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Abstract

Robust Latent Class Analysis for Longitudinal Data

By

Kari R. Hart

Latent class analysis is a likelihood-based approach that is designed to elucidate the
structure underlying population heterogeneity. More specifically, in latent class analy-
sis, researchers study the patterns of interrelationship among a set of observed feature
variables in order to understand and characterize underlying population subtypes or
classes. While, typically, these underlying classes cannot be observed directly, they
often have meaningful physical interpretations. As such, latent class analysis is use-
ful in many health applications, where it is a powerful statistical tool for detecting
disease subtypes and diagnostic subcategories.

Existing latent class methods do not offer a robust and efficient approach applica-
ble to longitudinal data. Most existing methods for latent class analysis apply only to
cross-sectional data, while likelihood-based extensions for longitudinal data tend to
be computationally intensive and sensitive to modeling assumptions. Thus, we pro-
pose a novel robust artificial-likelihood-based approach to longitudinal latent class
analysis. In particular, we consider a finite mixture of latent-class-specific general-
ized estimating equations in which the class mixing proportions can be influenced by
a set of covariates. The proposed model is fit under the assumption that the number
of latent classes is fixed and known. However, since the number of classes is typically
not known a priori, we explore novel model diagnostics for assessing the number of
latent classes. The diagnostics rely on longitudinal extensions of information crite-
ria, which account for how well the model fits the data, model complexity, and class
membership uncertainty.

A major application of this research is in modeling latent trajectories based on the
clinical presentation of diseases. In this research, we applied the proposed methods to
a longitudinal data set from the National Alzheimer’s Coordinating Center comprised
of patients with a baseline consensus diagnosis of mild cognitive impairment (MCI).
The proposed methods were used to statistically validate the presence of MCI sub-
types and to model the progression of MCI within each subtype over time. Cognitive,
functional, and neuropsychiatric assessments were considered as feature variables in-
volved in the conceptualization of MCI subtypes, while an indicator of cerebrovascular
disease was incorporated as a risk factor for MCI subtype membership.
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Chapter 1

Introduction

1.1 Overview

Latent class analysis is a statistical method used to identify population subtypes and

to classify related subjects into their most likely subtype. As such, latent class analysis

is useful in many health applications, where it is a powerful statistical tool for detect-

ing disease subtypes or diagnostic subcategories. More precisely, latent class analysis

is a likelihood-based approach designed to elucidate the structure underlying the het-

erogeneity exhibited by individuals in a certain population of interest. In latent class

analysis, researchers observe a set of clinically-relevant feature variables, which they

believe are associated with a set of underlying “classes” in the population of interest.

These classes represent mutually exclusive and exhaustive subpopulations. The idea

behind latent class analysis is then to study the patterns of interrelationship among

the observed feature variables in order to better understand and characterize the un-

derlying population subtypes. Note that, within a given latent class, the observed

variables are assumed to be independent. This is known as the “local independence”

assumption.
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1.2 Motivating Example

Many phenomena in the biological, social, and physical sciences cannot be plainly

viewed. Rather, only symptoms or indicators of the phenomena can be observed. For

example, consider mild cognitive impairment (MCI). MCI refers to the clinical state

in which a subject is cognitively impaired, usually in the memory domain, but is not

suffering from dementia [41]. Although neuropsychological testing is often used to dif-

ferentiate elderly individuals with MCI from those who experience normal aging, MCI

is not a neuropsychological diagnosis, and no specific test or battery of tests currently

exist to confirm a diagnosis of MCI. Determining that a patient has MCI is further

complicated because not all patients present with an identical set of symptoms. In-

deed, research has suggested tremendous heterogeneity in the clinical presentation

of MCI. As a result, MCI is frequently classified into four subtypes: Amnestic MCI,

Multidomain MCI-Amnestic, Multidomain MCI-Non-Amnestic, or Single Nonmem-

ory MCI [14]. These subtypes were determined based on clinical observation rather

than on a rigorous clustering approach. Further, MCI patients are typically classified

based on a single clinical assessment, which ignores potential variation in the progres-

sion of symptoms over time. Thus, the motivation for this dissertation research is to

empirically validate the presence of MCI subtypes, to incorporate longitudinal data

into subtype classification, and to model the progression of MCI within each subtype

over time.

In order to conceptualize MCI subtypes, longitudinal data on a large sample of pa-

tients with a consensus diagnosis of MCI at baseline was obtained from the National

Alzheimer’s Coordinating Center (NACC). The data included cognitive, functional,

and behavioral assessments from the NACC Uniform Data Set (UDS)[2, 25]. Func-

tioning was assessed using the Functional Assessment Questionnaire (FAQ)[23] as

reported by an informant. Behavioral disturbances were assessed using the Geriatric

Depression Scale (GDS)[73] and select items from the Neuropsychiatric Questionnaire
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(NPI-Q)[15]. Cognitive performance was assessed using the following ten neuropsy-

chological items: mini-mental state exam (MMSE)[32], Trail-Making Test[83], Boston

Naming Test[40], Category Fluency[75], Digit Span subtest, Digit Symbol subtest[84],

Logical Memory, and Story A[85]. In addition to these assessments, the Rosen Mod-

ification of the Hachinski Ischemic Score (RMHIS) [27] was used as an indicator of

cerebrovascular disease (CVD). Although the RMHIS score was not thought to con-

tribute to the conceptualization of MCI subtypes, it was considered as a potential

risk factor for belonging to a particular MCI subtype.

1.3 Limitations of Existing Methodology

Longitudinal studies involve the repeated measurement of subjects over time. They

are considered in contrast to cross-sectional studies in which each subject is observed

only once. One of the main advantages of a longitudinal study is its ability to assess

change. In particular, longitudinal studies can distinguish changes within individu-

als over time from differences between subjects at their baseline or initial starting

values. Analysis of longitudinal data requires specific methodology because repeated

measurements on the same subject tend to be correlated. As a result, the assumption

of independent observations, which underlies most standard cross-sectional method-

ology, is no longer satisfied.

Both discrete and continuous longitudinal data can be modeled using extensions

of generalized linear models (GLMs), which accommodate correlated observations.

Specifically, three distinct model formulations are typically considered: marginal,

random effects, and transition models [12]. Estimation for both random effects and

transition models is based on maximum likelihood methods. In contrast, marginal

models require specification of only the first two moments and can be estimated using

generalized estimating equations (GEEs) [46, 87, 63].
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Presently, latent class methods primarily deal with cross-sectional data; however,

extending latent class methodology to longitudinal data and latent class trajecto-

ries may expound the underlying subpopulation structure. Both mixed models and

transition models for longitudinal latent class analysis have been explored and imple-

mented in the literature (see for example [58, 65, 16, 7, 6]). Although such models aid

in understanding population heterogeneity, these fully-parametric approaches tend to

be computationally complex and often require strict modeling assumptions, particu-

larly when one or more of the feature variables are discrete [17]. As an alternative,

Reboussin et al.(2002) [70] presented a latent transition approach for analyzing mul-

tiple longitudinal binary health outcomes with multiple-cause non-response when the

data is missing at random and non-likelihood-based analysis is performed. While

Reboussin et al.’s transition model overcomes some of the computational complexi-

ties associated with a full-likelihood-based approach, it still has several limitations.

In particular, parameter estimation is based on unconditional moments and may be

inefficient. Additionally, the proposed approach uses a first-order transition model

for which every latent class must be present at every time point. In the context of

slowly progressing illnesses- such as neurodegenerative diseases- this restriction may

not be realistic because the conceptualization of the latent classes may vary with

time. Semi-parametric approaches to longitudinal latent class analysis, which have

the potential to overcome many of these limitations, have not yet been adequately

examined in the literature.

1.4 Outline and Objectives

Current latent class methods tend to rely on fully parametric modeling approaches.

The primary objective of this research is to develop a robust artificial-likelihood-based

approach to latent class analysis for high-dimensional longitudinal data. Chapter 2
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will provide a brief literature review of cross-sectional finite mixture models, artificial

likelihood, and model selection diagnostics for longitudinal data. Chapter 3 focuses

on establishing generalized estimating equation (GEE) methodology for modeling

mixtures of longitudinal data under the assumption that the number of latent classes

is fixed and known. The performance of the proposed methods will be explored via

simulation studies. Then, since it is often not realistic to assume that the number

of latent classes is known, Chapter 4 discusses model selection diagnostics for deter-

mining the appropriate number of latent trajectories in a heterogenous population.

The proposed measures of model fit extend cross-sectional information criteria to

finite mixtures of generalized estimating equations. Simulation studies will be per-

formed to assess and compare the effectiveness of these model selection diagnostics

in correctly identifying the number of latent classes. In Chapter 5, the proposed

methodology will be applied to the longitudinal data from the NACC- UDS in order

to identify and model subtypes of mild cognitive impairment. Finally, Chapter 6 will

discuss potential areas of future research and extensions of the proposed methodology.
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Chapter 2

Literature Review

2.1 Cross-Sectional Finite Mixture Models

2.1.1 Overview

Finite mixture models offer a way to model heterogeneity in a cluster analysis con-

text and to accommodate situations in which a single parametric family is unable

to satisfactorily model local variations in observed data. As described in McLachlan

and Peel(2000) [54], let Y1, . . . ,Yn denote a random sample of size n where Yi is a

J-dimensional random vector with probability density function f(yi) on ℜJ . For cross-

sectional applications, Yi is a vector of random variables corresponding to J measure-

ments taken on the ith subject. Note that, although this notation assumes that there

are J measurements on each subject, the methodology described below can be nat-

urally extended to accommodate unbalanced data. Then, let Y =
(
YT

1 , . . . ,Y
T
n

)T
represent the entire sample. It follows that the probability density for Yi under a

C-component mixture model is

f (yi;ψ) =
C∑

g=1

πgfg(yi;θg),
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where fg(yi;θg) are component densities and πg are mixing proportions or weights

satisfying

0 ≤ πg ≤ 1∑C
g=1 πg = 1

for g = 1, . . . , C. The vector ψ = (π1, . . . , πC−1,θ1, . . . ,θC) is the vector containing all

unknown parameters. Assume that θ1, . . . ,θC are distinct and let θ = (θ1, . . . ,θC).

In this framework, a C-component mixture model can be viewed as arising when

Yi is drawn from a population consisting of C subgroups, G1, . . . , GC , in proportions

π1, . . . , πC . To clarify this interpretation of finite mixture models, let Zi be a C-

dimensional component-label vector, where the gth element of Zi is defined to be one

if the origin ofYi is the g
th mixture component and zero otherwise. In this framework,

Zi is distributed according to a multinomial distribution consisting of one draw on

C categories with probabilities π1, . . . , πC , i.e. Zi ∼ MultC(1,π). Further, by Bayes’

Rule, the posterior probability that subject i belongs to the gth component of the

mixture model given observation yi can be expressed as

τig = τig(yi;ψ)

= Pr(Zig = 1|yi)

=
πgfg(yi;θg)∑C
d=1 πdfd(yi;θd)

,

where g = 1, . . . , C and i = 1, . . . , n

Note that the mixing proportions may also be modeled as functions of a P × 1

vector of covariates, xi[19]. In this situation, the mixing proportions are subject-

specific and can be modeled using a polytomous logistic regression model. Specifically,
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for the ith subject with observed feature variables yi and covariates xi,

πig = πg (xi;α)

=
exp(αT

g xi)

1 +
∑C−1

h=1 exp(α
T
hxi)

g = 1, . . . , C,

where αC = 0 and α =
(
αT

1 , . . . ,α
T
C−1

)T
. Further, when the mixing proportions

depend on covariates, the parameter vector of interest becomes ψ =
(
αT ,θT

)T
.

The log-likelihood with respect to ψ = (α,θ) can be expressed as

l(ψ) =
n∑

i=1

log

{
C∑

g=1

πg(xi;α)fg (yi;θg)

}
.

It follows that the score equation with respect to α is given by

S(α) =
∂l(α,θ)

∂α

=
n∑

i=1

∂

∂α

[
log

{
C∑

g=1

πg (xi;α) fg(yi;θg)

}]

=
n∑

i=1

 ∂
∂α

{∑C
g=1 πg (xi;α) fg(yi;θg)

}
∑C

d=1 πd (xi;α) fd(yi;θd)


=

n∑
i=1

[∑C
g=1

∂
∂α

{πg(xi;α)} fg(yi;θg)∑C
d=1 πd (xi;α) fd(yi;θd)

]

=
n∑

i=1

∑C
g=1

{
∂πg(xi;α)/∂α

πg(xi;α)

}
πg(xi;α)fg(yi;θg)∑C

d=1 πd(xi;α)fd(yi;θd)


=

n∑
i=1

C∑
g=1

τig(yi;ψ)
∂logπg(xi;α)

∂α
.
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where, in the last equality, the posterior class membership probability is defined as

τig(yi;ψ) = Pr(zig = 1|yi,xi)

=
πg(xi,α)fg(yi;θg)∑C
d=1 πd(xi,α)fd(yi;θd)

.

Bandeen-Roche(1997)[19] notes that the class-specific score equation for α can be

re-expressed in the form

∂l

∂αpg

=
n∑

i=1

xip {τig (yi;ψ)− πg(xi;α)} , g = 1, . . . , C − 1,

where xip refers to the p
th covariate for p = 1, . . . , P and πC (xi;α) = 1−

∑C−1
h=1 πh (xi;α).

Analogously, the score equation with respect to θ can be expressed as

S(θ) =
n∑

i=1

C∑
g=1

τig(yi;ψ)
∂logfg(yi;θg)

∂θ
.

