SARI  Asymptomatic  SARI  Asymptomatic 
n=304 (no., %) n=174 (no., %) n=187 (no., %) n=121 (no., %) n=357 (no., %)  n=217 (no., %) 

Age (years) 
18-49  118 (38.7) 65 (37.4)  111 (59.4) 84 (69.4) 79 (22.1) 53 (24.4) 

50-64  84 (27.6) 49 (28.2) 40 (21.4) 20 (16.5) 108 (30.3) 69 (31.8) 
65+  102 (33.4) 60 (34.5) 36 (19.3) 17 (14.1) 170 (47.6) 95 (43.8) 

Male 98 (32.2) 90 (51.7) 60 (32.1) 22 (18.2) 161 (45.1) 80 (36.9) 
Medical History1       

Current smoker 19 (6.2) 33 (19.0) 14 (7.5) 5 (4.1) 73 (20.5) 24 (11.1) 
HIV/AIDS 6 (2.0) 0 (0) 74 (39.6) 70 (57.9) 6 (1.7) 0 (0) 
Asthma 81 (26.6) 2 (1.2) 10 (5.4) 0 (0) 55 (15.4) 6 (2.8) 
COPD 14 (4.6) 0 (0) 3 (1.6) 0 (0) 47 (13.2) 1 (0.5) 
Diabetes 53 (17.4) 18 (10.3) 5 (2.7) 0 (0) 63 (17.7) 26 (12.0) 
Immunosuppression2 19 (6.3) 0 (0) 5 (2.7) 19 (15.7) 18 (5.0) 3 (1.4) 
Antibiotic use prior to hospital admission 54 (17.8) 8 (4.6) 32 (17.1) 37 (30.6) 26 (7.3) 2 (0.9) 

 
Abbreviations: no., number 
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 Self-reported medical history with the exception of HIV/AIDS in Kenya 
2 Immunosuppression includes receiving chemotherapy, having a documented autoimmune disease, and using oral or injection corticosteroids for at 
least 14 days within 2 weeks of enrollment. 
NB. Percentage is out of those without missing data.
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Table 5.2. Pathogen detections in Asymptomatic Adults and Adults with Severe Acute Respiratory Infections (SARI) in Six 
Countries, 2013–2015 

  Bangladesh China Egypt 

  
SARI 

(n=499) 
Asymptomatic 

(n=198) 
OR (95%CI) 

SARI 
(n=537) 

Asymptomatic 
(n=216) 

OR (95%CI) 

SARI 
(n=504) 

Asymptomatic 
(n=209) 

OR (95%CI) 

  n (%) n (%)   n (%) n (%)   n (%) n (%)   

Adenovirus 5 (1%) 1 (1%) 2.0 (0.2-94.7) 20 (4%) 9 (4%) 0.9 (0.4-2) 2 (0%) 2 (1%) 0.4 (0.03-5.7) 

Bordetella pertussis  0 (0%) 0 (0%)    1 (0%) 1 (0%) 0.4 (0.01-31.8) 1 (0%) 0 (0%)    

Chlamydophila pneumoniae 1 (0%) 0 (0%)    13 (2%) 6 (3%) 0.9 (0.3-2.3) 1 (0%) 0 (0%)    

Influenza A 66 (13%) 8 (4%) 3.6 (1.7-7.7) 207 (39%) 7 (3%) 18.8 (8.7-40.8) 83 (16%) 0 (0%)    

Influenza B 27 (5%) 0 (0%)    34 (6%) 0 (0%)    74 (15%) 1 (0%) 35.9 (45.0-259.9) 

Influenza C 2 (0%) 0 (0%)    2 (0%) 3 (1%) 0.3 (0.02-2.4) 4 (1%) 0 (0%)    

Group A Streptococcus 5 (1%) 3 (2%) 0.7 (0.16-2.8) 10 (2%) 2 (1%) 2.0 (0.4-9.4) 9 (2%) 5 (2%) 0.7 (0.3-2.2) 

Coronavirus 229E 3 (1%) 0 (0%)    7 (1%) 1 (0%) 2.9 (0.4-23.4) 3 (1%) 1 (0%) 1.3 (0.1-66.6) 

