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Abstract 

Returns to Scale in the Hedge Fund Industry 
By Stefan Zotovic 

 

Financial economists and investors alike have long tried to understand the driving forces 

behind hedge fund performance. Progress has been made in, for example, distilling manager skill 

from market and other risk exposures. However, one key question has been left unanswered, or 

rather, poorly answered: Is the size of a fund informative in predicting its future returns? In the 

literature, there have been numerous and contradictory attempts to pin down this scale effect. 

However, econometric bias and uncertainty in the methodologies have interfered with the efforts. 

Armed with an enhanced recursive demeaning methodology, we find significant evidence of 

decreasing returns to scale at the fund level which set in after an optimal size. Importantly, we 

show that it is necessary to account for nonlinearity in the fund size effect. Next, we add to the 

literature by showing that there are no significant decreasing returns to scale at the industry level. 

Moreover, the fund-level returns to scale are robust to inclusions of industry size. We reformulate 

this result as an investment strategy by developing a method to sort funds into those experiencing 

increasing returns to scale (IRS) and those experiencing decreasing returns to scale (DRS). Then 

we build a portfolio that is long IRS funds and short DRS funds and show that significant positive 

returns can be generated by capitalizing on the size-performance relationship.  
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1 Introduction

Financial economists and investors alike have long tried to understand the driving forces

behind returns generated by actively managed funds. Progress has been made in, for exam-

ple, distilling manager skill from market and other risk exposures. However, one key question

has been left unanswered, or rather, poorly answered: Is the size of a fund informative in

predicting its returns?

This question is more relevant now than ever before in the hedge fund industry, which

has experienced significant growth since the Great Financial Crisis of 2008. Artificially low

interest rates have led yield-seeking investors to search for various ways to deploy their

capital. In the third quarter of 2018, the industry reached an all-time high in assets under

management (AUM) with just over $3 trillion, excluding funds of funds.1 Moreover, the

number of active funds has grown to over 15,000, accompanying the growth in aggregate

industry AUM. With the industry growing by all measures, size emerges as a crucial factor

to consider when evaluating hedge fund performance.

Though the returns-to-scale question is at its core a practical one, it has major implica-

tions for investment theory as well. Berk and Green (2004) propose a framework for active

portfolio management that has decreasing returns to scale as a cornerstone. There are three

key elements of the model. First, investors allocate capital to funds competitively. Second,

manager skill (i.e. the ability to generate alpha) is heterogeneous; however, there are de-

creasing returns to scale in deploying manager alpha. Finally, investors learn about manager

skill from past performance, and rationally allocate capital to those managers that have

shown higher alpha. In model equilibrium, there is no risk-adjusted return. This argument

is essentially a no-arbitrage argument, made clear by a consideration of two funds: an active

fund and a passive fund. If the active funds generate alpha, investors will rationally allocate

capital to the fund until alpha is eroded fully and the value of investing in either fund is

the same. This no-arbitrage argument, of course, assumes decreasing returns to scale. If

1BarclayHedge
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they were not present in deploying the active fund manager’s alpha, the fund would grow

arbitrarily large with investor flow increasing ad infinitum to the active fund. Therefore,

there exists the theoretical prior that there should be decreasing returns to scale at the fund

level.

Active money management can be decomposed into two primary industries: the mutual

fund industry and the hedge fund industry. While the two types of funds are similar in that

they are both actively managed portfolios of investments, they diverge greatly in almost

every other aspect. Hedge funds often have much fewer investors and take on higher risks

and leverage in investing. They typically require minimum investments, so the target investor

is a high net-worth individual or another investment fund. In addition, it is common for

them to impose a certain lockup period in which funds cannot be called by the investors.

This allows the funds to engage in more illiquid investments. Mutual funds, on the other

hand, are forced to stick to more liquid investments, as an investor run on funds would

be very problematic otherwise. While both mutual funds and hedge funds charge a fixed

management fee, hedge funds have additional performance incentives for the manager. These

incentives are subject to high water marks and hurdle rates, to provide some assurance of

return to investors. Finally, the mutual fund industry is much more regulated than the hedge

fund industry.

The central support for fund-level decreasing returns to scale in the hedge fund industry

is the idea that larger funds will eventually run into liquidity issues, and they will have

a tougher time beating the market. On the other hand, however, fixed costs of funds act

as an opposing force to decreasing returns to scale. As fund size increases, the fixed fees

and payments of the fund decrease relatively, so that there are increasing returns to scale.

Certainly, there are other attributes of a fund which might lend themselves to increasing,

decreasing, or constant returns to scale. The tug-of-war between these opposing e↵ects of

scale ultimately determine the scale e↵ect of the fund.

Decreasing returns to scale have been detected empirically in the mutual fund industry



3

at the fund level (Zhu (2018)). Pástor, Stambaugh, and Taylor (2015) failed to detect

decreasing returns in the mutual fund industry at the fund level, but Zhu (2018) revisited

this result using an enhanced recursive demeaning methodology. In the hedge fund literature,

Agarwal, Daniel, and Naik (2004), Fung, Hsieh, Naik, and Ramadorai (2008), Teo (2009), and

Joenväärä, Kosowski, and Tolonen (2013) find evidence of decreasing returns to scale at the

fund level. However, Cao and Velthuis (2017) find no evidence of decreasing returns to scale

at the fund level, using the recursive demeaning methodology of Pástor, Stambaugh, and

Taylor (2015). While the attempts prior to Cao and Velthuis (2017) were plagued with bias,

their attempt was undermined by uncertainty and weakness in hypothesis testing. Given

the mixed findings for returns to scale and the recent advances in financial econometrics, it

is important to revisit the question of returns to scale at the fund level in the hedge fund

industry.

Similarly, there are mixed findings for the scale e↵ect of industry size, as well as di↵erent

ways of defining “industry”, itself. In our analysis, we use only funds that follow equity-

oriented strategies and call the sum of all equity-oriented funds the “industry”, like Cao and

Velthuis (2017). Specifically, this definition includes funds that are long/short equity, equity

market neutral, and event-driven. Getmansky (2012) finds that if investors chase a category

of hedge funds with good past performance, then the probability of funds liquidating in that

category increases. This suggests that as more funds flock to a category, alpha is eroded and

some are forced to liquidate (i.e. decreasing returns to scale at the defined category level).

Naik, Ramadorai, and Stromqvist (2007) regress Fung-Hsieh seven-factor model alpha on

lagged aggregate sizes of various strategies and find significant negative estimates of the size

coe�cients for four out of the eight strategies. They define the strategies according to the

distinct style factors in hedge funds returns, found by Fung and Hsieh (1997) and Brown

and Goetzmann (2001). Two of these strategies are comprised predominately by equity

funds, which we use in our analysis. For the strategy named ‘Multi-Process’ which contains

event-driven funds, the estimate for the coe�cient is negative and not significant. Moreover,
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for the strategy named ‘Security Selection’ (comprised of long/short equity hedge, equity

hedge, and equity market neutral funds), the estimate for the coe�cient is positive and not

significant. This strategy category corresponds closely with our industry definition.

Cao and Velthuis (2017), on the other hand, find that there are decreasing returns to scale

at the industry level. They then further break down into strategy levels, corresponding to

the three categories that comprise the industry, and find significant decreasing strategy-level

returns to scale only for the Long/Short Equity Hedge strategy, but not for Equity Market

Neutral or Event-Driven. Note the key di↵erences in how Naik, Ramadorai, and Stromqvist

(2007) and Cao and Velthuis (2017) define strategy level. We do not do a strategy-level

analysis in addition to the industry-level, as we have defined it, and so we sidestep the

naming confusion. It makes the most sense to simply group the equity funds and see if there

is an aggregate size e↵ect, as the constraints are that of the entire equity market.