2.1.2 Maximum Likelihood Estimation

Estimation for finite mixture models is typically done via the Expectation-Maximization

(EM) algorithm due to its easy implementation and stable convergence [54, 53]. In

the EM framework, estimation of ψ for a finite mixture model can be approached

as an incomplete-data problem. More specifically, the observed data vector, y =(
yT
1 , . . . ,y

T
n

)T
, can be viewed as incomplete because the component-label vectors,

z =
(
zT1 , . . . , z

T
n

)T
, are unknown. Thus, the complete-data vector is given by yc =(

yT , zT
)T

. It follows that the complete-data log-likelihood is given by:

lC (α,θ) =
n∑

i=1

C∑
g=1

zig {log [πg (xi;α)] + log [fg (yi;θg)]} .
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Treating the component-label vectors as missing, it is then possible to proceed itera-

tively between the expectation and maximization steps of the EM algorithm. In the

expectation step, the conditional expectation of the complete log-likelihood given the

observed data vector y is computed. Then, in the M step, the conditional expectation

of the complete log-likelihood is maximized with respect to ψ.

McLachlan and Peel[54] also outline a more direct and computationally appealing

approach to the EM algorithm, which they refer to as the direct approach for applying

the EM algorithm to finite mixtures models. The direct approach obtains an estimate

of ψ, denoted ψ̂, by iterating between

τig(yi;ψ) =
πg (xi;α) fg(yi;θg)∑C
d=1 πd (xi;α) fd(yi;θd)

and solving the score equations with respect to α and θ, i.e.

∑C
g=1

∑n
i=1 τig(yi;ψ)

∂logπg(xi;α)

∂α
= 0∑C

g=1

∑n
i=1 τig(yi;ψ)

∂logfg(yi;θg)

∂θ
= 0 ,

until a pre-specified convergence criteria is met. Ideally, this iterative algorithm will

converge to the global solution; however, it is possible that the algorithm may converge

to a local solution instead. Local solutions can often lead to substantially different

interpretations from those suggested by the global solution. Thus, steps need to be

taken in order to help avoid local solutions. The most common approach to dealing

with local solutions is to generate multiple random starting points for the iterative

algorithm. If the starting values lead to multiple solutions, then the solution that

maximizes the likelihood function is selected.
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2.1.3 Model Identifiability and Boundary Solutions

When estimating ψ for a mixture distribution, model identifiability needs to be con-

sidered. In general, a parametric family of densities f (yi;ψ) is identifiable if distinct

values of the parameter ψ determine distinct members of the family of densities

{f (yi;ψ) : ψ ∈ Ω}, where Ω is the specified parameter space[54]. Based on this

definition of identifiability, a mixture distribution would not be identifiable because

f (yi;ψ) is invariant under the g! permutations of the component labels in ψ. Thus,

the definition of identifiability is slightly modified in the context of mixture distri-

butions. Specifically, finite mixture models are said to be identifiable for ψ ∈ Ω if

f (yi;ψ) = f (yi;ψ
∗) if and only if ψ = ψ∗ up to a permutation of the component

labels. In practice, a constraint is sometimes imposed on ψ that uniquely determines

the component labels after estimation.

In the context of finite mixture models, nonidentifiability due to overfitting also

needs to be considered [33]. To illustrate nonidentifiability due to overfitting, consider

a finite mixture model where the true number of components is C = 2. This mixture

model can also be written with C = 3 components if the third component has a

weight of zero, i.e.

f (yi;ψ) = π1f1(yi;θ1) + π2f2(yi;θ2) + 0× f3(yi;θ3),

or if two of the components are the same, i.e.

f (yi;ψ) = π1f1(yi;θ1) + (π2 − π3) f2(yi;θ2) + π3f3(yi;θ2).

More generally, Crawford(1994) [8] notes that any mixture with C−1 components de-

fines a nonidentifiable subset in the larger parameter space corresponding to mixtures

with C components. Although nonidentifiability due to label switching can be easily
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addressed, nonidentifiability due to overfitting can be more problematic. Specifically,

overfitting can result in numerical difficulties because the matrix of second derivatives

will be close to singular. As such, Crawford suggests that, as a practical matter, it

is usually preferable to reduce the number of components in the mixture rather than

to work in the full-dimensional space.

2.1.4 Bayesian Estimation of Finite Mixture Models

An alternate way to conceptualize and estimate a finite mixture model is to use a

Bayesian approach. Assume that there exists a prior distribution for all unknown

parameters in the mixture model, p (ψ). Then, define the posterior density as

p (ψ|y) ∝ p (y|ψ) p (ψ) .

Although the Bayesian approach tends to reduce the risk of obtaining spurious modes

in cases where the EM algorithm leads to degenerate solutions[33], there are no natural

conjugate priors available for the mixture likelihood function. As such, the posterior

density p (ψ|y) does not belong to any standard distributional family. Thus, until the

development of Markov Chain Monte Carlo (MCMC) methods, Bayesian estimation

approaches for finite mixture models were infeasible.

As computational resources have increased, MCMC methods for finite mixture

models have become more common; however, the Bayesian approach does present

some unique challenges. For example, as described above, the likelihood function

associated with a finite mixture model is invariant under a permutation of the com-

ponent labels. Although maximum likelihood estimation via the EM algorithm is not

affected by potential switching of component labels during different iterations, label

switching can be problematic for Bayesian estimation, which relies on the simulation

of realizations of ψ from posterior distributions. In addition, priors on the mixing
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proportions have been used to draw the mixing proportions away from the boundary

of the parameter space and to avoid the numerical issues that sometimes arise due to

boundary solutions. This should be done with care, however, since it can eliminate

the possibility of reducing the number of components when the model is actually

overfit and informative priors tend to force too many distinct components[33]. A

more comprehensive overview of the Bayesian approach to finite mixture models, the

challenges it presents, and methods for overcoming some of these challenges can be

found in Fruhwirth-Schnatter(2006)[33].

It should also be noted, that recently Bayesian approaches to finite mixture models

for repeated measurements have begun to appear in the literature (see, for example,

[22]). These approaches are often referred to as Bayesian growth mixture models. In

growth mixture model approaches, the latent class variable is not directly identified by

the feature variables. Instead, the latent class variable captures heterogeneity in the

growth model parameters. In this context, it is important to note that the distribution

assumed for the growth model parameters, i.e. the heterogeneity distribution, is

influential and that misspecification of the distribution can lead to substantial changes

in the parameter estimates [33].

2.1.5 Assessing the Number of Components: Information

Criteria

When fitting a finite mixture model, the number of components, C, is typically as-

sumed to be fixed and known. Unfortunately, in many applications, a priori informa-

tion regarding the number of components, C, is not available. In latent class analysis,

selecting the appropriate number of components relies on the fundamental assump-

tion of local independence. The axiom of local independence for latent class models

states that observed features are statistically independent within a given latent class.

Thus, selecting the appropriate number of latent classes ideally leads to a model in
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which the underlying classes fully account for the population heterogeneity.

Even in the cross-sectional context, there is currently no consensus regarding the

best approach for selecting the number of components in a finite mixture model. With

that said, there are two general approaches to address this issue. The first approach

is based on information criteria, while the second involves hypothesis testing.

Model selection based on information criteria is motivated by the Kullback-Leibler

(KL) information [43]. Intuitively, the KL information is a measure of the difference

between the proposed statistical model and the true distribution of the observed data.

Using the notation of McLachlan and Peel [54], assume that the true density of the

observed data is f (ω) and denote the estimated model being considered by f
(
ω; ψ̂

)
.

The KL information of f (ω) with respect to f
(
ω; ψ̂

)
is then:

I
{
f (ω) ; f

(
ω; ψ̂

)}
=

∫
f (ω) log

 f (ω)

f
(
ω; ψ̂

)
 dω

=

∫
f (ω) logf (ω) dω −

∫
f (ω) logf

(
ω; ψ̂

)
dω ≥ 0.

Since the first term above does not depend on the fitted model, estimation of the

Kullback-Leibler information is based solely on the second term. Now,

η (y;F ) =

∫
f (ω) logf

(
ω; ψ̂

)
dω

=

∫
logf

(
ω; ψ̂

)
dF (ω) ,

where F denotes the true cumulative distribution and y =
(
yT
1 , . . . ,y

T
n

)T
is the ob-

served data. Replacing the distribution function, F, with the empirical distribution

function, F̂n, yields the following estimate of η (y;F ):

η
(
y; F̂n

)
=

1

n

n∑
i=1

logf
(
yi; ψ̂

)
=

1

n
logL

(
ψ̂
)
.
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Since the empirical distribution function F̂n is generally closer to the fitted distribu-

tion function Fψ̂ than the true distribution F , this estimator typically overestimates

the model fit. In order to account for this bias, an information criterion can be defined

as

logL
(
ψ̂
)
− b(F ),

where b(F ) denotes an appropriate estimate for the bias of η
(
y; F̂n

)
as an estimator

of the expected log density. Information criteria based on the KL information are

more commonly expressed as twice the negative value of this difference. Namely,

information criteria based on KL information are of the general form

Information Criterion = −2logL (ψ) + 2pn (ψ) ,

where the first term measures the lack of fit for the proposed model and pn (ψ)

is a penalty term that measures model complexity. Model selection is then done by

minimizing the information criterion or, equivalently, minimizing the KL information.

Estimation of the Kullback-Leibler information gives rise to commonly known

information criteria such as Akaike’s Information Criteria (AIC)[1] and Bayesian In-

formation Criteria (BIC)[72]. In the context of finite mixture models, AIC selects the

model that minimizes

−2logL(ψ̂) + 2d

and BIC selects the model that minimizes

−2logL(ψ̂) + dlogn,
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where d is the total number of parameters in the mixture model and n represents

the number of subjects. Unfortunately, previous work has suggested that both AIC

and BIC tend to overestimate the correct number of components for a finite mixture

model. For this reason, alternative information criteria have been proposed. Specifi-

cally, in brief simulation studies performed by McLachlan and Peel[54], the integrated

classification likelihood (ICL), the large cluster size approximation ICL referred to

as ICL-BIC, and the Laplace-Empirical criterion (LEC) most often selected the true

number of components. Of these three criteria, ICL-BIC is the easiest criterion to

apply and will be described in detail.

Consider the fuzzy classification matrix whose elements are given by τig, where

i = 1, . . . , n and g = 1, . . . , C. The entropy of this matrix is defined to be

EN(τ ) = −
C∑

g=1

n∑
i=1

τiglog (τig) .

If the components of the mixture are well separated then EN(τ̂ ) will be close to its

minimum value of 0. In contrast, if the components are poorly separated then EN(τ̂ )

will have a large value. Thus, the degree of separation between the fitted components

determines the severity of the penalty term, with more severe penalties imposed for

situations in which class membership is more ambiguous. For large cluster sizes, the

ICL-BIC criterion selects the number of components for a finite mixture model by

minimizing

−2logL(ψ̂) + 2EN(τ̂ ) + dlogn,

where d denotes the number of unknown parameters in ψ.
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2.1.6 Assessing the Number of Components: Hypothesis Test-

ing

The most common hypothesis test for assessing the number of components in a mix-

ture model relies on the likelihood ratio test statistic [54]. Consider a hypothesis test

of H0 : C = C0 versus HA : C = C1, where C1 > C0 and C0 represents the true-order

of a C-component mixture model. Further, let ψ̂0 and ψ̂1 represent the maximum

likelihood estimates of ψ under the null and alternative hypothesis, respectively. By

definition, the likelihood ratio test statistic is

TLR = 2
{
logL(ψ̂1)− logL(ψ̂0)

}
.

Unfortunately, for a mixture model, the likelihood ratio test statistic does not follow

its traditional chi-square asymptotic distribution under the null hypothesis. When the

null hypothesis holds, the parameter vector is on the boundary of the parameter space

and in a non-identifiable subspace. As a result, the regularity conditions required

for TLR to have a chi-square asymptotic distribution break down. Although some

theoretical results exist for determining the distribution of the likelihood ratio test

statistic under the null hypothesis for specific mixture models, McLachlan(1987)[52]

proposed a more general bootstrapping approach for the likelihood ratio test.

A less popular alternative for hypothesis testing proposed by Liang and Rathouz(1999)[45]

is the score test. In their paper, Liang and Rathouz consider testing a two-component

mixture model against a one-component mixture model. They let y1, . . . , yn be inde-

pendent observations with f ∗
i denoted as the probability density function for the ith

observation of the form

f∗
i (yi;α, θ) = αfi (yi; θ) + (1− α) fi (yi; θ0) .
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Here, fi is the pdf, θ0 is known to investigators, α ∈ [0, 1], and the hypothesis of

interest tests H0 : α = 0. Note that, under the null hypothesis, θ is meaningless and,

thus, the standard asymptotic results required for likelihood ratio hypothesis testing

are not applicable. Now, the score function for α evaluated at α = 0 is

S(θ) =
n∑

i=1

Si(θ) =
n∑

i=1

{
fi(yi; θ)

fi(yi; θ0)
− 1

}
.

Based on this score equation, E [S(θ)] ≥ 0 with equality occurring only under the null

hypothesis. As with the likelihood ratio test, the score test does not behave well under

a naive estimate of the parameter vector; however, unlike the likelihood ratio test,

the score test is able to handle this situation by using an estimate of the parameter

vector, which is not based on maximum likelihood. In other words, in order to make

S(θ) computable, θ must be replaced by an estimator θ̃, which is well-behaved under

the null hypothesis. Then, let θ̂λ be the value of λ that maximizes L(λ, θ) with fixed

θ and define

Tλ = S(θ̂λ),

where 0 < λ < 1 is the user-specified value plugged in for α. Under some regularity

conditions on the fi’s, the statistic T ∗
λ = λTλ asymptotically follows either a chi-

squared distribution under H0 if θ0 is an interior point of the parameter space or a

mixture of chi-square distributions if θ0 is on the boundary of the parameter space.