Coronavirus NL63 2 (0%) 1 (1%) 0.8 (0.04-47.0) 3 (1%) 4 (2%) 0.3 (0.1-1.4) 3 (1%) 1 (0%) 1.2 (0.1-65.8) 

Coronavirus OC43 9 (2%) 1 (1%) 3.6 (0.5-28.8) 17 (3%) 5 (2%) 1.4 (0.5-3.8) 7 (1%) 4 (2%) 0.7 (0.2-2.5) 

Coronavirus HKU1 3 (1%) 0 (0%)    2 (0%) 3 (1%) 0.3 (0.02-2.4) 1 (0%) 1 (0%) 0.4 (0.01-32.7) 

Haemophilus influenzae 128 (26%) 44 (22%) 1.2 (0.8-1.8) 92 (17%) 46 (21%) 0.8 (0.5-1.1) 91 (18%) 62 (30%) 0.5 (0.4-0.8) 

Human metapneumovirus  1 (0%) 1 (1%) 0.4 (0.01-31.2) 15 (3%) 2 (1%) 3.1 (0.7-13.6) 10 (2%) 1 (0%) 4.2 (0.5-33.2) 

Klebsiella pneumoniae 67 (13%) 15 (8%) 1.9 (1.0-3.4) 19 (4%) 9 (4%) 0.9 (0.4-1.9) 30 (6%) 9 (4%) 1.4 (0.7-3.0) 

Legionella species 0 (0%) 0 (0%)    1 (0%) 0 (0%)    0 (0%) 0 (0%)    

Moraxella catarrhalis  84 (17%) 36 (18%) 0.9 (0.6-1.4) 27 (5%) 13 (6%) 0.8 (0.4-1.6) 50 (10%) 48 (23%) 0.4 (0.2-0.6) 

Mycoplasma pneumoniae 1 (0%) 1 (1%) 0.4 (0.01-31.3) 10 (2%) 1 (0%) 4.1 (0.5-32.3) 2 (0%) 0 (0%)    

Mycobacterium tuberculosis 3 (1%) 0 (0%)    0 (0%) 0 (0%)    0 (0%) 0 (0%)    

Human parainfluenza virus 1 5 (1%) 0 (0%)    2 (0%) 0 (0%)    0 (0%) 0 (0%)    

Human parainfluenza virus 2 0 (0%) 0 (0%)    5 (1%) 0 (0%) 2.0 (0.2-96.5) 0 (0%) 0 (0%)    

Human parainfluenza virus 3 12 (2%) 1 (1%) 4.9 (0.6-37.6) 3 (1%) 2 (1%) 0.6 (0.1-7.3) 9 (2%) 0 (0%)    

Human parainfluenza virus 4 6 (1%) 0 (0%)    0 (0%) 1 (0%)    1 (0%) 0 (0%)    

Pneumocystis jiroveci (PCP) 0 (0%) 0 (0%)    1 (0%) 0 (0%)    1 (0%) 0 (0%)    

Pseudomonas aeruginosa 24 (5%) 4 (2%) 2.5 (0.8-7.2) 8 (1%) 1 (0%) 3.3 (0.4-26.3) 0 (0%) 0 (0%)    

Respiratory syncytial virus  
17 (3%) 2 (1%) 3.5 (0.8-15.1) NA   NA   NA   NA   NA   8 (2%) 0 (0%)    

Staphylococcus aureus 62 (12%) 22 (11%) 1.1 (0.7-1.9) 19 (4%) 7 (3%) 1.1 (0.5-2.7) 44 (9%) 25 (12%) 0.7 (0.4-1.2) 

Streptococcus pneumoniae 165 (33%) 57 (29%) 1.2 (0.9-1.8) 59 (11%) 16 (7%) 1.6 (0.9-2.8) 65 (13%) 61 (29%) 0.4 (0.2-0.5) 

Rhinovirus/Enterovirus 82 (16%) 13 (7%) 2.8 (1.5-5.2) 71 (13%) 23 (11%) 1.3 (0.8-2.2) 47 (9%) 18 (9%) 1.1 (0.6-1.9) 
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  Guatemala Kenya Thailand 

  
SARI 

(n=304) 
Asymptomatic 

(n=174) 
OR (95%CI) 

SARI 
(n=187) 

