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Abstract 

Integrating human brain transcriptomes and proteomes with genome-wide association data 
identifies risk genes shared between depression and Alzheimer’s disease 

By  
Nadia Victoria Harerimana 

 
Depression increases the risk for Alzheimer’s disease (AD) in prospective epidemiological 
studies and recent evidence has shown a significant genetic correlation between depressive 
symptoms and AD. These lines of evidence suggest the possibility of shared pathophysiology 
and/or genetic liability between depression and AD. The first step toward deciphering the 
underlying mechanisms is to test the genetic correlation and explain the implications of a shared 
genetic basis between depression and AD. We show that there is a genetic basis to this 
association using data from the latest genome-wide association studies of depression and AD, 
respectively. Furthermore, we demonstrate that depression contributes to AD pathogenesis at the 
genetic level using Mendelian randomization. Lastly, we identified 46 brain transcripts and 8 
brain proteins that underlie the contribution of depression to AD. These brain transcripts and 
proteins were significantly associated with AD pathologies, cognitive trajectory, and AD clinical 
diagnosis at FDR <0.05. Our study suggests that depression has a consistent causal role on AD, 
and we nominate 54 genes as potential mediators for future mechanistic studies to effectively 
treat these two illnesses 
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Chapter 1: Depression and risk of developing Alzheimer’s disease 
 
Introduction 
 

Aging populations worldwide have led to an increasing prevalence of depression and 

Alzheimer’s disease (AD) [1, 2]. An estimate of 25 % of individuals with AD also has 

depression, with other depressive syndromes affecting an additional 20% to 30 % [3-5]. The 

exact cause of their co-occurrence is far from conclusive, but depression at any age (i.e., early-, 

mid-, or late-life depression) is thought to be associated with a two-fold increased risk of 

developing AD in prospective epidemiological studies [6, 7]. Notably, the genetic link between 

depression and AD has also been explored, with several studies suggesting that risk genes for 

depression may be involved in AD pathology [8-10]. These previous findings and substantial 

research efforts suggest that there are likely shared etiologies between depression and AD. 

Therefore, studies of both epidemiologic and genetic approaches are required to better 

understand the biological mechanisms that underlie these clinical entities. 

 

Epidemiological Studies 
 
Early-life depression 

Many of the investigations into the association between depression and AD have come 

from the field of epidemiology. Several population-based studies have confirmed that early-life 

depression is associated with an increased risk of AD [11-13], supporting a risk factor 

hypothesis. For example, one case-control study of approximately 4000 participants found that 

depressive symptoms before the onset of AD are significantly associated with AD risk, even 

when the first depressive symptoms occurred more than 25 years before the beginning of 

cognitive decline symptoms [11]. There is also evidence supporting a strong link between the 

number of depressive episodes and AD, with a 14 % increase in risk for AD with each episode of 

depression [12]. This is further confirmed by a longitudinal study that demonstrated a 4-fold 

increased risk of the likelihood of developing AD among individuals with early-onset depression 

(age < 60 years) [13]. Together, these observations suggest potential biological mechanisms 

underlying this association. Thus, these underlying mechanisms need to be further investigated.  

 

Mid- and late-life depression  
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Several epidemiological studies also support an association of mid- and late-life 

depression with the risk of developing AD. Evidence from longitudinal studies confirms an 

association between depressive symptoms during mid-life and late-life and the risk of AD, with 

the risk being more pronounced with late-life depressive symptoms [14, 15]. Consistent with 

these observations, two separate meta-analyses on population-based prospective studies among 

approximately 50,000 participants concluded that late-depression significantly increased the risk 

of dementia by two-fold [6, 7]. Furthermore, these meta-analyses confirmed that depression at 

any age (i.e., early-, mid-, or late-life depression) is associated with an increased risk for all types 

of dementia, even if the effect was not robust across all individual studies [7]. Despite these well-

known associations, there are still limited insights into molecular underpinnings behind the 

detrimental effects of depression on AD risk. Additionally, these epidemiological findings 

suggest that other factors, such as genetic and molecular, could explain a greater proportion of 

the role of depression on the risk of AD development, which I present in chapter 2.  

 

Genetic Studies  
 
Candidate Genes Associations 

Genetic studies have attempted to identify genetic factors conferring risk for both 

depression and AD. The majority of these studies have focused on candidate gene approach, 

prioritizing relevant genes to increase statistical power to detect associations [8-10]. For 

example, two candidate gene studies based on genetic polymorphisms associated with depression 

identified a handful of risk genes contributing to AD, such as HACE1, NEGR1, and RERE [8, 

9]. These findings suggested that genetic factors conferring the risk of depression might affect 

AD development. However, these previous studies explicitly focused on candidate genes based 

on either their functional relevance, biological pathways, or chromosomal regions to the disease 

pathogenesis. Therefore, the most comprehensive approach to investigating the shared genetic 

architecture between depression and AD would be extending these single genes to the entire 

genome via genome-wide association studies (GWAS).  
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Genome-Wide Associations 

Genome-wide association studies allow for a hypothesis-free approach that tests genetic 

variants spanning the entire genome but require large sample sizes and thorough phenotyping. 

These large-scale genetic studies have revolutionized the field of complex genetic diseases, 

providing numerous compelling associations that influence disease predispositions. For example, 

recent GWAS for depression [16-21] and AD [22-25] have used the alternative strategy of 

increasing sample size (i.e., minimal phenotyping) and yielded numerous replicated genetic 

variants, respectively. These successful GWAS findings have led to the discovery of novel 

genetic variants associated with each disease.  