Note that, although Liang and Rathouz[45] consider the score test specifically for a

two-component mixture model, it can likely be extended to handle tests involving

more than two components.
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2.2 Artificial Likelihood

2.2.1 Overview

Longitudinal studies are characterized by repeated measurements on individuals over

time. The advantage of longitudinal studies over cross-sectional studies is that longi-

tudinal studies can distinguish changes over time within individuals from differences

among people in their baseline levels [12]. Since observations on a single subject over

time tend to be correlated with one another, special statistical methods are required

to analyze longitudinal data. In the context of generalized linear models (GLMs),

there are three possible extensions for longitudinal data: marginal, random effects,

and transition models. Estimation for both the random effects and transitional exten-

sions of GLMs are based on traditional maximum likelihood methods. In contrast,

the marginal model specifies only the first two moments and, as such, it does not

generally have a well-defined likelihood function. In the absence of a fully-specified

distribution for the observations, a reasonable approach to estimation is to use gener-

alized estimating equations(GEEs), which are essentially a multivariate analogue of

quasi-likelihood [46, 87, 63]. Quasi-likelihood, extended quasi-likelihood, and GEEs

are each briefly described in this section.

As Hanfelt and Liang(1995) [37] point out, estimating functions sometimes have

limited utility due to multiple roots for the estimating function, a poorly behaved

Wald test, or lack of a goodness-of-fit test. In order to address these limitations,

several artificial likelihood approaches for approximating the likelihood ratio in the

absence of a well-defined likelihood function have been proposed[44, 68, 80]. Here,

focus will be placed on the projection-based approach of Li(1993) [44] and the em-

pirical likelihood based approach of Qin and Lawless(1994) [68]. Quadratic inference

functions, as described in Qu(2000) [69], will also be discussed.
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2.2.2 Quasi-likelihood and Extended Quasi-likelihood

Briefly consider the situation where there are n independent observations (yi, xi; i = 1, . . . n),

where yi is the ith response variable with mean µi and variance V (µi), and xi is an

associated vector of covariates. Wedderburn(1974) [86] defined the quasi-likelihood

for a single observation yi, Q (yi;µ), by the relation

∂Q (yi;µi)

∂µi

=
yi − µi

V (µi)

or, equivalently,

Q (yi;µi) =

∫ µi yi − µ

V (µ)
du

plus a function of yi only. The quasi-likelihood for the sample, Q (y;µ) is then defined

to be the sum of the individual quasi-likelihoods. As shown in Table 2.1, the quasi-

likelihood function often takes a simple closed-form for independent observations.

Table 2.1: Quasi-likelihood for a single observation yi associated with some simple
variance functions

Distribution Variance Function Quasi-likelihood Q (yi;µi)

Normal 1 − (yi−µi)
2

2

Poisson µi yilog (µi)− µi

Binary µ2
i yilog

(
µi

1−µi

)
+ log (1− µi)

Note that, while defining a likelihood function requires that the full form of the

distribution of the observations be specified, a quasi-likelihood function requires only

that the relation between the mean and the variance of the observations be specified.

Further, Wedderburn[86] and McCullagh(1983)[51] showed that the quasi-likelihood

has many properties that are analogous to those of log-likelihood functions. In par-

ticular, the maximum quasi-likelihood estimate, β̂QL, follows an asymptotic normal
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distribution with mean βQL and asymptotic covariances that can be computed in the

standard fashion from the second derivative matrix of Q (y;µ).

In the formulation of the quasi-likelihood above, Wedderburn [86] relaxes the as-

sumption of a known variance function of y by permitting a constant of proportional-

ity or dispersion parameter, ϕ. When the response variable is binary, ϕ is assumed to

be fixed at 1; however, for other response types, the dispersion parameter is unknown

and must be estimated. Wedderburn [86] recommends estimating the scale parameter

using

ϕ̃ =
χ2

n− p
=

1

n− p

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
.

Estimation of the dispersion parameter based on the ’bias corrected’ mean χ2 statis-

tic above is implemented in most standard statistical software packages. Other

approaches for estimating the dispersion parameter are summarized in Wang and

Hin(2010) [82].

In order to compare different variance functions on the same data, Nelder and

Pregibon(1987) [59] proposed the extended quasi-likelihood function, which includes

a covariance penalty. The extended quasi-likelihood function for a single observation

yi with mean µi and variance ϕV (µi) is defined to be

Q+ (yi;µi) = −1

2
log {2πϕV (yi)} −

1
2
D (yi;µi)

ϕ
,

where D (yi;µi) denotes the deviance as defined by

D (yi;µi) = −2 {Q (yi;µi)−Q (yi; yi)} .

As was the case with quasi-likelihood, the extended quasi-likelihood and deviance

of the sample are simply the sum of the individual extended quasi-likelihoods and
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deviances, respectively. It follows that the extended quasi-likelihood of the sample is

Q+ (y;µ) = Q (y;µ)− 1

2

n∑
i=1

log {2πϕV (y)} .

Note that the extended quasi-likelihood does not require a full distributional as-

sumption. Rather, like the quasi-likelihood, it requires only that the first two moments

be specified. Further, the extended quasi-likelihood is the unnormalized saddle point

approximation for exponential families.

2.2.3 Generalized Estimating Equations (GEEs)

Consider the longitudinal observations (yij,xij) for times tij, j = 1, . . . ,mi and sub-

jects i = 1, . . . , n. Here, yij denotes the outcome variable and xij denotes a p × 1

vector of covariates. Let yi = (yi1, . . . , yimi
)′ be an mi × 1 vector of outcomes for

subject i and xi = (xi1, . . . ,ximi
)′. Further, let β be a p × 1 vector of regression

parameters and ϕ denote a scale parameter. In this framework, the GEE approach

models the mean and covariance matrix of Yi, i = 1, . . . , n as

E (Yi) = µi (β)

and

V ar (Yi) = Vi (µi,α, ϕ) = ϕA
1/2
i (µi)Ri (α)A

1/2
i (µi) ,

where Ai is a diagonal matrix with var (Yij) = v
(
µij

)
as the jth diagonal element

and Ri (α) is the ni × ni working correlation matrix for each Yi. It is assumed that

Ri (α) is completely specified by an s × 1 vector of unknown parameters, α, which

is the same for all subjects and can be estimated using the method of moments or
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another set of estimating equations. It follows that the GEE model is specified by

g (β;ϕ,µi) =
n∑

i=1

∂µT
i

∂β
V−1

i (µi,α, ϕ) (Yi − µi (β)) .

The above model is sometimes referred to as a GEE1 model to distinguish it from

the more recently developed GEE2 approach[47, 64, 88]. GEE1 models focus on esti-

mation of the regression parameters and provide consistent, but not necessarily fully

efficient, estimators regardless of whether the working correlation matrix is correctly

specified [46]. Additionally, in contrast to GEE2 models, GEE1 models assume or-

thogonality of the estimating equations for the regression and association parameters

[38].

2.2.4 Projection-Based Approach

The projection-based method for approximating the likelihood ratio described by Li

[44] depends solely on the first two moments of the data. Thus, this approach does not

require any additional knowledge about the moment structure of the feature vector

than would be required to construct the estimating functions. In past work, McLeish

and Small(1992)[55] worked directly with the likelihood ratio and projected it onto

the subspace of L2 spanned by
∏n

i=1 Xi, where the Xi, i = 1, . . . , n represent indepen-

dent observations. In contrast, Li considers projecting the log likelihood ratio onto a

subspace linear in the observations X1, . . . , Xn. Unlike in the work of McLeish and

Small, Li’s approach applies even when the Xi, i = 1, . . . , n are dependent observa-

tions; thus, it can be used for longitudinal studies. Unfortunately, the log likelihood

ratio is not amenable to projection when only the first two data moments are known.

Thus, rather than projecting the log likelihood ratio directly, Li obtains a linear ap-

proximation of the log likelihood ratio via a Taylor series expansion before conducting

the projection.
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Briefly, assume that Y = (Y1, . . . , Yb)
T is a b × 1 vector of possibly dependent

observations with distribution pω. Further, suppose only the mean and covariance

matrix of Y are known. Specifically, let µω be the mean vector of Y and Vω be

the variance-covariance matrix of Y under ω. Now, for simplicity of notation, let

a = pω(Y) and b = pν(Y) and note that

2log
[a
b

]
= log

[
a/b

b/a

]
= log

[a
b

]
− log

[
b

a

]
= log

[
b+ a− b

b

]
− log

[
a+ b− a

a

]
= log

[
1 +

a− b

b

]
− log

[
1 +

b− a

a

]
.

Then, a Taylor series expansion yields the following linear approximation of the log

likelihood ratio

2log
[a
b

]
≈ a− b

b
+

a− b

a
+

(b− a)3(b+ a)

2a2b2

≈ a− b

b
+

a− b

a
.

Thus, by substituting back in a = pω(Y) and b = pν(Y), the following approximation

of log pω(Y)
pν(Y)

can be obtained using Li’s approach:

log

[
pω(Y)

pν(Y)

]
≈ pω(Y)− pν(Y)

2pν(Y)
+

pω(Y)− pν(Y)

2pω(Y)
.

Next, the approximation of the log likelihood ratio is projected onto a suitable

Hilbert subspace. Let R1 =
pω(Y)−pν(Y)

2pν(Y)
= 1

2

{
pω(Y)
pν(Y)

− 1
}
. Consider the Hilbert space

L2 and the closed subspace of L2 defined as Lν = span {Y1 − µ1ν , . . . , Yb − µbν} with

inner product ⟨g1, g2⟩ν = Eν (g1g2). Since R1 is a member of L2 it can be projected

onto Lν . Also, all elements of Lν are linear in Y and, thus, take the form aT (Y − µν)
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for some vector a. Denote the projection of R1 onto Lν by R̂1. It can be shown

that R̂1 = 1
2

{
(µω − µν)

T V−1
ν (Y − µν)

}
is the unique projection of R1 onto Lν by

showing that the residualR1−R̂1 is orthogonal to all h ∈ aT (Y − µν). In other words,

the proposed form of R̂1 is the correct form of the projection if
⟨
R1 − R̂1, h

⟩
ν
= 0.

To see that the proposed form of R̂1 does indeed satisfy this property, note that

⟨
R1 − R̂1, h

⟩
ν

=

⟨
1

2

{
pω(Y)

pν(Y)
− 1− (µω − µν)

T V−1
ν (Y − µν)

}
, h

⟩
ν

=
1

2

{⟨
pω(Y)

pν(Y)
, h

⟩
ν

− ⟨1, h⟩ν − (µω − µν)
T V−1

ν ⟨Y − µν , h⟩ν
}

=
1

2

{
Eν

(
pω(Y)

pν(Y)
h

)
− Eν(h)− (µω − µν)

T V−1
ν Eν [(Y − µν)h]

}
=

1

2

{∫
pω(Y)

pν(Y)
hpν − 0− (µω − µν)

T V−1
ν Eθ

[
(Y − µν) a

T (Y − µν)
]}

=
1

2

{∫
pω(Y)h− (µω − µν)

T V−1
ν Vνa

}
=

1

2

{
Eω (h)− (µω − µν)

T a
}

=
1

2
(0)

= 0.

Now, let R2 = pω(Y)−pν(Y)
2pω(Y)

. Here, consider the closed subspace of L2 given by

Lω = span {Y1 − µ1ω, . . . , Yb − µbω} with inner product ⟨g1, g2⟩ω = Eω (g1g2). De-

note the projection of R2 onto Lω by R̂2. By the same reasoning that was used

to show that R̂1 was the unique projection of R1 onto Lν , it can be shown that

R̂2 = 1
2

{
(µω − µν)

T V−1
ω (Y − µω)

}
is the unique projection of R2 onto Lω. The

sum of two projections is itself a projection. Thus, the projection of the log likeli-

hood approximation onto Lν ⊕ Lω is given by the linear deviance

R̂ (ω, ν,Y) = R̂1 + R̂2 =
1

2

{
(µω − µν)

T V−1
ν (Y − µν) + (µω − µν)

T V−1
ω (Y − µω)

}
.
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The linear deviance approximates the log likelihood ratio. Thus, an approximation

of the likelihood ratio can be obtained via an exponential transformation.

The projection approach proposed by Li[44] has several useful properties. First,

Li’s approach holds very generally. Unlike quasi-likelihood, which requires continuous

parameter spaces, Li’s approach holds even for discrete parameter spaces. In addition,

as noted previously, Li’s approach applies to dependent observations and can be used

with longitudinal data. Further, R̂ is antisymmetric and linear in observations. Since

R̂ is linear in Y, the deviance is defined for all Y in the sample space and its behavior

can be observed locally at an alternative parameter by using noncentral moments.

Finally, R̂ is invariant under affine transformations of Y and under a change of

coordinate system in the parameter space.

2.2.5 Empirical Likelihood Approach

Qin & Lawless [68] propose an alternative approach for approximating the likelihood

ratio, which is based on empirical likelihood. Briefly, let x1, . . . ,xn be independent

and identically distributed (iid) observations from a d-variate distribution F with an

associated p × 1 parameter θ. Although Qin & Lawless require that x1, . . . ,xn be

iid observations, this work has been generalized to handle the situation where ob-

servations are independent but not identically distributed. This extension requires

one to assume that the estimating functions are iid from a super population of esti-

mating functions. Thus, for the remainder of this section, we take x1, . . . ,xn to be

independent observations from F with an associated parameter θ. By definition, the

empirical likelihood function is

L(F ) =
n∏

i=1

dF (xi) =
n∏

i=1

pi,
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where pi = dF (xi) = Pr(X = xi). It can be shown that the empirical likelihood

function is maximized by the empirical distribution function Fn(x) =
1
n

∑n
i=1 I(xi <

x). The empirical likelihood ratio is then

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi.

Next, assume that the information available about θ and F is in the form of r ≥

p functionally independent unbiased estimating functions, gj(x;θ); j = 1, 2, . . . , r,

where EF {gj(x;θ) = 0}. In vector form, Qin and Lawless consider

g(x;θ) = (g1(x;θ), . . . , gr(x;θ))
T

where

EF {g(x;θ)} = 0.

