Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Organometallic Enantiomeric Scaffolds in the Synthesis of Alkaloids:
I. Homo-S $\mathbf{N}^{2}{ }^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-Isofebrifugine
II. Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes

By
Wenyong Chen
Doctor of Philosophy
Chemistry

Lanny S. Liebeskind, Ph.D.
Advisor

Dennis C. Liotta, Ph.D.
Committee Member

Simon B. Blakey, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Organometallic Enantiomeric Scaffolds in the Synthesis of

 Alkaloids:I. Homo-S $\mathbf{N}_{\mathbf{N}}{ }^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-Isofebrifugine
II. Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes

By

Wenyong Chen
M.S., Soochow University, 2002
B.S., Soochow University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

An Abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Chemistry
2010

Abstract

Organometallic Enantiomeric Scaffolds in the Synthesis of Alkaloids: I. Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-Isofebrifugine II. Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes

By Wenyong Chen

Chapter One A novel homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction between neutral $\mathrm{TpMo}(\mathrm{CO})_{2}(5$-acyloxy-$\eta^{3}$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-acyloxy- η^{3}-pyridinyl) scaffolds and a variety of stabilized carbonanion nucleophiles provided a powerful methodology to construct C-C bonds stereoselectively. Moreover, it proceeded through an interesting anionic mechanism and preliminary mechanistic study was reported. Based on the Mo complex produced in the reaction, a mechanistically related annulative demetallation was developed to furnish the framework of 2,7-dioxabicyclo[4.3.0]nonane and 2-aza-7oxabicyclo[4.3.0]nonane in good to excellent yields. In order to demonstrate the power of this new reaction sequence, $(+)$-isofebrifugine was synthesized in a concise route by employing the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like-annulative demetallation sequence.

Chapter Two Neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-trifluoroacetate- η^{3}-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}(5-$ trifluoroacetate- η^{3}-pyridinyl) scaffolds underwent an uncatalyzed Friedel-Crafts-like reaction with a variety of electron-rich arenes and olefins to form substitution products in high yields. A preliminary study of the mechanism showed that $\mathrm{TpMo}(\mathrm{CO})_{2}(5-$ trifluoroacetate- η^{3}-pyranyl) in DMSO rapidly rearranged to $\mathrm{TpMo}(\mathrm{CO})_{2}(2-$ trifluoroacetate- η^{3}-pyranyl) complex first, which then reacted with indole derivatives. By contrast, $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-trifluoroacetate- η^{3}-pyranyl) in acetonitrile or chloroform reacted with electron-rich arenes and olefins without the initial rearrangement. And, silyl enol ethers and allylsilanes could only react with the unrearranged $\mathrm{TpMo}(\mathrm{CO})_{2}(5-$ trifluoroacetate- η^{3}-pyranyl) complex. Further annulative demetallation proved to be successful with a series of substrates to form oxygen heterocycles and carbocycles in 5 or 6 membered rings in a mild condition. This methodology has been successfully utilized to access the tetracyclic structure of vindoline in a model system.

Chapter Three A short, practical route to a versatile 5-oxo-4-methyl-($\eta-2,3,4$)allylmolybdenum pyranyl and 5-oxo-4-methyl-($\eta-2,3,4$)-allylmolybdenum pyridinyl scaffold has been developed using the Achmatowicz rearrangement. Further transformation through reduction and dehydration enabled a rapid access to $\Delta^{5}-4$-methyl(η-2,3,4)-allylmolybdenum pyridinyl scaffold.

Organometallic Enantiomeric Scaffolds in the Synthesis of Alkaloids:
 I. Homo-S $\mathbf{N}^{2} \mathbf{'}^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-Isofebrifugine
 II. Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes

By

Wenyong Chen
M.S., Soochow University, 2002
B.S., Soochow University, 1999

Advisor: Lanny S. Liebeskind, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Chemistry
2010

Dedicated to my family
for their love and support.

Acknowledgements

I would like to thank my advisor Dr. Lanny S. Liebeskind for his continuous support, helpful guidance, and encouragement over the years. I very much appreciate his encouragement to explore my own ideas, while offering me critical opinions to reach the conclusions. And, I am indebted to him for teaching me that chemists should always try to explore new chemistry.

Special thanks must also be paid to my committee members Dr. Dennis Liotta and Dr. Simon Blakey. Their helpful suggestions and valuable comments about my project and my research proposal benefitted me so much. I also want to thank Dr. Frank McDonald for being my research proposal committee member and for his helpful suggestions and advice on my research proposal. And I want to thank all the above faculty members and Dr. Albert Padwa for their teaching in the classroom. The knowledge I learned from their class is vital for the success of my research work.

The staff at Emory is also very helpful for my research work. Drs Wu and Wang in NMR center were always around, and always willing to help. I am also indebted to Dr Fred Strobel and Dr. Kenneth Hardcastle for their very efficient assistance with the acquisition of mass spec and crystallography data. Steve, Patty, and Sarah in stockroom were always kind and helpful in ordering chemicals.

I also would like to thank all present and previous labmates, especially Harry, Hao Yang, Songbai, Bo, Reese, Tom, Hao Li, Zhihui, Ethel Garnier, Donghyun, Edo,

Wenting, John, Matthew Lindale, Biruk, Kassinath, and Angus. It is a great pleasure to work with you all. And I also want to thank my friends here for their long time friendship, especially Yi, Jie and Ye for the joyful memory.

Lastly, I would like to acknowledge my family, Mom, Dad, Aidi, and little George. Without your love and support over the years, this journey would have been impossible.

Contents

Chapter One The Development of Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-Isofebrifugine 1
Background 2
Palladium catalyzed allylic substitution 2
Molybdenum catalyzed asymmetric allylic substitution 5
Iridium catalyzed asymmetric allylic substitution. 10
Introduction 16
Results and Discussion 17
Initial studies and project design 17
Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}-$ like reaction 21
Mechanistic consideration 31
An important side reation: ring opening 35
Demetallation 37
Total synthesis of (+)-isofebrifugine 44
Conclusion 54
References 55
Experimental Section 56
Chapter Two Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes. A synthetic Tactic for the Enantioselective Construction of Indole Alkaloids 102
Background 103
Stoichiometric transition metal mediated electrophilic reactions 103
Cobalt Complex 103
Iron Complex 105
Molybdenum complex 108
Introduction 111
Results and discussion 113
Study in the typical Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction condition 113
Preparation of new substrate and discovery of an uncatalyed Friedel-Crafts reaction115
Mechanistic consideration 117
Uncatalyed Friedel-Crafts reaction in pyridinyl molybdenum scaffold 121
Studies on various indole derivatives 125
Uncatalyzed Friedel-Crafts reaction with electron-rich olefins 130
Demetallation 134
Application to the synthesis of natural products 138
Conclusion 142
References 143
Experimental Section. 145
Chapter Three Synthesis of 4-Methyl Substituted Pyranyl and Pyridinyl Scaffold 193
Background 194
Introduction 196
Results and discussion 197
Synthesis of 4-methoxy scaffold 3.2 197
The first route to scaffold 3.1 198
Synthesis of the oxygen scaffold 3.14 200
Synthesis of the scaffold 3.17 202
Synthesis of the scaffold 3.1 203
Study on the [5+2] reaction of scaffold 3.1 206
Conclusion 207
References 208
Experimental Section. 209

List of Figures

Figure 1 General reaction pathway for Pd catalyzed allylic substitution 2
Figure 2 Structure of an intermediate from Mo catalyzed allylic substitution 7
Figure 3 The cyclometalated reactive species in Ir catalyzed allylic substitution 12
Figure 4 5-oxo pyranyl and pyridinyl scaffold 17
Figure 5 Two possibly useful substrates 19
Figure 6 ORTEP view of methyl diethylmalonate substitution product 1.54 d 34
Figure 7 Isofebrifugin: antimalarial agent isolated from Chinese plant Dichroa febrifuga44
Figure 8 Synthetic applications of iron diene complex 105
Figure 9 Molybdenum mediated organic synthesis 109
Figure 10 Interesting indole alkaloids 112
Figure 11 X -ray structure of the demetallation product 2.79 137
Figure 12 Transition state for the demetallation of the complex 2.65 b 138
Figure 13 Retrosynthesis of vindoline 139
Figure 14 Proposed transition state of annulative demetallation 141
Figure 15 A few typical tropane alkaloids 194
Figure 16 Synthetic methods for tropane alkaloids 195

List of Schemes

Scheme 1 Pd catalyzed asymmetric allylic substitution with simple ketone enolates as nucleophiles 3
Scheme 2 Pd catalyzed Tsuji allylation 4
Scheme 3 Pd catalyzed synthesis of chiral tertiary hydroxyaldehyde 4
Scheme 4 Synthesis of (-)-cyanthiwigin F through double catalytic enantioselective allylic alkylation 5
Scheme 5 Comparison of nucleophilic attack on unsymmetrical substrates 6
Scheme 6 Chiral pyridylamide controlled Mo catalyzed allylic substitution 6
Scheme 7 Proposed mechanism for Mo catalyzed allylic substitution 8
Scheme 8 Further details on the substitution step: tricarbonyl intermediate 9
Scheme 9 Total synthesis of (-)-trans-tetrahydrocannabinol employing Mo catalyzed allylic substitution 10
Scheme 10 The first enantioselective Ir catalyzed allylic substitution 11
Scheme 11 Chiral phophoramidite ligand controlled Ir catalyzed allylic amination 12
Scheme 12 Synthesis of the Ir reactive species 1.29 13
Scheme 13 Catalytic cycle of Ir catalyzed allylic substitution 14
Scheme 14 Ir catalyzed reaction of enamine and allylic carbonate 14
Scheme 15 N -allylation of indole with electronwithdrawing groups 15
Scheme 16 Ir catalyzed intramolecular C-allylation of indole derivatives 16
Scheme 17 1,5-Michael-like reaction 16
Scheme 18 1,5-Michael-like reaction with oxygen nucleophiles 17
Scheme 19 An interesting substitution with $\mathrm{KO}^{t} \mathrm{Bu}$ 19
Scheme 20 Working hypothesis for the racemization of scaffold in the presence of alkoxide 20
Scheme 21 Nucleophilic attack on Molybdenum stabilized carbocation 26
Scheme 22 Racemization test on oxygen scaffold. 27
Scheme 23 Two possible pathways leading to the substitution product 32
Scheme 24 Retro-Michael-Michael pathway scrambling the stereochemistry 33
Scheme 25 Benzylmalononitrile in homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction 35
Scheme 26 Hypothesized decompostion pathway for malononitrile substituted product 35
Scheme 27 Control experiments with malonate substitution product 36
Scheme 28 Ring opening leading to an isolable open chain product 37
Scheme 29 Iododemetallation of Mo complex 1.54f. 37
Scheme 30 Working hypothesis of the formation of elimination product 1.53 38
Scheme 31 Unexpected formation of demetallation product 39
Scheme 32 Frustrating results with CuCl_{2} 40
Scheme 33 Demetallation with a variety of substrates 42
Scheme 34 Demetallation with alkoxide as a nucleophile. 42
Scheme 35 Three possible mechanism pathways for the demetallation 43
Scheme 36 The first retrosynthetic plan for isofebrifugine 45
Scheme 37 Syntheis of starting material 1.74 45
Scheme 38 Homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reaction with 1.74 46
Scheme 39 Modified retrosynthetic plan for isofebrifugine 46
Scheme 40 Hydrolysis efforts to 1.80 47
Scheme 41 An unexpected aromatization 47
Scheme 42 Sulfoxide used in Mislow-Evans rearrangement 48
Scheme 43 Phenylsulfonyl acetone as a nucleophile in a one pot reaction 48
Scheme 44 Hydrogenation of 1.84 50
Scheme 45 Protection with the bulky trityl group 50
Scheme 46 Bromination of 1.86 51
Scheme 47 Global deprotection 53
Scheme 48 Total synthesis of (+)-isofebrifugine 54
Scheme 49 Dicobalt compounds induced [5+2] reaction 104
Scheme 50 Intramolecular Nicholas reaction in the synthesis of NSC 51046 104
Scheme 51 Iron diene complex in the synthesis of carbazole 106
Scheme 52 Catalytic photoinduced prepartion of high enantiopurity of iron diene complex 106
Scheme 53 Desymmetrization of iron diene complex 107
Scheme 54 Total synthesis of oseltamivir 108
Scheme 55 Sequential functionalization of molybdenum scaffold 110
Scheme 56 [5+2] cycloaddition of molybdenum scaffold 111
Scheme 57 Indole as a nucleophile in a typical Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like condition 113
Scheme 58 Preparation of 5-trifluoroacetate substituted pyranyl scaffold 116
Scheme 59 Complex 2.36 reacted with indole in basic and neutral condition 117
Scheme 60 Rearrangement of complex 2.36 in d^{6}-DMSO 118
Scheme 61 Proposed mechanism for the uncatalyzed Friedel-Crafts reaction 118
Scheme 62 Uncatalyzed Friedel-Crafts reaction between indole and 2.36 in chloroform 119
Scheme 63 Control experiments with methyl and Cbz protected indole 120
Scheme 64 Control experiments with poor leaving group. 121
Scheme 65 Uncatalyzed Friedel-Crafts reaction with pyridinyl scaffold 122
Scheme 66 Unexpected failure with formyl protected pyridinyl scaffold 122
Scheme 67 Investigation on 5-substituted scaffold 124
Scheme 68 Successful Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction of 2.54 124
Scheme 69 Uncatalyzed Friedel-Crafts reaction between pyranyl scaffold and differently substituted indole 126
Scheme 70 Preparation of 2-nitroethyl indole 127
Scheme 71 Preparation of phenylsulfonyl acetate methylene indole 2.64 127
Scheme 72 Uncatalyed Friedel-Crafts reaction with 2-substituted indole derivatives 128
Scheme 73 Friedel-Crafts reaction with substituted aniline 130
Scheme 74 Uncatalyzed Friedel-Crafts reaction with electron-rich olefins 131
Scheme 75 NMR experiments on the reaction of 2.36 and 2.38 132
Scheme 76 Mechanism for Friedel-Crafts reaction in DMSO and $\mathrm{ACN}\left(\mathrm{CDCl}_{3}\right)$ 133
Scheme 77 Uncatalyzed F-C reaction with silyl enol ether and allyl silane derivatives 134
Scheme 78 Oxidative demetallation with PDC 135
Scheme 79 Annulative demetallation of indole alcohol 135
Scheme 80 Annulative demetallation with stabilized carbonanion to form a five membered ring. 136
Scheme 81 Annulative demetallation with stabilized carbonanion to form a six membered ring 137
Scheme 82 Model study on the synthesis of vindoline. 140
Scheme 83 Proposed synthesis of isofebrifugine analogue 142
Scheme 84 Construction of tropanes via [5+2] or Mukaiyama aldol 196
Scheme 85 [5+2] cycloaddition of the scaffolds 3.1 and 3.2 196
Scheme 86 Synthesis of 4-methoxy substituted scaffold 3.2 197
Scheme 87 Synthesis of 4-methyl substituted scaffold 3.1 198
Scheme 88 Examination of the effect of the 4-methyl 200
Scheme 89 Retrosynthesis of the scaffold 3.1 200
Scheme 90 Synthesis of 3-methyl substituted furfuryl alcohol 3.12 201
Scheme 91 Synthesis of oxygen scaffold 3.14 201
Scheme 92 Synthesis of N-Cbz-3-methyl furfuryl amine 3.19 202
Scheme 93 Synthesis of the scaffold 3.17 203
Scheme 94 Possible route of transforming 17 to 1 204
Scheme 95 Synthesis of Scaffold 3.1 205

List of Tables

Table 1. Study on the intermolecular 1,5-Michael-like reaction 18
Table 2 Nucleophilic addition to the complex 1.42 and 1.43 22
Table 3 The optimization of acylation of the alcohol 23
Table 4 Acylation of various substituted scaffold 23
Table 5 Different nucleophiles studied in the reaction with 1.47 24
Table 6 Reaction of 1.47 with a variety of stabilized carbonanions 28
Table 7 The effect of substitution in pyranyl scaffolds 29
Table 8 Substitution effect in poor nucleophiles and pyridinyl scaffolds examples 30
Table 9 The effect of leaving group. 31
Table 10 Discovery of annulative demetallation 39
Table 11 Screening of Bases and Oxidants. 41
Table 12 Optimization of desulfonylation 49
Table 13 TIPS protection 52
Table 14 Bromination and heterocycle introduction on 1.89 52
Table 15 Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like condition studies with indole as a nucleophile 114
Table 16 Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like condition studies with 2-methylindole as an nucleophile. 115
Table 17 Racemization test in different reaction conditions 123
Table 18 Friedel-Crafts reaction with 2-methyl furan 129
Table 19 Crystal data and structure refinement for 2.79. 180
Table 20 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters$\left(\AA^{2} \times 10^{3}\right)$ for 2.79. U(eq) is defined as one third of the trace of the orthogonalizedUij tensor.182
Table 21 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2.79 183
Table 22 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2.79. The anisotropicdisplacement factor exponent takes the form: -2 ${ }^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*}\right.$$\left.\mathrm{U}^{12}\right]$187
Table 23 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10\right.$
3) for 2.79 188
Table 24 Torsion angles [${ }^{\circ}$] for 2.79 190
Table 25 Dehydrogenation with different reaction conditions ${ }^{a}$ 199
Table 26 Different reducing reagent for the reduction of 3.17^{a} 205
Table 27 Screening of the different conditions for elimination 206
Table 28 Study on the [5+2] cycloaddition of scaffold 3.1 207

List of Abbreviations

[α]	specific rotation
Ac	acetyl
anal	analysis
Aq	aqueous
Ar	argon
Bn	benzyl
br	broad
Bu	butyl
${ }^{\circ} \mathrm{C}$	degree Celsius
calcd	calculated
Cbz	benzyloxycarbonyl
cod	1,5-cyclooctadiene
Cy	cyclohexyl
δ	chemical shift(s)
d	doublet
DMAP	dimethyl amino pyridine
Decomp	decomposed
DMSO	dimethyl sulfoxide
DMS	dimethyl sulfide
E	entgegen
ee	enantiomeric excess
Et	ethyl
FAB	fast atom bombardment
FT	Fourier transform
g	gram(s)
h	hour(s)
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	hertz
IR	Infrared Spectroscopy
J	coupling constant
LA	Lewis acid
LDA	lithium diisopropylamide
mol	mole
m	multiplet
m-CPBA	meta-chloroperbenzoic acid
Me	methyl
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	milliliter(s)
$\mu \mathrm{L}$	microliter(s)
mmol	millimole(s)
mp	melting point
MVK	methyl vinyl ketone
nbd	norbornadiene
NMR	nuclear magnetic resonance

NOE	nuclear Overhauser effect
nm	nanometer(s)
PG	protecting group
Ph	phenyl
ppm	parts per million
pr	propyl
py	pyridine
q	quartet
R	retention factor
r.t.	room temperature
s	singlet
SAR	structure activity relationship
t	triplet
t	tertiary
TBME	tert-butyl methyl ether
TBS	tert-butyl dimethyl silyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
Tp	hydridotris(1-pyrazolyl)borate
Tr	triphenylcarbenium
UV	ultraviolet
Z	zusammen

Chapter One

The Development of Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like Reaction/Annulative Demetallation and the Application in the Synthesis of (+)-

Isofebrifugine

Background

Modern organic synthesis is characterized by high chemo-, regio-, and stereoselectivity. In order to achieve these selectivities, transition metal mediated reactions have been widely applied in synthesis. ${ }^{1}$ Among these reactions, asymmetric allylic substitution has been investigated extensively due to its versatility in bond formation. ${ }^{2}$ A variety of transition metals, including palladium, molybdenum, iridium, rhodium, tungsten, nickel, copper, and platinum, have been employed in these reactions. Herein are reviewed the latest developments and novel applications in the synthesis of natural products.

Palladium catalyzed allylic substitution

Introduced by Tsuji in 1965, palladium catalyzed allylic substitution has been the most extensively studied transition metal catalyzed allylic substitution (Figure 1). ${ }^{3}$ Its early development and applications in the total synthesis have been covered by two excellent reviews. ${ }^{4}$ Therefore, only the most important developments and applications in recent years will be discussed here.

Figure 1. General reaction pathway for Pd catalyzed allylic substitution

One of the most important developments in this area was to control the stereochemistry of the product ketone. Two ways were developed to generate enolates. The first was to preform an enolate by deprotonating a ketone with a strong base. In 1997, Trost reported that when simple ketone enolates were preformed with 2 equiv

LDA, they could react with an allylpalladium complex to yield alkylation product in high ee (Scheme 1). ${ }^{5}$ For example, the tetralone $\mathbf{1 . 1}$ was deprotonated and reacted with allyl acetate $\mathbf{1 . 2}$ in the presence of the ligand $\mathbf{1 . 3}$ to furnished allylation product $\mathbf{1 . 4}$ in 88% ee. The amount of the base had such a significant effect on the outcome of the reaction that the author proposed the excess base caused a change of the aggregation state of the formed enolates.

Scheme 1. Pd catalyzed asymmetric allylic substitution with simple ketone enolates as nucleophiles

The second method to generate the enolate utilized a decarboxylation to generate the enolate in situ. This reaction, known as Tsuji allylation, was made asymmetric by Stoltz (Scheme 1). ${ }^{6}$ The allyl carboxylate $\mathbf{1 . 5}$ was decarboxylated by Pd and reorganized to a chiral ketone in the presence of ligand t-Bu-Phox 1.6. In this reaction, no base was needed so that the substrate scope was much broader than the previous method.

Scheme 2. Pd catalyzed Tsuji allylation

Recently, Trost published a new development to expand the methodology to synthesize chiral tertiary hydroxyaldehydes (Scheme 3). ${ }^{7}$ The substrate $\mathbf{1 . 8}$ proceeded through the similar Tsuji allylation mechanism to afford tertiary hydroxyaldehyde $\mathbf{1 . 1 0}$ in 93% yield with 92% ee. In this reaction, the ligand 1.9 was a modification of Trost's classical ligand 1.3. ${ }^{4 b}$

Scheme 3. Pd catalyzed synthesis of chiral tertiary hydroxyaldehyde

5.5\%
1.9

Considering that the Tsuji allylation provided a methodology to access enantiopure compounds containing quaternary chiral centers, Stoltz applied it in an elegant synthesis of (-)-cyanthiwigin F (Scheme 4). ${ }^{8}$ The key step of this synthesis was
the rapid construction of the key intermediate $\mathbf{1 . 1 2 a}$ through a double catalytic enantioselective allylic alkylation. In this reaction, the $1: 1$ racemic and meso mixtures 1.11 were converted to high enantiopure products through a one-step Pd catalyzed alkylation in 4.4:1 dr. This result implied that during the course of the reaction the ligand 1.6 controlled the facial selectivity predominantly.

Scheme 4. Synthesis of (-)-cyanthiwigin F through double catalytic enantioselective allylic alkylation

Molybdenum catalyzed asymmetric allylic substitution

Compared to Pd catalyzed asymmetric allylic substitution, Mo catalyzed allylic substitution is much less developed. ${ }^{9}$ However, it can be a helpful complement to Pd catalyzed allylic substitution because it usually yields a different regioselectivity in
unsymmetrical substrates (Scheme 5). Pd catalyzed reactions usually afford linear substituted products; on the contrary, Mo catalyzed reactions often yield branched substituted products.

Scheme 5. Comparison of nucleophilic attack on unsymmetrical substrates

In this area, Trost developed a new chiral pyridylamide ligand which induced excellent enantioselectivity in this reaction (Scheme 6). ${ }^{10}$ Phenyl substituted unsymmetrical allylic carbonate $\mathbf{1 . 1 4}$ reacted with sodium malonate in the presence of chiral ligand $\mathbf{1 . 1 5}$ to yield the branched substituted product in 99% ee with excellent regioselectivity.

Scheme 6. Chiral pyridylamide controlled Mo catalyzed allylic substitution

Further mechanistic study disclosed more interesting details. ${ }^{11}$ A crystal of the intermediate was achieved with an appropriate ligand (Figure 2). Complex 1.17
contained an allyl part, two carbonyl groups, and N,N,O-coordination, showing an octahedral structure.

Figure 2 Structure of an intermediate from Mo catalyzed allylic substitution

However, this isolated intermediate $\mathbf{1 . 1 7}$ failed to react with sodium malonate in solution. Only in the presence of CO or excess $\mathrm{Mo}(\mathrm{CO})_{6}$ could it be attacked by sodium malonate to afford the substitution product. Based on this unexpected observation, the following mechanism was proposed (Scheme 7). First, the complex 1.18 reacts with allyl carbonate $\mathbf{1 . 1 4}$ to form the intermediate $\mathbf{1 . 1 7}$. Then it reacts with sodium malonate in the presence of 2 equiv CO to yield the substitution product $\mathbf{1 . 1 6}$ and to regenerate the Mo complex $\mathbf{1 . 1 8}$, which is the resting state of the catalyst.

Scheme 7. Proposed mechanism for Mo catalyzed allylic substitution

A recent study on this mechanism disclosed that the reaction proceeded through a retention-retention pathway, which dramatically contrasted with the Pd catalyzed allylic substitution pathway, known as inversion-inversion pathway(Scheme 8). ${ }^{12}$ Additionally, although the tricarbonyl complex $\mathbf{1 . 1 9}$ was not observed, ${ }^{13} \mathrm{CO}$ rapidly exchanged into the complex $\mathbf{1 . 1 7}$ when it was exposed in a ${ }^{13} \mathrm{CO}$ atmosphere. Based on the above observations, the following detailed mechanism was proposed. The complex $\mathbf{1 . 1 7}$ equilibrates to the tricarbonyl complex $\mathbf{1 . 1 9}$ quickly, though the equilibrium strongly favored the former. Malonate anion can coordinate to molybdenum to form the seven coordinated intermediate $\mathbf{1 . 2 0}$, which quickly reductively eliminates to the product $\mathbf{1 . 1 6}$
and the resting state of catalyst $\mathbf{1 . 1 8}$. Nevertheless, it is worth pointing out the putative intermediate 1.20 was a 20 -electron complex.

Scheme 8 Further details on the substitution step: tricarbonyl intermediate

Compared with the application of Pd catalyzed allylic substitution, Mo catalyzed substitution is still rarely used in the synthesis of natural products. One recent example comes from the Trost group (Scheme 9). ${ }^{13}$ The synthesis of (-)-transtetrahydrocannabinol started from allylic carbonate $\mathbf{1 . 2 1}$, which was converted into enantiopure $\mathbf{1 . 2 2}$ using Mo catalyzed asymmetric allylic substitution with malonate as the nucleophile. The substitution proceeded in very good yield and enantioselectivity. Further decarboxylation, followed by alkylation and intramolecular metathesis, yielded the trans substituted six member ring compound 1.23. After several steps of functionalization, (-)-trans-tetrahydrocannabinol $\mathbf{1 . 2 4}$ was obtained in high enantiopurity.

Scheme 9. Total synthesis of (-)-trans-tetrahydrocannabinol employing Mo catalyzed

 allylic substitution

Iridium catalyzed asymmetric allylic substitution

In the last decade, there has been much progress in iridium catalyzed asymmetric allylic substitution. Similar to molybdenum catalyzed allylic substitution, it tends to yield branched products. ${ }^{14}$ Moreover, various nucleophiles, such as silyl enol ether, enamine, alkoxide, and sulfonamide, can be used in iridium catalyzed allylic substitution so that it is attracting more and more attention.

The first enantioselective Ir catalyzed allylic substitution was reported by Helmchen in 1997 (Scheme 10). ${ }^{15}$ In this reaction, stabilized carbanions reacted with allylic acetate $\mathbf{1 . 2 5}$ to form the branched substitution product 1.27 in 98% yield and 95% ee. A chiral phosphineoxazoline ligand $\mathbf{1 . 2 6}$ was used to control the enantioselectivity for this transformation.

Scheme 10. The first enantioselective Ir catalyzed allylic substitution

1.26

Later, Hartwig reported an Ir catalyzed amination employing chiral phophoramidite ligand 1.28, which proved to be a more general ligand (Scheme 11). ${ }^{16}$ For example, benzylamine reacted with cinnamyl carbonate to form the branched amination product in 84% yield and excellent enantioselectivity. At a similar time, Helmchen reported the enantiomer of the ligand $\mathbf{1 . 2 8}$ could also be used in the Ir catalyzed allylic alkylation with malonate as a nucleophile to yield highly enantiopure products in good yields and high regioselectivity. ${ }^{17}$ Further study in this field disclosed other nucleophiles, such as phenoxides, ${ }^{18}$ alkoxides, ${ }^{19}$ and silyl enol ethers, ${ }^{20}$ could also yield the allylic substitution products in good yields and enantioselectivities.

Scheme 11. Chiral phophoramidite ligand controlled Ir catalyzed allylic amination

Interestingly, the mechanistic study uncovered an unexpected reactive species (Figure 3). ${ }^{21}$ The real reactive catalyst was not a simple ligand binding iridium species; instead, it was the cyclometalated species $\mathbf{1 . 2 9}$.

Figure 3. The cyclometalated reactive species in Ir catalyzed allylic substitution

1.29

The complex 1.29 could be prepared by treating the mixtures of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and the ligand 1.28 with pyrrolidine (Scheme 12). When mixing $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and the ligand
1.28, first a new square complex 1.30 would form. Deprotonation with pyrrolidine led to the formation of the reactive species $\mathbf{1 . 2 9}$, which demonstrated even higher reactivity than the original catalyst.

Scheme 12. Synthesis of the Ir reactive species 1.29

Further mechanistic study disclosed more details about the reaction pathway (Scheme 13). ${ }^{22}$ The complex $\mathbf{1 . 3 1}$ was shown to be the resting state of the catalyst, which is in equilibrium with the allylic iridium complex 1.33. The olefin complex $\mathbf{1 . 3 1}$ releases amine substituted product through ligand dissociation to $\mathbf{1 . 3 2}$, which reacts with allylic carbonate to form the complex 1.33. Then this complex reacts irreversibly with the amine to yield the complex 1.31 and completes the catalytic cycle.

Scheme 13. Catalytic cycle of Ir catalyzed allylic substitution

Based on these mechanistic studies, the reaction scope has been expanded to less basic nucleophiles. For example, enamine was successfully used in the allylic alkylation by employing preformed catalyst $\mathbf{1 . 2 9}$ (Scheme 14). ${ }^{23}$

Scheme 14. Ir catalyzed reaction of enamine and allylic carbonate

Various indoles could also be employed in the Ir catalyzed allylic substitution. Hartwig's lab successfully achieved N-allylation products (Scheme 15). ${ }^{24}$ Indole derivatives containing an electron-withdrawing group were used as nucleophiles to give the allylic substitution product in good yields and excellent enantioselectivities and regioselectivities when the preformed catalyst $\mathbf{1 . 3 4}$ was used in the reaction.

Scheme 15. \mathbf{N}-allylation of indole with electron withdrawing groups

The C-alkylation product was reported by You in 2010 (Scheme 16). ${ }^{25}$ With the modified phosphoramidite ligand 1.36 , indole derivative $\mathbf{1 . 3 5}$ could be converted to spiroindolenine in excellent yield, diastereo- and enantioselectivity.

Scheme 16. Ir catalyzed intramolecular C-allylation of indole derivatives

Introduction

In 2006, Zhang in the Liebeskind group reported a novel intramolecular 1,5-Michael-like reaction (Scheme 17). ${ }^{26}$ An enolate attacked the allylic molybdenum moiety intramolecularly to form an intermediate, which led to a new allyl migration product after being quenched with Meerwein's salt.

Scheme 17. 1,5-Michael-like reaction

Cheng expanded the scope of this novel reaction to oxygen nucleophiles (Scheme 18). ${ }^{27}$ The scaffold 1.40 , readily available as a pure diastereomer through a simple Mukaiyama aldol reaction, could be deprotonated and quenched with Meerwein's salt to
form an interesting heterocycle. This methodology was later applied in the synthesis of a member of the brevicomin family.

Scheme 18. 1,5-Michael-like reaction with oxygen nucleophiles

Based on these precedents, a similar intermolecular reaction was envisioned to construct $\mathrm{C}-\mathrm{C}$ bonds stereoselectively. Herein are reported the results: Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction, annulative demetallation, and the application in the synthesis of (-)isofebrifugine.

Results and Discussion

Initial studies and project design

The racemic and enantiopure scaffolds $\mathbf{1 . 4 2}$ and $\mathbf{1 . 4 3}$ were prepared by employing Achmatowicz rearrangement following the reported procedure (Figure 4). ${ }^{28}$

Figure 4. 5-oxo pyranyl and pyridinyl scaffold

The pyranyl scaffold was first chosen as the substrate while different nucleophiles such as malonate and phenylacetone were used in the 1,5 Michael-like reaction condition (Table 1). Although neither nucleophiles yielded the desired product 1.44, 1.45 was obtained in low yield when phenylacetone was used in the reaction. This observation showed a competition between an intermolecular 1,5-Michael-like reaction and the enolization of the 5-ketone.

Table 1. Study on the intermolecular 1,5-Michael-like reaction

Entry	Nu	$\mathbf{1 . 4 4}$	$\mathbf{1 . 4 5}$
1	$\mathrm{NaH}, \mathrm{CH}_{2}(\mathrm{COOMe})_{2}$	0	0
2	$\mathrm{NaH}, \mathrm{PhCOCH}_{3}$	0	20%

One solution to avoid the side reaction caused by the acidic proton is blocking the α position of carbonyl group. Two possible substrates could be envisioned, and $\mathbf{1 . 4 6 a}$ was easily available through the known procedure: Mukaiyama aldol-dehydration (Figure 5). However, this solution would limit the scope of the substrates and the potential application of this methodology. Therefore, we sought a better solution to this problem.

