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Abstract

A Biochemical Model of Hybridization on DNA Microarrays and its Application to
Single Nucleotide Polymorphism and Copy Number Variation Genotyping in
Trisomy 21 Individuals

By Yasminka Aleksandra Jakubek Marinkovic

DNA microarrays have several uses in biological research. In the field of human
genetics, they are used to characterize genome-wide patterns of variation.
Affymetrix Genome-wide Human SNP array 6.0 microarrays genotype ~900,000
single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) across
the genome. Analysis methods for genotyping arrays rely on statistical approaches
to generate accurate data. Two recurrent problems with these methods are evident.
The first is the existence of batch effects. The second lies in the fact that these
approaches often discard a large fraction of the raw data from probes that
systematically fail across experiments. In order to address and understand these
problems, we developed a novel analysis method that is based on a low-level model
of hybridization on microarrays. We model binding between all probe-DNA
duplexes that form on the array. In addition we model errors in probe synthesis,
hybridization conditions (temperature, salt concentration), and details of the
experimental protocol (target concentration, target fragmentation, wash stringency,
and scanner settings). We used this model to predict probe intensities. The average
correlation between expected and observed intensities was 0.701 with a range of
0.88 to 0.55. In this model batch effects are caused by differences in probe synthesis
efficiency, target concentration, target fragmentation, wash stringency, and scanner
settings. We used this model to develop a SNP and CNV genotyping algorithm that
explicitly models batch effects and cross-hybridization. Our approach allows for the
individual analysis of chips and can call SNPs and CNVs on chromosomes of any
ploidy. We used this approach to analyze Down syndrome and normal samples. A
significant percentage (13%) of SNPs that are targeted by Affymetrix 6.0 have high
levels of cross-hybridization. Each SNP call has a quality score (QS). SNPs on
trisomic chromosomes had lower QS scores (57% with QS> 0.99) than SNPs on
diploid chromosomes (84% with QS > 0.99). Our approach uses direct estimates of
DNA concentration to call CNVs. We called an average of 50 CNVs per samples of
which 68% are in known CNV regions. Using only first-principles our method
detects genetic variants with a comparable accuracy to current approaches.
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Chapter 1:

General Introduction



Introduction

Correctly identifying genetic variation is an integral part of human genetics and is
important for several fields of study including hereditary disorders, cancer, and
population genetics [1-7]. There are many technologies available for the analysis of
genome wide genetic variation, one of them being genotyping microarrays. These
arrays have two general uses, the detection of single nucleotide polymorphisms
(SNPs) and structural genomic variants [8]. Advancements in microarray
technology have allowed the development of genotyping microarrays that can query
hundreds of thousands of SNPs and copy number variants (CNVs) simultaneously.
These arrays provide an efficient tool for the analysis of genetic variation in large-
scale human genetic studies [2, 4-8]. One of the most commonly used types of
genotyping arrays are Affymetrix Genome-Wide Human SNP 6.0 (Affy 6.0)
microarrays, which can genotype close to two million markers across the entire
genome. These arrays are analyzed using statistical methods that rely heavily upon
empirical data [9, 10]. In this dissertation we present a low-level model of
hybridization on microarrays. In this model binding on an array is the same as in
solution, with differences arising due to experimental details of the array
production and processing. We then applied this model to Affy 6.0 arrays and show
that using only first principles we can call SNPs and CNVs with relatively high
confidence. This unique approach allows us to call variants for chromosomes of any

ploidy, which we did for chromosome 21 of Down syndrome individuals.



DNA Microarrays

DNA microarrays are used to detect nucleic acids via hybridization of
complementary sequences of oligonucleotides [11, 12]. They are made up of probes,
single stranded DNA molecules that are attached to the array surface. The array
surface is a grid, where each square on the grid is a probe spot also known as a
feature. Each spot is made up of probes that are manufactured to include the same
sequence. Affymetrix manufactures chips using photolithography, in which probes
are manufactured 3’ to 5’ by adding one base at a time [13, 14]. The 3’ end is
attached to a linker that anchors the probe to the array surface. Target refers to the
DNA/RNA in the hybridization solution that is placed onto the array. Target DNA is
derived from the sample of interest. The basic steps in DNA array processing are
target preparation, hybridization, washing, and scanning. The target is fragmented
using sonication or restriction enzymes and then labeled with a fluorophore. The
solution with the target is then placed onto the array surface and allowed to
hybridize for several hours. After the hybridization step, the chip is washed using a
solution with a low salt concentration. This solution causes weakly bound targets to
disassociate from the probes. In the final step the chip is scanned and the intensity
for each probe spot is recorded. The intensity reading at each probe spot provides
information regarding the concentration of labeled target sequences that are
complimentary to the probe. They also provide information regarding the type of
target sequences in the solution. Microarrays are used to query genomic DNA as
well as RNA [11]. RNA microarrays provide information regarding the steady-state

transcript levels of different mRNA isoforms and of non-coding RNAs. DNA



microarrays are used for re-sequencing, SNP typing, and CNV detection. There are
other uses of DNA microarrays including the detection of species-specific sequences

in a mixed sample and the identification of protein binding sites in the genome [11].

Genotyping Arrays

The first generation of genotyping arrays targeted approximately 1500 SNPs, while
current technologies are capable of genotyping close to two million markers per
sample [8]. One of the most widely used genotyping arrays are Affy 6.0 arrays,
which query 900,000 SNPs. Additionally, they have 115,000 monomorphic probes
that target known CNVs and 831,000 monomorphic probes that are distributed
across the genome. The intensity information from both the CNV and SNP probes
are used to call CNVs. [llumina genotyping arrays, like Affy 6.0, are also widely used
for genome wide SNP and CNV detection; however, the underlying technology used
by lllumina is quite different from the technology used by Affymetrix [8]. In [llumina
genotyping arrays, probes are not attached to the array surface; instead they are
attached to beads. Also target DNA is not fluorescently labeled, instead A, C, G, and T

nucleotides, which are differentially labeled, are used for single base pair extension.

To understand how these two technologies work, let us look at the example of an
arbitrary SNP with two alleles, A and C. lllumina arrays query the SNP by using

probes that are 50 bases long. The 50-mer is a perfect match to the nucleotides on



the 5’ end of the SNP. During hybridization the target DNA binds the probe up to but
not including the SNP base. This hybridization process is followed by single base
pair extension when a G or T base is incorporated into the sequence. Since the
nucleotides are differentially labeled the signal can be used to infer the genotype for
the SNP. Affy 6.0 arrays work differently; probes are directly attached to the array
surface and are organized into probe spots. Affymetrix probes are 25 bases long. For
each SNP that Affymetrix queries, there are two unique probes. For a SNP with
alleles A and C, one probe is a perfect match to the A allele and the other a perfect
match to the C allele. The mismatch is placed towards the center of the probe. For
an autosomal SNP, there are three possible genotypes (AA, AC, CC). The general idea
is that target DNA with the A allele binds much more strongly to the A probe than to
the C probe. Also, the C allele binds more strongly to the C probe. Therefore, the
signal intensities at each probe spot are a function of the number of A and C alleles.
Overall the experimental details of Affymetrix and I[llumina arrays are quite
different. Since our goal was to explicitly model hybridization and the experimental

details we focused on only one type of technology, Affy 6.0 arrays.

Methods for SNP Genotyping in Affymetrix Arrays

The basic principle behind all array SNP genotyping methods is to use probe
intensities to call genotypes [8]. For simplicity, we will refer to the alleles of a
diploid SNP as A and B and the three possible genotypes as AA, AB, BB. Also, probe A

refers to the probe that perfectly matches allele A and probe B perfectly matches the



B allele. The first methods for automated SNP detection were designed for the
analysis of data from Variation Detection Arrays (VDAs), a predecessor to
genotyping arrays. One of the first methods for VDA analysis was Adaptive
Background genotype Calling Scheme (ABACUS), a statistical approach, which uses
the intensity at individual SNPs from a single chip, to calculate likelihoods for each
genotype [15]. In this model probe intensities follow a normal distribution. When
calls do not reach a certain quality threshold they are dropped. There are two
important observations regarding the calls that tend to be dropped by ABACUS.
First, heterozygote calls are more likely to get dropped than homozygote calls.
Second, there are a subset of SNPs that tends to be dropped across samples. The
observation that heterozygotes are harder to call than homozygotes is intuitive
given that it is easier to call a 2 to 0 allele ratio than itis to call a 1 to 1 ratio.
Explanations for the second observation are not quite as intuitive and are probably
due to more than one aspect of the microarray experiment. For the first two
generations of genotyping arrays, Affymetrix developed the Modified Partitioning
Around Medoids (MPAM) and the dynamic model-base algorithm (DM) methods for
SNP genotyping [16, 17]. DM was based on ABACUS; it analyses SNPs individually
and tends to drop heterozygotes. On the other hand MPAM, creates genotype
clusters, AA, AB, BB based on the observed probe intensities for a SNP across all
samples. Problems with this latter approach arise when the sample size is small and
for SNPs with a low minor allele frequency. Improved versions of this “cluster”
approach to SNP genotyping include the Robust Linear Model with Mahalanobis

Distance Classifier (RLMM), the Corrected Robust Linear Model with Maximum



Likelihood Classification (CRLMM), the Bayesian Robust Linear Model with
Mahalanobis Distance Classifier (BRLMM) and Birdseed, the default analysis
algorithm for Affy 6.0 arrays [9, 10, 18]. Improvements include normalization of
data to account for batch effects (CRLMM) as well as Bayesian models that use DM
to assign a prior to clusters, which improves calling for SNPs with low minor allele
frequency [8, 10]. These “cluster” approach and improvements by Affymetrix in
probe selection have made it possible to call SNPs with high accuracy; however,
across experiments a significant fraction of SNPs (between 20% to 33%) are
dropped, because they do not pass quality control [4-7]. Overall the “cluster”
approach to SNP genotyping is very practical; however, it has not helped us
understand why some SNPs are harder to call. The answer to this question is one of

the major focuses of the work presented in this dissertation.

CNV Detection using Affymetrix Genotyping Arrays

The standard approach to CNV calling in Affy 6.0 arrays is made up of two distinct
algorithms, Canary (copy number analysis routine) and Birdseye [10]. These
algorithms are part of Birdsuite, the standard analytical framework for Affy 6.0 data

that also includes the previously described Birdseed algorithm for SNP detection.

Canary was developed for the detection of common CNVs, defined as those with
greater than 1% frequency, the authors refer to these as copy number
polymorphism (CNP) [10]. The rest of the CNVs are referred to as rare/ de novo and

these are detected using Birdseye. Canary uses predefined sets of probes to call



CNPs. Both algorithms use intensity data across chips to call CNVs. This makes data

analysis susceptible to batch effects.

In Solution DNA Binding

When two DNA molecules come together, there is a Gibbs free energy (AG) value
associated with the binding reaction [19]. AG can be experimentally determined;
however, it is impossible to calculate AG experimentally for the infinite number of
theoretical DNA duplexes. The most practical approach is to estimate AG from the
DNA sequences. The most widely used method to approximate AG for two DNA
molecules binding in solution is the nearest-neighbor (NN) model [19]. In this model
the stability of a base pair is dependent on the two neighboring nucleotides. There
are 10 unique NN pairs that can form in a perfectly matched DNA duplex. They are
(AA/TT), (AT/TA), (TA/AT), (CA/GT), (GT/CA), (CT/GA), (GA/CT), (CG/GC),
(GC/CG), (GG/CC). Where the bases are listed (5’ to 3’ / 3’ to 5’). Each pair has a AG
value that can be calculated using the enthalpy (AH) and entropy (AS) for each NN
pair, as well as the hybridization temperature, and salt concentration. The NN model
also accounts for differences between terminal base pairs. There are two AG
initiation values, one for terminal AeT and the other for terminal GeC. Using the NN
model, the AG value for biding between 5’ -ATACG -3’ to 3’ -TATGC -5’ is the sum of
AG values for (AT/TA), (TA/AT), (GT/CA), (CG/GC), AeT initiation, and GeC
initiation. The predicted AG for the hybridization reaction can be used to calculate

melting temperature and other measures of the affinity between the two molecules.



AG values have also been estimated for mismatches [20-24]. For example, when 5’ -
ACG -3’ binds to 3’ -TAC -5, there are two mismatch NN pairs, (AC/TA) and (CG/AC).
Overall the NN model for DNA hybridization in solution provides an efficient way to

predict binding affinity for sequences with and without mismatched bases.

DNA Microarray Observations that are not Explained by In Solution DNA Binding

There are two striking observations regarding microarray probe behaviors that are
not explained by in-solution binding kinetics. The first one is the difference in
intensity between a probe that binds the forward target and one that binds the
reverse target. The forward and reverse targets are perfectly complementary DNA
molecules and should not be confused with the +/- strand labeling often used to
refer to “sense” and “antisense” RNA. In the ABACUS study, all probes had a forward
and reverse probe spot. A striking observation from this study was the consistent
difference between the two and the fact that the G rich probe consistently had lower
intensity than the complimentary C rich probe [15]. The second observation that is
not explained by in solution binding kinetics is the position dependent destabilizing
effect of mismatches. Mismatches towards the center of the probe have a much
larger destabilizing effect than mismatches towards the edges [25]. This is the
reason why Affymetrix places the query base for a SNP close to the middle of the

probe.
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Batch Effects

Batch effects are differences in array behavior that are independent of the genotype
of the sample [26]. Batch effects can arise when the same sample is processed in
different facilities using chips that are manufactured on different dates, or handled
by different scientists. By increasing overall variability, batch effects can decrease
power to detect a biologically relevant signal [26]. They can also have the opposite
effect when they lead to what appears to be a biologically relevant observation that
is confounded with a batch effect. For example, this can happen when cases and
controls are genotyped at different locations [26]. There are several approaches to
try to remove batch effects. Statistical methods include principal components
analysis, which can be used to account for differences in the processing date and
time [26, 27]. A different, not mutually exclusive approach is to design experiments
in such a way that samples that are processed in the same group (done by the same
technician, at the same time and place) consist of both cases and controls. However,
even when time and place are accounted for, there are other sources of batch effects

that are not well understood [26].

Summary

We developed a low-level hybridization model of binding on Affymetrix arrays in
order to gain a better understanding of the factors that underlie the differences
between in solution binding and binding on arrays, batch effects, and the reason

why a significant fraction (20-33%) of probes on Affy arrays fail. In this model
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binding happens the same as in solution. In addition we modeled the experimental

details. These include probe-manufacturing errors, salt concentration and

hybridization temperature. Furthermore, we model cross-hybridization by directly

calculating the biding affinities between all probes and targets. In addition we model

target concentration and fragmentation as well as scanner setting. After developing

the model we sought to answer two major questions: 1) Can we use this approach to

model binding on arrays? 2) Can we apply this model to type SNPs and CNVs in

diploid and triploid chromosomes?
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Abstract

Background

DNA microarrays are used both for research and for diagnostics. In research,
Affymetrix arrays are commonly used for genome wide association studies,
resequencing, and for gene expression analysis. These arrays provide large amounts
of data. This data is analyzed using statistical methods that quite often discard a
large portion of the information. Most of the information that is lost comes from
probes that systematically fail across chips and from batch effects. The aim of this
study was to develop a comprehensive model for hybridization that predicts probe
intensities for Affymetrix arrays and that could provide a basis for improved
microarray analysis and probe development. The first part of the model calculates
probe binding affinities to all the possible targets in the hybridization solution using
the Langmuir isotherm. In the second part of the model we integrate details that are
specific to each experiment and contribute to the differences between hybridization
in solution and on the microarray. These details include fragmentation, wash
stringency, temperature, salt concentration, and scanner settings. Furthermore, the
model fits probe synthesis efficiency and target concentration parameters directly
to the data. All the parameters used in the model have a well-established physical

origin.

Results

For the 302 chips that were analyzed the mean correlation between expected and

observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips
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were included in the analysis regardless of the data quality. Our results show that
batch effects arise from differences in probe synthesis, scanner settings, wash
strength, and target fragmentation. We also show that probe synthesis efficiencies

for different nucleotides are not uniform.

Conclusion

To date this is the most complete model for binding on microarrays. This is the first
model that includes both probe synthesis efficiency and hybridization
kinetics/cross-hybridization. These two factors are sequence dependent and have a
large impact on probe intensity. The results presented here provide novel insight
into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the
algorithms developed in this work provide useful tools for the analysis of cross-
hybridization, probe synthesis efficiency, fragmentation, wash stringency,

temperature, and salt concentration on microarray intensities.
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Background

DNA microarray chips consist of large numbers of probes, single stranded DNA
molecules attached to a solid surface, that hybridize to nucleic acids [1]. Microarrays
have several uses in DNA analysis including CNV detection [2-5], re-sequencing [6],
SNP typing [7, 8], detection of species specific DNA in complex samples [1], and
identification of protein-DNA binding sites [1]. They are also used to assess
transcript levels in samples of coding and non-coding RNA [1, 9, 10]. In the field of
human genetics, DNA microarrays are used to investigate disease [4, 11, 12], to

study variation [5, 8], and to detect variants in clinical samples [9].