Asymptomatic 
(n=121) 

OR (95%CI) SARI (n=357) 
Asymptomatic 

(n=217) 
OR (95%CI) 

  n (%) n (%)   n (%) n (%)   n (%) n (%)   

Adenovirus 3 (1%) 0 (0%)    3 (2%) 5 (4%) 0.4 (0.1-2.0) 1 (0%) 5 (2%) 0.1 (0.01-1.0) 

Bordetella pertussis  0 (0%) 1 (1%)    0 (0%) 0 (0%)    1 (0%) 1 (0%) 0.6 (0.01-47.8) 

Chlamydophila pneumoniae 2 (1%) 0 (0%)    0 (0%) 0 (0%)    1 (0%) 1 (0%) 0.6 (0.01-47.8) 

Influenza A 30 (10%) 1 (1%) 19.1 (2.6-141.2) 20 (11%) 1 (1%) 14.5 (1.9-109.2) 37 (10%) 0 (0%)    

Influenza B 5 (2%) 1 (1%) 2.9 (0.3-138.5) 0 (0%) 0 (0%)    44 (12%) 1 (0%) 30.4 (4.2-222.1) 

Influenza C 0 (0%) 0 (0%)    0 (0%) 0 (0%)    0 (0%) 0 (0%)    

Group A Streptococcus 9 (3%) 6 (3%) 0.9 (0.3-2.5) 2 (1%) 0 (0%)    4 (1%) 2 (1%) 1.2 (0.2-13.6) 

Coronavirus 229E 4 (1%) 0 (0%)    0 (0%) 0 (0%)    1 (0%) 1 (0%) 0.6 (0.01-47.8) 

Coronavirus NL63 0 (0%) 0 (0%)    3 (2%) 1 (1%) 2.0 (0.2-104.1) 2 (1%) 0 (0%)    

Coronavirus OC43 2 (1%) 0 (0%)    5 (3%) 2 (2%) 1.6 (0.3-16.9) 0 (0%) 0 (0%)    

Coronavirus HKU1 3 (1%) 2 (1%) 0.9 (0.1-10.4) 0 (0%) 0 (0%)    2 (1%) 1 (0%) 1.2 (0.1-72.1) 

Haemophilus influenzae 60 (20%) 49 (28%) 0.6 (0.4-0.99) 36 (19%) 20 (17%) 1.2 (0.7-2.2) 133 (37%) 77 (35%) 1.1 (0.8-1.5) 

Human metapneumovirus  9 (3%) 0 (0%)    4 (2%) 0 (0%)    2 (1%) 0 (0%)    

Klebsiella pneumoniae 17 (6%) 18 (10%) 0.5 (0.3-1.0) 16 (9%) 6 (5%) 1.9 (0.7-4.9) 71 (20%) 48 (22%) 0.9 (0.6-1.3) 

Legionella species 0 (0%) 1 (1%)    0 (0%) 0 (0%)    1 (0%) 0 (0%)    

Moraxella catarrhalis  38 (13%) 19 (11%) 1.2 (0.7-2.1) 25 (13%) 12 (10%) 1.4 (0.7-2.9) 45 (13%) 13 (6%) 2.3 (1.2-4.3) 

Mycoplasma pneumoniae 4 (1%) 0 (0%)    0 (0%) 0 (0%)    2 (1%) 0 (0%)    

Mycobacterium tuberculosis 1 (0%) 0 (0%)    0 (0%) 0 (0%)    1 (0%) 0 (0%)    

Human parainfluenza virus 1 1 (0%) 1 (1%) 0.6 (0.01-45.4) 3 (2%) 0 (0%)    5 (1%) 1 (0%) 3.1 (0.3-145.7) 

Human parainfluenza virus 2 1 (0%) 0 (0%)    2 (1%) 0 (0%)    3 (1%) 0 (0%)    

Human parainfluenza virus 3 8 (3%) 0 (0%)    1 (1%) 0 (0%)    10 (3%) 0 (0%)    

Human parainfluenza virus 4 3 (1%) 0 (0%)    1 (1%) 0 (0%)    2 (1%) 0 (0%)    

Pneumocystis jiroveci (PCP) 2 (1%) 0 (0%)    2 (1%) 0 (0%)    4 (1%) 0 (0%)    