As mentioned, hedge funds are much less regulated than mutual funds. Importantly,

hedge funds are not required to report returns periodically. Thus, any data on hedge funds

is voluntary. Ironically, though there is a relative lack of regulation on hedge funds, one

key regulation motivates funds to report their data. Rule 502(c) of the 1933 Securities Act

prohibits hedge funds from publicly advertising themselves; instead, they list their funds in

various databases to appeal to investors (Jorion and Schwarz (2012)). The listing process

is subject to several biases in the data, including survivorship bias, self-selection bias, and

backfill bias. Survivorship bias is associated with the phenomena that only the funds that are

able to generate returns are able to last. Self-selection bias is associated with certain funds

choosing to report their returns, which may not be representative of all hedge funds. Backfill

bias is the tendency for funds to misreport returns for previous months when beginning to

report to a database. We mitigate these e↵ects by taking certain measures in our data

cleaning. In addition to specific biases in the data, there is the concern with hedge funds

that they outright misreport returns. Suggestive of manipulation, Bollen and Pool (2009)

find that the distribution of monthly hedge fund returns has a low number of small losses
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and a large number of small gains, creating a kink point around zero. However, this can be

attributed to the incentive fee mechanism that somewhat distorts net returns with respect to

gross returns, in addition to the underlying illiquid assets and fixed-income securities hedge

funds tend to invest in which have yields minimally bounded at zero (Jorion and Schwarz

(2014)). Therefore, we are more at peace with the data, given no direct proof of manipulation

in reporting of returns.

The asymmetry in net returns created by the incentive mechanism in hedge funds mo-

tivates us to use the gross return measure. In analyzing whether fund size constrains per-

formance, it is more useful to look at what the fund manager literally made, rather than

the net return, which takes out the fees. Most funds do not report gross returns to the

database, but this measure can be backed out from the given data (Jorion and Schwarz

(2014)). Gross returns are driven not just by manager skill, but also by exposures to fac-

tor variations. Therefore, we use two risk-adjusted alpha measures, Fung-Hsieh eight-factor

model Alpha and Capital Asset Pricing Model Alpha, giving us three performance mea-

sures to analyze (Fung and Hsieh (2004)). For fund size, the data provides a measure of

assets under management. Our performance-size relationship is compared using these three

performance measures and the fund size.

A simple OLS regression of performance on size su↵ers from an omitted variable bias,

because unobserved manager skill is contained within the error term. If skill and fund size

are positively correlated, then there is an upward bias in the estimator. In other words,

the regression might fail to show decreasing returns to scale even in their presence. In

order to control for the unobserved heterogeneity in skill across funds and eliminate the

omitted variable bias, a fixed e↵ect model is used. The fixed e↵ect model is generally used

to control for unobserved heterogeneity, under the assumption that the heterogeneity is time-

invariant. In our case, the unobserved heterogeneity is manager skill, so the assumption is

reasonable and the model helps to eliminate the omitted variable bias. Solving requires a

demeaning procedure to see if variations in fund size around the mean have an e↵ect on
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variations in performance around a mean. However, this method su↵ers from finite sample

bias (Hjalmarsson (2010)). Pástor, Stambaugh, and Taylor (2015) build on work by Moon

and Phillips (2000), Sul, Phillips, and Choi (2005), and Hjalmarsson (2010) to develop a

procedure in which all time-series demeaned variables are substituted with their forward-

demeaned counterparts to remove dependencies between the demeaned fund size and error

term. In this procedure, used by Pástor, Stambaugh, and Taylor (2015) for mutual funds and

by Cao and Velthuis (2017) for hedge funds, a regression is run of forward-demeaned returns

on the forward-demeaned fund size, while instrumenting the forward-demeaned fund size by

backward demeaned fund size. Both fail to find decreasing returns to scale in their respective

industries at the fund level. Zhu (2018) finds that this recursive demeaning procedure su↵ers

from a misspecification resulting from a restriction in not allowing a constant in the first

stage of the two-stage least squares regression, which is flawed when dealing with fund

sizes. This misspecification increases estimation uncertainty and thereby reduces the power

in hypothesis testing. Using an enhanced estimator, Zhu (2018) finds fund-level decreasing

returns to scale in the mutual fund industry. We use this enhanced estimator for the hedge

fund industry and find that significant decreasing returns to scale eventually set in at the fund

level. By including a squared term, we allow for non-linearity in the relationship between

size and returns. We find that the estimate for the coe�cient on the size term is positive

and significant and the estimate for the coe�cient on the squared size term is negative and

significant. This implies that funds experience increasing returns to scale up to an optimal

point after which they experience decreasing returns to scale. We find that it is important

to account for non-linearity in the fund size e↵ect, which is uncommon in the literature.

Moreover, there are no significant returns to scale at the industry level. Thus, the size of the

hedge fund industry does not have a significant impact on the returns of a particular fund.

This could be due to the relatively small fraction of the total stock market capitalization that

hedge funds make up (about 0.56% monthly average). These results are robust to several

di↵erent performance measures and industry size specifications.
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We analyze the practical importance of identifying funds that are experiencing increasing

returns to scale (IRS) and funds that are experiencing decreasing returns to scale (DRS).

Intuitively, IRS funds are underfunded and should have a greater ability to generate alpha

than DRS funds. We design a strategy that takes a long position in IRS funds and a

short position in DRS funds and find that it consistently yields positive returns for all

performance measures and with various identification methods for determining IRS/DRS.

Once we carefully account for non-linearity in sorting funds experiencing IRS versus funds

experiencing DRS, the results are strongest. The portfolio analysis shows that returns to

scale have important implications for picking out which funds are underfunded. This is

important for investors who want to choose to allocate capital to funds that can generate

higher alpha.

The remainder of the paper will proceed as follows: Section 2 will go into more detail

about the data used, Section 3 will motivate and outline the enhanced recursive demeaning

methodology, Section 4 will discuss results, and Section 5 will conclude. Tables are found in

Appendix A and figures are found in Appendix B.

2 Data

The data comes from the Trader Advisor Selection System (TASS), which includes data

on over 7,500 active hedge funds and funds of funds and over 11,000 graveyard funds. It

includes variables on return, assets under management, performance fees, fund types, date

that the fund starting reporting to TASS, etc.

2.1 Data Cleaning

Per Chung and Kang (2016), we filter out funds that do not report monthly returns,

funds that report returns not denominated in the US dollar, funds with unknown styles, and

funds that report before-fee returns, not after-fee. Following Aggarwal and Jorion (2010),
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we filter out duplicates in the data. Returns prior to 1994 are not considered because TASS

does not adequately cover graveyard funds before this date (Agarwal, V., Daniel, N., and

Naik, N. (2004)). To avoid “stale returns”, funds that report the same returns for at least

three consecutive months are excluded from the data (Joenväärä, Kosowski, and Tolonen

(2013)). Funds that do not follow equity-oriented strategies are filtered out, per Cao and

Velthuis (2017). This measure is taken to allow for proper industry level measurements, as

the value of all securities these funds can invest in is easily trackable (i.e. the stock market).

This corresponds to funds with category designations of ‘Long/Short Equity Hedge’, ‘Equity

Market Neutral’, and ‘Event-Driven’ in the TASS database.

Hedge fund data is, by nature, prone to certain biases, including survivorship bias, self-

selection bias, and backfill bias. Survivorship bias is the bias rooted in focusing on funds

that have been able to stay afloat and generate returns, the survivors. The survivorship

bias is addressed by including active funds as well as graveyard funds; in other words, both

the survivors and non-survivors are included. Self-selection bias is associated with funds

choosing to report their returns. The presence of this bias would indicate that the sample

is not representative of the world of hedge funds. Fung and Hsieh (1997) o↵er anecdotal

evidence that the magnitude of self-selection bias is insignificant due to o↵setting factors

at play. On one hand, highly successful funds, such as the George Soros Quantum Fund,

have no need to advertise good returns for a chance at more investor capital. On the other

hand, managers eager to grow AUM may relish the opportunity to report their returns to

databases. However great or small the magnitude of the bias, there is no real way to avoid it

as the entire TASS database is derived from hedge funds self-reporting. As a precautionary

step, funds that do not report returns for at least 24 periods are filtered out (Chung and

Kang (2016)), so that funds which encounter bad returns and stop reporting are not taken

into consideration.

