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Abstract 

 

Quantitative trait locus analysis of molecular phenotypes in the GTEx cohort 

 

 

By Chen Zhao 

 

 

 

Background: One of the main purposes of human genetic research is to understand the function 

of genetic variants. Expression quantitative trait loci (eQTL) analyses have been successfully 

carried out to identify variants that affect the expression level of their target gene. Due to 

computation cost, existing analyses focus on cis eQTLs, and only evaluate the variants effect on 

individual genes which may be affected by the excessive uncertainties and noise in the gene 

expression measurements.   

 

Method: In this study, we study the impact of genetic variants on the overall expression levels of 

biological pathways using data from the Genotype-Tissue Expression (GTEx) consortium. We 

applied the GSVA and combined Z-score methods to transform the gene expression data to 

pathway-level expression scores. Then we utilized these scores instead of the raw expression 

data for QTL analysis to find the SNPs with significant association p-values, and their 

corresponding pathway and tissue. 

 

Results: We found eight significant pathway/tissue pairs with genome-wide significant QTLs.: 

Folate Biosynthesis / Adipose Subcutaneous, Folate Biosynthesis / Muscle Skeletal, Sulfur 

Metabolism / Muscle Skeletal, Taste Transduction / Skin - Sun Exposed (Lower leg) for GSVA 

method, and Glycosaminoglycan Biosynthesis Chondroitin Sulfate / Brain Frontal Cortex BA9,  

Glyoxylate and Dicarboxylate Metabolism / Brain Frontal Cortex BA9, Folate Biosynthesis / 

Adipose Subcutaneous, Olfactory Transduction / Adrenal Gland for Z-score method. 

 

Conclusion: Our analysis identified significant QTLs related to biological pathways in multiple 

tissues. Many of these QTLs are located in the coding regions of the gnome. These findings may 

help us to better understand the biological functions of genes, pathways and their connections 

with genetic variants. 

 

Keywords: Pathway, Expression quantitative trait loci, Single Nucleotide Polymorphism 
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Introduction 

 

To understand the impact of the genetic variants is a fundamental objective in human genetics 

research. As the human genome sequencing project completed, we have the opportunity to study 

the impact of the variants on various types of molecular phenotypes. Over the last fifteen years, 

many variants have been found to have a strong association with diseases such as Alzheimer’s 

disease (AD) using genome-wide association studies (1,2) (Gatz et al., 1997; Wingo, Lah, Levey, 

& Cutler, 2012). But most of the variants are located in the non-coding region of the genome, we 

cannot identify the feature for variants directly. Thus, it is a grand challenge to study the 

functional impact of the variants. Meanwhile, next generation sequencing technologies give us a 

chance to study the transcriptome patterns across tissue types. The GTEx (3,4) (Consortium, 

2015; Carithers & Moore, 2015) project provides transcriptome data from multiple tissues at the 

population–level, giving us the opportunity to conduct a comprehensive study on the impact of 

genetic variants on gene expression. Based on GTEx database, we get many new findings such 

as expression quantitative trait loci (eQTL). Using the approach of eQTL, we can make novel 

findings for complex diseases such as AD. 

 

Although  eQTL information can help the identification of the target genes of GWAS-identified 

variants (5-7) (Hormozdiari et al., 2016; Ratnapriya et al., 2019; Gamazon et al., 2018), it has 

three limitations. First, there are noises produced with the high-throughput technologies and  

uncertainties in the measurement procedure. Second, considering the time and computing cost, 

trans-eQTL is often not considered. Third, eQTL analysis is only conducted at the single gene-

level, the combination of the genes function is not being considered in this approach. 
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In our study, to overcome these limitations, we turn to the pre-defined, expert-curated molecular 

pathways that have been cataloged in databases such as KEGG (8,9) (Kanehisa & Goto, 2000; 

Du et al., 2014). An obvious benefit of using these pathway-based methods is interpretability. 

Given that gene function may deviate and can be influenced by the environment or the disease 

state, using the gene set method can yield a stable and intuitive result to evaluate the biological 

impact of genetic variants. 