In this framework, the empirical likelihood approach to approximating the like-

lihood ratio is essentially a constrained maximization problem. Qin and Lawless

suggest that the empirical likelihood function, L(F ) =
∏n

i=1 pi, be maximized subject

to the following restrictions: pi ≥ 0,
∑

i pi = 1, and
∑

i pig(xi;θ) = 0. For a given

θ, a unique maximum exists provided that 0 is inside the convex hull of the points

g(x1;θ), . . . , g(xn;θ). The maximum can be found using Lagrange multipliers. The

objective function of interest is

H =
∑
i

logpi + λ

(
1−

∑
i

pi

)
− ntT

∑
i

pig(xi;θ),

where λ and t = (t1, t2, . . . , tr)
T are Lagrange multipliers. It follows that, by taking
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derivatives with respect to pi,

∂H

∂pi
=

1

pi
− λ− ntTg(xi;θ) = 0.

Multiplying both sides by pi and then summing over all possible values of i yields

0 =
pi
pi

− λpi − ntTpig(xi;θ)

0 = 1− λpi − ntTpig(xi;θ)

0 =
n∑

i=1

1− λ
n∑

i=1

pi − ntT
n∑

i=1

pig(xi;θ)

0 = n− λ.

Thus, n = λ. Further, an estimate of pi is given by

1

pi
− λ− ntTg(xi;θ) = 0

1

pi
= n+ ntTg(xi;θ) since λ = n

1

pi
= n

(
1 + tTg(xi;θ)

)
pi =

(
1

n

)
1

1 + tTg(xi;θ)

with the restriction that 1
n

∑
i

1
1+tT g(xi;θ)

g(xi;θ) = 0 since
∑

i pig(xi;θ) = 0. Thus, t

can be determined in terms of θ. Note that, since 0 ≤ pi ≤ 1, t and θ must satisfy

1 + tTg(xi;θ) ≥ 1
n
. For a fixed θ, define Dθ to be the set of all t that satisfy this

condition, i.e. Dθ =
{
t : 1 + tTg(xi;θ) ≥ 1

n

}
. It can be shown that Dθ is convex,

closed, and bounded if 0 is inside the convex hull of the g(xi,θ)’s. In addition,

∂

∂t

{
1

n

∑
i

1

1 + tTg(xi;θ)
g(xi;θ)

}
= − 1

n

∑
i

g(xi;θ)g
T (xi;θ)

{1 + tTg(xi;θ)}2

is negative definite for t in Dθ provided that
∑

i g(xi;θ)g
T (xi;θ) is positive definite.
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Using this information, Qin and Lawless conclude that the empirical likelihood

function for θ is given by

LE(θ) =
n∏

i=1

{(
1

n

)
1

1 + tTg(xi;θ)

}

and the empirical log-likelihood ratio comparing the proposed model to the uncon-

strained model is

lE(θ) =
n∑

i=1

log
[
1 + tT (θ)g(xi;θ)

]
.

The values of t and θ must be solved iteratively. An outer loop can be used to

maximize lE(θ) with respect to θ, while an inner loop will solve t for each value of

θ and be updated each time a new θ is chosen or computed. Due to the inner and

outer loops involved in obtaining an estimator of the log likelihood ratio, the empirical

likelihood approach of Qin and Lawless can be computationally intensive.

2.2.6 Quadratic Inference Function

Although GEEs consistently estimate regression parameters even when the correlation

structure is misspecified, the estimator of the regression parameter can be inefficient

under such misspecification. Qu et al. [69] introduced a quadratic inference function

(QIF) method, which is essentially a generalized method of moments approach based

on an extended GEE. The QIF method provides an alternate estimation approach

for longitudinal data, which does not require direct estimation of the correlation pa-

rameter and remains optimal even under misspecification of the correlation structure.

Additionally, Qu et al. proposed using the QIF approach as a measure of goodness-

of-fit.

Let yij be an outcome variable and xij denote a p×1 vector of covariates observed

at the jth measurement occasion for subject i, where j = 1, . . . ,mi and i = 1, . . . , n.
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Further, let yi = (yi1, . . . , yimi
)′ be an mi × 1 vector of outcomes for subject i and β

be a p×1 vector of regression parameters. Assume that the E (yit) = µ (x′
itβ) and let

µi = (µi1, . . . , µimi
). Finally, let Vi be the covariance matrix of the vector yi. As seen

in the GEE approach to modeling longitudinal data, the optimal estimating equation

is given by the quasi-likelihood equation

gopt =
n∑

i=1

∂µi

∂β
V −1
i (yi − µi) .

When using the GEE approach, Vi is often unknown and a working variance model

Vi = ϕA
1/2
i (µi)Ri (α)A

1/2
i (µi) with working correlation matrix R (α) is used during

estimation. The QIF approach assumes that the inverse of the working correlation

matrix can be written as

R−1 =
m∑
i=1

aiMi,

where M1, . . . ,Mm are known matrices and a1, . . . , am are unknown constants. This

class of matrices accommodates most of the commonly used correlation structures

including the exchangeable, and autoregressive correlation structures. In the QIF

approach, the components of the above linear expression for the inverse of the working

correlation matrix are used to form an extended score equation based on each of the

M1, . . . ,Mm. Specifically, the extended score gN takes the form

gN (β) =
1

N

N∑
i=1

gi (β) =
1

N


∑N

i=1 (µ̇i)A
− 1

2
i M1A

− 1
2

i (yi − µi)

...∑N
i=1 (µ̇i)A

− 1
2

i MmA
− 1

2
i (yi − µi)

 ,

where β represents the regression parameters of interest and Ai is the diagonal

marginal covariance matrix for the ith cluster.

The vector gN contains more estimating equations then parameters; however,



31

using the generalized method of moments,the estimating equations can be combined

optimally. Based on the extended score, gN , an objective function is constructed.

This objective function is called the QIF and is defined as

QN (β) = g′NC
−1
N gN ,

where CN =
(

1
N2

)∑N
i=1 gi (β) g

′
i (β). The QIF can be used in two manners. First,

one can optimally estimate β directly by selecting the value of β that minimizes the

QIF. Additionally, QIF provides a chi-squared inference function for testing nested

GEE models and a chi-squared regression misspecification test. In this context, it

is important to note that that the QIF mimics the properties of the log-likelihood

function [48]. In particular, QN (β0) − QN

(
β̂
)
is asymptotically chi-squared with

degrees of freedom equal to the dimension of β and QN

(
β̂
)
is asymptotically chi-

squared as a test statistic for testing whether the semi-parametric model is true.

2.3 Model Selection Diagnostics for Longitudinal

Data

2.3.1 Overview

One of the major difficulties of extending latent class analysis to accommodate lon-

gitudinal data via GEEs is that a likelihood function is no longer available. Thus,

the aforementioned likelihood-based approaches for selecting the order of a finite

mixture model are no longer directly applicable. For hypothesis testing, one might

consider using an estimate of the likelihood ratio based on a projection or based on

the empirical likelihood function. Li[44] notes that the linear deviance function that

approximates the log likelihood-based deviance via projection follows a chi-square

distribution asymptotically when regularity conditions hold; for example, when the
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parameter space is an open set. Similarly, Qin and Lawless[68] note that the empirical

likelihood ratio test asymptotically follows a chi-square distribution. Unfortunately,

the regularity conditions required for such asymptotic properties to hold may break

down in the mixture model context or under transformation.

To avoid the distributional requirements of hypothesis testing, focus is placed pri-

marily on extensions of information criteria for longitudinal data. Direct extensions of

information criteria might involve replacing the likelihood portion of the criteria with

an alternate measure of model fit such as the empirical likelihood function [68], quasi-

likelihood function, or quadratic inference function (QIF) [69]. A literature review

of model selection procedures for estimating equations did reveal several extensions

of information-based approaches. A brief summary of some of these approaches, as

well as other methods available for model selection follows. Note that when choosing

a model selection criteria for use with finite mixture models, the approach must be

invariant to the scale of the covariates and avoid component labeling issues. Thus,

approaches involving direct comparisons of the estimated parameter vectors from two

models, such as Wang(2007) [79], are omitted due to the class labeling issues for finite

mixture models.

2.3.2 Quasi-Likelihood Under the Independence Model Cri-

terion (QIC)

Pan(2001)[60] proposed an information criterion that he refers to as the quasi-likelihood

under the independence model criterion, denoted QIC(R). QIC(R) is an extension of

Akaike Information Criterion (AIC) for generalized estimating equations. Consider a

random sample of n individuals with longitudinal measurements yi = (yi1, . . . , yimi
)

with corresponding covariates xi = (xi1, . . . ,ximi
)′. Assume that Yi and Y′

i are inde-

pendent for i ̸= i′, but that the components of a given Yi (i = 1, . . . , n) may be corre-

lated. The set of all available data will be denoted by D = {(Y1,X1) , . . . , (Yn,Xn)}.
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The relationship between the response and covariates can be then be modeled via a

GEE with regression coefficients β = (β1, . . . , βp)

Now, recall that AIC is derived from the the Kullback-Leibler (KL) information.

It assumes a fully-specified likelihood and takes the form:

AIC = −2l
(
β̂;D

)
+ 2p,

where l
(
β̂;D

)
denotes the log-likelihood function and p denotes the dimension of β.

In the GEE context, we do not have a likelihood function; however, a quasi-likelihood

function may be available. QIC(R) is developed by replacing the likelihood in the

KL information with the quasi-likelihood under the independence model, Q (β; I, D).

More specifically, for any working correlation matrix R, QIC(R) is defined as

QIC(R) = −2Q
(
β̂(R); I, D

)
+ 2trace

(
σ̂I V̂r

)
,

where V̂r is the sandwich covariance estimator of cov(β̂) and σ̂I =
−∂2Q(β;I,D)

∂β∂β′ |β=β̂.

The authors recommend using QIC(I), i.e. QIC with an independent working

correlation structure, whenever possible, due to its superior performance in model

selection simulations. Additionally, they note that for correlated data QIC(R) can be

approximated by

QICu(R) = −2Q
(
β̂(R); I, D

)
+ 2p.

It is important to recognize that while QIC(R) can be used for variable selection, it

is not designed to select the working correlation matrix.

The QIC approach described was developed under the assumption that the dis-

persion parameter, ϕ was known and, hence, could be ignored in the quasi-likelihood

function. In practice, the dispersion parameter is typically unknown. Thus, an es-
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timate of the dispersion parameter based on the largest model available, say ϕ̂, is

sometimes plugged in. As an alternative, the authors note that using the extended

quasi-likelihood [59] would provide a more difficult, but general approach. Wang and

Hin [82] present an extension of QIC based on the extended quasi-likelihood, which

they refer to EQIC.

2.3.3 Empirical Information Criterion (EIC)

Kolaczyk(1995) [42] proposed an alternate extension of Akaike’s information crite-

rion (AIC) for longitudinal data that is based on empirical likelihood. Using the

same notation as in the previous discussion of empirical likelihood, let X1, . . . ,Xn be

independent and identically distributed d-variate random variables with a common

distribution function F. Recall that, by definition, the empirical likelihood function

is

L(F ) =
n∏

i=1

dF (xi) =
n∏

i=1

pi,

where pi = dF (xi) = Pr(X = xi). Further, the empirical log-likelihood ratio can be

expressed as

lEL (θ) =
n∑

i=1

log
[
1 + tT (θ)g(xi;θ)

]
.

Kolaczyk [42] notes that, by construction, the set {pi (θ) ; i = 1 . . . , n} is a proper

probability distribution on the sample {x1, . . . ,xn}. Hence, an empirical likelihood

analogue of the Kullback-Leibler (KL) information can be obtained by replacing the

log-likelihood ratio statistic with the empirical likelihood alternative

n∑
i=1

log

{
pi (θ

∗)

pi (θ)

}
pi (θ

∗) ,
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where θ∗ denotes the true value of the parameter vector of interest. In words, this

means that the loss entailed in modeling θ∗ by θ is defined to be the Kullback-

Leibler distance between two discrete empirical distributions corresponding to these

two parameter values. It follows that, under the regularity conditions outlined in

Kolaczyk[42], the empirical information criterion can be expressed as

EIC(k) = −2lEL

(
θ̃k

)
+ d,

where θ̃k denotes the estimated parameter of the fitted submodel.

The EIC(k) statistic has many appealing properties. First, it does not depend

on any parametric assumptions regarding the distribution of the data and requires

only that the estimating function being considered is unbiased. Further, EIC(k) is an

asymptotically unbiased estimate of the risk of modeling θ∗ by the fitted submodel

θ̃k. Unfortunately, the fact that EIC(k) is an asymptotically unbiased estimate of

risk does not ensure that it will be a successful criterion for selecting the optimal

model from among a set of candidate models and the effectiveness of EIC for model

selection has not yet been investigated.

2.3.4 Bayesian Information Quadratic Inference Function (BIQIF)

Wang and Qu(2009) [81] proposed the Bayesian Information Quadratic Inference

Function (BIQIF). The BIQIF approach modifies the Bayesian information criterion

(BIC) by replacing the negative of two times the log-likelihood with the quadratic

inference function (QIF) [69]. This substitution is motivated by the observation that

the role of QIF in the semi-parametric setting is similar to the role of the negative of

two times the log-likelihood in the parametric setting.

Consider selecting an appropriate marginal regression model from among a class of

candidate models that correspond to select different subsets of covariates. Let M be
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the class of candidate models being considered. Each member of M can be identified

with a unique set m, where m is a subset of {1, . . . , q} and contains the indices of

the covariates that are included in the candidate model. Then, let β (m) denote the

(q + 1) × 1 vector which sets the corresponding components of β to zero if they are

not selected by this model. Further, let B (m) be the corresponding parameter space.

Let QN (β) be the QIF as defined in Qu [69]. The QIF-based BIC then selects the

model in M which minimizes

BIQIF (m) = QN

{
β̂ (m)

}
+ |β (m) |log(N),

where QN

{
β̂ (m)

}
= infβ∈B(m) {QN (β)} and |β (m) | denotes the number of non-

zero elements in β (m). As in BIC, BIQIF contains a term to penalize the lack of fit

of the model and a term to penalize the complexity of the model.