Figure 5. Two possibly useful substrates

At that time, we noticed an unpublished result from Yin describing an interesting substitution (Scheme 19). ${ }^{29}$ In this reaction, $\mathrm{KO}^{t} \mathrm{Bu}$ was found to act as a nucleophile instead of a base. It attacked the allyl molybdenum moiety directly to displace the OAc. However, the reaction product was not very stable and the reaction was capricious. Moreover, a substantial racemization occurred during the course of the reaction. Yin also studied other nucleophiles, such as Grignard reagents and cuprates, none of which yielded the substitution products.

Scheme 19. An interesting substitution with $\mathrm{KO}^{t} \mathrm{Bu}$

Both Zhang's 1,5 Michael-like reaction and the above reaction appeared to proceed through a direct nucleophilic attack on allyl molybdenum moiety. Furthermore, the substrate 1.47 would not be easily enolizable due to the absence of the ketone carbonyl group from 1.42. Therefore, the complex 1.47 could be a promising solution to the difficulties in the intermolecular 1,5-Michael-like reaction. Although Yin's preliminary research work on carbon nucleophiles failed to give promising results, the
importance of constructing C-C bonds stereoselectively prompted us to carry out a more extensive investigation.

For the reported racemization in the t-butoxide substitution, a working hypothesis was developed (Scheme 20). In this working hypothesis, a general molybdenum heterocyclic complex 1.49a can slip from η^{3} to η^{1} and form 1.49 b , which is a 16 e complex. In this complex, an alkoxide can coordinate to form 1.49 c , in which molybdenum will be negatively charged and very electron rich. In this case the ring tends to open to form a neutral planar alkylidine carbene 1.49 d , which will racemize to $\mathbf{1 . 4 9 f}$ when the ring is closed through intramolecular nucleophilic attack. ${ }^{30}$ According to this hypothesis, the alkoxide coordination would be an essential step for the racemization. Therefore, weak coordinative carbon nucleophiles may not coordinate to Mo and will not lead to racemization

Scheme 20. Working hypothesis for the racemization of scaffold in the presence of

Homo- $S_{N} 2^{\prime}$-like reaction

First, a reliable reaction is required to access the complex $\mathbf{1 . 4 7}$ and its' analogues. Yin used Grignard addition followed by quenching with $\mathrm{Ac}_{2} \mathrm{O}$ to access 1.47 , which was not general to other Grignard reagents and difficult to purify. Consequently, a stepwise synthesis of the substrate was pursued.

For Grignard addition to the oxygen scaffold 1.42, Yin's procedure worked well. In the Grignard addition to the nitrogen scaffold 1.43, Harry Wong's procedure was followed, which required the addition of Grignard reagent at $0^{\circ} \mathrm{C}$ in toluene to minimize enolization. ${ }^{31}$ This protocol provided reproducibly good yields of addition products with recovery of unreacted starting material $\mathbf{1 . 4 3}$. An alternative protocol provided addition products by employing the cerium reagents, which provided full conversion with slightly higher yield. For the reduction of the scaffold 1.42 and $\mathbf{1 . 4 3}$, DIBAL proved to be the best choice of reducing agent, which often gave almost quantitative yield. It is worth pointing out that the quality of DIBAL was important to the success of the reaction that an old bottle of DIBAL could diminish the yield to less than 10%. All these results were summarized in Table 2.

Table 2. Nucleophilic addition to the complex 1.42 and 1.43

	$\mathrm{TpMo}(\mathrm{CO})_{2}$ $\mathrm{Z}=\mathrm{O}, \mathrm{NCbz}$ 1.42, 1.43	Nu solvent		
Entry	Z	Nu	Solvent	Product(yield\%)
1	O	MeMgBr	THF	1.50a(86)
2	O	PhMgBr	THF	1.50b(75)
3	O	DIBAL	THF	1.50c(93)
4	NCbz	DIBAL	THF	1.50d(93)
5	NCbz	MeMgBr	Toluene	1.50e(60% with 27% SM)

Next, using 1.50 a as the substrate, acylation was studied under varying conditions to achieve the best yield (Table 3). With a catalytic amount of DMAP, the acylation provided the product 1.47 in 20% yield with the starting material recovered. By changing acylating reagent, temperature, and amount of DMAP, we finally identified the best condition to fully convert the alcohol $\mathbf{1 . 5 0 a}$ to acetate substituted product $\mathbf{1 . 4 7}$. Under the optimal condition, the reaction required excess acetic anhydride, triethylamine, and DMAP at $40^{\circ} \mathrm{C}$ to achieve a full conversion of starting material to product in 86% yield.

Table 3. The optimization of acylation of the alcohol

With this optimized condition in hand, different alcohols 1.50a-e were acylated successfully to form the desired substrates. These results are summarized in the Table 4.

Table 4. Acylation of various substituted scaffold

1.50ae
1.47, 1.51b-g

Entry	SM	Z	Nu	R	Product(yield\%)
1	$\mathbf{1 . 5 0 a}$	O	Me	Me	$\mathbf{1 . 4 7}(86)$
2	$\mathbf{1 . 5 0 b}$	O	Ph	Me	$\mathbf{1 . 5 1 b}(85)$
3	$\mathbf{1 . 5 0 c}$	O	H	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{1 . 5 1 \mathrm { c }}(97)$
4	$\mathbf{1 . 5 0 c}$	O	H	Me	$\mathbf{1 . 5 1 d}(97)$
5	$\mathbf{1 . 5 0 d}$	NCbz	H	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{1 . 5 1 \mathrm { e }}(95)$
6	$\mathbf{1 . 5 0}$	NCbz	Me	Me	$\mathbf{1 . 5 1 f}(88)$
7	$\mathbf{1 . 5 0 d}$	NCbz	H	Me	$\mathbf{1 . 5 1 g}(95)$

Different carbon nucleophiles were studied to investigate the reactivity of the new substrate 1.47 (Table 5). Grignard reagents reacted with the ester to yield the corresponding alcohol $\mathbf{1 . 5 0 a}$, while cuprates failed to react with $\mathbf{1 . 4 7}$. Enolates formed by using NaH or LDA also only yielded the alcohol 1.50a in low yield with starting material recovered. Gratifyingly, promising results were finally achieved by using sodium malonate as a nucleophile in THF, which furnished the desired substitution product in 70% yield with 30% starting material recovered. Catalytic 15 -crown-5-ether was found to be so beneficial that it improved the conversion to 100% in 8 hours.

Table 5. Different nucleophiles studied in the reaction with 1.47

1	MeMgBr	0	96
2	$\mathrm{MeMgBr}+\mathrm{CuI}$	0	0
3	$\mathrm{PhCOMe}+\mathrm{NaH}$	0	25
4	$\mathrm{PhCOMe}+\mathrm{LDA}$	0	86
5	$\mathrm{CH}_{2}(\mathrm{COOMe})_{2}+\mathrm{NaH}$	$70(30 \% \mathrm{SM}$	
recovery $)$	0		
6	$\mathrm{CH}_{2}(\mathrm{COOMe})_{2}+$		0

At this point, it should be noted that the incomplete conversion was not because of a thermodynamic equilibrium. Instead, kinetics was responsible. For example, as showed in the entry 5 and 6 in Table 5, the addition of 15-crown-5-ether could promote the malonate substitution to completion. In the absence of 15-crown-5-ether, the reaction would not finish even with 10 equiv. sodium malonate.

With this new reaction, referred to as a Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction, we needed to confirm the relative stereochemistry of the substitution product 1.52a (Scheme 21). Therefore, the complex 1.47 was converted to the cation with TrPF_{6} and then quenched with sodium malonate to provide the substitution product, which showed identical ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectra as $\mathbf{1 . 5 2 a}$. Since experimentation has shown that the nucleophilic attack on molybdenum stabilized carbocation always proceeded through anti attack, ${ }^{32}$ we could assumed that the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction yields the product in anti configuration, which was further confirmed by X-ray diffraction later (vide infra).

Scheme 21. Nucleophilic attack on Molybdenum stabilized carbocation

It is also worth noting that the above reaction only yielded 15% nucleophilic attack product $\mathbf{1 . 5 2}$ a with mainly elimination product $\mathbf{1 . 5 3}$. This result implied that the Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction might proceed through a different mechanism than the cationic mechanism (vide infra).

A racemization test was then conducted before moving to other nucleophiles. Scheme 22 showed the study employing enantiopure oxygen scaffold 1.42 (96% ee) as starting material in the racemization test. HPLC analysis indicated no trace of racemization. This result was encouraging, not only because it proved the Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ like reaction to be a useful methodology to establish C-C bond stereoselectively, but also because it lent support to the racemization hypothesis for the alkoxide substitution (Scheme 20).

Scheme 22. Racemization test on oxygen scaffold

Other nucleophiles were studied to explore the scope and limitation of this new reaction. First, with 1.47 as the substrate, a variety of stabilized nucleophiles were investigated (Table 6). They usually provided good to excellent yield of products based on conversion of starting material. However, for individual nucleophiles a careful choice of solvent was necessary to achieve the best conversion, while increasing temperature tended to show a very small effect. In general, THF could be used as a solvent for sodium malonate, while while nucleophiles like acetoacetate usually required a polar solvent, such as acetonitrile or DME, to achieve higher conversions. Interestingly, nitro compounds behaved as sufficient nucleophiles only in DMSO. The nucleophilicity of these stabilized carbonanions could be assessed according to Mayr's N parameters. ${ }^{33}$ Nucleophiles with N value greater than 13 usually performed well in the Homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction. Other nucleophiles, including enamine and silyl enol ether, failed to yield a substitution product.

Table 6. Reaction of 1.47 with a variety of stabilized carbonanions

		$\frac{{ }^{\mathrm{c}} \mathrm{zeq} \cdot \mathrm{Nu},}{\mathrm{rt}, 0.2 \text { eq } 1}$		
Entry	Nu	Solvent	Product(yield\%)	N parameter
1	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	DMSO	1.54a (80)	$\mathrm{N}: 20.71$ $\mathrm{~S}: 0.60($ in DMSO $)$
2	$\mathrm{CH}_{2}(\mathrm{CN})_{2}$	THF	1.54b (94) ${ }^{1}$	$\begin{gathered} \mathrm{N}: 18.21 \\ \mathrm{~S}: 0.69(\mathrm{in} 91 \mathrm{M} 9 \mathrm{AN}) \end{gathered}$
3	$\mathrm{CH}_{2} \mathrm{CN}(\mathrm{COOEt})$	DME	1.54c (94) ${ }^{2}$	$\begin{gathered} \mathrm{N}: 18.59 \\ \mathrm{~S}: 0.65(\text { in } 91 \mathrm{M} 9 \mathrm{AN}) \end{gathered}$
4	$\mathrm{CH}_{2}(\mathrm{COOMe})_{2}$	THF	1.52a (99)	$\mathrm{N}: 18.24$ S: 0.64(in91M9AN)
5	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{COOEt})_{2}$	THF	$1.54 \mathrm{~d}(66)^{3}$	
6	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOMe}$	ACN	1.54e (69) ${ }^{4}$	$\begin{gathered} \mathrm{N}: 15.99 \\ \mathrm{~S}: 0.62(\text { in } \mathrm{H} 2 \mathrm{O}) \end{gathered}$
7	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$	DME	$1.54 \mathrm{f}(43)^{5}$	$\mathrm{N}: 13.73$ $\mathrm{~S}: 0.64($ in H 2 O$)$

[^0]The effect of substitution on pyranyl scaffolds was also studied. Table 7 summarized related results. The substitution proceeded faster with $\mathbf{1 . 5 1 d}$ than with $\mathbf{1 . 4 7}$ (6 hrs vs. 8 hrs); and the complex 1.51b could not be fully converted to product. These results suggested that this reaction does not proceed through a cationic mechanism because more substituted scaffolds form more stable carbocation intermediates and would lead to faster reactions.

Table 7 The effect of substitution in pyranyl scaffolds

Entry	SM	R	Product (yield\%)
1	1.47	Me	1.52a(99)
2	1.51b	Ph	$\mathbf{1 . 5 2 b}(90+6 \% \mathrm{SM})$
3	1.51d	H	1.52d(94)

The effect of the substituent was even more obvious when poor nucleophiles and pyridinyl scaffolds were employed in the reaction (Table 8). When acetoacetate or acetoacetone were used as nucleophiles in pyranyl scaffolds, higher conversions could be achieved with substrates containing hydrogen instead of methyl. The reaction could also work in pyridinyl scaffolds, but only with strong nucleophiles or unsubstituted scaffolds could high yields be achieved until now.

Table 8. Substitution effect in poor nucleophiles and pyridinyl scaffolds examples

Entry	Z	R	Nu	Solvent	Product(yield\%)
1	O	H	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOMe}^{\text {a }}$	ACN	1.55(94)
2	O	Me	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOMe}^{\text {a }}$	ACN	1.54e(54)
3	O	H	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COMe}$	ACN	1.56(68)
4	O	Me	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COMe}$	ACN	1.54f(38)
5^{a}	NCbz	H	$\mathrm{CH}_{2}(\mathrm{COOMe})_{2}$	ACN	1.52e(90)
6^{a}	NCbz	Me	$\mathrm{CH}_{2}(\mathrm{COOMe})_{2}$	ACN	$\mathbf{1 . 5 2 f}(70+30 \% \mathrm{SM})$
7	NCbz	H	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOMe}^{\text {a }}$	ACN	1.57(91)
8	NCbz	Me	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOMe}^{\text {a }}$	ACN	1.58(10+90\% SM)

${ }^{a} \mathrm{OAc}$ as the leaving group in this example.
The effect of the leaving group was also investigated to optimize the reaction. The poor nucleophile generated from acetoacetone was used to optimize leaving group (Table 9). Among studied leaving groups, p-nitrobenzoate appeared to be the best choice. Better leaving groups, such as mesylate, led to direct elimination to the complex $\mathbf{1 . 5 3}$.

Table 9. The effect of leaving group

Entry	LG	Yield(\%)
1	OAc	22
2	OBz	28
3	ONz	43

Mechanistic consideration

As for the mechanism of the novel Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction, there were two possible pathways (Scheme 23). The first, the cationic pathway, would proceed through dissociation of the leaving group to form a molybdenum stabilized carbocation that could be quenched by nucleophiles. The second was the anionic pathway, in which the starting material was attacked by nucleophiles directly to form a molybdenum anion intermediate that further kicked out the leaving group to yield substitution product. However, the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like process did not appear to proceed via the cationic pathway. Evidence that supported this conclusion consisted of: (1)Exposure of $\mathbf{1 . 4 7}$ to TrPF_{6} generates the molybdenum-stabilized carbocation, which upon treatment with sodium dimethylmalonate and 15 -crown-5-ether showed a different reaction profile from the reactions in homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like condition (only 18% of nucleophilic addition compound
1.52 a is produced). The reaction mostly forms the elimination product $\mathbf{1 . 5 3}$ in 55% yield. (2) compound 1.47 was recovered unchanged after stirring overnight in $\mathrm{THF} / \mathrm{Et}_{3} \mathrm{~N}$, (3) the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like substitution reaction proceeded faster with less substituted substrates (1.51d are faster reacting than the more substituted 1.47), (4) most reactions were significantly accelerated by the use of 15-crown-5-ether.

Scheme 23 Two possible pathways leading to the substitution product

There is also an alternative to the anionic pathway that cannot be completely excluded. In this alternative mechanism, no anionic intermediate exists; instead, a transition state involving simultaneous nucleophilic attack and cleavage of the leaving group could be envisioned.

As for the stereochemistry of the nucleophilic attack, both retention ${ }^{12}$ and inversion ${ }^{35}$ are precedented in molybdenum mediated allylic substitutions. In the homo$\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction, although we have decided that in the final product the nucleophiles were anti to the molybdenum moiety(vide supra), there was still a possibility that the configuration was determined by a thermodynamic equilibrium instead of the initial kinetic attack. Consequently, in these cases the final product configuration failed to disclose stereochemical information for the initial nucleophilic attack (Scheme 24). Because of the presence of an extra acidic proton and the hereoatom, the final configuration of the nucleophiles could be controlled by either kinetic control or thermodynamic control.

Scheme 24. Retro-Michael-Michael pathway scrambling the stereochemistry

kinetic control

thermodynamic control

In order to decide the stereochemistry of the initial nucleophilic attack, the methyl diethylmalonate substitution product was crystallized and analyzed by X-ray diffraction (Figure 6). In the reaction with sodium methyl diethylmalonate, the thermodynamic equilibrium pathway was excluded due to the absence of an acidic proton. Because of this, the configuration of the final product would represent the stereochemistry of the initial nucleophilic attack. The crystal structure supported that the nucleophilic attack in homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction proceeded through an inversion process.

Figure 6. ORTEP view of methyl diethylmalonate substitution product 1.54 d

An important side reaction: ring opening

The ring opening side reaction was observed when certain nucleophiles were employed in the homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reaction. When carbonanions stabilized by cyanide, such as malononitrile, were used, the substitution product formed very quickly. However, the product was so unstable that it decomposed into a complex mixture within hours. The decomposition mechanism was not well understood until benzylmalononitrile was used as a reaction partner in the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction (Scheme 25).

Scheme 25 Benzylmalononitrile in homo- $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\prime}$-like reaction

We suggested the following decomposition pathway (Scheme 26), in which the acidic proton was further deprotonated to proceed through a retro-Michael mechanism to yield the ring opening product. This product was unstable and further decomposed to a complex mixture.

Scheme 26. Hypothesized decomposition pathway for malononitrile substituted

Control experiments showed that a malonate substitution product was stable, even after stirring with strong base overnight (Scheme 27). This interesting comparison
implied that the ring opening pathway would be favored only when the electron withdrawing group was small. Presumably the bulky group forbid the antiperiplanar transtition state required by the elimination.

Scheme 27. Control experiments with malonate substitution product

Further study provided strong evidence to support this working hypothesis (Scheme 28). When the compound $\mathbf{1 . 6 0}$ was employed as a substrate, a ring opening product $\mathbf{1 . 6 1}$ could be isolated, presumably through ring opening, $\eta^{3}-\eta^{1}$ equilibrium, and C-C bond rotation. Although the configuration of the complex $\mathbf{1 . 6 1}$ was not fully determined, this result strongly supported the existence of a ring opening process. Further investigation attempted to convert the pyranyl heterocycle to a carbocyclic ring using various conditions. The reaction failed possibly due to the low stability of complex 1.61.

Scheme 28. Ring opening leading to an isolable open chain product

Demetallation

With a variety of molybdenum complexes in hand, a demetallation protocol was needed to convert the complexes to useful organic compounds. Iododemtallation was first tested because it was reported as a successful demetallation in carbocyclic ring system by Pearson. ${ }^{36}$ However, it failed to give the desired cyclization product $\mathbf{1 . 6 2}$ in the hetereocyclic system; instead, elimination product $\mathbf{1 . 5 3}$ was isolated and was stable under this condition for 24 hours (Scheme 29).

Scheme 29. Iododemetallation of Mo complex 1.54 f

The mechanism for the formation of the complex $\mathbf{1 . 5 3}$ was believed to proceed through the Mo stabilized carbocation deprotonation pathway (Scheme 1.30).

Triethylamine was added to suppress the influence of HI , but the same result was achieved.

Scheme 30. Working hypothesis of the formation of elimination product 1.53

Other known demetallation methods, such as $\mathrm{NOBF}_{4} / \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NOBF}_{4} / \mathrm{NaCNBH}_{3}$, $\mathrm{PDC}, \mathrm{Br}_{2}, \mathrm{HCl}$, and TFAA, were also studied. Unfortunately, none of these yielded any isolable organic compounds and $\mathbf{1 . 5 3}$ was often the isolated product. These failures suggested that new demetallation conditions were desired to convert the metal complexes to useful organic compounds. This new condition would have to be basic in order to avoid the formation of a Mo stabilized carbocation through C-C bond cleavage.

At that time, an unexpected observation provided a vital hint for the search of new demetallation conditions (Scheme 31). During the attempt to optimize the homo-S $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ like reaction of acetoacetone, we discovered that conducting the reaction in DMSO led to the formation of product in 32% yield with a small amount of inseparable impurities. Careful analysis of the ${ }^{1} \mathrm{HNMR}$ of this mixture indicated the impurity was the elusive demetallation product 1.62. Although the yield was only 10%, it demonstrated that this reaction could be realized in basic condition. We reasoned that this reaction was caused by trace air dissolved in DMSO.

Scheme 31. Unexpected formation of demetallation product

Further study focusing on exposing the metal complex to air in the presence of NaH showed that this reaction was so inefficient that only around $30-40 \%$ conversion could be achieved even after stirring for several days. Realizing that copper salts could be utilized as a catalyst in Wacker reaction, 0.2 equiv CuCl_{2} was added and the reaction furnished the demetallation product in 89% yield after 3 days. Using 4 equiv CuCl_{2} accelerated the reaction so full conversion was achieved within 12 hours (Table 10).

Table 10. Discovery of annulative demetallation

Entry	Additive	Time	Yield(\%)
1	None	3 days	$30-40$
2	0.2 equiv CuCl_{2}	3 days	89
3	4 equiv CuCl_{2}	12 hours	89

When the reaction was expanded to additional substrates, the results indicated optimization was still needed (Scheme 32). In one case, the complex $\mathbf{1 . 5 5}$ containing acetoacetate did not react in the previous condition. In the other case, the complex $\mathbf{1 . 5 7}$ afforded 47% demetallation product $\mathbf{1 . 6 3}$ and $30 \% \mathbf{1 . 6 4}$ tentatively assigned as the following structure, with 18% starting material recovered.

Scheme 32. Unsuccessful results with $\mathbf{C u C l}_{\mathbf{2}}$

A general condition was still required before this homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reactionannulative demetallation sequence became synthetically useful. Consequently, an extensive screening of bases and oxidants was conducted to solve the problem (Table 11). The demetallation of $\mathbf{1 . 5 7}$ was chosen as the model reaction considering its potential application in the synthesis of isofebrifugine. This table showed that in this annulative demetallation the role of oxidants was so crucial that it could totally invert the ratio of products. Finally, copper carboxylate was identified to favor the formation of the full demetallation product $\mathbf{1 . 6 3}$.

Table 11. Screening of Bases and Oxidants

entry	base	oxidant	1.63 (\%)	1.64 (\%)	1.57 (\%)
1	TEA	CuCl_{2}	NR	NR	98
2	DBU	CuCl_{2}	45	30	18
3	NaH	CAN	24	48	19
4	NaH	MnO_{2}	35	40	20
5	NaH	$\mathrm{Pb}(\mathrm{OAc})_{4}$	29	32	31
6	NaH	$\mathrm{Cu}(\mathrm{acac})_{2}$	25	40	21
7	NaH	$\mathrm{Cu}(\mathrm{OAc})_{2}$	86	1-2	0
8	NaH	$\mathrm{Cu}\left(2\right.$-ethylhexanoate) ${ }_{2}$	88	1-2	0

Gratifyingly, this condition did not only work with the complex 1.57 , but also successfully demetallated a wide range of homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction products (Scheme 33). For example, the complex $\mathbf{1 . 5 5}$ was successfully converted to $\mathbf{1 . 6 6}$ in very good yield.

Scheme 33. Demetallation with a variety of substrates

1.65

85\%

83\%

92\%

Moreover, not only was an enolate successfully employed in the demetallation, but alkoxide $\mathbf{1 . 6 8}$ was shown to react (Scheme 34).

Scheme 34. Demetallation with alkoxide as a nucleophile

For the mechanism of this demetallation, there are three possible pathways (Scheme 35). The first is cationic pathway, in which molybdenum is first oxidized to
radical cation quenched by intramolecular nucleophilic attack. This is the most classic demetallation pathway for molybdenum complex. Nevertheless, it was disfavored in this copper mediated demetallation because the complex could be recovered nearly quantitatively in the absence of base or intramolecular nucleophiles, which contradicted with the irreversible oxidation implied by the cationic pathway. The latter two pathways are different only in the sequence of the oxidation, which is difficult to differentiate. Currently, we cannot tell which pathway is the one operating in the system. However, it is worth noting that there may be a mechanistic manifold in which different oxidants and nucleophiles may lead to different pathways.

Scheme 35. Three possible mechanism pathways for the demetallation

Anionic pathway:

Radical pathway:

Total synthesis of (+)-isofebrifugine

With this novel homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction-annulative demetallation sequence in hand, we planned to demonstrate its power by applying it in a total synthesis of an interesting natural product. Isofebrifugine was chosen based on two considerations (Figure 7). One was that it contained a 2,3-disubstituted piperidine motif, which our methodology could construct enanitioselectively and rapidly. The other was due to its demonstrated high antimalaria activity which required a synthetic route to readily access its analogues in order to lead to the discovery of a new type of antimalaria drug. ${ }^{37}$

Figure 7. Isofebrifugine: antimalarial agent isolated from Chinese plant Dichroa febrifuga

(+)-isofebrifugine
1.70

The first retrosynthetic plan was highly convergent (Scheme 36). The key intermediate in the synthesis is the 2,3 -disubstituted 1.71 , which would be accessed through $\mathbf{1 . 7 2}$ by employing the above methodology. Therefore the synthesis required 1.73, in which p-nitrobenzoate was the leaving group, and 1.74 as the starting material. For efficiency, the racemic complex was initially studied as a model.

Scheme 36. The first retrosynthetic plan for isofebrifugine

First, the compound $\mathbf{1 . 7 4}$ was prepared by following the route showing in Scheme 37. Quinazolinone reacted with bromoacetate to form 1.75 , which was hydrolyzed to the acid $\mathbf{1 . 7 6}$ in a good yield. Further acylation of ethyl acetate with activated $\mathbf{1 . 7 6}$ furnished 1.74 in low yield. In order to test the viability of this synthetic route to isofebrifugine, no optimization was attempted at this stage.

Scheme 37. Synthesis of starting material 1.74

However, the homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction failed to provide $\mathbf{1 . 7 2}$ with the heterocycle substituted acetoacetate. Only a dimer of acetoacetate $\mathbf{1 . 7 7}$ formed possibly through a double substitution mechanism (Scheme 38).

Scheme 38. Homo-S $\mathbf{N}_{\mathbf{N}}{ }^{2}$-like reaction with 1.74

With these results, the synthetic strategy was modified (Scheme 39). The hetereocycle was introduced in a late stage so that it would not affect the key step. The intermediate 1.78, which was envisioned to be the precursor of isofebrifugine, could be converted from 1.79. It was prepared through the homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reaction-annulative demetallation. The most important task in this route was to find an appropriate electronwithdrawing group, which was proved a difficult task.

Scheme 39. Modified retrosynthetic plan for isofebrifugine

Since 1.64 was readily available at that time, we decided to study the decarboxylation to achieve 1.78. However, a variety of conditions to hydrolyze the ester were studied (Scheme 40). All of these conditions failed to yield the hydrolysis product at room temperature, while hydrolysis at high temperature only led to decomposition.

Scheme 40. Hydrolysis efforts to $\mathbf{1 . 8 0}$

When the compound 1.64 was treated with Lewis acid, an interesting aromatization took place and led to furan $\mathbf{1 . 8 1}$ (Scheme 41).

Scheme 41. An unexpected aromatization

The above results proved that an electron-withdrawing group which was easy to remove was desired. Sulfoxide or sulfonyl groups were proposed to be a good choice. Sulfoxide could be used in a Mislow-Evans rearrangement to functionalize the methyl group so that the heterocycle could be introduced directly (Scheme 42). A sulfonyl group should be much easier to remove considering the C-S bond is much easier to cleave than C-C bond.

Scheme 42. Sulfoxide used in Mislow-Evans rearrangement

Although the sulfoxide did not work because the demetallation failed, sulfonyl containing acetone successfully afforded the product $\mathbf{1 . 8 2}$ in a good yield after optimization (Scheme 43). The homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reaction with phenylsulfonyl acetone worked in ACN at $50^{\circ} \mathrm{C}$ and DMSO at room temperature. Moreover, in DMSO a one pot demetallation was developed to achieve $\mathbf{1 . 8 2}$ in good yield.

Scheme 43. Phenylsulfonyl acetone as a nucleophile in a one pot reaction

1.82

2 steps: 42\%

With compound $\mathbf{1 . 8 2}$ in hand, various desulfonyl condition were studied. Different desulfonation methods, including $\mathrm{Na} / \mathrm{Hg}$, Raney $\mathrm{Ni}, \mathrm{Pd} / \mathrm{BuMgCl}$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O} 4$, were tested, but only $\mathrm{Na} / \mathrm{Hg}$ furnished the product $\mathbf{1 . 8 3}$ in a low yield. Consequently, further optimization focused on varying conditions for the reductive desulfonylation with sodium mercury amalgam (Table 12). The initial study focused on isolating 1.83 and led
to low yields, although the reaction seemed clean. Thus, we realized that compound $\mathbf{1 . 8 3}$ may be unstable on silica gel due to the existence of the enol ether moiety. As shown in Entry 5, an acidic workup was introduced to achieve 1.84, which led to a good yield with moderate conversion. Interestingly, as shown in Entry 1 and 2, the conversion was better when the reaction was carried out at a lower temperature. Presumably, the reason was that the reaction between phenylsulfonyl and sodium was not affected so much as the reaction of sodium with the proton source methanol. However, Entry 7 showed that very low temperature only led to decomposition without the formation of product, which was probably caused by the delay of the protonation step. Base on these considerations, the optimal condition for this reaction was found to be conducting the reaction at $-35^{\circ} \mathrm{C}$ in a concentrated methanol solution.

Table 12. Optimization of desulfonylation

 1.82		 1.83	2. HCl, Ace 2 steps	
entry	solvent	$\mathrm{T}^{\circ} \mathrm{C}$	additive	conversion(1.83 Yield)
1	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	20	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	50\% (<10\%)
2	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	-20	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	60\% ($<10 \%$)
3	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	20	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	0
4	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	20	none	50\% ($<10 \%$)

5	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	20	none	$50 \%(40 \%)^{*}$
6	t-BuOH$(0.02 \mathrm{M})$	20	none	Complex mixture
7	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	-78	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	Complex mixture
8	$\mathrm{MeOH} / \mathrm{THF}(0.02 \mathrm{M})$	-35	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$70 \%(54 \%)^{*}$
9	$\mathrm{MeOH} / \mathrm{THF}(0.1 \mathrm{M})$	-35	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$>95 \%(86 \%)^{*}$

* The yield of $\mathbf{1 . 8 4}$ was reported.

Further hydrogenation of $\mathbf{1 . 8 4}$ with PtO_{2} as the catalyst proceeded as desired (Scheme 44).

Scheme 44. Hydrogenation of 1.84

However, the selective protection of the hemiketal as a ketone proved to be difficult. Acylation led to very low conversion even in reflux conditions. Finally, TrPF_{6} was found to be a good choice for this protection (Scheme 45). It furnished the compound $\mathbf{1 . 8 6}$ highly selectively in a 70\% yield.

Scheme 45. Protection with the bulky trityl group

When submitting $\mathbf{1 . 8 6}$ to the bromination conditions, the Lewis acidic condition failed to yield 1.87 ; instead, a mixture of deprotection product $\mathbf{1 . 8 5}$ and $\mathbf{1 . 8 8}$ was isolated. The basic enolate formation followed by bromination led only to decomposition to a complex mixture (Scheme 46).

Scheme 46. Bromination of 1.86

1.86

1.88

1.86

1.87

Considering the successful protection with a trityl group and its failure under acidic bromination conditions, we reasoned that a bulky protective group that was stable to Lewis acid was required for the success of the synthesis. Therefore, TIPS was selected as a protecting group (Table 13). When TIPSOTf was used as the reagent, it furnished the desired product $\mathbf{1 . 8 9}$ only in 25% yield with 40% undesired product $\mathbf{1 . 9 0}$. Fortunately, when conducting this reaction with TIPSCl in DMF, it afforded $\mathbf{1 . 8 9}$ selectively in 75% yield with 20% starting material recovered.

Table 13. TIPS protection

Entry	Condition	$\mathbf{1 . 8 9}$	$\mathbf{1 . 9 0}$
1	TIPSOTf, DCM	25%	40%
2	TIPSCl, imidazole,	$75 \%(20 \% \mathrm{SM})$	0
	DMF		

The ketone 1.89 was converted to silyl enol ether with TMSOTf in the presence of DIPEA, then brominated by treating with NBS to afford the bromoketone. Direct substitution of the bromoketone with quinazolinone provided $\mathbf{1 . 9 1}$ in a very low yield (Table 14). Interestingly, when switching the base from DIPEA to TEA, the reaction yield was increased to 60%. The reason for this improvement was likely due to the presence of the bulky TIPS group, which required a less encumbered base to deprotonate.

Table 14. Bromination and heterocycle introduction on 1.89

Entry	base	yield
1	DIPEA	$<10 \%$
2	TEA	60%

The final global deprotection was realized by following a known protocol: refluxing the intermediate $\mathbf{1 . 9 1}$ in 6 M HCl for 90 minutes furnished the final natural product 1.70 in 63\% yield (Scheme 47).

Scheme 47. Global deprotection

Based on the experience with the racemic compound, the enantiopure scaffold was employed to synthesize $(+)$-isofebrifugine. The synthetic route is summarized in Scheme 1.48. The final product demonstrated the identical ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}$, mass and optical rotation.