Collections of identical probes are called probe spots or features. Each probe spot
consists of many copies of identical single stranded DNA molecules. Many DNA
array designs have multiple features querying the same target DNA. Often one set of
features queries targets on the forward strand of the DNA while the other set
queries targets on the reverse strand. The first step in a DNA microarray
experiments is to isolate and amplify the target DNA or RNA. Next, the amplified
target is fragmented and fluorescently labeled. The labeled target solution is then
hybridized to the chip where target binds to probe DNA. Following hybridization the
chip is washed in order to eliminate non-specific binding. Finally, the chip is

scanned and the fluorescent intensity measured for each feature.



20

The fundamental assumption behind a DNA microarray experiment is that the
intensity measure for a probe spot correlates to the concentration of target bound to
that spot, which in turn correlates to the amount of target in the original solution [6,
13]. However, the relationship between observed intensity and target DNA
composition is not straightforward. Known variables with microarrays include high
variance in intensity between probe spots, high variance in a single probe spot’s
intensity between chips, as well as background (non-specific binding) intensity
differences between chips. Several studies have focused on the binding kinetics of
DNA molecules attached to a solid surface and on cross-hybridization [14-18]. These
studies have helped illuminate some aspects of the microarray experiment;
however, several fundamental observations of microarray behavior remain poorly
understood. First, when an array contains probe spots for both the forward and
reverse target, simple liquid phase kinetics predict that both probe spots ought to
have the same binding affinities and therefore should have equal amounts of bound
target DNA [19]. However, in practice forward and reverse strand probe spots
usually have significantly different intensity measurements [20]. These differences
in intensity are observed in both GC and AT rich probes as well as probes with and
without nucleotide runs (20). Second, liquid phase kinetics predicts that
mismatches anywhere in the oligo (other than in the last 3 bases) ought to have
equal effects on binding [19, 21-25]. However, mismatches near the center of the
probe have a stronger effect on probe intensity compared to mismatches towards

the edges [26]. Third, chips manufactured on different days often have subtly
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different binding properties (so-called chip-effects); as do chips processed by

different facilities or on different days (batch effects) [27, 28].

The goal of this study is to attempt to understand all of these aspects. To do so we
develop a detailed model of the DNA microarray experiment and then use this

model to predict probe intensities for seven different microarray designs.

The basic assumption behind this modeling approach is that the hybridization
kinetics of DNA binding on a chip are fundamentally the same as liquid phase
kinetics. Apparent differences between liquid phase predictions and microarray
observations arise from the combined effect of different aspects of the microarray
experiment. In the model we include the effect of probe sequence, cross-
hybridization, nucleotide position, and hybridization conditions. We model the
combined effect of these factors in one step rather than normalizing the data for
each factor in a stepwise manner [35, 36]. Unlike previous studies we do not adjust
binding strength for nucleotides based on their position on the probe [14]. Instead
the “positional” effect of nucleotides arises naturally in our model as a side effect of
target DNA fragmentation and microarray synthesis. In particular we assume that
microarray synthesis is not perfect [29-31]; more specifically, we assume that
during probe synthesis individual A, C, G, and T nucleotides fail to incorporate at
different rates. We also model abasic sites on the probe sequence where the

probabilities that A, C, G, and T nuclotides become abasic are not necessarily equal
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to each other. Consequently differences in synthesis efficiency/abasic sites between
nucleotides explain why forward and reverse DNA probe spots often have
significantly different intensities and explain chip-effects. Additionally we explicitly
model target DNA concentration, hybridization temperature, mean fragmentation
size, wash stringency [15, 32, 33], and microarray scanner settings [34] which
together with errors along the probe sequence give rise to batch effects. Previous
studies have reported that different probe sequences have different saturation
intensities [32], under our model this is expected given that each probe spot
consists of a “forest” of probes and that the number of probes capable of binding
target DNA is sequence dependent. Furthermore, the strength of the wash impacts

the final number of probe/target duplexes [32].

Our model consists of two parts. First, we calculate binding affinities for the probes
and target DNA in the hybridization solution. To do so we use the Langmuir
isotherm. This part of the model is independent from the chip intensity data and
simply yields equilibrium constants for all possible target-probe complexes. In the
second part of the model the binding data is used to predict probe intensity for
Affymetrix arrays. In this step, we fit several parameters (probe synthesis efficiency,
wash stringency, fragmentation, scanner’s dynamic range, and target DNA
concentration) to each individual chip and predict the probe intensities for that

chip. For the analyzed data the average correlations ranged from 0.88 and 0.55. Our
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results show that the different bases (A, C, G, and T) do not incorporate into the

probe with the same efficiency.

Methods

Our model begins with the assumption that DNA hybridization on a microarray is
the same as DNA hybridization in solution, but that many of the experimental details
previously ignored as well as other details of the microarray experiments must be
explicitly modeled to account for the observed differences between solution and
microarray. In particular, we model target fragmentation, cross-hybridization,
microarray synthesis imperfections, the effect of the wash, and the scanner’s
dynamic range. In the final model we must fit at least ten parameters specific to
each microarray (eight parameters related to synthesis efficiencies, one parameter
for the mean fragmentation size of the target, and one concentration parameter per
target molecule). The model also includes four parameters that vary between
batches of microarrays processed at the same time (one parameter for the wash
common between chips, and three parameters related to the shape of the scanner’s

dynamic range).

Keq Calculations

Our approach to target DNA/probe DNA hybridization is exhaustive. We begin by

assuming that hybridization temperature, hybridization solution salt concentration,
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probe sequences, and target DNA sequences are known. In our model the target
DNA consists of one or more DNA “segments” which have unknown concentrations.
These DNA “segments” are user defined and can be PCR fragments, reduced
representations of the genome, chromosomes, transcripts, whole genomes, or any
other set of DNA sequences that accurately represents the segments produced by
the experimental protocol. First we fragment the target at every possible position;
thus, modeling all potential cut sites on the target DNA. We then allow each of the
resulting target fragments to bind to every position on every probe. Thus in our
model, a probe spot consists of a “forest” of bound target/probe complexes. The
target molecules that are hybridized to the probes in a given probe spot are of
differing lengths and are bound at differing start and end-positions of the probe
sequence. Even though each spot consists of a complex assortment of probe/target
complexes the underlying thermodynamics of each individual binding reaction is
fundamentally the same as in solution and follows a Langmuir isotherm with

nearest-neighbor kinetics [19, 37, 38].

In order to model target binding along all positions of a probe, we split the target
into all possible sequences that are 32 base pairs (bp) (Figure 1). For each of these
sequences we calculate the Keq (equilibrium constant) values for the forward and
reverse target sequences aligned to every position (Figure 2) of the probe. To
calculate each Keq value we first calculate the change in free energy, DG, for each of

these probe-DNA duplexes. Where DG is
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DH is change in enthalpy, DS is change in entropy, and T is hybridization
temperature. We calculate DG using the nearest neighbor model [37, 38]. The
values for DH, and DS for perfect match and mismatch base pairs,
initiation/termination GC and AT values, and [Na+] corrections for DG calculations
come from [19, 21-25]. All the nearest neighbor values used to calculate changes in
free energy are listed in the supplementary materials (Supplementary Table 1A).

We then calculate using

-AG

K, =e® 2)

where R is the gas constant.

Fraction Bound Probes Calculations

After we calculate target DNA/probe DNA binding thermodynamics, for all possible
target/probe combinations we use those Keq values to calculate the fraction of

bound probes, a, for each probe spot. To do so we assume the Langmuir isotherm

CKyy =7 (3)

where C is equal to the target DNA concentration. Rearranging, we solve for a and

get
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In order to use this formula for a, two conditions have to be met. First, equilibrium
for target/probe formation must be reached, and second, [C] >> [probe], such that

D[C] due to target/probe binding is negligible.

Equation 4 holds for a single target sequence and a single probe spot. However, the
experiment consists of long segments of DNA fragmented at random into a
collection of targets of differing lengths with differing start and stop positions. Our
first assumption is that the fragmentation process creates a uniform pattern of
fragmentation, such that the probability that the target is “cut” between any two
bases is equal. Thus, start and stop positions of every target DNA fragment are
uniformly distributed, and the lengths of the fragments in between the cut sites are
geometrically distributed. We use the mean fragment size, m, estimated from the
data, to calculate p, the probability that the target is fragmented between any given
pair of bases, and q = 1-p. Let Cjjbe the concentration of target with a cut after the

ith base, and another cut j bases later. The concentration of such fragment (Ci;) is
vk 2 -
C,=C*pyq (5)

where C is the overall concentration of the target molecule. For target molecules

with a cut after base i, and extending at least j bases without a cut, but which
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continues an unknown number of bases past the end of the probe, we estimate the

concentration as
C =Y Cp’q" = Cpq’ ©)
k=j

Each of the Cj;jfragments can bind at any position in a probe. Let Keq (ix) equal to the
Keq when fragment Cij binds starting at position k of the probe. For any one

fragment (i,j) bound at a position k, the fraction of bound probes ag;x) is

C . .K

i, J k™" eq(i.j k)

a. ., =
bR Co K +1

i,j.k " eq(i,jk)

(7)

Equation 7 fails to model competitive hybridization. When we incorporate
competition between targets we must sum all possible fragment and target duplexes

[39] to get

22 2C K
kK oioj
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- (8)
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When the target solution consists of n distinct DNA segments with different
concentrations the fraction of bound probes for a given probe spot becomes
222 2 K i
a n k i
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where C, is equal to the concentration of the nth DNA segment.

In our model competitive hybridization only takes place during the hybridization
period. Following this hybridization period, the chip is washed with a low salt
solution. We model the wash as a Keq threshold. We assume that any probe-target
complexes with Keq values below this threshold come apart and no new
target/probe complexes form during the wash period. We modify Formula 9 above
to include the effect of the wash by excluding Keq values < Keqw threshold values in

the numerator term. To do so we modify a

222 2CKewisin
_ n k i

2222 CiaKegisin|+1

n k i

¢ (10)

where Keqw(ijk) are all Keq values greater than Keqw.

Equation 10 above describes probe/target binding when there are no errors during
probe synthesis and consequently all oligos in a probe spot are identical in sequence
and in length. However, errors in probe manufacturing are common [29-31] and will
alter probe binding efficiencies. In our model we employ two distinct mechanisms
of error: “truncation errors” and “abasic” sites (Table 1). We define truncation
errors as the failure of a nucleotide to incorporate during the

protection/deprotection stage of probe synthesis; consequently these errors cause
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the probe to be truncated at a given spot, with no further incorporation of bases. A
site is said to be abasic, if the DNA backbone is present, but the nucleotide is not.
Sites are assumed to become abasic some time after probe synthesis, but prior to
hybridization. Due to both of these types of errors, probe spots consist of a
heterogeneous mixture of probes. These spots have full-length probes (no errors) as
well as probes with one or more errors (Table 1). Since probe synthesis starts at
the 3’ end, a probe with a truncation error will extend from the 3’ end up to the last
base that was successfully incorporated. Probes with abasic sites, on the other
hand, vary from the full length probe only at the site where the nucleotide was lost.
We further assume that the probability of an error is independent and identically
distributed and fixed across a microarray. LetAs, Cs, G5, and Ts be the probabilities
that A, C, G and T nucleotides are synthesized correctly (contain no truncation
error) and Ag, Cg, Gs, and Tg be the probabilities that A, C, G, and T nucleotides do
not subsequently lose their base. The probability that a probe is full length pr (no

errors) is
e = A{CEGEUT AL CEGT,Y (11)

where nA, nC, nG, and nT are the number of A, C, G, and T bases in the full length
probe. Similarly the probability that a probe has exactly one abasic site at an A
nucleotide is equal to

pF(l _AB)

A, (12)

We calculate all other one error probabilities in a similar manner.
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When we account for synthesis failure, we imagine the spot as composed of a forest
of full length probes together with all possible manufacturing errors for that probe.
We calculate ax for each possible error, x, individually, and create an overall a by

weighting each by the probability, px, that this particular error will occur. Thus,

1
a=pFaF+prax (13)
x=1

where the sums are taken over all possible errors x. To simplify calculations, we
assume that probes with two or more errors have little to no binding and an ay value

of zero.

Estimating Probe Spot Intensity

Equation 13 gives us the proportion of probes bound. By assumption, probes with
more target bound will have greater florescent intensity when the probe is scanned.
In general, the aim is to have a nearly linear relationship between the amount of
probe bound and the observed florescent intensity. However, it is absolutely certain
that at the limits of the scanner’s dynamic range, a linear response is physically
impossible [34]. In order to model this and other factors such as quenching and the
dynamic range of the a/d converter, we assume that the relationship between
observed florescent intensity and the proportion of probes bound follows a

gompertz curve and the expected intensity is equal to
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MIN
(log(

MAX *e — MAX

)*(e -a*GOMP ))

(14)

where MIN is equal to the background intensity, MAX is equal to the linear cutoff for
intensity, and GOMP is equal to the shape parameter of the gompertz curve (Figure

3). The user supplies the MIN, MAX, and GOMP values.

We fit four parameters for the truncation rates, four parameters for the rate of
abasic sites, and a variable number of parameters for the target DNA segment
concentrations. To do so we minimize the square difference between the observed
and expected probe intensities across all probe spots on a chip, using Powell’s
method for numerical minimization [40]. In order to ensure that the algorithm did
not find a sub-optimal solution, we ran several searches on the same chip. Each time
the algorithm would start at a different part of parameter space and always find the

same solution.

One Dimensional Nearest Neighbor and Initiation Termination Parameter Search

We performed a one-dimensional search for the NN and the initiation/termination
parameters used in the Keq calculations. In this search we maximized the observed
mean correlation for a set of five chips each ran under four different combinations

of wash/fragmentation parameter values.
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The Effect of Mismatches on Probe Intensities

To understand the effect of mismatches under our model we compared the intensity
of “perfect match” probes to all possible “mismatched probes.” More specifically we
calculated the expected intensity of 20,102 probes that align perfectly to the human
reference sequence. Then for each of these 25 bp long probes we calculated the
expected intensity for all sequences that have all possible one base pair differences.
Therefore, for each “perfect match” probe there are 75 “mismatch” probes. The
“perfect match” probe sequences come from the FMR1 chip design and the
parameters used to calculate the expected intensities are the same as the

parameters that were fit for chip number 19 FMR1 design (Supplementary Table 2).

Comparison of Forward and Reverse Strand Probe Intensities

We compared the observed and expected intensities for probes that perfectly
matched the reference sequence. For every forward and reverse probe pair we
calculated the log ratio of the forward/reverse observed intensities. We then
calculated the average of this ratio across all 62 chips from the FMR1 design. We did
the same for the expected intensity. Then for each probe pair we estimated the
difference in nucleotide composition between forward and reverse as the sum of (A-
T) and (G-C). Where A, C, G, and T are the number of A, C, G, and T bases in the

forward strand probe. We used this value to create bins for the means of the ratios.
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We then plotted the mean for the observed and expected ratios for each bin

(Supplementary Figure 1).

Results

We used our model to predict probe intensities for seven Affymetrix re-sequencing
array designs with 25 base pair long DNA probes that bind end labeled target DNA.
The cwrs labeled designs come from [20]. These chips were manufactured and
processed in 1999 and 2000. The seventh design, FMR1, chips come from [12]. They
were manufactured and processed in 2009. The array designs have highly variable
GC content, number of PCR products, and features. Mean correlations between
expected and observed intensities, as well as the incorporation rates (1 - truncation
rate), and the base retention rates (1 - abasic rate) for individual chips are listed in
the supplementary material (Supplementary Table 2). For the 302 chips analyzed
the mean correlations (Pearson) range from 0.881 to 0.550. For the FMR1 chip
design the average correlation across all chips was 0.76. For these same chips the
correlation for the log values was 0.73. Figure 4 shows the plot of the log (observed
- observed mean) and log (expected - expected mean) values for chips 32 and 34
from the FMR1 design. The calculation times on a 2.4Ghz single core CPU for Keq
values for each design were in the range of 30 minutes to 2 hours per PCR product.
These calculations happen only once per probes set design, and do not depend in
any way on the observed intensities. The running time for each individual chip was

in the range of 20 minutes to 3 hours. For all chips the hybridization temperature
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was set to 42°C, the minimum intensity for the scanner was set to 100, and the
maximum intensity was set to 65536. For all but one chip, the GOMP shape value
was fitted to 7. The other chip appeared to have a GOMP value of 6.5. We ran a
couple of chips using different temperature and salt concentration values and found
that the temperature given by the experimental protocol plus/minus 2 degrees and
a salt concentration of one molar gave the best fits. We ran each chip using 30-48
different combinations of wash and fragmentation values, and then selected the
values that gave the highest correlation. There is little chance for over fitting,
because the number of parameters fit (16-23) for each chip is literally 3-4 orders of
magnitude lower than the number of observations for each chip (80,428 - 231,776)
(Table 2). Furthermore, the maximum intensity, and minimum intensity were never
fit to the data, but were rather inferred from the experimental protocol. By design,
the FMR1 chip had 512 probe spots replicated in two or more places on the chip.
This allowed us to estimate the correlation in observed intensity between two spots
with the same probe sequence, but different positions on a single chip. The average
correlation in intensity between these replicated spots is 0.906, where the average

is taken over 62 different chips.