A particular noteworthy value of genome-wide associations has been in the numerous 

applications for GWAS data. For instance, GWAS results — in the form of either individual-

level genotype data or summary-level statistics data — have enabled a wide range of 

applications, including estimation of genetic correlations between traits [26, 27], cross-trait 

analyses [27, 28], Mendelian randomization studies [29, 30] and integration with quantitative 

trait loci data [31, 32], among other applications. These applications have begun to show promise 

in their ability to provide new insights into disease biology beyond gene identification for many 

complex diseases.  

For example, two studies have accessed the genetic correlation between depression and 

AD using GWAS summary data for both diseases [25, 33]. One group, Gibson and colleagues, 

tested the genetic correlation between depression and AD and did not find evidence for a shared 

genetic architecture [33]. The likely reason for null results may be explained by the limited 

power to detect significant associations; hence this previous result cannot be considered 

conclusive. A recent group led by Jansen et al. tested the genetic correlation between AD and 

depressive symptoms using more recent AD GWAS results and detected a significant genetic 

correlation, supporting roles for shared genetic risk factors [25]. The most noticeable differences 

between these two studies are the availability of full GWAS summary statistics and larger 

depression and AD GWAS sample sizes. This new evidence serves as an example for future 

studies to investigate whether the genetic architecture of major depression contribute to AD, 

which I present in chapter 2. 
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Functional Approaches for GWAS data 

Linkage Disequilibrium Score Regression  

Genetic correlation is a key population factor that explains the shared genetic architecture 

of complex traits/diseases and can prioritize potential causal relationships [34, 35]. There exists a 

method for estimating the genetic overlap between traits using GWAS summary data that is not 

biased by sample overlap, e.g., linkage disequilibrium score (LDSC) regression [26, 27]. With 

the advent of GWAS summary data, this method has been applied to great effect. For example, 

genetic correlations have been found in 276 pairs of phenotypes among 24 complex diseases and 

traits [27], highlighting the power of GWAS summary statistics. Therefore, this approach can be 

applied to quantify the degree of overlap for genetic risk of depression and AD, using newly 

available GWAS summary statistics, which may inform the search for the underlying shared 

biological mechanisms between these two diseases.  

 

Mendelian Randomization 

Mendelian randomization (MR) is a powerful method that test whether an observational 

association between an exposure and an outcome is consistent with a causal effect, by using 

genetic markers as instrumental variables [36, 37]. The application of MR bypasses the challenge 

of unmeasured confounding and reverse causation in association studies, and is therefore seen as 

an appealing analysis to perform alongside with genome-wide genetic correlation studies in 

efforts to increase our understanding of the relationship between complex traits.  

Several approaches for making causal inferences have been proposed. These include 

methods that expand the two-sample MR design to increase statistical power by exploiting 

independent summary-level data sources and accounting for linkage disequilibrium (LD) among 

the genetic variants [29]. For instance, the Genome‐wide Complex Trait Analysis‐Generalized 

Summary Mendelian Randomization (GCTA‐GSMR) is a multivariate MR framework that 

provides a test to detect and eliminate genetic instruments that possess pleiotropic effects on both 

the exposure and the outcome. In addition, the GCTA‐GSMR method includes a heterogeneity in 

dependent instrument (HEIDI) test that removes outliers, which may be associated with 

confounding factors [29]. Thus, this summary MR method can be used to interrogate questions 

such as: does depression increases the risk of AD or vice versa at the genomic level? 
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Quantitative Trait Mapping  

Quantitative trait loci (QTL) mapping is an approach that links genotype and phenotype 

data (e.g., molecular data) in attempt to dissect the genetic basis of complex traits. Quantitative 

molecular traits such as transcriptome, proteome, or metabolome are often dysregulated in 

disease and can act as intermediate phenotypes, providing great insights into the functional 

consequences of genetic variation [38, 39]. Characterizing these molecular traits has been 

essential. For example, it has been shown that proximal-expression quantitative trait loci 

(eQTLs) (e.g., within 1MB region) tend to overlap with disease-associated variants identified by 

GWASs and are often used to detect candidate causal genes [40-42]. In the light of these eQTL 

associations, it has been shown that distal-eQTLs (e.g., outside of the 1MB region) not only 

explain a significant amount of genetic variation but also contain important biological 

interpretations [43, 44]. However, to date, there have been very few comprehensive 

investigations of whether genetic signals from GWAS are distal-eQTLs or -pQTLs in brain 

tissues. Thus, it is vital to understand how genetic variants that predispose to depression 

modulate brain transcript and protein expression levels and to put those changes in expression 

associated with depression in relation to AD risk.  

 

My thesis work aims to increase our understanding of the underlying association between 

depression and AD. I use the abovementioned functional genomic approaches that take 

advantage of newly available GWAS summary data and brain transcriptomic and proteomic data. 

In chapter 2, I test whether a genetic variation predisposing to depression contribute to AD 

pathology and elucidate genes and pathways involved in this association, which may serve as 

potential targets for further mechanistic studies to support efforts in drug discovery. In chapter 3, 

I discuss the conclusions drawn from this work, including the relative importance of large-scale 

studies and brain omic profiles in providing a more holistic picture of the mechanisms behind the 

co-occurrence between these two illnesses.  
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Chapter 2: Depression contributes to Alzheimer’s disease through shared genetic risk 
This chapter will be submitted to Science Advances with the following authors:  
Harerimana NV, Liu Y, Gerasimov ES, Duong DM, Dammer EB, Beach TG, Reiman EM, 
Schneider JA, Boyle P, De Jager PL, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Wingo TS, 
Wingo AP.  
 