Pseudomonas aeruginosa 13 (4%) 1 (1%) 7.8 (1.0-60.0) 10 (5%) 10 (8%) 0.7 (0.3-1.6) 19 (5%) 15 (7%) 0.8 (0.4-1.5) 

Respiratory syncytial virus  13 (4%) 0 (0%)    3 (2%) 0 (0%)    32 (9%) 2 (1%) 10.6 (2.5-44.6) 

Staphylococcus aureus 36 (12%) 24 (14%) 0.9 (0.5-1.5) 37 (20%) 17 (14%) 1.5 (0.8-2.8) 27 (8%) 25 (12%) 0.6 (0.4-1.1) 

Streptococcus pneumoniae 75 (25%) 45 (26%) 1.0 (0.6-1.5) 86 (46%) 50 (41%) 1.2 (0.8-2.0) 114 (32%) 57 (26%) 1.3 (0.9-1.9) 

Rhinovirus/Enterovirus 69 (23%) 4 (2%) 15.8 (5.6-44.1) 31 (17%) 11 (9%) 2.2 (1.0-4.5) 38 (11%) 5 (2%) 5.1 (2.0-13.0) 

 
Abbreviations: OR, odds ratio; CI, confidence interval 
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Figure 5.1. PCR quantification cycle value distributions of S. pneumoniae in asymptomatic 
adults and adults with severe acute respiratory infection in six low- and middle-income 
countries, 2013-2015.
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Figure 5.2. PCR quantification cycle value distributions of frequently detected pathogens in 
asymptomatic adults and adults with severe acute respiratory infection in six low- and 
middle-income countries, 2013-2015.  
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Figure 5.3. Relationship between pathogen quantity and severe acute respiratory infection in adults in six low- and middle-
income countries, 2013-2015.  
The plots display odds ratios (black lines) and 95% confidence intervals (gray bands) on log10 scale. The red dotted line represents an odds ratio of 1.  
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Table 5.3. Population Attributable Fraction of S. Pneumoniae to Severe Acute Respiratory 
Infections in Adults in Six Low- and Middle-Income Countries, 2013-2015 

Country 
PAF model 1 

(95% CI) 
PAF model 2 (95% 

CI) 
PAF model 3 (95% 

CI) 
PAF model 4 (95% 

CI) 

Bangladesh 10.7% (3.3, 19.0) 9.7 % (1.0, 16.3) 8.9% (-2.4, 18.1) 11.2% (3.1, 19.1) 

China 3.8% (0.1, 8.4) 2.1% (-2.1, 4.4) 4.5% (-1.8, 9.2) 5.0% (2.3, 10.7) 

Egypt 0.1% (0.0, 1.3) -4.9% (-12.8, 0.2) -17.6% (-31.8, -7.6) 0.0% (0.0, 1.9) 

Guatemala 11.3% (3.5, 18.1) 8.5% (2.2, 13.6) 4.5% (-7.5, 13.4) 12.4% (5.3, 18.7) 

Kenya 18.5% (4.8, 35.2) 16.9 (-1.2, 29.4) 12.2% (-20.0, 32.1) 20.1% (5.0, 34.8) 

Thailand 12.3% (6.6, 19.9) 13.0 (6.9, 18.7) 8.7% (-3.1, 18.5) 13.8% (8.2, 20.5) 

PAF: population attributable fraction, CI: confidence interval 
Model 1 is the primary model that defines S. pneumoniae exposure using Cq values as a continuous variable. 
Model 2 includes all subjects but defines the exposure as a categorical variable representing S. pneumoniae Cq 
values ≤31 vs. non-detects. Model 3 defines the exposure using binary, qualitative PCR results (S. pneumoniae 
positive vs. S. pneumoniae negative) and includes the same covariates as Model 1. Model 4 defines S. pneumoniae 
exposure using a categorical variable based on Cq value quartiles.  
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Figure 5.4. Odds ratios for the relationship between S. pneumoniae and severe acute 
respiratory infection in adults in six low- and middle-income countries, 2013-2015.  
The plots display odds ratios (dots) and 95% confidence intervals (lines). The reference group for all ORs is 
adults with a negative PCR result for S. pneumoniae. Red represents is the odds of SARI in those with a 
positive S. pneumoniae PCR result, green is the odds of SARI in those with a Cq value >31 cycles, and blue is 
the odds of SARI in adults with Cq values ≤31 cycles.   
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Supplementary figures 