For each chip design, the average correlation, the mean incorporation rates, and the
mean base retention rates are listed in Table 1, Table 2, and Table 3 respectively.
We used a Kruskal-Wallis rank sum test to determine whether the incorporations

rates for each nucleotide are different between chip designs. The Kruskal-Wallis chi-
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squared values are 175, 72, 223, and 156 for A, C, G, and T incorporations rates
respectively. Each test has six degrees of freedom and a p value < 10-12. For A, C, G,
and T base retention rates, the Kruskal-Wallis chi-squared values are 235, 154, 259,
and 226 respectively. Each test has six degrees of freedom and a p value < 10-12. We
then compared the parameters for the cwrs design chips only. For A, C, G, and T
incorporation rates as well as A, C, G base retention rates each test had five degrees
of freedom and a p value < 10-12. For T base retention rates the Kruskal-Wallis chi-

square value was 16 and the p value was 0.006.

Intuitively, this is the primary explanation of the observed difference between
forward and reverse probe intensities. If, for example, the C incorporation rates are
much higher than G incorporation rates and they both have similar rates of base
retention, and one probe (say the forward probe) is C rich, while the other G rich,
then we will observe that the forward C rich probe will be much brighter than the
complimentary reverse G rich probe. Across chip designs adenosine seems to be
synthesized more efficiently than other bases. More specifically, for the FMR1 chip
design adenosine synthesis is more efficient than thymidine synthesis and cytidine
synthesis is more efficient than guanosine synthesis. For this chip design we looked
at the ratio of forward and reverse strand intensities as a function of probe base pair
composition (Supplementary Figure 1). For bins with more than 50 observations
the observed and the expected intensity ratios followed the same trend. The

deviations between the observed and the expected at the edges of the curve could
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be the results of small sample size and nucleotide runs that have binding affinities

that deviated from those calculated using the nearest neighbor model.

To test the hypothesis that nearest-neighbor binding NN values have the same
values as in solution binding [19, 21-25], we ask whether or not the overall
correlation between predicted and observed intensity can be improved by varying
any of the binding kinetic parameters. To do so, we conducted a one-dimensional
search for DH for all ten possible perfect match NN values, and all 51 mismatch
values that have been previously estimated [21-25]. For the perfect match NN
values the DH values that maximized the intensity correlation were essentially equal
to the values estimated by Santa-Lucia et al [19], and in no case was the best
estimate more than 5% different from the reference values (Figure 5). On the other
hand some of the DH values for the mismatches were modestly different from the
reference values. The range of error for the mismatch values is much larger than
that for the perfect matches; therefore, our estimates, which are based on thousands
of observations, might represent a more accurate estimate of mismatch NN values
for microarray and/or in solution binding. However, it is quite possible that these
values are fundamentally confounded with manufacturing error in our model, and
given the modest nature of the difference, we are not convinced that mismatch
binding kinetics are substantially different from in solution binding. The linear
search for optimal DH initiation/termination values also yielded results that were

fundamentally the same as in solution kinetics. The best fit values for the mismatch
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NN numbers can be found in the Supplementary Materials (Supplementary Table

1B).

One of the main goals of our study was to understand the effect of mismatches on
probe intensity. In our model the binding affinity of a particular mismatch is
independent of its position in the probe sequence. Therefore, we were interested to
see if the other details in our model could explain the observation that mismatches
towards the center of the probe have a larger effect on intensity compared to
mismatches that are closer to the edges. Figure 6 shows the average effect of
mismatches at each position on the probe. The distance of a mismatch from the edge
of the probe correlates to the difference between the perfect match and mismatch
intensities, with mismatches in the center having the largest effect. Mismatches

towards the 3’ end have a slightly larger effect than mismatches towards the 5’ end.
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Discussion

Our model for DNA hybridization on microarrays is comprehensive. It includes
parameters that are specific to the chip design and to the processing protocol. These
parameters are probe length, temperature, salt concentration, wash stringency,
target DNA size, and the parameters that are related to the scanners dynamic range.
Furthermore, the NN values can be adjusted to accommodate DNA-RNA and RNA-
RNA binding. The algorithm that calculates Keq values for probe target complexes is
applicable to many array designs as well as to other binding reactions in
thermodynamic equilibrium. Thus, this algorithm can provide valuable information
on binding affinities and cross-hybridization for a wide array of applications

including probe design.

Our approach to probe intensity calculations takes into account many of the
“problems” inherent to microarrays such as batch effects and probe synthesis
failure. Preparation of target DNA for microarray experiments often poses many
technical challenges; consequently, the concentration of DNA products often varies
between experiments as does the wash strength and average fragmentation size.
Furthermore, probe synthesis efficiency varies between individual chips, and
different batches of arrays. Our model directly tackles this problem by fitting the
concentration as well as the nucleotide synthesis parameters for each chip. It is
important to note that all the chips analyzed are Affymetrix chips with 25 bp long

probes; therefore, the chip synthesis aspects of our model may be somewhat specific
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to the company’s manufacturing process. Our model fits one parameter for the
concentration of each target molecule, which limits its use for arrays that quantify
transcript levels. However, the Keq information from our model is applicable to any

type of array.

For all the chips that were analyzed, the mean correlation between expected and
observed probe intensities is 0.701, with average correlations for each chip ranging
from 0.881 to 0.550. Furthermore, extreme intensity values do not dominate the
correlation terms (Figure 4). For the FMR1 design chips the correlation for
replicated probe spots (probe spots with the exact same probe sequence) is 0.906.
Similar measurements for correlation between probe spots have been previously
reported [41, 42]. Thus, if we view ~90% as the maximum possible correlation
between expected and observed intensity, because observed intensity varies this
much between replicated spots within a single chip, our model can be seen to be

doing a very good, but not quite a perfect job of predicting probe intensities.

Our model has helped us understand some puzzling observations regarding
microarrays: the difference in intensity between complimentary forward and
reverse probes; the larger decrease in intensity for mismatches towards the center

of a probe; and batch effects.
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First, assuming simple liquid phase kinetics, probe spots that target the forward
DNA strand should have equal amount of bound target DNA as the complementary
spot that targets the reverse DNA strand. However, the intensity of the forward and
reverse strands usually have systematically different intensities, with probes
targeting the forward strand of a given genomic region being brighter/darker than
the set of probes that target the reverse strand of the same genomic region [20].
Under our model this observation is simply the result of probe synthesis failure or
sites becoming abasic after synthesis. This claim is supported by the fact that the
A,C,G, and T synthesis parameters are statistically different from each other for each
of the different chip designs (Supplementary Table 2). The estimates for A,C,G, and T
incorporation rates (Table 3) are similar to previously published estimates of
synthesis failure for Affymetrix arrays [29]. Furthermore, this explanation for the
difference between forward and reverse strand probes is far more parsimonious
than relating this difference to G-stacks [43], given that this difference is observed in
A/T rich probes that have no stretches of the same amino acid. There are two
factors that we did not model, but could partially contribute to the observed
difference between forward and reverse probes. For one there are base analogues
that are often used to manufacture probes, this difference can easily be incorporated
into our model by revising the NN numbers used for the Keq calculations. Second

there could be an entropy penalty to base pairs that are closer to the array surface.
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In our model, probe synthesis failure along with wash and fragmentation
differences explain batch effects for microarrays. Batch effects can be subdivided
into two types, those that happen during manufacturing of the chip and those that
happen during the processing of the chip. In our model, the former is explained by
differences in the efficiency of probe synthesis, while the latter is explained by
differences in the fragmentation, washing steps, and as the rate of abasic site

formation.

Another previously puzzling observation is the correlation between the distance of a
mismatch from the edge of the probe and its effect on probe intensity. Mismatches
towards the center have a larger effect than mismatches towards the edges [26].
Under our model this observation is expected (Figure 6), and is the result of
fragmentation of the target molecule. Intuitively, there are more fragments that can
bind the center of a probe, than fragments that can only bind a single edge (Figure
1). Hence, if a target molecule contains a mismatch, its effect will be proportional to
its distance from the middle of the probe. In our model, simple hybridization
kinetics can explain these puzzling observations without the need to assign different

weights along the probe sequence nor a penalty to probes with a mismatch.

Using our model we get an average correlation of ~70% between observed and
expected probe intensity. This includes data from all probe spots regardless of their

quality. Even so, our model comes close (0.881) on some chips, but never achieves
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our theoretical maximum correlation (0.906). From the manufacturing process up
until the reading of probe spots intensities, the microarray experiment has several
complex steps. Our model makes several “simplistic” assumptions that allowed us
to develop efficient algorithms. In doing so we made several compromises. One of
these assumptions is that probes with two or more errors do not bind target DNA.
This assumption should have a relatively small effect on the correlation for 25 bp
long probes; however, it is expected to have a larger effect on the correlation for
longer probes. In our model we use the Langmuir isotherm to calculate the fraction
of bound probes and do not take into account probe surface density [16, 17], non-
equilibrium, and low target/probe ratio [39]. Theoretically, commercial arrays of 25
bp long probes should have reached equilibrium at the end of the hybridization
step; however, equilibrium might not be achieved by the end of the washing period;
therefore, our approach to modeling the wash step of the protocol is rather
simplistic. Furthermore, in these arrays the target/probe ratio should be very large.
When arrays deviate from this ideal scenario our model loses predictive power. It is
important to note that even though the probe surface density is not directly
modeled by our approach, the parameters we use to describe the scanners dynamic
range can indirectly be used to adjust for microarrays with varying probe surface
densities. This “adjustment” however has some limitations. The most obvious one
being if increasing probe density affects mismatched sequences and matched

sequences disproportionately [17].
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Overall our data suggests that the Langmuir isotherm appropriately and efficiently
models binding between probe and target DNA on a microarray; however, other
more computationally intensive measurements for binding on arrays have been
proposed [39, 44]. Furthermore, when we calculate target-probe binding we do not
account for the known in solution effects of dangling ends [45] and the stabilizing
effect of mismatches in the last three base pairs of a sequence [21-25]. We also do
not model secondary structures that can form on arrays with long probes or arrays
that hybridize to targets with extensive secondary structures, for example rRNA

arrays [46].

Other details of the microarray experiment that are left out of our model are bleed-
through between features and regional artifacts such as air bubbles, scratches, and
miscellaneous particles. There are two sources of bleed-through between features:
one, the probes at the edge of a feature may have a hybrid sequence due to
incorporation of nucleotides during the synthesis of the neighboring probe; two, the
scanner may be detecting light from neighboring features and falsely determining
its origin. If this were going on, its effect would be most noticeable in probes that
would otherwise be very dark, and appears to be present (Figure 4) in our data,
where a substantial fraction of probes that are predicted to have very low

intensities appear to have much higher than expected intensity.
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Our approach to modeling probe synthesis failure also has some limitations. First,
there is the possibility that the concentration parameters are confounded with the
synthesis efficiency parameters. This can be a problem when dealing with G/C or
A/T rich PCR products. Second, the synthesis efficiency of a nucleotide can

potentially be dependent on its position on the probe [29].

For our calculations we assume that the target DNA has the reference sequence.
This assumption is never completely valid because each individual almost surely has
a unique sequence that may differ slightly or even significantly from the genomic
reference sequence. The impact of this assumption on the correlations for the
analyzed data depends on the type of genetic variation of the samples. When the
target DNA only has SNPs and/or other one base pair changes, then the genetic
variation is unlikely to have a large impact on the average correlation over the
entire chip; however, if the target DNA has large CNVS and/or several CNVs then
these genetic variants would be expected to have a significant effect on the average

correlation for the chip.

Our model is most applicable to 25 bp long arrays that are designed to detect
genetic variation. With this in mind, the obvious next step is to apply our model to
SNP arrays with the goal being to better determined which genetic variants are

present, by incorporating our model into a variant calling algorithm.
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TABLES

Table 1: Synthesis Errors

53

Probe Sequence

Type of Synthesis Error(s)

5 Cl2T11A10C9C8G7T6ASCAC3G2T! 3’

Full length probe (no error)

5’ C8G7TOASC*C3G2Tt 3’

Incorporation error base 9

5’ C8G7T6_5C4C3G2T' 3

Incorporation error base 9 and abasic site

5 CI2T11A10 9C8G7T6 5C4C3G2TL 3’

Full length probe with two abasic sites

5’ T6_5C*_3G2T1 3’

Incorporation error base 7 and two abasic
sites

Table 1: (_) denotes an abasic site.




Table 2: Correlations
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Design | Number | Number | Numberof |Number | Mean Correlation
of Chips | of Probe | Parameters | of PCR between Expected
Spots per | that were products | and Observed Probe
Chip Fit to each Intensities
Chip
cwrs-07 | 40 230640 21 9 0.765 £ 0.038
cwrs-39 | 40 230240 20 8 0.605 £ 0.020
cwrs-51 | 40 226592 23 11 0.730 £ 0.021
cwrs-53 | 40 230432 21 9 0.714 £ 0.016
cwrs-63 | 40 229280 21 9 0.666 + 0.028
cwrs-67 | 40 231776 18 6 0.629 £ 0.029
fmrl 62 80408 16 4 0.762 + 0.081

Table 2 : Summary for each chip design.




Table 3: Incorporation Rates
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Design A C G T
incorporation | incorporation | incorporation | incorporation
cwrs-07 | 0.985 £ 0.012 0.952 £0.017 0.916 £ 0.035 0.945 +0.018
cwrs-39 | 1.000 £ 0.000 0.950 £ 0.009 0.990 £ 0.017 0.944 £ 0.005
cwrs-51 | 0.999 £ 0.004 0.945 £ 0.015 0.995 £ 0.013 0.967 £ 0.008
cwrs-53 | 0.996 £ 0.007 0.943 £ 0.013 0.990 £ 0.015 0.973 £ 0.006
cwrs-63 | 0.983+0.018 0.944 £ 0.010 0.943 £ 0.022 0.952 £ 0.009
cwrs-67 | 0.987 £0.012 0.931 £ 0.009 0.923 £0.016 0.951 £ 0.007
fmr1 0.967 £0.010 0.944 £ 0.015 0.908 £ 0.020 0.950 £ 0.006

Table 3: Mean incorporation rate for each nucleotide.




Table 4: Retention Rates
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Design | Aretention Cretention G retention T retention

cwrs-07 | 0.963 +0.028 0.981 £ 0.013 0.865 £ 0.036 0.998 £+ 0.007
cwrs-39 | 0.882 +0.005 0.930 £ 0.011 0.791 £ 0.017 1.000 £ 0.001
cwrs-51 | 0.904 +0.010 0.961 £ 0.015 0.791 £ 0.014 1.000 + 0.000
cwrs-53 | 0.901 +0.008 0.972 £0.015 0.809 £ 0.015 1.000 + 0.000
cwrs-63 | 0.944 + 0.025 0.959 £ 0.013 0.866 + 0.029 0.998 £ 0.003
cwrs-67 |0.938 +£0.013 0.956 £ 0.011 0.884 £ 0.021 0.998 £+ 0.006
fmr1 0.959 £ 0.014 0.941 £ 0.027 0.953 £0.029 0.962 £ 0.010

Table 4: Mean retention rate for each nucleotide. (Rate abasic site = 1 - retention




Figures

Figure 1

Probe Sequence
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Figure 1 Legend: Probe and Target Sequences. Sample probe sequence in blue.
All unique target sequences that are 2 base pairs or longer and that are perfect
reverse complements of the probe in black. Columns 1 and 2 have the
corresponding k and j values for each target sequence. The bottom row counts the

number of times each probe position binds to a different target fragment.
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Figure 2
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Figure 2 Legend: Probe-Target Binding. Ways in which a probe sequence is
aligned to the target DNA. Only one target DNA segment is shown. The probe is
aligned to both the forward and reverse target sequences along all positions (i) of

the target DNA and for all appropriate j and k values.



Figure 3
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Figure 3 Legend: Gompertz Curve. Sample Gompertz Curve.

59



60

Figure 4

A) Fmr1 Chip 34
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Figure 4 Legend: Observed and Expected Intensity Plots. Plots for the log
observed and expected intensity values for two FMR1 chips. The intensity values are

centered around their mean. A) Chip number 34 with an observed mean of 5,993
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and an expected mean of 5,914. B) Chip number 32 with an observed mean of 3,054

and an expected mean of 3,058.