Scheme 48. Total synthesis of (+)-isofebrifugine

Conclusion

In this Chapter, we reported a novel homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction between neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-acyloxy- η^{3}-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-acyloxy- η^{3}-pyridinyl) scaffolds and a variety of stabilized carbonanion nucleophiles. This reaction provided a powerful methodology to construct C-C bonds stereoselectively. Moreover, it proceeded through an interesting anionic mechanism and preliminary mechanistic study was reported. Based on the Mo complex produced in the reaction, a mechanistically related annulative demetallation was developed to furnish the framework of 2,7-dioxabicyclo[4.3.0]nonane and 2-aza-7-oxabicyclo[4.3.0]nonane in good to excellent yields. In order to demonstrate the power of this new reaction sequence, $(+)$-isofebrifugine was synthesized in a concise sequence by employing the homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like-annulative demetallation sequence.

References

1. (a) Beller, M.; Bolm, C.; Editors, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals Second Revised and Enlarged Edition, Volume 2. Wiley-VCH Verlag GmbH \& Co. KGaA: 2004; p 652 pp; (b) Tsuji, J., Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. Wiley: 2000; p 477 pp.
2. Helmchen, G. In Asymmetric allylic substitutions, Wiley-VCH Verlag GmbH \& Co. KGaA: 2008; pp 102-106.
3. Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387-4388.
4. (a) Trost, B. M.; Crawley, M. L. Chem. Rev. (Washington, DC, U. S.) 2003, 103, 2921-2943; (b) Trost, B. M.; Van, V. D. L. Chem. Rev. (Washington, D. C.) 1996, 96, 395-422.
5. Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759-6760.
6. Behenna, D. C.; Stoltz, B. M. J Am Chem Soc 2004, 126, 15044-15045.
7. Trost, B. M.; Xu, J.; Reichle, M. J Am Chem Soc 2007, 129, 282-283.
8. Enquist, J. A., Jr.; Stoltz, B. M. Nature (London, U. K.) 2008, 453, 1228-1231.
9. Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159-167.
10. Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104-1105.
11. Krska, S. W.; Hughes, D. L.; Reamer, R. A.; Mathre, D. J.; Sun, Y.; Trost, B. M. J. Am. Chem. Soc. 2002, 124, 12656-12657.
12. Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet, V. D.; Jack, K.; Sun, Y.; Mathre, D. J.; Reamer, R. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5379-5384.
13. Trost, B. M.; Dogra, K. Org. Lett. 2007, 9, 861-863.
14. (a) Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 263-265; (b)

Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647-8655.
15. Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025-8026.
16. Ohmura, T.; Hartwig, J. F. J Am Chem Soc 2002, 124, 15164-15165.
17. Bartels, B.; Garcia-Yebra, C.; Helmchen, G. Eur. J. Org. Chem. 2003, 1097-1103.
18. Lopez, F.; Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 3426-3427.
19. Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794-4797.
20. Graening, T.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 17192-17193.
21. Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14272-14273.
22. Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680-11681.
23. Weix, D. J.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7720-7721.
24. Stanley, L. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 7841-7844.
25. Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem. Soc. 2010, 132, 1141811419.
26. Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259.
27. Cheng, B.; Liebeskind, L. S. Org. Lett. 2009, 11, 3682-3685.
28. Coombs, T. C.; Lee, M. D.; Wong, H.; Armstrong, M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73, 882-888.
29. Jinjun Yin, PhD thesis
30. Coombs, T. C.; Huang, W.; Garnier-Amblard, E. C.; Liebeskind, L. S. Organometallics, ACS ASAP.
31. Harry Wong, PhD thesis.
32. Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459.
33. Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66-77.
34. Donghyun Koo, unpublished results in Liebeskind lab.
35. Butters, C.; Carr, N.; Deeth, R. J.; Green, M.; Green, S. M.; Mahon, M. F. J. Chem. Soc., Dalton Trans. 1996, 2299-2308.
36. Pearson, A. J.; Khan, M. N. I.; Clardy, J. C.; He, C.-H. J. Am. Chem. Soc. 1985, 107, 2748-2757.
37. (a) Koepfly, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc. 1949, 71, 1048-1054; (b) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H.; Kim, H.-S.; Wataya, Y. J. Org. Chem. 1999, 64, 6833-6841; (c) Zhu, S.; Zhang, Q.; Gudise, C.; Wei, L.; Smith, E.; Zeng, Y. Bioorg. Med. Chem. 2009, 17, 4496-4502.

Experimental Section

$(+)$ and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,5R)($\boldsymbol{\eta}$-2,3,4)-5-acetoxy-5methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, $(+)$-1.47 and (\pm)-1.47

1.47

To a suspension of (\pm) $\mathbf{- 1 . 4 2}(500 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was added methylmagnesium bromide ($3.0 \mathrm{M}^{2}$ in $\mathrm{Et}_{2} \mathrm{O}, 0.54 \mathrm{~mL}, 1.62 \mathrm{mmol}, 1.5$ equiv) at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$ over 30 minutes, stirred at $0{ }^{\circ} \mathrm{C}$ for

40 minutes, and then quenched with $\mathrm{Ac}_{2} \mathrm{O}(176 \mathrm{mg}, 1.73 \mathrm{mmol}, 1.6$ equiv). After stirring for 1 h at room temperature, the mixture was poured into a separatory funnel containing EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanesEtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 4 7}(406 \mathrm{mg}, 0.78 \mathrm{mmol}, 72 \%)$ as a yellow solid.

Similar treatment of (+)-1.42 (53 mg, $0.11 \mathrm{mmol}, 1.0$ equiv, 96% ee) in THF (3 mL) with methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 0.06 \mathrm{~mL}, 0.16 \mathrm{mmol}, 1.5$ equiv) afforded (2R, 5R)-(+)-1.47 (34 mg, $0.065 \mathrm{mmol}, 60 \%)\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+256.3,(\mathrm{c}=0.3\right.$, $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$, TLC $\left(\mathrm{R}_{f}=0.6,2.5: 1\right.$ hexanes: EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1$ H), $6.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 228.1$ (Mo$\mathrm{CO}), 224.7$ (Mo-CO), $170.9\left(\mathrm{CH}_{3} \mathrm{COO}\right), 146.7(\mathrm{CH}), 142.9(\mathrm{CH}), 141.5(\mathrm{CH}), 136.01$ $(\mathrm{CH}), 135.96(\mathrm{CH}), 134.4(\mathrm{CH}), 109.7(\mathrm{CH}), 105.9(\mathrm{CH}), 105.6(\mathrm{CH}), 105.4(\mathrm{CH}), 79.1$, 71.4, 70.8, 56.4, $29.1\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 2968(\mathrm{w}), 2468(\mathrm{~m}), 1945(\mathrm{~s}), 1857(\mathrm{~s})$, 1729 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 545.0618. Found: 545.0632.

Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-5-hydroxy-5-methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.50a

To a suspension of $(\pm) \mathbf{- 1 . 4 2}(500 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was added methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 0.54 \mathrm{~mL}, 1.62 \mathrm{mmol}, 1.5$ equiv) at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$ over 30 minutes, stirred at $0{ }^{\circ} \mathrm{C}$ for 40 minutes, and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was poured into a separatory funnel containing $\operatorname{EtOAc}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 5 0 a}(446 \mathrm{mg}$, $0.93 \mathrm{mmol}, 86 \%)$ as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.37,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1$ H), $6.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1$ H), $2.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 233.1,223.8$, $146.8,142.0,141.9,136.14,136.09,134.5,110.2,106.0,105.7,105.4,76.4,73.2,70.5$, 57.6, 32.4. IR (cm^{-1}) 3459 (w), 3150 (w), 2972 (w), 2482 (m), 1934 (s), 1841 (s).
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][$\boldsymbol{\eta}$-2,3,4)-5-hydroxy-5-phenyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.50b

To a suspension of $(\pm) \mathbf{- 1 . 4 2}(200 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was added phenylmagnesium bromide ($3.0 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}, 0.22 \mathrm{~mL}, 0.65 \mathrm{mmol}, 1.5$ equiv) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was poured into a separatory funnel containing EtOAc (15 mL), and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 5 0 b}(174 \mathrm{mg}$, $0.32 \mathrm{mmol}, 75 \%$) as an orange solid.

TLC $\left(\mathrm{R}_{f}=0.37,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1$ H), $7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 233.2(\mathrm{Mo}-\mathrm{CO}), 224.0(\mathrm{Mo}-$ CO), 148.7, 146.9, 142.3, 141.7, 136.1, 134.5, 128.5, 127.4, 124.5, 109.5, 106.1, 105.7, 105.3, 77.7, 77.2, 73.1, 72.8, 58.7. IR $\left(\mathrm{cm}^{-1}\right) 3451$ (w), 3142 (w), 2482 (m), 1942 (s), 1849 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BMoN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 543.0844$. Found: 543.0849. $\left([\mathrm{M}-\mathrm{OH}]^{+}\right): 525.0739$. Found: 525.0739.
$(+)$ and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(2R,5R)-(η-2,3,4)-1-benzyloxycarbonyl5-hydroxy-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (+)-1.50d and (\pm)-1.50d

To a solution of (\pm) $\mathbf{- 1 . 4 3}(500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv) in THF $(30 \mathrm{~mL})$ was added DIBAL (1.0 M in hexane, $1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.6$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate ($740 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc $(15 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 25 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-1.50d $(462 \mathrm{mg}, 0.78 \mathrm{mmol}, 93 \%)$ as an orange solid.

Similar treatment of $(+) \mathbf{- 1 . 4 3}(500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in THF (30 mL) with DIBAL (1.0 M in hexane, $2.1 \mathrm{~mL}, 2.10 \mathrm{mmol}, 2.5$ equiv) afforded (2R,5R)-(+)1.50d $(458 \mathrm{mg}, 0.77 \mathrm{mmol}, 92 \%)\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+467\right.$, $\left.\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.29,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.20(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 0.6 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $0.6 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 1.2 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H})$, 7.47-7.51 (m, 2.0 H), 7.30-7.41 (m, 4.0 H), $7.14(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.91$ (dd, $J=6.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.16-$
$6.18(\mathrm{~m}, 0.8 \mathrm{H}), 5.97(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.35(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.23(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1.2 \mathrm{H}), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.68-4.79(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}$, $0.4 \mathrm{H}), 3.74(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.31(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 0.4 \mathrm{H}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.91(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 232.5 (Mo-CO), 231.8 (Mo-CO), 223.8 (Mo-CO), 223.5 (Mo-CO), 155.7 (Cbz carbonyl), 155.2 (Cbz carbonyl), 146.75, 146.68, 143.9, 143.0, 140.8, 140.6, 135.98, 135.96, 135.9, 135.7, 134.4, 128.7, 128.6, 128.4, 128.0, 127.8, 105.9, 105.7, 105.5, 105.4, 92.5, 91.0, $69.0,68.4,68.3,67.7,67.6,57.7,57.4,47.21\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 47.20\left(\mathrm{~N}-\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3439$ (w), 3127 (w), 2486 (m), 1942 (s), 1841 (s), 1695 (s), 1505 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BMoN}_{7} \mathrm{O}_{5}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$617.1324. Found: 617.1325 .

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-5-hydroxy-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.50c

1.50c

To a solution of $(\pm) \mathbf{- 1 . 4 2}(500 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv) in THF $(30 \mathrm{~mL})$ was added DIBAL (1.0 M in hexane, $1.62 \mathrm{~mL}, 1.62 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate ($610 \mathrm{mg}, 2.16 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and the layers were separated. The aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 15 \mathrm{~mL})$, and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel
with hexanes-EtOAc (2:1) afforded (\pm)-1.50c (464 mg, $1.00 \mathrm{mmol}, 93 \%$) as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.72(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 232.4$ (Mo-CO), 223.9 (Mo-CO), $146.8(\mathrm{CH}), 142.0(\mathrm{CH})$, $141.9(\mathrm{CH}), 136.14(\mathrm{CH}), 136.09(\mathrm{CH}), 134.5(\mathrm{CH}), 110.3(\mathrm{CH}), 106.1(\mathrm{CH}), 105.7(\mathrm{CH})$, $105.4(\mathrm{CH}), 71.7,68.0,67.2,57.9$. IR $\left(\mathrm{cm}^{-1}\right) 3127$ (w), 2957 (w), $2490(\mathrm{~m}), 1957(\mathrm{~s})$, 1872 (s), 1660 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BMoN}_{6} \mathrm{O}_{4}$ ([M-H] $]^{-}$): 465.0375. Found: 465.0375.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-5-acetoxy-5-phenyl-5,6-dihydro2H-pyran-2-yl]molybdenum, (\pm)-1.51b

1.51b

To a solution of $(\pm) \mathbf{- 1 . 5 0 b}(138 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added DMAP ($122 \mathrm{mg}, 0.78 \mathrm{mmol}, 3.0$ equiv), TEA ($78 \mathrm{mg}, 0.77 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}$ ($85 \mathrm{mg}, 0.77 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was
extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanesEtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 5 1 b}$ ($129 \mathrm{mg}, 0.22 \mathrm{mmol}, 85 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.57,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J$ $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 228.8(\mathrm{Mo}-\mathrm{CO}), 224.9$ (Mo-CO), $169.8\left(\mathrm{CH}_{3} \underline{\mathrm{COO}}\right), 146.8,146.1,142.9,141.4,136.0,134.5,128.6,127.4$, 124.0, 108.8, 106.0, 105.6, 105.3, 80.3, 77.2, 72.8, 71.2, 57.4, $21.5\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 3427$ (w), 2482 (m), 1945 (s), 1857 (s), 1737 (s), 1710 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{5}$ ([M-OAc] ${ }^{+}$): 525.0739. Found: 525.0745.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-5-p-nitrobenzoyloxy-5,6-dihydro-2Hpyran-2-yl]molybdenum, (\pm)-1.51c

To a solution of (\pm) - $\mathbf{1 . 5 0 c}(464 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(40 \mathrm{~mL})$ was added DMAP ($366 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.0$ equiv), TEA ($300 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.0$ equiv) and p nitrobenzoyl chloride ($558 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, and then concentrated to remove DCM and excess TEA. The residue was triturated with EtOAc (60 mL) and then filtered. The organic solution was
concentrated for chromatography. Flash chromatography over silica gel with hexanesEtOAc (2.7:1) afforded (\pm)-1.51c ($594 \mathrm{mg}, 0.97 \mathrm{mmol}, 97 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.71,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.24-8.31(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=4.4 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (ddd, $J=10.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.2$ $\mathrm{Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 228.6$ (Mo-CO), 224.2 (Mo-CO), 164.2 (Ar-COO), 150.5, 146.7, $141.8,136.13,136.11,135.1,134.5,131.0,123.4,110.3,106.0,105.7,105.3,77.2,69.9$, 65.2, 64.4, 57.9. IR (cm^{-1}) 3123 (w), 2984 (w), 2486 (m), 1945 (s), 1857 (s), 1722 (s), 1606 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BMoN}_{7} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 616.0644. Found: 616.0657 .
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][$\boldsymbol{\eta} \boldsymbol{\eta}$-2,3,4)-5-acetate-5,6-dihydro-2H-pyran-2-yl]molybdenum, $(\pm)-1.51 d$

To a solution of $(\pm) \mathbf{- 1 . 5 0 c}(200 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added DMAP ($157 \mathrm{mg}, 1.29 \mathrm{mmol}, 3.0$ equiv), TEA ($129 \mathrm{mg}, 1.29 \mathrm{mmol}, 3.0$ equiv) and acetic anhydride ($132 \mathrm{mg}, 1.29 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ overnight, and then concentrated to remove DCM and excess TEA. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), and the
combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (3:1) afforded $(\pm)-\mathbf{1 . 5 1 d}(190 \mathrm{mg}$, $0.40 \mathrm{mmol}, 94 \%)$ as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.57,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddd}, J=$ $8.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 227.8(\mathrm{Mo}-\mathrm{CO}), 224.6(\mathrm{Mo}-\mathrm{CO}), 170.9\left(\mathrm{CH}_{3} \underline{\mathrm{COO}}\right)$, $146.7(\mathrm{CH}), 141.91(\mathrm{CH}), 141.87(\mathrm{CH}), 136.1(\mathrm{CH}), 136.0(\mathrm{CH}), 134.5(\mathrm{CH}), 110.9(\mathrm{CH})$, $106.0(\mathrm{CH}), 105.6(\mathrm{CH}), 105.3(\mathrm{CH}), 68.6,65.1,64.6,57.8,20.9\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 3146$ (w), 2976 (w), 2482 (m), 1945 (s), 1857 (s), 1729 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right): 508.0559$. Found: 508.0569.
$(+)$ and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato $][(\eta-2,3,4)-1-$ benzyloxycarbonyl5-p-nitrobenzoyloxy5,6-dihydro-2H-pyridin-2-yl]molybdenum, $(+)-1.51 \mathrm{e}$ and $(\pm)-1.51 e$

To a solution of $(\pm) \mathbf{- 1 . 5 0 d}(500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(40 \mathrm{~mL})$ was added DMAP ($307 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv), TEA ($252 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv) and p nitrobenzoyl chloride ($469 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, and then concentrated to remove DCM and excess TEA. The residue
was triturated with EtOAc (60 mL) and then filtered. The organic solution was concentrated for chromatography. Flash chromatography over silica gel with hexanesEtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 5 1 e}(597 \mathrm{mg}, 0.80 \mathrm{mmol}, 95 \%)$ as a yellow solid.

Similar treatment of $(+) \mathbf{- 1 . 5 0 d}(500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in $\mathrm{DCM}(40$ mL) with DMAP ($307 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv), TEA ($252 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv) and p-nitrobenzoyl chloride ($469 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv) afforded (2R,5R)-(+)-1.51e $(574 \mathrm{mg}, 0.77 \mathrm{mmol}, 92 \%)\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+242,\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$
$\mathrm{TLC}\left(\mathrm{R}_{f}=0.58,2.5: 1\right.$ hexanes: EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.33(\mathrm{~m}, 4 \mathrm{H}), 8.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H})$, $7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.62$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.45(\mathrm{~m}, 4 \mathrm{H})$, 7.22 (dd, $J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.97(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.26-6.30(\mathrm{~m}, 1$ H), $6.25(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.16-6.19(\mathrm{~m}, 1 \mathrm{H}), 6.03-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $0.4 \mathrm{H}), 5.34(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.23(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.22(\mathrm{~s}, 1.2 \mathrm{H}), 4.76(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.79(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 0.6 \mathrm{H}), 3.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.47(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.22(\mathrm{dd}, J=12.4 \mathrm{~Hz}$, $9.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.20(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 0.6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 229.7 (Mo-CO), 229.2 (Mo-CO), 224.0 (Mo-CO), 223.7 (Mo-CO), 164.17 (Ar-COO), 164.22 (Ar-COO), 155.6 (Cbz carbonyl), 155.1 (Cbz carbonyl), 150.5, 146.81, 146.76, $144.2,143.3,140.7,140.6,136.2,136.1,135.8,135.6,135.14,135.07,134.6,131.1$, $128.9,128.7,128.51,128.46,128.2,128.1,123.4,106.0,105.8,105.6,105.4,93.4,92.1$, $70.6,70.5,68.7,68.0,62.1,62.0,58.6,58.1,43.9\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 43.8\left(\mathrm{~N}-\mathrm{CH}_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 3119$
(w), 3061 (w), 2486 (m), 1942 (s), 1853 (s), 1710 (s), 1606 (m), 1529 (s). HRMS (ESI)

Calcd. for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BMON}_{8} \mathrm{O}_{8}$ ([M] $\left.]^{+}\right)$: 748.1099. Found: 748.1103.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-2,3,4)-1-benzyloxycarbonyl-5-acetoxy5-methyl-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-1.51f

To a solution of $(\pm) \mathbf{- 1 . 5 0 e}(200 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added DMAP ($157 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv), TEA ($102 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}$ ($111 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, and then quenched with water. The mixture was poured into a separatory funnel containing $\operatorname{EtOAc}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanesEtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 5 1 f}(195 \mathrm{mg}, 0.29 \mathrm{mmol}, 88 \%)$ as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.51,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.45(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.13(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 0.6 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 2.4 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 1.6 \mathrm{H}), 7.31-7.43$ (m, $4.0 \mathrm{H}), 7.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.18-6.24(\mathrm{~m}, 2.6 \mathrm{H}), 6.00$ (br s, 1 H), 5.47 (d, $J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.18-5.36(\mathrm{~m}, 2 \mathrm{H})$, $3.63(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.58(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.36(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 6.4 \mathrm{~Hz}$, $0.6 \mathrm{H}), 3.24(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.02-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~s}, 1.8 \mathrm{H}), 1.86(\mathrm{~s}$,
$1.2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 228.8,228.2,224.3,224.1,171.0,170.8,155.9$, $155.5,146.8,146.7,143.5,142.6,141.9,141.7,136.05,136.00,135.96,135.91,135.9$, $135.8,134.4,128.6,128.42,128.4,128.1,127.8,105.8,105.7,105.4,91.7,90.1,80.5$, $80.4,68.7,68.4,68.0,67.8,56.4,56.0,50.6,50.5,30.0,29.9,22.0,21.97 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3127$ (w), 2957 (w), 2482 (m), 1942 (s), 1849 (s), 1729 (s), 1702 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{BMoN}_{7} \mathrm{O}_{6}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 673.1592. Found: 673.1608 .

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [(η-2,3,4)-1-benzyloxycarbonyl-5-acetoxy-5,6dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-1.51g

To a solution of $(\pm) \mathbf{- 1 . 5 0 d}(200 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added DMAP ($157 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv), TEA ($102 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}$ ($111 \mathrm{mg}, 1.01 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanesEtOAc (3:1) afforded (\pm) $\mathbf{- 1 . 5 1 g}(204 \mathrm{mg}, 0.32 \mathrm{mmol}, 95 \%)$ as a yellow solid.
$\mathrm{TLC}\left(\mathrm{R}_{f}=0.53,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.24(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 0.6 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $0.4 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H})$,
$7.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{dd}, J=6.0 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.89(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.26(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.16-6.19(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=2.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.67-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.31$ (d, $J=11.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.21(\mathrm{~s}, 1.2 \mathrm{H}), 5.20(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 0.4 \mathrm{H})$, $4.66(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.64$ (quintet, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $0.6 \mathrm{H}), 3.37(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.18(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.12(\mathrm{~s}, 1.2 \mathrm{H})$, $2.10(\mathrm{~s}, 1.8 \mathrm{H}), 2.07(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 0.6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 228.8 (Mo-CO), 228.5 (Mo-CO), 224.1 (Mo-CO), 223.9 (Mo-CO), $170.8\left(\mathrm{CH}_{3} \underline{\mathrm{COO}}\right.$), 155.7 (Cbz carbonyl), 155.1 (Cbz carbonyl), 146.85, 146.78, 144.4, 143.4, 140.7, 140.6, $136.1,136.00,135.95,135.7,134.5,128.9,128.6,128.5,128.1,128.0,105.9,105.8$, $105.5,105.4,93.8,92.4,69.1,68.9,68.6,67.9,62.1,61.8,58.6,58.1,43.8\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 43.7$ $\left(\mathrm{N}-\mathrm{CH}_{2}\right), 21.0\left(\underline{C H}_{3} \mathrm{COO}\right), 20.9\left(\mathrm{CH}_{3} \mathrm{COO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3127(\mathrm{w}), 3034(\mathrm{w}), 2482(\mathrm{~m})$, 1942 (s), 1849 (s), 1729 (s), 1702 (s), 1505 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BMoN}_{8} \mathrm{O}_{8}$ $\left([\mathrm{M}]^{+}\right):$641.1092. Found: 641.1101. $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$659.1435. Found: 659.1442.
$(-)$ and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato $]\left[(\eta-3,4,5)-2-\left(1^{\prime \prime}-\right.\right.$ methoxycarbonyl)methoxycarbonylmethyl-5-methyl-5,6-dihydro-2H-pyran-2yl]molybdenum, (-)-1.52a and (\pm)-1.52a

To a solution of $(\pm)-\mathbf{1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in THF $(5 \mathrm{~mL})$ was added dimethyl malonate ($39.6 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($11.6 \mathrm{mg}, 0.29$ mmol, 3.0 equiv) and 15 -crown-5-ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature for 8 hours, and then quenched with water. The
mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-1.52a (56 $\mathrm{mg}, 0.095 \mathrm{mmol}, 99 \%$) as a yellow solid.

Similar treatment of (+)-1.47 (34 mg, $0.065 \mathrm{mmol}, 1.0$ equiv, 96% ee) in THF (3 mL) with malonate ($26.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($7.8 \mathrm{mg}, 0.20$ mmol, 3.0 equiv) and 15-crown-5-ether ($2.86 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.2$ equiv) afforded (2 S , $3 \mathrm{R})-(-)-\mathbf{1 . 5 2 a}(38 \mathrm{mg}, 0.065 \mathrm{mmol}, 99 \%, 96 \% \mathrm{ee})\left\{[\alpha]_{\mathrm{D}}{ }^{20}=-375.0,\left(\mathrm{c}=1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.41,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.22(\mathrm{br}$ s, 1 H), $6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1$ H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 229.8 (Mo-CO), 227.1 (Mo-CO), 167.8 (ㄷOOMe), 167.5 (등Me), 146.9 (CH), 145.3 $(\mathrm{CH}), 140.2(\mathrm{CH}), 136.6(\mathrm{CH}), 136.0(\mathrm{CH}), 134.3(\mathrm{CH}), 105.7(\mathrm{CH}), 105.6(\mathrm{CH}), 105.1$ $(\mathrm{CH}), 88.5,70.0,69.7,63.4,59.7,58.7,52.8,52.7,21.6\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 3164(\mathrm{w}), 3127$ (w), 2957 (m), 2482 (m), 1934 (s), 1841 (s), 1733 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{7}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$612.1270. Found: 612.1267. HPLC: Daicel ${ }^{\circledR}$ Chiralcel OJRH column, isocratic solvent system: $45 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (without TFA), $1.0 \mathrm{~mL} / \mathrm{min}$., $\lambda=254 \mathrm{~nm},(2 \mathrm{~S}, 3 \mathrm{R})-(-)-\mathbf{1 . 5 2 a}: \mathrm{t}_{(-)}=15.9 \mathrm{~min} ;(2 \mathrm{R}, 3 \mathrm{~S})-(+)-\mathbf{1 . 5 2} \mathbf{a}: \mathrm{t}_{(+)}=18.1 \mathrm{~min}$.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\eta-3,4,5)$-2-(1'-methoxycarbonyl)methoxycarbonylmethyl-5-phenyl-5,6-dihydro-2H-pyran-2yl]molybdenum, (\pm)-1.52b

To a solution of (\pm) - $\mathbf{1 . 5 1 b}$ ($50 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was added dimethyl malonate ($34 \mathrm{mg}, 0.26 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($10 \mathrm{mg}, 0.25$ $\mathrm{mmol}, 3.0$ equiv) and $15-\mathrm{crown}-5-$ ether $(3.7 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature for 8 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 5 2 b}$ (49 $\mathrm{mg}, 0.076 \mathrm{mmol}, 90 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.34,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.27(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=$ $8.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 230.5(\mathrm{Mo}-\mathrm{CO})$, 227.2 (Mo-CO), 167.9 (ㅈOOMe), 167.5 (ㄷOOMe), 147.0, 145.0, 139.9, 137.9, 136.1, $136.0,134.2,128.7,128.1,126.0,105.8,105.6,104.3,89.2,69.9,65.7,60.9,58.9,58.5$,
52.82, 52.78. IR (cm^{-1}) 2957 (w), 2486 (m), 1934 (s), 1853 (s$), 1733$ (s), 1505 (s$)$. HRMS (FAB) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BMoN}_{6} \mathrm{O}_{7}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 674.1427. Found: 674.1427.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][η-3,4,5)-2-(1'-methoxycarbonyl)methoxycarbonylmethyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)1.52d

To a solution of (\pm)-1.51d ($50 \mathrm{mg}, 0.098 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was added dimethyl malonate ($41 \mathrm{mg}, 0.31 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($11.6 \mathrm{mg}, 0.29$ $\mathrm{mmol}, 3.0$ equiv) and 15 -crown- 5 -ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature for 8 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-1.52d (53 $\mathrm{mg}, 0.092 \mathrm{mmol}, 94 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.31,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=11.4 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{dd}, J=$ $12.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 225.5,224.4,167.9,167.5,147.3$,
$142.2,141.1,136.02,135.96,134.4,106.0,105.43,105.37,69.8,68.7,66.0,63.2,58.8$, 58.6, 52.8, 52.7. IR (cm^{-1}) 3150 (w), 2957 (m), 2486 (m), 1942 (s), 1857 (s$), 1733$ (s$)$. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{7} .\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 598.1114. Found: 598.1126.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-1-benzyloxycarbonyl-2-(1'-methoxycarbonyl)methoxycarbonylmethyl-5,6-dihydro-2H-pyridin-2yl]molybdenum, (\pm)-1.52e

To a solution of $(\pm) \mathbf{- 1 . 5 1 e}(50 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added dimethyl malonate ($32.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension $(9.36 \mathrm{mg}, 0.23$ mmol, 3.0 equiv) and 15 -crown- 5 -ether ($3.47 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature for 8 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-1.52e (52 $\mathrm{mg}, 0.073 \mathrm{mmol}, 94 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.28,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4$ H), $7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.16-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.15(\mathrm{~m}, 2 \mathrm{H})$,
4.99-5.04 (m, 1 H), $4.65(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.52(\mathrm{dt}, J=6.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 0.4$ H), 4.15-4.31 (m, 2 H), $3.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.82(\mathrm{~s}, 1.8 \mathrm{H}), 3.81(\mathrm{~s}, 1.2 \mathrm{H}), 3.71-$ $3.76(\mathrm{~m}, 2.4 \mathrm{H}), 3.67(\mathrm{~s}, 1.8 \mathrm{H}), 3.49(\mathrm{~s}, 1.2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 226.1 (Mo-CO), 225.5 (Mo-CO), 224.4 (Mo-CO), 223.9 (Mo-CO), 168.6 (ㄷOOMe), 168.4 (즈OMe), 168.1 (ㄷOOMe), 167.8 (ㄷOOMe), 154.6 (Cbz carbonyl), 154.3 (Cbz carbonyl), 147.2, 142.84, 142.77, 140.99, 140.95, 136.6, 136.3, 136.03, 136.00, 134.39, $128.30,128.0,127.8,127.7,106.0,105.6,105.5,105.43,105.41,69.2,69.0,67.4,67.2$, $65.5,65.0,64.3,64.1,58.0,57.2,52.6,52.5,52.4,51.5 .51 .3,39.9\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 39.4(\mathrm{~N}-$ CH_{2}). IR (cm^{-1}): 2957 (w), 2486 (w), 1945 (s$), 1857$ (s), 1733 (s), 1702 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BMoN}_{7} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 736.1195. Found: 736.1193.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][η-3,4,5)-1-benzyloxycarbonyl-2-(1'-methoxycarbonyl)methoxycarbonylmethyl-5-methyl-5,6-dihydro-2H-pyridin-2yl]molybdenum, $(\pm)-1.52 f$

$1.52 f$

To a solution of $(\pm) \mathbf{- 1 . 5 1 f}(50 \mathrm{mg}, 0.077 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added dimethyl malonate ($32.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($9.36 \mathrm{mg}, 0.23$ mmol, 3.0 equiv) and 15 -crown- 5 -ether ($3.47 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature for 8 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated.

Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-1.52f (39 $\mathrm{mg}, 0.054 \mathrm{mmol}, 70 \%$) as a yellow solid with $\mathbf{1 . 5 2 f}(15 \mathrm{mg}, 0.023 \mathrm{mmol}, 30 \%)$ recovered.
$\mathrm{TLC}\left(\mathrm{R}_{f}=0.28,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.46(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 0.6 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.49 (m, 1 H), 7.26-7.40(m, 5H), 6.13-6.24 (m, $3 H$), 5.03-5.15 (m, 3 H), $5.45(\mathrm{dd}$, $J=7.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.34(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 0.4$ H), $4.11(\mathrm{~d}, ~ J=16.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.88-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 1.8 \mathrm{H}), 3.82(\mathrm{~s}, 1.2 \mathrm{H}), 3.78$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.63(\mathrm{~s}, 1.8 \mathrm{H}), 3.49(\mathrm{~s}, 1.2 \mathrm{H}), 3.50(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.99(\mathrm{~s}, 1.2 \mathrm{H}), 1.95(\mathrm{~s}, 1.8 \mathrm{H})$.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-5-methyl-2H-pyran-2-yl]molybdenum, (\pm)-1.53

To a solution of $(\pm)-\mathbf{1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(5 \mathrm{~mL})$ was added TrPF_{6} ($41 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 hrs , and dry ether (20 mL) was added to complete the precipitation. The solvents were removed via cannula and the remaining solid was washed with dry ether $(3 \times 10 \mathrm{~mL})$ then briefly dried under vacuum. The solid was then dissolved in THF (3 mL) and treated with 3.0 equiv sodium malonate solution in 3 mL THF (prepared from 11 mg NaH and 37 mg malonate) and $15-\mathrm{C}-5$ ($4.3 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). After 1 hr , the reaction was quenched with
water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded $(\pm) \mathbf{- 1 . 5 3}(24 \mathrm{mg}, 0.053 \mathrm{mmol}, 55 \%)$ as a yellow solid and $(\pm) \mathbf{- 1 . 5 2 a}(10 \mathrm{mg}, 0.017 \mathrm{mmol}$, $18 \%)$ as a side product.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.70,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54$ (dd, $J=4.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1$ H), $2.46(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 228.9$ (Mo-CO), 223.4 (Mo-CO), 145.9, 142.1, 141.1, 136.1, 135.9, 134.4, $130.2,118.4,108.7,105.6,105.5,105.3,65.1,46.3,18.1\left(\mathrm{CH}_{3}\right)$.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-3,4,5)-2-nitromethyl-5-methyl-5,6dihydro-2Hpyran-2-yl]molybdenum, (\pm)-1.54a

To a solution of (\pm) - $\mathbf{1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added nitromethane ($18.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($11.6 \mathrm{mg}, 0.29$ mmol, 3.0 equiv). The reaction mixture was stirred at room temperature for 5 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was
extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanesEtOAc (2:1) afforded (\pm)- $\mathbf{1 . 5 4 a}(40 \mathrm{mg}, 0.077 \mathrm{mmol}, 80 \%)$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{ddd}, J=8.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1$ H), $3.72(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 230.5 (Mo-CO), 225.6 (Mo-CO), 146.9 (CH), 145.6 (CH), $139.5(\mathrm{CH}), 136.8(\mathrm{CH})$, $136.1(\mathrm{CH}), 134.4(\mathrm{CH}), 105.8(\mathrm{CH}), 105.7(\mathrm{CH}), 105.3(\mathrm{CH}), 89.2,78.9,69.5,69.1$, 62.7, 55.6, $21.8\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 3146$ (w), 2957 (w), 2486 (m), 1934 (s), 1845 (s), 1552 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BMoN}_{7} \mathrm{O}_{5} .\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 524.0746. Found: 524.0746.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [(η-3,4,5)-2-malononitrilyl -5-methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.54b

1.54b

To a solution of $(\pm) \mathbf{- 1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in THF $(5 \mathrm{~mL})$ was added malononitrile ($19.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($11.6 \mathrm{mg}, 0.29$ mmol, 3.0 equiv) and 15 -crown- 5 -ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The
mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) - $\mathbf{1 . 5 4 b}$ (47 mg , $0.090 \mathrm{mmol}, 94 \%)$.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.32,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{brs}, 1 \mathrm{H})$, 7.72 (br s, 1 H$), 7.63(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.44(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 230.3$, 225.6, 146.9, 145.6, $139.8,136.9,136.3,134.6,111.7,111.4,105.91,105.88,105.4,88.0,72.2,70.1,63.9$, 54.8, 24.5, 21.8. IR ($\left.\mathrm{cm}^{-1}\right) 3127$ (w), 2957 (w), 2910 (m), 2486 (m), 2235 (m), 1938 (s$)$, 1849 (s), 1606 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BMoN}_{8} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 529.0800$. Found: 529.0787.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-(1'-ethoxycarbonyl-1'methyl) ethoxycarbonylmethyl -5-methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.54d

To a solution of $(\pm)-\mathbf{1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in THF $(5 \mathrm{~mL})$ was added methyl diethylmalonate ($52.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension (11.6 mg , $0.29 \mathrm{mmol}, 3.0$ equiv) and 15 -crown-5-ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with
water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 5 mL), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded $(\pm)-\mathbf{1 . 4 7}(39 \mathrm{mg}, 0.063 \mathrm{mmol}, 66 \%)$ and the recovered $(\pm) \mathbf{- 1 . 5 4 d}(14 \mathrm{mg}, 0.027 \mathrm{mmol}$, 28\%).
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.48,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.30(\mathrm{~m}, 6 \mathrm{H}), 3.98\left(\mathrm{~d}_{\mathrm{AB}}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{~d}_{\mathrm{AB}}, J=\right.$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 229.36$ (Mo-CO), 229.32 (Mo-CO), 171.7 (COOEt),
 $(\mathrm{CH}), 105.7(\mathrm{CH}), 105.5(\mathrm{CH}), 105.1(\mathrm{CH}), 84.8,73.5,73.0,65.6,61.6,61.39,61.36$, 60.2, $21.4\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2988(\mathrm{w}), 2945(\mathrm{w})$, 2482 (w), 1934 (s), 1849 (s), 1725 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BMoN}_{6} \mathrm{O}_{7}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$637.1480. Found: 637.1507. $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$654.1745. Found: 654.1776.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][η-3,4,5)-2-(1'-methoxycarbonyl)acetonyl5-methyl5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)1.54e

To a solution of $(\pm)-\mathbf{1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added methyl acetoacetate ($34.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension (11.6 mg , $0.29 \mathrm{mmol}, 3.0$ equiv) and $15-\mathrm{crown}-5$-ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded $(\pm)-1.54 \mathrm{e}(38 \mathrm{mg}, 0.066 \mathrm{mmol}, 69 \%)$ as two diastereomers and the recovered $(\pm)-\mathbf{1 . 4 7}$ $(15 \mathrm{mg}, 0.029 \mathrm{mmol}, 30 \%)$. The two diastereomers were further purified over silica gel with hexanes-EtOAc (2:1) to provide samples for characterization.

Less polar diastereomer: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.37,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1$ H), $4.54(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 230.0(\mathrm{Mo}-$ CO), 227.0 (Mo-CO), $201.0\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right)$, 168.3 ($\underline{\mathrm{COOMe}}$), $146.9(\mathrm{CH}), 145.3(\mathrm{CH}), 140.0$ $(\mathrm{CH}), 136.6(\mathrm{CH}), 136.0(\mathrm{CH}), 134.3(\mathrm{CH}), 105.7(\mathrm{CH}), 105.6(\mathrm{CH}), 105.2(\mathrm{CH}), 88.6$, 69.9, 69.7, 67.2, 63.2, 59.6, 52.1, $27.4\left(\mathrm{CH}_{3} \mathrm{CO}\right), 21.6\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3146(\mathrm{w}), 3127$ (w), 2957 (m), 2482 (m), 1930 (s), 1841 (s), 1741 (s), 1714 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{6}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 596.1321 . Found: 596.1318.

More polar diastereomer: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.35,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1$ H), $4.51(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 229.9$ (Mo$\mathrm{CO}), 226.9$ (Mo-CO), $201.2\left(\mathrm{CH}_{3}-\underline{\mathrm{CO}}\right), 167.9$ (COOMe), $146.9(\mathrm{CH}), 145.3(\mathrm{CH}), 140.2$ $(\mathrm{CH}), 136.6(\mathrm{CH}), 136.0(\mathrm{CH}), 134.3(\mathrm{CH}), 105.7(\mathrm{CH}), 105.6(\mathrm{CH}), 105.1(\mathrm{CH}), 88.5$, 69.9, 69.5, 67.2, 63.5, 59.7, 52.8, $25.6\left(\mathrm{CH}_{3} \mathrm{CO}\right), 21.7\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3146(\mathrm{w}), 3019$ (w), 2953 (m), 2482 (m), 1934 (s), 1841 (s), 1741 (s), 1714 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{6}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 596.1321. Found: 596.1318.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-(1'-methoxycarbonyl)acetonyl5,6dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.55

To a solution of (\pm)-1.51c ($50 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added methyl acetoacetate ($29 \mathrm{mg}, 0.25 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension $(9.7 \mathrm{mg}, 0.24$ mmol, 3.0 equiv) and 15 -crown-5-ether ($3.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$),
and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 5 5}(43 \mathrm{mg}$, $0.076 \mathrm{mmol}, 94 \%)$ as two diastereomers. The two diastereomers were further purified over silica gel with hexanes-EtOAc $(2: 1)$ to provide samples for characterization.

Less polar diastereomer: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.29,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.19(\mathrm{~m}$, $2 \mathrm{H}), 4.54(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.4$ (Mo-CO), 224.6 (Mo-CO), $200.9\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 168.4$ (COOMe), $147.3(\mathrm{CH}), 142.2(\mathrm{CH}), 141.1(\mathrm{CH}), 136.1(\mathrm{CH}), 136.0(\mathrm{CH}), 134.4(\mathrm{CH})$, $106.0(\mathrm{CH}), 105.43(\mathrm{CH}), 105.41(\mathrm{CH}), 69.8,68.8,67.0,65.8,63.2,58.4,52.6,27.6$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3146$ (w), 2957 (w), 2486 (m), 1942 (s), 1857 (s$), 1741$ (s), 1714 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{6} \quad\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$582.1188. Found:582.1164.

More polar diastereomer: $\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.58 (m, 2 H$), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.18(\mathrm{~m}, 2 \mathrm{H})$, $4.52(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=13.2$ Hz, 1 H), 4.06-4.09 (m, 1 H$), 3.98(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.69-3.75 (m, 2 H), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 225.5$ (Mo-CO), 224.4 (Mo-CO), 201.2 $\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 167.8$ (즈OOMe), $147.3(\mathrm{CH}), 142.3(\mathrm{CH}), 141.0(\mathrm{CH}), 136.02(\mathrm{CH}), 135.96$ $(\mathrm{CH}), 134.4(\mathrm{CH}), 106.0(\mathrm{CH}), 105.44(\mathrm{CH}), 105.36(\mathrm{CH}), 69.7,68.9,67.1,66.0,63.0$,
58.6, 52.8, $30.1\left(\mathrm{CH}_{3} \mathrm{CO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3130(\mathrm{w}), 2957(\mathrm{w}), 2486(\mathrm{~m}), 1942(\mathrm{~s}), 1857(\mathrm{~s})$, 1733 (s), 1505 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{6}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 582.1188$. Found: 582.1164.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-(1'-acetyl)acetonyl-5,6-dihydro2Hpyran-2-yl]molybdenum, (\pm)-1.56

To a solution of $(\pm) \mathbf{- 1 . 5 1} \mathbf{c}(50 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added 2,4-pentadione ($25 \mathrm{mg}, 0.25 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension $(9.7 \mathrm{mg}, 0.24 \mathrm{mmol}$, 3.0 equiv) and 15 -crown-5-ether ($3.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 5 6}$ (30 mg , $0.055 \mathrm{mmol}, 68 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.5$ (Mo-CO), 224.4 (Mo-CO), $202.5\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 201.8\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 147.3(\mathrm{CH}), 142.3$
$(\mathrm{CH}), 141.0(\mathrm{CH}), 136.1(\mathrm{CH}), 136.0(\mathrm{CH}), 134.4(\mathrm{CH}), 106.0(\mathrm{CH}), 105.45(\mathrm{CH})$, $105.41(\mathrm{CH}), 76.6,69.9,68.9,65.6,63.0,58.4,31.4\left(\underline{\mathrm{CH}}_{3} \mathrm{CO}\right), 27.1\left(\underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{CO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ 3146 (w), 2486 (m), 1942 (s), 1857 (s), 1722 (s), 1698 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BMoN}_{6} \mathrm{O}_{5}$. ([M-C $\left.\left.\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right]^{+}\right)$: 449.0431 Found: 449.0444.
(\pm)-Dicarbonyl $[$ hydridotris(1-pyrazolyl $)$ borato $][(\eta-3,4,5)$-1-benzyloxycarbonyl-2(1'-
methoxycarbonyl)acetonyl-5,6-dihydro-2H-pyridin-2-yl]molybdenum, $(\pm)-1.57$ methoxycarbonyl)acetonyl-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-1.57

To a solution of (\pm)-1.51e ($50 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(5 \mathrm{~mL})$ was added methyl acetoacetate ($24 \mathrm{mg}, 0.21 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($8 \mathrm{mg}, 0.20$ mmol, 3.0 equiv) and 15 -crown-5-ether ($2.9 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 5 7}$ (42 $\mathrm{mg}, 0.061 \mathrm{mmol}, 91 \%$) as two diastereomers. The two diastereomers were further purified over silica gel with hexanes-EtOAc $(2: 1)$ to provide samples for characterization.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4$ H), $7.66(\mathrm{~d}, ~ J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1.5 \mathrm{H})$,
$7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.21(\mathrm{~m}, 2$ H), $5.15\left(\mathrm{~d}_{\mathrm{AB}}, J=12.4 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 5.12\left(\mathrm{~d}_{\mathrm{AB}}, J=13.2 \mathrm{~Hz}, 0.6 \mathrm{H}\right), 5.06\left(\mathrm{~d}_{\mathrm{AB}}, J=12.8 \mathrm{~Hz}\right.$, $0.6 \mathrm{H}), 5.02\left(\mathrm{~d}_{\mathrm{AB}}, J=12.4 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 5.02(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.97(\mathrm{dd}, J=$ 6.4 Hz, 2.8 Hz, 0.4 H), 4.53 (dt, $J=6.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.43(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}$, $0.4 \mathrm{H}), 4.11-4.29(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 1.8 \mathrm{H}), 3.80(\mathrm{~s}, 1.2 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $1.8 \mathrm{H}), 1.95(\mathrm{~s}, 1.2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 226.1$ (Mo-CO), $223.9(\mathrm{Mo}-\mathrm{CO})$, $201.6\left(\mathrm{CH}_{3} \mathrm{CO}\right), 201.2\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, 169.6 (등Me), 169.4 (ㄷOOMe), $154.7(\mathrm{Cbz}$ carbonyl), 154.1 (Cbz carbonyl), 147.2, 142.9, 140.9, 136.5, 136.1, 136.0, 134.4, 128.4, $128.31,128.26,128.0,127.8,127.7,106.0,105.6,105.5,105.4,69.6,69.5,67.4,67.2$, 65.64, 65.56, 65.0. 64.9, 64.1, 52.6, 51.3, 51.0, $39.8\left(\mathrm{~N}^{2} \mathrm{CH}_{2}\right), 39.5\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 29.7,28.93$ $\left(\underline{C H}_{3} \mathrm{CO}\right), 28.85\left(\underline{\mathrm{CH}}_{3} \mathrm{CO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3127$ (w), 2953 (w), 2486 (m), 1945 (s), 1857 (s), 1702 (s), 1505 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BMoN}_{7} \mathrm{O}_{7}$ ([M+Na] ${ }^{+}$): 720.1246. Found: 720.1249.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.25,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4$ H), $7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.28-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.20(\mathrm{~m}, 2 \mathrm{H}), 5.01-$ 5.12 (m, 3 H), $4.48(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.38(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.4 \mathrm{H})$, 4.26-4.32 (m, 1 H$), 4.17-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 1.4 \mathrm{H}), 3.61-3.73(\mathrm{~m}, 1.6 \mathrm{H}), 3.59$ $(\mathrm{s}, 1.8 \mathrm{H}), 3.38(\mathrm{~s}, 1.2 \mathrm{H}), 2.35(\mathrm{~s}, 1.8 \mathrm{H}), 2.30(\mathrm{~s}, 1.2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 225.3 (Mo-CO), 223.2 (Mo-CO), 221.9 (Mo-CO), $206.0\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 202.1\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right)$, 168.2 (ㄷOOMe), 167.7 (ㄷOOMe), 154.5 (Cbz carbonyl), 154.3 (Cbz carbonyl), 147.2, $142.6,141.1,136.0,134.4,128.3,128.2,127.9,127.83,127.77,117.4,116.2,112.3$,
$106.0,105.5,105.4,70.1,69.6,67.5,66.3,65.8,65.5,65.0,63.7,63.4,52.5,52.3,51.2$, 51.1, $39.0\left(\mathrm{~N}_{\mathrm{CH}}^{2}\right), 30.8\left(\mathrm{CH}_{3} \mathrm{CO}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2957(\mathrm{w}), 2490(\mathrm{~m}), 1945(\mathrm{~s}), 1861(\mathrm{~s})$, 1737 (s), 1706 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BMoN}_{7} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 720.1246. Found: 720.1249.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][$\boldsymbol{\eta} \boldsymbol{\eta}$-3,4,5)-2-benzylmalononitrilyl -5-methyl-5,6-dihydro-2H-pyran-2-yl]molybdenum, (\pm)-1.59

1.59

To a solution of $(\pm) \mathbf{- 1 . 4 7}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in THF $(5 \mathrm{~mL})$ was added benzylmalononitrile ($46.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension (11.6 mg , $0.29 \mathrm{mmol}, 3.0$ equiv) and 15 -crown- 5 -ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 5 mL), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)- $\mathbf{1 . 5 9}$ ($55 \mathrm{mg}, 0.090 \mathrm{mmol}, 94 \%$).
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.35,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.45 (m, 5 H$), 6.33(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.25(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [(η-2,3,4)-1-malononitrilene-heptan-

 5-onyl]molybdenum, (\pm)-1.61

1.61

To a solution of $(\pm) \mathbf{- 1 . 6 0}(50 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.0$ equiv) in THF $(5 \mathrm{~mL})$ was added malononitrile ($20 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension ($11.6 \mathrm{mg}, 0.29 \mathrm{mmol}$, 3.0 equiv) and 15 -crown- 5 -ether ($4.23 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded $(\pm) \mathbf{- 1 . 5 9}(31 \mathrm{mg}$, $0.058 \mathrm{mmol}, 60 \%)$.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.28,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $7.60(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 3 \mathrm{H}), 5.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dq}, J=11.2,7.2 \mathrm{~Hz}, 1$ H), $2.24(\mathrm{dq}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

To a solution of $(\pm) \mathbf{- 1 . 5 4 f}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($4.3 \mathrm{mg}, 0.106 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (6.0 $\mathrm{mg}, 0.018 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 2}(15 \mathrm{mg}$, $0.080 \mathrm{mmol}, 90 \%$) as a colorless oil.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.32,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.0,173.5,142.3,114.5,114.3,77.1,75.9,66.0$, 28.9, 19.6, 15.5. IR (cm^{-1}) 2922 (m), 2829 (m), 1675 (s), 1590 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$195.1016. Found: 195.1016.
(\pm)-4-Benzyl 3-methyl 2-methyl-5,7a-dihydrofuro[3,2-b]pyridine-3,4(3aH)dicarboxylate, (\pm)-1.63

To a solution of $(\pm) \mathbf{- 1 . 5 7}(50 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($3.5 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (5.0 $\mathrm{mg}, 0.014 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 3}$ (20 mg , $0.060 \mathrm{mmol}, 83 \%)$ as a colorless oil.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.99-6.21(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-$ $5.23(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.54(\mathrm{~m}, 1 \mathrm{H})$, 2.18 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,165.6,155.4,136.6,130.3,129.7$, $128.5,128.1,122.6,100.8,74.6,67.4,55.9,50.8,39.2\left(\mathrm{~N}-\mathrm{CH}_{2}\right), 15.1\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ 2926 (w), 1698 (s), 1640 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 330.1336$. Found: 330.1335.

(\pm)-(3aR,7aR)-methyl 2,6-dimethyl-5,7a-dihydro-3aH-furo[3,2-b]pyran-3carboxylate, $(\pm)-1.65$

To a solution of $(\pm) \mathbf{- 1 . 5 4 e}(50 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($4.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (6.0
$\mathrm{mg}, 0.017 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 5}$ (15 mg , $0.071 \mathrm{mmol}, 85 \%$) as a colorless oil.
$\mathrm{TLC}\left(\mathrm{R}_{f}=0.34,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.81(\mathrm{~m}, 1$ H), $4.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 174.1,165.9,142.4,114.2,105.4,77.2,75.2$, 66.1, 51.1, $19.6\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 2949$ (w), 1698 (s), 1629 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 211.0965 . Found: 211.0961.
(\pm)-(3aR,7aR)-Methyl 2-methyl-5,7a-dihydro-3aH-furo[3,2-b]pyran-3-carboxylate, $(\pm)-1.66$

To a solution of $(\pm) \mathbf{- 1 . 5 5}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($4.3 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (6.3 $\mathrm{mg}, 0.018 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash
chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 6}(14.5 \mathrm{mg}$, $0.074 \mathrm{mmol}, 83 \%$) as a colorless oil.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.34,2.5: 1\right.$ hexanes:EtOAc$) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.30(\mathrm{ddt}, J=$ $10.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=10.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1$ H), 4.42 (br s, 1 H), 4.18 (dd, $J=16.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1$ H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,165.8,133.8,119.8$, 105.5, 76.0, 75.8, 62.5, 51.2, $14.8\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 2949$ (w), 1698 (s), 1629 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$197.0808. Found: 197.0807.
(\pm)-1-((3aR,7aR)-2-Methyl-5,7a-dihydro-3aH-furo[3,2-b]pyran-3-yl)ethanone, (\pm)1.67

To a solution of $(\pm) \mathbf{- 1 . 5 6}(50 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.0$ equiv) in DMSO $(5 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($4.3 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (6.4 $\mathrm{mg}, 0.018 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air overnight, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 5 \mathrm{~mL})$, and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 7}(15 \mathrm{mg}$, $0.083 \mathrm{mmol}, 92 \%$) as a colorless oil.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.17,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.29-6.33 (m, 1 H), $6.10-6.14(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.18$ (ddd, $J=18.2 \mathrm{~Hz}$,
6.0 Hz, 1.6 Hz, 1 H), $4.04(\mathrm{dq}, J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 195.0\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 173.6,133.7,120.0,114.5,76.5,75.8,62.4$, $28.9\left(\underline{C H}_{3} \mathrm{CO}\right), 15.4\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 2922$ (w), 1668 (s), 1528 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 181.0859$. Found: 189.0859.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-3,4,5)-2-(1'-hydroxymethyl) hydroxyethyl-5-methyl-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-1.68

1.68

To a solution of (\pm)-1.52a ($50 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) was added DIBAL (1.0 M in hexane, $0.42 \mathrm{~mL}, 0.42 \mathrm{mmol}, 5$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate (190mg, $0.84 \mathrm{mmol}, 10.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc $(10 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layer were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 8}(35 \mathrm{mg}, 0.065 \mathrm{mmol}, 77 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.21,1: 1\right.$ hexanes: EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.23(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.92-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.81$ (br s, 1 H$), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 230.9,226.8,146.8,145.4,139.7,136.5,135.9,134.2,105.6,105.5$,
$105.1,88.8,70.1,69.0,64.5,63.8,63.3,59.5,46.8,21.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3385(\mathrm{~s}), 3150(\mathrm{w})$, 2945 (m), 2899 (m), 2482 (m), 1930 (s), 1841 (s), 1505 (s), 1409 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BMoN}_{6} \mathrm{O}_{5}\left([\mathrm{M}]^{+}\right)$: 538.1028. Found: 538.1033.
(6-methyl-3,3a,5,7a-tetrahydro-2H-furo[3,2-b]pyran-3-yl)methanol, 1.69

To a solution of $(\pm) \mathbf{- 1 . 6 8}(35 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.0$ equiv) in DMSO (5 mL) was added $60 \% \mathrm{NaH}$ dispension ($3.1 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.2$ equiv) and copper 2-ethylhexanoate (5.0 $\mathrm{mg}, 0.014 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature in dry air for three days, and then quenched with water. The mixture was poured into a separatory funnel containing $\operatorname{EtOAc}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH} 33-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 1 . 6 9}(9.5 \mathrm{mg}, 0.056 \mathrm{mmol}, 86 \%)$ as a colorless oil.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.21,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.23(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.86-4.08(\mathrm{~m}, 5 \mathrm{H}), 3.70-3.73(\mathrm{~m}, 1.6 \mathrm{H}), 3.56(\mathrm{dd}, J$ $=8.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.62-2.71(\mathrm{~m}, 0.3 \mathrm{H}), 2.53$ (quint, $J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.40(\mathrm{dd}, J$ $=7.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{q}, J=5.2 \mathrm{~Hz}, 0.7 \mathrm{H})$.
$(+)$ and (\pm)- (3aS,7aR)-Benzyl 2-methyl-3-(phenylsulfonyl)-5,7a-dihydrofuro[3,2-b]-pyridine4(3aH)-carboxylate, $(+)$-1.82 and (\pm)-1.82

To a solution of (\pm) - $\mathbf{1 . 5 1 e}(500 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.0$ equiv) in DMSO $(40 \mathrm{~mL})$ was added phenylsulfonyl acetone ($416 \mathrm{mg}, 2.1 \mathrm{mmol}, 3.1$ equiv), $60 \% \mathrm{NaH}$ dispension (80 $\mathrm{mg}, 2.0 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at room temperature under argon overnight, and then copper 2-ethylhexanoate ($50 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.2$ equiv) and $60 \% \mathrm{NaH}$ dispension ($40 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.5$ equiv) were added. The mixture was stirred in dry air for 24 hours, and then quenched with water. The mixture was poured into a separatory funnel containing $\operatorname{EtOAc}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 40 \mathrm{~mL}$), and the combined organic layers were washed with $3 \mathrm{M} \mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded $(\pm) \mathbf{- 1 . 8 2}(156 \mathrm{mg}, 0.38 \mathrm{mmol}, 57 \%)$ as light yellow oil.

Similar treatment of $(+$) $\mathbf{- 1 . 5 1 e}$ ($500 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in DMSO (40 mL) with phenylsulfonyl acetone ($416 \mathrm{mg}, 2.1 \mathrm{mmol}, 3.1$ equiv) and $60 \% \mathrm{NaH}$ dispension ($80 \mathrm{mg}, 2.0 \mathrm{mmol}, 3.0$ equiv), and further demetalation with copper 2ethylhexanoate ($50 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.2$ equiv) and $60 \% \mathrm{NaH}$ dispension ($40 \mathrm{mg}, 1.0$ mmol, 1.5 equiv) afforded (3aS, 7aR)-(-)-1.82 ($150 \mathrm{mg}, 0.37 \mathrm{mmol}, 57 \%,>99 \%$ ee) $\left\{[\alpha]_{\mathrm{D}}{ }^{20}=-126.7,\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$

TLC $\left(\mathrm{R}_{f}=0.28,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{HNMR}$ (a mixture of two rotamers) (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.58(\mathrm{~m}, 8 \mathrm{H})$, $6.10(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.23$ (AB quartet, $J=12.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 5.17(\mathrm{AB}$ quartet, $J=12.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.99(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=18.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.18(\mathrm{dd}, J=18.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 0.4 \mathrm{H})$, $3.68(\mathrm{dd}, J=18.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.05(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.26(\mathrm{~s}, 1.2 \mathrm{H}), 2.24(\mathrm{~s}$, $1.8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.7, 169.6, 155.5, 154.7, 142.3, 142.1, 136.4, $136.0,132.8,131.3,130.3,129.0,128.5,128.4,128.2,128.0,127.9,127.0,126.7,121.7$, $121.5,108.0,74.4,74.2,67.9,67.6,56.4,55.8,39.3\left(\mathrm{NCH}_{2}\right), 38.8\left(\mathrm{NCH}_{2}\right), 14.6\left(\mathrm{CH}_{3}\right)$. IR (cm^{-1}) $3065(\mathrm{w}), 1702(\mathrm{~s}), 1625$ (s). HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 412.1213. Found: 412.1219. $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 429.1479. Found: 429.1484. HPLC: Daicel ${ }^{\circledR}$ Chiralcel OD-RH column, isocratic solvent system: $45 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (without TFA), $1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm},(3 \mathrm{aS}, 7 \mathrm{aR})-(-)-\mathbf{1 . 8 2}: \mathrm{t}_{(-)}=29.2 \mathrm{~min} ;(3 \mathrm{aR}, 7 \mathrm{aS})-(+)-\mathbf{1 . 8 2}: \mathrm{t}_{(+)}=$ 32.5 min .
$(+)$ and $(\pm)-(3 a S, 7 a S)-B e n z y l-2-h y d r o x y-2-m e t h y l-3,3 a, 5,7 a-t e t r a h y d r o f u r o[3,2-~$ b]pyridine4(2 H)-carboxylate, $(+)$ and $(\pm)-1.84$

To a solution of $(\pm) \mathbf{- 1 . 8 2}(130 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0$ equiv) in THF/methanol $(1 / 2 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}(683 \mathrm{mg}, 4.8 \mathrm{mmol}, 15$ equiv) and 10% sodium mercury amalgam ($1.1 \mathrm{~g}, 4.8 \mathrm{mmol}, 10$ equiv) at $-35{ }^{\circ} \mathrm{C}$. The reaction mixture was warm to room temperature over 2 hours, and then quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and the layers were
separated. The aqueous layer was extracted with EtOAc (2 x 4 mL), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was dissolved in acetone/water $(3 / 1 \mathrm{~mL})$. The solution was acidified by 1 M HCl to $\mathrm{pH}=1$, and then stirred for 20 minutes at room temperature. The mixture was neutralized to $\mathrm{pH}=7$ with saturated sodium carbonate solution, extracted with EtOAc (3 x 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (1:1) afforded (\pm) $\mathbf{- 1 . 8 4}(81 \mathrm{mg}, 0.28 \mathrm{mmol}, 88 \%)$ as colorless oil.

Similar treatment of (-)-1.82 (130 mg, $0.32 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in THF/methanol ($1 / 2 \mathrm{~mL}$) with $\mathrm{Na}_{2} \mathrm{HPO}_{4}(683 \mathrm{mg}, 4.8 \mathrm{mmol}, 15$ equiv) and 10% sodium mercury amalgam ($1.1 \mathrm{~g}, 4.8 \mathrm{mmol}, 10$ equiv) at $-35^{\circ} \mathrm{C}$ afforded (3aS, 7 aS$)-(+) \mathbf{- 1 . 8 4}(80$ $\mathrm{mg}, 0.28 \mathrm{mmol}, 86 \%)\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+24.1,\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.29,1: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{HNMR}$ (a mixture of hemiketal, hydroxylketone and corresponding rotamers) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.48(\mathrm{~m}, 5 \mathrm{H}), 5.87(\mathrm{dd}, J=10.8$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.62-5.80(\mathrm{~m}, 1.8 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 4.90-5.16(\mathrm{~m}, 2.6 \mathrm{H}), 4.60(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dq}, J=18.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.48-3.59(\mathrm{~m}, 0.5 \mathrm{H}), 2.90(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.75(\mathrm{~s}, 0.3 \mathrm{H}), 3.38$ (dd, $J=16.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.28(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.18(\mathrm{br} \mathrm{s}, 1.7 \mathrm{H})$, $2.01(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 1.84(\mathrm{t}, J=12.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.82(\mathrm{~s}, 0.7 \mathrm{H}), 1.50(\mathrm{~s}$, $1.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3$ (Cbz carbonyl), 136.3, 128.5, 128.2, 128.0, 127.96, 127.92, 127.2, 125.9, 123.9, 105.0, 103.7, 71.7, 70.9, 67.4, 65.6, 52.0, 51.4, 49.3, $41.4,40.2,39.4,39.1,39.0,38.5,30.2,29.0,28.4$. IR $\left(\mathrm{cm}^{-1}\right) 3424$ (br s), 3038 (w), 2984
(w), 1698 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 312.1206. Found: 312.1209. ([M+K] ${ }^{+}$): 328.0946. Found: 328.0948.
$(+)$ and (\pm)-(3aS,7aS)-Benzyl-2-hydroxy-2-methylhexahydrofuro[3,2-b]pyridine$4(2 \mathrm{H})$ carboxylate, $(+)$ and $(\pm)-1.85$

To a solution of $(\pm) \mathbf{- 1 . 8 4}(70 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) in THF (3 mL) was added PtO_{2} ($5.5 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was stirred at room temperature for 5 hours in hydrogen with a balloon attached to the flask. The mixture was filtered, and then the filtrate was concentrated. Flash chromatography over silica gel with hexanes-EtOAc (1:1) afforded (\pm) $\mathbf{- 1 . 8 5}(67 \mathrm{mg}, 0.23 \mathrm{mmol}, 95 \%)$ as colorless oil.

Similar treatment of $(+) \mathbf{- 1 . 8 4}(80 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in THF (3 mL) with hydrogen in the presence of $10 \% \mathrm{PtO}_{2}$ afforded $(3 \mathrm{aS}, 7 \mathrm{aS})-(+)-\mathbf{1 . 8 5}(77 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 95 \%)\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+19.8,\left(\mathrm{c}=0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$

TLC $\left(\mathrm{R}_{f}=0.18,1: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of hemiketal, hydroxylketone and corresponding rotamers) $\delta 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.07-5.15$ (m, 2 H), $4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=6.8 \mathrm{~Hz}, 0.05 \mathrm{H}), 4.34(\mathrm{q}, J=6.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.98-$ 4.01 (m, 0.75 H$), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.0 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.48(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.80-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.75(\mathrm{~m}$, $1.7 \mathrm{H}), 1.39-1.56(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.3\left(\mathrm{CH}_{3} \mathrm{CO}\right), 155.9,155.2$, $136.6,136.4,128.5,128.03,127.96,127.8,103.6,74.5,73.4,68.1,67.3,67.1,53.4,51.6$, $40.9,40.5,39.8,39.5,38.9,30.1,28.0,27.2,23.7,18.7\left(\mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3443(\mathrm{~s}), 2945$ (w), 1695 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$292.1543. Found: 292.1544.

(+) and (\pm)-(2S,3S)-Benzyl 2-(2-oxopropyl)-3-(triisopropylsilyloxy)piperidine-1carboxylate, $(+$) and (\pm)-1.89

To a solution of $(\pm) \mathbf{- 1 . 8 5}(60 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv) in DMF $(1 \mathrm{~mL})$ was added imidazole ($43 \mathrm{mg}, 0.63 \mathrm{mmol}, 3$ equiv) and $\operatorname{TIPSCl}(121 \mathrm{mg}, 0.63 \mathrm{mmol}, 3$ equiv). The reaction mixture was stirred at room temperature overnight. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 3 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded (\pm)-1.89 (70 $\mathrm{mg}, 0.16 \mathrm{mmol}, 75 \%)$ as colorless oil and (\pm)- $\mathbf{1 . 8 5}(12 \mathrm{mg}, 0.042 \mathrm{mmol}, 20 \%)$ was recovered.

