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Abstract

Simulating a Pipelined CPU

By Aaron L. Bush

The CS355 course in Computer Architecture teaches both entry-level and
advanced pipelined CPU technology. For most of the computer components
discussed in lectures, the course uses a circuit simulation program that allows
students to gain an interactive experience with basic computer technology.
However, the course has always lacked a simulation program for the pipelined
CPU. Due to the complex nature of pipelining and the success with using
the simulation software for other circuits, we have developed two versions
of the pipelined CPU using the simulation program. By offering students a
hands-on understanding of instruction pipelining, our simulated processors
will greatly enhance the course.
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Chapter 1

Introduction

1.1 Preface

Computer technology is constantly being used to replace ordinary prod-

ucts that are used in everyday life. When thinking of computer technology,

the first item that comes to mind is naturally the personal computer; how-

ever, the term computer technology actually encompasses a much broader

collection of appliances. The chief component of this technology is the cen-

tral processing unit (CPU), more commonly known as a “processor” or a

“core.” In addition to its existence in the personal computer, CPU’s are also

used in a wide variety of other instances, ranging from common items like

digital cameras and MP3 players to more complex applications like aeronau-

tics and space travel. Nowadays, with the massive amounts of data that some

of these appliances must handle and the necessity for lightning-fast process-
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ing speeds, many of these devices are being manufactured with multi-core

processors.

With the increasing presence of computer technology in everyday life,

there is also a rising demand for individuals who are trained with a com-

puter science background. The CPU is essential to most modern-day elec-

tronic devices. For this reason, it is imperative that university computer

science departments are providing adequate instruction to their students on

the theory and design of modern CPU’s.

1.2 Background Information

At Emory University, the CS355 course in Computer Architecture pro-

vides students with the necessary knowledge in computer technology. This

course highlights a wide range of digital components, beginning with very

simple circuits, such as an addition circuit, and culminating with extremely

complex systems like memory and processors. To assist both the professors

and the students in lecturing on and learning the course material, the Depart-

ment of Mathematics and Computer Science has installed a logic simulator

named “Logic-Sim[2]” on all of its machines. For most of the topics discussed

in this course, the computer science faculty has developed circuit simulation
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programs so that the students can interact with the components and examine

how they work. There is even a simulation program for a working processor.

However, this program only simulates a basic, non-pipelined CPU. Modern

processors use a technique known as instruction pipelining, which allows the

CPU to simultaneously operate on several different instructions. Such a CPU

can execute computer instructions at a faster rate.

While the non-pipelined CPU cannot adequately teach students how mod-

ern computers work, lectures on the subject matter still remain in the course

syllabus, as they provide students with a good introduction and background

knowledge for discussions about the pipelined CPU. Unfortunately, a Logic-

Sim version of the pipelined CPU has not existed in the past. The CS355

course will be greatly improved if a pipelined CPU simulation is available, as

students can get the necessary hands-on experience to thoroughly appreciate

how these present-day processors function. For this reason, we have taken the

time to develop and thoroughly test a working version of the pipelined CPU

in Logic-Sim. Specific details about Logic-Sim, the design of the pipelined

CPU, and our simulation results will be presented in this thesis.
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Chapter 2

Related Work

2.1 Logic-Sim

The Logic-Sim utility introduced in the previous chapter is freeware that

was developed by Professor Richard J. Reid of Michigan State University.

In order to use the software, the user must write a descriptor file whose

format is defined by the Logic-Sim documentation. The basic components

of the simulator are the AND, OR, and NOT logic gates, as well as some

other special-purpose circuits. Additionally, Logic-Sim allows the user to

incorporate switches and probes (LED lights) into the circuit design for input

and output, respectively. Each line of the descriptor file corresponds to one

particular logic gate, switch, or probe, and it is encoded in such a manner

that allows the outputs of some of the components to be wired directly to the

inputs of others. The actual software then interprets the circuit descriptor



5

Figure 2.1: Logic-Sim Example: Addition circuit

file and generates a graphical user interface (GUI) that resembles the

circuit design. The user can then interact with the GUI by pressing certain

keys on the keyboard to toggle the input switches. As the switches are

toggled, changes in the output probes can be monitored in order to observe

the behavior of the given circuit[2].
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Figure 2.1 is an example of a 4-bit addition circuit used in the CS355

course at Emory. Students can use the keyboard to toggle the input switches

at the top-left and top-right corners of the screen. As shown, these switches

are wired directly to the logic circuitry in the middle of the screen, and the

output is connected to the probes at the bottom of the screen. From the

current state of the circuit in this example, we can see that the user has

inputted the values 7 and 3 (01112 and 00112, respectively) for the addends,

and the addition circuit has correctly calculated the sum as 10 (10102).

2.2 Theory of Pipelining

When comparing computers today with those from several decades ago,

one of the obvious differences is the improvement in the execution time of

programs. Since a program is simply a set of machine instructions, comput-

ers have become faster because they have become more efficient at executing

instructions. There are two main reasons why processors today are faster.

One reason is the fact that the speed of the computer’s clock has increased.

For example, if the clock’s period were reduced from 10 nanoseconds to one

nanosecond, then the speed of the machine would increase tenfold. The

processor speed’s increase is due to better manufacturing technology that
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Figure 2.2: Performance increase due to faster clock

reduces the size of the circuit components. Figure 2.2 shows how the over-

all performance of the processor can be improved in this fashion. Notice

that since the frequency of the clock has been changed, both the duration

of each instruction and the gaps between each instruction are shortened pro-

portionally. For various reasons, however, there is a physical restriction on

the duration of a clock period[3].

The second reason is parallelism. In computer science, parallelism de-
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Figure 2.3: Performance increase due to instruction-level parallelism

scribes any method by which two or more jobs are worked on at the same

time. Parallelism can be accomplished in two separate ways. Processor-level

parallelism utilizes multiple cores, each of which is a complete CPU and is

able to work on a separate task. Parallelism also exists in another form:

pipelining. In pipelining, multiple instructions are simultaneously executed

within one processor[3]. Using this strategy, the processor is engineered with

multiple stages. Pipelining is similar to an assembly line in that new instruc-

tions enter the “assembly line” even while other instructions are still being

worked on. Each stage in the pipeline has the ability to operate on its own

instruction. An example of a processor with five stages is shown in Figure
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2.3. At any given moment in time, up to five instructions can be active

within the CPU. Pipelines can be combined with multi-core technology to

increase the speed of processors even further.

Pipelining does not increase the speed at which individual instructions

are completed. In fact, individual instructions could potentially have a longer

execution time in the pipelined CPU than that same instruction in a non-

pipelined version of the same CPU. Instead, the performance enhancement

occurs because of the overlapped execution that occurs, which is apparent

in Figure 2.3. So even though one instruction might require multiple clock

cycles to make its way through the pipeline, in the long run, an average of

one instruction will complete execution in each cycle. It is for this reason

that pipelining allows the CPU to run faster. Under ideal conditions, this

speedup technique increases a program’s execution speed by a factor of the

number of stages in the pipeline[1].
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Chapter 3

The Basic Pipelined CPU

IF ID WRMEM

IR_ID IR_WRIR_MEM

8 x 16 (bits) registers

EX

Memory (128 x 16 bits)

Stall_IF Stall_MEMStall_EXStall_ID

D

Mux

Mux

Mux

Mux

Mux

Mux Mux IR_EX Mux Mux

PSR

Figure 3.1: Design of the Basic Pipelined CPU
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3.1 Overview

The Basic Pipeline discussed in the CS355 class has five stages, depicted

by the boxes labeled IF, ID, EX, MEM and WR in Figure 3.1. Each stage,

with the exception of the first one, has an instruction register (IR) asso-

ciated with it. The IR stores the machine instruction so that each stage of

the pipeline can know exactly what it needs to accomplish. The processor

also has eight data registers which are used to store values locally within

the CPU. The first register, R0, is read-only memory that always stores the

value zero. The other registers, R1 - R7, can store any 16-bit value. Also, the

CPU is connected to the main memory that contains the program instruc-

tions. In addition to these components, there are numerous other circuits

that are necessary to facilitate the execution of each instruction through the

pipeline. The different circuits shown in the figure will be discussed in detail

throughout this chapter.