Figure 5
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Figure 5 Legend: Nearest-Neighbor Parameter Search. Results for one-
dimensional search for perfect match NN values. The x-axis is the ratio of assayed
DH value divided by the DH in solution value [19]. Thus, x=1 are the in solution
values. The y-axis has the corresponding mean correlation divided by the mean

correlation when the DH values are set to the in solution value [19].
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Figure 6

Effect of Mismatches on Intensity
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Figure 6 Legend: Predicted Effect of Mismatches on Intensity. A graph of the
expected effect of each mismatch on intensity. On the x-axis is the position of the
mismatch. On the y-axis is the mismatch probe intensity divided by the intensity of

the corresponding probe with no mismatches, averaged across all probes.
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Supplementary Table 1

deltaH [AA AC AG AT CA cc CG CcT GA GC GT GG TA TC TG T

AA 0 0 0]9043.49 0 0 0] 15407.4 0 0 0]2512.08] 23613.6 31819.7 15072.5 -33076
AC 0 0 0| 26628 0 0 0 4510| -9713.4| 586.152| 2093.4| -35169 0 0 0[7033.82
AG 0 0 0| -1172.3| -753.62| 4521.74| -16747| -32657 0 0 0| -7787.5 0 0 0] 6698.88
AT 9043.49| 26628| -1172.3| -30145 0 0 0] 1004.83 0 0 0| -6280.2 0 0 0] -9043.5
CA 0 0| -753.62 0 0 0] 7954.92 0 0 0| -1758.5 0] 19929.1| 30647.4| -35588| 8373.6
CcC 0 0]4521.74 0 0 0] -6280.2 0]21771.4]| 15072.5| -33494|21771.4 0 0| -669.89 0
CcG 0 0| -16747 0] 7954.92| -6280.2( -44380 -1256 0 0| -16412 0 0 0 0 0
CcT 15407.4 4510[ -32657[1004.83 0 0| -1256 0 0 0| -7033.8 0 0 0| -20934 0
GA 0f -9713.4 0 0 0[21771.4 0 0 0f -2512.1 0 0]4689.22| -34332| 12058 -3265.7
GC 0] 586.152 0 0 0] 15072.5 0 0| -2512.1| -41031]| -20097 0 0]13481.5 0 0
GT 0] 2093.4 0 0| -1758.5| -33494| -16412| -7033.8 0| -20097 0 0 0]13816.4 0]24283.4
GG 2512.08| -35169| -7787.5| -6280.2 0[21771.4 0 0 0 0 0[17165.9 0] -7368.8 0 0
TA 23613.6 0 0 0] 19929.1 0 0 0] 4689.22 0 0 0| -30145| 8038.66| 1004.83]| 2512.08
TC 31819.7 0 0 0] 30647.4 0 0 0| -34332|13481.5]| 13816.4| -7368.8| 8038.66 0 0 0
TG 15072.5 0 0 0| -35588| -669.89 0| -20934| 12058 0 0 0] 1004.83 0| -5861.5 0
T -33076] 7033.82| 6698.88| -9043.5| 8373.6 0 0 0] -3265.7 0] 24283.4 0] 2512.08 0 0 0
deltaS [AA AC AG AT CA cC CG CcT GA GC GT GG TA TC TG T

AA 0 0 0[7.11756 0 0 0]19.2593 0 0 0] -9.6296| 54.0097| 84.5734( 30.9823| -92.947
AC 0 0 0]61.1273 0 0 0| -18.422| -41.031| -15.91)13.3978| -93.784 0 0 0]0.83736
AG 0 0 0] -9.6296| -17.585| -2.5121| -55.266( -87.923 0 0 0| -39.775 0 0 0] 3.76812
AT 7.11756]61.1273| -9.6296| -85.411 0 0 0f -25.958 0 0 0| -34.75 0 0 0f -45.217
CA 0 0| -17.585 0 0 0]15.4912 0 0 0] -9.6296 0] 33.4944| 68.6635| -95.04 2.93076
CcC 0 0] -2.5121 0 0 0] -30.145 0] 59.4526| 37.2625| -83.317| 56.5218 0 0f -18.841 0
CG 0 0| -55.266 0] 15.4912| -30.145] -113.88| -25.54 0 0] -64.058 0 0 0| -48.986 0
CcT 19.2593( -18.422| -87.923| -25.958 0 0| -25.54 0 0 0| -33.494 0 0 0| -66.151 0
GA 0] -41.031 0 0 0] 59.4526 0 0 0] -4.1868 0 0] 2.93076| -92.947| 15.0725| -22.19
GC 0] -15.91 0 0 0] 37.2625 0 0| -4.1868| -101.32| -66.151| -51.498 0] 22.6087 0 0
GT 0] 13.3978 0 0] -9.6296| -83.317( -64.058( -33.494 0| -66.151 0 0 0] 43.5427 0] 68.2448
GG -9.6296| -93.784| -39.775| -34.75 0] 56.5218 0 0 0| -51.498 0] 39.7746 0] -35.169 0 0
TA 54.0097 0 0 0] 33.4944 0 0 0[ 2.93076 0 0 0] -89.179| 2.93076| -7.1176| -6.2802
TC 84.5734 0 0 0] 68.6635 0 0 0| -92.947| 22.6087| 43.5427| -35.169| 2.93076 0 0 0
TG 30.9823 0 0 0] -95.04| -18.841| -48.986( -66.151| 15.0725 0 0 0| -7.1176 0| -25.958 0
TT -92.947] 0.83736/( 3.76812| -45.217| 2.93076 0 0 0| -22.19 0] 68.2448 0] -6.2802 0 0 0
delta H A/T G/C

Init/Term| 9629.64| 418.68

delta S A/T G/C

Init/Term| 17.1659| -11.723|Supplementary Table 1A. Values for H are in J/mol . Values for S are in J/(K*mol).

delta H AA AC AG AT CA cC CG CT GA GC GT GG TA TC TG T

AA 0 0 0] 5024.16 0 0 0] 9629.64 0 0 0] -2512.1 19678 31819.7| 12560.4| -33076
AC 0 0 0] 22190 0 0 0 0| -12142| -2930.8| 2093.4| -35169 0 0 0] 2930.76
AG 0 0 0] -2930.8| -3768.1 2512.08( -16747[ -32657 0 0 0| -12979 0 0 0| 4186.8
AT 5024.16| 22190| -2930.8| -30145 0 0 0f -5024.2 0 0 0| -10467 0 0 0 -11304
CA 0 0| -3768.1 0 0 0]7954.92 0 0 0] -2930.8 0] 14235.1] 25539.5| -35588| 4186.8
cc 0 0] 2512.08 0 0 0[ -6280.2 0[21771.4| 15072.5| -33494|21771.4 0 0f -3349.4 0
CG 0 0| -16747 0] 7954.92| -6280.2| -44380( -6280.2 0 0| -20515 0 0 0| -17166 0
CT 9629.64 0| -32657| -5024.2 0 0] -6280.2 0 0 0| -11723 0 0 0| -20934 0
GA 0] -12142 0 0 0] 21771.4 0 0 0| -2512.1 0 0] 2930.76| -34332| 6698.88| -5442.8
GC 0] -2930.8 0 0 0] 15072.5 0 0] -2512.1| -41031| -25121| -18422 0] 9629.64 0 0
GT 0| 2093.4 0 0] -2930.8| -33494| -20515| -11723 0] -25121 0 0 0] 13816.4 0] 24283.4
GG -2512.1| -35169| -12979( -10467 0] 21771.4 0 0 0| -18422 0] 17165.9 0 -9211 0 0
TA 19678 0 0 0] 14235.1 0 0 0] 2930.76 0 0 0| -30145]| 5024.16( -418.68( 837.36
TC 31819.7 0 0 0] 25539.5 0 0 0| -34332)9629.64| 13816.4| -9211|5024.16 0 0 0
TG 12560.4 0 0 0| -35588| -3349.4| -17166[ -20934|6698.88 0 0 0| -418.68 0| -5861.5 0
T -33076] 2930.76| 4186.8| -11304| 4186.8 0 0 0| -5442.8 0]24283.4 0| 837.36 0 0 0
deltaS [AA AC AG AT CA (oo} CG CcT GA GC GT GG TA TC TG T

AA 0 0 0] 7.11756 0 0 0] 19.2593 0 0 0] -9.6296| 54.0097| 84.5734| 30.9823| -92.947
AC 0 0 0]61.1273 0 0 0] -18.422| -41.031| -15.91)13.3978| -93.784 0 0 0] 0.83736
AG 0 0 0] -9.6296| -17.585| -2.5121| -55.266| -87.923 0 0 0| -39.775 0 0 0] 3.76812
AT 7.11756) 61.1273| -9.6296| -85.411 0 0 0] -25.958 0 0 0| -34.75 0 0 0] -45.217
CA 0 0| -17.585 0 0 0]15.4912 0 0 0] -9.6296 0] 33.4944| 68.6635| -95.04| 2.93076
cc 0 0| -2.5121 0 0 0| -30.145 0] 59.4526| 37.2625| -83.317| 56.5218 0 0| -18.841 0
CcG 0 0| -55.266 0] 15.4912| -30.145( -113.88 -25.54 0 0| -64.058 0 0 0| -48.986 0
cT 19.2593] -18.422| -87.923| -25.958 0 0| -25.54 0 0 0| -33.494 0 0 0| -66.151 0
GA 0| -41.031 0 0 0] 59.4526 0 0 0| -4.1868 0 0]2.93076| -92.947| 15.0725[ -22.19
GC 0] -15.91 0 0 0] 37.2625 0 0| -4.1868| -101.32| -66.151| -51.498 0] 22.6087 0 0
GT 0] 13.3978 0 0] -9.6296| -83.317| -64.058| -33.494 0| -66.151 0 0 0] 43.5427 0] 68.2448
GG -9.6296| -93.784| -39.775| -34.75 0] 56.5218 0 0 0] -51.498 0] 39.7746 0| -35.169 0 0
TA 54.0097 0 0 0] 33.4944 0 0 0] 2.93076 0 0 0| -89.179| 2.93076| -7.1176| -6.2802
TC 84.5734 0 0 0| 68.6635 0 0 0] -92.947| 22.6087] 43.5427| -35.169] 2.93076 0 0 0
TG 30.9823 0 0 0| -95.04| -18.841] -48.986| -66.151| 15.0725 0 0 0| -7.1176 0] -25.958 0
T -92.947]0.83736| 3.76812| -45.217] 2.93076 0 0 0] -22.19 0] 68.2448 0] -6.2802 0 0 0
deltaH [A/T G/C