Similar treatment of (+)-1.85 ($60 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv, $>99 \%$ ee) in DMF (1 mL) with imidazole ($43 \mathrm{mg}, 0.63 \mathrm{mmol}, 3$ equiv) and $\operatorname{TIPSCl}(121 \mathrm{mg}, 0.63 \mathrm{mmol}, 3$ equiv) afforded (2S, 3S)-(+)-1.89 (70 mg, $0.16 \mathrm{mmol}, 75 \%)$ and (+)-1.85 (12 mg, 0.042 mmol , $20 \%)$ was recovered. $\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+34.8,\left(\mathrm{c}=0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$

TLC $\left(\mathrm{R}_{f}=0.63,2.5: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{AB}$ quartet, $J=12.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 5.09(\mathrm{~s}, 0.8 \mathrm{H})$, 4.99 (br s, 0.4 H), 4.90 (br s, 0.6 H), 4.03 (d, $J=12.4 \mathrm{~Hz}, 0.6 \mathrm{H}$), $3.78-3.92$ (m, 1.4 H), 2.75-2.92 (m, 2 H$), 2.56-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1.2 \mathrm{H}), 2.06(\mathrm{~s}, 1.8 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1.2$ $\mathrm{H}), 1.61-1.67(\mathrm{~m}, 0.8 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 8.4 \mathrm{H}), 1.01(\mathrm{~s}, 12.6) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.2\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 206.9\left(\mathrm{CH}_{3} \underline{\mathrm{CO}}\right), 165.3,155.4,155.1,136.6,128.4$,
$128.02,127.96,127.8,69.4,69.1,67.4,67.3,53.3,39.2,38.8,38.0,37.8,29.9,29.4,28.7$, 24.3, 23.9, $\left.18.0\left(\mathrm{CH}(\underline{\mathrm{CH}})_{3}\right)_{2}\right), 17.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $12.2\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.1\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right) 2945$ (w), 2868 (w), 1702 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 448.2878. Found: 448.2879. ([M+NH4] ${ }^{+}$): 465.3143. Found: 465.3145.
(+) and (\pm)-(2S,3S)-Benzyl 2-(2-oxo-3-(4-oxoquinazolin-3(4H)-yl)propyl)-3-(triisopropylsilyloxy)piperidine-1-carboxylate, $(+)$ and (\pm)-1.91

1.91

To a solution of $(\pm) \mathbf{- 1 . 8 9}(60 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) in DCM $(2 \mathrm{~mL})$ was added TEA ($39 \mathrm{mg}, 0.39 \mathrm{mmol}, 3$ equiv) and TMSOTf ($87 \mathrm{mg}, 0.39 \mathrm{mmol}, 3$ equiv) at room temperature. The reaction mixture was stirred 20 minutes. The mixture was loaded onto a plug of silica gel column, and eluted with 20 mL hexanes-EtOAc (2:1) quickly. The solution was concentrated and dissolved again in THF (2 mL). To the solution was added NBS ($28 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at room temperature for 30 minutes. To the reaction mixture was added 4-hydroxy-quinazoline ($29 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.5$ equiv), $60 \% \mathrm{NaH}$ dispension ($8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.5$ equiv) and $15-\mathrm{C}-5(5.8 \mathrm{mg}, 0.026 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred for 2 hours at room temperature, and quenched with water. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 3 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (1:1) afforded (\pm) $\mathbf{- 1 . 9 1}(51.5 \mathrm{mg}$, $0.087 \mathrm{mmol}, 67 \%)$ as colorless oil. Similar treatment of $(+)-\mathbf{1 . 8 9}(60 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$
equiv, $>99 \%$ ee) in the same sequence afforded ($2 \mathrm{~S}, 3 \mathrm{~S}$) $-(+)-\mathbf{1 . 9 1 5 2} \mathrm{mg}, 0.16 \mathrm{mmol}$, $67 \%) .\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+48.8,\left(\mathrm{c}=0.48, \mathrm{CHCl}_{3}\right)\right\}$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,1: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (a mixture of rotamers) $\delta 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.70-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 1$ H), 7.26-7.33 (m, 5H), 5.08-5.21(m, 3 H$), 4.90-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.11-$ $3.16(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 18 \mathrm{H}), 1.02(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.8 (CO), 161.0, 156.3, 147.1, 136.2, 134.3, 128.5, 128.1, 127.8, 127.4, 127.1, 126.8, $121.9,69.2,67.7,53.8,53.3,38.2,36.0,29.7,28.4,23.8,18.1\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.2$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR (cm^{-1}) 2945 (w), 2868 (w), 1687 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 592.3201$. Found: 592.3208.

$(+)$ and (\pm)-Isofebrifugine, $(+)$ and (\pm)-1.70

1.70

To (\pm)-1.91 ($40 \mathrm{mg}, 0.068 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{HCl}(1.2 \mathrm{~mL}, 6 \mathrm{M})$, and the solution was refluxed for 90 minutes. The mixture was neutralized to $\mathrm{pH}=10$ with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$, poured into a separatory funnel containing EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over deactivated alumina with CHCl_{3}-methanol (6:1) afforded (\pm) $\mathbf{- 1 . 7 0}$ $(13 \mathrm{mg}, 0.043 \mathrm{mmol}, 63 \%)$. Similar treatment of $(+)-\mathbf{1 . 9 1}(40 \mathrm{mg}, 0.068 \mathrm{mmol}, 1.0$ equiv,
$>99 \%$ ee $)$ with $\mathrm{HCl}(1.2 \mathrm{~mL}, 6 \mathrm{M})$ afforded $(+) \mathbf{- 1 . 7 0}(13 \mathrm{mg}, 0.043 \mathrm{mmol}, 63 \%) .\left\{[\alpha]_{\mathrm{D}}{ }^{20}\right.$ $\left.=+129,\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)\right\}$
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,6: 1\right.$ chloroform:methanol on alumina) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.31(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dt}, J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1$ H), $2.53(\mathrm{dt}, J=10.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.58$ (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4(\mathrm{C}=\mathrm{O}), 148.2,148.0,134.3,127.5,127.1$, 126.9, 121.9, 105.4 (ketal carbon), $77.8(\mathrm{CH}), 55.7(\mathrm{CH}), 49.8\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right), 43.3$ $\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{2}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3304(\mathrm{w}), 2926(\mathrm{w}), 2853(\mathrm{~m}), 1729(\mathrm{w}), 1675$ (s), 1613 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$302.1499. Found: 302.1501.

Chapter Two

Uncatalyzed Electrophilic C-C Bond Forming Reactions of Pyranyl and Pyridinyl Molybdenum Complexes. A synthetic Tactic for the Enantioselective Construction of Indole Alkaloids

Background

Stoichiometric transition metal mediated electrophilic reactions

The enantiocontrolled formation of C-C bonds has been the vital task in modern organic synthesis. In recent years, transition metal complexes have been employed widely in organic reactions to construct $\mathrm{C}-\mathrm{C}$ bonds both catalytically and stoichiometrically. Although numerous efforts have been invested on the catalytic process, much progress has also been achieved in stoichiometric transition metal mediated processes. ${ }^{1}$ Various transition metal complexes can be used to stabilize both positive and negative charges on attached ligands. In this Chapter, only those processes in which a stoichiometric metal is used to stabilize carbocations are covered.

Cobalt Complex

The Nicholas reaction has been a main methodology used to induce electrophilic reactions and has been reviewed extensively since it was discovered in 1972. ${ }^{2}$ The required alkyne cobalt intermediates are easily prepared by reacting alkynes with stoichiometric dicobalt octacarbonyl. In a typical Nicholas reaction, stoichiometric Lewis acid or protic acid was used to generate the reactive intermediate, which can be quenched by many kinds of nucleophiles, including hydrides, enol derivatives, allyl metals, aromatics, azides, amines, and alcohols.

A recent example reported by Kuwajima group, who employed dicobalt acetylene complex 2.1 in a novel [5+2] cycloaddition (Scheme 49). ${ }^{3}$ In the reaction stoichiometric $\mathrm{Me}_{2} \mathrm{AlCl}$ was required to generate the reactive intermediate 2.2. It reacted with a TIPS
enol ether to yield the oxonium ion, which was further trapped by the tethered allyl silane to form the seven membered ring product.

Scheme 49 Dicobalt compounds induced [5+2] reaction

The Nicholas reaction has been widely applied in the total synthesis of natural products in the past two decades. In 2007, an intramolecular Nicholas reaction was applied in the synthesis of NSC 51046 (Scheme 50). ${ }^{4}$ Green reported a synthesis of this bioactive compound starting from dicobalt acetylene complex $\mathbf{2 . 4}$, in which the electronrich aromatic ring was the nucleophile. The carbocation, which was generated by treating 2.4 with $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$, was intramolecularly intercepted by the polymethoxy benzene ring to form a cycloheptyne $-\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complex, a key intermediate to the synthesis of NSC 51046.

Scheme 50 Intramolecular Nicholas reaction in the synthesis of NSC 51046

Iron Complex

Dienes can be "protected" as their $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes. Moreover, they have demonstrated powerful capability in the natural product synthesis. ${ }^{5}$ As shown in Figure 8, $\mathrm{Fe}(\mathrm{CO})_{3}\left(\eta^{4}\right.$-cyclohexa-1,3-diene) could be converted to η^{5}-iron cation complex, which can be functionalized with a variety of nucleophiles. ${ }^{2 a}$ The new complex was readily oxidized into substituted cyclohexanes.

Figure 8 Synthetic applications of iron diene complex

An interesting application of this methodology is the synthesis of carbazole compounds reported by Knolker (Scheme 51). ${ }^{6}$ In this reaction, the iron salt 2.7 was treated with aminobenzofuran to form a Friedel-Crafts product $\mathbf{2 . 8}$ regioselectively. It is
worth noting that there was no N-alkylation product observed. After oxidative demetallation with iodine, it afforded the carbazole product 2.9 in a modest yield.

Scheme 51 Iron diene complex in the synthesis of carbazole

Different methods have been explored to achieve enantiocontrol in the stoichiometric iron mediated reactions. Knolker developed a catalytic photoinduced reaction to prepare iron diene complex 2.11 in good enantiopurity in the presence of (-)camphor derived imine 2.12 (Scheme 52). ${ }^{7}$

Scheme 52 Catalytic photoinduced preparation of high enantiopurity of iron diene complex

2.12

Desymmetrization was also studied to achieve the enantiocontrol in the application of iron complex based methodology. Pettus and coworkers used a chiral trityl cation to abstract the hydride from meso-iron diene complex to achieve the cation in a moderate enantiopurity (Scheme 53).

Scheme 53 Desymmetrization of iron diene complex

An interesting application of this methodology is the diversity oriented synthesis of oseltamivir by varying different nucleophiles. Kann reported the synthesis of oseltamivir (marketed as Tamiflu) by applying the iron carbonyl complex (Scheme 54). ${ }^{8}$ The enantiopure (-)-2.16, prepared by the preparative HPLC resolution of diastereomers of 2.16, was treated with hexafluorophosphoric acid to yield the cationic intermediate. Oxidation, following nucleophilic attack of Boc protected amine, afforded the enantiopure amine substituted cyclohexadiene. Regioselective epoxidation and further functional group manipulation led to the key intermediate $\mathbf{2 . 2 0}$, which had been transformed into Tamiflu. Since different nucleophiles could be used in the nucleophilic attack of 2.17, analogues of Tamiflu could be easily obtained.

Scheme 54 Total synthesis of oseltamivir

Molybdenum complex

Enantiomerically pure, air and moisture-stable $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes are powerful scaffolds for the enantiocontrolled construction of substituted heterocycles. ${ }^{9}$ The Liebeskind group has synthesized a number of natural products enantioselectively utilizing this methodology (Figure 9).

Figure 9 Molybdenum mediated organic synthesis

In 2001, Liebeskind and coworker reported a novel sequential functionalization of η^{3}-pyridinyl complexes (Scheme 55). ${ }^{\mathrm{k}}$ High enantiopurity (+)-2.21 was treated with bromine followed by sodium methoxide to produce dimethoxy complex 2.22. Trityl hexafluorophosphate abstracted one methoxy group regioselectively to generate the molybdenum diene cation $\mathbf{2 . 2 3}$, which was attacked by a Grignard reagent to introduce an alkyl chain and form 2.24. Further treatment with HBF_{4} led to the formation of a new molybdenum diene cation, which was quenched by another Grignard reagent to afford 2.25 without enantiopurity loss. The novel sequence constituted an efficient method to construct cis-2,6-disubstituted piperidine motif.

Scheme 55 Sequential functionalization of molybdenum scaffold

>99\%ee

Another interesting reaction was the [5+2] reaction of the molybdenum scaffold (Scheme 56). ${ }^{9 \mathrm{~d}, 9 \mathrm{~g}, 9 \mathrm{q}}$ In this reaction, the scaffold 2.26 was converted to the molybdenum diene cationic complex 2.27 in the presence of dienophiles, such as an α, β-unsaturated ketone activated with a Lewis acid. The putative intermediate 2.27 immediately yielded the formal [5+2] product 2.28 via the intramolecular nucleophilic attack of the carbocation. This methodology was successfully applied in the synthesis of (-)-Bao Gong Teng A. ${ }^{9 g}$

Scheme 56 [5+2] cycloaddition of molybdenum scaffold

Introduction

Indole alkaloids are an important family of alkaloids in natural product research due to their intriguing structures and interesting biological activities. ${ }^{10}$ Among the numerous interesting natural products, there were two families, strychnos and aspidosperma alkaloids, especially attracting our attention. (Figure 10) When examining these complex indole alkaloids carefully, we recognized that the aspidosperma alkaloids contain a cis-2,3-disubstituted piperidine motif while the strychnos alkaloids are composed of a cis-2,4-disubstituted piperidine motif. It was also worth pointing out that an indole alkaloid, goniomitine, also includes a cis-2,3-disubstituted piperidine motif, within which one of the substitution is a rare C-N substitution. The other reason why these alkaloids intrigued us was the well-known antitumor activity of vinblastine and vincristine, which contained vindoline moiety. ${ }^{11}$ Therefore, a novel methodology may
provide an easy access to a large number of analogues of vindoline, which would be helpful to the biological study in this area.

Figure 10 Interesting indole alkaloids

Aspidosperma

Aspidospermidine

Vindoline

Aspidophytine

Strychnos

Strychnopivotin

Tubotaiwine

$\mathrm{X}=\mathrm{CH}_{2}$ Uleine $\mathrm{X}=\mathrm{O}$ Dasycarpidone

Tubifolidine

Goniomitine

Based on these considerations, the project of introducing indole into the molybdenum scaffold and aiming at the synthesis of the above indole alkaloids was designed. Herein are reported the results of this project, including the discovery of an
uncatalyzed Friedel-Crafts reaction and related reactions. Furthermore, mechanistic details were investigated to understand the new reactions. In addition, the molybdenum complexes were demetallated with different methods, one of which afforded the tetracyclic structure of vindoline in model system.

Results and discussion

Study in the typical Homo- $\mathrm{S}_{\mathrm{N}} 2^{2}$-like reaction condition

The introduction of indole to the molybdenum scaffold was first studied with complex 2.29, which is readily available according to a known procedure ${ }^{9 a}$ (Scheme 57). Indole successfully functioned as a nucleophile in a homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like to yield substitution product $\mathbf{2 . 3 0}$ in 92% yield. Interestingly, this reaction provided the N-alkylation product selectively. The formation of the product $\mathbf{2 . 3 0}$ showed the possibility that indole could also be used as a nucleophile in $\mathrm{TpMo}(\mathrm{CO})_{2}\left(\eta^{3}\right.$-pyridinyl) complexes and this reaction could be applied in the synthesis of goniomitine (Figure 10).

Scheme 57 Indole as a nucleophile in a typical Homo-S $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\prime}$-like condition

For the synthesis of most of indole alkaloids, C-alkylation of the indole is desired. A search of reaction conditions was carried out by varying additives and bases to achieve
the product 2.31. (Table 15) As shown in Table 2.1, the absence of 15-C-5 favored the formation of the C-alkylation product 2.31, but also lowered the conversion of starting material. Varying the counter ion from Na to Mg suppressed the formation of undesired product completely, but led to very poor conversion. Other bases failed to provide the desired product $\mathbf{2 . 3 1}$; instead, deacetylation product $\mathbf{2 . 3 2}$ was obtained in high yield.

Table 15 Homo- $\mathrm{S}_{\mathbf{N}} \mathbf{2}^{\prime}$-like condition studies with indole as a nucleophile

2-Methylindole was subjected to similar reaction conditions to investigate the effect of the indole substituent. (Table 16) The 2-methyl group disfavored the formation
of the N-alkylation product, but it showed lower reactivity and failed to afford the product in a synthetically useful yield.

Table 16 Homo-S $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\prime}$-like condition studies with 2-methylindole as an nucleophile

Base	Additive	$\mathbf{2 . 2 9}$	$\mathbf{2 . 3 3}$	$\mathbf{2 . 3 4}$	$\mathbf{2 . 3 2}$
NaH	$15-\mathrm{C}-5$	40%	10%	0	20%
NaH	None	40%	0	30%	30%
	None(ACN	0	0	0	$>90 \%$
NaH	as solvent)				
	None	0	0	0	80%

Preparation of new substrate and discovery of an uncatalyzed Friedel-Crafts reaction

The above results suggested that a completely new pathway should be invented to achieve the desired C-alkylation product $\mathbf{2 . 3 1}$ and 2.34. Therefore, new substrate 2.36, different from 2.29, was prepared and studied (Scheme 58). The readily available
complex 2.35 was treated with TFAA in the presence of triethylamine to produce the semi-stable 5-trifluoroacetate substituted pyranyl scaffold $\mathbf{2 . 3 6}$ in 88% yield. Compound 2.36 was purified by a quick column chromatography, and it had to be used immediately to avoid decomposition. The trifluoroacetate $\mathbf{2 . 3 6}$ would decompose even stored under vacuum and in the dark as a solid after 12 hours.

Scheme 58 Preparation of 5-trifluoroacetate substituted pyranyl scaffold

Complex 2.36 was submitted to the typical Homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction condition without $15-\mathrm{C}-5$, which only led in high yield to the deacylation product 2.32. However, surprisingly, just mixing complex $\mathbf{2 . 3 6}$ with indole in DMSO provided the desired indole substitution product $\mathbf{2 . 3 1}$ in 86% yield with only $<5 \%$ elimination product $\mathbf{2 . 3 7}$ observed (Scheme 59). Moreover, there were no other side product, such as the N-alkylation product $\mathbf{2 . 3 0}$ and the deacylation product 2.32.

Scheme 59 Complex 2.36 reacted with indole in basic and neutral condition

Mechanistic consideration

d^{6}-DMSO was used as the reaction solvent in order to understand the mechanism of this reaction. Unexpectedly, complex $\mathbf{2 . 3 6}$ immediately rearranged to the isomeric 2trifluoroacetate substituted pyranyl scaffold 2.38 along with some of the hydrolysis product 2.39 (Scheme 60). After indole was added, total conversion to 2.32 took place in 1 minute.

Scheme 60 Rearrangement of complex 2.36 in d^{6}-DMSO

Based on the observations above, a Friedel-Crafts-like mechanism was proposed (Scheme 61). After complex 2.36 rearranged to 2.38 and $\mathbf{2 . 3 9}$, dissociation to form a $\mathrm{TpMo}(\mathrm{CO})_{2}$ stabilized carbocation occurs. A Friedel-Crafts-like reaction leads to the product 2.32. ${ }^{12}$ A similar reaction also worked well via this pathway in the pyridinyl scaffold system (vide infra).

Scheme 61 Proposed mechanism for the uncatalyzed Friedel-Crafts reaction

Compared to complex 2.36, both 2.38 and $\mathbf{2 . 3 9}$ were very stable. They can stand in DMSO solution for several days without obvious decomposition, while $\mathbf{2 . 3 6}$ decomposed completely after standing overnight in deuterochloroform.

It is worth noting that rearrangement from 2.36 to $\mathbf{2 . 3 8}$ and $\mathbf{2 . 3 9}$ is not a required step for the reaction with indole to occur. When $\mathbf{2 . 3 6}$ was dissolved in deuterochloroform, no rearrangement product was observed after 3 hours while messy signals implied it decomposed in this condition. Nevertheless, indole could also react with complex $\mathbf{2 . 3 6}$ in deuterochloroform to yield 2.32, though it was slower and somewhat lower yielding (Scheme 62). But the reaction between complex 2.36 and indole in acetonitrile could give complex $\mathbf{2 . 3 2}$ in a better yield (80% in ACN vs. 61% in CDCl_{3}).

Scheme 62 Uncatalyzed Friedel-Crafts reaction between indole and 2.36 in chloroform

All of these observations suggested that the reaction of complex $\mathbf{2 . 3 6}$ with indole in DMSO could proceed through a different mechanism from that in chloroform or acetonitrile. This suggestion was further corroborated by the fact that silyl enol ether and allylsilane only reacted with complex $\mathbf{2 . 3 6}$ in chloroform or acetonitrile, but not in DMSO (vide infra).

Several control experiments were conducted to test the effect of protecting groups on the indole (Scheme 63). The results showed that an N-methyl protected indole gave a similar yield to an unprotected indole, while a Cbz protected indole failed to form the product. These observations are consistent with a Friedel-Crafts-like mechanism.

Scheme 63 Control experiments with methyl and Cbz protected indole

Experiments testing the effect of the leaving group were also carried out(Scheme 64). Trichloroacetate substituted scaffold 2.42 was prepared in a similar way to $\mathbf{2 . 3 6}$, although in this reaction DMAP was necessary to promote the acylation step. In DMSO the rearrangement to $\mathbf{2 . 4 3}$ occurred in a similar rate to the trifluoroacetate analogue $\mathbf{2 . 3 6}$. However, the Friedel-Crafts reaction was much slower: it took 24 hours to achieve 95% conversion. Preparation of a tribromoacetate substituted scaffold was also attempted, but no product was achieved in the similar conditions to those above. Therefore, the acetate analogue 2.44 was used instead to study how a poor leaving group behaved in this reaction. It was found that starting material 2.44 did not rearrange in DMSO; and no reaction took place in the presence of indole with 100% recovery of starting material. Even when a better leaving group such as p-nitrobenoate was employed, no reaction was
detected at room temperature, while increasing the temperature to $60{ }^{\circ} \mathrm{C}$ led to elimination product 2.37.

Scheme 64 Control experiments with poor leaving group

2.44

Uncatalyzed Friedel-Crafts reaction in pyridinyl molybdenum scaffold

The uncatalyzed Friedel-Crafts reaction was also studied in the pyridinyl scaffold series, which provided mostly successful results with some unexpected discoveries. The Cbz protected pyridinyl scaffold was first studied in the similar conditions to $\mathbf{2 . 3 6}$. (Scheme 65) Complex 2.45 was transformed to trifluoroacetate $\mathbf{2 . 4 6}$ with TFAA in the presence of TEA at $-15{ }^{\circ} \mathrm{C}$ in an excellent yield. Mixing 2.46 with indole in DMSO furnished the desired indole substitution product 2.47 in good yield in 30 minutes.

Scheme 65 Uncatalyzed Friedel-Crafts reaction with pyridinyl scaffold

However, when the pyridinyl scaffold was protected with a formyl group, it showed a different reactivity (Scheme 66). Although the complex 2.48 could be converted to trifluoroacetate 2.49, 2.49 was so stable that standing in DMSO with indole overnight did not yield any desired product $\mathbf{2 . 5 0}$. Furthermore, no rearrangement product was observed with $>95 \%$ of the starting material recovered. This result strongly suggested that heteroatom assistance is vital to the ionization.

Scheme 66 Unexpected failure with formyl protected pyridinyl scaffold

Enantiopure pyridinyl scaffold (+)-2.47 was also employed to test if there was any racemization during the course of this reaction. (Table 17) Starting from 97.5% ee
carbonyl complex, (+)-2.47 was prepared and studied under three different Friedel-Crafts reaction conditions. Although the reaction in DMSO showed a minimum racemization (0.5% ee loss), the addition of MgO as buffer completely suppressed the enantiopurity loss, and the reaction in acetonitrile did not show any racemization (but contained approximately 10% of an inseparable impurity). Consequently, we conclude that the uncatalyzed Friedel-Crafts reaction can be carried out in the context of enantiocontrolled synthesis.

Table 17 Racemization test in different reaction conditions

Expansion to the 5-methyl substituted scaffold was also investigated with complex 2.51 as a substrate (Scheme 67). However, all these attempts to observe C-C bond formation were fruitless. The trifluoroacetate intermediate $\mathbf{2 . 5 2}$ was never observed because of the rapid formation of elimination product; on the contrary, when the p nitrobenoate was introduced to the substrate 2.51, the complex $\mathbf{2 . 5 4}$ remained intact at room temperature while elimination to $\mathbf{2 . 5 3}$ took place in harsher conditions.

Scheme 67 Investigation on 5-substituted scaffold

It should be noted that $\mathbf{2 . 5 4}$ is a suitable substrate in homo- $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-like reaction (Scheme 68). Malonate reacted with 2.54 to provide the substitution product $\mathbf{2 . 5 5}$ in good yield.

Scheme 68 Successful Homo-S $\mathbf{N}_{\mathbf{N}} \mathbf{2}^{\prime}$-like reaction of $\mathbf{2 . 5 4}$

Studies on various indole derivatives

With the successful results of the uncatalyzed Friedel-Crafts-like reaction between indole and pyranyl and pyridinyl scaffolds in hand, various indole derivatives were prepared and studied in the reaction. Firstly, commercially available substituted indoles were studied (Scheme 69). 2-methyl indole yielded the C-alkylation product 2.34, while 3-methyl indole provided the N-substitution product 2.56. If both 1 and 3 position of indoles were occupied, no reaction took place. The results shown below clearly indicated that this reaction only occurred on the most electron-rich C-3 or N atom of indole rings with $\mathrm{C}-3$ as the priority.

Scheme 69 Uncatalyzed Friedel-Crafts reaction between pyranyl scaffold and differently substituted indole

Since 2-substituted indoles worked well in this reaction, a variety of 2-substituted indole derivatives were prepared to study the functional group tolerance of this reaction.

The preparation of 2-nitroethyl indole 2.61 started from ethyl 2-indole carboxylic ester 2.57. It was converted to $\mathbf{2 . 5 8}$ with methyl iodide by using sodium hydride as the base. Then DIBAL reduction of $\mathbf{2 . 5 8}$ followed by oxidation with MnO_{2} led to the aldehyde 2.59, which was condensed with nitromethane to yield 2-nitroethylene indole
2.60. The reduction with NaBH_{4} on silica gel furnished the desired 2-nitroethyl indole
2.61.

Scheme 70 Preparation of 2-nitroethyl indole

In this case, the synthesis of $\mathbf{2 . 6 4}$ followed a similar route. Proline catalyzed condensation of aldehyde $\mathbf{2 . 5 9}$ with phenylsulfonyl acetate yielded $\mathbf{2 . 6 3}$, which was hydrogenated to furnish the desired $\mathbf{2 . 6 4}$ in good yield.

Scheme 71 Preparation of phenylsulfonyl acetate methylene indole 2.64

During the course of the study, both pyranyl and pyridinyl scaffolds were used as the substrates. The results of these Friedel-Crafts reactions were shown in the Scheme 72. It could be noticed that this reaction tolerated a wide range of functional groups, such as hydroxyl, ester, and sulfonyl. The malonate substituted indole was prepared according to a known procedure. ${ }^{12 \mathrm{a}}$ However, indole carboxylic ester 2.57 failed to react with the molybdenum complex because of its lower nucleophilicity.

Scheme 72 Uncatalyed Friedel-Crafts reaction with 2-substituted indole derivatives

Other electron-rich arenes were also studied in the uncatalyzed Friedel-Crafts-like reaction (Table 18). 2-methyl furan was chosen as the reaction partner. The reaction in ACN afforded the substitution product in good yield, while the reaction in DMSO with MgO only produced a poor yield of the desired product $\mathbf{2 . 6 6}$ with a large quantity of elimination product.

Table 18 Friedel-Crafts reaction with 2-methyl furan

Conditions	Yield
DMSO, MgO	28%
ACN	84%

Substituted benzenes were also investigated to disclose the scope of the reaction. Ethyl aniline reacted with the pyranyl scaffold and furnished substitution product $\mathbf{2 . 6 7}$ in moderate yield without the N-alkylation product (Scheme 73). The reaction showed an exclusive para selectivity. Interestingly, when the para position was blocked, it did not afford any substitution product.

Scheme 73 Friedel-Crafts reaction with substituted aniline

Uncatalyzed Friedel-Crafts reaction with electron-rich olefins

Since various arenes could react through the uncatalyzed Friedel-Crafts-like mechanism, electron-rich olefins as nucleophiles in this reaction were also studied. Silyl enol ether, allyl silane and enamine were first examined (Scheme 74). All these olefins failed to react with the complex 2.36 in DMSO; by contrast, silyl enol ether and allyl silane could react with $\mathbf{2 . 3 6}$ in acetonitrile while enamine produced a messy reaction with 2.36 in acetonitrile.

Scheme 74 Uncatalyzed Friedel-Crafts reaction with electron-rich olefins

2.36
DMSO
ACN
2.68
NR
63\% (dr: 1:1)

Since it was known that the complex $\mathbf{2 . 3 6}$ could rearrange to $\mathbf{2 . 3 8}$ and $\mathbf{2 . 3 9}$ in DMSO, the results might suggest that the reaction proceeded through different mechanisms in different solvents. In order to understand the mechanism of these reactions, NMR was used to track the reactions in $\mathrm{CDCl}_{3}\left(\mathrm{CDCl}_{3}\right.$ was used instead of
acetonitrile because it was readily available and the reaction performed as well as in acetonitrile). As shown in scheme 75, in the equation (1), the complex 2.36 and allyltrimethylsilane was dissolved in CDCl_{3}, standing overnight led to the fully conversion of $\mathbf{2 . 3 6}$ to the product 2.69. In the equation (2), the complex $\mathbf{2 . 3 6}$ was dissolved in CDCl_{3} with 10 equivalence of DMSO and stood overnight. The complex 2.36 was fully converted to the complex $\mathbf{2 . 3 8}$ and $\mathbf{2 . 3 9}$, which was washed with brine to remove DMSO. After adding allyltrimethylsilane for 12 hours, the NMR experiment indicated that the complex 2.38 and $\mathbf{2 . 3 9}$ remained intact and no signal of the product 2.69. Then indole was added to the mixture, indole substituted product 2.31 formed immediately.

Scheme 75 NMR experiments on the reaction of 2.36 and 2.38

Based on these observations, the following working hypothesis was proposed to describe the mechanistic picture (scheme 76). There is an unknown reactive species, which we showed a putative structure here. The reactive species can be promoted by DMSO to rearrange to $\mathbf{2 . 3 8}$ and then react with indole through the intermediate $\mathbf{2 . 4 0}$, which failed to react with silyl enol ether or allyl silane. However the reactive species would react with various nucleophiles, including indole, silyl enol ether and allyl silane in the absence of DMSO. As for the details of the reaction mechanism, such as the exact structure of the unknown reactive species, further investigation was still needed.

Scheme 76 Mechanism for Friedel-Crafts reaction in DMSO and $\mathrm{ACN}\left(\mathrm{CDCl}_{3}\right)$

With the expansion of the scope of the uncatalyzed Friedel-Crafts-like reaction in hand, more silyl enol ether and silane derivatives were investigated (scheme 77). It should be noted that the second example showed not only TMS silyl enol ether but also TBS silyl enol ether could be used in this novel Friedel-Crafts-like reaction. Moreover, the compatibility of this reaction to diazo compounds is important because it allowed an
interesting functional group to be introduced to the scaffold. Although the initial attempts to intramolecular $\mathrm{C}-\mathrm{H}$ insertion induced by $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ failed due to extensive decomposition, further investigation might disclose some interesting reactions. The reaction in acetonitrile was also compatible with malonate and alcohol group.

Scheme 77 Uncatalyzed F-C reaction with silyl enol ether and allyl silane derivatives

Demetallation

For the simple indole substituted scaffold such as $\mathbf{2 . 3 4}$, oxidative demetallation with PDC was a good choice to achieve useful organic compounds(scheme 78). ${ }^{9 \mathrm{j}}$ Protecting indole with Cbz was necessary in order to realize the demetallation in the
strongly oxidative condition. The reaction showed an excellent regioselectivity possibly because the nucleophilic attack of water from the opposite face of molybdenum moiety occurred on the less steric hindered carbon.

Scheme 78 Oxidative demetallation with PDC

An even more interesting demetallation was the expansion of annulative demetallation, which was originally developed in the context of enolate cyclization. ${ }^{9 \mathrm{a}}$ In the complex 2.65a the indole alcohol could be deprotonated and then cyclized to yield the product 2.76 (Scheme 79). In this case, a six membered oxygen heterocycle formed while Chapter One reported a formation of a five membered ring.

Scheme 79 Annulative demetallation of indole alcohol

This condition not only led to the formation of C-O bond, but also worked well in the formation of C-C bonds when there was an appropriate carbonanion. (Scheme 80) Free indole nitrogen had to be protected for this reaction to work. After it was protected with a Cbz group, copper (II) 2-ethylhexanoate was used as the oxidant to cyclize the five membered ring in the pyridinyl scaffold to form 2.78.

Scheme 80 Annulative demetallation with stabilized carbonanion to form a five

 membered ring

Moreover, the reaction could also lead to the formation of six membered carbocycles (Scheme 81). Methyl protected indole can also tolerate the demetallation condition. The diastereomeric mixtures of $\mathbf{2 . 6 5 b}$ was treated with NaH and $\mathrm{Cu}(\mathrm{II})$ to form a tetracyclic compound $\mathbf{2 . 7 9}$ as a sole diastereomer.