Although BIQIF approach to model selection has several appealing properties, the

quadratic inference function is not on the same scale as the negative of two times the

log-likelihood. More specifically, the asymptotic distribution of QN

{
β̂
}

is χ2 with

r − q degrees of freedom, where r is the dimension of the extended score equation,

gN , and q is the dimension of β, where q < r. Thus, while the quadratic inference

function may be useful for a likelihood-ratio-type test, it is not generally applicable

as a measure of model fit for information criteria.

2.3.5 Expected Predictive Bias (EBP)

Pan(2001)[61] also proposed a more flexible and data driven model selection approach

for estimating equations. Let X = (X1, . . . , Xn) be an iid sample of size n from an

unknown distribution F and β be the p×1 regression coefficient vector. For a system of

estimating equations S(.|β) satisfying EX1 (S(X1|β)) = 0, an estimate of β, denoted
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by β̂ (X) can be obtained by solving the p equations

S(X|β) = 1

n

n∑
i=1

S(Xi|β) = 0.

Define β̂ (X) to be the resulting estimate of β.

To proceed with the proposed method, let Y = (Y1, . . . , Yn) be another iid sample

from F that is independent from X. The model selection criterion is then constructed

to minimize the expected predicted bias (EPB) of the estimating equations, where

EPB = EXEY |S
(
Y|β̂ (X)

)
|.

In practice, only one sample X is typically available. Thus, a resampling approach is

used to estimate the EPB. Specifically, Pan considers an estimate of EPB developed

using a bootstrap smoothed cross-validation (BCV) estimate. The BCV approach for

estimating the EPB was selected because cross-validation typically gives an almost

unbiased estimate but results in large variance. The bootstrap then smooths unstable

estimates and reduces variability. The BCV estimate is given by

ˆEPBBCV = EX∗

∣∣∣S (X∗−|β̂(X∗)
)∣∣∣ ,

where X∗ denotes a bootstrap sample taken from X and X∗− = X−X∗ contains the

observations in X but not in X∗.

Finally, Monte Carlo simulations are usually used to approximate the ˆEPBBCV

since a closed-form solution is often not available. In general, a weighted sum of the

components of ˆEPBBCV can be used as a summary statistic/criterion. This summary

statistic is denoted ˆEPBBCVa and the weights are usually chosen to be inversely

proportional to the variances of the components of ˆEPBBCV . As mentioned, this

approach is appealing because it is motivated by the observed data; however, it can
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be computationally burdensome.

2.4 Generating Correlated Discrete Data

In order to validate the methodology proposed in this dissertation, it will be necessary

to perform a series of simulation studies. These simulation studies will require normal,

Poisson, and binary data to be generated under an AR(1) correlation structure. A

multivariate normal distribution with an appropriate correlation matrix can easily be

used to generate appropriately correlated normal data; however, generating correlated

discrete data is more challenging.

2.4.1 Correlated Count Data

Madsen and Dalthorp(2007) [10] describe two approaches for simulating count-valued

random vectors with a specified mean and correlation structure. The first approach

uses a lognormal-Poisson hierarchy (L-P method). The idea behind this approach is

to generate a vector of correlated normal variables Z = (Z1, . . . , Zn) by multiplying

a vector of i.i.d. standard normals by the Cholesky decomposition of the appropriate

covariance matrix. From there, Z is transformed to a vector of lognormals, X, by

exponentiation. Then, Y is generated as conditionally independent Poissons with

means Xi. Although the L-P method is relatively fast and easy to implement, it

can sometimes be tedious to determine the appropriate correlation among the nor-

mally distributed random variables that will induce the target correlation among the

Poissons. In addition, the L-P method cannot accommodate underdispersed random

variables or pairs of strongly correlated random variables with similar means and

variances.

An alternative approach for simulating count-valued random vectors is known as

the overlapping sums (OS) method. The OS algorithm is based on Holgate’s(1964)
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observation that if Y1 = X + X1 and Y2 = X + X2, then Y1 and Y2 are correlated

even if X, X1, and X2 are independent because they share the common component

X. Holgate’s observation was generalized to n-vectors of correlated Yi’s by Park

and Shin(1998) [62] who took each Yi to be a sum of independent X’s. Park and

Shin’s algorithm parses the target covariance matrix into a long vector of variances of

independentXj’s that, when multiplied by the appropriate matrix T of zeros and ones,

sum to the vector of Yi’s with the desired correlations[9]. Although the OS method is

not as fast as the L-P method, it can simulate strongly correlated random variables

provided that the random variables have similar means and variance. In addition,

it accommodates under-dispersed random variables or combinations of under- and

over-dispersed variables.

2.4.2 Correlated Binary Data

A variety of approaches have been proposed for generating longitudinally corre-

lated binary data (see [29] for a summary). One such approach was proposed by

Qaqish(2003) [67], who introduced a multivariate binary distribution to easily and ef-

ficiently simulate correlated binary variables with a given marginal mean vector and

correlation matrix. Let Y = (Y1, . . . , YT )
T denote a sequence of T binary responses.

Further, let the marginal mean of Yt be E (Yt) = Pr (Yt = 1) = µt. The proposed

approach is then implemented by generating a binary sequence using the conditional

distribution for Yt given (Y1, . . . , Yt−1), where t = 2, . . . , n. Specifically, Qaqish defines

λt = P (Yt = 1|Y1, . . . , Yt−1) = µt +
t−1∑
j=1

bjt (Yj − µj) ,

where bjt reflects the generic correlation structure. Qaqish’s approach is computation-

ally efficient for large T, while offering the flexibility to accommodate non-stationary

data and unpatterned correlation. In addition, when compared to other methods
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for common stationary processes, the proposed approach allows for a wider range of

correlation parameters.
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Chapter 3

A Latent Trajectory Model for

Longitudinal Data

3.1 Overview

The cross-sectional finite mixture model methodology described in Chapter 2 relied

on a well-defined likelihood function. Likelihood-based extensions of finite mixture

models that accommodate correlated data tend to be both computationally intensive

and sensitive to modeling assumptions. As an alternative to these fully-parametric

longitudinal approaches, we propose a computationally simpler and more robust la-

tent trajectory model based on generalized estimating equations (GEEs). In this

chapter, the proposed approach is outlined and the results of simulation studies to

assess its effectiveness are described.

3.2 The Proposed Latent Trajectory Model

Assume that the observed longitudinal data is of the form (yijk, tijk) ; i = 1, . . . , n, j =

1, . . . , J, k = 1, . . . ,mij. Here, yijk denotes the kth measurement of the jth feature

variable for the ith subject and tijk denotes the time of observation yijk. Note that
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this data framework is very flexible and allows for unbalanced data.

Since the feature vector for each subject is observed at multiple time points, a

natural way to proceed is to model the latent class specific longitudinal trajectories

using a generalized estimating equation (GEE) approach, which accommodates the

correlation between repeated observations. For the remainder of this chapter, assume

that the number of latent classes, C, is fixed and known. As it may not always be

realistic to assume that the number of classes is known a priori, methods for assessing

the number of components for a mixture of GEEs will be proposed and discussed in

Chapter 4. Additionally, assume that the aforementioned longitudinal trajectories are

fully characterized by the parameter vector θ =
(
βT ,ϕT ,γT

)T
, where β contains the

slope and intercept parameters of the latent class-specific trajectories, ϕ contains the

latent class-specific dispersion parameters, and γ parameterizes the temporal corre-

lation structure of the longitudinal trajectories. Now, let yi = [yijk] and [µijkg (β)] =

[E (yijk|(Zi)g = 1)], where (Zi)g = zig = 1 is an indicator of whether subject i belongs

to class g for i = 1, . . . , n and g = 1, . . . , C. Note that, although time is the only

covariate that will be considered in the simulations and applications that follow, this

model formulation can accommodate other covariates when modeling the class-specific

mean structure. Further, denote the squared residual by sijk = (yijk − µijkg (β))
2 and

the cross-product by rijklg = (yijk − µijkg (β)) (yijl − µijlg (β)) for k < l. Then, let

sig = [sijk] and σ
2
ig (ϕ,β) = E [sig], where σ

2
ijkg = ϕjv (µijkg). Finally, let rig = [rijklg]

and ηig (γ,ϕ,β) = E [rig], where ηijklg = ρijklg (γ)ϕj

√
v(µijkg)v(µijlg). The latent-

class specific second order GEE1 is then given by

hg (yi;θ) =


∂µig(β)

T

∂β
V−1

ig (θ)
{
yi − µig (β)

}
∂ηig(ϕ,β)

T

∂ϕ
I
{
sig − σ2

ig (ϕ,β)
}

∂ψig(γ,ϕ,β)
T

∂γ
I
{
rig − ηig (γ,ϕ,β)

}
 ,

where Vig (θ) is a block diagonal, and thus easily invertible, subject-specific variance-
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covariance matrix fully-specified by θ. A second order model was used because, al-

though primary interest is in modeling the mean, the correlation and scale parameters

are still of secondary interest. The estimating functions are orthogonal to ensure that

inferences on the mean trajectories remain valid even when the variance-covariance

structure is misspecified.

While the first component of the proposed class-specific GEE model is optimally

weighted, the remaining components are not. The suboptimal weighting is used be-

cause optimal weighting of the remaining components would require additional knowl-

edge of the third and fourth moments. Additionally, note that each component of

the GEE above is permitted to have its own unique link function. The mean link has

been well studied and, when multiple feature variables are present, each feature vari-

able may have a different link function. Here, the identity link was used for both the

scale and correlation components of the estimating equation to allow for estimation

via standard software packages. Finally, a natural choice for the working correlation

structure is an autoregressive (AR1) correlation model. The AR1 correlation struc-

ture accounts for temporal correlations resulting from repeated measurements while

avoiding overly complicated computations. Note, however, that the AR1 correlation

structure implicitly assumes that repeated observations occur at evenly spaced time

intervals. More complicated correlation structures may be considered for data with

unevenly spaced measurements provided that estimation remains feasible.

The proposed GEE model assumes that missing data is missing completely at

random (MCAR) within a given latent class. That is, given a participant’s observed

feature variables and latent class, it is assumed that the missingness mechanism does

not depend on past or future values for that feature. The MCAR assumption seems

justified for the motivating example on mild cognitive impairment because patients

with mild cognitive impairment are not so cognitively impaired as to prevent them

from completing the neuropsychological evaluations. If a violation of the MCAR
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assumption is suspected, the above approach can be naturally extended to handle

the situation in which missing data is missing at random (MAR) by adding suitable

weights to the GEE above [71]. The GEE model with suitable weights should yield

an unbiased estimating function and consistent parameter estimates.

Now, let xi be a P × 1 vector of covariates not involved in modeling the class-

specific longitudinal trajectories but potentially influential in determining the class

membership probabilities. Denote the class membership probabilities by π (xi;αg).

Then, recall that estimation of cross-sectional finite mixture models relies on the score

equations:

∑C
g=1

∑n
i=1 τig(yi;ψ)

∂logπg(xi;α)

∂α
= 0∑C

g=1

∑n
i=1 τig(yi;ψ)

∂logfg(yi;θg)

∂θ
= 0 .

Assuming that the covariates used to model πig are not time-dependent, the score

equation with respect to α remains unaltered in the proposed GEE extension. The

likelihood-based score equation with respect to θ can be generalized to handle corre-

lated longitudinal data by replacing ∂fg(yi;θg)

∂θg
with the analogous class-specific GEE

model hg (yi;θ). The resultant quasi-score equation with respect to θ will be de-

noted by Q(θ) =
∑n

i=1

∑C
g=1 τig(yi;ψ)hg(yi;θ). This quasi-score equation remains

unbiased. To see this, note that

E {Q(θ)} =
n∑

i=1

E

[
C∑

g=1

E(zig|yi,xi)hg(yi;θ)

]

=
n∑

i=1

E

[
C∑

g=1

E {zighg(yi;θ)|yi,xi)}

]

=
n∑

i=1

E

[
C∑

g=1

E {zighg(yi;θ)|zi)}

]
= 0.
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Next, consider the posterior class membership probabilities, τig. As shown below,

τig can be expressed in terms of likelihood ratios comparing the evidence that a given

subject is in component g versus component 1 of the population:

τig =
πg(xi;α)fg(yi;θg)∑C
d=1 πd(α)fd(yi;θd)

=
πg(xi;α))

fg(yi;θg)

f1(yi;θ1)∑C
d=1 πd(xi;α)

fd(yi;θd)
f1(yi;θ1)

=
πg(xi;α)LRig(θ)∑C
d=1 πd(xi;α)LRid(θ)

.

Thus, an estimate of τig can be obtained by approximating the subject-specific like-

lihood ratios.

We propose approximating these likelihood ratios via the projection-based ap-

proach of Li(1993) [44]. When applying this approach, let

Yi = (Yi11, . . . , Yi1mi1
, Yi21, . . . , Yi2mi2

, . . . , YiJ1, . . . , YiJmiJ
)T ,

where i = 1, . . . , n indicates the subject, j = 1, . . . , J indicates the feature variable,

and k = 1, . . . ,mij denotes the measurement occasion of the jth feature for subject

i. Further, for the latent class application being considered, let the parameter ω

represent the latent class. More rigorously, ω = {Zi = (0, 0, . . . , 0, 1, 0, . . . , 0)} is a

C × 1 vector of class indicators for subject i. To indicate that subject i is in class

g for g = 1, . . . , C, the gth indicator variable, (Zi)g assumes the value of 1 and∑C
g=1(Zi)g = 1. Similarly, subject i belongs to class 1 under ν = {Zi = (1, 0, . . . , 0)}.

The subject-specific likelihood ratios can then be approximated by eR̂(ω,ν,Y), where

R̂ (ω, ν,Y) is the linear deviance function as defined in Li.