At the first stage in the pipeline, the Instruction Fetch (IF) stage,

an instruction is read from memory and then passed on to the Instruction

Decode (ID) stage. There, the processor will fetch all values that could

possibly be needed in order to execute the given instruction. The Execution
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(EX) stage will examine the instruction to determine exactly which ones are

used so that it can properly calculate the result. The last two stages of the

pipelined CPU handle the updating of the result. The Memory (MEM)

stage of the pipeline handles instructions that read from or write to memory.

In the Basic Pipelined CPU, the MEM stage is also responsible for handling

branch instructions, which will be explained in Section 3.2.1. The Write

Back (WR or WB) stage of the pipeline handles instructions that write to

a register in the CPU. The result of the executed instruction is stored in one

of the eight registers so that it can be used as one of the operands in a later

instruction. The rest of this chapter will explain exactly how the circuits

work in unison to produce a properly working pipelined CPU.

3.2 Instruction Encoding

Every processor has a pre-defined set of instructions that it is capable of

executing. Each instruction, along with its operands, is encoded in a machine

language (binary code) that a processor understands. Different processors

have different instruction encoding, which is why an assembly program writ-

ten for an Intel processor cannot be run on a SPARC processor, and vice

versa.
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Figure 3.2: Instruction Encoding: Bits 15-14

A A Instruction Type
0 0 ALU (Logic)
0 1 Load (memory)
1 0 Store (memory)
1 1 Branch

Table 3.1: Instruction Encoding: Bits 15-14

For our simple pipelined processor (SPP), we have created our own sim-

ple machine language, which uses a fixed length of 16 bits to encode each

instruction and its operands. The general format of the SPP instruction is

given in Figure 3.2. Recall from Section 3.1 that the CPU used in CS355

has eight data registers. Within the instruction encoding, exactly three bits

will be needed to reference a single one of these registers (since log28 = 3).

Because some instructions have two registers as source operands and a third

register for the destination of the output (e.g. R4 = R2 + R7), nine bits of the

instruction are reserved for referencing registers. The remaining seven bits

are used to encode the type of the instruction, as well some other flags that



14

tell the CPU exactly how to handle the given instruction. There are three

types of instructions: ALU instructions, memory access instructions (LD and

ST), and branch instructions. We have designed an instruction encoding for

our CPU in such a way that the meaning of any given bit depends on the

type of instruction. The meaning of bits 0 to 13 in the instruction depends

on the values of bits 14 and 15. This strategy enables our machine language

to encode more types of instructions than if every bit of the instruction had

a fixed meaning. The first two bits, which are labeled AA as seen in Figure

3.2, are the only bits in the instruction that always have the same meaning.

The four possible values and their definitions are shown in Table 3.1. The

remaining bits have different meanings for different values of AA, which is

why bits 0 through 13 are shown with question marks in the figure.

3.2.1 Branch Instructions

Generally speaking, instructions in a computer program are executed in

consecutive order. However, most computer algorithms require that the pro-

cessor execute some instructions out of order; typical examples of such pro-

gram constructs are conditional statements and loops. In order to achieve

this type of behavior, the CPU provides a special type of instruction, called
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a branch instruction.

Branch instructions tell the CPU to retrieve the next instruction from

a specific location in memory, rather than simply fetching the instruction

from the next memory address. The specific location to which the CPU

must jump can be encoded into the instruction in two different ways. In

direct branching, the branch address is explicitly stored within the branch

instruction. The number of bits needed to encode the destination address

in direct branching depends on the size of the memory. If the CPU can

address 65,536 (216) bytes of memory, the number of bits needed to encode

the destination address in direct branching is 16. In our instruction encoding,

there would be not be enough bits to encode the branch instruction in this

manner.

The second kind of branching instruction is relative branching. The

destination address is relative to the (current) branch instruction. Relative

branching is the most often used type of branch instruction because it results

directly from the translation of if-statements and while-statements. Direct

branching is used to support subroutine calls, but since our CPU does not

support subroutines, it does not support direct branching either. For di-

dactical purposes, both types of branching are identical. Relative branching
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is more practical though, because if-statements and while-statements are

commonly used in programs.

As briefly mentioned, some branch instructions will only perform the

branch if a certain condition is met. For example, the branch instruction

resulting from an if statement should only be executed if the test from the

conditional statement is passed. Within a program, conditional branches

will almost always follow a compare instruction. Compare instructions

subtract their operands and set the various flags according to the outcome.

For example, if the result is negative, the N flag is set, and when the result is

zero, the Z flag is set. The other flags are the overflow (V) flag and the carry

(C) flag. From the setting of the N,Z,V and C flags, the logical relationship

(equal to, less than, greater than, etc.) between the compare operands can

be determined. Some condition bits are harder to compute than others (e.g.

the overflow bit requires knowledge of the sign of the operands). Because

our simulated CPU is for instructional purposes only, we have made some

simplifications. Our CPU does not compute the V and C flags. As a result,

some conditional branches are not supported. However, for the purpose of

illustrating the pipeline concept, our design is adequate.

The branch condition is encoded by the bits labeled BBB in Figure 3.3.
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Figure 3.3: Instruction Encoding: Branch Instructions

B B B Branch Condition
0 0 0 BRA (always)
0 0 1 BEQ (equal)
0 1 0 BNE (not equal)
0 1 1 BLT (less than)
1 0 0 BLE (less than or equal)
1 0 1 BGT (greater than)
1 1 0 BGE (greater than or equal)
1 1 1 (not used)

Table 3.2: Instruction Encoding: Branch Instructions

The different branch conditions are outlined in Table 3.2. When a conditional

branch is being evaluated, the CPU uses these three bits along with the N

and Z flags to determine whether or not the branch condition is met. If it

does decide to branch, the destination address will be calculated by adding

the memory address of the branch instruction to the signed offset value given

in the bits FFFFFFFFFFF of Figure 3.3. If the branch is not taken, then the

CPU will simply fetch the instruction from the next address in memory as

it usually does for non-branching instructions.
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3.2.2 Non-Branch Instructions

Apart from branching, there are three primary types of instructions.

1. Compute a value using the arithmetic logic unit (ALU)

2. Load (LD) a value from memory into one of the data registers

3. Store (ST) a value from one of the data registers to memory

All three of these types of instructions have a very similar instruction

format, shown in Figure 3.4. For ALU and LD instructions, which are the

only two types that will update one of the data registers, the destination

register is encoded by DDD. In a ST instruction, however, DDD encodes the

source register which contains the value to be written to memory. The P flag

indicates whether or not the program status register (PSR) flags should

be updated as a result of the ALU’s computation. It is typically only used

for ALU instructions, although it could theoretically be used for LD and ST

instructions also. The PSR contains the N and Z flags that were discussed in

Figure 3.4: Instruction Encoding: Non-Branch Instructions
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Figure 3.5: Instruction Encoding: SETHI and SETLO

Section 3.2.1. If the P bit is set and the result of the instruction is negative,

then the EX stage of the pipeline will set the N flag. Likewise, if the P bit is

set and the result is zero, then the Z flag will be set. If the instruction has

the P bit cleared, then the PSR flags will remain unchanged.