 

Our research utilizes gene set variance analysis (GSVA) method (10) (Hänzelmann, Castelo, & 

Guinney, 2013) to derive a quantitative summative assessment of a pathway’s activity at the 

single sample level, which then enables QTL analysis to be extended from the single gene level  

to the pathway level. GSVA has been shown to be an effective way to summarize pathway 

activities at the individual level from transcriptome profiling data. GSVA calculates gene 

enrichment score, using the approach of comparing the gene inside and outside of the pathway, 

and evaluate the variance of the enrichment score over samples. In our study, using data from the 

GTEx consortium, we first calculate the GSVA score for each of the 186 KEGG pathways in 

each individual. Next, we conduct an genome-wide QTL scan using these GSVA values. Our 

research intends to analyze the relationship between the pathway activity QTL we identified and 

the relationships with GWAS and eQTL results of nearby SNPs. 
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Method 

 

First, we obtained the data from the Genotype-Tissue Expression (GTEx) consortium, which 

includes gene expression, genotype, and clinical data for 449 human donors across 44 tissues. 

Generally, the whole dataset contains three parts: gene expression data, the SNP (Single 

Nucleotide Polymorphism) genotype data and the covariates data. In our study, we use the gene 

expression levels data from the GTEx v7 release. Each row for the gene expression data 

corresponds to one gene, and each column corresponds to a sample. For SNP genotype data, each 

row represents one sample, and each column represents one SNP. We use SNP in a broader 

sense, which include SNP and other type of variants like short indels, that are profiled in the 

GTEx study. The covariate data is a matrix with the rows of the covariate details and columns of 

samples.  

 

We first sorted and separated the gene expression and covariate data depending on the tissue 

sources of the samples. Next, based on KEGG pathway database, we applied GSVA method on 

the gene expression data to convert the gene-level data to pathway-level enrichment scores for 

each tissue. 

 

Now we introduce the algorithm of GSVA method. First, we have an input of a matrix 𝑋 =

{𝑥𝑖𝑗}
𝑝×𝑛

, which represents the normalized expression values for p genes by n samples. Also, we 

have a collection of gene sets 𝛤 = {𝛾1, … , 𝛾𝑚}. We denote 𝑥𝑖 for the expression profile of the i-th 

gene and xij corresponds to the specific expression value for j-th sample in i-th gene. 𝛾𝑘 

represents a pathway in the collection Γ, |𝛾𝑘| is the number of genes in 𝛾𝑘. 
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Next, we evaluate the expression level of a gene i in sample j in the context of sample population 

distribution. We calculate an expression-level statistic. For each gene expression profile 𝑥𝑖 =

{𝑥𝑖1, … , 𝑥𝑖𝑛}, a Gaussian kernel is used to calculate the non-parametric kernel estimation of the 

cumulative density function for the expression profile. The formula is: 

𝐹ℎ𝑖
̂ (𝑥𝑖𝑗) =

1

𝑛
∑ ∫

1

√2𝜋

𝑥𝑖𝑗−𝑥𝑖𝑘

ℎ𝑖

−∞

𝑛

𝑘=1

𝑒−
𝑡2

2 𝑑𝑡, (1) 

Where ℎ𝑖 is the parameter of bandwidth that controls the resolution of the kernel estimation. 

ℎ𝑖 = 𝑠𝑖/4, where 𝑠𝑖 is the sample standard deviation of the i-th gene. In terms of RNA-seq data, 

we use a discrete Poisson kernel: 

𝐹�̂�(𝑥𝑖𝑗) =
1

𝑛
∑ ∑

𝑒−(𝑥𝑖𝑘+𝑟)(𝑥𝑖𝑘 + 𝑟)𝑦

𝑦!

𝑥𝑖𝑗

𝑦=0

𝑛

𝑘=1

, (2) 

Where 𝑟 = 0.5, in order to set the mode of Poisson kernel at each 𝑥𝑖𝑘. 

 

Let 𝑧𝑖𝑗 denote 𝐹ℎ𝑖
̂ (𝑥𝑖𝑗), or 𝐹�̂�(𝑥𝑖𝑗), depending on whether 𝑥𝑖𝑗 are continuous microarray or 

discrete count RNA-seq values. In order to reduce the effect of the outliers, we convert 𝑧𝑖𝑗 to 

ranks 𝑧(𝑖)𝑗 for each sample j. We denote 𝑟𝑖𝑗 = |𝑝/2 − 𝑧(𝑖)𝑗|, to centralize the statistics. Then we 

calculate the Kolmogorov-Smirnov (KS) like random walk statistic: 