Scheme 81 Annulative demetallation with stabilized carbonanion to form a six membered ring

Furthermore, the structure and relative stereochemistry have been confirmed by X-ray analysis. (Figure 11)

Figure 11 X-ray structure of the demetallation product 2.79

The stereochemistry of the quaternary center was expected to form through the following transition state (Figure 12). The carbonanion attacked from the back of
molybdenum moiety through a chair transition state while minimizing the interaction between the phenylsulfonyl group and the pyran ring.

Figure 12 Transition state for the demetallation of the complex 2.65b

Application to the synthesis of natural products

With the successful uncatalyzed Friedel-Crafts reaction and annulative demetallation in hand, this new methodology was applied in the synthesis of natural products. One of the targets was vindoline $\mathbf{2 . 8 0}$. Here is the retrosynthesis. (Figure 13) Compound $\mathbf{2 . 8 1}$ was the key intermediate to the synthesis of vindoline $\mathbf{2 . 8 0}$ because the incorporation of a two-carbon bridge into $\mathbf{2 . 8 1}$ could form ring E and the carbonyl group could be used as a handle to functionalize the ring C and introduce the angular ethyl group. The intermediate $\mathbf{2 . 8 2}$ or $\mathbf{2 . 8 3}$, which was expected to be readily converted to $\mathbf{2 . 8 1}$ through routine functional group transformations, may be synthesized through the newly developed uncatalyzed Friedel-Crafts-like reaction-annulative demetallation sequence.

Figure 13 Retrosynthesis of vindoline

The complex 2.65d and 2.65e were chosen as a model to test the demetallation (Scheme 82). Unexpectedly, although we tried to demetallate them in many conditions, no desired product has ever been detected. Changing the protecting group on indole nitrogen from methyl to Cbz did not help the reaction either. In addition, deprotecting Cbz or Boc from 2.65d or 2.65e proved also troublesome.

Scheme 82 Model study on the synthesis of vindoline

Compared to the successful demetallation of the complex 2.65c, the current result seemed confusing. These results were rationalized in the term of conformational analysis (Figure 14). For this reaction to happen, it requires a chair transition state, in which nucleophilic attack occurs from the axial position so that the indole substitution has to be in the equatorial position. As for this transition state, pyranyl scaffold favors it to form while pyridinyl scaffold disfavors it due to the $\mathrm{A}(1,3)$ strain between the carbamate group and the indole. ${ }^{13}$ Therefore, in order to promote this reaction, a judicious selection of protecting group might be critical. Further investigation in this area will focus on the fine tuning of the substrate to promote the demetallation.

Figure 14 Proposed transition state of annulative demetallation

Besides the synthesis of vindoline, we envisioned the application of this novel methodology to a concise synthesis of isofebrifugine analogue. (Scheme 83) By using the uncatalyzed F-C reaction, the quinazolinone substituted ketone could be introduced to the scaffold in one step to form complex 2.84. And, the reduction to alcohol and annulative demetallation would directly lead to the compound $\mathbf{2 . 8 5}$, which would yield the isofebrifugine analogue after deprotection. Currently, Greg and Kassinath in the Liebeskind are working on this project and one of the diastereomers of $\mathbf{2 . 8 5}$ has been achieved.

Scheme 83 Proposed synthesis of isofebrifugine analogue

Conclusion

Neutral $\mathrm{TpMo}(\mathrm{CO})_{2}\left(5\right.$-trifluoroacetate- η^{3}-pyranyl) and $\mathrm{TpMo}(\mathrm{CO})_{2}(5-$ trifluoroacetate- η^{3}-pyridinyl) scaffolds underwent an uncatalyzed Friedel-Crafts-like reaction with a variety of electron-rich arenes and olefins, such as indole, furan, aniline, silyl enol ether, and allylsilane, to form substitution products in high yields. Moreover, enantiopure starting material was employed in the reaction successfully and no enantiopurity loss was detected. It was worth noting that this reaction demonstrated a superb functional group tolerance, including hydroxyl, amino, ester, sulfonyl, and diazo groups. The preliminary mechanism study showed that the reaction in DMSO underwent a rearrangement first and then probably proceeded through a molybdenum stabilized carbocation intermediate to form substitution product. By contrast, the similar reaction in acetonitrile or chloroform underwent through a completely different mechanism because no rearrangement product has been detected and this reaction showed a higher reactivity. In this case, silyl enol ether and allylsilane can participate the uncatalyzed Friedel-Craftslike reaction. Further annulative demetallation proved to be successful with a series of
substrates to form oxygen heterocycles and carbocycles in 5 or 6 membered rings in a mild condition. The model study to the synthesis of vindoline was troublesome due to the unexpected difficulty in the demetallation step. Another synthetic application in the synthesis of isofebrifugine analogues has yielded promising results.

References

1. (a) Fairlamb, I. J. S. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2003, 99, 138160; (b) Fryatt, R.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2002, 447-458; (c) Fletcher, A. J.; Christie, S. D. R. J. Chem. Soc., Perkin Trans. 1 2001, 1-13; (d) Stephenson, G. R. In Stoichiometric π-complexes in asymmetric synthesis, Chapman \& Hall: 1996; pp 313-366.
2. (a) Bromfield, K. M.; Graden, H.; Ljungdahl, N.; Kann, N. Dalton Trans. 2009, 5051-5061; (b) Omae, I. Appl. Organomet. Chem. 2007, 21, 318-344; (c) Diaz, D. D.; Betancort, J. M.; Martin, V. S. Synlett 2007, 343-359; (d) Muller, T. J. J. Eur. J. Org. Chem. 2001, 2021-2033; (e) Green, J. R. Curr. Org. Chem. 2001, 5, 809-826; (f) Teobald, B. J. Tetrahedron 2002, 58, 4133-4170.
3. Tanino, K.; Shimizu, T.; Miyama, M.; Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 6116-6117.
4. Djurdjevic, S.; Green, J. R. Org. Lett. 2007, 9, 5505-5508.
5. (a) Pearson, A. J. Science (Washington, D. C., 1883-) 1984, 223, 895-901; (b) Pearson, A. J. Adv. Met.-Org. Chem. 1989, 1, 1-49; (c) Pearson, A. J. Acc. Chem. Res. 1980, 13, 463-469.
6. Knölker, H.-J.; Fröhner, W. Synthesis 2000, 2131-2136.
7. Knolker, H.-J.; Hermann, H.; Herzberg, D. Chem. Commun. 1999, 831-832.
8. Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. (Cambridge, U. K.) 2007, 3183-3185.
9. (a) Chen, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 12546-12547; (b) Coombs, T. C.; Zhang, Y.; Garnier-Amblard, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 876-877; (c) Cheng, B.; Liebeskind, L. S. Org. Lett. 2009, 11, 3682-3685; (d)

Garnier, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 7449-7458; (e) Coombs, T. C.; Lee, M. D.; Wong, H.; Armstrong, M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2008, 73, 882-888; (f) Gomez, A. R.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1816-1825; (g) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465-472; (h) Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258-11259; (i) Shu, C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878-2879; (j) Alcudia, A.; Arrayas, R. G.; Liebeskind, L. S. J. Org. Chem. 2002, 67, 5773-5778; (k) Shu, C.; Alcudia, A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-12487; (1) Arrayas, R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185-6186; (m) Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem. Soc. 2000, 122, 10458-10459; (n) Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 7445-7455; (o) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 3909-3911; (p) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083-4086; (q) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811-5812; (r) Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 897-898; (s) Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Liebeskind, L. S. Organometallics 1996, 15, 4201-4210; (t) Villanueva, L. A.; Ward, Y. D.; Lachicotte, R.; Liebeskind, L. S. Organometallics 1996, 15, 4190-4200; (u) Ward, Y. D.; Villanueva, L. A.; Allred, G. D.; Payne, S. C.; Semones, M. A.; Liebeskind, L. S. Organometallics 1995, 14, 4132-4156; (v) Coombs, T. C.; Huang, W.; Garnier-Amblard, E. C.; Liebeskind, L. S. Organometallics, ACS ASAP.
10. Saxton, J. E.; Editor, The Chemistry of Heterocyclic Compounds, Vol. 25, Pt. 4: Indoles: The Monoterpenoid Indole Alkaloids. John Wiley and Sons: 1983; p 886 pp.
11. Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131, 4904-4916.
12. (a) Martin, C. L.; Overman, L. E.; Rohde, J. M. J. Am. Chem. Soc. 2008, 130, 7568-7569; (b) De, R. M.; Soriente, A. Eur. J. Org. Chem. 2010, 1029-1032, S1029/1021-S1029/1023; (c) Ghandi, M.; Taheri, A. Molecules 2009, 14, 1056-1061; (d) Sefkow, M.; Buchs, J. Org. Lett. 2003, 5, 193-196.
13. (a) Johnson, F. Chem. Rev. 1968, 68, 375-413; (b) Brown, J. D.; Foley, M. A.; Comins, D. L. J. Am. Chem. Soc. 1988, 110, 7445-7447.

Experimental Section

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-(1'-indolyl)-5,6-dihydro-
2H-pyran-3-yl]molybdenum, (\pm)-2.30

2.30

To a solution of (\pm)-2.29 ($50 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added $\mathrm{NaH}(1.2 \mathrm{mg}, 0.297 \mathrm{mmol}, 3.0$ equiv) and indole ($38.0 \mathrm{mg}, 0.297 \mathrm{mmol}, 3.0$ equiv). The reaction mixture stirred at room temperature for 2 hours, and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc (2×5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (20:1) afforded (\pm)-2.30 (51.3 $\mathrm{mg}, 0.32 \mathrm{mmol}, 92 \%$) as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.65,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{t}, J=$
$3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), 3.66 (dd, $J=13.2 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 225.5,224.5$, $147.4,142.1,141.3,136.8,136.2,136.2,134.6,129.3,125.5,122.0,120.7,120.3,110.6$, 106.2, 105.6, 105.5, 101.8, 77.9, 66.4, 65.1, 63.9, 57.8. IR (cm^{-1}) 3142 (w), 3053 (w), 2930 (w), 2486 (w), 1945 (s), 1861 (s).
(\pm)-Dicarbonyl $[$ hydridotris(1-pyrazolyl)borato $][(\eta$-3,4,5)-2-(3'-indolyl)-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-2.31

To a solution of $(\pm) \mathbf{- 2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added indole ($15.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 3 1}(43 \mathrm{mg}, 0.077 \mathrm{mmol}, 86 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.45,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1$ H), $8.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dt}, J=6.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $226.0,225.8,147.4,141.9,141.4,136.6,136.0,135.9,134.4,127.1,123.8,122.5,120.0$, $119.9,116.8,111.0,106.0,105.3,105.3,69.8,67.4,65.4,64.2,57.5$. IR ($\left.\mathrm{cm}^{-1}\right) 3300(\mathrm{w})$, 2482 (w), 1938 (s), 1849 (s), 1505 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BMoN}_{7} \mathrm{O}_{3} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 588.0823$. Found: 588.0829.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato $][(\eta-3,4,5)$-2-(2'-methyl-3'-indolyl)-

 5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-2.34

To a solution of $(\pm) \mathbf{- 2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added 2-methylindole ($17.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 3 4}(39 \mathrm{mg}, 0.068 \mathrm{mmol}, \mathbf{7 6 \%})$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.48,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $8.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.12(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 226.8,225.8,147.4,141.9,141.5,135.9,135.9,135.2,134.6$, $134.4,127.8,121.1,120.2,119.7,111.7,110.3,106.0,105.3,105.2,71.2,67.0,66.5,60.1$, 12.7. IR (cm-1) 3347 (m), 2957 (w), 2482 (w), 1942 (s), 1853 (s), 1602 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BMoNaN}_{7} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$602.0980. Found: 602.0982 .

(土)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] $[(\eta$-2,3,4)--5-trifluoroacetoxy-5,6-dihydro-

 2H-pyran-2-yl]molybdenum, (\pm)-2.36
2.36

To a solution of (\pm)-2.35 ($500 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.0$ equiv) in DCM (25 mL) was added TEA ($165 \mathrm{mg}, 1.62 \mathrm{mmol}, 1.5$ equiv) and TFAA ($289 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.3$ equiv) at room temperature. The reaction mixture was stirred for 20 minutes, and then loaded on the silica gel directly. Flash chromatography in 5 minutes with hexanes-EtOAc (3:1) afforded (\pm) $\mathbf{- 2 . 3 6}(547 \mathrm{mg}, 0.95 \mathrm{mmol}, 88 \%)$ as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.62,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddd}, J=9.2,6.0$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dt}, J=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}$, $J=8.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=11.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 226.9,224.0,147.2,146.8,142.0,141.8,136.2,134.6,134.5,109.7,106.1,105.8$ 105.6, 73.5, 63.7, 62.8, 58.0.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)--2-trifluoroacetoxy-5,6-dihydro-

2H-pyran-2-yl]molybdenum, (\pm)-2.38\& 2.39

2.36 ($50 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0$ equiv) was dissolved in $1.2 \mathrm{~mL} d^{6}$-DMSO for 10 minutes to give a mixture of two compounds $\mathbf{2 . 3 8}$ and $\mathbf{2 . 3 9}$.
2.38: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d^{6}$-DMSO) $\delta 8.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $8.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 3 \mathrm{H}), 6.44-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.32(\mathrm{~m}, 2 \mathrm{H})$, 4.98 (br s, 1 H), $4.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d^{6}-$ DMSO) $\delta 227.0,225.6,158.4(J=38 \mathrm{~Hz}), 146.9,142.6,136.6,135.3,115.1(J=288 \mathrm{~Hz})$, 106.7, 105.9, 89.6, 68.7, 68.2, 64.9, 57.0, 55.9.
2.39: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d^{6}$-DMSO) $\delta 8.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $8.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 3 \mathrm{H}), 6.44-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.32(\mathrm{~m}, 2 \mathrm{H})$, $4.93(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , d^{6}-DMSO) $\delta 227.2,225.3,146.9,142.6,136.5,135.2,106.6,105.8,92.8,89.6,68.7,68.4$, 64.9, 57.0, 56.1.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-(1'-methyl-3'-indolyl)-

5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-2.41

To a solution of (\pm) - $\mathbf{2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added N-methylindole ($17.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 4 1}(43 \mathrm{mg}, 0.075 \mathrm{mmol}, 84 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.38,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 226.6,226.2,147.0,142.9,142.4,137.1,136.6,135.3,129.6,127.2$, $121.4,118.9,113.8,109.8,106.6,105.8,105.8,70.2,68.1,64.8,64.6,56.9,32.6$.

IR (cm^{-1}) 2957 (w), 2922 (m), 2853 (w), 2482 (m), 1942 (s$), 1849$ (s$)$. HRMS (FAB) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BMoN}_{7} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 580.1161 . Found: 580.1167 .
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-1-t-butoxycarbonyl-5-ox0-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-S2b

To a solution of ($\mathbf{\pm}$)-S2a ($500 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was added $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(90 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.1$ equiv $)$. The reaction mixture was stirred at room temperature under hydrogen balloon for 5 hours. The mixture was filtered to give the solution and then concentrated. The solid was dissolved in DCM without purification. To the solution was added $\mathrm{Boc}_{2} \mathrm{O}(249 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.3$ equiv), DMAP ($11 \mathrm{mg}, 0.09$
mmol, 0.1 equiv)and TEA ($138 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at room temperature overnight, and then the mixture was poured into a separatory funnel containing EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm)-S2b ($434 \mathrm{mg}, 0.77 \mathrm{mmol}, 88 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.28,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 8.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 8.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.7$ H), $8.01(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.69(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.7 \mathrm{H})$, $7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 1.7 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 1.7 \mathrm{H}), 7.32(\mathrm{dd}, J=6.8$ $\mathrm{Hz}, 2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.27(\mathrm{t}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.17-6.24(\mathrm{~m}, 2.7 \mathrm{H}), 4.71-4.74(\mathrm{~m}, 1 \mathrm{H})$, $3.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.38(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.36$ $(\mathrm{d}, J=20.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.20(\mathrm{~d}, J=20.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.17(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.57(\mathrm{~s}$, $2.7 \mathrm{H}), 1.46(\mathrm{~s}, 6.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 225.5,223.0,222.1,193.8$, 193.6, $153.5,152.5,147.3,147.1,144.5,142.7,141.9,141.2,136.5,136.3,136.2,136.1,134.7$, $106.2,106.0,105.8,105.7,96.2,93.2,82.4,82.0,64.7,64.1,63.7,62.9,48.3,47.5,28.1$, 27.9. IR (cm^{-1}) 3420 (w), 2980 (w), 2482 (w), 1942 (s), 1845 (s), 1695 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BMoN}_{7} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 564.1059. Found: 564.1061.

To a solution of (\pm)-S2b ($500 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.0$ equiv) in THF $(20 \mathrm{~mL})$ was added DIBAL (1.0 M in hexane, $2.2 \mathrm{~mL}, 2.18 \mathrm{mmol}, 2.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate ($760 \mathrm{mg}, 2.56 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 25 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 2 . 4 5 b}(452 \mathrm{mg}, 0.80 \mathrm{mmol}, 91 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.18(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.6$ H), $7.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.82(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 0.6 \mathrm{H})$, $7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.56(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 0.6 \mathrm{H})$, $7.00(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 6.11-6.16(\mathrm{~m}, 2.6 \mathrm{H}), 4.67-4.79(\mathrm{~m}, 2 \mathrm{H})$, $3.75(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.63(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.31(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3.6 \mathrm{H}), 1.47(\mathrm{~s}, 5.4$ H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 232.7,231.6,224.1,223.8,154.6,154.0,146.6,146.4$, $143.8,142.2,141.1,140.6,136.0,135.9,135.82,135.76,134.3,105.8,105.7,105.5$, $105.4,105.2,94.4,92.2,81.5,81.1,69.5,67.9,67.8,67.6,57.2,56.6,47.4,46.6,28.1$,
27.9, 27.4. IR (cm^{-1}) 3420 (w), 2980 (w), 2482 (w), 1942 (s), 1845 (s), 1695 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BMoN}_{7} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 588.1035. Found: 588.1038.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-1-t-butoxycarbonyl-5-

 trifluoroacetoxy-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-2.46b

2.46b

To a solution of (\pm)-2.45b ($452 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(15 \mathrm{~mL})$ was added TEA ($122 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.5$ equiv) and TFAA ($218 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.3$ equiv) at $-15^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 minutes, and then loaded on the silica gel directly. Flash chromatography in 5 minutes with hexanes-EtOAc (3:1) afforded (\pm)-2.46b ($490 \mathrm{mg}, 0.74 \mathrm{mmol}, 92 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.63,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 8.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 8.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.7$ H), 7.97 (d, $J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.69(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.7 \mathrm{H})$, $7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.58$ (d, $J=2.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.06$ (dd, $J=5.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.18-6.27(\mathrm{~m}, 3 \mathrm{H}), 5.86-5.91(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $0.3 \mathrm{H}), 4.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.77(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.65(\mathrm{dd}, J=$ $12.4 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.01-2.10$
$(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 228.5,227.5,224.0$, 223.7, $157.2(\mathrm{q}, ~ J=43 \mathrm{~Hz}), 154.4,153.9,147.0,146.8,144.2,142.5,141.2,140.7,136.3$, 136.2, 136.1, 136.1, 134.5, $114.4(\mathrm{q}, J=284 \mathrm{~Hz}), 106.1,105.9,105.8,105.6,105.5,94.8$, $92.5,82.1,81.9,77.3,77.0,76.7,74.7,74.5,60.8,59.5,57.5,57.0,43.4,42.6,34.6,34.5$, 31.6, 29.0, 28.2, 28.0, 25.2, 22.6, 20.7, 14.1, 11.4.
$(+)$ and (\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato $][(\eta$-3,4,5)-1-benzyloxycarbonyl-2-(3'-indolyl)-5,6-dihydro-2H-pyridin-3-yl]molybdenum, (+) and (土)-2.47

To a solution of (\pm)-2.46a ($50 \mathrm{mg}, 0.072 \mathrm{mmol}$, 1.0 equiv) in DMSO (4 mL) was added indole ($12.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 4 7}(40 \mathrm{mg}, 0.058 \mathrm{mmol}, 80 \%)$ as an orange solid.

Similar treatment of (+)-2.46 (50 mg, $0.072 \mathrm{mmol}, 1.0$ equiv, 97.5% ee) in DMSO (4 mL) with indole ($12.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) afforded $(+)-\mathbf{2} .47(40 \mathrm{mg}, 0.058 \mathrm{mmol}$, $80 \%, 97 \%$ ee).

Similar treatment of (+)-2.46 (50 mg, $0.072 \mathrm{mmol}, 1.0$ equiv, 97.5% ee) in DMSO (4 mL) with indole ($12.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{MgO}(8.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 3$ equiv) afforded (+)-2.47 (37 mg, $0.054 \mathrm{mmol}, 74 \%, 97.5 \% \mathrm{ee}$).

Similar treatment of (+)-2.46 (50 mg, $0.072 \mathrm{mmol}, 1.0$ equiv, 97.5% ee) in $\mathrm{ACN}(4 \mathrm{~mL})$ with indole ($12.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) afforded $(+)-\mathbf{2} .47(40 \mathrm{mg}, 0.058 \mathrm{mmol}, \mathbf{7 4 \%}$, $97.5 \% \mathrm{ee}) \cdot[\alpha]_{\mathrm{D}}{ }^{20}=+121.1,\left(\mathrm{c}=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\mathrm{TLC}\left(\mathrm{R}_{f}=0.28,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz,$$ $\left.\mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5$ H), $8.25(\mathrm{~s}, 0.5 \mathrm{H}), 8.21(\mathrm{~s}, 0.5 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.60(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5$ H), 7.26-7.39 (m, 6.5 H$), 7.14-7.23(\mathrm{~m}, 1.5 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.32(\mathrm{~m}, 1 \mathrm{H})$, $6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.11(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.87(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.15(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.12(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.98(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.51(\mathrm{dt}, J=7.2 \mathrm{~Hz}$, $2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.41-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 0.5$ H), $4.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.71(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.68(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 0.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.8,225.3,225.3,224.9$, 154.7, 154.2, 147.3, 141.9, 141.7, 136.7, 136.6, 136.5, 136.2, 136.0, 134.4, 128.4, 128.2, $128.2,127.9,127.8,127.6,126.3,126.0,123.8,122.9,122.2,122.1,120.9,120.1,119.8$, $119.6,117.7,117.5,111.0,106.0,105.4,105.3,105.3,105.3,71.2,70.8,67.3,67.1,67.0$, 64.1, 63.6, 47.3, 47.1, 39.4, 39.2. IR $\left(\mathrm{cm}^{-1}\right) 3358(\mathrm{~m}), 3123(\mathrm{w}), 3057(\mathrm{w}), 2482(\mathrm{~m})$,

1938 (s), 1857 (s), 1679 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{BMoN}_{8} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 699.1532. Found: 699.1550 . HPLC: Daicel ${ }^{\circledR}$ Chiralcel OD-RH column, isocratic solvent system: $65 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (without TFA), $1.0 \mathrm{~mL} / \mathrm{min} ., \lambda=254 \mathrm{~nm},(2 \mathrm{R}, 3 \mathrm{R})-(+)-$ 2.47: $\mathrm{t}_{(+)}=16.6 \mathrm{~min} ;(2 \mathrm{~S}, 3 \mathrm{~S})-(-)-\mathbf{2 . 4 7}: \mathrm{t}_{(-)}=21.5 \mathrm{~min}$.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [(η-3,4,5)-2-(3'-methyl-1'-indolyl)-5,6-dihydro-2H-pyran-3-yl]molybdenum, (土)-2.56

To a solution of $(\pm) \mathbf{- 2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added 3-methylindole ($17.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by $\operatorname{EtOAc}(2 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (20:1) afforded (\pm) $\mathbf{- 2 . 5 6}(40 \mathrm{mg}, 0.075 \mathrm{mmol}, 78 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.61,6: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=2.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.33(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) δ $226.2,225.6,147.0,143.6,142.3,136.7,136.7,135.4,129.4,124.0,121.5,119.3,118.7$, $110.2,109.5,106.8,106.0,105.8,77.3,66.6,65.8,65.1,57.5,9.7$. IR $\left(\mathrm{cm}^{-1}\right) 2957$ (w), 2482 (w), 1949 (s), 1864 (s), 1505 (w). HRMS (FAB) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BMoN}_{7} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 580.1161$. Found: 580.1167.
ethyl 1-methyl-1H-indole-2-carboxylatemethyl, 2.58

To a solution of 2.37 ($2 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.0$ equiv) in DMF (50 mL) was added NaH ($636 \mathrm{mg}, 15.9 \mathrm{mmol}, 1.5$ equiv) and methyliodie ($2.26 \mathrm{~g}, 15.9 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 5 hours, and then was added NaH ($218 \mathrm{mg}, 5.3 \mathrm{mmol}, 0.5$ equiv) and methyliodie ($0.75 \mathrm{~g}, 5.3 \mathrm{mmol}, 1.5$ equiv). The mixture was left to stir at room temperautre overnight and the quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (25 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 25 \mathrm{~mL}$), and the combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded $2.58(2.1 \mathrm{~g}, 10.3 \mathrm{mmol}, 97 \%)$ as a white solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,6: 1\right.$ hexanes:EtOAc $)$. m. p. $60-61^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=8.0 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2,139.6,128.0,125.8,124.9,122.5,120.5,110.2,110.0,60.5,31.6$, 14.3. IR (cm^{-1}) 3053 (w), 2984 (w), 1706 (s), 1613 (w), 1517 (m). HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$204.1019. Found: 204.1019.

1-methyl-1H-indole-2-carbaldehyde, 2.59

To a solution of $\mathbf{2 . 5 8}(2.1 \mathrm{~g}, 10.3 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL) was slowly added DIBAL (1.0 M in hexane, $25.8 \mathrm{~mL}, 25.8 \mathrm{mmol}, 2.5$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes, and then was slowly warmed up to room temperature. The reaction was quenched with potassium sodium tartrate tetrahydrate $(9.2 \mathrm{~g}, 31 \mathrm{mmol}$, 3.0 equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc (40 mL) and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 35 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2:1) afforded the alcohol ($1.6 \mathrm{~g}, 9.78 \mathrm{mmol}, 95 \%$) as a white solid.

To a solution of the alcohol ($1.6 \mathrm{~g}, 9.78 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(40 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(6.3 \mathrm{~g}, 78.24 \mathrm{mmol}, 8$ equiv). The reaction mixture was stirred at room temperature
overnight, and then filtered to remove the solid. The mixture was concentrated to give the product. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded $\mathbf{2 . 5 9}$ $(1.2 \mathrm{~g}, 7.53 \mathrm{mmol}, 77 \%)$ as a white solid.

The alcohol: TLC $\left(\mathrm{R}_{f}=0.34,2: 1\right.$ hexanes:EtOAc $)$. m. p. $100-101^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.6,138.0,127.1,121.9,120.8,119.5,109.2,101.3,57.4$, 29.8. IR (cm ${ }^{-1}$) 3354 (s), 3053 (m), 2934 (s), 1613 (w), 1548 (m). HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 162.0913$. Found: 162.0912 .
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.64,3: 1\right.$ hexanes:EtOAc $)$. m. p. 82-84 ${ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89$ (s, 1 H), $7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=8.0 \mathrm{~Hz}$, 6.0 Hz, 1.6 Hz, 1 H), $4.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 183.0, 182.9, 140.8, 135.6, 126.9, 126.3, 123.3, 120.9, 117.5, 110.4, 31.5. IR (cm^{-1}) 2837 (w), 1671 (s), 1613 (m), $1521(\mathrm{~m})$. HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$160.0757. Found: 160.0756.
(E)-1-methyl-2-(2-nitrovinyl)-1H-indole, 2.60

2.60

To a solution of $\mathbf{2 . 5 9}$ ($500 \mathrm{mg}, 3.14 \mathrm{mmol}, 1.0$ equiv) in nitromethane (15 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(60 \mathrm{mg}, 0.77 \mathrm{mmol}, 0.25$ equiv). The reaction mixture was stirred at reflux for 3 hours. The mixture was poured into a separatory funnel containing EtOAc $(10 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded 2.60 (494 mg, $2.45 \mathrm{mmol}, 78 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.31,3: 1\right.$ hexanes:EtOAc). m. p. 134-136 ${ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.16(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.2,135.7,129.9,127.8,127.3,125.4,122.1,121.2,110.0,107.6,30.3$.

IR (cm^{-1}) 3111 (w), 2941 (w), 2049 (w), 1938 (w), 1621 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$203.0815. Found: 203.0815.
methyl-2-(2-nitroethyl)-1H-indole, 2.61

2.61

To a solution of $\mathbf{2 . 6 0}$ ($494 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and $i \mathrm{PrOH}(3$ mL) was added $\mathrm{NaBH}_{4}(367 \mathrm{mg}, 9.7 \mathrm{mmol}, 4$ equiv) and silica gel $(3.65 \mathrm{~g})$. The reaction mixture was stirred at room for 15 minutes. The reaction was quenched by HOAc, and then the mixture was filtered to yield the solution. It was poured into a separatory funnel
containing EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded 2.61 ($320 \mathrm{mg}, 1.59 \mathrm{mmol}, 65 \%$) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.28,2: 1\right.$ hexanes:EtOAc $)$. m. p. $64-66^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 137.3,134.1,127.3,121.4,120.1,119.6,109.0,99.5,73.4$, 29.3, 24.3. IR (cm^{-1}) 3030 (w), 1552 (s), 1471 (m). HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 205.0972$. Found: 205.0970
methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)acrylate, 2.63

2.63

To a solution of $\mathbf{2 . 5 9}(500 \mathrm{mg}, 3.14 \mathrm{mmol}, 1.0$ equiv) in DMSO $(20 \mathrm{~mL})$ was added proline ($75 \mathrm{mg}, 0.62 \mathrm{mmol}, 0.2$ equiv) and methyl phenylsulfonyl acetate $(1 \mathrm{~g}, 4.71 \mathrm{mmol}$, 1.5 equiv). The reaction mixture was stirred at room temperature overnight. The mixture was poured into a separatory funnel containing EtOAc (20 mL) and the layers were
separated. The aqueous layer was extracted by EtOAc ($2 \times 15 \mathrm{~mL}$), and the combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (1:1) afforded $\mathbf{2 . 6 3}$ (1.06 g, 2.98 mmol, 95%) as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.30,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.97$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,140.1,139.3$, $133.5,132.4,130.8,130.1,129.0,128.3,127.9,127.3,125.5,122.3,120.9,110.0,109.7$, 52.8, 30.0. IR (cm^{-1}) 3061 (w), 2953 (w), 1725 (s), 1602 (s), 1517 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$: 356.0951. Found: 356.0954
methyl 3-(1-methyl-1H-indol-2-yl)-2-(phenylsulfonyl)propanoate, 2.64

To a solution of $\mathbf{2 . 6 3}(250 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOH}(10 \mathrm{~mL})$ and THF (5 mL) was added $\mathrm{Pd} / \mathrm{C}(75 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was stirred at room temperature under hydrogen balloon for 5 hours. The mixture was filtered to give the solution and then concentrated. Flash chromatography over silica gel with hexanesEtOAc (2:1) afforded $\mathbf{2 . 6 4}(1.06 \mathrm{~g}, 2.98 \mathrm{mmol}, 88 \%)$ as a yellow solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.28,2: 1\right.$ hexanes:EtOAc $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 4.36(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,137.5,136.7,134.6,134.0,129.3,129.2,127.4,121.5$, 120.1, 119.6, 109.0, 100.2, 69.7, 53.2, 29.5, 23.9. IR (cm^{-1}) 3053 (w), 2953 (w), 1741 (s), 1471 (m). HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}$ ([M-H] ${ }^{-}$): 356.0962. Found: 356.0962.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato $][(\eta-3,4,5)$-2-(1'-methyl-2'-

hydroxymethyl-3'-indolyl)-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-2.65a

To a solution of (\pm) - $\mathbf{2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added the indolyl alcohol ($20.9 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm)-2.65a ($44 \mathrm{mg}, 0.072 \mathrm{mmol}, 81 \%$) as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.38,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $8.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-$ 4.37 (m, 2 H), 4.22 (dd, $J=12.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, J=12.4 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 226.8,225.9,147.4,142.0,141.4,138.6$, $137.0,136.0,134.4,126.3,121.9,121.1,119.6,113.3,109.5,106.0,105.4,105.3,71.1$, 67.4, 67.3, 66.7, 60.1, 54.2, 29.7. IR (cm^{-1}) 3377 (m), 3146 (w), 3053 (w), 2945 (w), 2482 (m), 1942 (s), 1845 (s), 1505 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BMoN}_{7} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$610.1266. Found: 610.1271.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-1-t-butoxycarbonyl- 2-(2'-malonyl-3'-indolyl)-5,6-dihydro-2H-pyridin-3-yl]molybdenum, (\pm)-2.65c