 
Figure 5.5. Proportion of SARI cases with S. pneumoniae detections by history of antibiotic use 
and country 
The odds of S. pneumoniae detection in SARI cases who had taken antibiotics before hospitalization are 0.72 
(95% CI: 0.56, 0.93) times that of cases who did not take antibiotics before admission, adjusted for country. 
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Figure 5.6. Distributions of S. pneumoniae Ct values in SARI cases who took antibiotics in the 24 
hours prior to hospital admission and those who did not.  
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Figure 5.7. Distributions of S. pneumoniae Ct values in SARI cases who took antibiotics prior to 
specimen collection and those who did not.  
N.B. This plot is for SARI cases only. Very few (n=50) controls took antibiotics prior to enrollment and the 
majority were in Kenya so the association between antibiotic use and Ct distribution in controls could not be 
assessed.  
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Figure 5.8. Correlation between pathogen-specific Ct values and RNase P Ct values. 
Ct values are weakly to moderately correlated with Ct values of RNase P. In other words, lower Ct values are found in specimens of higher quality.  
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Figure 5.9. Distributions of Ct values for RNase P in cases and controls, and in specimens with and without detections of specific 
pathogens. 
There is a statistically significant difference in the distributions of RNase P Ct values in SARI cases and asymptomatic adults but the difference in 
means between the two groups is small. RNase P Ct values are lower in subjects with bacterial pathogen detections than in those without bacterial 
pathogen detections, suggesting that specimen quality may have affected the probability of detecting pathogens in NP/OP swabs. The difference in 
RNase P Ct values in subjects with and without influenza A virus (which is the agent most strongly associated with SARI) is small and not statistically 
significant. 
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Chapter 6. Summary and conclusions 
 

Summary of findings 

Acute respiratory infections exert a considerable burden and cost on health care systems.1,2 At the 

severe end of the disease severity pyramid, lower respiratory tract infections are the fourth leading 

cause of mortality for all ages and the second leading cause of death among children younger than 5 

years worldwide.2 At the mild end of the disease severity pyramid, upper respiratory infections occur 

with high frequency and significantly impair quality of life and productivity.  In 2019, there were an 

estimated 17.2 billion incident cases of upper respiratory tract infections worldwide, contributing to 

9,460 deaths and 6.39 million DALYS.2 Low- and middle-income countries bear a disproportionate 

burden of acute respiratory infections, which strongly correlate with poverty. 

Intervening to reduce this burden requires better understanding of the causes and risk factors for 

acute respiratory infections as well as identification of effective interventions. In order to prioritize 

pathogens for vaccine development and to guide national vaccine policy, it is important to estimate 

the proportion of disease attributable to specific etiologic agents. Once vaccines are developed, 

effectively deploying them and assessing their impact requires knowledge of pathogen seasonality. 

Reducing the burden of ARI also requires identifying effective interventions to reduce 

environmental factors, such as HAP, that affect the infectious agent and host defenses. This 

dissertation addressed knowledge gaps surrounding the etiology, environmental risk factors, and 

patterns of acute respiratory infections in low- and middle-income settings by (1) characterizing RSV 

seasonality in Guatemala, (2) examining the association between prenatal HAP exposure and illness 

with a cough in 24-month old children, and (3) estimating the fraction of SARI attributable to S. 

pneumoniae. 
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In chapter 3 (aim 1), we described RSV seasonality in Guatemala using nine consecutive years of 

surveillance data. To our knowledge, this is the longest time series of RSV data for which 

epidemiologic analyses have been reported for the country. We identified key attributes of RSV 

seasons including the onset week, offset week, epidemic duration, and epidemic threshold–the level 

of virus activity that signals the onset of a seasonal epidemic. Our results demonstrate considerable 

variability in the timing of seasonal RSV epidemics over seasons, and some variability across regions. 