νjk(ℓ) =
∑ |𝑟𝑖𝑗|

𝜏 
𝐼(𝑔𝑖 ∈ 𝛾𝑘)ℓ

𝑖=1

∑ |𝑟𝑖𝑗|
𝜏 

𝐼(𝑔𝑖 ∈ 𝛾𝑘)𝑝
𝑖=1

−
∑ 𝐼(𝑔𝑖 ∉ 𝛾𝑘)ℓ

𝑖=1

𝑝 − 𝛾𝑘
, (3) 

where 𝜏 is a parameter describing the weight of the tail in random walk, with the default value 1, 

𝛾𝑘 represents the k-th gene set,  𝐼(𝑔𝑖 ∈ 𝛾𝑘) is the indicator function shows whether the i-th gene 
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(the gene corresponding to the i-th ranked expression-level statistic) is in the pathway 𝛾𝑘, |𝛾𝑘| is 

the number of genes in 𝛾𝑘, and p is the number of genes in the whole dataset.  

 

The next step is turning the KS like statistic into an enrichment statistic, named GSVA score. 

Under the null hypothesis that no change in pathway activity throughout the sample population, 

we provide a standard Gaussian distribution of enrichment scores, and the ES score is defined 

like: 

𝐸𝑆𝑗𝑘
𝑑𝑖𝑓𝑓

= |𝐸𝑆𝑗𝑘
+ | − |𝐸𝑆𝑗𝑘

− | = max
ℓ=1,…,𝑝

(0, νjk(ℓ)) − min
ℓ=1,…,𝑝

(0, νjk(ℓ)) (4) 

The biological interpretation for this statistic is: it can show the degree of how genes in pathways 

activate in one direction, either over-expressed or under-expressed. If the pathway contains genes 

that are acting in both directions, the value will cancel out. This ES score is unimodal and 

approximately normal. 

 

Alternatively, for the purpose of validation, we adopt another unsupervised GSE method called 

calculate single sample pathway summaries of expression, the combined z-score method (11). It 

standardized first expression profiles into z-scores over samples and combines them together for 

each gene set at each individual sample as follows. Given a gene set 𝛾 = {1, … , 𝑘} with z-scores 

𝑍1, … , 𝑍𝑘 for each gene, the combined z-score 𝑍𝛾 for the gene set 𝛾 is defined as: 

𝑍𝛾 =
∑ 𝑍𝑖

𝑘
𝑖=1

√𝑘
(5) 

In this paper, using the R package “GSVA”, we applied the GSVA approach to turn the gene-

level expression data into GSVA enrichment score data with pathway level. In addition, we also 

consider the combined z-score method. Next, we used eQTL method to identify the SNPs which 
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are significantly associated with the corresponding GSVA scores or the score of the combined z-

score method. 

The basic idea for the eQTL analysis is using linear regression and ANOVA models to find the 

association between expression and SNP genotype. For each gene-SNP pair, the codes for SNP is 

0,1, and 2 corresponding to the minor allele number. Then we build a linear regression model 

between GSVA score g and genotype s, with the covariate 𝑥 like: 

𝑔 = 𝛽0 + 𝛽1𝑠 + 𝛽2𝑥 + 𝜖, 𝑤ℎ𝑒𝑟𝑒 𝜖 ∼ 𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2) (6) 

We choose one tissue with the covariates, and one pathway-level score to test all the SNPs p-

value for 𝛽1, and check the association between the SNP genotypes and the GSVA scores each 

time. Then we repeat the whole procedure to test all tissues and pathways that we are interested 

in. 

 

Normally, the eQTL analysis is known to be time consuming and computationally intensive, 

because the genotype measured over millions of SNPs with over ten billion tests. In this paper, 

we use the method named MatrixeQTL (12) . It used matrix operator to optimize the calculation 

algorithm and speed up the computation.  

 

Additionally, we adopt some data pre-processing steps in order to remove some SNPs that 

contain too much noise, or with queationable qualities. There are three criteria that we use to 

filter SNPs. In particularly, we remove SNPs that: 

1. Have minor allele frequency less than 0.1 

2. Have missing genotyping rate higher than 0.2 

3. Have Hardy-Weinberg Equilibrium exact test (13) p-value less than 0.05 
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Finally, we report the SNPs with the significant p-value and its corresponding pathway, tissue,  

 

analyze the result we got. 