The S bit denotes a sethi or setlo instruction. This flag is only used with

ALU instructions. Figure 3.5 outlines the encoding format for these types of

instructions. The H bit is set for a sethi instruction and cleared for a setlo

instruction. The functionality of these instructions is very straightforward.

For a sethi instruction, the upper (most significant) 8 bits of data register

DDD is set to the value in the ZZZZZZZZ bits of the instruction, and the

remaining bits are cleared. Similarly, a setlo instruction will store the value

ZZZZZZZZ in the lower (least significant) 8 bits of the specified data register.

However, in the setlo instruction, the other bits will remain unchanged. The

sethi and setlo instructions are typically used in conjunction with each other
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Figure 3.6: Instruction Encoding: ALU, LD, ST

(sethi followed by setlo) to store a 16-bit value into a data register.

When the S bit is cleared, the instruction is an ALU instruction that

performs a computation on two source operands. The instruction has the

format shown in Figure 3.6. The two LL bits specify one of the four ALU

operations outlined in Table 3.3. The C bit indicates a constant operand.

When the C flag is set, the bits YYY encode a constant in the range -4 to +3.

Otherwise, the YYY bits represent a register number. The bits XXX always

represent a register number.

L L ALU Operation
0 0 Addition
0 1 Subtraction
1 0 Binary AND
1 1 Binary OR

Table 3.3: Instruction Encoding: ALU, LD, ST
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As we stated earlier, LD and ST instructions should always have the S

bit cleared. Thus, the format of these instructions also follows Figure 3.6.

For both of these memory-access instructions, the actual memory address

will be determined by bits 0 through 8. When the instruction encodes the

addition operation (LL equals 00), as LD and ST instructions usually do, the

memory address used by these instructions is the sum of register XXX and the

constant YYY if the C bit is set. Otherwise, if the C bit is not set, the address

is the sum of registers XXX and YYY. If the instruction encodes a different LL

operation, then the memory address will be calculated accordingly.

Figures 3.7, 3.8, and 3.9 show sample instruction encodings for an ALU,

LD, and ST operation.

Figure 3.7: Example of ALU Instruction Encoding
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Figure 3.8: Example of LD Instruction Encoding

Figure 3.9: Example of ST Instruction Encoding
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3.3 Instruction Fetch (IF) Stage

Figure 3.10: Circuit Diagram of the IF stage

The Instruction Fetch (IF) stage is the first stage of the pipelined

CPU. The primary purpose of the IF stage (shown in Figure 3.10 with the

inputs and outputs described by Table 3.4) of the pipeline is to read the

next instruction from memory and store it in the instruction register (IR)

of the next stage in the pipeline (the ID stage), so that it can be executed
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Inputs Outputs
reset* memRequest*
clock* memRead*

stall-IF* addressBusOut
dataBusIn instructionOut

branchDecision PC-tmp
branchAddress

* Not pictured in diagram

Table 3.4: IF Stage Inputs and Outputs

by the CPU. In order to retrieve the instruction from memory, the CPU

must know the memory address of the instruction. For this purpose, the

IF stage maintains the address of the next instruction in a special purpose

register called the Program Counter (PC). After fetching an instruction,

the IF stage computes the address of the next instruction by adding 1 to PC.

However, in the case of branching, the branch address must be used as the

location of the next instruction.

Within the IF stage, there is another special purpose register called PC-

tmp. While the PC always keeps track of the address of the next instruction

to be fetched, the PC-tmp keeps track of the address of the instruction that

was most recently fetched into the IR of the ID stage. The PC is updated

with the value from the multiplexor circuit (labeled “MUX”) at each CPU
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cycle. One of the inputs of the MUX is the value PC+1. The other in-

put of MUX is the effective branch address of the instruction in the MEM

stage. The multiplexor will either choose the output of the addition circuit

(labeled “+1”) or the branch address, depending on the signal outputted by

the branch decision circuit (shown as D in Figure 3.1 and described in Sec-

tion 3.6.1). The multiplexor thus selects the address of the next instruction

to be stored in the PC.

Figure 3.10 shows that the output of the PC is also connected to a series of

tri-state buffers (depicted as small triangles). Tri-state buffers are circuits

that can be either enabled or disabled. When they are enabled, the input

signal (either high or low) is passed directly through to the output. However,

when they are disabled, the tri-state buffer will disconnect the input from

the output. Tri-state buffers are used to prevent multiple outputs from being

connected together, which can result in problems. If multiple outputs are

connected to the address bus at the same time, then Logic-Sim will report

errors. If this were to happen in a real computer, the hardware would be

damaged. Therefore, all values written to the address bus (and the data bus

for that matter) must pass through these tri-state buffers, and the timing of

these devices must be carefully planned so that there is never more than one
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Figure 3.11: CPU Clock Cycle

value being written to the bus at any given time.

Clearly, timing within the CPU is critical. To maintain the integrity

of the data, events must occur in a certain order. Each stage of the CPU

completes its execution in one clock cycle. A clock cycle (Figure 3.11) consists

of a rising edge (when the signal changes from low to high) and a falling

edge (when the signal changes from high to low). During the rising edge

of the clock, the IF stage sends out the memRequest signal (which informs

memory to expect a request), and it also sends out the memRead signal (which

tells memory to retrieve data instead of store data). Also during the rising

edge, the tri-state buffers are activated so that the PC is sent on the address

bus. At that point in time, the memory has all the necessary information

to perform its task. In response to the request signals, the external memory
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places the content of the given address on the data bus. As shown, this data

simply passes through the IF stage to the instructionOut signal, which will

be sent to the instruction register of the ID stage. During the falling edge of

the clock, the PC-tmp register will be updated with the value from the PC

register, and the PC register will be updated with the address of the next

instruction (which was determined by the multiplexor). After the completion

of a full cycle, one machine instruction has been fetched into the IR of the

ID stage, and the CPU will be ready to fetch the next instruction.

There is also a stall input signal into the IF stage. The stall signal is part

of a mechanism that will prevent the IF stage from accessing the memory

during the execution of a LD or ST instruction. In effect, this signal masks

the signal of the clock so that when the stall signal is on, nothing will be

sent to the address bus during the rising edge of the clock. Also, PC and

PC-tmp will not be updated. Details of the stalling mechanism will be given

in Section 3.8.

3.4 Instruction Decode (ID) Stage

Every time a new instruction gets fetched, it is placed inside the in-

struction register (IR) of the Instruction Decode (ID) stage. The ID stage’s
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Figure 3.12: Circuit Diagram of the ID stage
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Inputs Outputs
reset* src1-sel
clock* src2-sel

stall-ID* src3-sel
IR-ID PC1

PC-tmp A
src1 B
src2 IR1
src3 D

* Not pictured in diagram

Table 3.5: ID Stage Inputs and Outputs

responsibility is to gather all possible operands that might be needed in order

to execute an instruction. The circuit diagram is shown in Figure 3.12, and

the inputs and outputs are listed in Table 3.5. These operands are placed

in the five registers, labeled PC1, A, B, IR1, and D. The ID stage does

not know the type of instruction being executed. As a result, some of the

operands retrieved will not be used by the given instruction, but doing the ex-

tra work will not cause execution errors and makes the ID stage less complex

to design.

During the first half of the clock cycle, the ID stage sends selection signals

to the registers to obtain the desired values. The values of various operands

will be ready prior to the end of the cycle. At the falling edge of the clock,
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the five registers will be updated with their new values. The PC-tmp register

in the IF stage will be written into the PC1 register in the ID stage.