To a solution of $(\pm) \mathbf{- 2 . 4 6 b}(50 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.0$ equiv) in DMSO (4 mL) was added indolyl malonate ($37.8 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{MgO}(8.8 \mathrm{mg}, 0.22 \mathrm{mmol}$, 3.0 equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc (2×5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm)-2.65c (41 $\mathrm{mg}, 0.046 \mathrm{mmol}, 61 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.26,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~s}, 0.5 \mathrm{H}), 9.35(\mathrm{~s}, 0.5 \mathrm{H}), 8.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5$ H), $8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.73(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 1.5 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 2.5 \mathrm{H}), 7.41(\mathrm{~s}, 0.5 \mathrm{H}), 7.39(\mathrm{~s}, 0.5$ H), 7.17-7.22 (m, 1H), 7.12-7.16(m, 1 H$), 6.29-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.23(\mathrm{~m}, 1 \mathrm{H}), 6.03-$ $6.05(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 0.5 \mathrm{H}), 5.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.52(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.5 \mathrm{H})$, $5.38(\mathrm{~s}, 0.5 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.31(\mathrm{~m}$, $1 \mathrm{H}), 3.93-4.10(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 4.5 \mathrm{H}), 1.53(\mathrm{~s}, 4.5 \mathrm{H}), 1.46(\mathrm{~s}, 4.5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.36(\mathrm{~s}, 4.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 226.3,225.8,225.2,168.3,167.7,167.1$, $166.1,154.3,153.8,147.3,147.3,142.2,142.1,141.9,141.8,136.0,136.0,135.8,134.3$, $129.3,128.8,128.6,128.5,128.4,128.3,128.3,127.0,126.1,125.6,121.9,121.6,121.0$, $119.6,119.3,116.9,115.3,111.4,105.9,105.8,105.3,105.1,105.0,83.2,83.0,82.5,82.4$, $80.3,79.1,70.9,70.4,67.0,66.5,66.0,64.9,50.8,47.2,46.0,41.3,41.0,28.5,28.3,27.9$,
27.9. IR (cm^{-1}) 3358 (m), 3123 (w), 3057 (w), 2482 (m), 1938 (s), 1857 (s$), 1679$ (s$)$. HRMS (FAB) Calcd. for $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{BMoNaN}_{8} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 901.2724. Found: 901.2712.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-1-t-butoxycarbonyl- 2-(1'-

 methyl-2'-nitroethyl-3'-indolyl)-5,6-dihydro-2H-pyridin-3-yl]molybdenum, (\pm)-

To a solution of $(\pm) \mathbf{- 2 . 4 6 b}(50 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added 2.61 ($22.4 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{MgO}(8.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 3.0$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm)-2.65e (41 mg , $0.046 \mathrm{mmol}, 66 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.23,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (major rotamer) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=$
$2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dt}, J=12.8 \mathrm{~Hz}, 6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=13.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.35(\mathrm{~m}, 3$ H), $4.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dt}, J=15.6$ $\left.\mathrm{Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta 225.8,225.7,153.8$, $147.4,142.4,141.6,137.6,136.0,135.8,134.3,133.0,125.6,121.5,120.9,119.5,115.1$, $109.3,105.9,105.3,79.4,75.2,71.4,65.8,65.4,46.5,41.5,29.7,28.3,22.9 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ 2976 (w), 2930 (w), 2482 (w), 1942 (s), 1853 (s), 1679 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{32} \mathrm{H} 36 \mathrm{BMoNaN} \mathrm{N}_{9} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 774.1828. Found: 774.1835.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [$(\eta$-3,4,5)-1-benzyloxycarbonyl- 2-(5'-methyl-2'-furanyl)-5,6-dihydro-2H-pyridin-3-yl]molybdenum, (\pm)-

To a solution of (\pm)-2.46a ($50 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added 2-methylfuran ($9.1 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 6 6}(40 \mathrm{mg}, 0.060 \mathrm{mmol}, 84 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.34,3: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $0.6 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.17-6.19(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $0.4 \mathrm{H}), 5.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.19(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.13(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.4$ H), $5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.19-4.38(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.67(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.31(\mathrm{~s}, 1.2 \mathrm{H})$, 2.27 (s, 1.8 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.7$, 225.5, 225.3, 225.0, 154.8, 153.6, $153.6,151.8,151.7,147.3,141.9,141.7,136.9,136.7,136.0,134.4,128.3,128.2,127.9$, 127.7, 127.6, 127.6, 107.6, 107.5, 106.2, 106.0, 106.0, 105.4, 105.3, 68.2, 68.0, 67.2, 67.0, 67.0, 64.0, 63.9, 48.9, 48.5, 39.8, 39.4, 13.8, 13.7. IR (cm^{-1}) 3134 (w), 3030 (w), 2953 (w), 2837 (w), 2486 (m), 1945 (s), 1861 (s), 1698 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{BMoN}_{7} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 664.1372$. Found: 664.1377.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-3,4,5)-2-cyclohexanonyl-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-

2.68

To a solution of $(\pm) \mathbf{- 2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added the 1-trimethylsiloxy cyclohexene ($22.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture
was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 6 8}(32 \mathrm{mg}, 0.056 \mathrm{mmol}, 63 \%$, dr 1:1) as an orange solid.
$1^{\text {st }}$ diastereomer TLC $\left(\mathrm{R}_{f}=0.37,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.15-6.17 (m, 2 H), $4.56(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.05(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.71(\mathrm{~m}, 2$ H), $2.76(\mathrm{dt}, J=10.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.11$ (m, 1 H), 1.90-1.95 (m, 1 H$), 1.58-1.77$ (m, 3 H). IR ($\left.\mathrm{cm}^{-1}\right) 2934$ (m), 2860 (w), 2486 (w), 1938 (s), 1853 (s), 1702 (s), 1505 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BMoNaN}_{6} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 569.0977$. Found: 569.0976.
$1^{\text {st }}$ diastereomer TLC $\left(\mathrm{R}_{f}=0.35,2: 1\right.$ hexanes:EtOAc $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2$ H), $7.52(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1 H), 3.67 (dd, $J=12.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=9.6 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J$ $=13.6 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 2 \mathrm{H})$,
1.88-2.03 (m, 2 H), 1.74-1.85 (m, 2 H). IR (cm^{-1}) 2937 (m), 2864 (w), 2486 (w), 1938 (s$)$, 1853 (s), 1706 (s), 1505 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BMoNaN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 569.0977. Found: 569.0976.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] [($\boldsymbol{\eta}$-3,4,5)-2-allyl-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-

To a solution of (\pm)-2.36 ($50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added allyl trimethylsilane ($14.8 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by $\operatorname{EtOAc}(2 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 6 9}(32 \mathrm{mg}, 0.066 \mathrm{mmol}, \mathbf{7 4 \%})$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.35,6: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{ddt}, J=16.8 \mathrm{~Hz}$, $10.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=16.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (ddd, $J=8.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 1.6$
$\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 225.7,225.3,147.3,141.6,141.5,135.9,135.5,134.3,116.8$, $105.9,105.3,71.1,70.4,67.4,63.4,57.6,40.8 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3146(\mathrm{w}), 2926(\mathrm{~m}), 2853(\mathrm{w})$, 2482 (w), 1938 (s), 1845 (s), 1640 (w). HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BMoNaN}_{6} \mathrm{O}_{3}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 513.0715$. Found: 513.0723.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato] $[(\boldsymbol{\eta}$-3,4,5)-2-acetonyl-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm)-

To a solution of (\pm) - $\mathbf{2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added 2-trimethyloxypropene ($16.9 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by $\operatorname{EtOAc}(2 \times 5 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 7 0}(36 \mathrm{mg}, 0.071 \mathrm{mmol}, 80 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.20,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{ddd}, J=7.6 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.0$
$\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.8 \mathrm{~Hz}$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.3,225.2,207.0,147.3,141.8,141.4$, $136.0,134.4,106.0,105.3,70.5,67.6,66.8,62.9,57.8,50.6,30.2$.

IR (cm^{-1}) 2957 (m), 2856 (w), 2490 (w), 1948 (s), 1853 (s), 1714 (s), 1625 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BMoNaN}_{6} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 529.0675. Found: 529.0664.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-3,4,5)-2-

(Diazomethoxycarbonylacetonyl)-5,6-dihydro-2H-pyran-3-yl]molybdenum, (土)-

To a solution of (\pm) - $\mathbf{2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added the t-butyldimethyl silyl enol ether of the diazocompound $(33.3 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated.

Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm)-2.71 (39 $\mathrm{mg}, 0.067 \mathrm{mmol}, 77 \%)$ as an orange solid.

TLC $\left(\mathrm{R}_{f}=0.41,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1$ H), $7.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{ddd}, J=7.2 \mathrm{~Hz}$, $4.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 225.2,225.2,190.0,161.8,147.3,141.9,141.4,135.9,134.4,105.9$, 105.3, 70.7, 68.2, 67.0, 63.0, 57.9, 52.2, 46.5. IR $\left(\mathrm{cm}^{-1}\right) 3130(\mathrm{w}), 2957(\mathrm{w}), 2486(\mathrm{~m})$, 2138 (s), 1942 (s), 1853 (s), 1718 (s), 1648 (s). HRMS (FAB) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BMoNaN}_{8} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$613.0623. Found: 613.0633.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][$\boldsymbol{\eta} \boldsymbol{\eta}$-3,4,5)-2-(malonylisobutenyl)-5,6-dihydro-2H-pyran-3-yl]molybdenum, (\pm) -

To a solution of $(\pm) \mathbf{- 2 . 3 6}(50 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(4 \mathrm{~mL})$ was added dimethyl 2-(2-((trimethylsilyl)methyl)allyl)malonate $(33.5 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 1 hour, and then quenched with
brine. The mixture was poured into a separatory funnel containing EtOAc (5 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm) $\mathbf{- 2 . 7 2}(40 \mathrm{mg}$, $0.063 \mathrm{mmol}, 71 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.33,3: 1\right.$ hexanes:EtOAc$) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $7.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3,67-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $14.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 225.5,225.4,169.4,169.4,147.3,142.9,141.8,141.4,135.9,134.3,113.7,105.9,105.3$, $71.2,69.2,67.1,63.2,57.5,52.6,52.6,50.4,42.6,34.8$. IR $\left(\mathrm{cm}^{-1}\right) 2957(\mathrm{~m}), 2926(\mathrm{~m})$, 2482 (w), 1942 (s), 1853 (s), 1733 (s), 1648 (m). HRMS (FAB) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{BMoNaN}_{6} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$657.1137. Found: 657.1132.

7-methyl-4a,6,7,11c-tetrahydro-2H-pyrano[2',3':5,6]pyrano[3,4-b]indole

To a solution of $(\pm) \mathbf{- 2 . 6 5 a}(44 \mathrm{mg}, 0.072 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension ($4.32 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.5$ equiv) and copper 2-ethylhexanoate (5
$\mathrm{mg}, 0.014 \mathrm{mmol}, 0.2$ equiv). The reaction mixture was stirred at room temperature under dry air for 3 days, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (2 mL), and the layers were separated. The aqueous layer was extracted by EtOAc ($2 \times 2 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (6:1) afforded (\pm) $\mathbf{- 2 . 7 6}(16 \mathrm{mg}, 0.068 \mathrm{mmol}, 95 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.36,4: 1\right.$ hexanes:EtOAc $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dt}, J=8.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{ddt}, J=10.4 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.43$ (m, 2 H), $3.92(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.4,135.7,132.7,126.5,123.6,121.7,119.9,118.4,108.9,106.8,68.8,67.4,65.3,62.6$, 29.6. IR (cm^{-1}) 3042 (w), 2926 (m), 2853 (m), 1471 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$242.1175. Found: 242.1176.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-3,4,5)-1-t-butoxycarbonyl- 2-(2'-malonyl-3'- N -benzyloxycarbonyl-indolyl)-5,6-dihydro-2H-pyridin-3-yl]molybdenum, (\pm)-2.77

2.77

To a solution of $(\pm) \mathbf{- 2 . 6 5 c}(50 \mathrm{mg}, 0.051 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added NaHMDS (1.0 M in THF, $0.10 \mathrm{~mL}, 0.10 \mathrm{mmol}, 2$ equiv) and $\mathrm{CbzCl}(14 \mathrm{mg}, 0.092 \mathrm{mmol}$, 1.8 equiv). The reaction mixture was stirred at room temperature for 30 minutes, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc $(5 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted by EtOAc (2 x 5 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel with hexanes-EtOAc (2.5:1) afforded (\pm)-2.77 (45 $\mathrm{mg}, 0.045 \mathrm{mmol}, 88 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.27,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H}$ NMR (a mixture of two rotamers) (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.59-8.61(\mathrm{~m}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 8.19(\mathrm{dd}, J=8.8,0.8$ $\mathrm{Hz}, 0.7 \mathrm{H}$), 8.08 (d, $J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.7$ H), $7.85(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.42(\mathrm{~m}, 6$ H), $6.32(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 0.7 \mathrm{H}), 6.03(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.35-5.53(\mathrm{~m}, 1.6 \mathrm{H}), 5.21$
$(\mathrm{d}, J=12.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.47-4.54(\mathrm{~m}, 1.3 \mathrm{H}), 4.38(\mathrm{dd}, J=15.2,2.4 \mathrm{~Hz}, 1.0 \mathrm{H}), 4.07-4.19$ (m, 2.7 H), $4.00(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.47(\mathrm{~s}, 2.7 \mathrm{H}), 1.44$ (s, 9 H$), 1.38(\mathrm{~s}, 6.3 \mathrm{H}), 1.36(\mathrm{~s}, 2.7 \mathrm{H}), 1.35(\mathrm{~s}, 6.3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $227.1,226.8,224.6,224.1,166.2,165.9,165.6,165.3,154.2,153.9,151.7,151.6,147.4$, $142.4,142.2,141.4,141.1,140.8,136.5,136.1,136.0,135.9,135.8,135.5,135.1,134.4$, $131.4,129.7,128.6,128.5,128.4,128.3,127.6,127.5,127.0,125.5,124.6,124.0,122.8$, $122.5,122.2,121.1,120.9,120.4,115.6,115.3,106.0,105.3,105.2,105.1,82.2,82.1$, $81.5,81.4,80.8,79.5,68.8,68.4,68.1,67.9,67.7,66.5,65.4,64.8,51.7,51.2,47.5,46.8$, 41.7, 41.1, 28.3, 28.0, 27.7.
methyl 7-methyl-5-(phenylsulfonyl)-2,4a,5,6,7,11c-hexahydropyrano [3,2-c]carbazole-5-carboxylate

2.79

To a solution of (\pm)-2.65b ($50 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.0$ equiv) in DMSO $(4 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}$ dispension $(3.74 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.5$ equiv) and copper $2-$ ethylhexanoate ($34 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred at room temperature under dry air overnight, and then quenched with brine. The mixture was poured into a separatory funnel containing EtOAc (2 mL), and the layers were separated. The aqueous layer was extracted by EtOAc $(2 \times 2 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel
with hexanes-EtOAc (6:1) afforded (\pm) $\mathbf{- 2 . 7 9}(24 \mathrm{mg}, 0.056 \mathrm{mmol}, 90 \%)$ as an orange solid.
$\operatorname{TLC}\left(\mathrm{R}_{f}=0.36,2: 1\right.$ hexanes:EtOAc). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{dd}, J=8.0 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14-7.17 (m, 2 H), 7.10 (ddd, $J=7.8 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (dq, $J=10.4 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dq}, J=16.8 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{dq}, J=16.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3$ H), $3.26(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.5, 137.4, 136.4, 134.0, 132.7, 130.4, $129.5,128.5,126.0,122.5,121.6,119.8,118.9,108.7,107.0,78.0,68.0,61.5,53.5,37.4$, 29.2, 24.7. IR (cm ${ }^{-1}$) 3057 (w), 2930 (w), 2845 (w), 1737 (s). HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 438.1370$. Found: 438.1371.

X-Ray Diffraction Study of 2.79

A suitable crystal of $\mathbf{2 . 7 9}$ was obtained by diffusion recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ and hexanes. The crystal was coated with Paratone N oil, suspended in a small fiber loop and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 SMART APEX CCD sealed tube diffractometer with graphite monochromated MoK ($0.71073 \AA$) radiation. Data were measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.3 o frame widths. Data collection, indexing and initial cell refinements were all carried out using SMART5 software. Frame integration and final cell refinements were done using SAINT6 software. The final cell parameters were
determined from least-squares refinement on 5664 reflections. The SADABS7 program was used to carry out absorption corrections.

The structure was solved using Direct methods and difference Fourier techniques (SHELXTL, V6.12).8 Hydrogen atoms were placed their expected chemical positions using the HFIX command and were included in the final cycles of least squares with isotropic Uij 's related to the atom's ridden upon. The C-H distances were fixed at 0.93 \AA (aromatic and amide), $0.98 \AA$ (methine), $0.97 \AA$ (methylene), or $0.96 \AA$ (methyl). All non-hydrogen atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from the International Tables for X-ray Crystallography9. Structure solution, refinement, graphics and generation of publication materials were performed by using SHELXTL, V6.12 software.

Table 19 Crystal data and structure refinement for 2.79.

Identification code	wyc_06_044	
Empirical formula	C24 $\mathrm{H} 23 \mathrm{~N} \mathrm{O5} \mathrm{~S}$	
Formula weight	437.49	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Triclinic	
Space group	$\mathrm{P}-1$	$\alpha=72.6870(10)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=8.0781(2) \AA$	$\beta=84.4040(10)^{\circ}$.
	$\mathrm{b}=9.0667(2) \AA$	$\gamma=82.763(2)^{\circ}$.
Volume	$\mathrm{c}=14.8527(4) \AA$	
Z	$1028.21(4) \AA^{3}$	
Density (calculated)	2	
Absorption coefficient	$1.413 \mathrm{Mg} / \mathrm{m}^{3}$	

F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.57^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

460
$0.29 \times 0.26 \times 0.11 \mathrm{~mm}^{3}$
3.12 to 66.57°.
$-8<=\mathrm{h}<=9,-10<=\mathrm{k}<=10,-16<=\mathrm{l}<=17$
9521
$3306[\mathrm{R}(\mathrm{int})=0.0174]$
90.9 \%

Semi-empirical from equivalents
0.8335 and 0.6356

Full-matrix least-squares on F^{2}
3306 / 0 / 280
1.027
$\mathrm{R} 1=0.0369, \mathrm{wR} 2=0.1005$
$R 1=0.0406, w R 2=0.1052$
0.406 and -0.315 e. \AA^{-3}

Table 20 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2.79. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$1095(3)$	$-91(2)$	$1229(1)$	$36(1)$
$\mathrm{C}(2)$	$405(2)$	$1524(2)$	$731(1)$	$32(1)$
$\mathrm{C}(3)$	$320(2)$	$2688(2)$	$1099(1)$	$28(1)$
$\mathrm{C}(4)$	$779(2)$	$2445(2)$	$2098(1)$	$25(1)$
$\mathrm{C}(5)$	$2427(2)$	$3085(2)$	$2240(1)$	$24(1)$
$\mathrm{C}(6)$	$2475(2)$	$2981(2)$	$3296(1)$	$27(1)$
$\mathrm{C}(7)$	$2196(2)$	$1368(2)$	$3871(1)$	$26(1)$
$\mathrm{C}(8)$	$2329(2)$	$-831(2)$	$5060(1)$	$28(1)$
$\mathrm{C}(9)$	$2642(2)$	$-1986(2)$	$5910(1)$	$35(1)$
$\mathrm{C}(10)$	$2234(3)$	$-3452(2)$	$5982(1)$	$40(1)$
$\mathrm{C}(11)$	$1516(3)$	$-3775(2)$	$5251(1)$	$38(1)$
$\mathrm{C}(12)$	$1183(2)$	$-2624(2)$	$4415(1)$	$32(1)$
$\mathrm{C}(13)$	$1594(2)$	$-1122(2)$	$4313(1)$	$27(1)$
$\mathrm{C}(14)$	$1511(2)$	$312(2)$	$3566(1)$	$26(1)$
$\mathrm{C}(15)$	$825(2)$	$700(2)$	$2624(1)$	$27(1)$
$\mathrm{C}(16)$	$3306(2)$	$1471(2)$	$5386(1)$	$33(1)$
$\mathrm{C}(17)$	$4027(2)$	$2218(2)$	$1920(1)$	$26(1)$
$\mathrm{C}(18)$	$5509(3)$	$1399(2)$	$695(1)$	$38(1)$
$\mathrm{C}(19)$	$4159(2)$	$5820(2)$	$1814(1)$	$25(1)$
$\mathrm{C}(20)$	$4046(2)$	$6666(2)$	$2454(1)$	$32(1)$
$\mathrm{C}(21)$	$5463(3)$	$7300(2)$	$2575(2)$	$40(1)$
$\mathrm{C}(22)$	$6946(3)$	$7058(2)$	$2071(2)$	$39(1)$
$\mathrm{C}(23)$	$7044(3)$	$6203(2)$	$1436(1)$	$37(1)$
$\mathrm{C}(24)$	$5647(2)$	$5579(2)$	$1291(1)$	$31(1)$
$\mathrm{N}(1)$	$2691(2)$	$692(2)$	$4780(1)$	$28(1)$
$\mathrm{O}(1)$	$1840(2)$	$-186(1)$	$2078(1)$	$31(1)$

$\mathrm{O}(2)$	$5112(2)$	$1566(2)$	$2443(1)$	$36(1)$
$\mathrm{O}(3)$	$4080(2)$	$2278(2)$	$1015(1)$	$30(1)$
$\mathrm{O}(4)$	$903(2)$	$5901(2)$	$2000(1)$	$36(1)$
$\mathrm{O}(5)$	$2379(2)$	$5352(2)$	$579(1)$	$35(1)$
$\mathrm{S}(1)$	$2322(1)$	$5161(1)$	$1577(1)$	$26(1)$

Table 21 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2.79.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.425(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.387(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.494(3)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9900	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.403(3)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9900	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.316(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.435(2)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.482(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.511(2)$	$\mathrm{C}(15)-\mathrm{O}(1)$	$1.438(2)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	1.0000
$\mathrm{C}(4)-\mathrm{C}(15)$	$1.540(2)$	$\mathrm{C}(16)-\mathrm{N}(1)$	$1.453(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.574(2)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	1.0000	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(17)$	$1.537(2)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.547(2)$	$\mathrm{C}(17)-\mathrm{O}(2)$	$1.203(2)$
$\mathrm{C}(5)-\mathrm{S}(1)$	$1.8414(16)$	$\mathrm{C}(17)-\mathrm{O}(3)$	$1.326(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.490(2)$	$\mathrm{C}(18)-\mathrm{O}(3)$	$1.442(2)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(14)$	$1.367(2)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.382(2)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.377(3)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.379(2)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.396(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.400(3)$	$\mathrm{C}(19)-\mathrm{S}(1)$	$1.7704(17)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.413(3)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.393(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.380(3)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.378(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.400(3)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.380(3)$

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.0
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.385(3)$	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.4
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9500	$\mathrm{C}(14)-\mathrm{C}(7)-\mathrm{N}(1)$	$109.90(16)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500	$\mathrm{C}(14)-\mathrm{C}(7)-\mathrm{C}(6)$	$125.58(16)$
$\mathrm{O}(4)-\mathrm{S}(1)$	$1.4410(14)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$124.41(16)$
$\mathrm{O}(5)-\mathrm{S}(1)$	$1.4369(13)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$129.13(18)$
		$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$108.52(15)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.69(15)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$122.32(18)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.1	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$116.94(19)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.1	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	121.5
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.1	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	121.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.1	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.93(18)$
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	107.8	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$123.07(16)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	119.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	118.5	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$121.06(19)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	118.5	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	119.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.69(17)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	119.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.2	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.59(19)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.2	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	$108.28(14)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.7
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.90(14)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$119.14(17)$
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.01(13)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$134.66(17)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.7	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$106.14(16)$
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.7	$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(13)$	$107.29(16)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.7	$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)$	$122.78(16)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(6)$	$109.61(14)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$129.93(16)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(4)$	$113.42(14)$	$\mathrm{O}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	$108.37(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$108.78(13)$	$\mathrm{O}(1)-\mathrm{C}(15)-\mathrm{C}(4)$	$109.93(13)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{S}(1)$	$109.87(11)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(4)$	$112.26(14)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)$	$106.86(11)$	$\mathrm{O}(1)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	108.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$108.08(11)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	108.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$108.36(14)$	$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	108.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.0	$\mathrm{~N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	110.0	109.5	
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.0	$\mathrm{H}(16)-\mathrm{B}(16 \mathrm{~B})$	109.5

$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(4)$	$118.34(8)$
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(19)$	$107.71(8)$
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(19)$	$108.40(8)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)$	$124.23(17)$	$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(5)$	$110.30(8)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(5)$	$122.92(16)$	$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(5)$	$105.82(8)$
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(5)$	$112.85(14)$	$\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{C}(5)$	$105.56(8)$
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5		
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5		
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5		
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5		
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5		
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5		
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	$121.93(16)$		
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)$	$118.89(14)$		
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)$	$118.96(14)$		
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$118.65(18)$		
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	120.7		
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	120.7		
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.1(2)$		
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.0		
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.0		
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$120.70(18)$		
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.6		
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.6		
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.36(19)$		
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	119.8		
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	119.8		
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$118.27(18)$		
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	120.9		
$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	120.9		
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)$	$108.13(15)$		
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(16)$	$124.87(15)$		
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(16)$	$126.64(16)$		
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(15)$	$111.66(14)$		
$\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$114.94(14)$		

Symmetry transformations used to generate equivalent atoms:

Table 22 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2.79. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U33	U^{23}	U13	U12
C(1)	50(1)	35(1)	28(1)	-12(1)	-8(1)	-8(1)
C(2)	33(1)	39(1)	25(1)	-6(1)	-8(1)	-11(1)
C(3)	26(1)	32(1)	24(1)	-2(1)	-8(1)	-6(1)
C(4)	24(1)	26(1)	24(1)	-6(1)	-5(1)	-4(1)
C(5)	27(1)	22(1)	23(1)	-4(1)	-6(1)	-4(1)
C(6)	29(1)	29(1)	24(1)	-8(1)	-6(1)	-5(1)
C(7)	24(1)	32(1)	23(1)	-5(1)	-4(1)	-2(1)
C(8)	24(1)	34(1)	24(1)	-4(1)	-2(1)	-1(1)
C(9)	31(1)	44(1)	24(1)	-3(1)	-4(1)	2(1)
C(10)	39(1)	38(1)	31(1)	6(1)	-1(1)	2(1)
C(11)	39(1)	30(1)	40(1)	-1(1)	1(1)	-3(1)
C(12)	30(1)	33(1)	31(1)	-6(1)	0(1)	-4(1)
C(13)	24(1)	31(1)	24(1)	-4(1)	-1(1)	-2(1)
C(14)	25(1)	29(1)	24(1)	-5(1)	-4(1)	-3(1)
C(15)	28(1)	28(1)	25(1)	-6(1)	-4(1)	-6(1)
C(16)	32(1)	44(1)	26(1)	-12(1)	-8(1)	-4(1)
C(17)	27(1)	23(1)	26(1)	-4(1)	-6(1)	-6(1)
C(18)	39(1)	37(1)	36(1)	-11(1)	3(1)	2(1)
C(19)	24(1)	22(1)	26(1)	-1(1)	-6(1)	-4(1)
C(20)	30(1)	31(1)	35(1)	-10(1)	-4(1)	-4(1)
$\mathrm{C}(21)$	45(1)	34(1)	47(1)	-15(1)	-15(1)	-6(1)
C(22)	32(1)	32(1)	50(1)	-1(1)	-14(1)	-10(1)
C(23)	27(1)	38(1)	39(1)	1(1)	-3(1)	-6(1)
C(24)	32(1)	31(1)	27(1)	-4(1)	-3(1)	-3(1)
N(1)	29(1)	35(1)	21(1)	-6(1)	-5(1)	-3(1)
$\mathrm{O}(1)$	37(1)	29(1)	27(1)	-9(1)	-8(1)	-2(1)

$\mathrm{O}(2)$	$30(1)$	$43(1)$	$34(1)$	$-10(1)$	$-13(1)$	$4(1)$
$\mathrm{O}(3)$	$29(1)$	$34(1)$	$25(1)$	$-7(1)$	$-3(1)$	$0(1)$
$\mathrm{O}(4)$	$26(1)$	$29(1)$	$50(1)$	$-9(1)$	$-5(1)$	$-2(1)$
$\mathrm{O}(5)$	$41(1)$	$32(1)$	$29(1)$	$0(1)$	$-15(1)$	$-7(1)$
$\mathrm{S}(1)$	$24(1)$	$23(1)$	$28(1)$	$-3(1)$	$-8(1)$	$-3(1)$

Table 23 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $\mathbf{2 . 7 9}$.

[.				

$\mathrm{H}(1 \mathrm{~A})$	182	-776	1382	43
$\mathrm{H}(1 \mathrm{~B})$	1942	-473	801	43
$\mathrm{H}(2 \mathrm{~A})$	10	1721	120	38
$\mathrm{H}(3 \mathrm{~A})$	-39	3706	726	34
$\mathrm{H}(4 \mathrm{~A})$	-162	2981	2410	29
$\mathrm{H}(6 \mathrm{~A})$	3573	3237	3417	32
$\mathrm{H}(6 \mathrm{~B})$	1593	3729	3469	32
$\mathrm{H}(9 \mathrm{~A})$	3114	-1771	6412	42
$\mathrm{H}(10 \mathrm{~A})$	2446	-4265	6546	48
$\mathrm{H}(11 \mathrm{~A})$	1253	-4799	5327	46
$\mathrm{H}(12 \mathrm{~A})$	687	-2848	3923	38
$\mathrm{H}(15 \mathrm{~A})$	-340	393	2709	32
$\mathrm{H}(16 \mathrm{~A})$	3463	2545	5025	50
$\mathrm{H}(16 B)$	4375	927	5621	50
$\mathrm{H}(16 \mathrm{C})$	2493	1465	5922	50
$\mathrm{H}(18 \mathrm{~A})$	5446	1505	23	57
$\mathrm{H}(18 B)$	5516	301	1058	57
$\mathrm{H}(18 \mathrm{C})$	6537	1792	788	57
$\mathrm{H}(20 \mathrm{~A})$	3023	6814	2804	38

$\mathrm{H}(21 \mathrm{~A})$	5407	7900	3006	48
$\mathrm{H}(22 \mathrm{~A})$	7910	7484	2163	47
$\mathrm{H}(23 A)$	8076	6041	1095	44
$\mathrm{H}(24 \mathrm{~A})$	5701	5003	848	37

Table 24 Torsion angles [${ }^{\circ}$] for $\mathbf{2 . 7 9}$.

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-7.7(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-5.5(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	$-15.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.8(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(17)$	$-68.04(19)$
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(17)$	$56.74(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$169.71(15)$
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-65.51(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$54.04(18)$
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$178.82(11)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-72.83(17)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$51.69(18)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$168.15(12)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(14)$	$-18.6(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$157.34(17)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-176.20(18)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$1.5(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-0.9(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$0.0(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.5(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$0.0(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$176.9(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$177.08(16)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$-1.0(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$-0.6(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	$-178.71(17)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(13)$	$-0.9(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(13)$	$175.54(17)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)$	$178.56(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)$	$-5.0(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(7)$	
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(7)$	
	$-9(2)$

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	4.3(3)
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-178.48(18)
$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(1)$	114.48(18)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(1)$	-66.2(2)
$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(4)$	-7.1(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(4)$	172.21(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(1)$	50.69(18)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(1)$	-79.45(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	171.39(15)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	41.25(19)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(2)$	0.5(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(2)$	-121.33(18)
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(2)$	117.60(16)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(3)$	-179.17(13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(3)$	59.04(18)
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(3)$	-62.03(16)
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	0.2(3)
$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-174.33(14)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-0.9(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	0.7(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	0.3(3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	-1.0(3)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	0.7(3)
$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	175.27(14)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)$	178.01(18)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)$	0.1(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(16)$	-8.5(3)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(16)$	173.63(17)
$\mathrm{C}(14)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	0.5(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	-175.97(16)
$\mathrm{C}(14)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(16)$	-172.88(17)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(16)$	10.6(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(15)$	44.1(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(1)-\mathrm{C}(1)$	169.55(14)
$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(1)-\mathrm{C}(1)$	-67.43(18)

$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$4.1(2)$
$\mathrm{C}(5)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$-176.28(14)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{O}(5)$	$139.60(14)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{O}(5)$	$-35.12(16)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{O}(4)$	$10.45(16)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{O}(4)$	$-164.27(14)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{C}(5)$	$-102.56(15)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)-\mathrm{C}(5)$	$82.72(15)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(5)$	$57.58(14)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(5)$	$176.42(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(5)$	$-66.65(13)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(4)$	$-173.30(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(4)$	$-54.46(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(4)$	$62.46(13)$
$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(19)$	$-58.50(13)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(19)$	$60.34(13)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(19)$	$177.26(11)$

Symmetry transformations used to generate equivalent atoms:

Chapter Three

Synthesis of 4-Methyl Substituted Pyranyl and Pyridinyl Scaffold

Background

Tropane alkaloids (Figure 15) have attracted extensive attention in chemistry, pharmacology, and biology due to their unique 8 -azabicyclo[3.2.1]octane skeleton and various biological activities. ${ }^{1,2}$

Figure 15 A few typical tropane alkaloids

The tropane alkaloids have been enantioselectively synthesized (Figure 1) by intramolecular nucleophilic attack of the nitrogen on a carbonyl of a seven member ring derived from sugar, ${ }^{3-5}$ intramolecular iminium ion cyclization from an amino acid such as glutamic acid, ${ }^{6,7}[4+3]$ cycloadditions of pyrroles with chiral vinyldiazomethanes, ${ }^{8}[5+2]$ cycloadditions between chiral dienophiles and the betain of N -benzyl-3hydroxypyridinium chloride, ${ }^{9,10}$ and the desymmetrization of tropinone with chiral base ${ }^{11,12}$ or the organocatalytic intramolecular aldol reaction of a meso-dialdehyde. ${ }^{13}$

Figure 16 Synthetic methods for tropane alkaloids

Recently, stoichiometric metal mediated reactions have been applied to the synthesis of tropane alkaloids. In 1995, Rigby's group first reported that $\operatorname{Cr}(0)$-mediated [6+2] cycloadditions between azepine and chiral dienophiles followed by a ring contraction led to the synthesis of $(+)$-ferruginine. ${ }^{14}$ The Liebeskind group has developed a chiral molybdenum scaffold for the construction of tropane alkaloids (scheme 84) by using a novel [5+2] reaction or a Mukaiyama aldol followed by a 1,5-Michael like reaction. ${ }^{15-18}$

Scheme 84 Construction of tropanes via [5+2] or Mukaiyama aldol

followed by 1,5-Michael like reaction

Introduction

These scaffolds only led to the tropanes with 3-substituent. Since natural tropane alkaloids usually contain substituents on 4-carbon, a series of new scaffolds (3.1 \& 3.2, Scheme 85) with a substituent on 4-carbon were designed to explore their reactivity and application in the synthesis of tropane alkaloids.