 

Result 

 

First, we calculated each samples’ GSVA score and Z-score for each KEGG pathway based on 

the GTEx gene expression data, treating them as the response variables. Before the filtering, we 

have 79,457,242 SNPs in total, then after the data cleaning procedure, there are 4,362,883 SNPs 

left for the eQTL analysis. There are 186 KEGG pathway set and 39 tissues types. Because of 

the high computation cost, using p-value threshold of 5 × 10−8 , a commonly used significance 

threshold for genome-wide association studies, we first check which pairs of pathway/tissue 

combinations can generate more significant results, and we can focus on analyzing the property 

for those pairs.  

 

With this threshold, we find 2204 SNPs as significant QTLs in total using  GSVA scores 

involving 171 pathways and all 39 tissue types, and 2181 SNPs as significant QTLs using the Z-

scores involving 179 pathways and 38 tissue types. They are shown as heatmap in Figure 1. and 

Figure 2. There are 5 SNPs significantly associated with pathway/tissue in both methods. They 

are rs411828 (One Carbon Pool By Folate / Brain Frontal Cortex BA9), rs12549084 (Folate 

Biosynthesis / Adipose – Subcutaneous), rs229081 (Glycosylphosphatidylinositol GPI Anchor 

Biosynthesis / Small Intestine - Terminal Ileum), rs2217861 (Glyoxylate And Dicarboxylate 

Metabolism / Cells - EBV-transformed lymphocytes), and rs869309398 (Pancreatic Cancer / 

Brain - Spinal cord (cervical c-1)). Among the pathways, pathway Folate Biosynthesis has the 

most SNPs, 379. Among the tissues, tissue Muscle Skeletal has the most SNPs--491. 
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Correspondingly, for the Z-score method, the most SNPs pathway is Olfactory Transduction and 

the tissue is Brain Frontal Cortex BA9, the number is 198 and 278 respectively. Moreover, the 

smallest p-value is 2.59 × 10−13, which belongs to the combination of Taste Transduction / Skin 

- Sun Exposed (Lower leg) with GSVA method, and 4.42 × 10−12, corresponding to the pair 

Olfactory Transduction / Adrenal Gland. In addition, the distributions of these two methods are 

not similar even though the total number are close. We can clearly find out through the heatmap 

that the significant SNPs in the method GSVA are more concentrated in several and those in the 

method Z-score are dispersion.  
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Figure 1. The heatmap for SNP numbers with GSVA Method 

① Pathway: Taste Transduction, Tissue: Skin - Sun Exposed (Lower leg) 

② Pathway: Sulfur Metabolism, Tissue: Muscle Skeletal 

③ Pathway: Folate Biosynthesis, Tissue: Adipose Subcutaneous 

④ Pathway: Folate Biosynthesis, Tissue: Muscle Skeletal 
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Figure 2. The heatmap for SNP numbers with Z-score Method 

 

⑤ Pathway: Olfactory Transduction, Tissue: Adrenal Gland 

⑥ Pathway: Folate Biosynthesis, Tissue: Adipose Subcutaneous 

⑦ Pathway: Glyoxylate and Dicarboxylate Metabolism, Tissue: Brain Frontal Cortex BA9 

⑧ Pathway: Glycosaminoglycan Biosynthesis Chondroitin Sulfate, Tissue: Brain Frontal Cortex 

BA9  

 

 



 

 

11 

With the demonstration of Figure 1 and Figure 2, we select 4 representative combinations for 

each method. For GSVA, all 4 the pairs we selected, which are Folate Biosynthesis / Adipose 

Subcutaneous, Folate Biosynthesis / Muscle Skeletal, Sulfur Metabolism / Muscle Skeletal, and 

Taste Transduction / Skin - Sun Exposed (Lower leg) have over 90 significant SNPs p-value. For 

Z-score, all of the pairs we selected have over 30 significant SNPs p-value, which are 

Glycosaminoglycan Biosynthesis Chondroitin Sulfate / Brain Frontal Cortex BA9, Glyoxylate 

and Dicarboxylate Metabolism / Brain Frontal Cortex BA9, Folate Biosynthesis / Adipose 

Subcutaneous, Olfactory Transduction / Adrenal Gland.  