Backfill bias is the bias associated with posting earlier returns when a fund begins report-

ing to a database. The “incubation period” is the period of time in between fund inception
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and the date at which the fund begins reporting returns. During the incubation period, fund

managers use capital of friends and family to attempt to generate good returns. Then, they

market their record to database vendors. When the vendors input the data, they need to

backfill historical returns (Fung and Hsieh (2000)). TASS reports the dates that define the

incubation period, inception date and reporting date. Fung and Hsieh (2000) report that the

median incubation period is 343 days, or about 12 months using the TASS database from

1994 to 1998. Jorion and Schwarz (2012) find an average incubation period of 27 months,

using the TASS database as well as the HFR database. Given the estimates for the length

of the incubation period, it is important to gauge how they impact the returns data. Agar-

wal and Jorion (2010) define a “non-backfilled” fund as one for which the the incubation

period is less than 180 days. The lag of 180 days is chosen as a bu↵er for funds that may be

focused on gathering assets rather than investing initially. They find that the backfill bias

is quite substantial; backfilled funds outperform the non-backfilled funds for the first four

years. Due to these findings, it is common in the literature to filter out the first portion of

a fund’s returns.

Chung and Kang (2016) choose to filter out the first 18 months of returns for each fund.

Joenväärä, Kosowski, and Tolonen (2013), Teo (2009), and Zhong (2008) exclude the first

12 months of returns. Fung, Hsieh, Naik, and Teo (2016) exclude the first 24 months of

returns. However, Aggarwal and Jorion (2010) emphasize that this filter is rather arbitrary.

The literature broadly chooses to eliminate at least 12 months based on the median backfill

period of 343 days found by Fung and Hsieh (2000). Even with this estimate, however,

about half of the funds that backfill will still have included some returns from the incubation

period. On the upper end of the spectrum, choosing to eliminate 24 months of returns for a

fund is excessive when considering funds with no backfill.

This bias is especially problematic for the question of returns to scale. Funds tend to

be smaller at inception, before they have had time to generate returns and grow the assets

under management. Backfilling higher returns early on, and then reporting actual returns
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later on could show decreasing returns to scale when there are not any present. Therefore, it

is important to address this problem in a conservative and comprehensive way. We decide to

filter out backfilled returns by excluding all returns for a fund before the date it was added

to the database, per Aggarwal and Jorion (2010).

2.2 Size Proxies

Fund size is adjusted for inflation using the Consumer Price Index (CPI) to January 2000

dollars. Though Cao and Velthuis (2017) only use fund size, we use logarithm of fund size

as a second size proxy for comparison, which is used widely in both mutual fund and hedge

fund data (see, e.g., Pástor, Stambaugh, and Taylor (2015), Zhu (2018), Chen, Hong, Huang,

and Kubik (2004), Ferreira, Keswani, Miguel, and Ramos (2013), Yan (2008), Ammann and

Moerth (2005), Naik, Ramadorai, and Stromqvist (2007), Teo (2009)).

We define the industry level in two ways for robustness. First, we use the aggregate of the

CPI-adjusted fund AUM in dollars. Next, we use the previous measure divided by the total

U.S. stock market capitalization (Cao and Velthuis (2017)). Therefore, the latter measure

looks at the hedge fund industry as a function of the total stock market, which might be a

better measure for capturing capacity constraints and crowding.

2.3 Deriving Performance Measures: Gross Return

There are several measures of performance used in the literature for hedge funds. One

is the net-of-fee return, which is most common in the data (as mentioned in Section 2.1, we

filter for this measure in the data). As the name suggests, this return measure is taken after

management and incentive fees are subtracted. Typical performance fees are around 20% of

profits, and typical management fees are around 2% of assets under management (both on

a per annum basis). Hedge funds also generally have high water marks and hurdle rates. A

high water mark is a previous high value achieved by the fund, with performance fees kicking

in after the high water mark is surpassed. For example, if a hedge fund with $100 generates
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20% returns and reaches $120, but then loses $40, incentive fees will only kick in after the

managers make back the lost money, i.e. above $120. The hurdle rate is the minimum rate

of return expected, above which managers are given incentive fees.

Net-of-fee returns are asymmetrical by nature, due to the performance incentives. Take

for example a fund that does not charge any management fee but does charge a 2% per-

formance fee. Ignoring high water marks and hurdle rates, if it has a return of 10%, then

the reported net-of-fee return is 8%. However, if it has a return of -10%, then that is the

net-of-fee return that it reports, as the performance incentive is not met. Thus, the positive

returns are compressed towards zero (Jorion and Schwarz (2014)). Though this example is

extreme, it is illustrative of the asymmetry.

In order to avoid the distortions and asymmetries of the net-of-fee return measure, it

is important to use the gross return measure. Unfortunately, this measure is generally not

included in the data. However, it can be backed out from the given data, using net-of-

fee return, net asset value (NAV), management fee, performance fee, and high water mark.

Although the TASS database does not report incentive fee accrual period, Jorion and Schwarz

(2014) find that the distribution of gross returns for assuming quarterly accrual period and

assuming annual accrual period is nearly identical. Like them, we report results assuming

an annual accrual period.

A nuance to consider is that the net-of-fee returns can be di↵erent for all investors (who

do not invest capital in the same starting time). This is due to the incentive mechanisms,

which are particular to the specific investor as a result of the high water mark. Following

Jorion and Schwarz (2014), we assume that all funds have a high water mark and that

all investors are invested at the previous high water mark. This is like assuming that all

investors enter a fund at inception and no new investors allocate capital afterwards. At first,

this seems like an unreasonable assumption. For this reason, Cao and Velthuis (2017) outline

a very complex procedure for backing out gross returns that, among other features, has a

first-in-first-out (FIFO) rule to determine which investor’s capital is leaving or entering the
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fund. However, according to Jorion and Schwarz (2014), TASS reports net-of-fee returns

for a representative share class of investors who all have the same high water mark, which

is usually the oldest. Therefore, our assumption is reasonable and fits the data reporting

more accurately. Similarly, Teo (2009) assume that returns accrue to a first-year investor in

calculating gross returns.

Per Jorion and Schwarz (2014), the gross return is backed out as follows. First, the high

water mark (HWM) at period t is tracked as the maximum value for net-asset-value (NAV )

up to period t� 1. Then the accrued incentive fee, IFt is calculated as

IFt =
f

1� f
MAX(NAVt �HWM, 0) (1)

where f is the incentive fee percentage. Then the management fee, MFt is calcuated as

MFt =
m

1�m
(NAVt + IFt) (2)

where m is the management fee percentage. Finally, the gross return, Rt is computed as

Rt =
NAVt �NAVt�1 +MFt + IFt � IFt�1

NAVt�1 + IFt�1
(3)

2.4 Deriving Performance Measures: Risk-Adjusted Alphas

In evaluating the return of a fund, it is crucial to distinguish between the portion of return

that comes from general risk exposures of the fund and the portion that comes from manager

skill, or alpha. The traditional view for investment vehicles, as expressed by the Capital As-

set Pricing Model (CAPM), is that all returns not related to the market are attributable to

alpha. However, hedge funds are very unique in the investment industry with regards to the

loose restrictions they face in allocating capital, often engaging in short-selling, leveraging,

and derivatives. Much research focused on hedge-fund-specific risk exposures has identified

key factors that can be used to generate a more comprehensive and appropriate alpha mea-
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sure. Therefore, in addition to CAPM alpha, we use Fung-Hsieh alpha (FH alpha) based on

the Fung and Hsieh (2004) eight-factor model. The eight factors used to calculate FH alpha

are S&P 500 return minus risk free rate (MKT), Wilshire small-cap minus large-cap return