Season onsets varied up to 5 months such that two differential patterns of RSV seasonality were 

observed: an early season starting in June-July and finishing in September-November, and a late 

season starting in October-November and finishing in March-April. This variability speaks to the 

importance of continually monitoring RSV seasonality and to the difficulty in precisely predicting 

the timing of seasonal RSV epidemics based on onset weeks from past seasons. These finding 

suggest that maximal reduction in RSV disease burden would be achieved through year-round 

maternal and infant vaccination programs. 

In chapter 4, we examined the association of prenatal HAP exposure with illness with a cough in 24-

month-old children enrolled in the HAPIN trial in three low- and middle-income countries. We did 

not find evidence that the HAPIN LPG stove and fuel intervention during pregnancy and the first 

year of life had an impact on the prevalence of illness with a cough in children at 24 months of life. 

Similarly, in exposure-response analyses, we did not find evidence of an association between three 

important HAP pollutants (carbon monoxide, PM2.5, and black carbon) and the prevalence of illness 

with a cough at 24 months. These findings suggest that the reductions in prenatal HAP exposure 

that can be achieved through a clean fuel intervention may not have a measurable long-term impact 

on upper respiratory tract infections in young children.  
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In chapter 5, we used qPCR results from upper respiratory tract specimens to understand the 

etiologic role of S. pneumoniae in WHO-defined SARI in adults in six low- and middle-income 

countries. We found a non-linear association between Cq values and SARI that increased with 

increasing bacterial load (i.e. lower Cq values). The proportion of SARI cases attributed to S. 

pneumoniae varied across countries, ranging from 0.1% (95% CI: 0-1.3%) in Egypt to 18.5% (95% CI: 

4.8%-35.2%) in Kenya. For most countries, population attributable fractions estimated using 

quantitative PCR Cq values were higher than those estimated using qualitative interpretation of PCR 

results. These results suggest that Cq values can improve understanding of the etiologic role of S. 

pneumoniae in SARI at a population level. 

Limitations 

As discussed in previous chapters, the dissertation studies had several limitations. Below, we 

elaborate on key limitations. 

Aim 1 

Although the descriptive analysis of RSV seasonality in chapter 3 included nine consecutive years of 

surveillance data, which exceeds that of previous RSV reports from Guatemala, a longer time series 

would have allowed us to more comprehensively assess changes in seasonality over time as well as 

drivers of epidemic onsets. For example, approaches to investigate the association of the timing of 

onset or peaks of epidemics with weather conditions require many epidemic episodes to achieve 

adequate statistical power, since each epidemic episode is effectively one data point.192 We also 

lacked data on RSV antigenic groups, so we could not explore the potential the impact of RSV 

groups on seasonality. 

The methods we used to describe RSV seasonality were developed for establishing alert thresholds 

for influenza. They assume one epidemic wave per season and some consistency in seasonal patterns 
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as is typical of influenza waves in temperate areas. They have limitations when seasonality is highly 

variable. For example, the methods require that surveillance seasons first be defined. We defined 

surveillance seasons in Guatemala as epidemiologic week 17 to week 16, following average troughs 

in RSV activity. However, the 2012-13 epidemic wave was delayed, and in Santa Rosa, it continued 

into the 2013/14 surveillance season. The MEM classified the epidemic offset of the 2012/13 

season in Santa Rosa as week 16 (the last week of the surveillance season) even though visual 

inspection of the epidemic curves shows that the wave continued into the next surveillance season.  

Aim 2 

In chapter 4 (aim 2), we used a well-characterized study cohort with prospectively collected 

individual- and household-level data. Nevertheless, the study has important limitations. Perhaps the 

most important limitation is the outcome definition: caregiver-reported illness with a cough. 

Previous studies suggest that HAP exposure has the greatest effect on severe respiratory outcomes 

in children. However, we were not powered to detect severe outcomes in this cohort. A second 

limitation is that the exposure contrast in the study, though strong, might not have been sufficient to 

have an impact on respiratory health, particularly in the context of high ambient pollution. That said, 

exposures in the control arm were lower than those reported in some earlier studies, such as 

RESPIRE, which reported an average maternal carbon monoxide level of 4.8 ppm in the control 

arm compared to 2.0 ppm in control participants in the HAPIN exit cohort.114  

Aim 3 

In Chapter 5 (aim 3), we used the association between PCR Cq values and SARI to estimate the 

proportion of SARI attributable to S. pneumoniae in adults. Although this analysis used data from a 

case-control study that included 3,523 subjects from six countries with systematic enrollment of 

SARI cases and asymptomatic adults using standardized enrollment criteria and procedures, there 
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were several important limitations. A key limitation relates to the interpretation of the population 

attributable fraction (PAF). 