We draw the Manhattan plots for each combination in Figure 3-10. In these plots, the x-axis 

represents the SNP location on the Chromosome, the y-axis represents the negative log 10 of the 

p-value for the corresponding SNP. In addition, the blue line is the threshold 1 × 10−5, and the 

red line is the threshold 5 × 10−8. 
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Figure 3. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Folate Biosynthesis / Adipose Subcutaneous with GSVA Method 

In Figure 3, we find the SNP rs138702093 has the most significant p-value, 5.49 × 10−11, which 

lies in the Chromosome 8. In Table 1, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs138702093 8_63902958_G_GT_b37_GT 5.49E-11 

rs16930060 8_63906199_G_A_b37_A 1.52E-10 

rs16930066 8_63907144_A_G_b37_G 1.68E-10 

rs62508123 8_63908088_C_A_b37_A 1.68E-10 

rs16930072 8_63911296_A_G_b37_G 1.68E-10 

rs58554293 8_63884058_G_A_b37_A 2.35E-10 

rs111684515 8_63885412_G_A_b37_A 3.30E-10 

rs113984807 8_63891319_G_A_b37_A 8.24E-10 

rs62508154 8_63912068_G_C_b37_C 8.47E-10 

rs62508156 8_63912174_C_G_b37_G 8.47E-10 

Table 1. The top 10 significant SNPs with p-values 

Folate Biosynthesis / Adipose Subcutaneous with GSVA Method 
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Figure 4. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Folate Biosynthesis / Muscle Skeletal with GSVA Method 

In Figure 4, we find the SNP rs869032350 has the most significant p-value, 4.46 × 10−13, which 

lies in the Chromosome 5. In Table 2, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs869032350 5_79902408_TTAATAA_T_b37_T 4.46E-13 

rs1677670 5_79948654_A_T_b37_T 8.25E-13 

rs1643662 5_79933235_A_G_b37_G 9.47E-13 

rs1650688 5_79956129_G_A_b37_A 9.54E-13 

rs1643646 5_79948641_C_T_b37_T 1.34E-12 

rs1650692 5_79953393_C_T_b37_T 1.66E-12 

rs1643652 5_79955079_G_A_b37_A 1.79E-12 

rs1643645 5_79948540_G_A_b37_A 1.94E-12 

rs860717 5_79947516_A_C_b37_C 1.99E-12 

rs836819 5_79947763_G_A_b37_A 1.99E-12 

 Table 2. The top 10 significant SNPs with p-values 

Folate Biosynthesis / Muscle Skeletal with GSVA Method 
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Figure 5. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Sulfur Metabolism / Muscle Skeletal with GSVA Method 

In Figure 5, we find the SNP rs12447461 has the most significant p-value, 1.83 × 10−10, which 

lies in the Chromosome 16. In Table 3, we show the top 10 significant SNPs of it. 

 

 

 

 

 

 

 

Table 3. The top 10 significant SNPs with p-values 

Sulfur Metabolism / Muscle Skeletal with GSVA Method 

SNP ID SNP information P-value 

rs12447461 16_28582941_C_A_b37_A 1.83E-10 

rs4788069 16_28616665_C_A_b37_A 2.06E-10 

rs41278156 16_28618037_T_G_b37_G 2.18E-10 

rs4788068 16_28616723_C_T_b37_T 2.54E-10 

rs2925630 16_28619132_T_C_b37_C 2.92E-10 

rs111384198 16_28617934_T_C_b37_C 3.01E-10 

rs2925623 16_28618446_T_C_b37_C 3.04E-10 

rs74459546 16_28617888_C_T_b37_T 3.09E-10 

rs7191548 16_28614734_T_C_b37_C 3.15E-10 

rs116840534 16_28617890_A_G_b37_G 3.29E-10 
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Figure 6. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Taste Transduction / Skin - Sun Exposed (Lower leg) with GSVA Method 

In Figure 6, we find the SNP rs1047712 has the most significant p-value, 2.59 × 10−13, which 

lies in the Chromosome 12. In Table 4, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs1047712 12_11324364_G_A_b37_G 2.59E-13 

rs2416549 12_11325804_G_A_b37_G 2.62E-13 

rs2416548 12_11324176_C_A_b37_C 6.15E-13 

rs1047709 12_11324344_C_T_b37_C 6.15E-13 

rs7488095 12_11323939_G_C_b37_G 6.39E-13 

rs7488102 12_11323994_G_A_b37_G 6.39E-13 

rs1863848 12_11328653_C_T_b37_C 9.24E-13 

rs7350611 12_11331094_T_C_b37_T 2.40E-12 

rs6488357 12_11331973_C_A_b37_C 2.40E-12 

rs71057704 12_11337456_A_AACAAAC_b37_A 2.93E-12 

Table 4. The top 10 significant SNPs with p-values 

Taste Transduction / Skin - Sun Exposed (Lower leg) with GSVA Method 



 