(SZSPRD), yield spread of the U.S. 10-year Treasury bond over the three-month Treasury

bill, adjusted for the duration of the U.S. 10-year Treasury bond (BNDMKT), change in the

credit spread of Moody’s BAA bond over 10-year Treasury bond adjusted for duration (CRD-

SPRD), excess returns on portfolios of lookback straddle options on currencies (PTFSFX),

bonds (PTFSBD), and commodities (PTFSCOM), and Emerging Market Index total return

(MSCIEM) (Fung and Hsieh (2001)).2 These eight factors have great explanatory power for

hedge fund returns (Teo (2009)). For CAPM alpha, the only factor is excess market return

(MKTRF) (Fama and French (1993)). Excess market return is calculated as the di↵erence

between the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP)

and the one-month Treasury bill rate (from Ibbotson Associates).3

In order to derive the alpha measures, excess gross return (gross return minus risk-free

rate) is regressed on the factors (or single factor in the case of CAPM alpha) using rolling

regressions, per Agarwal, Green, and Ren (2017). Using rolling regressions allows us to have

a unique alpha for a fund at time t, not simply a time-invariant fund alpha, as is used by Cao

and Velthuis (2017). The former uses one regression per fund per month, whereas the latter

uses one regression per fund. The use of rolling regressions better captures the risk-adjusted

performance for a fund at a specific time. The months t� 23 to t are used in the following

regression to determine FH alpha factor loadings, where the sum of all factors at time t

multiplied by their coe�cients is represented by the sum notation:

Ri,t �Rrf,t = ↵i +
X

factors

�i,factorFACTORt + ui,t (4)

2David A. Hsieh’s Data Library, http://faculty.fuqua.duke.edu/ dah7/DataLibrary/TF-FAC.xls
3Fama and French Data Library, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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Similarly, the months t� 23 to t are used to determine the CAPM alpha factor loading:

Ri,t �Rrf,t = ↵ + �i,mktrfMKTRFt + uit (5)

Next, the alpha measures are calculated by subtracting excess actual gross return from the

model-fitted return in each case at time t. As a result of the window size for the regressions,

alpha measures for each fund exist starting for each month after the twenty-third in the

sample.

3 Methodology

Let Ri,t be the return for fund i at time t. Let xi,t be the fund size for fund i at time t .

Note that lagged fund size is of interest for seeing the e↵ect of fund size on fund performance;

in other words, for fund size, the period t� 1 is used instead of t. This is because the fund

size at the beginning of an investment period is relevant for performance of a fund at the

end of the investment period.

3.1 OLS Regression

In order to evaluate the scale e↵ect, much of the literature uses a pooled OLS regression,

which is simply an OLS regression run on panel data (see, e.g., Chen, Hong, Huang, and

Kubik (2004), Ferreira, Keswani, Miguel, and Ramos (2013), Goetzmann, Ingersoll, and

Ross (2003), Yan (2008)). Such an OLS regression of returns on lagged fund size would take

the form:

Ri,t = ↵ + �xi,t�1 + ui,t (6)

Note that skill is an unobservable variable that is consequently found in the error term ui,t.

If the fund size were random and independent from manager skill, then the OLS estimate

for � , b� , in equation (6) would reveal the returns to scale. If b� < 0, there are decreasing
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returns to scale. Similarly, b� = 0 indicates constant returns to scale and b� > 0 indicates

increasing returns to scale. The latter two cases imply that the investment strategies are

infinitely scalable, as incoming funds have no diminishing e↵ect on the returns. In such a

scenario, there would always be a net present value for an investor.

Unfortunately, skill and size are not independent, which leads to a bias in b� in the

simple OLS regression. Larger funds might have the capability to hire more competent

managers. Similarly, more skilled managers may be able to generate higher return and

attract investor capital, thereby increasing fund size. This results in a non-zero expected

value of the error term conditional on lagged fund size, as formulated in equation (7), which

implies an endogeneity problem.

E(ui,t|xi,t�1) 6= 0 (7)

Moreover, there is an upward bias in b� because skill has a positive e↵ect on performance and

size and skill are likely positively correlated (Angrist and Pischke (2009)). Therefore, the

estimator may show constant or increasing returns to scale when, in fact, there are decreasing

returns to scale.

3.2 Fund Fixed E↵ects

When regressing returns on size, there are two potential types of variation that can be

taken into consideration: inter-fund variation and intra-fund variation. Inter-fund variation

is the the variation in average returns from one fund to another. Intra-fund variation is the

variation in returns over time within a fund. The OLS regression in model (6) focuses on

the inter-fund variation, because it assumes that there is no cross-sectional variation in fund

skill. This implies that all funds have the same ↵. Given that there is certain heterogeneity

in manager skill, this is an unreasonable assumption. In order to control for the unobserved

heterogeneity in skill across funds, and, therefore, eliminate the endogeneity problem, a fixed

e↵ect model is used. The fixed e↵ect model holds fixed the average e↵ects of each fund, as
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shown below.

Ri,t = ↵i + �xi,t�1 + ui,t (8)

In the OLS regression model, the intercept is the same for all funds, simply ↵. However,

in the fixed e↵ect model there is a fund-specific intercept, ↵i. Contrary to the inadvertent

focus on inter-fund variation of the OLS panel regression, this model isolates the intra-fund

variation. Specifically, it tells us how the variations in fund sizes around their means relates

to variation in returns around their means. Fixed e↵ect models are relevant under the

assumption that the unobservable factors that lead to endogeneity are time-invariant. In

our case, it is a relatively innocuous assumption that manager skill is time-invariant. Each

fund then has a fixed level of skill, given by ↵i, which absorbs any variation in performance

due to cross-sectional variation in fund skill.

The model in (8) is consistent with the model of Berk and Green (2004), which is outlined

in Section 1. The Berk and Green (2004) model assumes that there is heterogeneity in

manager skill among funds, but that manager skill of a particular fund is constant through

time. Investors perceive a level of manager skill that may di↵er from the true skill, and they

allocate capital to managers who they perceive have higher alpha. The relationship between

perceived skill and true time-invariant skill is summarized in the following equation (Pástor,

Stambaugh, and Taylor (2015)):

perceivedi,t = truei + noisei,t (9)

As the perceived alpha varies, there are variations in the fund size, with investors rationally

allocating capital based on which funds they believe will generate higher returns. Because the

perceived skill is generally not equal to the true skill, the fund size is generally sub-optimal.

In the framework, this causes the true expected return to change based on diseconomies of

scale. For example, when a fund’s perceived alpha exceeds the true alpha, the fund exceeds
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optimal size, and the true expected future return is lower given decreasing returns to scale.

On the other hand, when a fund’s perceived alpha is lower than the true alpha, the fund

size is lower than optimal, and the true expected return is higher. Therefore, the fixed

e↵ect model in (8) corresponds to the theoretical framework of Berk and Green (2004) with

constant fund manager skill, and implies that there are decreasing returns to scale whenever

true alpha of a fund decreases with size.