Strictly speaking, the PAF can be interpreted as the proportion of disease cases over a specified time 

that would be prevented following elimination of the exposures, while distributions of other risk 

factors in the population remain unchanged, assuming the exposures are causal. It is of public health 

relevance when interpreted in terms of the impact of potential interventions. In the context of our 

study, in which the reference category for models was those with no detection of S. pneumoniae in 

upper respiratory tract samples, the estimated PAF is the proportion of SARI in adults that could be 

eliminated if S. pneumoniae were removed from the upper respiratory tract. However, an intervention 

that completely eliminates S. pneumoniae carriage in the upper respiratory tract may be unrealistic; 

thus, our PAF estimate may have more of a theoretical than a practical value. Furthermore, the PAF 

is a relative measure of disease burden; absolute measures may be of more relevance to public health 

and to policy makers who need to know the number of cases of disease that could be averted 

through interventions such as vaccination. Other study designs, such as vaccine probe studies, are 

better suited to estimate the absolute burden of disease incidence that could be prevented through 

vaccination. 

Another important limitation of this study was the high prevalence of antibiotic use in some study 

countries, particularly Egypt. Antibiotics use potentially introduces reverse causality into the analysis 

because they are taken as a result of the illness (the outcome) and they lower bacterial load (the 

exposure). Adjustment for antibiotic use cannot address this issue and may be inappropriate because 

antibiotic use is a descendent of the outcome (SARI). Across the study countries, 15% to 98% of the 

SARI cases took antibiotics prior to specimen collection and 7% to 75% took antibiotics in the 24 

hours before hospital admission. Restricting the analysis to those who did not take antibiotics would 
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have substantially reduced the sample size and would have dropped Egypt (where antibiotic usage 

was highest) from the analysis altogether. 

As this was a secondary analysis, it was not powered to examine pathogen interactions or to perform 

sub-analyses by disease severity. Interactions between pathogens likely play an important role in 

SARI etiology, and it is recognized that viral infections predispose the host to S. pneumoniae infection 

such that the two jointly cause disease. More comprehensively studying the role of prior viral 

infections in bacterial pneumonia would require a longitudinal study design.  

We hypothesized that the proportion of disease attributable to S. pneumoniae increases with disease 

severity, but we were not powered to perform sub-analyses by severity. In particular, had the sample 

size been larger with complete data on chest x-ray findings, we would have estimated the PAF for 

radiographically confirmed pneumonia. This would have allowed us to compare our estimates with 

those of vaccine probe studies, in which radiographically confirmed pneumonia is the endpoint 

typically used.   

As is often the case in case-control studies, control selection might have introduced selection bias 

into our analysis. Each study country used different types of controls (e.g. hospital controls in some 

sites and community controls in others) and it was difficult to determine if these controls were 

representative of the source population that gave rise to the cases. Had there been different types of 

controls in each country, we may have been better able to assess the role of control selection in the 

PAF estimates. 

Future directions 

In examining the patterns, etiology, and environmental risk factors for acute respiratory infections, 

this dissertation highlighted future research areas and generated additional hypotheses surrounding 

the drivers of acute respiratory infections. Examining the causes and drivers of RSV seasonality was 
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beyond the scope of aim 1, but it remains an important question. There is a large body of previous 

research examining the association between weather patterns and respiratory virus seasonality. While 

climate correlates with respiratory virus seasonality, the COVID-19 pandemic has shown that 

human behavior and contact patterns may be more important, underlying drivers of seasonal 

patterns.  

In aim 2, we examined the association of prenatal HAP exposure with illness with a cough in 

children at 24 months of life. In future analyses we plan to estimate the effect of post-natal HAP 

exposure on the prevalence of illness with cough in children at 24 months of age using additional 

exposure and outcome data from the HAPIN trial and exit cohort study. Future work might also 

explore the reasons why the prevalence of illness with a cough in Rwanda was so much higher than 

in Guatemala and India. 
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