As an alternative, the empirical likelihood approach of Qin and Lawless(1994)

[68] can be used to approximate the likelihood ratio. In the context being considered,

one must assume that the estimating functions are independent and identically dis-
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tributed from a super population of estimating functions in order to accommodate

dependent observations. In other words, assume that the estimating functions rep-

resent a random sample drawn from a latent class specific super-population. Then,

consider Yi = (Yi11, . . . , Yi1mi1
, . . . , YiJ1, . . . , YiJmiJ

)T where i = 1, . . . , n indicates the

subject, j = 1, . . . , J indicates the feature variable, and k = 1, . . . ,mij denotes the

measurement occasion of the jth feature for subject i. It follows that the latent-class

specific empirical likelihood within each latent class is

Lg
E(θ) := sup

{
n∏

i=1

pgi : p
g
i ≥ 0,

∑
i

pgi = 1,
∑
i

pgihg(yi;θ) = 0

}
, g = 1, . . . , C.

Traditionally, the product of {pgi ; i = 1, . . . , n} is used to make inferences on θ within

class g = 1, . . . , C. By contrast, we propose a somewhat unorthodox use of empirical

likelihood in order to compute a subject-specific empirical approximation of pi in

class g, say p̂gi . Let θ0 be defined as the null hypothesis that response trajectories

are the same across latent classes, so that p̂gi (θ0) = p̂1i (θ0) for all g = 1, . . . , C. The

empirical approximation of the relevant subject-specific likelihood ratio is given by:

LRig (θ) ≈
p̂gi (θ) /p̂

g
i (θ0)

p̂1i (θ) /p̂
1
i (θ0)

=
p̂gi (θ)

p̂1i (θ)
.

While the above approach is non-traditional, Kolaczyk(1995) [42] provides validity to

the proposed approach by noting that, by construction, the set {pgi ; i = 1, . . . , n} is

a proper probability distribution on the sample {y1, . . . ,yn} for g = 1, . . . , C. The

empirical likelihood approach also has several appealing properties. In particular,

the approach does not require any extra information about the moment structure of

the feature vector than is required to construct the estimating functions. Further,

the empirical likelihood approach does not rely on the strong linearity assumption

required for Li’s projection-based approach. With that said, an empirical likelihood

approach would have an increased computational burden. Implementation of the
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empirical likelihood-based approach is reserved for future research.

For the proposed model, parameter estimation is done by using a modification of

the direct approach to the EM algorithm for GEEs[54]. Specifically, an estimate of

ψ = (α,θ) is obtained by iterating between the approximation of

τig(yi;ψ) =
πg(xi;α)LRig(θ)∑C
d=1 πd(xi;α)LRid(θ)

and solving

S (α) =
∑C

g=1

∑n
i=1 τig(yi;ψ)

∂logπg(xi;α)

∂α
= 0

Q (θ) =
∑n

i=1

∑C
g=1 τig (yi;ψ)hg (yi;θ) = 0 ,

until a pre-specified convergence criteria is met. Recall that a weakness of the EM

algorithm is that it can sometimes converge to a spurious local solution. In order to

help avoid local solutions, the algorithm is initialized using multiple random starting

values for τig (yi;ψ). Approaches for distinguishing between multiple roots and as-

sessing the number of components in a finite mixture model are discussed in Chapter

4.

3.3 Asymptotic Standard Error

Estimation of the proposed latent trajectory models was done via the EM algorithm.

One limitation of the EM algorithm is that it does not automatically provide standard

errors. A variety of approaches have been proposed to assess the standard errors of

the parameter estimates obtained via the EM algorithm[49, 56, 53]; however, many of

these approaches rely heavily on likelihood theory and are not applicable in the current

context. Thus, we propose two options for approximating the standard errors of the

parameter estimates that can be implemented within the proposed framework. The
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first option is to use a bootstrap approach to standard error approximation, where the

number of latent classes is held fixed and the bootstrap samples are drawn in the unit

of individuals to accommodate repeated measures over time[13]. Since a bootstrap

approach to estimation can be computationally intensive even for relatively simple

problems, bootstrapping the standard errors for the parameter estimates involved in

a finite mixture of estimating functions can be computationally burdensome. As an

alternative, we propose an analytical approach based on a sandwich variance estimate.

Let

Γg (yi;ψ) =

 ∂logπg(xi;α)

∂α

hg (yi;θ)

 .

Note that the complete-data estimating function is given by

g (y, z;ψ) =
n∑

i=1

C∑
g=1

zigΓg (yi;ψ) ,

where zi = (zi1, . . . , ziC) ∼ Multinomial (1;πi1, . . . , πiC) and ψ = (α,θ) as in earlier

work. Further, the observed data-estimating function is given by

g∗ (y;ψ) = E {g (y, z;ψ) |y} = g {y, E (z|y) ;ψ} =
n∑

i=1

g∗ (yi;ψ) =
n∑

i=1

C∑
g=1

τig (y;ψ) Γg (yi;ψ) ,

where τig (y;ψ) = E (zig|y;ψ) , g = 1, . . . , C. Then, let ψ̂ be a solution to g∗ (y;ψ) =

0. It follows that avar
(
ψ̂
)
= A−1BA−T , where

A = E

{
−∂g∗ (y;ψ)

∂ψ

}
=̇

n∑
i=1

C∑
g=1

−
{
∂τig (y;ψ)

∂ψ
Γg (yi;ψ) + τig (yi;ψ)

∂Γg (yi;ψ)

∂ψ

}
,
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and

B = var {g∗ (y;ψ)} = var [E {g (y, z;ψ)}]

= var {g (y, z;ψ)} − E [var {g (y, z;ψ) |y}]

= E [var {g (y, z;ψ) |z}] + var [E {g (y, z;ψ) |z}]− E [var {g (y, z;ψ) |y}]

= E

[
n∑

i=1

C∑
g=1

zigvar {Γg (yi;ψ) |zig = 1}

]
+ 0− E

[
n∑

i=1

var

{
C∑

g=1

zigΓg (yi;ψ) |y

}]

=̇
n∑

i=1

C∑
g=1

τig (y;ψ) Γg (yi;ψ) Γg (yi;ψ)
T

−
n∑

i=1

C∑
g=1

τig (y;ψ) {1− τig (y;ψ)}Γg (yi;ψ) Γg (yi;ψ)
T

+2
n∑

i=1

∑
g<d

τig (y;ψ) τid (y;ψ) Γg (yi;ψ))Γd (yi;ψ)
T

=
n∑

i=1

g∗ (yi;ψ) g
∗ (yi;ψ)

T .

Implementation of these approaches is reserved for future research.

3.4 A Simulation Study to Assess the Performance

of the Proposed Latent Trajectory Model

Simulation studies were performed to determine the effectiveness of the proposed

methodology for identifying latent trajectories when the number of latent classes is

fixed and known. Both normal and discrete feature variables were considered. The

following subsections describe each simulation’s design and results. All simulations

were conducted in SAS v9.2 (SAS Institute, Cary, NC). Discrete Poisson data was

generated using the discsim 2.1 package in Matlab [9]. Binary data was generated

using the CLFsim SAS macro by Qaqish(2003) [67, 66].
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3.4.1 Identifying the Mean Structure of Normally Distributed

Feature Variables

The first set of simulations focused on whether the proposed approach was able to cor-

rectly identify the mean structure of five normally distributed feature variables. Two

designs were considered to evaluate the effectiveness of the proposed approach under

different class membership probabilities. It was assumed that there were two latent

classes. In the first design, subjects were evenly divided between the two classes. In

the second, 80% of subjects were assigned to one class and the remaining 20% of

subjects were assigned to the other class. For each simulation, 10 distinct realizations

of longitudinal data were generated for five hundred individuals. It was assumed that

each subject had six evenly spaced measurement occasions (time = 0, 0.5, 1, 1.5, 2, 2.5)

and no missing data. All feature variables were generated with a standard deviation

of 5 and repeated measurements were generated under an autoregressive (AR1) cor-

relation structure with a correlation coefficient of 0.3. Within each latent class, the

features were assumed to be independent of one another. This is consistent with the

fundamental assumption of local independence underlying latent class analysis. Ta-

ble 3.1 provides a summary of the intercept/mean of each feature variable. All slopes

were taken to be 0.

Table 3.1: Class-specific intercepts of five normally distributed feature variables sim-
ulated under an AR(1) correlation structure with a slope of 0, a correlation coefficient
of 0.3, and a standard deviation of 5.

Feature Class 1 Class 2

Feature 1 5 15
Feature 2 25 30
Feature 3 20 20
Feature 4 30 25
Feature 5 15 5
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In addition to the feature variables of interest, each subject was randomly as-

signed a value for a binary covariate. Although this covariate was not involved in the

conceptualization of the latent class-specific longitudinal trajectories, it may be a risk

factor for belonging to a particular latent class. As such, it was included as a covari-

ate in the polytomous logistic regression models used to determine class membership

probabilities.

Estimation was done using the direct extension of the EM algorithm [54] initialized

with 100 random starting values for the posterior probabilities of class membership.

An AR(1) working correlation structure was used to fit the component-specific GEEs.

The stopping criteria for the algorithm was 100 iterations or an absolute difference in

parameter estimates between the current and previous iteration of at most 1% for any

parameter. Note that all two-class models considered converged to a valid solution

in fewer than 100 iterations.

In the first design, 500 subjects were evenly divided between the two latent classes.

For each of the 10 data realizations or runs, the proposed latent trajectory model

was fit under the assumption of two latent classes. The results do not suggest any

problems with multiple roots since, up to class labeling, each of the 100 random

starting values converge to the same numeric solution for both the polytomous logistic

regression model and the GEEs. A summary of the bias and empirical standard error

of the parameter estimates for both simulation designs is shown in Table 3.2, while

Table 3.3 shows the bias of the average parameter estimates for each run under Design

1. As shown, the parameter estimates generated under the proposed latent trajectory

model are consistently very close to the true parameter values used to generate the

data. More specifically, the proposed approach seemed to correctly identify the class-

specific intercept and zero slope for the GEEs associated with each of the five normally

distributed feature variables. In addition, the intercept and slope for the polytomous

logistic regression model reflect an estimated probability of latent class membership
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close to 0.50 for each of the two classes. The estimated slope of the polytomous

logistic regression model associated with the binary covariate is also close to 0, which

is consistent with the fact that each subject was randomly assigned a value for that

covariate. Finally, a Kappa coefficient was used to summarize the level of agreement

between true class membership and model-based class assignment. Note that model-

based class assignment was determined from the estimated posterior probabilities of

class membership. Specifically, a subject was classified into the latent class for which

they had the largest posterior probability of membership. Here, all subjects were

classified into the correct latent class in 7 of the 10 runs. In each of the remaining

3 runs, only a single subject was misclassified (κ = 0.996). This suggests that the

model consistently placed subjects into the correct latent class.

In the second design, 400 subjects were in class one and the remaining 100 subjects

were in class 2. Note that class labeling is defined as in Table 3.1. For each of the

10 runs, the proposed latent trajectory model was fit under the assumption of two

latent classes. Again, there did not appear to be any problems with multiple roots

since, up to class labeling, each of the 100 random starting values converged to the

same numeric solution for both the polytomous logistic regression model and the

GEEs. Table 3.4 shows the bias of the average parameter estimates for each run,

while Table 3.2 provides the average bias and empirical standard error across all

runs. Again, the parameter estimates generated under the proposed latent trajectory

model are very close to the true parameter values used to generate the data. The

approach consistently identified the correct intercept and slope for the five normally

distributed feature variables. In addition, when the binary covariate assumed the

value 0, the estimated probability of belonging to class 1 ranged from approximately

78% to approximately 83% across the 10 runs. Similarly, when the binary covariate

assumed the value 1, the estimated probability of belonging to class 1 ranged from

approximately 76% to approximately 82% across the 10 runs. These results are
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consistent with the fact that the data was generated under an 80-20 split between two

classes and that the true slope associated with the binary covariate in the polytomous

logistic regression model is 0. Finally, all subjects were classified into the correct

latent class in 50% of the runs. Across the remaining 5 runs, the Kappa coefficient

ranged from 0.988 to 0.994. This suggests a high level of agreement between true

class membership and model-based class assignment.

Table 3.2: Summary of simulation results for parameter estimates generated for five
normally distributed feature variables with equal probabilities of class membership
and with unequal probabilities of class membership

Design 1 Design 2
Class Prevalences: 50%, 50% Class Prevalences: 80%, 20%

Class Feature Parameter Bias Standard Errora Bias Standard Errora

1 1 Intercept 0.026 0.263 -0.088 0.209
Slope -0.133 0.206 0.052 0.124

2 1 Intercept 0.106 0.225 0.109 0.509
Slope -0.106 0.159 0.039 0.213

1 2 Intercept -0.024 0.316 0.093 0.256
Slope 0.007 0.204 -0.099 0.170

2 2 Intercept 0.110 0.270 0.037 0.597
Slope -0.051 0.140 0.020 0.299

1 3 Intercept 0.052 0.338 -0.008 0.217
Slope 0.005 0.197 0.008 0.129

2 3 Intercept -0.061 0.223 -0.039 0.465
Slope 0.032 0.111 0.090 0.335

1 4 Intercept -0.012 0.228 0.005 0.170
Slope -0.002 0.187 -0.011 0.085

2 4 Intercept -0.016 0.130 -0.068 0.384
Slope 0.019 0.166 0.054 0.295

1 5 Intercept -0.099 0.265 0.014 0.226
Slope 0.082 0.157 -0.023 0.177

2 5 Intercept -0.044 0.193 0.037 0.413
Slope 0.083 0.202 -0.064 0.236

Polytomous Intercept 0.037 0.109 0.047 0.117
Logistic Slope -0.075 0.222 -0.083 0.227

a The standard error is determined empirically based on 10 point estimates for the parameter.
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3.4.2 Identifying the Intercept and Slope of Normal and Dis-

crete Feature Variables

The results of the first simulation study suggest that the proposed latent trajectory

model can effectively detect the presence of the two underlying classes and correctly

identify the mean structure based on a set of normally distributed feature variables. In

the second set of simulations, we considered a slightly more general simulation design

that incorporates non-zero slopes and non-normal feature variables. More specifically,

the second simulation contains 6 feature variables. Of these 6 feature variables, 2 are

normally distributed, 2 are binary, and 2 follow a Poisson distribution. In addition,

the second simulation allows for non-zero slope with respect to time for a subset of

the feature variables.