Introduction 
 

Depression and dementia are commonly comorbid in people over 65 years [1-3]. Each 

condition alone can impair global functioning, physical health, and quality of life of affected 

individuals [4]. Furthermore, depression at any age (i.e., early-, mid-, or late-life depression) has 

been found to be associated with an increased risk for AD in prospective epidemiological studies 

among approximately 50,000 participants [5-8]. Though depression might be a risk factor for AD 

or an early sign of AD, there are likely shared etiologies that need to be elucidated.  

The genetic link between depression and AD has previously been explored with mixed 

results. A number of studies have attempted to identify links between AD and depression by 

examining candidate sites or regions with mixed results [9-11]. A recent systematic review 

argued that depression could be a modifiable target for the prevention of cognitive decline and 

dementia [12]. Expanding the focus to considering the entire genome by using genome-wide 

association study (GWAS) summary results for both diseases initially did not reveal a significant 

correlation [13]; however, using more recent AD GWAS results, a significant genetic correlation 

between AD and depressive symptoms was found [14]. The two most salient differences between 

early and recent studies are the availability of full GWAS summary statistics and larger 

depression and AD GWAS sample sizes. Thus, with new evidence supporting a genetic 

correlation, we undertook the present study to identify shared molecular changes between these 

two illnesses using functional genomic approaches that capitalize on newly available brain 

transcriptomic and proteomic data. We hypothesized that depression-associated genetic variants 

alter expression levels of transcripts and proteins in the brain and these alterations can influence 

AD risk.  

In this study, we first confirmed the shared genetic basis between depression and AD 

using summary statistics from the most recent depression [15] and AD [14] GWAS. Next, using 

Mendelian randomization [16], we observed that depression genes contribute to AD but we did 

not find evidence that AD genes contribute to depression. To resolve the genetic signal to 
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specific proteins, we identified brain transcripts and proteins regulated by the depression-

associated genetic variants using human post-mortem brain transcriptomic and proteomic 

profiles. Lastly, we found that these transcripts and proteins were associated with AD 

endophenotypes, including rate of decline of cognitive performance over time, beta-amyloid 

plaques, and neurofibrillary tangles, as well as AD clinical diagnosis. Together, our findings 

identify key brain transcripts and proteins that link these two diseases and suggest mechanisms 

underlying the association. 

 

Methods 

GWAS data sets  

Alzheimer’s disease GWAS summary statistics  

Genetic associations with AD were obtained from the meta-analysis GWAS of clinically 

diagnosed AD and AD-by-proxy in individuals of European ancestry by Jansen et al [14] (71,880 

cases and 383,378 controls, Table 1). More details of the participants were described in the paper 

[14]. In brief, the meta-analysis included three independent consortia, namely the Alzheimer’s 

disease working group of the Psychiatric Genomics Consortium (N=17,477 individuals), the 

International Genomics of Alzheimer's Project (N=54,162 individuals), and the Alzheimer’s 

Disease Sequencing Project (N=7,506 individuals). The GWAS of AD-by-proxy was performed 

in 376,113 individuals of European ancestry from the UK Biobank with one or both parents 

diagnosed with AD. The meta-analysis reported a genetic correlation of 0.81 between AD status 

and AD-by-proxy status[14]. We used the full summary statistics (P-values, odds ratios, standard 

errors, and effect alleles) which consisted of genotyped and imputed data on 9,862,738 genetic 

variants from 455,258 individuals of European ancestry.  

 

Depression GWAS summary statistics  

Genetic associations with depression were obtained from a larger meta-analysis GWAS 

of clinically diagnosed major depressive disorder and broader self-declared definitions of 

depression on individuals of European ancestry (246,363 cases and 561,190 controls, Table 1). 

More details of the participants were described in the paper [15]. In brief, the meta-analysis 

included of three independent cohorts, namely 23andMe, Inc (N=307,354 individuals), UK 

Biobank (N=361,315 individuals), Psychiatric Genomics Consortium (N=138,884 individuals). 
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The meta-analysis reported a genetic correlation of 0.86 between broader self-declared 

definitions of depression and clinically diagnosed major depressive disorder [15]. We used the 

full summary statistics (P-values, beta coefficients, standard errors, and effect alleles) which 

consisted of genotyped and imputed data on 8,098,588 genetic variants from 807,553 individuals 

of European ancestry.  

 

Data sources 

Religious Orders Study and Rush Memory and Aging Project (ROS/MAP)  

The ROS/MAP are two prospective clinical-pathologic cohorts of aging and dementia 

[17, 18]. All ROS/MAP participants are without known dementia at enrollment, undergo annual 

clinical evaluations, and agree to brain donation. Both studies share clinical, neuropathological, 

and brain autopsy standards, allowing joint analyses of the data and were approved by an 

Institutional Review Board of Rush University Medical Center. All participants signed an 

informed consent, Anatomical Gift Act, and Repository Consent to allow their data to be shared. 

For this study, we used the transcriptomic and proteomic data derived from the dorsolateral 

prefrontal cortex (dPFC) of post-mortem brain samples.  

 

Banner Sun Health Research Institute (Banner) 

The Banner cohort is a longitudinal study of healthy aging, Alzheimer’s disease, and 

Parkinson’s disease [19]. Participants are enrolled as cognitively healthy volunteers residing in 

the retirement communities of metropolitan Phoenix, Arizona. All participants underwent a 

standardized general medical, neurological, and neuropsychological assessments during life [19] 

and had available brain proteomic data measured from the dPFC . 