Three of the five operands are encoded in the instruction. The first source

operand is encoded by the XXX bits, and this register is fetched into the A

register. The second source operand is YYY, and its value is stored in the

B register. The DDD destination field encodes the source register for a ST

instruction. This register is stored in the D register. The selection mechanism

used to switch the values from the register bank to the respective registers is

a multiplexor (shown at the top of Figure 3.1). Lastly, the IR1 register will

contain the constant that could be encoded within the instruction itself.

In retrospect, the ID stage does have some knowledge of the instruction

encoding. Since different types of instructions encode their operands differ-

ently, the instruction type must be known in order to use the correct bits

in the IR. Specifically, the constant used in branch, sethi, and setlo instruc-

tions are encoded differently than all other instructions. Branch instructions

encode a signed constant in bits 0 through 10. The sethi and setlo instruc-

tions encode an unsigned constant in bits 0 through 7. All other instructions

can have a signed constant encoded in bits 0 through 2. Then based on the

instruction type, the two multiplexors shown in the figure will extract the
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proper constant. At the end of the clock cycle, the appropriate constant will

be stored in the IR1 register.

Similar to the IF stage, the ID stage also has a stalling mechanism. When

the stall signal is on, none of the registers will be altered. In the absence

of stalling, all registers will be updated during the falling edge of the clock

cycle, and the content of the IR in the ID stage will be passed on to the IR

in the EX stage.

3.5 Execution (EX) Stage

Figure 3.13: Circuit Diagram of the EX stage
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After the ID stage has fetched all the values that the instruction might

need, the Execution (EX) stage must then determine exactly which ones it

does need so that it can perform the necessary calculations. In the first

phase, we determine which of the five registers from the ID stage to use.

This selection process is handled by several circuits that are external to the

EX stage (depicted in Figure 3.1 as the multiplexors located in between

the ID and the EX stages). The specifications of those multiplexors will be

presented in Section 3.5.1, but for the discussion of the EX stage, it is only

important that the necessary operands will be available through the alu1

and alu2 inputs. The circuit diagram and input/output mapping for the EX

stage are shown in Figure 3.13 and Table 3.6 respectively.

The central component of the EX stage is the arithmetic logic unit

(ALU). The ALU that we have constructed takes alu1 and alu2 as its two,

16-bit inputs. It also uses a three-bit control signal to select the operation

that the ALU should perform. Table 3.7 shows the six different ALU opera-

tions and their respective bit patterns. The third bit is not used in the sethi

and setlo operations.

The multiplexor that is shown in Figure 3.13 is responsible for determin-

ing the correct, three-bit signal to send to the ALU. For a branch instruction,
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Inputs Outputs
reset* ALUo
clock* DMAR

stall-EX* SMDR
IR-EX N
alu1 Z
alu2 branch
D setlo

hilo
constant

psr
* Not pictured in diagram

Table 3.6: EX Stage Inputs and Outputs

the two ALU operands will be PC1 (the address of the branch instruction)

and IR1 (the offset value that was encoded into the instruction). Since all

branch operations require the use of addition on these two operands, the

instruction does not explicitly encode the ALU addition operation. For this

reason, the multiplexor must be sure to output the value 000 to the ALU for

all branch instructions. For any other type of instruction, the multiplexor

can simply output bits 7 through 9 of the IR as the control signal for the

ALU by taking advantage of the way the instruction is encoded.

The ALU’s output is connected to two separate registers: the ALU out-

put register (ALUo) and the destination memory address register
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Bits Operation
0 0 0 ADD
0 0 1 SUBTRACT
0 1 0 AND
0 1 1 OR
1 0 ? SETLO
1 1 ? SETHI

Table 3.7: Control Signal to the ALU

(DMAR). While both of these registers will contain the same value, the

ALUo will be used by ALU operations, and the DMAR will be used as the

address in LD and ST operations. As is the case with the ID stage, whenever

the stall signal is not set, all of the registers in the EX stage will be written

at the end of the clock cycle.

In addition to outputting the result of the computation to the ALUo and

DMAR registers, the ALU also outputs the values of the N and Z flags. The

N flag is set when the result is a negative number, which is the case when

the most significant bit is set. The Z flag is set when the result is equal to

zero. Even though the ALU outputs these flags for every single instruction,

the EX stage does not contain any memory in which their values can be

stored. Instead, the flags are stored in the program status register (PSR),
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which is located outside of the EX stage. The PSR will be discussed further

in Section 3.5.2.

The third register shown in Figure 3.13 is the store memory data

register (SMDR). This register will contain the value that gets written to

memory in a ST operation. Since the ID stage already obtained this value

in the D register, that value simply gets copied into the SMDR during the

EX stage. Like the other registers, the SMDR will be updated at the end of

the clock cycle, but only if the stall signal is not active.

The decoder used in the EX stage is very similar to the decoder in the ID

stage. It reads the contents of the instruction register to determine the exact

type of the instruction, including any of the instruction flags. In this case,

the decoder has outputs that indicate whether the instruction is a branch

instruction, a setlo instruction, either sethi or setlo, and whether the C flag

is set. All four of these signals are used in the circuitry for selecting the

correct ALU operands (Section 3.5.1). The branch signal is also used in

the multiplexor that determines the three-bit control signal for the ALU.

Additionally, the decoder outputs the value of the P flag. After combining

this value with the clock and stall signals, the EX stage outputs a signal that

tells the PSR (Section 3.5.2) when to store the N and Z flags.
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Figure 3.14: First Operand of the ALU

3.5.1 Selecting the Correct Operands for the ALU

The circuits to select the operands for the ALU implement a simple if-

else logic using multiplexors. Figures 3.14 and 3.15 show the logic to select

the first and second ALU operand, respectively. In the figures, the inputs

that enter the circuit from the left side originate from the registers in the

ID stage of the pipeline. Those that appear to enter from the bottom are

selection signals from the EX stage. The wires that exit the right side of the

circuits are the ALU operands, and these outputs are inputs of the EX stage.
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Figure 3.15: Second Operand of the ALU

The first operand, alu1, is determined as follows. If the instruction is a

branch instruction, then alu1 must select the PC1 register, which contains

the address of the branch instruction. Otherwise, if the instruction is a setlo

instruction, then the value of the D register must be used as the first operand.

This is because the upper eight bits in the destination register are used in
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the output of a setlo instruction. For the other types of instructions, the

operand is a register value that is stored in the A register.

For the second source operand, the multiplexor must select between a

register value in the B register and a constant value in the IR1 register.

Branch instructions, sethi and setlo instructions, and instructions that set

the C flag all require the use of a constant. All other instructions should

select the B register.

3.5.2 The Program Status Register (PSR)

Figure 3.16: Program Status Register (PSR)
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The wiring for the program status register (PSR), shown in Figure

3.16, is very straightforward. It receives three inputs from the EX circuit:

N-in, Z-in, and updatePSR. The PSR circuit has two bits of memory inside

of it–one bit for the N flag and one bit for the Z flag. Values of the N-in and

Z-in inputs are only written to the PSR when the updatePSR signal changes

from low to high (i.e. during the first half of the clock cycle). If the EX stage

is stalled, however, the N and Z flags will not be updated. The two outputs

of the PSR (the stored N and Z flags) will be used by the branch decision

circuit (Section 3.6.1) to determine if a branch condition has been met.

3.6 Memory (MEM) Stage

The Memory (MEM) stage in the Basic Pipeline executes two types of

instructions: memory-access (LD/ST) instructions and branch instructions.