Init/Term| 9629.64| 418.68

deltas [A/T G/C

Init/Term| 17.1659| -11.723|Supplementary Table 1B
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Supplementary Table 2
Table 2
cwrs07 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1| 0.980| 0.963]| 0.891| 0.934 0.973| 0.972| 0.881] 1.000 0.819
2| 0.968 0.962| 0.879 0.925[ 0.998 0.972 0.900( 1.000 0.812
3] 0.982 0.959| 0.877| 0.919[ 0.999 0.976( 0.895[ 1.000 0.806
4| 0.973| 0.948] 0.878| 0.925[ 0.992| 0.991| 0.879]| 1.000 0.778
5| 0.983| 0.953| 0.914| 0.966| 0.982| 0.989| 0.899| 1.000 0.766
6 0.981 0.957 0.909 0.960 0.979| 0.986( 0.886[ 1.000 0.778
7] 0.985| 0.959 0.886| 0.942] 0.992| 0.976] 0.907( 1.000 0.802
8| 0.988| 0.960| 0.914| 0.963| 0.943| 0.984( 0.842 1.000 0.764
9] 0.979] 0.967| 0.889| 0.940| 0.987| 0.972 0.876( 1.000 0.797
10( 0.970| 0.965| 0.879] 0.935| 1.000( 0.970( 0.884| 1.000 0.804
11| 1.000| 0.969| 0.955| 0.957| 0.932] 0.983]| 0.863| 0.987 0.764
12| 0.976] 0.959| 0.869| 0.918| 1.000] 0.962| 0.915]| 1.000 0.817
13 0.955| 0.974| 0.965| 0.947| 0.984 0.984( 0.847| 0.987 0.769
14| 1.000| 0.963| 0.963| 0.967| 0.925| 0.979]| 0.826] 1.000 0.758
15| 0.991| 0.947| 0.953| 0.965| 0.930] 1.000] 0.829]| 1.000 0.732
16( 0.999| 0.947| 0.936] 0.959| 0.926( 1.000{ 0.833] 1.000 0.773
17| 0.973| 0.962| 0.899| 0.935| 0.982| 0.973| 0.876] 1.000 0.773
18| 0.979| 0.962| 0.912| 0.949| 0.954| 0.978] 0.848] 1.000 0.764
19 0.995| 0.971| 0.976] 0.966| 0.935[ 0.953( 0.820] 1.000 0.722
20| 0.990| 0.962| 0.964| 0.964| 0.937 0.972 0.828[ 1.000 0.730
21| 0.993| 0.943| 0.952| 0.966| 0.939 0.991 0.832 1.000 0.735
22| 1.000| 0.949| 0.931| 0.950( 0.928| 0.977] 0.851] 1.000 0.727
23| 1.000| 0.943| 0.851| 0.925] 0.997| 0.976| 0.962 0.964 0.828
24| 0.973] 0.965| 0.906| 0.932| 0.999| 0.967 0.900[ 1.000 0.786
25| 0.992| 0.933| 0.906| 0.949( 0.943| 1.000] 0.852] 1.000 0.730
26| 0.982| 0.958| 0.888| 0.922| 0.977| 0.963| 0.877[ 1.000 0.785
27| 0.981] 0.940| 0.943| 0.971| 0.959( 0.997 0.848[ 1.000 0.742
28| 0.989| 0.939| 0.940| 0.966| 0.945( 1.000f{ 0.844[ 1.000 0.720
29| 1.000| 0.949| 0.971| 0.953| 0.918 0.980f 0.809( 1.000 0.743
30| 0.986] 0.959| 0.968| 0.964| 0.946| 0.968| 0.828[ 1.000 0.721
31| 1.000| 0.933| 0.958| 0.962| 0.926( 0.999( 0.825[ 1.000 0.725
32| 0.969| 0.961]| 0.890| 0.934| 1.000( 0.970f 0.886[ 1.000 0.785
33| 0.996] 0.925| 0.930| 0.951| 0.932 0.996f 0.829[ 1.000 0.678
34| 0.991] 0.955| 0.852| 0.905| 1.000( 0.960f 0.951 0.988 0.824
35| 0.973] 0.910| 0.928| 0.933| 0.956| 0.992 0.824[ 1.000 0.705
36| 0.991| 0.971]| 0.906| 0.941 0.943| 0.968] 0.851] 1.000 0.788
37| 0.982| 0.962| 0.906| 0.934| 0.983| 0.983| 0.905[ 1.000 0.775
38| 0.980| 0.965| 0.915| 0.948| 0.967| 0.982 0.883[ 1.000 0.825
39| 1.000| 0.943| 0.923| 0.951 0.928| 0.993] 0.840] 1.000 0.764
40 0.957| 0.888| 0.873| 0.912| 0.963| 0.999| 0.858| 0.982 0.697
Mean 0.985| 0.952| 0.916| 0.945| 0.963| 0.981| 0.865| 0.998 0.765
Std. Dev.| 0.012| 0.017( 0.035| 0.018| 0.028| 0.013| 0.036( 0.007 0.038
Max. 1.000| 0.974| 0.976| 0.971| 1.000| 1.000| 0.962| 1.000 0.828
Min. 0.955| 0.888| 0.851| 0.905| 0.918| 0.953| 0.809( 0.964 0.678
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cwrs39 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1| 1.000| 0.954| 1.000| 0.949( 0.883| 0.936| 0.794| 1.000 0.620
2| 1.000{ 0.944| 0.999| 0.943] 0.882] 0.937] 0.780{ 1.000 0.608
3] 1.000{ 0.960 0.975| 0.946] 0.889| 0.917] 0.810f 0.999 0.550
4| 1.000| 0.953| 0.975| 0.948| 0.886| 0.928| 0.804| 1.000 0.603
5[ 1.000( 0.949| 0.997| 0.949| 0.881| 0.937 0.784| 1.000 0.612
6| 1.000{ 0.956 0.998| 0.941] 0.880] 0.921] 0.778| 1.000 0.604
7| 1.000{ 0.950( 1.000( 0.939] 0.874| 0.925| 0.774{ 1.000 0.615
8| 1.000| 0.946| 0.986| 0.946| 0.886| 0.935| 0.793] 1.000 0.603
9] 1.000| 0.945| 1.000( 0.947 0.884| 0.936| 0.781] 1.000 0.617
10( 1.000| 0.955| 1.000| 0.939| 0.882 0.921 0.775| 1.000 0.595
11 1.000| 0.953| 0.997| 0.948| 0.883( 0.930( 0.784| 1.000 0.616
12 1.000| 0.968| 0.981] 0.956| 0.891 0.917 0.820] 1.000 0.622
13 1.000| 0.948| 0.997| 0.944| 0.887 0.929( 0.786| 1.000 0.585
14 1.000| 0.943| 1.000| 0.949| 0.880( 0.937( 0.779] 1.000 0.618
15( 1.000| 0.948| 0.994| 0.946| 0.886( 0.931 0.787| 1.000 0.595
16| 1.000( 0.951| 0.999| 0.948| 0.884| 0.928]| 0.784]| 1.000 0.595
17 1.000| 0.949| 1.000| 0.950| 0.883 0.932 0.785| 0.999 0.606
18 1.000| 0.955| 0.998| 0.951| 0.881 0.928 0.787| 0.999 0.610
19 1.000| 0.940| 0.990| 0.942| 0.883 0.935[ 0.786| 1.000 0.611
20| 1.000| 0.943| 0.996| 0.949( 0.883| 0.940| 0.779] 1.000 0.635
21| 1.000| 0.952| 0.994| 0.947| 0.884| 0.928] 0.790] 1.000 0.589
22| 0.998| 0.954| 0.972| 0.939( 0.899| 0.927| 0.810] 1.000 0.672
23| 1.000| 0.959| 0.996| 0.946( 0.887| 0.922| 0.789]| 0.997 0.599
24| 1.000| 0.926]| 0.928| 0.943| 0.882| 0.955| 0.849| 1.000 0.594
25| 1.000| 0.953| 1.000| 0.946( 0.881| 0.929| 0.782] 1.000 0.610
26| 1.000| 0.951]| 1.000| 0.946( 0.873| 0.929| 0.782] 1.000 0.625
27| 1.000| 0.951] 0.990| 0.942 0.878| 0.926| 0.784| 1.000 0.611
28| 1.000| 0.958| 1.000| 0.934 0.871| 0.914| 0.776] 1.000 0.592
29| 1.000] 0.939| 0.933| 0.937 0.880] 0.939] 0.839]| 1.000 0.593
30| 1.000| 0.937| 0.953| 0.936 0.881| 0.935| 0.819] 1.000 0.569
31| 0.999| 0.951| 0.997| 0.934| 0.876] 0.917| 0.780] 1.000 0.586
32| 1.000| 0.954| 1.000| 0.937 0.874| 0.919| 0.775] 1.000 0.603
33| 1.000| 0.943| 0.982| 0.937 0.882| 0.932| 0.794| 1.000 0.582
34| 1.000| 0.919| 0.983| 0.948( 0.887| 0.970| 0.801] 1.000 0.605
35| 1.000| 0.962| 0.997| 0.931 0.873| 0.899| 0.783] 0.995 0.578
36| 1.000| 0.955| 0.994| 0.947| 0.892| 0.930| 0.791] 1.000 0.618
37| 1.000| 0.948| 0.998| 0.948( 0.885| 0.935| 0.782] 1.000 0.618
38| 1.000| 0.958| 0.994| 0.949( 0.882| 0.923] 0.793] 0.999 0.612
39| 1.000| 0.949| 0.996| 0.946( 0.881| 0.932| 0.781] 1.000 0.617
40( 1.000| 0.950| 0.997| 0.945| 0.880( 0.934( 0.780] 1.000 0.613
Mean 1.000( 0.950( 0.990| 0.944| 0.882| 0.930| 0.791( 1.000 0.605
Std. Dev.| 0.000( 0.009| 0.017| 0.005| 0.005| 0.011( 0.017( 0.001 0.020
Max. 1.000( 0.968( 1.000| 0.956| 0.899| 0.970| 0.849( 1.000 0.672
Min. 0.998( 0.919( 0.928| 0.931| 0.871| 0.899| 0.774( 0.995 0.550
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cwrs51 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1 0.991] 0.968| 0.988| 0.973 0.919| 0.938] 0.795| 1.000 0.743
2| 1.000| 0.932 1.000| 0.952| 0.889 0.959| 0.776] 1.000 0.718
3] 0.984| 0.967| 0.978| 0.974] 0.930{ 0.939| 0.804| 1.000 0.732
4| 1.000| 0.943| 0.988| 0.973 0.913| 0.966| 0.793] 1.000 0.736
5| 1.000{ 0.934| 0.990| 0.968 0.899| 0.978] 0.789| 1.000 0.739
6| 1.000| 0.933| 1.000| 0.963] 0.900{ 0.971| 0.783] 1.000 0.718
7] 1.000| 0.948 1.000| 0.971] 0.904( 0.957| 0.786] 1.000 0.740
8| 1.000| 0.953| 0.998 0.963] 0.891]| 0.956| 0.779( 1.000 0.749
9] 1.000| 0.931| 1.000( 0.964| 0.907| 0.966| 0.784( 1.000 0.691
10| 1.000( 0.936] 0.996]| 0.966( 0.899| 0.976| 0.785| 1.000 0.732
11| 1.000( 0.936| 0.996]| 0.965[ 0.896| 0.974| 0.785]| 1.000 0.734
12| 1.000( 0.960| 1.000| 0.974 0.913| 0.949| 0.791] 1.000 0.733
13| 1.000( 0.947| 0.924| 0.978[ 0.910| 0.965| 0.867| 1.000 0.724
14| 1.000( 0.931| 1.000| 0.966( 0.904| 0.976| 0.786] 1.000 0.720
15| 1.000( 0.940| 0.982| 0.971 0.905| 0.971] 0.809] 1.000 0.738
16| 1.000| 0.969 0.999| 0.979| 0.909( 0.939] 0.791] 1.000 0.766
17| 1.000( 0.934| 1.000| 0.946( 0.881| 0.961| 0.780] 1.000 0.718
18| 0.985 0.959| 1.000| 0.970( 0.919| 0.948| 0.788] 1.000 0.734
19| 1.000( 0.939| 0.993] 0.967| 0.903| 0.969| 0.794]| 1.000 0.731
20| 1.000] 0.941| 0.994| 0.953 0.903] 0.951] 0.792]| 1.000 0.720
21| 1.000| 0.928| 1.000| 0.965 0.898| 0.973] 0.786] 1.000 0.712
22| 1.000| 0.944| 1.000| 0.966( 0.899] 0.959]| 0.784| 1.000 0.724
23| 1.000] 0.949| 1.000{ 0.978 0.905| 0.968]| 0.788]| 1.000 0.749
24| 0.991] 0.965| 0.979| 0.976( 0.926] 0.935| 0.810] 1.000 0.697
25| 1.000| 0.920| 1.000| 0.960( 0.897| 0.979] 0.786] 1.000 0.694
26| 1.000| 0.956| 1.000{ 0.970( 0.904| 0.955| 0.793] 1.000 0.741
27| 0.995| 0.936| 1.000| 0.967 0.905| 0.975| 0.792]| 1.000 0.722
28| 0.999| 0.957| 1.000| 0.968 0.904| 0.952] 0.792]| 1.000 0.724
29| 1.000{ 0.965| 1.000| 0.957| 0.899| 0.941] 0.796( 1.000 0.712
30{ 1.000] 0.929| 1.000| 0.966( 0.907| 0.979] 0.791] 1.000 0.721
31 1.000| 0.932| 1.000| 0.971 0.906] 0.976] 0.790| 1.000 0.727
32| 1.000{ 0.919| 1.000| 0.957| 0.892| 0.970] 0.777{ 1.000 0.700
33| 1.000] 0.929| 1.000] 0.955[ 0.903| 0.966]| 0.783] 1.000 0.705
34| 1.000| 0.956| 0.997| 0.979( 0.910] 0.964| 0.793] 1.000 0.755
35| 1.000| 0.984| 1.000| 0.977 0.919] 0.913] 0.795| 1.000 0.725
36| 1.000| 0.953| 1.000| 0.974 0.903| 0.958] 0.784| 1.000 0.749
37| 1.000| 0.938| 1.000| 0.949( 0.884| 0.958]| 0.776] 1.000 0.727
38| 1.000| 0.953| 0.995| 0.970( 0.895] 0.965| 0.787| 1.000 0.767
39| 1.000] 0.949| 1.000{ 0.978 0.908] 0.968]| 0.784| 1.000 0.796
40| 1.000{ 0.933| 1.000| 0.970( 0.907| 0.974| 0.784| 1.000 0.730
Mean 0.999| 0.945| 0.995| 0.967( 0.904| 0.961]| 0.791| 1.000 0.730
Std. Dev.| 0.004( 0.015| 0.013| 0.008| 0.010( 0.015| 0.014| 0.000 0.021
Max. 1.000| 0.984| 1.000| 0.979( 0.930| 0.979| 0.867| 1.000 0.796
Min. 0.984| 0.919| 0.924| 0.946( 0.881| 0.913]| 0.776| 1.000 0.691
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cwrs53 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1| 1.000| 0.954| 1.000| 0.971( 0.897| 0.959| 0.800| 1.000 0.704
2| 0.984( 0.948 1.000{ 0.975] 0.914]| 0.972] 0.808f 1.000 0.689
3] 1.000{ 0.954 0.990( 0.964| 0.902| 0.960] 0.811f 1.000 0.729
4| 1.000| 0.968]| 1.000| 0.980{ 0.905| 0.937| 0.797| 1.000 0.721
5[ 1.000{ 0.930] 1.000] 0.974| 0.895[ 0.988| 0.793| 1.000 0.705
6] 1.000({ 0.936( 0.989| 0.977] 0.897| 0.978] 0.806( 1.000 0.727
7] 1.000{ 0.928 0.990[ 0.970| 0.902] 0.991] 0.806( 1.000 0.704
8] 1.000] 0.964| 1.000( 0.967 0.886| 0.940| 0.793] 1.000 0.705
9] 0.983] 0.962| 1.000( 0.975[ 0.909| 0.952| 0.798] 1.000 0.701
10( 1.000] 0.940| 0.983] 0.974| 0.892( 0.977( 0.811] 1.000 0.713
11| 1.000f 0.941| 0.974]| 0.974| 0.893| 0.976| 0.821] 1.000 0.681
12( 1.000] 0.957| 1.000] 0.977| 0.905( 0.958( 0.804| 1.000 0.699
13 1.000] 0.935| 0.973] 0.968| 0.900( 0.976( 0.825| 1.000 0.742
14 0.968| 0.947| 1.000| 0.977| 0.927( 0.974( 0.803| 1.000 0.733
15[ 0.998] 0.933] 1.000] 0.976] 0.893 0.979( 0.803| 1.000 0.744
16( 1.000] 0.947| 1.000] 0.980| 0.901f 0.973[ 0.804| 1.000 0.718
17 1.000] 0.925| 0.980| 0.964| 0.905( 0.997( 0.823] 1.000 0.738
18 1.000] 0.934| 0.995| 0.958| 0.896( 0.977 0.804| 1.000 0.719
19( 0.989| 0.945| 1.000] 0.971]| 0.905( 0.973[ 0.797] 1.000 0.725
20| 1.000| 0.933] 0.974| 0.974( 0.889| 0.991| 0.808] 0.999 0.732
21| 0.997| 0.933] 0.947| 0.967( 0.911| 0.977] 0.851] 1.000 0.733
22| 1.000| 0.967| 0.997| 0.969( 0.909| 0.944| 0.809] 1.000 0.727
23| 1.000| 0.935| 0.993| 0.977 0.906| 0.988] 0.811] 1.000 0.697
24| 0.979| 0.943]| 1.000{ 0.975( 0.913| 0.974| 0.797] 1.000 0.696
25| 1.000| 0.935| 0.955| 0.973[ 0.901| 0.974| 0.838] 1.000 0.718
26| 0.989| 0.955| 1.000{ 0.979 0.898| 0.964| 0.798] 1.000 0.720
27| 1.000| 0.933] 0.998| 0.971 0.899| 0.977| 0.798] 1.000 0.686
28| 0.992| 0.948]| 1.000f 0.975[ 0.892| 0.968] 0.796] 1.000 0.723
29| 1.000| 0.941] 1.000{ 0.971 0.898| 0.970] 0.797] 1.000 0.728
30/ 1.000| 0.941] 1.000{ 0.975[ 0.899| 0.964| 0.797] 1.000 0.728
31| 1.000| 0.935| 1.000{ 0.970( 0.894| 0.981] 0.799] 1.000 0.691
32| 1.000| 0.939]| 0.995| 0.971f 0.900f{ 0.971] 0.805] 1.000 0.695
33| 1.000| 0.916] 0.958| 0.954( 0.912| 0.992| 0.841] 1.000 0.714
34| 0.991| 0.945| 0.964| 0.981 0.904| 0.979| 0.838] 1.000 0.695
35| 1.000| 0.928] 0.989| 0.975[ 0.896| 0.985| 0.813] 1.000 0.726
36| 0.992| 0.936] 0.968| 0.979 0.905| 0.990| 0.835| 1.000 0.699
37| 0.994| 0.975| 1.000{ 0.976( 0.911| 0.933] 0.797] 1.000 0.716
38| 0.997| 0.941]| 0.983| 0.976( 0.897| 0.983] 0.816] 1.000 0.704
39| 1.000| 0.957| 1.000{ 0.977 0.896| 0.961| 0.798] 1.000 0.718
40( 0.988| 0.941| 1.000| 0.975| 0.907( 0.981 0.802] 1.000 0.711
Mean 0.996( 0.943| 0.990| 0.973| 0.901| 0.972| 0.809( 1.000 0.714
Std. Dev.| 0.007( 0.013( 0.015| 0.006| 0.008| 0.015| 0.015| 0.000 0.016
Max. 1.000( 0.975| 1.000| 0.981| 0.927| 0.997| 0.851| 1.000 0.744
Min. 0.968( 0.916( 0.947| 0.954| 0.886| 0.933| 0.793| 0.999 0.681
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cwrs63 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1| 0.994| 0.965| 0.948| 0.942| 0.948| 0.933] 0.870] 1.000 0.646
2] 1.000] 0.932 0.927] 0.963] 0.910( 0.972| 0.884| 1.000 0.614
3] 1.000| 0.934| 0.934| 0.960| 0.920{ 0.973| 0.867| 1.000 0.644
4| 0.988| 0.949| 0.959| 0.950( 0.936| 0.949| 0.843] 1.000 0.655
5] 1.000{ 0.947] 0.953| 0.956[ 0.924| 0.949| 0.852]| 0.998 0.667
6] 1.000| 0.938 0.924| 0.961] 0.906( 0.962| 0.875| 1.000 0.608
7] 0.945| 0.938| 0.917| 0.968] 0.987| 0.978| 0.907| 1.000 0.618
8| 0.961] 0.939| 0.949( 0.957| 0.959] 0.968| 0.856( 1.000 0.667
9] 1.000| 0.948| 0.953[ 0.949] 0.927] 0.950f 0.851 1.000 0.679
10| 0.977| 0.949| 0.951] 0.952| 0.943| 0.962| 0.856| 1.000 0.680
11| 0.982| 0.943| 0.972] 0.955[ 0.925| 0.962| 0.821] 1.000 0.630
12| 0.999( 0.969| 0.933] 0.949( 0.939| 0.930| 0.885| 1.000 0.692
13| 0.953| 0.932| 0.898| 0.952| 0.998| 0.983| 0.927]| 1.000 0.621
14| 1.000| 0.960| 0.991] 0.950( 0.928| 0.941| 0.818] 0.997 0.675
15| 0.978| 0.939| 0.993| 0.946{ 0.936] 0.967| 0.806] 1.000 0.678
16| 0.976( 0.939| 0.962| 0.942 0.955| 0.963| 0.847| 1.000 0.709
17| 1.000| 0.944| 0.958| 0.945[ 0.931| 0.955| 0.844| 0.995 0.683
18| 0.979( 0.939| 0.943| 0.939( 0.956| 0.955| 0.865| 1.000 0.689
19| 1.000{( 0.943| 0.946] 0.951 0.925| 0.956| 0.858] 0.999 0.674
20| 0.970] 0.941| 0.958| 0.953 0.950| 0.962] 0.844| 1.000 0.687
21| 0.965| 0.924| 0.908| 0.938[ 0.984| 0.964| 0.916]| 0.984 0.692
22| 1.000] 0.976] 0.966| 0.960( 0.930] 0.922] 0.845| 1.000 0.651
23| 0.990| 0.945| 0.921| 0.944| 0.959| 0.952] 0.906| 0.992 0.718
24| 0.956] 0.943| 0.923| 0.960( 0.980| 0.973] 0.896] 1.000 0.652
25| 1.000] 0.949| 0.974| 0.968 0.908] 0.951] 0.828] 0.993 0.660
26| 1.000| 0.937| 0.954| 0.958| 0.908| 0.960| 0.847| 1.000 0.626
27| 0.993] 0.943| 0.931| 0.940( 0.943| 0.945| 0.874| 0.996 0.697
28| 1.000] 0.943| 0.929| 0.967 0.901| 0.961] 0.870] 1.000 0.660
29| 0.942| 0.949| 0.918| 0.971 0.993] 0.967| 0.905| 1.000 0.637
30 0.995| 0.942| 0.932| 0.945[ 0.942| 0.958] 0.879| 0.997 0.638
31 0.975] 0.941| 0.977| 0.951 0.936] 0.963] 0.818] 1.000 0.657
32| 1.000] 0.950| 0.943| 0.946( 0.924| 0.949| 0.857| 1.000 0.677
33| 0.964| 0.940| 0.963| 0.955[ 0.957| 0.965| 0.841] 1.000 0.673
34 0.970] 0.941| 0.921| 0.945[ 0.968] 0.965| 0.896] 1.000 0.676
35[ 0.965] 0.938| 0.918] 0.953 0.952| 0.963] 0.884]| 1.000 0.687
36| 0.965| 0.938| 0.933| 0.948| 0.970| 0.966| 0.876| 1.000 0.661
37| 0.987] 0.948| 0.931| 0.948[ 0.960| 0.950| 0.888]| 0.989 0.710
38| 1.000] 0.941| 0.952| 0.943 0.927] 0.959]| 0.847| 1.000 0.667
39 0.981] 0.935| 0.921| 0.939 0.966| 0.973] 0.907| 1.000 0.709
40| 0.964| 0.940| 0.917] 0.949( 0.969| 0.969| 0.898]| 1.000 0.656
Mean 0.983| 0.944| 0.943| 0.952( 0.944| 0.959| 0.866| 0.998 0.666
Std. Dev.| 0.018( 0.010| 0.022| 0.009| 0.025( 0.013| 0.029| 0.003 0.028
Max. 1.000| 0.976| 0.993| 0.971| 0.998| 0.983]| 0.927| 1.000 0.718
Min. 0.942| 0.924| 0.898| 0.938( 0.901| 0.922]| 0.806| 0.984 0.608
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cwrs67 Incorporation Rate Base Rate
Chip A C G T A C G T Correlation
1 0.987| 0.940| 0.924| 0.945[ 0.947| 0.939] 0.892| 1.000 0.625
2| 0.991| 0.960( 0.961| 0.957] 0.924( 0.929| 0.839]| 1.000 0.596
3] 1.000| 0.932 0.938| 0.956] 0.925( 0.962| 0.872| 0.994 0.641
4| 1.000| 0.953| 0.957| 0.957 0.923| 0.935| 0.846| 1.000 0.607
5| 0.988 0.923| 0.919] 0.943| 0.943| 0.964| 0.892] 1.000 0.596
6] 1.000| 0.934| 0.908| 0.955] 0.923 0.960( 0.902| 1.000 0.585
7] 1.000| 0.939| 0.927| 0.956] 0.923| 0.952| 0.881] 1.000 0.621
8] 0.995| 0.929| 0.919( 0.946] 0.934| 0.962| 0.895( 1.000 0.693
9] 1.000| 0.928| 0.918 0.946] 0.925| 0.960f 0.885( 1.000 0.659
10| 1.000{ 0.941| 0.922] 0.966( 0.912| 0.954| 0.884| 1.000 0.647
11| 0.998( 0.917| 0.906]| 0.945[ 0.928| 0.966| 0.903]| 0.997 0.639
12| 0.989( 0.942| 0.921] 0.947 0.954| 0.936] 0.905]| 0.990 0.627
13| 0.980( 0.935| 0.922| 0.951 0.939| 0.954| 0.875| 1.000 0.607
14| 0.974| 0.916| 0.887| 0.941| 0.967 0.965| 0.933] 0.991 0.611
15| 0.993| 0.921| 0.901]| 0.941| 0.940| 0.964| 0.910] 1.000 0.673
16| 0.980| 0.935 0.945| 0.956| 0.935 0.962| 0.856] 1.000 0.607
17| 1.000( 0.933| 0.926] 0.952 0.923| 0.951| 0.880] 1.000 0.641
18| 0.967| 0.930| 0.923] 0.959( 0.949| 0.963| 0.877] 1.000 0.598
19| 1.000( 0.928| 0.935] 0.953 0.923| 0.960| 0.872] 1.000 0.641
20| 1.000] 0.931]| 0.920| 0.950( 0.927| 0.953] 0.890| 0.998 0.625
21| 0.990| 0.927| 0.907| 0.945( 0.937| 0.957| 0.899| 1.000 0.629
22| 0.984| 0.923| 0.936| 0.950( 0.934| 0.963]| 0.864| 1.000 0.600
23| 0.985| 0.918| 0.909| 0.943 0.957| 0.968]| 0.914| 1.000 0.669
24| 0.989| 0.916| 0.899| 0.940( 0.940| 0.968| 0.910] 1.000 0.630
25| 0.997{ 0.927] 0.932| 0.949( 0.925| 0.960] 0.874( 1.000 0.647
26| 1.000| 0.931]| 0.919| 0.948 0.926] 0.958] 0.890| 1.000 0.610
27| 0.965| 0.932| 0.955| 0.963 0.944| 0.960| 0.846| 1.000 0.569
28| 0.970| 0.930| 0.928| 0.955[ 0.948| 0.960| 0.875| 1.000 0.622
29| 0.983| 0.925| 0.914| 0.946( 0.944| 0.963] 0.887( 1.000 0.600
30 0.975| 0.929| 0.916| 0.952 0.950| 0.962]| 0.887] 1.000 0.578
31| 0.981] 0.933| 0.915| 0.941 0.957| 0.946] 0.902| 1.000 0.624
32| 0.991 0.919| 0.903] 0.939( 0.943] 0.962] 0.910{ 1.000 0.622
33| 0.967] 0.933| 0.920| 0.962 0.943| 0.957| 0.881] 1.000 0.642
34| 0.984| 0.935| 0.914| 0.943 0.959| 0.942] 0.902| 1.000 0.684
35 0.987| 0.930| 0.927| 0.951 0.927| 0.958] 0.865| 1.000 0.663
36( 0.982| 0.937| 0.915| 0.951 0.960] 0.926] 0.903| 0.963 0.672
37| 0.963| 0.937| 0.943| 0.961 0.946| 0.961] 0.854| 1.000 0.618
38| 0.963| 0.936| 0.942| 0.962 0.950] 0.961] 0.854| 1.000 0.647
39| 1.000| 0.934| 0.937| 0.954 0.922| 0.959| 0.868]| 1.000 0.668
40| 0.973| 0.928| 0.920| 0.954( 0.947| 0.965| 0.880]| 1.000 0.637
Mean 0.987| 0.931| 0.923| 0.951( 0.938| 0.956| 0.884| 0.998 0.629
Std. Dev.| 0.012( 0.009| 0.016| 0.007| 0.013( 0.011| 0.021| 0.006 0.029
Max. 1.000| 0.960| 0.961| 0.966( 0.967| 0.968| 0.933| 1.000 0.693
Min. 0.963| 0.916| 0.887| 0.939( 0.912| 0.926| 0.839| 0.963 0.569
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fmrl Incorporation Rate Base Rate