 

Pathological phenotypes  

Methods of assessing brain autopsies and neuropathologic traits for each cohort have 

been extensively described in previous studies [19, 20]. For the ROS/MAP study, we included 

measures of AD pathology including beta amyloid and neurofibrillary tangle identified by 

immunohistochemistry assays from eight brain regions, quantified by image analysis, and then 

averaged to obtain a summary measure for each pathology. For the Banner study, we included 

plaque total, which is the average amyloid plaque in the cortex of the frontal lobe. We also 
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included tangle total, which is the average neurofibrillary tangle density in the cortex of the 

frontal lobe. Briefly, the amount of amyloid plaque and neurofibrillary tangle density are 

identified using the Campbell-Switzer silver stain, scored according to the Consortium to 

Establish a Registry for Alzheimer’s Disease template [21], and then averaged to obtain a 

summary measure for each pathology. Here, we used the square roots of these measures to 

enhance their normal distribution. Information on the AD pathologies of the subjects is provided 

in Table 2. 

 

Neuropsychiatry phenotypes  

Methods of assessing cognition for each cohort have been extensively summarized in 

previous studies [19, 22]. For the ROS/MAP study, depressive symptoms were assessed annually 

using the 10-item version of the Center for Epidemiological Studies Depression scale (CES-D) 

[23]. The CES-D score ranged between 0-10 with higher score indicating more depressive 

symptoms. Here we averaged the depression scores over the follow-up years to obtain an average 

score for each participant, which was then converted to a Z score to be used in the joint analysis 

including both ROS/MAP and Banner participants described below. Also, each participant 

underwent a full clinical evaluation, including a comprehensive cognitive assessment each year 

and a final clinical diagnosis of AD which follows the recommendation of the National Institute 

on Aging Reagan criteria [24]. We included two measures of cognition. The first is a person-

specific rate of cognitive decline over time (aka cognitive trajectory) based on annual objective 

cognitive testing. The second is a clinical diagnosis of Alzheimer’s disease (AD diagnosis) 

assessed by a neurologist specializing in dementia. For the Banner study, depressive symptoms 

was assessed annually using the 15-item version of the Hamilton Depression Rating Scale 

(HAMD)[25]. The score for HAMD ranged between 0-27 with higher score indicating more 

depressive symptoms. Additionally, participants underwent assessment by neurologists, 

psychiatrists, and neuropsychologists for a final clinicopathological diagnosis of cognition after 

death [19]. Participants also had rate of cognitive decline over time based on annual MMSE. 

Here, we standardized the score of cognitive trajectories to improve statistical comparisons. 

Information on the disease status of the subjects is provided in Table 2. 

 

Brain Proteomic data 
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Protein abundance from the dPFC of the 400 ROS/MAP and 201 Banner samples was 

generated using tandem mass tag isobaric labelling by mass spectrometry methods for protein 

identification and quantification, as described by Wingo et al.,2020 [26]. Proteomic quality 

control and normalization were performed using previously described procedures [26]. Briefly, 

the workflow consisted of (i) proteins with missing values in more than 50% of the subjects were 

excluded, (ii) each protein abundance was divided by total protein abundance to remove effects 

of protein loading differences, (iii) log2 transformation of protein abundance and sample outlier 

detection. The residualized proteomic profiles were obtained via linear regression after removing 

the effects of technical and biological covariates. We retained quantified abundance of 8,356 

proteins in 391 ROS/MAP subjects and 7,854 proteins in 196 Banner subjects (Table 2). 

 

Brain Transcriptomic data  

Gene expression was derived from the dPFC donated by 638 ROS/MAP participants, as 

described previously by De Jager et al., 2018 [27]. To account for differences between samples, 

experimental batch effects and unwanted RNA-sequencing specific technical effects, we 

performed library normalization and covariate adjustments using fixed/mixed-effects modeling. 

The reprocessing was done following the Sage-Bionetworks RNAseq normalization procedures 

[28]. Briefly, the residualized profiles were obtained after removing the effects of known 

biological and technical confounding factors. We retained quantified expression for 15,822 

transcripts in 630 individuals (Table 2).  

 

Genotyping data 

Individuals from ROS/MAP were genotyped either using whole genome sequencing 

(WGS) or genome-wide genotyping by either Illumina OmniQuad Express or Affymetrix 

GeneChip 6.0 platforms, as described [27, 29]. Use of WGS was prioritized when multiple data 

sources were available. Individuals from Banner were genotyped using the Affymetrix Precision 

Medicine Array, as described here [30]. Quality control of WGS and each array-based 

genotyping source were performed separately using Plink [31] and included removing 

individuals with genotyping missing rate >5%, variants with Hardy Weinberg equilibrium p-

value < 10-5, variants with missing genotype rate >5%, variants with minor allele frequency 

<1%, and variants that are not single nucleotide polymorphisms (SNPs). KING was used to 
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remove randomly individuals estimated to be closer than second degree kinship [32]. Genotyping 

was imputed to the 1000 Genome Project Phase 3 [33] using the Michigan Imputation Server 

[34] and SNPs with imputation 𝑅! > 0.3 were retained for analysis. After quality control, 580 

ROS/MAP subjects had complete genetic and transcriptomic data, 372 ROS/MAP subjects had 

complete genetic and proteomic data, and 97 Banner subjects had complete genetic, proteomic, 

and phenotypic data to be included in the analysis. 

 

Statistical analysis 

Linkage disequilibrium score ( LDSC) regression analysis  

Linkage disequilibrium score ( LDSC) regression [35] was performed to estimate the 

genetic correlation (rG) between depression and AD using data from the latest GWAS summary 

statistics. The genetic correlation was calculated on HapMap3 SNPs only (LD reference panel 

SNPs) to minimize potential bias by differences in LD structure [35]. Additionally, we removed 

SNPs with extremely large effect sizes (X12 > 80), including the APOE region, since outliers can 

unduly influence LDSC regression [35].  