Figure 3.17 and Table 3.8 show the circuit diagram and the inputs and out-

puts of the MEM circuit, respectively. In the case of memory-access in-

structions, the EX stage has previously calculated the memory address and

placed it in the DMAR. Additionally, the SMDR contains the source data

needed for a ST instruction. With these values available, the MEM stage has

all the information it needs to read from or write to memory. The decoder
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Figure 3.17: Circuit Diagram of the MEM stage

within the MEM circuit will output whether the instruction is a LD or ST

instruction based on the instruction encoding. If it is either of the two, the

memRequest signal is set during the rising edge of the clock cycle to indicate

that a memory operation will be performed. The memRead signal is set for

LD instructions and reset for ST instructions, so that the memory device
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Inputs Outputs
reset* memRequest
clock* memRead

stall-MEM* addressBusOut
IR-MEM dataBusOut
dataBusIn LMDR

ALUo ALUo1
DMAR addressBusOut
SMDR dataBusOut

branch
branchCondition

* Not pictured in diagram

Table 3.8: MEM Stage Inputs and Outputs

can distinguish between retrieving data in the case of a LD instruction and

storing data in the case of a ST instruction. The memRequest signal also

serves as the control signal for the tri-state buffers that allow the DMAR to

be written to the address bus. The tri-state buffers that allow the SMDR

to be written to the data bus are only activated when both the memRequest

signal is set and the memRead signal is cleared. Since the memRequest signal,

which is activated during the rising edge of the clock, controls the output to

both the address and data buses, memory reads and writes only occur during

the clock’s rising edge. In the case of the LD instruction, the value being

read from memory is returned on the data bus and then stored in the load
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memory data register (LMDR) during the clock’s falling edge (at the

end of the CPU cycle).

As branch instructions advance through the pipeline, the effective branch

address is computed in the EX stage and stored in the ALUo register. Thus,

the earliest stage in which a branch can be made is the MEM stage. While

the connection is not shown in the figure, the ALUo signal is wired to the

branchAddress input of the IF stage. Figure 3.17 does show that the MEM

circuit outputs the three branchCondition (BBB) bits and another signal

that indicates whether the instruction is a branch instruction. These two

outputs are sent to the branch decision circuit described in Section 3.6.1.

3.6.1 Branch Decision Circuit

The branch decision circuit, shown in Figure 3.18, is responsible for de-

termining if the branch conditions for a branch instruction have been met.

The conditional branch instruction will use the values of the N and Z flags

set by the previous instruction. From the current value of these two flags,

the logical relationship between the two compare operands can be evaluated.

For example, if the N flag is set, then the first compare operand is less than

the second operand. If the Z flag is set, then the two compare operands
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Figure 3.18: Branch Decision Circuit
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are equal to each other. The other relationships can be computed using the

circuitry on the left side of the figure.

The branch decision circuit also takes the three branchCondition bits of

the branch instruction as an input. This signal is sent through a decoder to

output the specific branch condition that was encoded into the instruction.

For each possible branch condition, the circuit uses an AND gate to determine

if that condition has been met. An OR gate collects all outputs to determine

if any one of the branch conditions have been met. The branch always (BRA)

instruction will always generate a positive output, while non-branching in-

structions always generate a negative result. This branchDecision output

is sent to the IF stage of the pipeline so that the appropriate address for the

next instruction can be selected.

3.7 Write Back (WR) Stage

The final stage of the pipeline is the Write Back (WR) stage, which

updates the register bank for the LD and ALU instructions. Figure 3.19

shows the circuit diagram, and Table 3.9 lists the inputs and outputs of

the WR stage. To detect the instruction type, the instruction register is

sent through a decoder. If it is either a LD or ALU instruction, the WR



45

Figure 3.19: Circuit Diagram of the WR stage

circuit outputs the writeRegister signal. Bits 11 through 13, which encode

the destination register, are used as output in the registerSelect signal.

Lastly, the circuit must output the actual value to be written to the register.

For a LD instruction, this value is found in the LMDR, and for an ALU

instruction, the value is stored in the ALUo1 register. A multiplexor is used

to select the correct input and output its value as registerInput. These

three outputs are sent to the register bank, which is external to any of the



46

Inputs Outputs
IR-WR writeRegister
ALUo1 registerSelect
LMDR registerInput

* Not pictured in diagram

Table 3.9: WR Stage Inputs and Outputs

pipeline stages and not depicted in the figures. When the writeRegister

signal is set, the register bank will update the selected register with the new

input in the middle of the clock cycle. Performing the update in the middle

of the clock cycle allows the instruction in the ID stage to obtain the updated

register values at the end of the clock cycle.

3.8 Stalling

In the Basic Pipelined CPU, the stalling mechanism serves an important

purpose: to prevent multiple CPU stages from using the address and data

buses simultaneously. The two stages that can access memory are the IF

stage and the MEM stage. The IF stage makes a memory request in every

clock cycle, while the MEM stage only accesses memory during the execution

of LD and ST instructions. When a memory-access instruction is in the MEM
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stage, the conflict of deciding which of the two stages should access memory

must be resolved, and the question of what to do with the other stage must

be answered. Since the MEM stage is further along in the pipeline, we have

to give the MEM stage priority at accessing the address and data buses. In

order to prevent the IF stage from accessing memory in this scenario, a stall

signal will be generated for the IF stage whenever the instruction register of

the MEM stage contains a LD or ST instruction. Not only will the stall signal

prevent the IF stage from accessing memory, but it will also stop the registers

within the IF stage from being updated. In addition, a NOP instruction,

which is just a “filler” instruction that has no effect on the CPU, is placed

in the IR of the ID stage.

While the IF stage is the only stage that needs stalling in the Basic

Pipelined CPU, in the Advanced Pipeline, which will be introduced in the

next chapter, it is necessary to stall other stages in certain situations. The

only stage to never require stalling is the WR stage, because all information

and hardware required to execute an instruction are available without con-

flict. Notice that whenever a stage is stalled, all of the prior stages must also

be stalled. Therefore, in addition to the IF stage stalling when the MEM

stage contains a memory-access instruction, it will also receive the stall sig-
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nal if the ID stage is stalled. Likewise, the ID stage will stall any time the

EX stage is stalled, and the EX stage will stall whenever the MEM stage is

stalled. In our version of the pipelined CPU, the MEM stage never receives

the stall signal. However, we have still implemented the Stall MEM circuit

so that future extensions of the pipeline can easily modify this behavior.

3.9 The Basic Pipelined CPU in Logic-Sim

When designing a program in Logic-Sim, sets of logic gates can be grouped

together in macros. For example, all of the logic gates associated with the IF

stage of the pipeline could be defined together in a macro named “IF-Stage.”

Using macros has some distinct advantages. First of all, macros can be

used multiple times throughout the program without having to redefine the

elements of the macro each time. Secondly, the structure of a macro allows it

to be easily tested and debugged. By dividing the entire CPU program into

different macros, one for each pipeline stage plus a few others, we were able

to test each component of the CPU individually to ensure that it worked.

After combining all the macros to form the complete CPU, we tested the

entire processor by running it with all the different types of instructions.

The graphical user interface (GUI) of the Basic Pipelined CPU is shown in
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Figure 3.20: The Basic Pipelined CPU in Logic-Sim

Figure 3.20. The only two inputs for the entire program are the reset switch

and the clock switch which are shown in row 1. The user can toggle these

switches from the keyboard by pressing the 0 key and 1 key, respectively.