Scheme 85 [5+2] cycloaddition of the scaffolds 3.1 and 3.2

3.1: $\mathrm{R}=\mathrm{Me}$
3.2: $\mathrm{R}=\mathrm{OMe}$

Herein are reported the synthesis of the scaffold $\mathbf{3 . 1}$ and the preliminary results of [5+2] cycloadditions.

Results and discussion

Synthesis of 4-methoxy scaffold 3.2

The synthesis of 3.2 (Scheme 86) started with the preparation of unsaturated ketone 3.4 from commercially available 4-methoxy pyridine 3.3. At $-78{ }^{\circ} \mathrm{C}$ in THF, NaBH_{4} and CbzCl were used to transform 3.3 to $\mathbf{3 . 4}$ in $73 \%{ }^{19}$ However, the metallation step provided 3.5 in a yield of 15% due to low conversion. Different protecting groups on nitrogen, such as ethoxycarbonyl and phenyloxycarbonyl, were investigated; but none showed improvement. Furthermore, a problem appeared in the dehydrogenation step. The common protocol failed to give the desired product 3.2, leading instead to the demetallation and the regeneration of $\mathbf{3 . 4}$.

Scheme 86 Synthesis of 4-methoxy substituted scaffold 3.2

The first route to scaffold 3.1

Considering the possible complication caused by methoxy group, the 4-methyl scaffold 3.1, which could be prepared from the same starting material 3.4 (Scheme 87), was chosen as a model. First the 1,2-addition of methyl Grignard reagent followed by acylation and metallation was investigated. Unfortunately, attempts at purification of the intermediate 3.6 led to complex mixtures due to its instability. Therefore, metallation without isolation and acylation of the intermediate 3.6 was studied, and proved to be effective. After extensive investigation, BF_{3} was found to be a helpful additive increasing the yield from 18% to 30% for the two steps, presumably by increasing the leaving ability of hydroxyl group.

Scheme 87 Synthesis of 4-methyl substituted scaffold 3.1

With the scaffold 3.7 in hand, the dehydrogenation was carefully studied (Table 25). The reaction was found to proceed above $-20^{\circ} \mathrm{C}$, leading only to the decomposition of the starting material. Varying bases and addition sequence of reactants provided no desired product 3.1.

Table 25 Dehydrogenation with different reaction conditions ${ }^{a}$

Entry	Temp	Reagent	base	Yield
1	$0{ }^{\circ} \mathrm{C}$	TrPF_{6}	NEt_{3}	decompose
2	$-78{ }^{\circ} \mathrm{C}$	TrPF_{6}	NEt_{3}	N. R.
3	$-20{ }^{\circ} \mathrm{C}$	TrPF_{6}	NEt_{3}	decompose
4	$0{ }^{\circ} \mathrm{C}$	$\mathrm{TrPF}_{6}{ }^{\mathrm{b}}$	NEt_{3}	decompose
5	$0{ }^{\circ} \mathrm{C}$	TrPF_{6}	DABCO^{2}	decompose

${ }^{a}$ The scaffold 7 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then TrPF_{6} was added at the indicated temperature. After the resulted mixture was stirred for 30 min , it was raised to room temperature. The base was added and stirred for another 1hour. ${ }^{b}$ The scaffold 7 was added into the solution of TrPF_{6}.

These results prompted an investigation into the effect of the methyl group at carbon 4. Consequently, scaffolds $\mathbf{3 . 8}$ and $\mathbf{3 . 1 0}$ were utilized to study dehydrogenation (Scheme 88). The scaffold $\mathbf{3 . 1 0}$ was synthesized via the Luche reduction of $\mathbf{3 . 4}$, followed by the metallation. Although the scaffold 3.8 was readily dehydrogenized to yield $\mathbf{3 . 9}$, the scaffold 3.10 unexpectedly failed under the same conditions. These results suggested that the failure of the transformation of $\mathbf{3 . 7}$ to $\mathbf{3 . 1}$ was caused by the position of allyl moiety instead of that of 4-methyl group.

Scheme 88 Examination of the effect of the 4-methyl

Given that the Achmatowicz reaction has also been used in the synthesis of scaffolds, a new route was chosen to construct the scaffold (Scheme 89). In order to explore the feasibility of the application of the Achomatowicz reaction to this system, both the oxygen and nitrogen scaffolds were established.

Scheme 89 Retrosynthesis of the scaffold 3.1

Synthesis of the oxygen scaffold 3.14

At first, lithiation followed by methylation was examined to introduce the methyl to carbon 3 of the furan (Scheme 90). ${ }^{20,21}$ However, these experiments yielded mainly 5methyl furfuryl alcohol with the desired 2-methyl derivative as a minor product. This
result is probably due to the strong directing effect of the furan oxygen. Therefore, the introduction of the methyl group had to be incorporated during the formation of the furan. Following the formation of $\mathbf{3 . 1 3}$, a reduction cleanly led to the desired substituted furan

3.12.

Scheme 90 Synthesis of 3-methyl substituted furfuryl alcohol 3.12

The synthesis of the oxygen scaffold $\mathbf{3 . 1 4}$ (Scheme 91) started with the Achmatowicz reaction of $\mathbf{3 . 1 2}$. The intermediate $\mathbf{3 . 1 5}$ was directly acylated by $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{DMAP} / \mathrm{Et}_{3} \mathrm{~N}$ without purification to provide $\mathbf{3 . 1 6}$; and, $\mathbf{3 . 1 6}$ was immediately converted into the oxygen scaffold 3.14 in 40% total yield.

Scheme 91 Synthesis of oxygen scaffold 3.14

Synthesis of the scaffold 3.17

The desired metallation precursor $\mathbf{3 . 1 9}$ was prepared via the aminolysis of the intermediate $\mathbf{3 . 1 3}$ followed by reduction and protection with Cbz (Scheme 92). ${ }^{22}$

Scheme 92 Synthesis of N-Cbz-3-methyl furfuryl amine 3.19

The synthesis of $\mathbf{3 . 1 7}$ was first explored by using 1.5 eq m CPBA as the oxidant of the aza-Achmatowicz reaction of 3.19. Metallation of the intermediate led to a complex mixture without desired 3.17. This might be the result of the excess $m \mathrm{CPBA}$, which converted the hydroxyl group into a good leaving group and led to aromatization. On the other hand, when intermediate $\mathbf{3 . 1 9}$ was subjected to oxidation by NBS, the desired intermediate $\mathbf{3 . 2 0}$ formed. However, the crude NMR implied the yield of $\mathbf{3 . 2 0}$ was so low that the total yield was only 25% after the metallation. During the study of $m \mathrm{CPBA}$ as the oxidant, 0.7 eq $m \mathrm{CPBA}$ was discovered to lead to the epoxidation of furan without rearrangement. We envisioned that the epoxide could be the potential precursor of the desired scaffold 3.17. Moreover, the following study proved that it produced $\mathbf{3 . 1 7}$ after metallation. After carefully screening a variety of conditions, the yield was optimized to 54\%.

Scheme 93 Synthesis of the scaffold 3.17

Synthesis of the scaffold 3.1

In order to achieve the desired scaffold 3.1, the following three routes were explored (Scheme 94). The scaffold 3.17 could be easily transformed to the corresponding silyl enol ether $\mathbf{3 . 2 2}$ by using $\mathrm{TBSOTf}_{\mathrm{NEt}}^{3}$. ${ }^{18}$ However, the hydroboration-elimination failed in the next step. ${ }^{23}$ Another route, which tried to transform 3.17 to the corresponding enol triflate $\mathbf{3 . 2 4}$ that could be reduced by a palladium catalyzed reaction, failed in the first step, where $\mathrm{Tf}_{2} \mathrm{O} / \mathrm{DTBP}$ caused extensive decomposition of $\mathbf{3 . 1 7}$ while LDA/ PhNTf_{2} could not effect the transformation.

Scheme 94 Possible route of transforming 17 to 1

3.24

The third route was the reduction of $\mathbf{3 . 1 7}$ followed by elimination. The results of different reducing agents were shown in Table 26. Common reducing agents, such as NaBH_{4} and LiAlH_{4}, failed to reduce the carbonyl. SmI_{2} successfully initiated a reaction, but the product had such a complicated HNMR that it could not be identified. Fortunately, a low yield of the desired compound $\mathbf{3 . 2 3}$ was obtained by using 10 eq $\mathrm{BH}_{3}{ }^{-}$ $\mathrm{Me}_{2} \mathrm{~S}$, which led to the discovery of a better reducing agent for this reaction. After a series of experiments, DIBAL, which afforded a yield of 83%, was identified as the best reagents for the reduction.

Table 26 Different reducing reagent for the reduction of 3.17^{a}

Entry	Reagent	Yield of 3.23
1	NaBH_{4}	N. R.
2	${\mathrm{LiAlH}(t-\mathrm{BuO})_{3}}^{2}$	N. R.
3	LiAlH_{4}	N. R.
4	3 eq BH $_{3}-\mathrm{THF}$	N.R.
5	10 eq BH $_{3}-\mathrm{Me}_{2} \mathrm{~S}$	14%
6	$\mathrm{SmI}_{2} / \mathrm{H}_{2} \mathrm{O} / \mathrm{TMEDA}^{2}$	Unknown product
7	1.6 eq DIBAL	83%

[^1]The next step was to eliminate the hydroxyl group to provide the desired scaffold 3.1. Unexpectedly, the elimination (Scheme 95), which had worked well in other systems, furnished 3.1 in a yield of $10 \% .{ }^{24}$ This low yield was probably caused by the low stability of the intermediate molybdenum cation.

Scheme 95 Synthesis of Scaffold 3.1

As shown in Table 27, different acylating reagents were investigated to effect the elimination. However, neither $\mathrm{Ac}_{2} \mathrm{O}$ nor MsCl served to eliminate the hydroxyl group effectively. Thus, different conditions, including base and solvent, were investigated to tune up the reaction. Finally, $\mathrm{CH}_{3} \mathrm{CN}$, which raised the yield to 51%, was found effective
for the reaction, possibly because it was able to stabilize the necessary intermediate molybdenum cation.

Table 27 Screening of the different conditions for elimination

Entry	Acylating Reagent	Base	Solvent	Yield of 3.1(recovery of S.M.)
1	TFAA	NEt_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$10 \%(40 \%)$
2	$\mathrm{Ac}_{2} \mathrm{O} / \mathrm{DMAP}$	NEt_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	N. R.
3	$\mathrm{MsCl} / \mathrm{DMAP}$	NEt_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{~N} . \mathrm{R}$.
4	TFAA/DMAP	NEt_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$10 \%(40 \%)$
5	TFAA/DMAP	$\mathrm{DABCO}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12 \%(40 \%)$	
6	TFAA/DMAP	NEt_{3}	$\mathrm{CH}_{3} \mathrm{CN}$	$51 \%(10 \%)$
7	TFAA/DMAP	NEt_{3}	DMF	$23 \%(30 \%)$

Study on the [5+2] reaction of scaffold 3.1

With the scaffold 3.1 available, the [5+2] cycloaddition was explored with some common dienophiles. The results are summarized in Table 28. Such Lewis acid as $\mathrm{AlEt}_{2} \mathrm{Cl}$ and AlEtCl_{2} failed to catalyze the cycloaddition while TMSOTf led to the decomposition of the scaffold 3.1. Secondary amine catalyzed [5+2] cycloaddition was also examined because a Lewis acid might also coordinate to the Cbz protecting group in the scaffold so that the reactivity decreased, but this attempt also failed.

Table 28 Study on the [5+2] cycloaddition of scaffold 3.1

			L. A.$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	
Entry	R1	R2	L.A.(eq)	Yield
1	$\mathrm{CH}_{3} \mathrm{CO}$	H	$\mathrm{AlEt}_{2} \mathrm{Cl}(1.0)$	N. R.
2	$\mathrm{CH}_{3} \mathrm{CO}$	H	$\mathrm{AlEtCl}_{2}(1.0)$	N. R.
3	$\mathrm{CH}_{3} \mathrm{CO}$	H	TMSOTf(1.0)	Decomposition
4	OCN(Me)CO		$\mathrm{AlEt}_{2} \mathrm{Cl}(1.0)$	N. R.
5	OCN(Me)CO		$\mathrm{AlEtCl}_{2}(1.0)$	N. R.
6	OCN(Me)CO		TMSOTf(1.0)	Decomposition
7^{a}	HCO	H		N. R.

${ }^{a}$ It was executed in $\mathrm{CH}_{3} \mathrm{OH}$ catalyzed by proline (0.5 eq).

Conclusion

A practical synthesis of the scaffold $\mathbf{3 . 1}$ was established from inexpensive starting material, while the synthesis $\mathbf{3 . 2}$ was explored. The synthesis of scaffold $\mathbf{3 . 1}$ demonstrated epoxide $\mathbf{3 . 2 1}$ as a novel, effective metallation precursor and DIBAL was an especially useful reducing reagent. Preliminary study was conducted on the reactivity of scaffold 3.1, though [5+2] cycloadditions failed in this system.

References

1. Pollini, G. P.; Benetti, S.; De Risi, C.; Zanirato, V., Chem. Rev. 2006, 106, 2434.
2. Humphrey, A. J.; O'Hagan, D., Nat. Prod. Rep. 2001, 18, 494.
3. Boyer, F.-D.; Lallemand, J.-Y., Tetrahedron 1994, 50, 10443.
4. Duclos, O.; Dureault, A.; Depezay, J. C., Tetrahedron. Lett. 1992, 33, 1059.
5. Duclos, O.; Mondange, M.; Dureault, A.; Depezay, J. C., Tetrahedron. Lett. 1992, 33, 8061.
6. Lin, R.; Castells, J.; Rapoport, H., J. Org. Chem. 1998, 63, 4069.
7. Hernandez, A. S.; Thaler, A.; Castells, J.; Rapoport, H., J. Org. Chem. 1996, 61, 314.
8. Davies, H. M. L.; Matasi, J. J.; Hodges, L. M.; Huby, N. J. S.; Thornley, C.; Kong, N.; Houser, J. H., J. Org. Chem. 1997, 62, 1095.
9. Pham, V. C.; Charlton, J. L., J. Org. Chem. 1995, 60, 8051.
10. Araldi, G. L.; Prakash, K. R. C.; George, C.; Kozikowski, A. P., Chem. Commun. 1997, 1875.
11. Lee, J. C.; Lee, K.; Cha, J. K., J. Org. Chem. 2000, 65, 4773.
12. Zou, M.-F.; Agoston, G. E.; Belov, Y.; Kopajtic, T.; Katz, J. L.; Newman, A. H., Bioorg. Med. Chem. Lett. 2002, 12, 1249.
13. Mans, D. M.; Pearson, W. H., Org. Lett. 2004, 6, 3305.
14. Rigby, J. H.; Pigge, F. C., J. Org. Chem. 1995, 60, 7392.
15. Malinakova, H. C.; Liebeskind, L. S., Org. Lett. 2000, 2, 3909.
16. Malinakova, H. C.; Liebeskind, L. S., Org. Lett. 2000, 2, 4083.
17. Zhang, Y.; Liebeskind, L. S., J. Am. Chem. Soc. 2005, 127, 11258.
18. Zhang, Y.; Liebeskind, L. S., J. Am. Chem. Soc. 2006, 128, 465.
19. Knapp, S.; Yang, C.; Pabbaraja, S.; Rempel, B.; Reid, S.; Withers, S. G., J. Org. Chem. 2005, 70, 7715.
20. Carpenter, A. J.; Chadwick, D. J., J. Org. Chem. 1985, 50, 4362.
21. Trost, B. M.; Chan, D. M. T., J. Am. Chem. Soc. 1983, 105, 2315.
22. Katsura, Y.; Nishino, S.; Ohno, M.; Sakane, K.; Matsumoto, Y.; Morinaga, C.; Ishikawa, H.;

Takasugi, H., J. Med. Chem. 1999, 42, 2920.
23. Larson, G. L.; Hernandez, E.; Alonso, C.; Nieves, I., Tetrahedron. Lett. 1975, 4005.
24. Arrayas, R. G.; Liebeskind, L. S., J. Am. Chem. Soc. 2001, 123, 6185.

Experimental Section

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-1-benzyloxycarbonyl-4-

methyl-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-3.7

3.7

To a solution of $\mathbf{3 . 4}(1 \mathrm{~g}, 4.3 \mathrm{mmol}$, 1 equiv.) was added $\mathrm{MeMgBr}(1.73 \mathrm{~mL}, 5.2 \mathrm{mmol}$, 1.2 equiv.) at room temperature. The mixture was stirred for 2 hours, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the product was dissolved in 5 mL DCM directly without purification. The solution was added via syringe to a solution of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(2.1 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.2$ equiv) in 15 mL dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a Schlenk flask under dry argon. Then $\mathrm{BF}_{3}-\mathrm{OEt}$ ($0.81 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.2$ equiv) was added. After stirring overnight, potassium hydridotris(1-pyrazolyl)borate (KTp) $(1.44 \mathrm{~g}, 5.6 \mathrm{mmol}, 1.3$ equiv) was added to the solution in portions, and stirring was continued for 40 minutes. The reaction mixture was filtered through a short plug of silica, eluting with ethyl acetate. Purification by flash chromatography on silica gel eluting with EtOAc/hexane (1:2.3) afforded the pure molybdenum complex 3.7 ($770 \mathrm{mg}, 30 \%$) as a yellow solid.
(\pm)-3.7: $\mathrm{TLC}: \mathrm{R}_{f}=0.30$ (EtOAc/hexane, 1:4). IR (cm^{-1}): 1922 (s$), 1837$ (s$), 1698$ (s), 1490 (m), 1447 (s), 1409 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8,44-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.19-$ $8.20(\mathrm{~m}, 0.5 \mathrm{H}), 7.75-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 0.5 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2, \mathrm{H}), 7.42-7.47$ (m, 1 H), 7.28-7.38 (m, 4 H$), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.21-6.27(\mathrm{~m}, 1.5 \mathrm{H}), 6.12-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.09(\mathrm{~m}, 0.5 \mathrm{H}), 5.28$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.20(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 0.5$ H), $3.67(\mathrm{~d}, ~ J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.30-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 1.5 \mathrm{H})$, $2.06(\mathrm{~s}, 1.5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 229.6,228.84,228.6,228.80,156.3$, $156.0,147.2,147.1,145.2,145.0,142.3,141.3,137.1,136.8,136.76,136.67,136.56$, 136.2, 136.1, 134.4, 128.7, 128.6, 128.4, 128.3, 128.13, 128.09, 128.03, 128.00, 127.96, 118.3, 117.7, 105.8, 105.7, 105.23, 105.20, 89.6, 87.9, 80.5, 78.4, 68.0, 67.6, 64.6, 63.9, 43.6, 43.4, 40.9, 40.6, 39.00, 38.97, 32.2, 31.9, 30.0, 29.7, 26.9, 26.8. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BMoN}_{7} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 598.1266. Found: 598.1268.

(3-Methylfuran-2-yl)methanol, 3.12

A solution of methyl 3-methylfuran-2-carboxylate ($3.50 \mathrm{~g}, 25 \mathrm{mmol}, 1.0$ equiv) in THF $(80 \mathrm{~mL})$ was added slowly to a solution of $\mathrm{LiAlH}_{4}(0.797 \mathrm{~g}, 21 \mathrm{mmol}, 0.84$ equiv) in THF (40 mL) in a three-neck flask fitted with a reflux condenser. After stirring the reaction mixture at room temperature for 3 hours, 25 mL of $\mathrm{H}_{2} \mathrm{O}$ was carefully added into
the mixture at $0{ }^{\circ} \mathrm{C}$, which led to the immediate appearance of a white precipitate. The mixture was filtered, and the white precipitate was washed with EtOAc three times. The layers were separated and the aqueous layer was extracted with EtOAc three times. The organic layer was collected, washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the product $3.12(2.66 \mathrm{~g}, 95 \%)$ as colorless oil, which was used without further purification.
3.12: TLC: $\mathrm{R}_{f}=0.45$ (25% EtOAc in hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.2,141.5,117.5,113.0,55.1,9.6$.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-2,3,4)-4-methyl-5-oxo-5,6-

 dihydro-2H-pyran-2-yl]molybdenum, (\pm)-3.14
$(\pm)-3.14$
(3-methylfuran-2-yl)methanol ($2.62 \mathrm{~g}, 23.4 \mathrm{mmol}, 1.0$ equiv) was dissolved in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then, $77 \% \mathrm{~m}$-CPBA ($5.49 \mathrm{~g}, 24.5 \mathrm{mmol}, 1.05$ equiv) was added in portions to keep the temperature below $5{ }^{\circ} \mathrm{C}$. After 30 minutes, a white precipitate appeared, and the mixture was stirred at room temperature for 3 hours. The white precipitate was filtered, and the filtrate was transferred into a 100 mL round bottom flask. After cooling to $0{ }^{\circ} \mathrm{C}, 4$-(Dimethylamino)-pyridine ($0.86 \mathrm{~g}, 7.02 \mathrm{mmol}, 0.3$ equiv), triethylamine ($3.55 \mathrm{~g}, 35.1 \mathrm{mmol}, 1.5$ equiv), and $\mathrm{Ac}_{2} \mathrm{O}(3.58 \mathrm{~g}, 35.1 \mathrm{mmol}, 1.5$ equiv) were added in succession. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then
warmed to room temperature for 40 minutes. The mixture was washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and degassed for 20 minutes with dry argon. This solution was added via syringe to a solution of $\operatorname{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}(11.21 \mathrm{~g}, 28.1 \mathrm{mmol}, 1.2$ equiv) in 75 mL dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a Schlenk flask under dry argon. After stirring for 1 hour, potassium hydridotris(1-pyrazolyl)borate $(\mathrm{KTp})(7.67 \mathrm{~g}, 30.42 \mathrm{mmol}, 1.3$ equiv) was added to the solution in portions, and stirring was continued for 40 minutes. The reaction mixture was filtered through a short plug of silica, eluting with ethyl acetate. Purification by flash chromatography on silica gel eluting with $\mathrm{EtOAc} /$ hexane (1:2.3) afforded the pure molybdenum complex 3.14 ($4.57 \mathrm{~g}, 41 \%$ over 3 steps) as an orange solid.
(\pm)-3.14: $\mathrm{TLC}: \mathrm{R}_{f}=0.31$ (EtOAc/hexane, 1:2.3). IR (cm^{-1}): 3123 (w), 2964 (w), 2922 (w), 2490 (m), 1949 (s), 1864 (s), 1737 (m), 1637 (s), 1505(m). ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1$ H), $4.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 230.4,223.8,188.2$, 146.8, 146.7, 140.9, 136.9, 136.3, 134.6, 106.1, 106.0, 105.7, 101.4, 86.3, 76.8, 66.6, 17.3. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BMoN}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 479.0531$. Found 479.0528.
(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-2,3,4)-1-benzyloxycarbonyl-4-methyl-5-oxo-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-3.17

(\pm)-3.17
Benzyl (3-methylfuran-2-yl)methylcarbamate 3.19 ($1.00 \mathrm{~g}, 4.08 \mathrm{mmol}, 1.0$ equiv) was dissolved in $20 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. m-CPBA (77% purity, $894 \mathrm{mg}, 4.08$ mmol, 1.0 equiv) was added in portions to keep the temperature below $5^{\circ} \mathrm{C}$. After 30 minutes, a white precipitate appeared, and the mixture was stirred at room temperature for 3 hours. The white precipitate was removed via filtration and the filtrate was degassed for 20 minutes with dry argon. This solution was added via syringe to a solution of $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{DMF})_{3}\left(1.95 \mathrm{~g}, 4.90 \mathrm{mmol}, 1.2\right.$ equiv) in 75 mL dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a Schlenk flask under dry argon. After stirring at room temperature for 1 hour, potassium hydridotris(1-pyrazolyl)borate $(\mathrm{KTp})(1.31 \mathrm{~g}, 5.2 \mathrm{mmol}, 1.3$ equiv) was added to the solution in portions, and stirring was continued for 40 minutes. The reaction mixture was filtered through a short plug of silica gel, eluting with EtOAc. Purification by flash chromatography eluting with EtOAc/hexane (1:2.3) afforded the pure molybdenum complex 3.17 ($1.34 \mathrm{~g}, 54 \%$) as an orange solid.
(\pm)-3.17: $\mathrm{TLC}: \mathrm{R}_{f}=0.34$ (EtOAc/hexane, 1:2.3). IR (cm^{-1}): 1953 (s), 1868 (s), 1710 (s), $1640(\mathrm{~m}), 1505(\mathrm{~m}), 1432(\mathrm{~m}), 1409(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40$ (s, 0.33 H), $8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.71(\mathrm{~s}, 0.33 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 0.67 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 6.33 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.23-6.20(\mathrm{~m}, 2.33 \mathrm{H}), 5.31-5.16(\mathrm{~m}, 2$ H), $4.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.53(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 0.67$
H), $3.50(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.33(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.30(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 0.67$ $\mathrm{Hz}), 1.83(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 229.4$ (230.5), 224.1 (223.6), 187.5 (187.7), 154.4 (153.7), 146.7 (146.5), 146.3 (146.6), 141.3 (140.8), 136.9, 136.3, 134.6 (135.7), 128.7 (128.9), 128.4 (128.5), 128.3, 127.8 (128.1), 126.0, 106.1, $105.9,105.6$ (105.7), 86.4 (87.0), 78.4 (77.5), 67.9 (68.2), 48.1 (48.2), 17.8 (17.7). HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BMoN}_{7} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 612.1059. Found: 612.1066.

Benzyl (3-methylfuran-2-yl)methylcarbamate, 3.19

A solution of methyl 3-methylfuran-2-carboxylateError! Bookmark not defined. (3.50 $\mathrm{g}, 25 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaOMe}(5.4 \mathrm{~g}, 100 \mathrm{mmol}, 4.0$ equiv) in formamide (125 mL) was heated to $100{ }^{\circ} \mathrm{C}$ and stirred for 45 min . The reaction mixture was poured into icewater $(50 \mathrm{~mL})$ and extracted with EtOAc. The extract was dried and concentrated to give a slightly yellow solid. The solid and $\mathrm{LiAlH}_{4}(2.40 \mathrm{~g}, 62.5 \mathrm{mmol}, 2.5$ equiv) were dissolved in THF (100 mL) and stirred at $60^{\circ} \mathrm{C}$ for 6 hours. After cooling, 50 mL EtOAc and 50 mL water were added to quench the reaction at $0{ }^{\circ} \mathrm{C}$. The resulting precipitate was removed by filtration, the layers were separated and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over MgSO 4 , filtered and concentrated down to approximately 50 mL of solution. Into this was added 18 mL of $5 \% \mathrm{NaOH}$ solution. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{CbzCl}(5.54 \mathrm{~g}, 32.5 \mathrm{mmol}, 1.3$ equiv) was added dropwise. The reaction mixture was warmed to room temperature and
stirred for 30 min . After washing with brine, the mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography, eluting with 15% EtOAc in hexanes to afford the product $(2.94 \mathrm{~g}, 48 \%)$ as a colorless oil.
3.19: TLC: $\mathrm{R}_{f}=0.28\left(15 \%\right.$ EtOAc in hexanes). IR $\left(\mathrm{cm}^{-1}\right): 3416(\mathrm{w}), 3331(\mathrm{~m}), 2930$ (m), 1698 (s), 1513 (s), 1455 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ - $7.32(\mathrm{~m}, 5 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{br}, \mathrm{s}, 3 \mathrm{H}), 4.32(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,146.6,141.2,136.4,128.4,128.0,116.9$, 113.0, 66.7, 35.9, 9.6. HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$246.1124. Found 246.1121 .

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][($\boldsymbol{\eta}$-2,3,4)-1-benzyloxycarbonyl-4-

 methyl-5-hydroxy-5,6-dihydro-2H-pyridin-2-yl]molybdenum, (\pm)-3.23
3.23

To a solution of $(\pm) \mathbf{- 3 . 1 7}(500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv) in THF $(30 \mathrm{~mL})$ was added DIBAL (1.0 M in hexane, $1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.6$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes, and then quenched with potassium sodium tartrate tetrahydrate ($740 \mathrm{mg}, 2.52 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was poured into a separatory funnel containing EtOAc (15 mL) and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 25 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Flash chromatography over silica gel
with hexanes-EtOAc (2:1) afforded (\pm) $\mathbf{- 3 . 2 3}(416 \mathrm{mg}, 0.71 \mathrm{mmol}, 83 \%)$ as an orange solid.
(\pm)-3.23: TLC: $\mathrm{R}_{f}=0.32$ (EtOAc/hexane, 1:2.2). IR $\left(\mathrm{cm}^{-1}\right): 3459$ (w), 2961 (w), 2482(m), 1930 (s), 1845 (s), 1695 (s), 1505 (m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.39$ 8.41 (m, 1 H), 7.89-7.91 (m, 1.6 H), 7.58-7.64 (m, 2.4 H), 7.30-7.46 (m, 6 H), 6.99 (d, J $=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.18-6.27(\mathrm{~m}, 3 \mathrm{H}), 5.19-5.30(\mathrm{~m}, 2 \mathrm{H})$, 4.24-4.34 (m, 1 H$), 3.90(\mathrm{dd}, J=12.8,7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.83(\mathrm{dd}, J=12.8,7.2 \mathrm{~Hz}, 0.4 \mathrm{H})$, $3.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.54-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 1.8$ H), $2.13(\mathrm{~s}, 1.2 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 233.0,232.3$, $228.5,228.3,155.6,155.4,146.6,146.5,146.2,146.0 .140 .9,140.1,136.8,136.2,128.47$, $128.53,128.2,128.1,128.1,127.9,105.8,105.7,105.31,105.26,96.9,95.5,78.0,77.2$, 76.6 72.1, 71.9, 68.0, 67.8, 66.1, 46.5, 46.4, 23.5, 23.4. HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BMoN}_{7} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}:$612.1059. Found: 612.1073.

(\pm)-Dicarbonyl[hydridotris(1-pyrazolyl)borato][(η-2,3,4)-1-benzyloxycarbonyl-4-

 methyl-2H-pyridin-2-yl]molybdenum, (\pm)-3.1

To a solution of (\pm)-3.23 ($500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{ACN}(20 \mathrm{~mL})$ was added TEA ($126 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.5$ equiv) and TFAA ($206 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, and then concentrated to remove ACN
and excess TEA. The organic solution was concentrated for chromatography. Flash chromatography over silica gel with hexanes-EtOAc (3:1) afforded (\pm) $\mathbf{- 3 . 1}$ ($249 \mathrm{mg}, 0.43$ $\mathrm{mmol}, 51 \%)$ as a yellow solid with (\pm)-3.23 (50 mg).
(\pm)-3.1: \quad TLC: $\mathrm{R}_{f}=0.62$ (EtOAc/hexane, 1:2.5). $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2957$ (w), 2926 (m), 2474(m), 1918 (s), 1833 (s), 1710 (s), 1621 (s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.77$ (br $\mathrm{s}, 0.7 \mathrm{H}$), 8.23 (br s, 0.7 H), 8.21 (br s, 0.3 H), 7.99 ($\mathrm{br} \mathrm{s}, 0.3 \mathrm{H}$), 7.81 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.60(\mathrm{~m}, 0.7 \mathrm{H}), 7.33-7.53(\mathrm{~m}, 6.3 \mathrm{H}), 7.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.99(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 0.3 \mathrm{H}), 6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 0.7 \mathrm{H}), 6.15$ - $6.19(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{br} \mathrm{s}, 0.3 \mathrm{H}), 5.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.7 \mathrm{H})$, $5.38(\mathrm{~s}, 0.7 \mathrm{H}), 5.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1.3 \mathrm{H}), 3.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.06(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 0.3 \mathrm{H}), 2.48(\mathrm{~s}, 2.1 \mathrm{H}), 2.44(\mathrm{~s}, 0.9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 236.3,235.1$, $224.9,224.1,153.2,153.0,146.3,145.4,143.8,143.5,143.4,136.3,136.2,135.8,135.6$, 135.1, 134.2, 129.1, 128.7, 128.7, 128.6, 128.3, 128.0, 117.6, 116.9, 116.5, 115.8, 105.7, $105.3,105.1,90.2,87.9,84.7,82.5,69.3,68.5,58.7,57.6,23.9,23.7$.

[^0]: ${ }^{1}$ Product decomposed very quickly. ${ }^{2} 1.5: 1$ diastereomers decomposing quickly. ${ }^{3}$ Yield based on recovery of starting material up to 94%. ${ }^{4}$ Yield based on recovery of starting material up to 99%. The produce was composed of roughly 1.5:1 diastereomers. ${ }^{5} p$-nitroboate was used as leaving group. Yield based on recovery of starting material was 66%.

[^1]: ${ }^{a}$ The reactions were executed in THF.