 

16 

 

Figure 7. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Glycosaminoglycan Biosynthesis Chondroitin Sulfate / Brain Frontal Cortex BA9 with Z-score Method 

 In Figure 7, we find the SNP rs411828 has the most significant p-value, 4.32 × 10−9, which lies 

in the Chromosome 12. In Table 5, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs411828 12_118741714_A_G_b37_G 4.32E-09 

rs428073 12_118682751_C_T_b37_C 5.29E-09 

rs795480 12_118617641_C_G_b37_C 5.66E-09 

rs811247 12_118622836_G_T_b37_G 5.66E-09 

rs353895 12_118633715_T_C_b37_T 5.66E-09 

rs1726390 12_118645384_A_G_b37_A 5.66E-09 

rs1699160 12_118756336_C_A_b37_C 8.92E-09 

rs795479 12_118618027_G_A_b37_G 1.08E-08 

rs464781 12_118689816_T_C_b37_T 1.11E-08 

rs459229 12_118684748_A_C_b37_A 1.17E-08 

Table 5. The top 10 significant SNPs with p-values 

Glycosaminoglycan Biosynthesis Chondroitin Sulfate / Brain Frontal Cortex BA9 with Z-score 

Method 
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Figure 8. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Glyoxylate and Dicarboxylate Metabolism / Brain Frontal Cortex BA9 with Z-score Method 

In Figure 8, we find the SNP rs428073 has the most significant p-value, 8.34 × 10−11, which 

lies in the Chromosome 12. In Table 6, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs428073 12_118682751_C_T_b37_C 8.34E-11 

rs464227 12_118722997_G_A_b37_A 1.74E-10 

rs795480 12_118617641_C_G_b37_C 1.90E-10 

rs811247 12_118622836_G_T_b37_G 1.90E-10 

rs353895 12_118633715_T_C_b37_T 1.90E-10 

rs1726390 12_118645384_A_G_b37_A 1.90E-10 

rs1726392 12_118598925_A_G_b37_A 1.94E-10 

rs1277441 12_118605989_G_A_b37_G 1.94E-10 

rs2454757 12_118668359_T_C_b37_T 2.33E-10 

rs1151900 12_118686282_A_G_b37_A 2.43E-10 

Table 6. The top 10 significant SNPs with p-values 

Glyoxylate and Dicarboxylate Metabolism / Brain Frontal Cortex BA9 with Z-score Method 
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Figure 9. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Folate Biosynthesis / Adipose Subcutaneous with Z-score Method 

In Figure 9, we find the SNP rs6984196 has the most significant p-value, 1.10 × 10−9, which 

lies in the Chromosome 8. In Table 7, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs6984196 8_63909975_G_T_b37_T 1.10E-09 

rs60408006 8_63918525_T_C_b37_C 1.21E-09 

rs7004312 8_63919102_G_C_b37_C 1.21E-09 

rs16930070 8_63910434_T_C_b37_C 1.22E-09 

rs16930062 8_63906216_A_G_b37_G 1.34E-09 

rs62508120 8_63906382_G_T_b37_T 1.34E-09 

rs60782904 8_63906763_A_T_b37_T 1.34E-09 

rs1031553 8_63906828_G_A_b37_A 1.34E-09 

rs62508122 8_63908069_C_G_b37_G 1.34E-09 

rs76746695 8_63908240_A_AG_b37_AG 1.34E-09 

Table 7. The top 10 significant SNPs with p-values 

Folate Biosynthesis / Adipose Subcutaneous with Z-score Method 
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Figure 10. Manhattan Plot for the eQTL p-value with the boxplot of the peak SNP’s genotype 

Olfactory Transduction / Adrenal Gland with Z-score Method 

In Figure 10, we find the SNP rs28453305 has the most significant p-value, 4.22 × 10−12, which 

lies in the Chromosome 6. In Table 8, we show the top 10 significant SNPs of it. 