Everything else shown in the GUI is an output. In Figure 3.20, the first

set of outputs shown in row 1 is the IF stage of the pipeline, which consists

of the PC and PC-tmp registers. The last set of outputs in row 1 are the

values on the system bus that connect the CPU and the main memory: the
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memRequest and memRead signals, as well as the values on the address and

data buses.

Row 2 contains five, single-bit outputs. Four of them are the stall signals

for the IF, ID, EX, and MEM stages. We placed each of these probes between

the instruction register of the stage it controls and the IR of the stage after

it. We did this to make it clear that when the stall signal is set, the instruc-

tion in the first IR will not advance to the second one. The fifth output is

the branchDecision signal, which we placed directly above the MEM stage

because branches are executed during the MEM stage of the pipeline.

The outputs of the components in each stage are placed in rows 3 and 4 of

the GUI. Row 3 contains the instruction register for each of the four pipeline

stages that have an IR. We intentionally placed these registers side-by-side,

so that the user can see the instructions progress through the pipeline, from

the IR in one stage to the IR in the next. In row 4, directly underneath each

instruction register, are the other registers that make up that given stage

of the pipeline. The only exception is the WR stage since this stage does

not contain any registers. We have placed the eight CPU registers beneath

the IR of the WR stage. This choice seemed logical since these eight data

registers are updated during the WR stage.
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Chapter 4

The Advanced Pipelined CPU

IF ID WRMEM

IR_ID IR_WRIR_MEM

8 x 16 (bits) registers

PSR

EX

Memory (128 x 16 bits)

Stall_IF Stall_MEMStall_EXStall_ID

D

Mux

Mux

Mux

Mux

Mux

Mux

NOP
Mux IR_EX Mux Mux

F1

F2

Forw
regs

NOP

Figure 4.1: Design of the Advanced Pipelined CPU
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4.1 Overview

In a non-pipelined CPU, each instruction is fully processed before the

CPU fetches the next instruction. However, in a pipeline design, where

multiple instructions can be executed simultaneously, the CPU will begin

processing a new instruction before the ones before it have completed. This

type of design can lead to various problems. For example, if one instruction

writes a value to a register and the next instruction needs to use that value,

then the second instruction will use the old value in the register before the

first instruction can reach the WR stage and update the register. This specific

example is a type of “read after write” data hazard. Other types of hazards

also exist. Our Basic Pipelined CPU that we introduced in the previous

chapter does not attempt to fix any of these problems. Thus, if a program

written for the Basic Pipelined CPU does not account for these potential

hazards, the CPU will produce incorrect results.

To address some of the drawbacks of the Basic Pipeline, the CS355 course

also teaches the Advanced Pipelined CPU. We have also implemented this

design in Logic-Sim. In this version, we address three different types of

hazards that can occur within the Basic Pipeline. In order to correct these
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issues, some of the circuits from the Basic Pipelined CPU need to be modified,

and some new circuits must be added. Figure 4.1 shows the design of the

Advanced Pipelined CPU. The ID, MEM, and Stall EX circuits have been

altered, and some forwarding registers and multiplexors have been added in

the new design. This chapter will discuss the three different hazards, as well

as the circuitry required to correct them.

4.2 Read after Write Data Hazard in ALU

Instructions

As mentioned in Section 4.1, problems can arise in the Basic Pipelined

CPU when the destination register of one instruction is used as the source

register of an instruction following it. Problems such as this arise because

instructions fetch their operands in the ID stage, but the new value is not

yet available. This section deals with the case when an ALU instruction that

updates a register is followed by one or more instructions that attempt to

access that same register. As we will show, this type of data hazard can have

an undesirable effect on only two instructions that come directly after the

update instruction.

Consider the series of instructions below where the registers have the
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initial values shown in Table 4.1. The first instruction will write the sum of

R2 and R3, which is equal to “20,” to register R1. The next three instructions

will all attempt to use this value as an operand. At the end of the first clock

cycle, the first instruction will have been fetched into the instruction register

in the ID stage. Table 4.2 shows the values of the pipeline registers after the

first clock cycle.

• (instr 1) ADD R2, R3, R1

• (instr 2) ADD R4, R1, R4

• (instr 3) ADD R5, R1, R5

• (instr 4) ADD R6, R1, R6

During the next CPU cycle, the ID stage will fetch the operands for the

first instruction. Since this is an ALU instruction that uses two register

values as operands, only registers A and B in the ID stage will contain values

that are relevant to the instruction. At the end of the cycle (Table 4.3),

Register Bank
R0 0 R4 1
R1 123 R5 8
R2 11 R6 2
R3 9 R7 0

Table 4.1: Initial Register Values
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ID EX MEM WR Regs

IR (instr 1) IR IR IR R0 0
PC1 R1 123

A ALUo ALUo1 R2 11
B DMAR R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.2: Pipeline After 1 CPU Cycle

ID EX MEM WR Regs

IR (instr 2) IR (instr 1) IR IR R0 0
PC1 R1 123

A 11 ALUo ALUo1 R2 11
B 9 DMAR R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.3: Pipeline After 2 CPU Cycles

the first instruction will move into the IR in the EX stage, and the second

instruction will have been fetched into the IR in the ID stage.

In the third clock cycle, the EX stage adds the values in registers A and

B (11 + 9) and stores the result (20) in the ALUo register. This is the value

that will be written to R1 when the first instruction reaches the WR stage.

However, since R1 has not yet been updated with the value “20,” the ID

stage of the pipeline, which is working on the second instruction, will fetch
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ID EX MEM WR Regs

IR (instr 3) IR (instr 2) IR (instr 1) IR R0 0
PC1 R1 123

A 1 ALUo 20 ALUo1 R2 11
B 123 DMAR 20 R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.4: Pipeline After 3 CPU Cycles

the old value of R1 (123) into register B. At the end of the cycle, instructions

will advance to the next stage in the pipeline, and the registers will have the

values in Table 4.4.

During the fourth CPU cycle, the MEM stage will simply copy the value

from the ALUo register (20) into the ALUo1 register. Still, this value has not

yet been written to R1. Thus, the ID stage will again fetch the old value “123”

as an operand for the third instruction. The EX stage, which is performing

the addition for the second instruction, will add the values from the A and

B registers (1 + 123) and store the sum (124) in the ALUo register. Since

123 was not the intended operand for this instruction, an incorrect result has

been calculated and will eventually be written in R4. Table 4.5 depicts the

CPU at the end of the fourth cycle, after all instructions have advanced into
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ID EX MEM WR Regs

IR (instr 4) IR (instr 3) IR (instr 2) IR (instr 1) R0 0
PC1 R1 123

A 8 ALUo 124 ALUo1 20 R2 11
B 123 DMAR 124 R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.5: Pipeline After 4 CPU Cycles

the instruction register of the next stage.

Recall from Section 3.7 that the WR stage updates the register bank in

the middle of the cycle. As we will show here, this design will allow “instr 4,”

currently in the ID stage, to fetch the correct (updated) value of R1 into the

B register. Table 4.6 shows the pipeline during the middle of the fifth cycle,

after R1 has been updated with the value “20” from the ALUo1 register.

Then, during the second half of the cycle, the ID stage can fetch the correct

operands for “instr 4.” However, when the EX stage calculates the result

for “instr 3,” it is using the incorrect operand, and thus, it will store the

incorrect result (131) in the ALUo register. Table 4.7 shows the pipeline at

the end of the fifth cycle.