 

Mendelian randomization (MR) analysis 

Bidirectional MR was conducted to explore the causal relationship between depression 

and AD, using Generalized Summary data-based Mendelian Randomization (GSMR) approach 

[16]. To meet the assumptions of MR, we used clumping parameter settings of a P-value 

threshold of 1 × 10−8, LD R2 <0.05, removed SNPs that have large difference of allele frequency 

with the reference sample, and only considered the SNPs with the strongest effect on the 

exposures (P-value < 5 × 10-8) as the instrumental variables in the forward and reverse models, 

respectively. We used the HEIDI-outlier approach [16] to remove SNPs that have pleiotropic 

effects on both the exposure and the outcome. The retained SNPs were then tested for the 

association with the outcome for causal effect. Here, we conducted the forward GSMR analysis 

on 99 depression SNPs as the instrumental variables and the reverse GSMR analysis on 37 AD 

SNPs as the instrumental variables. 

 

Surrogate Variable Analysis 
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We applied the Surrogate Variable Analysis (SVA) [36] approach to identify hidden-

confounders in the expression data. Surrogate variables (SVs) were detected using the sva() 

function provided by the SVA package in R[37]. For both ROS/MAP transcriptomic and 

proteomic data, we included the first ten significant SVs as covariates for all relevant analyses 

 

Identification of quantitative trait locus (QTL) analysis  

Linear regression was used to identify association between genetic variation and 

transcript or protein expression levels in the brain. The expression levels were regressed against 

the genotype of each SNP, adjusting for depressive symptoms, AD status, and ten principal 

components of ancestry estimated using EIGENSTRAT [38]. We used the Benjamini-Hochberg 

approach to control the false discovery rate (FDR) and set a threshold of 5% to declare a QTL 

statistically significant. QTLs were defined as proximal if the SNP location was within 1Mb 

window of a gene’s transcription start site (TSS), and those outside that window were defined as 

distal.  

 

Meta-analysis  

METAL [39] was used to perform meta-analysis using results from the ROS/MAP 

discovery and Banner replication analyses. Meta-analysis was carried out using effect size and 

standard error as input. We defined replication as associations with meta-analysis p-values 

smaller than those of both the discovery and replication datasets and with the same directions of 

associations. 
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Results 

The shared genetic risk between depression and AD 

To investigate whether depression and AD share genetic risk, we used LDSC regression, 

a method that requires only GWAS summary statistics and is not biased by sample overlap [35]. 

We used the depression GWAS by Howard et al. [15] and the AD GWAS by Jansen et al. [14] 

(Table 1). We found a significant positive genetic correlation between depression and AD, with 

rg=0.17 (Z-score = 4.03, P = 5.54x10-5), suggesting that these conditions have a shared genetic 

basis.  

 

Evidence for a causal genetic effect of depression on AD 

Genetic correlation may arise from pleiotropy (i.e., genes independently affecting both 

depression and AD) or from the causal effect of depression on AD or vice versa. To identify a 

potential causal effect of depression on AD, we performed Mendelian randomization using the 

GSMR[40]. We used the 115 SNPs found to be associated with depression at genome-wide 

significant level from the depression GWAS as the instruments, depression as the exposure, and 

AD as the outcome. We found a significant causal effect of depression on AD (effect size b = 

0.029, standard error (SE) = 0.009, PGSMR = 0.001, Figure 1A). Next, to test for the probability of 

a causal effect of AD on depression, we used the 61 AD GWAS-significant SNPs as the 

instruments, AD as the exposure, and depression as the outcome. We did not find a causal effect 

of AD on depression (b = -0.001, SE = 0.019, PGSMR = 0.954; Figure 1B). Together, these 

findings suggest that the 115 depression-associated genetic variants predispose to depression, 

which in turn contributes to AD pathogenesis.  

 

Depression-associated variants are associated with brain transcript and protein expression 

To investigate how the 115 depression-associated SNPs underlie the potential causal 

effect of depression on AD, we performed brain expression quantitative trait locus (eQTL) and 

protein quantitative trait locus (pQTL) analyses.  

In 580 participants from the ROS/MAP cohorts with genotyping and brain transcript data 

(Table 2), we identified 80 transcripts associated with 31 depression SNPs at FDR <0.05 (Figure 

2A). Among the 80 SNP-transcript pairs, 67% of the SNPs (21 out of 31 SNPs) had a proximal 

effect on 36 corresponding transcripts, and 35% (11 out of 31 SNPs) had a distal effect on 44 
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transcripts (Figure 2A). Overall, we found that 31 of the 115 depression-associated SNPs 

regulate expression of 75 brain transcripts ( Figure 2A).  

In 372 subjects from the ROS/MAP cohorts and 97 subjects from the Banner cohorts 

(total, n=469) with complete genotyping and proteomic data (Table 2), we identified 32 pQTLs 

at FDR <0.05 reflecting 28 proteins associated with 13 depression-associated SNPs (Figure 2). 

Among the 32 SNP-protein pairs, 69% of the SNPs (9 out of 13 SNPs) had a proximal effect on 

9 corresponding proteins (RAB27B, B3GLCT, ACADS, GMPPB, GPX1, DDAH2, ACYP1, 

DCC, and VARS), and 46% (6 out of 13 SNPs) had a distal effect on 19 proteins (Figure 2). 