Chip A C G T A C G T Correlation
1| 0.955| 0.933] 0.887| 0.938| 0.972] 0.975]| 0.983 0.971 0.810
2| 0.963| 0.944| 0.885]| 0.943] 0.966( 0.961| 0.995| 0.979 0.881
3] 0.967| 0.955[ 0.920| 0.955] 0.971| 0.945| 0.956| 0.958 0.848
4 0.970| 0.939| 0.908| 0.949( 0.962| 0.965| 0.969| 0.965 0.850
5| 0.972 0.936| 0.875] 0.953[ 0.960| 0.966| 1.000| 0.946 0.850
6| 0.955| 0.930( 0.884| 0.944| 0.970( 0.971| 0.980| 0.960 0.836
7] 0.956| 0.933| 0.895| 0.943] 0.978| 0.968| 0.969| 0.967 0.826
8] 0.960| 0.943| 0.898 0.949| 0.973] 0.943| 0.955( 0.954 0.873
9] 0.962| 0.939| 0.891 0.948| 0.971] 0.965| 0.986( 0.956 0.839
10| 0.964| 0.943| 0.896] 0.950( 0.971| 0.959| 0.985| 0.967 0.868
11| 0.965| 0.948| 0.907| 0.951 0.968| 0.963| 0.970] 0.962 0.852
12| 0.989( 0.972| 0.934| 0.959( 0.948| 0.909| 0.925]| 0.948 0.834
13| 0.979| 0.968| 0.912| 0.961| 0.960| 0.908]| 0.941] 0.936 0.836
14| 0.949( 0.928| 0.878] 0.941 0.970| 0.980| 0.990| 0.957 0.824
15| 0.985| 0.928| 0.926]| 0.956| 0.920( 0.951] 0.913] 0.971 0.656
16| 0.957| 0.921| 0.882| 0.940| 0.971| 0.972] 0.989| 0.967 0.734
17| 0.969| 0.949| 0.916| 0.948| 0.957 0.959| 0.952| 0.961 0.827
18| 0.971| 0.941| 0.909| 0.953| 0.942 0.945| 0.950| 0.971 0.677
19| 0.962| 0.942| 0.891| 0.948| 0.971| 0.968| 0.987]| 0.962 0.845
20( 0.974| 0.938| 0.906| 0.948( 0.943| 0.941] 0.930| 0.972 0.746
21| 0.972| 0.952| 0.916| 0.954 0.952| 0.923] 0.943]| 0.966 0.679
22| 0.994| 0.999| 0.981] 0.961| 0.942| 0.873] 0.881f 0.955 0.701
23| 0.961| 0.941| 0.899| 0.943 0.956] 0.916] 0.946| 0.958 0.642
24| 0.972| 0.945| 0.923| 0.950( 0.958] 0.929]| 0.929| 0.968 0.716
25| 0.974| 0.937| 0.921] 0.949( 0.947| 0.942] 0.926( 0.972 0.714
26| 0.957| 0.932| 0.879| 0.943 0.966] 0.931] 0.980| 0.964 0.654
27| 0.975| 0.955| 0.920| 0.960( 0.962] 0.903] 0.932 0.951 0.769
28| 0.964| 0.937| 0.911| 0.946( 0.955] 0.931] 0.939]| 0.965 0.662
29| 0.974| 0.960| 0.930| 0.955 0.952] 0.905]| 0.936( 0.957 0.639
30 0.972| 0.969| 0.933| 0.953 0.951| 0.906]| 0.924| 0.969 0.664
31| 0.960| 0.941| 0.905| 0.945 0.962| 0.919] 0.948]| 0.955 0.701
32| 0.960| 0.937| 0.877| 0.942 0.958] 0.942]| 0.981]| 0.949 0.756
33| 0.968| 0.943| 0.907| 0.951 0.971] 0.961] 0.975| 0.958 0.818
34| 0.968| 0.941| 0.908| 0.955[ 0.971] 0.951] 0.976] 0.946 0.855
35 0.972| 0.952| 0.927| 0.950( 0.959| 0.917] 0.929| 0.968 0.726
361 0.974| 0.950| 0.923| 0.954 0.952| 0.923] 0.931]| 0.962 0.711
37| 0.960| 0.925| 0.911| 0.939( 0.957| 0.967| 0.939| 0.989 0.697
38| 0.971] 0.961| 0.930| 0.958 0.956] 0.901] 0.933] 0.960 0.724
39 0.990| 0.951| 0.924| 0.956( 0.915| 0.951] 0.921]| 0.985 0.735
40| 0.963| 0.944| 0.896| 0.947 0.962| 0.973] 0.985| 0.956 0.833
41| 0.966| 0.949| 0.896] 0.951( 0.968| 0.946| 0.980| 0.955 0.858
42| 0.959| 0.949( 0.872] 0.944| 0.965[ 0.962| 0.997| 0.955 0.852
43| 0.966| 0.946( 0.912] 0.952| 0.965( 0.958| 0.967| 0.955 0.809
44| 0.973| 0.947| 0.919] 0.954( 0.950[ 0.930| 0.927] 0.962 0.762
45| 0.965| 0.957| 0.907| 0.952] 0.969| 0.951f 0.966] 0.959 0.857
46| 0.970| 0.975| 0.963| 0.962| 0.957| 0.875[ 0.884| 0.961 0.616
47| 0.972 0.961| 0.927] 0.961| 0.963| 0.906] 0.917] 0.953 0.822
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48| 0.959| 0.945| 0.883| 0.952| 0.970| 0.963] 0.990| 0.951 0.857
49| 0.991| 0.922| 0.918| 0.939] 0.913] 0.965| 0.920| 0.985 0.661
50| 0.956| 0.910 0.886| 0.954| 0.968| 0.960| 0.997| 0.966 0.743
51| 0.965| 0.947| 0.915[ 0.953[ 0.961| 0.924| 0.946[ 0.956 0.731
52| 0.970] 0.942| 0.907| 0.953[ 0.964| 0.956] 0.976[ 0.952 0.830
53| 0.954| 0.919| 0.892| 0.953] 0.980| 0.974]| 0.981| 0.964 0.828
54 0.978| 0.944| 0.904| 0.954 0.959| 0.927 0.971 0.960 0.745
55 0.961| 0.941| 0.914 0.948| 0.961| 0.924| 0.942 0.962 0.638
56| 0.965] 0.930{ 0.908 0.945] 0.952[ 0.955[ 0.935[ 0.976 0.716
57| 0.955] 0.932 0.891| 0.936| 0.959| 0.930] 0.957| 0.968 0.646
58| 0.952| 0.964| 0.917 0.939[ 0.969| 0.873 0.913[ 0.950 0.627
59 0.976] 0.933| 0.908 0.949[ 0.931| 0.971| 0.945[ 0.986 0.691
60| 0.975] 0.948| 0.917| 0.952| 0.943[ 0.923] 0.914[ 0.964 0.719
61| 0.963| 0.945| 0.899| 0.945 0.970| 0.964| 0.968]| 0.968 0.864
62| 0.970| 0.945| 0.909| 0.953| 0.947| 0.928 0.935[ 0.967 0.639
Mean 0.967| 0.944| 0.908| 0.950| 0.959| 0.941| 0.953| 0.962 0.762
Std. Dev.| 0.010( 0.015| 0.020( 0.006( 0.014( 0.027( 0.029| 0.010 0.081
Max. 0.994| 0.999| 0.981| 0.962| 0.980| 0.980| 1.000| 0.989 0.881
Min. 0.949| 0.910| 0.872| 0.936| 0.913| 0.873| 0.881| 0.936 0.616
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Supplementary Figure 1
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Supplementary Figure 1 Legend: For each Forward/Reverse probe pair the mean
of the log (Forward/Reverse) was calculated across all 62 chips from the FMR1
design. Probes are binned by base composition with each bin corresponding to the
excess of A over T nucleotides plus the excess of C over G nucleotides on the
Forward strand. The numbers on the figure correspond to the number of distinct
features that are observed in the bin. Observed (0) and expected means (*) are

plotted for each bin.
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Abstract

Affymetrix 6.0 (Affy 6.0) arrays are used for the analysis of common variants in
large human genetic studies. They are used to simultaneously genotype single
nucleotide polymorphism (SNPs) and copy number variants (CNVs). Current
methods for SNP genotyping rely on data across samples. They are highly accurate;
however, they tend to drop 20% to 33% of the targeted SNPs and have difficulty
calling SNPs with a low minor allele frequency. Batch effects are a significant
complication when analyzing these arrays. We have developed a SNP and CNV
detection algorithm for Affy 6.0 arrays that is based on a low-level model of
hybridization, which fully models cross-hybridization. In this approach chips are
independently analyzed and batch effects are explicitly modeled. Our algorithm can
genotype SNPs and CNVs on chromosomes of any ploidy, and each SNP call has a
quality score (QS). We analyzed data from Down syndrome and normal samples.
13% of targeted SNPs show significant cross-hybridization. 84% of SNPs on diploid
chromosomes and 57% of SNPs on trisomic chromosome 21 had QS > 0.99. We
called an average of 50 CNVs per samples and 68% of the CNVs called were in the
database of genomic variants (DGV). This data was previously analyzed; validation
was attempted for 64 CNVs of which 59 were validated. Our method called only the

59 validated CNVs.
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Introduction

DNA microarrays have many applications in the field of human genetics, including
SNP typing, CNV detection, RNA profiling, and identification of protein binding
sites[1]{Stoughton, 2005 #76}{Stoughton, 2005 #76}. {Stoughton, 2005
#73}{Stoughton, 2005 #59}0ne of the most useful applications of this technology is
genotyping microarrays, because they provide an efficient tool for the analysis of
common variation. Genotyping microarrays are used to simultaneously detect single

nucleotide polymorphisms (SNPs) and copy number variants (CNVs)[1-6].