Though the fixed fund e↵ects model corrects for the omitted variable bias, it introduces

a new finite-sample bias because of the demeaning method used in estimating fixed e↵ect

models. To illustrate this bias, first consider the value for the estimator of � in model (6):

b� =

nX

i=1

(xi,t�1 � xi)(Ri,t �Ri)

nX

i=1

(xi,t�1 � xi)2
(10)

where

xi =

 
TiX

t=1

xi,t

!
/n (11)

and

Ri =

 
TiX

t=1

Ri,t

!
/n (12)

are the sample means of the xi and Ri respectively. The notation implies n funds in the

sample and Ti time periods in the sample for fund i. Now consider the demeaned variables:

exi,t�1 = xi,t�1 � xi (13)

eRi,t = Ri,t �Ri (14)

eui,t = ui,t � ui (15)
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where xi and Ri are defined as before, and

ui =

 
TiX

t=1

ui,t

!
/n (16)

These three variables are demeaned by the full-sample time series means. Then, consider

the demeaned model of (8):

eRi,t = �exi,t�1 + eui,t (17)

Note that there is no intercept in the demeaned model (17), and that the value of the

estimator is the same in both the demeaned model (17) and the fixed-e↵ects model (8).

Using the demeaned variables, (10) can be rewritten as:

b� =

nX

i=1

exi,t�1
eRi,t

nX

i=1

ex2
i,t�1

(18)

In order to investigate bias as the di↵erence between � and b�, (18) can be rewritten as:

b� = � +

nX

i=1

exi,t�1eui,t

nX

i=1

ex2
i,t�1

(19)

Therefore, the estimator b� is unbiased if the numerator of the second term in (19) is equal

to zero. This holds if exi,t�1 and eui,t are not correlated. However, from (13), we can see

that the demeaned fund size depends on all values of fund size across all t, not just periods

before t� 1. The future values of fund size are certainly a↵ected by the error term in time

t. Specifically, exi,t�1 is negatively correlated with the innovation in xi,t which is positively

correlated with ui,t. This implies a negative correlation between exit�1 and euit.

Intuitively, the demeaning process makes each specific value of fund size at a time t in
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the sample dependent on values of fund size for all t in the sample. For example, higher fund

sizes in the future would increase the mean, and thereby decrease the values of the earlier

demeaned fund sizes. This leads to a downward bias in the estimator, which may predict

decreasing returns to scale when there are none.

3.3 Recursive Demeaning

Demeaning the variables by the full time-series means leads to a biased estimator because

of correlation between demeaned size and demeaned innovation. Hjalmarsson (2010) devel-

ops a procedure in which all demeaned variables are replaced with their forward-demeaned

counterparts, building on work by Moon and Phillips (2000) and Sul, Phillips, and Choi

(2005). This procedure is adapted to the economies of scale problem by Pástor, Stambaugh,

and Taylor (2015), and subsequently by Cao and Velthuis (2017), by estimating a two-stage

least-squares (2SLS) regression of recursively demeaned variables. To outline the recursive

demeaning methodology, first, define the forward demeaned variables:

Ri,t = Ri,t �
1

Ti � t+ 1

TiX

s=t

Ri,s (20)

xi,t�1 = xi,t�1 �
1

Ti � t+ 1

TiX

s=t

xi,s�1 (21)

ui,t = ui,t �
1

Ti � t = 1

TiX

s=t

ui,s (22)

Pástor, Stambaugh, and Taylor (2015) and Cao and Velthuis (2017) use the backward de-

meaned variable for fund size as an instrument:

xi,t�1 = xi,t�1 �
1

t� 1

t�1X

s=1

xi,s�1 (23)
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They estimate the 2SLS regression by first regressing xit�1 on xit�1, and then regressing Rit

on the fitted-values from the first stage. Importantly, a zero intercept is imposed in both

stages, as shown below.

First stage: xi,t�1 = ⇢xi,t�1 + vi,t�1 (24)

Second stage: Ri,t = �bxi,t�1 + ui,t (25)

We refer to this recursive demeaning procedure as RD1 for reference. Using RD1 to estimate

the scale e↵ect in �, both Pástor, Stambaugh, and Taylor (2015) and Cao and Velthuis

(2017) find no significant e↵ects at the fund level in the mutual fund industry and hedge

fund industry, respectively. However, Zhu (2018) argues that this is because this estimator

introduces uncertainty that weakens hypothesis testing.

Zhu (2018) runs simulations and calculates the root mean square errors (RMSE) of the

various estimators discussed: the OLS estimator, the fixed e↵ects estimator, and the RD1

estimator. RMSE is calculated as
p
bias2 + sd2, and is preferred to bias or standard deviation

alone in evaluating an estimator. The RD1 estimator generally has a lower RMSE than the

OLS estimator, but it has a larger RMSE than the fixed e↵ect estimator in most simulations.

Therefore, it is not clear that the recursive demeaning methodology of Pástor, Stambaugh,

and Taylor (2015) and Cao and Velthuis (2017) is worthwhile in correcting the finite-sample

bias of the fixed-e↵ect model.

In order to enhance the recursive demeaning estimator, two modifications are proposed.

First, an intercept is included in the first stage of the regression. Second, pure fund size,

xi,t�1, is used as the instrument instead of backward demeaned fund size, xi,t�1. Imposing

a zero intercept in the second stage of the regression is necessary because of the fund fixed

e↵ect being removed in the recursively demeaned model. However, imposing a zero intercept

in the first stage is a clear model misspecification, as it implies that fund size fluctuates

around a constant mean. In turn, it does not allow the regression much flexibility in finding
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the best fit and causes an increase in uncertainty in the estimator.

The revised instrument, xi,t�1, meets the conditions of relevance and exclusion of Roberts

andWhited (2013). The instrument satisfies the relevance condition because it is significantly

related to the forward demeaned variable, xi,t�1, in the first stage of the regression, as both

are related to fund size. It satisfies the exclusion condition because the forward demeaned

values of error are unlikely to be related at all to fund size in the preceding period t� 1:

E(ui,t|xi,t�1) = 0 (26)

The updated 2SLS regression takes the following form:

First stage: xi,t�1 = ⇥+ ⇢xi,t�1 + vi,t�1 (27)

Second stage: Ri,t = �bxi,t�1 + ui,t (28)

We refer to this updated recursive demeaning methodology as RD2. In the first stage, the

demeaned variable for lagged fund size is regressed on the instrument of fund size. An

intercept, ⇥, is included in this stage. In the second stage, fund performance is regressed

on the fitted values for forward demeaned fund size from the first stage. An intercept is not

included in this stage so as to be consistent with the demeaned fund fixed e↵ects model. The

estimator from this second stage gives an unbiased scale e↵ect. Moreover, in the simulations

by Zhu (2018), it has lower RMSE than any of the other estimators, including half the

RMSE of the fixed e↵ects estimator. Most of this improvement is due to the better model

specification of RD2 in allowing for an intercept in the first stage.

3.4 Characterizing Funds as IRS or DRS

In Section 4.3, we motivate a potential investment strategy that monetizes relationship

between size and return. Here, we introduce how the data is collected for the strategy
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development. In order to determine which funds are experiencing increasing returns to scale

(IRS funds) and which funds are experiencing decreasing returns to scale (DRS funds),

another rolling regression is performed, this time with a fixed starting month per fund,

tstart and an end date t that increases by one month for each regression. We perform this

procedure for the three performance measures. When using the two alpha measures, tstart is

the twenty-fourth month for each fund because that is the earliest month for which an alpha

measure is available, as a result of the initial rolling procedure. The rolling begins with a

minimum window of 12 months, and then increases to 13 and and 14 and so on. The months

tstart to t are used in following regression:

Ri,t = ↵ + �xi,t�1 + ui,t (29)

where the return on the left-hand side of the equation is one of the three performance

measures, and where xi,t�1 is the lagged size. Note that the recursive demeaning procedure

developed in the previous section is not used, as only one fund is considered per regression.

The sign of the estimate for � gives the result: negative implies DRS and positive implies

IRS.

4 Empirical Results

This section gives the empirical results investigating whether or not there are decreasing

returns to scale at fund level, while controlling for industry level. Then, we derive a potential

investment strategy capitalizing on the scale e↵ect of non-optimally funded funds.