Again, the simulation was performed under the assumption that there were two

latent classes and two designs were considered with varying class membership proba-

bilities. Again, in the first design, subjects were evenly divided between two classes.

In the second, 80% of subjects belonged to one latent class and the remaining 20%

belonged to the other. For each of five hundred individuals, ten distinct realizations

of longitudinal data with six evenly spaced measurement occasions and no missing

data were generated. Within each latent class, the features were assumed to be

independent and data for each feature was generated separately based on an autore-

gressive (AR1) correlation structure with a correlation coefficient of 0.3. Let β0jg

and β1jg for j = 1, . . . , 6 and g = 1, 2 be class- and feature-specific intercepts and

slopes, respectively. The Poisson feature variables were generated using the over-

lapping sums (OS) approach of Madsen and Dalthorp(2007) [10] with a mean of

eβ0jg+β1jg×time(j = 1, 2; g = 1, 2). The binary feature variables were generated using

the approach of Qaqish(2003)[67] with a mean of eβ0jg+β1jg×time

1+eβ0jg+β1jg×time (j = 3, 4; g = 1, 2).

The normal feature variables were generated with a standard deviation of 5 and a

mean of eβ0jg+β1jg×time(j = 5, 6; g = 1, 2). As in the first set of simulations, each sub-
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ject was also randomly assigned a value for a binary covariate, which may be involved

in determining class membership probabilities. Table 3.5 provides a summary of the

class-specific intercept and slope used to generate each of the feature variables.

Table 3.5: Class-specific intercepts and slopes of six feature variables simulated under
an AR(1) correlation structure with a correlation coefficient of 0.3.

Class 1 Class 2
Feature Distribution Intercept Slope Intercept Slope

Feature 1 Poisson 0.7 1.0 0.7 0.0
Feature 2 Poisson 3.0 0.0 3.0 -1.0
Feature 3 Binary -0.5 1.0 -0.5 0.0
Feature 4 Binary 0.5 0.0 0.5 -1.0
Feature 5 Normal 20.0 0.0 20.0 0.0
Feature 6 Normal 5.0 0.0 5.0 5.0

In the first design, 500 subjects were evenly divided between the two classes. For

each of the 10 runs, the proposed latent trajectory model was fit under the assumption

of two latent classes. There did not appear to be any problems with multiple roots

since, up to class labeling, each of the 100 random starting values converged to the

same numeric solution for both the polytomous logistic regression model and the

GEEs. A summary of the average bias across the 10 runs and empirical standard error

of the parameter estimates for the two simulation designs is shown in Table 3.6, while

Table 3.7 shows the bias for each individual run under Design 1. As shown, across

all 10 runs, the parameter estimates generated under the proposed latent trajectory

model are consistently very close to the true parameter values used to generate the

data. More specifically, the proposed approach seemed to correctly identify both the

class-specific intercept and the class-specific slope for the GEEs associated with each

of the six feature variables. In addition, the intercept and slope for the polytomous

logistic regression model reflect an estimated probability of latent class membership

close to 0.50 for each of the two classes and the estimated slope of the polytomous
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logistic regression model associated with the binary covariate is close to its true value

of 0. Finally, the Kappa coefficient, which assesses the agreement between true class

membership and model-based class assignment, ranged from 0.916 to 1.000 across the

10 runs. This implies that the model usually classified subjects into the correct latent

class.

Next, consider the scenario where 400 subjects were in Class 1 and the remaining

100 subjects were in Class 2. The classes are defined as in Table 3.5 . Again, when

the number of latent classes was taken to be 2, the 100 random starting values for

a particular data realization converged to the same root. This was true for all 10

realizations of the longitudinal data. Table 3.8 shows the bias for each individual run

under Design 2. As shown, up to class labeling, the parameter estimates of both the

polytomous logistic regression model and the GEEs appear to be the same. Again,

the parameter estimates under the proposed latent trajectory model are very close to

to the true parameter values used to generate the data. The approach consistently

identified the correct intercept and slope for the six feature variables. Finally, when

the binary covariate assumed the value 0, the estimated probability of belonging to

class 1 ranged from approximately 79% to approximately 84% across the 10 runs.

Similarly, when the binary covariate assumed the value 1, the estimated probability

of belonging to class 1 ranged from approximately 77% to approximately 82% across

the 10 runs. These results are consistent with the fact that the data was generated

under an 80-20 split between two classes and that the true slope associated with the

binary covariate in the polytomous logistic regression model is 0. Finally, the Kappa

coefficient ranged from 0.981 to 1.000 across the 10 runs, which suggests that the

model typically classified subjects into the correct latent class.
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Table 3.6: Summary of simulation results for parameter estimates generated for six
feature variables with equal probabilities of class membership and with unequal prob-
abilities of class membership

Design 1 Design 2
Class Prevalences: 50%, 50% Class Prevalences: 80%, 20%

Class Feature Parameter Bias Standard Errora Bias Standard Errora

1 1 Intercept 0.011 0.028 -0.002 0.027
Slope -0.011 0.019 < 0.001 0.011

2 1 Intercept -0.012 0.044 -0.007 0.041
Slope <0.001 0.015 -0.015 0.041

1 2 Intercept 0.002 0.011 -0.002 0.008
Slope -0.005 0.013 -0.002 0.005

2 2 Intercept -0.005 0.013 0.009 0.030
Slope -0.002 0.013 0.006 0.024

1 3 Intercept -0.034 0.120 -0.024 0.084
Slope 0.009 0.105 -0.005 0.088

2 3 Intercept 0.007 0.143 0.014 0.118
Slope 0.001 0.091 -0.009 0.071

1 4 Intercept -0.030 0.092 -0.034 0.097
Slope 0.011 0.049 0.019 0.057

2 4 Intercept -0.010 0.114 0.008 0.138
Slope -0.011 0.075 -0.010 0.103

1 5 Intercept -0.006 0.211 -0.079 0.230
Slope 0.049 0.118 0.039 0.155

2 5 Intercept 0.187 0.342 0.087 0.410
Slope -0.093 0.182 0.045 0.281

1 6 Intercept 0.063 0.159 0.092 0.185
Slope 0.029 0.146 -0.039 0.139

2 6 Intercept 0.047 0.184 -0.039 0.543
Slope 0.086 0.162 0.119 0.269

Polytomous Intercept 0.068 0.125 0.087 0.144
Logistic Slope -0.065 0.184 -0.126 0.242

a The standard error is determined empirically based on 10 point estimates for the parameter.
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3.5 Discussion

The latent trajectory model based on generalized estimating equations proposed in

this chapter is flexible enough to accommodate both discrete and continuous feature

variables and overcomes many of the limitations associated with fully-likelihood based

extensions of finite mixture models for correlated data. Specifically, the proposed ap-

proach does not require the strict modeling assumptions associated with parametric

extensions of finite mixture models for longitudinal data and reduces the computa-

tional burden associated with likelihood-based models for discrete feature variables.

Simulation studies suggest that, when the number of latent classes is known, the pro-

posed approach can correctly detect the presence of underlying classes based on a set

of observed feature variables. This is true regardless of whether the class membership

probabilities are equal or unbalanced. In addition, for a sufficiently large data set,

the proposed approach obtains accurate estimates of the class-specific intercepts and

slopes associated with the generalized estimating equations for each feature variable.

Finally, the proposed approach accurately estimates the slope and intercept associ-

ated with the polytomous logistic regression model used to determine the probabilities

of latent class membership.
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Chapter 4

Diagnostics for Latent Trajectory

Models

4.1 Overview

When developing the latent trajectory model proposed in the previous chapter, it

was assumed that the number of latent classes was fixed and known. Since it is

often not realistic to assume that the number of latent classes is known a priori,

model diagnostics for determining the correct number of latent classes are needed. In

addition, recall that a weakness of the EM algorithm is that it can sometimes converge

to a spurious local solution. In order to help avoid local solutions, the algorithm is

initialized using multiple random starting values for the subject- and class-specific

posterior probabilities of class membership, τig(g = 1, . . . , C; i = 1, . . . , n). When a

fully-specified likelihood function is available, multiple roots can be compared and

the root which maximizes the likelihood function is selected; however, in the context

of a finite mixture of GEEs, the full distribution of the observations is not known.

Thus, in the absence of a likelihood function, an analogous scalar objective function is

needed to distinguish between multiple roots and determine the appropriate number
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of mixture components. In this chapter, an objective function for distinguishing

between multiple roots is proposed. Several information criteria for assessing the

number of components are also compared.

4.2 Assessing the Number of Components in a Fi-

nite Mixture of Generalized Estimating Equa-

tions

4.2.1 Cross-sectional Background

In the cross-sectional context, the likelihood function is used to compare multiple

roots. Further, several information criteria based on penalized version of the like-

lihood function have been proposed for assessing the number of components in a

mixture model. A subset of these information criteria relies on what is known as

the classification likelihood, LC (ψ). For example, ICL-BIC [3], which was found to

perform well in cross-sectional simulation studies [54], is based on the conditional

expectation of the classification likelihood.

In the EM framework used for estimation of the cross-sectional finite mixture

model, the classification likelihood is often referred to as the complete-data likelihood.

Recall that the classification or complete log-likelihood for ψ is given by

logLC (ψ) =
C∑

g=1

n∑
i=1

zig {logπg (xi;α) + logfg(yi;θg)} ,

where zig is the unobserved component indicator vector for subject i. As noted by

Hathaway(1986) [39], the mixture log likelihood, logL (ψ), can be expressed as

logL (ψ) = logLC (ψ)−
C∑

g=1

n∑
i=1

ziglog (τig) ,
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where τig is the posterior probability that subject i belongs to class g given the

observed feature variables. The conditional mean of
∑C

g=1

∑n
i=1 ziglog (τig) given the

observed data is then equal to the negative of the entropy. As in the cross-sectional

context, the entropy is defined as

EN(τ ) = −
C∑

g=1

n∑
i=1

τiglog (τig) ,

where τ =
(
τ T
1 , . . . , τ

T
n

)T
and τ i = (τi1 (yi;ψ) , . . . , τiC (yi;ψ)). Following the no-

tation of McLachlan and Peel(2000) [54], denote the complete-data likelihood as

LC (ψ; z) to indicate that it is formed on the basis of z =
(
zT1 , . . . , z

T
n

)T
in addi-

tion to the observed data. Then, substituting the MLE of τ for z in LC (ψ; z) yields

logLC

(
ψ̂; τ̂

)
= logL

(
ψ̂
)
− EN (τ̂ ) .

Information criteria based on the classification likelihood make use of this relationship

by minimizing

Q (ψ) = −2logL
(
ψ̂
)
+ 2EN (τ̂ ) .

When yi includes several feature variables, estimation via the EM algorithm in-

volves fitting a separate class-specific model for each feature variable, Yj(j = 1, . . . , n).

By the local independence assumption, feature variables are independent within a

given latent class. Thus, the sum of the class-specific probability density functions

for each individual feature may be taken as a class-specific summary of model fit.

This implies that the conditional expectation of the classification log-likelihood when

multiple feature variables are present can be expressed as

C∑
g=1

J∑
j=1

n∑
i=1

τig(yi;ψ)logfjg(yij;θg)− EN (τ ) ,
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where fjg(yij;θg) refers to the feature-specific pdf for subject i in class g.

In the cross-sectional context, Q (ψ) is referred to as the classification likelihood

criterion (CLC) [5]. In CLC, the term based on the estimated entropy is used to

penalize a model for class membership uncertainty, and the finite mixture model is

selected by choosing the number of classes that minimizes Q (ψ). Recall, that if the

components of the mixture are well separated, then the entropy will be close to 0. In

contrast, if the mixture components are poorly separated, then the entropy will have a

large value. Thus, the degree of separation between the fitted components determines

the severity of the penalty term, with more severe penalties imposed for situations in

which class membership is more ambiguous. When dealing with cross-sectional finite

mixture models, this criterion works well when the mixing proportions are restricted

to being equal, but tends to overestimate the number of classes when the mixing

proportions are unequal [4]. In order to overcome these limitations, ICL-BIC [3] was

proposed. ICL-BIC incorporates an additional penalty of the form dlogn, where d

refers to the number of unknown parameters in ψ and n refers to the sample size.

4.2.2 Mixture Classification Quasi-Likelihood Approach

In the absence of a likelihood function, we consider replacing the feature-, class- and

subject-specific log-likelihood function, logfjg(yij;θg), with an artificial-likelihood

based objective function for assessing the model fit of the class-specific GEE hg (yi;θ).

In particular, we draw from Pan’s(2001)[60] quasi-likelihood under the independence

model criteria (QIC) and consider replacing logfjg(yij;θg) with a feature-, class-, and

subject-specific quasi-likelihood under the independence model. The feature- and

class-specific quasi-likelihood under the working independence assumption is defined

as

Qjg

(
β̂jg (R) , ϕjg

)
=

n∑
i=1

mij∑
k=1

Qjg

(
β̂jg (R) , ϕjg; (Yik,Xik)

)
,
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where ϕjg denotes the dispersion parameter, R denotes the working correlation of

interest, and the quasi-likelihood contribution of the kth observation on the ith subject

evaluated at the regression parameters β is defined as

Qjg

(
β̂jg (R) , ϕjg; (Yik,Xik)

)
= Qgijk/ϕjg.