Affymetrix Genome-Wide Human SNP Array 6.0 (Affy 6.0) arrays are a type of
genotyping array that is commonly used in human genetic studies [5, 7-10]. They
are used to simultaneously type 906,600 SNPs together with 946,000 monomorphic
probes useful for CNVs detection. The probes that are used to genotype SNPs are
organized into probe sets, one per SNP. Each set is made up of two unique probe
sequences, one for each SNP allele. The intensities for these probes are used to call
the genotypes[11]. Several SNP genotyping algorithms have been developed for the
analysis of SNP microarray data [4, 12-17]. The most accurate methods call
genotypes by using prior empirical knowledge of where genotype clusters are likely
to exist, together with experiment generated normalization algorithms [16]. Data
from prior experiments together with all current chips is used to create clusters for
each genotype. If we label the alleles A and B, there are three possible

genotypes/cluster AA, AB, and BB. The observed intensities for probes A and B are
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assigned to one of the three clusters, and the genotype is called. Improvements
upon this method include recalibrating the clusters and pre-processing the array
data to correct for batch effects [12, 16-18]. Since these methods are based on
empirical data from diploid autosomal chromosomes, they cannot be easily adapted
for SNPs on chromosomes with a ploidy larger than two. These methods also make
it difficult to call SNPs with a low minor allele frequency. In genotyping arrays, CNVs
are called by using the observed probe intensities. These probe intensities are
normalized and then used to call CNVs. Currently, the standard analysis method for
Affy 6.0 arrays consists of two algorithms, Canary (copy number analysis routine)
and Birdseye [12]. Intensity data from both monomorphic and SNP probes is used
for CNV typing. The intensity for a SNP set is the sum of the intensities of the A and B
allele. Canary is used to detect CNVs with a frequency greater than 1%. The
algorithm compares log 2 probe intensities across all samples for predefined sets of
probes that tag known CNVs. Birdseye is used to detect rare or de novo CNVs. Probe
intensities across samples are used to identify contiguous probes that deviate from
the standard diploid model, which is defined using data across samples. This and

other CNV detection algorithms are susceptible to batch effects [12, 19].

There are two major problems that arise during the analysis of Affy 6.0 data. First, a
significant fraction of SNPs (between 20% to 33%) are not called; this is true across
different studies [7-10]. This problem is partially due to the fact that most samples

are only processed once using only one array. Therefore, there are no independent



79

replicates. The other problem is batch effects, in which probe intensities are
affected by conditions that are unrelated to the genotype of the data [18-20]. In
order to understand the causes for these observations, we previously developed a
low-level model of hybridization on Affymetrix microarrays [20]. In this approach
the predicted intensity for a probe spot is the function of the binding affinity
between the probe and all targets and the specific hybridization conditions (target
concentration, average target size, salt concentration, probe synthesis errors, wash
stringency, and scanner settings). The correlation between observed probe
intensities and the expected intensities under this model is approximately 70% [20].
This model also explains two striking differences between in-solution hybridization
and hybridization on the array. The first on is that when an array has a probe spot
for the forward target and a probe spot for the reverse target, these two probes
seldom have the same intensity [4, 20]. The second is that mismatches towards the
center of the probe have a much larger destabilizing effect than do mismatches near
the edges [20, 21]. This is the reason why the query base is placed towards the

center of the probe.

Our model explains these observations in terms of the experimental details. Binding
between probe and target happen the same as in solution. Differences arise due to
chip specific conditions. The difference between forward and reverse probes is the
result of errors along the probe sequence. When manufacturing errors are not
uniform for the four different nucleotides (A, C, G, T), then the forward and reverse
probe have different binding affinities. The increase in the destabilizing effect of

mismatches is due to target fragmentation. The target sequences that can bind a
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probe have different sizes, and bind the probe at different start and stop positions.
Bases towards the middle of the probe are bound by target more often than bases
towards the edges. The differences between in solution binding and binding on the
array may also be due to physical link between the probe and the array surface;
however, our previous work suggests that probe errors and fragmentation account
for a large fraction of the observed intensities [20]. This model also helped us
understand the underlying causes of batch effects in terms of differences between
chips in probe error rates, DNA concentration, wash stringency, average target size,

and scanner settings [20].

In the work presented here we applied our previously develop model to Affy 6.0
arrays. The purpose of this work is to understand problems with Affy 6.0 analysis
and genotype SNPs and identify CNVs in Affy 6.0 array experiments without the use
of empirical data. Our algorithm does not use reference data across different chips,
but rather relies on the basic biochemistry of the array and the unique hybridization
conditions for each individual experiment. Since the binding biochemistry of each
probe spot is directly and independently modeled, the algorithm is capable of calling
SNPs on chromosomes of any ploidy. Our approach assigns an estimate of accuracy
for each SNP, the quality score (QS). The algorithm also produces direct estimates
for the DNA concentration at each of the targeted genomic regions. These measures
of local DNA concentration are relative to the ploidy of each individual chromosome.

We use the log2 values of the local concentration (R) to call CNVs.
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Our approach to genotyping on Affy 6.0 arrays is very different from current
methods. It allows for individual analysis of each chip, and it explicitly models batch
effects and cross-hybridization. For each chip we call 789,344 SNPs (87% of SNPs
targeted by Affy 6.0) and do not call the remaining SNPs due to significant cross-
hybridization to 8 or more genomic regions. We used our method to analyze data
from 516 Down syndrome and 308 normal samples. Our results suggest that our

approach has comparable accuracy to empirical approaches.

Methods

Low-Level Model of Hybridization on Microarrays

Microarrays consist of probes, single stranded DNA molecules attached to a
microarray surface [1]. Probes are organized into probe spots. Each probe spot has
thousands to millions of probes based on the same reference DNA sequence. The
DNA that is hybridized onto the array is referred to as the target and it is
fluorescently labeled. When a probe sequence is complimentary to a target then
probe-target complexes form; consequently, the probe spot’s intensity is a function
of the number of these complexes [22, 23]. Ideally, the intensity for a probe spot
would have a linear relationship to the copy number of the allele that perfectly
complements the probe sequence. However, as is evident by chip effects as well as
batch effects, this assumption does not consistently hold true [18, 20]. We have

previously developed a low-level model of hybridization on the array that explains
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these inconsistencies in terms of the basic biochemistry of the array and the details

of the experimental protocol [20]. It is summarized in the following paragraph.

The simplest model for the hybridization reaction at each probe spot is described by
the Langmuir isotherm [20].

The fraction of bound probes, a, is a function of C, the concentration of target DNA,
and Keg, the equilibrium constant for the reaction, which is a measure of the binding
affinity between the target and probe sequences. We calculate all possible Keq values
for all probes and all target sequences. In our model we account for errors in probe
synthesis by modeling two types of errors, base incorporation errors and abasic
sites along the probe sequence, which together create probe spots with a
heterogeneous mixture of sequences [24, 25]. Chips with different error rates for A,
C, G, and T bases have different distributions of a values at each probe spot and
consequently have different binding behavior. Other details of the experiment that
we model are target DNA fragmentation and wash stringency, which also affect
probe-target binding [20, 26, 27]. DNA is fragmented prior to hybridization;
therefore, the concentration of available target DNA that can hybridize to a probe is

a function of the global DNA concentration and the average length of the targets. The
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number of probe-target complexes that can form is also affected by the wash
conditions. In the final step of the array protocol, the chip is washed with a low salt
solution. The salt concentration and the duration of this wash step can vary between
experiments and cause differences in the number of targets that disassociate from
the probes. Overall this model helps explain how differences between chips in
fragmentation, salt concentration, washing, and probe synthesis errors can cause
batch effects, differences between chips that are unrelated to the genotype of the

target DNA.

Application of our Model to Genotype Calling on Affymetrix Arrays

Our approach to genotype calling can be broken up into three general steps. We
start by calculating Keq values for every possible probe and target DNA fragment
that can form on the array, including modeling bindings at every possible position
along both probe and target sequences. This step allows us to form sets of probes
and that bind the same genomic fragment. In the second step we fit chip-specific
parameters that include target DNA fragmentation, four probe synthesis efficiency
parameters (A, C, G, T), four parameters for the rate of abasic site formation (4, C, G,
T), wash strength, global DNA concentration, minimum intensity, and maximum
intensity. In the third step, we calculate expected probe intensity values. For SNP
probes, expected values are calculated for every possible genotype. The genotype
with the highest likelihood is called and a corresponding QS value is calculated for

that call. Simultaneously, alog2 local DNA concentration value (R) is calculated for
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the genomic spot. This value is a modifier to the global DNA concentration for the
chip and a measure of the copy number for that genomic region. These values are

then input into a CNV calling algorithm, and used to call CNVs.

Binding Affinity Calculations for Genomic Fragments

In order to model all possible binding reactions on the array, we first start by
creating a list of all genomic sequences on the array. To create this list we model the
steps for genomic DNA preparation in the Affymetrix 6.0 protocol. These step
include restriction enzyme digestion with Nspl and Styl, PCR amplification,
purification, and DNasel fragmentation of the genomic DNA. We start by in silico
restriction digesting the human genome (GRCh37) using Nspl and Styl. We keep all
genomic fragments that are between 180 and 1,210 base pairs (bp) long. We
remove fragments with an N content in the reference sequence of more than 5%. We
then model all SNPs present in dbSNP build 137 with a minor allele frequency of 1%
or larger. For example if a genomic fragment has one SNP we model both the A and
B allele. If there are two SNPs in a genomic fragment (SNP 1 has alleles A,B and SNP
2 has alleles C,D) we model all four genotypes (AC, AD, BC, and BD). Fragments in
which more than 2% of the bases have SNPs are dropped, both to simplify the
computational complexity of the problem, and because these regions often
represent misassembly of the reference genome. We then “hybridize” all the probe
sequences on the array to our list of genomic fragments. This step is carried out as

described in [20], with a hybridization temperature of 49°C and one molar salt
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concentration. Briefly, we “cut” the genomic fragments at all possible positions in
order to model the DNasel fragmentation step in the array protocol. We then model
bindings of each target DNA fragment to every probe starting at every position
along the probe sequence. In this model a probe spot consists of target fragments of
differing lengths that bind probes at different start and end positions. Therefore, for
each target there are 300 Keq values that describe binding at each 25 base probe
spot. Even though each probe spot is made up of a heterogeneous mixture of target-
probe complexes, each individual binding reaction is modeled as an in solution

DNA-DNA complex using the Langmuir isotherm with nearest-neighbor kinetics.

After we calculate binding affinities between all probes and all genomic fragments,
we organize the data into groups of probes that bind the same genomic fragment(s).
Many of the probes do not cross hybridize and form neat probe-genomic fragment
groups. For example, many of the monomorphic CNV probes only have significant
binding to one fragment; therefore, information for that genome spot comes from
one probe. For SNP probes that only bind one genome spot, the probe-genomic
fragment group consists of the A and B allele probes and their binding affinities to
two target sequences; these sequences have a one base difference at the SNP. Other
probes have significant cross-hybridization to more than one genome spot. We sort
these probe-genomic fragments by the genomic coordinate of the fragment with the
strongest binding to the probes in the group. We define “strongest” as the fragment

with the highest Keq values (binding to probes). For a probe-genomic fragment
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group, the probe intensities are affected most by the genotype/copy number of the
genome spot that contributes most to binding. It is important to note that even
though we use the probe set to infer the genotype at one genomic location, cross-
hybridization to the other genomic fragments is also used to calculate probe
intensities. In the next step we remove probe groups that have more than eight
genomic fragments that contribute to binding. We do so because we cannot
confidently model such high levels of cross-hybridization. We use each of the

resulting probe sets to call genotypes.

Parameter Fitting for Chips

In the second step we fit a set of parameters that describes the binding conditions
for each experiment: global DNA concentration, probe errors, target fragmentation,
wash stringency, and the dynamic range of the scanner (minimum and maximum

intensity).

In order to fit parameters for a chip, we need to use a subset of observed probe
intensities. For this purpose we selected SNP probes that do not have cross-
hybridization. These probes account for 7,657 of the queried SNPs. Each of these
SNPs can be categorized in terms of the A and B alleles for the SNP. There are six
possible combinations of A/B alleles. They are A/C, A/G, A/T, C/G, C/T, G/T). In

order to avoid any bias, the 7,657 SNPs that were used to fit the parameters
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included roughly the same number of each type of SNP. These SNPs were selected,
because the genotype for the SNP can easily be inferred from the observed probe
intensities. For each probe the ratio of the A probe intensity to the B probe intensity
consistently falls in one of three categories: less than 0.5 (BB, homozygote);
between 5/6 and 7/6 (AB, heterozygote); or greater than 2(AA, homozygote).
Therefore, the genotype for each SNP is determined before the parameters are fit to

the data.

We fit the chip specific parameters using a modified version of our previously
developed algorithm [20]. In our previous work the wash, fragmentation, and salt
parameters were input parameters. We improved our estimates for these
parameters by directly fitting them to the data. The new parameter fitting
procedure consists of four Powell iterations instead of one. The new fitting process
works in the following way. In the first iteration we fit the wash, fragmentation, and
a new salt parameter (X), which is used to model the stabilizing effect of salt on A
and T bases. Each Keq that describes binding between a probe and target is modified

using the following equation.

AT
KeqX ©)

Where AT is the number of A and T bases in the probe that are complementary to

the target. We fit X, wash, and fragmentation by minimizing the squared difference
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between expected and observed probe intensities. In the second iteration, we use
Powell’s method to fit four parameters: two that describe the global DNA
concentration (Nspl fragment concentration and Styl fragment concentration); and
two parameters that describe the scanner’s dynamic range (minimum and
maximum intensity). This is done as described in our previous work, with two
modifications: 1) We fit the parameters by maximizing the correlation between
expected and observed probe intensities; 2) The expected intensity is a linear

function of the fraction of bound probes as described in the following equation.

E{intensity} = (max — min) a + min (3)

Min is the minimum intensity, and max is the maximum intensity. In the third
iteration we fit parameters that describe the errors along the probes sequence by
minimizing the squared difference between the expected and observed intensities.
Four parameters for incorporations errors for A, C, G, and T which cause probe
truncation; and four that describe the rate of abasic site formation along the probes
sequence. We explicitly model binding for the full-length probe and all possible
probe sequences with one error. We then use the average difference between the
Keq values for the full-length probe and the Keq values for probes with one error to
estimate the effect of two and more errors on the final alpha value. We use this
estimate because it would be computationally inefficient to model all possible errors
and because probes with two and more errors contribute little to overall binding. In

the fourth iteration, we re-fit the fragmentation, wash, and salt parameter.
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Genotyping

For each chip, we use the parameters from the previous step and parameters for
chromosome ploidy to call genotypes. The ploidy at each chromosome is an integer
value provided by the user. We call genotypes for each genomic fragment using the
observed probe intensities for the group. For each group we start by calculating the
expected probe intensities for all possible SNP genotypes for that fragment. For
example, a SNP with alleles A and B on an autosome has three possible genotypes
(AA, AB, BB). Each probe has two sets of Keq values, one for A and one for B. To get
the expected probe intensity we multiply these Keq values by the number of copies
of each allele. For a SNP on a diploid chromosome A has 2,1,0 copies and B has 0,1,2
copies for each genotype AA, AB, and BB respectively. We then use the expected
probe intensities to calculate the likelihood of each genotype. To calculate the

likelihood for AA we use:

_ E{pAA}—0b 2
log(li(AA)) 23:1( e }202 = (4)

Where n is the number of probes, Obs{p} is the observed intensity for probe p, and
E{pAA} is the expected intensity for probe p and genotype AA. In this step, we fit one
parameter for the local DNA concentration (Ic). The concentration for Nspl and Styl
is multiplied by lc. This parameter is fit to each genotype independently by doing a

linear search for the value of Ic that maximizes the likelihood function. We call the
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genotype with the highest likelihood and output the log?2 of Ic, R. This value, R, can
be used in the same way as the log2 probe intensity values for CNV genotyping. In
addition we report the posterior probability for the genotype, which we refer to as

the quality score (QS). If the AA genotype is called then QS for that SNP is:

_ li(AA)
Q5 = li(AA)+1i(AB)+li(BB) (5)

In this model genotypes have a uniform prior. For a SNP on a chromosome with
three copies we calculate four likelihood values, one for each possible genotype
(AAA, AAB, ABB, BBB). The number of copies of A and B for are used to calculate the
expected probe intensities. If the AAA genotype has the highest likelihood then QS
for the call is:

B li(AAA)
" li(AAA)+1i(AAB)+1i(ABB)+li(BBB) (6)

QS

This approach allows us to call genotypes on chromosomes of any ploidy and

calculate R for CNV genotyping.
CNV Calling

We used our method to analyze data for male and female samples with and without
Down syndrome. CNVs were called by analyzing R values with GADA, a CNV calling

algorithm, with input parameters a = 0.2, T =5, and M =6 (20). M is the minimum
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number of probes used to call a CNV. Parameter a is set to the default value and
parameter T is set to 5 which is more stringent than the default T value of 4. Before
we use GADA to call CNVs we normalize R values. First within chips, by dividing R
values by the mean. We then normalize the values across chips. We ran the C
version of GADA, which takes a list of R values for each chromosome and outputs a
list of breakpoints with corresponding amplification values for each segment. A

duplication is called if the amplification value is greater than:

1
51092(

expected ploidy+ 1)
expected ploidy (7)

A deletion is called if the amplification value is less than:

1
51092(

expected ploidy—l)
expected ploidy (8)

In cases where the expected ploidy is one, we set the deletion cut-off to -3.
Quality Control

To measure agreement between replicated probe spots we calculated the average
coefficient of variation (variance/mean) for the 15,314 replicated probe spot
intensity values used during the parameter-fitting step. We removed samples with
an average coefficient of variation greater than 0.328 (mean for all the chips + 3

standard deviations) and those with more than 139 CNVs (mean + 3 standard
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errors). Our method does not drop calls, instead each call has a QS value; therefore,
we used the number of SNP calls with QS > 0.9 for autosomal SNPs (chr 21 SNPs
excluded) as a quality control measure for each chip. We removed samples when

fewer than 87% (mean - 3 standard deviations) of SNPs have QS > 0.9.