4.1 Fund-Level Returns to Scale

As a first step, we look at the size-performance relationship at the fund level using our

enhanced recursive demeaning procedure (RD2) and compare it to the results using the

recursive demeaning procedure of Pástor, Stambaugh, and Taylor (2015), used by Cao ad
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Velthuis (2017) for hedge funds (RD1). We look at the relationship using linear functional

form, per Cao and Velthuis (2017), as well as loglinear function form. In order to account for

cross-sectional correlations in between funds belonging to the same TASS ‘primary category’,

we cluster standard errors by category x month. We also cluster by fund because recursive

demeaning can potentially cause serial correlation within funds. The results are reported in

Table 3. Panel A gives the results for models RD1 and RD2 using linear functional form,

while Panel B gives the results for the models using loglinear functional form. The RD1

procedure does not give significant decreasing returns to scale for linear function form, which

is consistent with the results of Cao and Velthuis (2017). However, the updated methodology

does give significant decreasing returns to scale, with an estimate for coe�cient on size of

-6.53e-09 and corresponding t-statistic of -2.55 and p-value 0.011. In the first stage of the

regression, the estimate for the constant is -1.67e07 with a t-statistic of -6.88, compared to

the zero intercept in RD1. RD2 leads to a better first-stage fitting, with an R-squared value

of 3.48% as opposed to 0.50% of RD1. Moreover, as a test of instrument strength, RD2 gives

a first-stage F-statistic of 24.78, which is much higher than the first-stage F-statistic of RD1,

3.47. Overall, this o↵ers overwhelming support for the inclusion of the intercept in the first

stage of the model and the revised instrument.

When taking the logarithm of fund size, the results have a rhyme with the linear func-

tional form. Model RD1 gives insignificant increasing returns to scale, with an estimate for

the coe�cient on logarithm of size of 0.760, with corresponding t-statistic of 0.19 and p-value

of 0.848. This result is reversed using RD2 with a negative estimate for the coe�cient on

logarithm of size, though it is likewise not significant. RD2 has a much better first-stage fit

with an R-squared of 7.26% compared to 0.02% of RD1. Moreover, the first-stage F-statistic

for RD2 of 90.71 is significantly greater than the value of 0.78 for RD1.

The results of Table 3 motivate two main conclusions. The primary result is that of

the better performance of RD2 over RD1, pertaining to the two better model specifications:

including a first-stage intercept and using fund size as an instrument instead of backward
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demeaned fund size. Secondly, there is not consistency in the results for both functional forms

using RD2. While there are significant decreasing returns to scale with linear functional form,

the significance disappears with loglinear functional form (though the sign remains negative).

However, we claim that it is possible to reconcile the disparity by including squared logarithm

of fund size, thereby incorporating non-linearity.

In working with hedge fund data, Cao and Velthuis (2017) only report results using the

linear functional form. On the other hand, both Pástor, Stambaugh, and Taylor (2015) and

Zhu (2018) report results using both linear and loglinear functional forms for the mutual

funds. Moreover, the logarithm of size is used commonly in the investment management

literature (see, e.g., Chen, Hong, Huang, and Kubik (2004), Ferreira, Keswani, Miguel,

and Ramos (2013), Yan (2008)). It is used so broadly in order to account for a skewed

distribution in fund size. Under the logarithm transformation, a given percentage change

in size has the same e↵ect on performance for both a small and a large fund. Though

we recognize the importance of normalizing the fund size distribution, we claim that the

logarithm transformation alone may be insu�cient for hedge fund data.

Hedge funds have much more heterogeneity in size and skill than mutual funds, and

simply taking the logarithm might mute some of the e↵ects. Using fund size (without the

logarithm transformation), we have the prior that there are decreasing returns to scale, given

in Table 3. It is possible that using the logarithm transformation gives more gravity to the

scale e↵ect of small funds, and, thereby, erases the overall e↵ect of decreasing returns to

scale. Therefore, we find it important to include a squared term for logarithm of fund size

to allow for non-linearity. By including a squared term, we find a balance with applying the

logarithm transformation to the skewed size data without muting some important e↵ects.

This nonlinear model specification has precedent in the hedge fund literature (see, e.g., Am-

mann and Moerth (2005), Naik, Ramadorai, and Stromqvist (2007), Teo (2009), Getmansky

(2012)).

Table 4 gives the results for the nonlinear model that includes a squared logarithm of
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size term. When the only regressor is the logarithm of size, the coe�cient is negative but in-

significant, as discussed above. However, augmenting the model with the squared logarithm

of size yields two significant estimates. The estimate for the coe�cient on logarithm of size

is 3.665, with a t-statistic of 2.24 and p-value of 0.025, and the estimate for the coe�cient

on squared logarithm of size is -0.116, with a t-statistic of -2.47 and p-value of 0.013. Impor-

tantly, the first coe�cient is positive and the second coe�cient is negative, which gives the

relationship a negative parabolic shape. The implication is that funds experience increasing

returns to scale for some time until they reach an optimal size, at which point they begin

experiencing decreasing returns to scale. This is consistent with the Berk and Green (2004)

model which assumes that funds experience decreasing returns to scale in equilibrium. The

shape is illustrated in Figure 1 in Appendix B.

The optimal size can be calculated as the maximum of the following function:

y = bx+ cx2 (30)

where y is return, x is logarithm of fund size, and b and c are the estimates from the

regression. Taking the derivative of the function and setting equal to zero gives the optimal

fund size:

x⇤ = � b

2c
(31)

Plugging in the estimates from Table 4, we get x⇤ = 15.8279. Then, of the 147,153 obser-

vations used, we find that 24,722 are to the left of x⇤ and 122,381 are to the right of x⇤.

Therefore, most of the funds are in equilibrium with decreasing returns to scale.

Gross return is a measure of the return before the managerial and incentive fees kick in.

The alpha measures give the portion of this return that is not due to certain risk exposures.

In other words, it is a proxy for the portion of gross return this is attributable to the skill

of the fund manager. For example, if a fund generates 1% returns in a given month, it is

possible that 90% of that move is due to an auspicious upswing in the S&P 500 and only
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10% of it is due to some managerial skill. In essence, this 10% is what the alpha measures

are designed to extract. Therefore, it is important to take into consideration alpha measures

when investigating the scale e↵ect, in addition to gross return.

The results using gross return are supported by the results using the other performance

measures, FH alpha and CAPM alpha, given in Tables 5 and 6 respectively. For both alpha

measures, there is a significant positive estimate for the coe�cient on the logarithm of size

when it is the only regressor, indicating increasing returns to scale. However, when allowing

for non-linearity with the quadratic regression, there is a positive and highly significant

estimate for the coe�cient on logarithm of size and a negative and highly significant estimate

for the coe�cient on squared logarithm of size. Specifically, in the case of FH alpha, the

estimate for the coe�cient on logarithm of size is 6.161 with t-statistic of 5.10 and the

estimate for the coe�cient on squared logarithm of size is -0.161 with t-statistic of -4.89. In

the case of CAPM alpha, the estimate for the coe�cient on logarithm of size is 8.546 with

t-statistic of 5.10 and the estimate for the coe�cient on squared logarithm of size is -0.229

with t-statistic of -4.89. Thus, there is a negative parabolic shape to the size-performance

relationship for the alpha measures as well.

4.2 Industry-Level Returns to Scale

Next, we look at the impact of industry size on fund performance. Tables 4, 5, and 6 give

the results with gross return, FH alpha, and CAPM alpha, respectively. Two industry size

measures are included for robustness in the last two columns of each table. In the regressions

with industry size, the recursive demeaning is, of course, still used. However, only the forward

demeaned fund size is instrumented, not the industry size. Two conclusions are clear and

common to all performance measures. First, all of the fund-level results discussed previously

hold when controlling for industry size. Second, there are no significant results for industry-

level returns to scale. Moreover, there is no consensus in the performance measures for a

negative coe�cient on industry size; while there are negative estimates when using gross
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return and FH alpha, there is a positive estimate when using CAPM alpha.