Further, we found that eight of the depression-associated sites were both eQTLs and pQTLs, 

with six sites regulating the expression of both transcript and protein of the same gene (Figure 2, 

bolded genes).In sum, we found that 13 of the 115 depression-associated SNPs regulate 

expression of 28 brain proteins and six of these depression-associated SNPs control expression 

of both brain transcripts and proteins (Figure 2).  

 

Brain transcripts regulated by depression genetic variants are associated with AD features 

Since we observed a causal effect of depression on AD at the genetic level, we examined 

whether the 75 brain transcripts regulated by the depression SNPs are associated with AD-related 

features and endophenotypes, including trajectory of cognitive performance over time, beta-

amyloid plaques, neurofibrillary tangles, and clinical diagnosis of AD in 587 participants in the 

ROS/MAP studies with available brain transcriptomic data. We identified 34 transcripts 

associated with beta-amyloid and 29 transcripts associated with tau tangles after adjusting for 

sex, age at death, and depressive symptoms (FDR p <0.05, Figure 3). Additionally, we identified 

25 transcripts associated with AD diagnosis and 30 transcripts associated with cognitive 

trajectory after adjusting for sex, age at death, and depressive symptoms (at FDR p <0.05, Figure 

3). Notably, among these transcripts, we found that higher levels of SAP30L, B3GLCT, 

FAM168B, ZNF740, and RERE were associated with higher levels of beta-amyloid and tau 

tangles, greater probability of having AD diagnosis, and faster rate of decline of cognitive 

performance (more negative slope of cognitive trajectory, Figure 3). Furthermore, we found that 

lower levels of SGIP1, AMT, SST, SNX10, TRIM36, and SST transcripts were associated with 

higher levels of beta-amyloid and tau tangles, greater probability of having AD diagnosis, and 

faster rate of decline of cognitive performance (Figure 3). In sum, we found that 46 brain 
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transcripts (of 75 tested, or 61%) were significantly associated with at least one AD feature. 

These findings support the notion that the depression risk genes contribute to AD via regulating 

expression of their corresponding transcripts in the brain.  

 

Brain proteins regulated by depression genes are associated with AD characteristics 

Likewise, we examined associations between AD-associated features and the 28 brain 

proteins regulated by the depression SNPs in subjects with brain proteomic and phenotypic data. 

In the ROS/MAP discovery cohort, we identified two proteins (RAB27B and DDAH2) 

associated with beta-amyloid and five proteins (RAB27B, DDAH2, CACNG2, B3GLCT, and 

GPAA1) associated with tau tangles after adjusting for sex, age at death, and depressive 

symptoms (FDR p <0.05, Figure 3). Also, we identified four proteins (RAB27B, DDAH2, 

CACNG2, and DCC) associated with AD diagnosis and four proteins (RAB27B, DDAH2, 

CACNG2, and ACADS) associated with cognitive trajectory after adjusting for sex, age at death, 

and depressive symptoms (at FDR p <0.05, Figure 3). Among these proteins, we found that 

RAB27B and DDAH2 were significantly associated with all four AD features in consistent 

directions of association— higher abundance of RAB27B was associated higher levels of beta-

amyloid (β =  0.76, FDR p = 3.80E-02), higher levels of tangles ( β = 0.56, FDR p = 4.73E-02), 

greater probability of having an AD diagnosis (β =  1.85, adjusted p = 2.43E-03), and more 

negative slope of cognitive trajectory (i.e., faster cognitive decline; β =  -1.15, adjusted p = 

6.63E-07; Figure 3). We also found that lower abundance of DDAH2 was associated higher 

levels of beta-amyloid (β =  1.86, FDR p = 7.99E-03), higher levels of tangles ( β =  2.22, FDR p 

= 7.69E-06), higher probability of having an AD diagnosis (β =  4.16, adjusted p = 1.07E-03), 

and faster cognitive decline (β =  -1.78, FDR, p = 9.90E-05; Figure 3).  

In the Banner replication cohort, three proteins (DDAH2, GMPPB, and GMPPA) were 

associated with beta-amyloid and eight proteins (DDAH2, GPAA1, CACNG2, GMPPB, and 

GMPPA, RAB27B, GPX1, and DCC) associated with tau tangles after adjusting for sex, age at 

death, and depressive symptoms (FDR p <0.05, Figure 3). Additionally, we identified five 

proteins (DDAH2, GPAA1, CACNG2, GMPPB, and GMPPA) associated with AD diagnosis 

and four proteins (DDAH2, GPAA1,GMPPB, and GMPPA) associated with cognitive trajectory 

after adjusting for sex, age at death, and depressive symptoms (at FDR p <0.05, Figure 3). 

Among these proteins, we found that DDAH2, GMPPB, and GMPPA were significantly 
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associated with all four AD features in consistent directions of association (Figure 3). Several 

factors may be behind the different proteins identified in the discovery and replication cohorts 

including the different sample sizes and different methods of assessing AD diagnosis (taking into 

account AD pathologies or not) and pathologies (immunohistochemistry versus silver staining). 

Given these differences, we performed a meta-analysis of these results as meta-analysis was 

designed to combine data from multiple independent studies [41]. 

 

There were 13 proteins profiled in both ROS/MAP and Banner cohorts (RAB27B, 

CACNG2, DDAH2, ACADS, B3GLCT, GMPPB, GMPPA, GPAA1, DCC, GPX1, ACYP1, 

VARS, and DPY30) and were included in the meta-analysis. Replication was defined as having a 

meta-analysis p-value smaller than those from both the discovery and replication analyses and 

having the same directions of association in both. Of the 13 proteins, three proteins (RAB27B, 

DDAH2,and CACNG2) replicated in beta-amyloid, six proteins replicated in tangles (RAB27B, 

DDAH2, CACNG2, B3GLCT, GPAA1, and GPAA1), six proteins replicated in AD diagnosis 

(RAB27B, DDAH2, CACNG2, GPAA1, DCC, and ACADS), and five proteins (RAB27B, 

DDAH2, CACNG2, GPAA1, and ACADS) replicated in cognitive trajectory (Figure 3). 