Results

We calculated binding affinities for all probe sequences and all genomic targets on
the Affy 6.0 array. There are 3.25 million target sequences from the genome, 5.8
million SNP probes, and 946,000 CNV probes. We removed probes that cross-
hybridize to more than 8 genomic fragments. The probes that were removed

account for 13% of targeted SNPs and 25% of CNV probes.

We used our method to call SNPs for samples with and without Down syndrome
(Table 1). SNPs on autosomal chromosomes out of Hardy-Weinberg, those with a
chi-square statistic greater than 20 (11.6%), were removed (Figure 1). We
calculated the chi-square statistic using only data from individuals with two copies
of chromosome 21. On average, SNP calls on diploid chromosomes had higher QS
values than calls on trisomic chromosome 21; 84% of SNP calls with QS > 0.99 and
57% with QS > 0.99 respectively. Overall QS values were a good predictor of
agreement between duplicates (Table 1 and Figure 2). When there are three copies
of a SNP, QS values are more conservative (Table 1 and Figure 2). The data set
included 110 trios, each had parents with two copies of chromosome 21 and a child

with Down syndrome. We used these data to calculate the fraction of Mendelian
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consistent calls, which was 97.5% for SNP calls on autosomal chromosomes. QS

values were a good predictor of Mendelian consistency (Table 2).

Next we focused on heterozygous calls for SNPs with three copies in order to
understand how well our method does at detecting allele ratios of 2:1 and 1:2 for
the different heterozygotes (AAB, BBA). Overall heterozygotes have lower QS values,
with 53% of calls having QS > 0.90 (Table 3). When a heterozygote is called in one
duplicate the same call is made in the opposite duplicate 79% of the time. If the call
has a QS value greater than 0.9 there is agreement 88% of the time (Table 3). From
these data we can conclude that there is some correlation between QS values and
agreement between duplicates for the heterozygous calls; however, from these data
we cannot directly estimate accuracy. In order to do so we looked at Mendelian
inheritance of heterozygous SNPs calls for trisomic chromosome 21. For each trio
we know which parent passed on two copies of chromosome 21. If the parent’s
genotype is known, there are eight genotype combinations where we have power to
detect a genotype error in the child (Figure 3). We estimated accuracy for these
heterozygous calls by using the data from all SNP calls with one of those genotype
combinations and with QS > 0.9 for both parents (Table 4). The calls for these SNPs
were accurate 91.2% of the time (QS > O for the child). For calls where the child had

QS > 0.8, calls were 95% accurate.
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After removing probes with significant cross-hybridization and those out of Hardy-
Weinberg there are 1.35 million R values per chip. We called an average of 29
deletions and 21 duplications per sample. Of the CNVs called, 68% of them are in
the database of genomic variants (DGV) (Table 5). For the CNVs called on
chromosome 21, there appeared to be a different distribution of CNVs in DGV;
however, approximately 200 of the calls mapped to one region in the p-arm that is
not present in the latest genome build GRCh38. If those calls are removed, the
remaining CNVs on chromosome 21 follow the same pattern as those on the rest of
the autosomes. These data has been previously analyzed and validation was
attempted for 64 CNVs, of length 40 kb or larger. We called all 59 CNVs that were
validated with the [llumina HumanOmni2.5-8 bead chip, and did not call any of the

CNV that failed to validate. Three of the validated CNVs were in chromosome 21.

We used the trio data to look at CNV inheritance. The fraction of CNVs in the parents
provides an estimate of the product of the false positive and false negative rates. For
every CNV called in the child we asked if it was present in one of the parents. CNVs
in DGV are twice as likely to be in one of the parents (Table 6). Larger CNVs appear
more frequently in the parents; however, this trend is not as defined for CNVs that

are larger than 20kb.

Discussion

Our method allows for individual analysis of Affy 6.0 arrays. Since genotyping is

independent across samples, this method can be used to analyze a single sample and
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SNPs on chromosomes of ploidy larger than two This approach is completely
independent of allele frequency and it explicitly models batch effects and cross-

hybridization.

It is difficult to type SNPs in genomic regions with low complexity or those that are
repetitive [28]. From our hybridization data, we estimate that 13% of Affy 6.0 SNP
probes have high levels of cross-hybridization. This number is consistent with the
observation that 20%-33% of SNPs fail to be reliably called across different studies
[7-10]. Overall, CNV probes have more cross-hybridization than SNP probes (13%
vs. 25%). Even after accounting for cross-hybridization there was a significant
number of SNPs (12%) that were not in Hardy-Weinberg equilibrium (Figure 1).
These SNPs might have cross-hybridization to genomic regions that are not in the
genome build that we used for our analysis. Another possibility is that these SNPs
are in a CNV. One possible way to correct this problem is to re-run our algorithm for
SNPs within CNVs and model the ploidy of the CNV. A third possibility is that our
hybridization model does a good job, but not perfect job of modeling hybridization
for these probes. For example mononucleotide runs are not well modeled by NN

thermodynamics [19].

Our method assigns a QS for each SNP call; this value is the posterior probability
that the call is correct (Figure 2 and Tables 1-4). QS values for SNPs with three

alleles tend slightly underestimate accuracy We call 84% of SNPs on diploid
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chromosomes and 57% of SNPs on trisomic chromosome 21 with high confidence,
QS > 0.99. This is a total of approximately 600,000 SNP calls per chip with a QS >
0.99. Heterozygotes are more difficult to call than homozygotes. This is especially
true for AAB and ABB calls (Table 3 and 4). However, a significant fraction of these
heterozygotes are called with high confidence and they can be included in data
analysis (Table 4). Some work has been done to type SNPs within CNVs [12];
however, accuracy for these calls can be significantly improved. We envision our
analysis being particularly useful for the analysis of SNPs with a low minor allele
frequency. Our method can also be used to call genotypes for other types of
aneuploidy samples. These include other types of trisomy as well as cancer samples,

where aneuploidy is common [29].

We call CNVs by using direct estimates of local DNA concentration for each probe
set. These R values can be used in exactly the same way that conventional R values
(log 2 probe intensity) are used for CNV typing. We call an average of 50 CNVs per
sample. Close to 70% of deletions and duplications are in DGV (Table 5). Inheritance
patterns for the CNVs indicate that our method for CNV detection has a substantial
false positive and false negative rate. These rates are highest for small CNVs and
those not in DGV (Table 6). We can improve upon our method by using the number
of probes in a CNV and the GADA amplification value to assign a quality score to

each CNV call.
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The results of this work help validate our previously published hybridization model
for Affymetrix arrays [20]. In it we use basic biochemical principals to exhaustively
model hybridization on arrays. In addition we meticulously model the details of the
array protocol. In this work we have applied this model and shown that we can use

first principles to call genotypes from Affymetrix 6.0 data.
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Table 1
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Data Summary

Counts Fraction of Data
Samples 824 1.00
Trisomy 21 Samples 516 0.63
Diploid 21 Samples 308 0.37
Duplicates 44 0.05
Trisomy 21 Duplicates 25 0.03
Diploid 21 Duplicates 19 0.02
Trios 110 1.00
Trios with paternal origin for trisomy 21 5 0.05
Trios with maternal origin for trisomy 21 105 0.95
Duplicates: Fraction Agree [Fraction SNPs
Autosomal* SNPs 0.935 1.00
Autosomal* SNPs QS product > 0.99 0.990 0.75
Trisomy Chr 21 SNPs 0.889 1.00
Chr 21 Trisomy SNPs QS product > 0.99 0.995 0.44

*Excluding chromosome 21




Table 2
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Fraction of Mendelian Consistent SNPs for each Bin and Fraction of Total SNPs

in each Bin
Qs 0.75 0.90 0.95 0.96 0.97 0.98
Fraction Mendelian 0.829 0.936 0.966 0.976 | 0.980 | 0.985
Fraction of SNPs 0.100 0.061 0.044 0.014 | 0.019 | 0.028
Qs 0.9900 | 0.9925 | 0.9950 | 0.9975 | 1.00
Fraction Mendelian 0.990 0.993 0.994 0.996 | 0.999
Fraction of SNPs 0.051 0.023 0.033 0.059 | 0.568
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Duplicate Agreement Heterozygous Calls Trisomy 21

Qs* > 0.0 > 0.6 > 0.7 >0.8 >0.9

Same Heterozygote 0.789 0.832 0.85 0.867 0.884
Different Heterozygote 0.077 0.059 0.05 0.041 0.033
Heterozygote Homozygote 0.133 0.109 0.1 0.092 0.083
Total Heterozygous Calls 151893 133588 120793 104798 81009

Data is for all heterozygotes. All heterozygous calls in duplicate | are compared to
the call made in duplicate II (this call can be the same heterozygote, a different
heterozygote, or a homozygote). QS* is for the heterozygote in duplicate I. Then
heterozygote calls in duplicate I are compared to the call made in duplicate I. For
these data points QS* is for the heterozygote in duplicate II.




Table 4

Accuracy for Heterozygous Trisomy 21 Calls

QS > |Accuracy Total Heterozygotes
0.0 0.91237 63702
0.5 0.91263 63476
0.6 0.92526 58402
0.7 0.93711 52997
0.8 0.94805 46603
0.9 0.95875 37141
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Table 5
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Fraction of Autosomal Deletions and Duplications in the Database of Genomic

Variants

Total Del. Total Dup. Fra;(]?sl. in Fracl.)]();l‘llp. in
Autosomes* 23348 17133 0.687 0.666
Chr 21 diploid 88 145 0.614 0.276
Chr 21 trisomy 210 180 0.348 0.294

*Excluding chromosome 21. Input parameters for GADA-a 0.2-T5-M 6
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Table 6

CNV Trio Data

Deletions Notin DGV In DGV

Size (kb) Total [Fraction in Parents Total [Fraction in Parents

<20 599 0.033| 706 0.263
20-50 240 0.075] 573 0.410
50-100 78 0.167| 276 0.406
100- 200 28 0.107] 260 0.446
> 200 45 0.200[ 224 0.438
Duplications Not in DGV In DGV

Size (kb) Total [Fraction in Parents Total [Fraction in Parents

<20 289 0.042] 301 0.216
20-50 145 0.062| 324 0.478
50-100 35 0.000] 143 0.483
100- 200 16 0.188 175 0.589
> 200 172 0.267] 290 0.648

Data is for CNVs on autosomal chromosomes of children in trios (excluding
chromosome 21). Database of Genomic Variants (DGV).
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Figure 1: Distribution of Chi-Square Values for Hardy-Weinberg Equilibrium.
For autosomal SNPs we calculated allele frequencies using data from the parents

(308 individuals) and then used them to test for Hardy-Weinberg equilibrium. A)
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Data shown for all autosomal SNPs. B) Data for autosomal SNPs with a chi-square

value less than 53.
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Figure 2: Duplicate Agreement. For SNPs in duplicated samples we plot the
product of the QS values of the SNP calls on the x-axis and the fraction of times the
calls agree on the y-axis. Green dots are for SNPs on chromosome 21 of duplicated
Down syndrome samples. Blue dots are for SNPs on autosomal chromosomes

(excluding chromosome 21) for all duplicates.
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Figure 3: Genotype Combinations with Power. There are eight genotype
combinations for which there is power to detect genotype errors for trisomy 21

heterozygous calls.
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Chapter 4:

Conclusions
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Our model for hybridization on arrays and its application to SNP and CNV detection
has helped us gain a better understanding of microarray behavior. Our data shows
that nearest-neighbor thermodynamics and the Langmuir isotherm provide a good
approximation for hybridization on the array (Chapter 2, Table 2 and Figure 5).
Other data that supports our model includes the difference in hybridization
temperature between the data from chapter 2 and chapter 3. In our model we do
not directly fit a parameter for the hybridization temperature. We assume that
heating blocks for chips maintain the temperature that is specified in the microarray
processing protocol. For the data in chapter one the temperature parameter was set
to 42°C. For the chapter 3 data it was set to 49°C. For both sets of data the
correlations between expected and observed probes intensities were high, which

suggests that our model accurately models hybridization temperature.

Overall our approach has helped us understand the differences between binding in
solution and on the array. Probe synthesis errors can have a significant effect on
hybridization (Chapter 2, Table 3, Table 4 and Supplementary Figure 1). Differences
in the error rates of A, C, G, and T bases along the probe sequence provide the most
parsimonious explanation for differences between forward and reverse probes.
Binding is also affected by target fragmentation, which is the reason why
mismatches have a larger destabilizing effect when they are placed towards the

center of the probe (Chapter 2, Figure 6). Other factors that also affect binding are
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salt concentration, target concentration, wash stringency, and scanner settings

(Chapter2, Table 2).

The results presented here help us understand some aspects of Affymetrix probe
design. The first generation of arrays had complementary forward and reverse
probes [1]. However, more recent arrays tend have only the forward or the reverse
probe. This is not surprising given the data that we present in Chapter 2,
Supplementary Figure 1. Another aspect of probe design supported by our model is
the placement of the query base towards the center of the probe. Data from Chapter
2, Figure 6 suggests that mismatches on positions 11 to 22 on a 25 nucleotide long

probe will have the largest destabilizing effect on binding.

Perhaps the most striking validation for our model is the fact that we can use it to
call SNPs and CNVs accurately (Chapter 3). Overall, our approach is not as practical
as current statistical methods for SNP analysis. We call approximately 600,000 SNPs
with high QS values; this is on the lower end compared to data from other studies
[2-5]. However, our approach has three major advantages, it can call SNPs on
chromosomes of any ploidy, it explicitly models batch effects, and SNP calls are not
affected by allele frequency. One possible application of our method is to re-analyze
genome-side association studies. A significant problem with these studies is a lack of
reproducibility. It is possible that our method might remove spurious associations

caused by batch effects or possibly cross-hybridization. The accuracy of our
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approach for CNV detection is comparable to the accuracy of current methods. It
could be improved upon by assigning quality scores to the calls and by using more
than one break-point detection algorithm for the analysis of the R values generated
by our method. Another way to remove false positives is to call CNVs using both our
approach and using the standard R values, log 2 probe intensity, and then searching
for calls made by both methods. This approach appears to work well for large CNVs,

as was shown in Chapter 3.

Accurate and cost-effective genetic variation detection is important across different
fields of biological research [6]. There is no method that is both highly accurate and
cost-effective for the analysis of all possible variants in the human genome. The
most commonly used technologies for genome-wide variant detection are
genotyping arrays and next-generation sequencing (NGS) [7]. Microarrays are best
suited for the analysis of common SNPs and CNVs. On the other hand NGS is more
expensive; however, it can detect both common and rare variation. A recent study
analyzed agreement for SNP calls between Affy 6.0 and NGS [7]. Array errors were
more common for SNPs near repetitive DNA while NGS errors were more common
where there is a strand bias during sequencing [7]. Overall, CNV detection is less
accurate than SNP detection. This is true for both genotyping arrays and NGS data.
Both technologies do a poor job identifying small CNVs. One way to improve
accuracy in variant detection is to use genotyping array data in combination with

NGS [8]. This joint approach has two benefits. It can improve overall call accuracy
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and it can be used to improve quality control filters. In addition our approach has
potential clinical applications for variant detection in polyploidy cells such as Down
syndrome as well as polyploidy chromosomes from somatic cells such as those

commonly found in cancer.
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