4.3 Scale-Based Investment Strategy

At the fund-level, the evidence shows that there is a negative parabolic size-performance

relationship. That is, funds experience increasing returns to scale until equilibrium, at which

point they begin to experience decreasing returns to scale. The natural implication is that

funds experiencing increasing returns to scale (IRS) are underfunded. From the standpoint of

an investor, one of the factors to take into consideration when investing funds is the amount

of erosion on return that the capital allocation will cause. All else being equal, it is rational

to invest in a fund where there is momentum in the returns with every dollar allocated,

i.e. funds which are experiencing increasing returns to scale. Thus, investors could derive

profit by identifying which funds are IRS and which funds are DRS at a point in time, and

investing capital in those funds that are IRS. In this section, we test this prediction.

We seek to establish a method for characterizing funds as either IRS or DRS, and then

back-testing the investment strategy which goes long on IRS funds and short on DRS funds.

We test two di↵erent methods of identification. The first one (Method 1) is described in

Section 3.4, with the sole regressor being lagged logarithm of fund size. We perform rolling

regressions with a fixed starting month per fund, tstart and an end date t that increases by

one month for each regression. Thus, at each regression end date t, we estimate a coe�cient

for the returns to scale at that time using the sample that starts at the beginning date.

Note that it is a simple OLS regression and that the methodologies discussed in Section

3 that account for biases and uncertainties are not required as the regression only includes

observations from a single fund. A negative estimate for � implies a DRS fund and a positive

one implies an IRS fund. A dummy variable is used to keep track of the identifications.

After characterizing funds as IRS or DRS, we are ready to build a portfolio that capitalizes

on the implications. If a fund was experiencing IRS in period t� 1, we want to have a long

position on it in period t. Similarly, if a fund was experiencing DRS in period t � 1, we
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want to have a short position on it in period t. Thus, the dummy variable for IRS/DRS is

lagged so that for each period t, we have an indicator of whether the fund was experiencing

IRS or DRS in period t � 1. Then, for each month t we build a value-weighted portfolio of

IRS funds and a value-weighted portfolio of DRS funds, so that the returns are weighted by

the relative size of the funds. To achieve the desired long/short portfolio, we subtract the

returns of the DRS portfolio from the returns of the IRS portfolio. This measure is then

regressed on a constant to measure average return and significance.

The results for the long/short strategy using Method 1 are given in Panel A of Table 7.

The number of observations is given, which is the number of fund/months. For FH alpha and

CAPM alpha, there are a total of 97,507 data points, which is slightly less than the number

of data points for the previous regressions of 112,088 found in Tables 5 and 6. This is due

to the minimum window size of 12 in the rolling regressions. Because of this window, the

first 11 months of each fund do not have a corresponding characterization as IRS or DRS.

These 97,507 observations correspond to 244 months, for which the value-weighted returns

are calculated for IRS and DRS funds. After subtracting the returns in order to simulate

the long/short strategy, the result is regressed on a constant to test for significance. Using

all three performance measures, there are positive average returns. However, these returns

are only significant using CAPM alpha.

Method 2 corresponds to our revised nonlinear functional form established in Section

4.1. We augment the rolling regression used in Method 1 from equation (29) with squared

logarithm of fund size, in order to account for the better model specification. In this case,

the scale e↵ect is not given simply by the coe�cient on logarithm of fund size, like in the

Method 1. Rather, it is a function of size. We solve for the scale e↵ect at time t by

multiplying the estimate of the coe�cient for squared logarithm of fund size by the actual

value for logarithm of fund size from the data, and then adding that to the estimate of

the coe�cient for logarithm of fund size. This scale e↵ect calculation is obtained by taking

the derivative of the quadratic model. Like before, we set a dummy variable to hold the
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information on whether the resulting e↵ect is negative or positive, implying DRS and IRS,

respectively. After lagging the variable, we set up the value-weighted long/short portfolio.

The results for Method 2 are given in Panel B of Table 7. All of the returns are positive

and higher than the corresponding returns of Method 1. Moreover, they are significant;

though the average returns increase, their standard deviations decrease slightly. The strategy

yields average monthly returns of 0.145% in excess of the market return for CAPM alpha.

Though the results are significant using both FH alpha and CAPM alpha, they are not

significant with gross return. Gross returns are driven not just by skills, but also by exposures

to factor variations. This reinforces the importance of focusing on proper measures of skill.

We have two central conclusions from the portfolio analysis. First, and more importantly,

we show that there is an arbitrage opportunity available by identifying which funds are ex-

periencing increasing returns to scale and which funds are experiencing decreasing returns to

scale. Positive returns are generated by taking a long position in funds identified as IRS and

taking a short position in funds identified as DRS. Moreover, these positive average returns

are robust to di↵erent performance measures and di↵erent identification methods. Second,

we see that Method 2, which incorporates nonlinear functional form, yields consistently bet-

ter returns than its linear counterpart. That is, it seems to better capture the scale e↵ect.

This o↵ers support to our argument in Section 4.1 that the nonlinear functional form is more

appropriate for the study of economies of scale in hedge funds.

5 Conclusion

This paper empirically addresses one of the cornerstones of the theoretical framework for

active management: decreasing returns to scale. In the literature, there have been numerous

and contradictory attempts to pin down the scale e↵ect. However, econometric bias and

uncertainty in the methodologies have interfered with the e↵orts. We revisit the result of

Cao and Velthuis (2017) that there are no fund-level decreasing returns to scale, but that
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decreasing returns to scale exist at the industry level. Armed with an enhanced recursive

demeaning methodology, we show that there are, in fact, significant decreasing returns to

scale at the fund level which set in after an optimal size. Using a quadratic model, we

find that there is a significant positive estimate for the coe�cient on logarithm of size and

a significant negative estimate for the coe�cient on squared logarithm of size, yielding a

negative parabolic shape to the size-performance relationship. This result holds when using

gross return, as well as risk-adjusted performance measures FH alpha and CAPM alpha.

Intuitively, a small fund may experience increasing returns to scale due to a relative decrease

in fixed fees necessary to manage and run the fund. Most hedge funds nowadays rely on an

organization of human and technological capital to be competitive, so initially, a fund may

greatly benefit from increasing in size and spreading this fixed cost. However, eventually, the

fund reaches a point where it cannot deploy investment strategies without some erosion in

return due to liquidity constraints. At this point, it is in equilibrium, experiencing decreasing

returns to scale.

Next, we add to the literature by showing that there are no significant decreasing returns

to scale at the industry level. Moreover, the fund-level returns to scale are robust to inclusions

of industry size in the multivariate regression. For equity funds, this could be due to the

fact that the equity hedge fund industry makes up such a small portion of the total equity

market.

The primary implication of the negative parabolic shape of fund-level returns to scale

is that many hedge funds are underfunded. This theoretical dilemma can be reformulated

as a practical investment strategy that is long IRS funds and short DRS funds. Such a

strategy yields positive returns on average and is robust to various performance measures

and di↵erent identification methods. Importantly, the identification method which uses

nonlinear functional form captures the scale e↵ect more accurately and generates higher

returns.
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A Tables

Table 1: Hedge Fund Factor Loadings

This table gives the summary statistics for the FH factors and the CAPM factor. The eight factors used to
calculate FH alpha are S&P 500 return minus risk free rate (MKT), Wilshire small-cap minus large-cap return
(SZSPRD), yield spread of the U.S. 10-year Treasury bond over the three-month Treasury bill, adjusted for
the duration of the U.S. 10-year Treasury bond (BNDMKT), change in the credit spread of Moody’s BAA
bond over 10-year Treasury bond adjusted for duration (CRDSPRD), excess returns on portfolios of lookback
straddle options on currencies PTFS (PTFSFX), bonds (PTFSBD), and commodities PTFS (PTFSCOM),
and Emerging Market Index total return (EMRG). The factor used to calculate CAPM alpha is excess
market return (MKTRF), as the value-weighted return on all NYSE, AMEX, and NASDAQ stocks minus
the one-month Treasury bill rate. All values are given as percentages.