At the end of the sixth cycle, the value “124” will be written to R4, and at
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ID EX MEM WR Regs

IR (instr 4) IR (instr 3) IR (instr 2) IR (instr 1) R0 0
PC1 R1 20

A 8 ALUo 124 ALUo1 20 R2 11
B 123 DMAR 124 R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.6: Pipeline in the Middle of the 5th Cycle

ID EX MEM WR Regs

IR IR (instr 4) IR (instr 3) IR (instr 2) R0 0
PC1 R1 20

A 2 ALUo 131 ALUo1 124 R2 11
B 20 DMAR 131 R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.7: Pipeline After 5 CPU Cycles

the end of the seventh cycle, R5 will contain the value “131.” Both of these

values are wrong since they were calculated using the old value of R1, “123,”

instead of the correct value “20.” When the eighth cycle finishes, R6 will

contain the value “22,” which was the expected result. Thus, we can see that

in the read after write data hazard for ALU instructions, two instructions

following the update instruction will not be executed correctly. This fact will

be important in the design of the solution, which we present in Section 4.2.1.
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4.2.1 Solving the Data Hazard in ALU Instructions

Since the read after write data hazard for ALU instructions affects two

instructions, we must add two, special-purpose forwarding registers to the

pipeline. These forwarding registers, which we have named FR1 and FR2,

will store the two most recent outputs of the ALU in the EX stage. These

registers will make their values available to other instructions during the gap

in between the moment when the value is calculated and the moment when

the value is stored to the destination register.

Associated with each forwarding register is a four-bit tag register. Three

of the bits will be used to store the register number of the destination register

that will be updated once the instruction that produced the result reaches

the WR stage. The last bit indicates whether or not the tag is valid. Tag

registers are only valid for ALU instructions that write to a register other

than R0 (since R0 is read-only memory).

In order for the CPU to use the values from the forwarding registers, we

modified the circuits that select the two operands for the ALU (described in

Section 3.5.1). In the Advanced Pipeline, these multiplexors will first check

tag registers tag1 and tag2 to see if they are valid and represent either of
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the source registers for the instruction. If the tag register is valid and its

register number matches one of the source register numbers, then the value

from the associated forwarding register will be selected as an input for the

ALU. Otherwise, one of the five registers in the ID stage will be selected as

it did in the Basic Pipelined CPU.

4.3 Read after Write Data Hazard in LD In-

structions

A similar data hazard occurs after a LD instruction. In the execution of

a LD instruction, a value is first retrieved from memory and stored in the

LMDR during the MEM stage of the pipeline. Meanwhile, the destination

register of the LD instruction has not yet been updated. If either of the

two instructions that follow the LD instruction attempt to use the value

that was read from memory, the read after write data hazard will occur.

Even though this data hazard, like the hazard after an ALU instruction,

causes two instructions to execute incorrectly, we will show that the LD

data hazard is more severe and cannot be entirely fixed with the forwarding

register technique.

Consider the program below where the registers have the initial values
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shown in Table 4.8 and the content of memory address 20 is the value “4000.”

The first instruction will load this value from memory into register R1, and

then the next three instructions will all attempt to use this value as an

operand. At the end of the first clock cycle, the first instruction will have

been fetched into the instruction register in the ID stage, and the pipeline

registers will have the values in Table 4.9.

• (instr 1) LD [R2 + R3], R1

• (instr 2) ADD R4, R1, R4

• (instr 3) ADD R5, R1, R5

• (instr 4) ADD R6, R1, R6

In the second CPU cycle, the values from registers R2 and R3 will be

fetched into the A and B registers in the ID stage. At the end of the cycle,

the first instruction will move to the EX stage and the second instruction

will be fetched into the ID stage, as shown in Table 4.10.

Register Bank
R0 0 R4 1
R1 123 R5 8
R2 11 R6 2
R3 9 R7 0

Table 4.8: Initial Register Values
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ID EX MEM WR Regs

IR (instr 1) IR IR IR R0 0
PC1 R1 123

A ALUo ALUo1 R2 11
B DMAR R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.9: Pipeline After 1 CPU Cycle

ID EX MEM WR Regs

IR (instr 2) IR (instr 1) IR IR R0 0
PC1 R1 123

A 11 ALUo ALUo1 R2 11
B 9 DMAR R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.10: Pipeline After 2 CPU Cycles

In the third cycle, the EX stage will add the values from the A and B

registers (11 + 9) and store the result (20) in both the ALUo and DMAR

registers. Additionally, the ID stage, which is working in the second instruc-

tion, will fetch the current values of R4 and R1 into the A and B registers,

respectively. However, register R1 has not yet been updated with the value

“4000” from memory, and therefore, the incorrect operand will be fetched

into the B register. When the cycle ends, the instructions will all advance to
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ID EX MEM WR Regs

IR (instr 3) IR (instr 2) IR (instr 1) IR R0 0
PC1 R1 123

A 1 ALUo 20 ALUo1 R2 11
B 123 DMAR 20 R3 9

IR1 R4 1
D SMDR LMDR R5 8

R6 2
R7 0

Table 4.11: Pipeline After 3 CPU Cycles

the next stage, and the third instruction will be fetched into the IR in the

ID stage. The state of the CPU after the third cycle is shown in Table 4.11.

Recall that the stalling mechanism of the Basic Pipeline, described in

Section 3.8, was designed to prevent multiple stages from accessing memory

simultaneously. When the fourth CPU cycle finishes, since the MEM stage

contains a LD instruction, the IF stage will be stalled, and a NOP instruction

will be placed in the IR of the ID stage. During this cycle, the MEM stage

will make the memory request and fetch the value from memory (4000) into

the LMDR. The EX stage will add the values from the A and B register (1

+ 123) and store the result in the ALUo register. This is an incorrect value

because the program should use the value “4000” for the second operand and

not “123.” The ID stage will fetch the current values of R5 and R1 into the A
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ID EX MEM WR Regs

IR NOP IR (instr 3) IR (instr 2) IR (instr 1) R0 0
PC1 R1 123

A 8 ALUo 124 ALUo1 20 R2 11
B 123 DMAR 124 R3 9

IR1 R4 1
D SMDR LMDR 4000 R5 8

R6 2
R7 0

Table 4.12: Pipeline After 4 CPU Cycles

and B registers, respectively. Again, an incorrect value for R1 will be fetched.

Table 4.12 shows the pipeline registers after the fourth cycle has completed.

Now that the memory operation has completed, the new value for R1 is

available for the first time. As we have done in the ALU data hazard, we

could implement a forwarding technique that would allow the value in the

LMDR to be selected as one of the operands for the ALU. However, if you

look at Table 4.12 carefully, you will see that the second instruction (instr 2)

has already passed through the ALU in the EX stage and been placed in the

MEM stage. In other words, it is too late to repeat this instruction. Thus,

the read after write hazard is more severe for a LD instruction than it is for

an ALU instruction. Forwarding would not be able to correct the outcome

of “instr 2,” and as such, this data hazard has a different solution, which we
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will present in Section 4.3.1.

4.3.1 Solving the Data Hazard in LD Instructions

The main problem in a LD instruction is the fact that the data is fetched

from memory. The operand is simply not available within the CPU, and

instruction “instr 2” cannot proceed. For this reason, the logical solution

to the problem would be to prevent “instr 2” from proceeding, which can

be accomplished with stalling. We must stall the EX stage whenever the

following are true:

• The MEM stage contains a LD instruction

• The EX stage contains an ALU, LD, or ST instruction

• One of the source registers of the instruction in the EX stage is the
destination register of the LD instruction in the MEM stage

If we look at the example in the previous section and specifically at Table

4.11, which is a snapshot of the CPU after the third cycle, then we can see

how stalling the EX stage will solve part of the data hazard problem. At

that point in time, the MEM stage contains the LD instruction with R1 as

the destination register, and the EX stage contains an ALU instruction that

uses R1 as one of the source registers. All three conditions for stalling the EX
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ID EX MEM WR Regs

IR (instr 3) IR (instr 2) IR NOP IR (instr 1) R0 0
PC1 R1 123

A 1 ALUo 20 ALUo1 R2 11
B 123 DMAR 20 R3 9

IR1 R4 1
D SMDR LMDR 4000 R5 8

R6 2
R7 0

Table 4.13: Pipeline After 4 CPU Cycles (with stall)

stage are met. Therefore, with the new stalling mechanism in place, Table

4.13 shows the state of the CPU after the fourth CPU cycle.