Following the meta-analysis, three brain proteins (RAB27B and DDAH2were notable for 

replicating in all four AD features in consistent directions of association in both the discovery 

and replication cohorts (Figure 3). Taken together, these results further support the evidence of a 

molecular link between depression and elevated risk for AD through protein regulation in the 

brain.  
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Discussion 

Prospective epidemiological studies in approximately 50,000 participants found an 

association between depression and elevated risk for dementia [5-8]. More recently, well-

powered studies using AD and depression GWAS results identified a genetic correlation between 

these two diseases [14]. Thus, the goal of our study was to elucidate the genetic and molecular 

basis underlying this association. First, we confirmed the genetic correlation between depression 

and AD. Next, we used two-sample MR to identify that the preponderance of genetic evidence is 

consistent with a causal role of depression to AD but not vice versa. To elucidate the genes and 

molecular mechanisms of this relationship, we identified brain transcripts and proteins regulated 

by the depression-predisposing genetic variants and found that a subset of these were associated 

with AD diagnosis, AD pathologies, and cognitive trajectory. These findings suggest 46 specific 

transcripts and 8 proteins that are likely important contributors to the risk of AD pathology from 

depression.  

Among the eight proteins that appear involved in both depression and AD risk, RAB27B, 

DDAH2, and CACNG2 are notable for their consistent association with all four AD features in 

both cohorts. RAB27B belongs to a protein family, Rab GTPases, mainly expressed in neurons, 

where they function to regulate different types of membrane trafficking, and have been 

implicated in neurodegenerative disorders [42, 43]. Of note, our finding of higher RAB27B 

expression being associated with AD characteristics is consistent with another study that found 

upregulation of RAB27B transcript and protein levels in postmortem cholinergic basal forebrain 

neurons of participants with mild cognitive impairment and AD [44]. DDAH2 is a member of the 

dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes, where they maintain 

homeostatic control of nitric oxide across different tissues [45]. Immunostaining results showed 

that DDAH2 is specifically elevated in neurons demonstrating oxidative stress in AD patients, 

whereas it was undetectable in the neurons of age-matched healthy controls [46]. Consistent with 

such an observation, we found that higher DDAH2 expression was significantly associated with 

AD characteristics.  

Our findings, which rely on the largest and most recent GWAS of AD and depression, are 

consistent with prior work using similarly powered GWAS summary results. The reasons for 

prior null results are likely due power limited power [13] and should not be viewed as 
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inconsistent with our findings. It is also consistent with recent work showing that individuals 

with higher polygenetic risk scores for major depression predicted the conversion from amnestic 

mild cognitive impairment to Alzheimer’s disease [47]. And, our finding are also consistent a 

recent study demonstrating evidence for pleiotropy between depression and AD [11].  

Our findings should be interpreted in light of the study's limitations. First, the MR 

assumptions were carefully examined, but the causative associations identified in this study are 

not definitive. Second, we analyzed 8606 proteins, which are not complete proteomic profiles, 

and thus deeper proteomic sequencing coverage can advance investigation of mechanisms 

underlying the associations between depression and AD. Third, this is an association study, and 

thus, further mechanistic studies in model systems are needed to validate our findings. Our study 

has several notable strengths. First, it is the first study to use deep human brain proteomic data to 

elucidate the molecular links between depression and AD. Second, we used data from the largest 

and latest GWAS available. Third, we performed both proximal and distal eQTL and pQTL 

analyses. Fourth, we used a discovery and replication design when examining the associations 

between brain proteins and AD features to increase the level of confidence in our findings. Fifth, 

we noted that some of these genes, to varying extents, correspond to well-known therapeutics 

within neurological and non-neurological diseases [48] and others have been nominated as 

promising therapies for future AD drug development [49]. 

In conclusion, we demonstrated that there is a genetic basis for the association between 

depression and elevated AD risk. Furthermore, we showed that depression genetic risk 

contributes to AD risk. Finally, we identified brain transcripts and proteins that likely underlie 

the contribution of depression to AD, which we nominate as promising candidates for further 

mechanistic studies in depression and AD. 
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Tables 
Table 1:Summary of genome-wide association studies (GWAS) datasets 
 

GWAS Cohort Disease Sample 
size Definition of cases Case ascertainment 

Howard, D. 
M., et al. 
2019 

23andMe+UKB+PGC Depression 807,553 

Broad definitions 
of depression: 
MDD and self-
reported clinical 
diagnosis of 
depression 

23andMe cases were ascertained based 
on self-report of depression phenotypes 
using web-based surveys . UKB cases 
were ascertained using a structured 
methodological review by MDD 
assessment experts.  PGC cases were 
ascertained based on clinically-derived 
phenotypes for MDD using the 
international consensus criteria (DSM-
IV, ICD-9, or ICD-10) 

Jansen, I. 
E., et al. 
2019 

PGC-ALZ + IGAP + 
ADSP + UKB AD 455,258 AD/AD-by-proxy 

PGC_ALZ, IGAP, and ADSP cases 
were diagnosed by physician examination 
based on the NINCDS-ADRDA criteria, 
the international consensus criteria (ICD-
10), the DSM criteria or autopsy 
confirmation. UKB AD-by-proxy cases 
were ascertained based on self-reported 
diagnoses of parents with AD. A sum of 
47,793 individuals with one or both 
parents affected 
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Table 2 : Demographics of ROS/MAP and Banner participants 