Mean Sd Skewness Kurtosis 1% 25% 50% 75% 99%
MKT 0.64 4.22 -0.68 4.23 -11.01 -1.66 1.01 3.45 9.31

SZSPRD 0.04 3.26 0.28 7.64 -7.03 -2.19 0.04 2.09 7.89

BNDMKT -0.01 0.25 0.00 4.34 -0.61 -0.17 0.00 0.13 0.64

CRDSPRD 0.00 0.21 1.30 14.44 -0.65 -0.10 0.00 0.08 0.57

PTFSFX -0.62 18.81 1.16 4.49 -29.74 -14.82 -4.34 8.86 66.01

PTFSBD -2.27 14.62 1.34 5.60 -23.92 -12.86 -4.77 3.50 45.21

PTFSCOM -0.37 14.23 1.08 4.60 -22.94 -9.82 -3.14 6.63 41.44

EMRG 0.69 6.51 -0.69 5.17 -17.49 -2.63 0.85 4.76 14.38

MKTRF 0.66 4.35 -0.73 4.23 -10.72 -1.95 1.18 3.44 9.54
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Table 3: Comparison of Recursive Demeaning Methodologies

This table shows the regression results of gross return on real size, using linear functional form in Panel A and
loglinear functional form in Panel B. The first model is the recursive demeaning procedure used previously
in the literature (RD1) and the second model is the enhanced recursive demeaning procedure (RD2). The
estimates for the coe�cients of size are reported. The intercepts of the first stage of the 2SLS regression are
given along with the R-squared values from the first stage and the F-statistics. Heteroskedasticity-robust
standard errors double-clustered by category x month are reported in the parentheses. The robust standard
errors are clustered by fund as well.

RD1 RD2
Panel A: Dollar Fund AUM
Estimated Scale E↵ect -1.08e-09 -6.53e-09⇤⇤

(2.82e-09) (2.56e-09)

1st Stage Intercept 0 -1.67e07⇤⇤⇤

- (2.42e06)

1st Stage R2 (%) 0.50 3.48

1st Stage F-statistic 3.47 24.78

Panel B: Logarithm of Dollar Fund AUM
Estimated Scale E↵ect 0.760 -0.252

(3.97) (0.157)

1st Stage Intercept 0 -2.00⇤⇤⇤

- (0.151)

1st Stage R2 (%) 0.02 7.26

1st Stage F-statistic 0.78 90.71
N obs 147,153 147,153
N funds 2,099 2,099

Standard errors in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 4: Test of Returns-to-Scale E↵ects based on Gross Returns

This table shows the regression results of gross return on log size, augmented with squared log size, and
then augmented with industry size as measured in two di↵erent ways for robustness. In the column labeled
(3.1) industry size is measured by total AUM of equity funds at a time t divided by total US stock market
capitalization at time t. In the column labeled (3.2), industry size is measured by total AUM of equity funds
at a time t. Heteroskedasticity-robust standard errors double-clustered by category x month are reported in
the parentheses. The robust standard errors are clustered by fund as well.

(1) (2) (3.1) (3.2)
Log Size -0.252 3.665⇤⇤ 4.450⇤⇤ 4.036⇤⇤

(0.157) (1.634) (1.859) (1.784)

Squared Log Size -0.116⇤⇤ -0.142⇤⇤⇤ -0.128⇤⇤

(0.0468) (0.0548) (0.0522)

Industry Size -8.554 -2.93e-12
(56.95) (3.42e-12)

N obs 147,153 147,153 147,153 147,153
N funds 2,099 2,099 2,099 2,099

Standard errors in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 5: Test of Returns-to-Scale E↵ects based on Fung-Hsieh Alpha

This table shows the regression results of FH alpha on log size, augmented with squared log size, and then
augmented with industry size as measured in two di↵erent ways for robustness. In the column labeled
(3.1) industry size is measured by total AUM of equity funds at a time t divided by total US stock market
capitalization at time t. In the column labeled (3.2), industry size is measured by total AUM of equity funds
at a time t. Heteroskedasticity-robust standard errors double-clustered by category x month are reported in
the parentheses. The robust standard errors are clustered by fund as well.

(1) (2) (3.1) (3.2)
Log Size 0.602⇤⇤⇤ 6.161⇤⇤⇤ 6.912⇤⇤⇤ 6.577⇤⇤⇤

(0.133) (1.207) (1.274) (1.247)

Squared Log Size -0.161⇤⇤⇤ -0.184⇤⇤⇤ -0.175⇤⇤⇤

(0.0330) (0.0350) (0.0342)

Industry Size -13.26 -5.55e-13
(17.21) (1.06e-12)

N obs 112,088 112,088 112,088 112,088
N funds 2,017 2,017 2,017 2,017

Standard errors in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 6: Test of Returns-to-Scale E↵ects based on CAPM Alpha

This table shows the regression results of CAPM alpha on log size, augmented with squared log size, and
then augmented with industry size as measured in two di↵erent ways for robustness. In the column labeled
(3.1) industry size is measured by total AUM of equity funds at a time t divided by total US stock market
capitalization at time t. In the column labeled (3.2), industry size is measured by total AUM of equity funds
at a time t. Heteroskedasticity-robust standard errors double-clustered by category x month are reported in
the parentheses. The robust standard errors are clustered by fund as well.

(1) (2) (3.1) (3.2)
Log Size 0.628⇤⇤⇤ 8.546⇤⇤⇤ 8.775⇤⇤⇤ 9.000⇤⇤⇤

(0.236) (1.875) (1.958) (1.962)

Squared Log Size -0.229⇤⇤⇤ -0.241⇤⇤⇤ -0.246⇤⇤⇤

(0.0498) (0.0526) (0.0526)

Industry Size 37.16 4.09e-13
(30.36) (2.04e-12)

N obs 112,088 112,088 112,088 112,088
N funds 2,017 2,017 2,017 2,017

Standard errors in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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Table 7: Long/Short Portfolio of IRS and DRS Funds

This table shows the results of the long/short portfolio analysis of IRS and DRS funds. Panel A gives the
results for the first identification method for IRS/DRS funds and Panel B gives the results for the second
method. After using rolling regressions, funds are characterized as either IRS or DRS with a dummy variable.
The dummy variable is then lagged so that for each period t, we have an indicator of whether the fund was
experiencing IRS or DRS in period t � 1. Then, for each month t we build a value-weighted portfolio of
IRS funds and a value-weighted portfolio of DRS funds. We subtract the returns of the DRS portfolio from
the returns of the IRS portfolio to create a long/short return measure that is long IRS funds and short
DRS funds (LS = IRS - DRS). This measure is then regressed on a constant to measure average return and
significance.

FH Alpha CAPM Alpha Gross Return
Panel A: Method 1

Mean Return 0.0421 0.104⇤ 0.0427
(0.0366) (0.0549) (0.0740)

IRS (%) 33.76 21.64 17.02

DRS (%) 66.24 78.36 82.98

N obs 97,507 97,507 132,966
N months 244 244 265
Panel B: Method 2

Mean Return 0.0876⇤⇤ 0.145⇤⇤⇤ 0.0685
(0.0348) (0.0521) (0.0668)

IRS (%) 38.34 34.10 30.89

DRS (%) 61.66 65.90 69.11

N obs 92,199 92,199 125,098
N months 245 245 266

Standard deviations in parentheses
⇤ p < 0.1, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01
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B Figures

Figure 1: Negative parabolic shape of the size-performance relationship. Funds experience
increasing returns to scale until they reach an optimal size, at which they begin experiencing
decreasing returns to scale.