Notice in Table 4.13 that the instruction “instr 2” is still in the EX

stage. Therefore, this instruction can be executed with the correct value by

forwarding the value of the LMDR to the input of the ALU. As with the

solution for the ALU data hazard, we modify the circuits that select the

operands for the ALU. Now, before checking the tag1 and tag2 registers,

the multiplexors will first check if the instruction in the WR stage is a LD

instruction with a destination register other than R0. If that is the case, and

the destination register of the LD instruction is one of the source registers for

the instruction in the EX stage, then the value in the LMDR will be selected

as an input for the ALU. Otherwise, the circuits will function exactly as they
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did before.

4.4 Control Hazard in Branch Instructions

Unlike a data hazard, a control hazard does not execute instructions

using invalid data. Instead, a control hazard is an unusual behavior in the

timing of the execution of a branch instruction. In the Basic Pipelined CPU,

the branch decision is made when the branch instruction is in the MEM

stage. As a result, the branch has a delay of three instructions. In other

words, three instructions following the branch instruction in memory will

enter the pipeline before the processor executes the branch. If the branch

is taken, then logically those three instructions should not be executed, but

there is no mechanism to remove instructions from the pipeline. In the

Basic Pipelined CPU, the only safe way around this control hazard is to

insert three NOP instructions after every branch instruction. However, these

useless instructions reduce the efficiency of a pipelined CPU. A delay of three

clock cycles is considered unacceptable, so additional hardware is included in

the pipeline to reduce the branch delay to one clock cycle. This improvement

is explained in Section 4.4.1.
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4.4.1 Reducing the Branch Delay

In order to reduce the branch delay, we must first determine which operands

are needed to execute a branch instruction (both conditional and uncondi-

tional). The following values are necessary:

• Address of the branch instruction (PC1)

• Value of the Offset (IR1)

• Branch condition type

• Value of the N and Z flags

Next, we must identify the earliest time that these values are available

in the CPU. The address of the branch instruction is available immediately

from the PC-tmp register in the IF stage. The value of the offset and the

condition type are both encoded into the branch instruction, so these values

are also available once the instruction is fetched into the instruction register

in the ID stage. Also when the branch instruction is in the ID stage, an ALU

(compare) instruction in the EX stage can update the N and Z flags in the

first half of the CPU cycle, making these values available to the ID stage

during the second half of the cycle. Therefore, the earliest stage in which a

branch can be executed is the ID stage.
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To improve the branch delay, we add a special-purpose addition circuit in

the ID stage that sums the value of the PC-tmp register and relative address

from the IR register in the ID stage. In the Advanced Pipelined CPU, this

sum is forwarded to the branchAddress input of the IF stage. Additionally,

the ID stage will output the branchCondition bits and the branch signal for

the branch decision circuit that computes the final branch decision signal for

the IF stage. The branch decision signal is set if the branch conditions have

been met and reset otherwise. Now that the branch is being executed two

stages earlier, in the ID stage instead of the MEM stage, the branch delay

is reduced from three clock cycles to just one. As a result, only one NOP

instruction will need to be placed after branch instructions.

4.5 The Advanced Pipelined CPU in Logic-

Sim

Constructing the Advanced Pipeline is accomplished by expanding a small

number of components in the Basic Pipeline and adding some forwarding

registers. Most of the program modules remain the same. We only modify the

macros that require design changes (ID, MEM, Stall EX, ALU1 and ALU2)

and create new macros for the forwarding and tag registers. Furthermore,
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Figure 4.2: The Advanced Pipelined CPU in Logic-Sim

we only need to test the macros that were updated or added.

The GUI of the Advanced Pipelined CPU (Figure 4.2) is very similar to

that of the Basic Pipeline. In row 1, we have added output probes for the

two sets of forwarding and tag registers. Within the tag registers, the first

bit indicates if the tag is valid, while the last three bits represent a register

number. This represents the changes in the Advanced Pipeline that fix the

read after write data hazard in ALU instructions.

In order to represent data forwarded from the LMDR to solve the read
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after write data hazard in LD instructions, we have added a four-bit output

named WBD (write back destination) in row 2. This output has the same

form as a tag register, except that it uses the register number that is encoded

as the destination register for the instruction in the WR stage. The WBD

valid bit is only set when this instruction is a LD instruction that outputs

to any register other than R0. Lastly, to show the reduction in the branch

delay, the branchDecision output in row 2 has been moved above the ID

stage (it was located above the MEM stage in the Logic-Sim program for the

Basic Pipeline).
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Chapter 5

Concluding Remarks

In this thesis, we have presented the design of two versions of a pipelined

CPU. The Basic Pipeline is a simple, five-stage processor that correctly pro-

cesses instructions, but it can produce undesirable results in certain situa-

tions. In the Advanced Pipeline, we identified a number of problem scenarios

and implemented mechanisms to correct them. While we have fixed some of

the data and control hazards, the Advanced Pipeline does not address every

type of hazard that exists. A future version of the CPU could attempt to

address other data hazards that exist due to the pipeline design.

As is the case in actual computer engineering, increases in speed and

performance usually come at the cost of more complex circuits (and higher

costs). Both of the processors that we have presented have five stages in the

pipeline. Another of version of the pipelined CPU, with the same functional-

ity as the ones in this thesis, could probably be constructed using only three
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stages. However, the complexity of the additional hardware that would be

needed to accomplish this is not worth making the change.

In evaluating this project, it is very important not to lose sight of the fact

that the design of these two versions of the pipelined CPU are being used

for instructional purposes. Moreover, the course in which this material is

taught is an undergraduate course that is meant to give students only a ba-

sic understanding of computer architecture. The Basic Pipeline exists in the

curriculum because it is straightforward and it demonstrates the data and

control hazards. The CS355 course also introduces the Advanced Pipeline

simply to demonstrate how some of these hazards can be fixed. It is by no

means intended to be a perfect processor that has any commercial value.

When teaching a subject, simpler is often times better. In this case, if there

were fewer than five stages in the pipeline, too many things would be hap-

pening within any one stage, and it would be very difficult for students to

follow.

Since Logic-Sim programs for the pipelined CPU have not existed in the

past, professors had to lecture on the material using a series of figures to

demonstrate how the instructions advanced through the different stages in

the pipeline. A different set of figures would be needed to explain the func-
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tionality of each type of instruction and to demonstrate the problems with

each type of data and control hazard. With the simulated versions of the

pipelined CPU, professors can easily explain all of this material in one, famil-

iar location. By simply changing the instructions that are stored in memory,

different programs can be run on the same simulator. Additionally, the

Logic-Sim programs allow students to have a hands-on experience with the

pipelined CPU. They can control the clock at their own pace and reset a pro-

gram as many times as they would like until they have a clear understanding

of how the processor works. Hopefully when our simulated versions of the

Basic and Advanced Pipelines are introduced into the CS355 course, they

will receive positive feedback from both professors and students, as well as

constructive criticism to help us improve the design and layout of the GUI.
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