SNP ID SNP information P-value 

rs28453305 6_32501842_G_A_b37_G 4.22E-12 

rs72849276 6_32469075_C_T_b37_C 1.34E-11 

rs35350417 6_32513687_C_T_b37_C 1.51E-11 

rs67020511 6_32513415_C_T_b37_C 1.58E-11 

rs34072909 6_32513966_A_T_b37_A 4.25E-11 

rs72849280 6_32469166_A_T_b37_A 4.28E-11 

rs71545459 6_32469173_G_A_b37_G 4.28E-11 

rs72844103 6_32513249_A_G_b37_A 7.33E-11 

rs72844104 6_32513250_C_G_b37_C 7.33E-11 

rs66717749 6_32513377_C_T_b37_C 8.35E-11 

Table 8. The top 10 significant SNPs with p-values 

Olfactory Transduction / Adrenal Gland with Z-score Method 
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In the boxplots above, we can see the monotone trend of the genotypes in most of these SNPs 

and the scatter points are normally distributed with the larger n. That provides solid evidence for 

the SNPs we selected. 

To summarize, using GSVA and combined Z-score method working on pathways, we find some 

meaningful SNPs, for some specific pathways and tissues. The p-values for these SNPs are 

extraordinary from the other SNPs, showing the strong association between the genotype of these 

SNPs with these pathway-level scores. We list all the peak SNPs with the detail information in 

Table 9.  

SNP ID P-value Chromosome Pathway Tissue Method 

rs138702093 5.49E-11 8 Folate Biosynthesis  Adipose Subcutaneous  GSVA 

rs869032350 4.46E-13 5 Folate Biosynthesis Muscle Skeletal GSVA 

rs12447461 1.83E-10 16 Sulfur Metabolism  Muscle Skeletal GSVA 

rs1047712 2.59E-13 12 Taste Transduction 
Skin - Sun Exposed (Lower 

leg)  
GSVA 

rs411828 4.32E-09 12 

Glycosaminoglycan 

Biosynthesis 

Chondroitin Sulfate  

Brain Frontal Cortex BA9  Z-score 

rs428073 8.34E-11 12 

Glyoxylate and 

Dicarboxylate 

Metabolism 

Brain Frontal Cortex BA9  Z-score 

rs6984196 1.10E-09 8 Folate Biosynthesis Adipose Subcutaneous Z-score 

rs28453305 4.22E-12 6 
Olfactory 

Transduction 
Adrenal Gland  Z-score 

 

Table 9. Summary of the peak of the significant SNPs 
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Discussion 

 

Compared the these two methods, we found that one pathway/tissue pair in both methods’ 

selection. It is the pathway Folate Biosynthesis / Adipose Subcutaneous, and the significant 

SNPs are in Chromosome 8 at the same time, and the location for these SNPs are even close. In 

future research, we can analyze the association between the significant SNPs and the pathway, 

tissue. 

 

Also, we can observe there are some Manhattan plots showing the second peak, some of them 

are even high than the genome-wide threshold 5 × 10−8. In the future, we plan to follow up with 

these result. 

 

Furthermore, there are some special Chromosomes that emerge several times. For instance, 

Chromosome 12 emerges three times in our analysis. We should find out the mutation frequency 

on this Chromosome and check out why this Chromosome appeared frequently.  

 

We found some biologica evidence that can solid our findings. The SNPs found by GSVA or Z-

score method to be associated with Folate Biosynthesis in Adipose, such as rs138702093 

(GSVA) and rs6984196 (Z-score) are located in the exon of NKAIN3 gene, which is a coding 

SNP. The protein name of NKAIN3 is sodium/potassium transporting ATPase interacting 3. 

These SNPs are also shown as significant eQTLs pf the GGH gene which is a member of the 

Folate biosynthesis pathway and located near NKAIN3 gene. This shows that GGH gene may 

play a critical role inside the pathway. The SNPs associated with Folate Biosynthesis and Muscle 
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Skeletal are located in DHFR. Dihydrofolate reductase (DHFR) is a well-known enzyme of the 

folate metabolic pathway and it is a validated drug target for leishmaniasis. The SNP rs12447461 

is located in gene NPIPL1, CCDC101, SGF29. eQTL of SULT1A1, SULT1A2, NUPR1, IL27, 

SH2B1. Rs1047712 near many TAS2R genes. 

 

 

In addition, for Z-score method, the SNP rs428073 is located inside TAOK3 gene coding exon 5, 

which is a GWAS SNP (14, 15). Rs28453305 is eQTL of HLA-DRB5, HLA-DRB1, associated 

with the pathway Olfactory transduction. These above give solid evidence for the novel method 

we developed. 

 

Besides, Yifan Han’s work is using another two methods calculating pathway-score to find 

SNPs. We can have a comparison. If there are some SNPs are lied in common pairs of both our 

work, that should give strong evidence for this new method. 
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