Note: Variables are shown as mean [range] or number (percentage) 

Characteristic 

ROS/MAP samples 
with 

transcriptomic 
data 

ROS/MAP 
samples with 

proteomic data 

Banner samples 
with proteomic 

data 

Sample Size (complete genotype data) 587 (580) 381 (372) 125(97) 

Female sex (%) 64% 70% 48% 

Age at death [mean] (range) 86[67.4-108.3]  89[65.9-106.5] 86[73.0-103.0] 

Education [mean] (range) 16[3.0-28.0] 16[5.0-28.0] 14[8.0-20.0] 

Post-mortem interval [mean] (range) 7.3[1.0-40.8] 8.1[2.3-61.5] 2.95[1.25-5.5] 

Depressive symptoms [mean] (range ) 1.4[0.0-8.0] 1.3[0.0-7.1] 4.0[0.0-27.0] 

Traditional AD Pathology       

Beta-amyloid burden [mean] (range) 4.20[0.00-19.92] 4.70[0.00-19.92] 9.46[0.0-15.0] 

Tau tangle density [mean] (range) 6.30[0.00-78.52] 4.85[0.006-30.458] 8.86[0.75-15.00] 

Clinical diagnosis of cognitive status at death       

Normal cognition (NCI) (%) 33% 41% 37% 

Mild cognitive impairment (MCI) (%) 28% 26% 13% 

Alzheimer's disease (AD) (%) 42% 32% 50% 

Slope of cognitive trajectory [mean] (range) 0.00[-4.26-1.66] 0.078[-4.17-1.88] -0.44[-4.94-0.22] 
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Figures 
Figure 1. Generalized summary data-based Mendelian randomization (GSMR) results of (A) 
depression liability on AD. The forward GSMR analysis included 115 SNPs associated with 
depression at a genome-wide significance level (i.e., p < 5e-8). (B) AD liability on depression. 
The reverse GSMR analysis on 61 AD SNPs (at p < 5e-8) as the instrumental variables. 
Bonferroni-corrected significance threshold for 2 tests: p < 0.05/2. Bold represents a significant 
p-value. Abbreviations: AD : Alzheimer’s disease; SNP: number of single nucleotide 
polymorphisms included in each GSMR analysis; b: effect size; pGSMR : p-value for the causal 
estimates. 
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Figure 2. Identified brain proximal- and distal-QTLs from the 115 depression-associated 
SNPs. (A) 80 eQTLs were identified (green dotes). (B) 32 pQTLs were found (blue dotes). We 
labeled the gene names of the corresponding transcripts and proteins for the top eQTLs and 
pQTLs. Bold represents sites regulating the expression of both transcript and protein of the same 
gene.  
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Figure 3. Heatmaps for associations between AD features and the brain transcripts and 
proteins regulated by the depression-associated SNPs (A) Heatmap of the 46 transcripts (y-
axis) associated with AD-related traits (x-axis) in ROS/MAP samples. (B) Heatmap of seven 
proteins (y-axis) associated with AD-related traits (x-axis) in ROS/MAP samples. (C) Heatmap 
of six proteins (y-axis) associated with AD-related traits (x-axis) in Banner samples. The asterisk 
depicts the FDR p < 0.05. (D) Heatmap of seven proteins (y-axis) that replicated in both the 
discovery and replication analyses after a meta-analysis. The asterisk represents replication in the 
meta-analysis. The color reflects the direction of the association of expression levels with each 
AD-related trait.  
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Chapter 3: Conclusions and recommendations for future studies 
 

The overarching objective of this study is to identify the shared molecular underpinnings 

between depression and AD. In Chapter 2, I used largest GWAS results of AD and depression to 

test whether genetic variation predisposing to depression contributes to AD. There are three key 

ways that this study advances the current knowledge of the links between these two conditions. 

First, it confirmed the significant genetic correlation between depression and AD. Second, it 

demonstrated that depression has genetic evidence consistent with a causal role on AD, but not 

vice versa. Third, it identified candidate molecular targets that underlie the contribution of 

depression to AD. These transcripts and proteins are promising candidates for mechanistic 

studies to understand further the mechanisms by which depression contributes to AD for 

prevention and early treatment of AD.  

The results and methods presented here lay the groundwork for future investigations of 

the molecular mechanisms behind how depression modifies AD risk. The conclusions drawn rely 

heavily on data from GWAS results and community-based cohorts of primarily European 

ancestry individuals. Future investigations that include diverse population samples are needed to 

understanding whether these conclusions are shared or unique to different races/ethnicities.  

The approach of integrating human brain transcriptomic and proteomic data with GWAS 

signals can be applied to numerous other “omics” expression phenotypes such as microRNA, 

DNA methylation, or histone modification, which may also be relevant in the context of 

depression and AD pathology. Furthermore, single-cell omic platforms might identify and 

prioritize the specific cellular mechanisms that are the primary drivers of depression and AD 

pathology. These investigations should be further explored in future studies.  

Overall, this thesis outlines the potential utility of omics-based profiles to improve brain 

health research. This study adds to the body of knowledge surrounding the contribution of 

depression to the development of AD. This study suggests a highly credible hypothesis of the 

genetic and molecular mechanisms linking depression to AD. Future work connecting other 

neuropsychiatric traits and AD is needed to further characterize modifiable targets for prevention 

and early AD treatment. 