Under the independence model, Qgijk takes a closed-form for many standard distri-

butions. In particular, note that for

� Normal: Qgijk = −1
2
τig(yi;ψ) (yijk − µijk)

2

� Poisson: Qgijk = τig(yi;ψ) (yijklog (µijk)− µijk)

� Binary: Qgijk = τig(yi;ψ) [yijklog(pijk + (1− yijk) log (1− pijk)].

In the above equations, µijk refers to the mean or predicted value of yijk and pijk

refers to the probability that a binary feature variable yijk attains the value 1.

When Pan[60] developed QIC, he initially assumed that the dispersion parameter

ϕ was known; however, in practice ϕ is typically unknown and estimated using the

Pearson chi-square residuals. In such situations, one may consider using information

criteria based on the extended quasi-likelihood [82]. In the current context, we propose

using the following objective function based on the extended quasi-likelihood function

[59] as a measure of model fit:

Q+
jg = Q+

jg

(
β̂jg (R) , ϕjg

)
=

n∑
i=1

mij∑
k=1

Qjg

(
β̂jg (R) , ϕjg; (Yik,Xik)

)
− 1

2
log
(
ϕ̂jg

)
,

where

ϕ̂jg =

∑n
i=1

∑mij

k=1 (yijk − µijk)
2

n− p
,
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where p denotes the number of parameters in the model. Note that, by using an

objective function based on the extended quasi-likelihood function, models are given

an increased penalty for larger dispersion parameters.

Here, we propose using the mixture classification extended quasi-likelihood to

distinguish between multiple roots. More specifically, for a given number of latent

classes, the root that maximizes the mixture classification extended quasi-likelihood

is favored. Once the best root is selected for a given number of latent classes, infor-

mation criteria to assess the number of components for the latent trajectory model

can be constructed as a penalized version of the mixture classification extended quasi-

likelihood. In particular, we consider 4 information criteria based on the extended

quasi-likelihood under the independence model with various penalties.

� Bayesian extended quasi-likelihood under the independence model criterion

(BEQC): −2
∑C

g=1

∑J
j=1 Q

+
jg + dlogn

� Extended Quasi-likelihood under the independence model criterion (EQIC):

−2
∑C

g=1

∑J
j=1 Q

+
jg + 2d

� Classification Extended Quasi-likelihood Criterion (CEQC):

−2
∑C

g=1

∑J
j=1 Q

+
jg + 2EN(τ )

� Integrated Classification Extended Quasi-likelihood Criterion (CEQ-BIC):

−2
∑C

g=1

∑J
j=1 Q

+
jg + 2EN(τ ) + dlogn

As before, d refers to the number of unknown parameters inψ and n refers to the num-

ber of subjects. The number of components can then be determined by comparing the

information criteria associated with the best C-component model for (C = 1, 2, . . .).

The model that minimizes the information criteria is selected and its number of com-

ponents noted.
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4.2.3 A Cross-Validation Approach to Mixture Classification

Quasi-Likelihood

One potential limitation of using an objective function based on the quasi-likelihood

as a measure of model fit for longitudinal data is that the residuals used to com-

pute the quasi-likelihood under the independence model are correlated with the scale

parameter estimated using Pearson residuals. In particular, for normal data and a

posterior probability of class membership of one, note that the feature- and class-

specific quasi-likelihood under the independence model simplifies to

Qjg

(
β̂jg (R) , ϕjg

)
=

n∑
i=1

mij∑
k=1

Qjg

(
β̂jg (R) , ϕjg; (Yik,Xik)

)
=

n∑
i=1

mij∑
k=1

Qgijk/ϕjg

=
−1

2

∑n
i=1

∑mij

k=1 (yijk − µijk)
2

∑n
i=1

∑mij
k=1(yijk−µijk)

2

n−p

= −1

2
(n− p) .

As this quantity is solely dependent on the number of subjects (n) and the number of

parameters in the model of the mean structure (p), it does not provide a meaningful

measure of model fit. A similar dependency exists between the quasi-likelihood and

the scale parameter estimated using Pearson residuals for other distributions (e.g.

Poisson).

In order to overcome the correlation between the quasi-likelihood and the esti-

mated scale parameter, we propose using a 5 × 2 cross-validation approach[11] that

allows the unknown scale parameter and the quasi-likelihood under the independence

model to be estimated independently of one another. In 5× 2 cross-validation, two-

fold cross validation is run five times. The data is re-stratified after each run and the

10 resulting values are averaged to obtain a single estimate. Thus, to begin, the data
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is divided into two approximately evenly sized samples, say sample A and sample

B. Sample A is used to estimate the regression coefficients, βjgA, and the scale pa-

rameter, ϕjgA for the feature- and class-specific GEE. The feature- and class-specific

quasi-likelihood contribution of the kth observation on the ith subject for sample B is

then computed as

QjgB

(
β̂jgA (R) , ϕjgA

)
.

Next, sample B is used to estimate the regression coefficients and scale parame-

ter and then the feature- and class-specific quasi-likelihood contribution of the kth

observation on the ith subject for sample A is computed under βjgB and ϕjgB.

The two-fold cross-validation process is repeated five times and the five values of

QjgB

(
β̂jgA (R) , ϕjgA

)
and the five values of QjgA

(
β̂jgB (R) , ϕjgB

)
are averaged to-

gether to obtain Qjg. Note that the cross-validation approach described would not

be necessary for binary feature variables because the scale parameter is fixed at 1

and is, therefore, uncorrelated with the residuals. The approach described in the

previous section for distinguishing between multiple roots and assessing the number

of components can then be implemented using the cross-validated extended quasi-

likelihood. Note that the cross-validated versions of the four information criteria pro-

posed (BEQC, EQIC, CEQC, and CEQ-BIC) will be denoted BEQCCV , EQICCV ,

CEQCCV , and CEQ-BICCV , respectively.

4.3 Simulation Studies

Simulation studies will be used to compare the performance of the proposed diagnostic

measures in detecting the true number of components for the latent trajectory model.

One-, two-, and three-class model solutions were compared using each of the possible

criteria.
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In several instances, models that overfit the data were found to lead to numerical

problems or divergent solutions. This is not surprising since cross-sectional finite

mixture models often encounter identifiability and numerical issues when too many

latent classes are assumed[34]. These numerical issues arise because the regularity

conditions required for the asymptotic theory of maximum likelihood to apply are

sometimes violated for small data sets, mixtures with small component weights, and

overfitting mixtures with too many components[30]. Thus, starting values that led

to a GEE that could not be successfully estimated without error were excluded from

consideration in the following simulation studies. In addition, divergent solutions

were not considered. A divergent solution was deemed to be any solution for which

the absolute value of one or more of the parameter estimates associated with the

polytomous logistic regression model or the GEE for one of the binary feature variables

exceeded 10. Finally, any root that had not converged in 100 iterations was excluded.

After the aforementioned roots were excluded from consideration, weak identifiability

was assessed [30]. Specifically, when considering a C-component mixture model, any

class for which the mixing proportion, πg(g = 1, . . . , C), was less than 0.01 was deemed

an empty class and treated as a C − 1 class solution. Similarly, if the maximum

absolute difference between elements of βg and βg′ for g ̸= g′(g, g′ = 1, . . . , C) was

less than 0.01, the two classes were deemed to be equivalent and the root was treated

as a C − 1 class solution.

4.3.1 Normally Distributed Feature Variables with Zero Slope

The first set of simulations was performed using the data from Section 3.4.1. Recall

that, in this case, 10 distinct realizations of longitudinal data were generated with

five normally distributed feature variables, as well as a binary covariate. It was

assumed that each of 500 subjects had six measurement occasions and no missing

data. Within each latent class, the features were assumed to be independent and
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data for each feature was generated separately based on an autoregressive (AR1)

correlation structure with a correlation coefficient of 0.3. All feature variables were

generated with a standard deviation of 5. All slopes were taken to be 0. Table 3.1

provides a summary of the intercept/mean of each feature variable for each of two

classes. Two scenarios were considered. In the first, the probability of belonging to

both classes was equal. In the second, the mixing proportion for belonging to class 1

was 0.80 and the mixing proportion for belonging to class 2 was 0.20.

For each scenario, a one-, two-, and three-class finite mixture model was fit to

the data. In order to avoid selecting a two- or three- class local solution, the models

were estimated using the EM algorithm initialized using 100 random starting values.

Multiple roots were compared using the extended quasi-likelihood under the indepen-

dence model and, for a given number of latent classes (C = 1, 2, 3), the solution that

maximized the objective function was chosen as the best C-class solution. Of the

best one-, two-, and three-class solutions, the root that minimized the information

criteria described above was then selected as the best root and its number of classes

noted. Table 4.1 provides a summary of the number of classes selected by each of the

proposed criteria when the data was generated under the assumption of two latent

classes with equal mixing proportions. As shown, BEQC and EQIC consistently over-

estimate the number of classes. This is in agreement with cross-sectional simulation

studies, which have suggested that BIC and AIC tend to overestimate the number of

components [54]. In contrast, CEQC and CEQ-BIC correctly select a 2-class solution

in all of the runs. Further, for normal data, using a cross-validated version of the

extended quasi-likelihood seems to improve the performance of BEQC. This supports

the idea that using cross-validation to estimate the extended quasi-likelihood under

the independence model leads to an improved measure of model fit.
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Next, consider the situation where the data was generated under the assumption

of two latent classes with unequal mixing proportions. Table 4.2 provides a summary

of the number of latent classes selected by each criteria. In this scenario, CEQ-

BIC and CEQC consistently identify the correct number of components, while EQIC

and BEQC again tend to over-estimate the number of components. Further, cross-

validation of the extended quasi-likelihood again seems to improve the performance

of BEQC.
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Finally, data was generated under the assumption that there was one latent class.

Again, 10 distinct realizations of longitudinal data were generated with five normally

distributed feature variables, as well as a binary covariate. It was assumed that each

of 500 subjects had six measurement occasions and no missing data. Within each

latent class, the features were assumed to be independent and data for each feature

was generated separately based on an autoregressive (AR1) correlation structure with

a correlation coefficient of 0.3. All feature variables were generated with a standard

deviation of 5. All slopes were taken to be 0. Table 4.3 presents the class-specific

intercepts of the feature variables.

Table 4.3: Intercepts of five normally distributed feature variables simulated under
an AR(1) correlation structure with a slope of 0, a correlation coefficient of 0.3, and
a standard deviation of 5.

Feature Intercept

Feature 1 5
Feature 2 25
Feature 3 20
Feature 4 30
Feature 5 15

Table 4.4 provides a summary of the number of times that each of the proposed

criteria selected the correct number of classes when the true number of latent classes

was one. EQIC and BEQC, as well as their cross-validated versions, over-estimate

the true number of latent classes. In contrast, CEQ-BIC, CEQC, CEQ-BICCV , and

CEQCCV correctly determined that there was one latent class in all 10 runs.
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4.3.2 Discrete Feature Variables with Non-zero Slope

The second set of simulations was performed using data from Section 3.4.2. Recall

that, in this case, 10 distinct realizations of longitudinal data were generated for each

of 500 subjects. Each subject had six measurement occasions and no missing data.

The data was composed of 2 normal, 2 binary, and 2 Poisson feature variables, as

well as a binary covariate. In addition, the second simulation incorporated a non-zero

slope with respect to time for a subset of the feature variables. Within each latent

class, the features were assumed to be independent and data for each feature was

generated separately based on an autoregressive (AR1) correlation structure with a

correlation coefficient of 0.3. All feature variables were generated with a standard

deviation of 5. Table 3.5 provides a summary of the intercept and slope of each

feature variable for each of two classes. As was the case in the simulations based on

normal feature variables, two scenarios were considered. In the first, the probability

of belonging to both classes was equal. In the second, the mixing proportion for

belonging to class 1 was 0.80 and the mixing proportion for belonging to class 2 was

0.20.

For each scenario, a one-, two-, and three-class finite mixture model was fit to

the data. In order to avoid selecting a local solution, 100 random starting values

were used for all two- and three-class models. Again, for a fixed number of latent

classes, multiple roots were compared and the root that maximized the extended

quasi-likelihood under the independence model was selected. Then, of these roots,

the solution that minimized the information criteria being considered was selected

as the best root and its corresponding number of classes noted. Table 4.5 provides

a summary of the number of times that each of the proposed criteria selected a

root with the correct number of classes when the mixing proportions were equal.

The results suggest that CEQ-BIC performs slightly better than CEQC, EQIC, and

BEQC; however, it still only correctly identifies a two-class solution in 60% of the runs.
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In this simulation, there do not seem to be any improvements in the performance of

the information criteria when 5× 2 cross-validation is used to estimate the extended

quasi-likelihood function.
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Next, consider the situation in which the true number of latent classes was two

and the mixing proportions were unequal with an 80-20 split. Table 4.6 provides a

summary of the number of times that each of the proposed criteria selected the correct

number of classes. Here, CEQ-BIC and BEQC more often select the true number of

latent classes than CEQC and EQIC. The weaker performance of CEQC in this sce-

nario is consistent with the cross-sectional literature. Specifically, Biernacki, Celeux,

and Govaert(1999) [4] noted that CLC works well when the mixing proportions are

restricted to being equal, but otherwise tends to over-estimate the number of com-

ponents. While there is not an improvement in the performance of CEQ-BIC and

BEQC, the cross-validation approach did seem to improve the performance of CEQC

and EQIC.
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Finally, data was generated under the assumption that there was only one latent

class. Again, 10 distinct realizations of longitudinal data were generated for six feature

variables, as well as a binary covariate. It was assumed that each of 500 subjects had

six measurement occasions and no missing data. Within each latent class, the features

were assumed to be independent and data for each feature was generated separately

based on an autoregressive (AR1) correlation structure with a correlation coefficient

of 0.3. All feature variables were generated with a standard deviation of 5. Table 4.7

presents the class-specific intercepts of the feature variables.

Table 4.7: Intercepts and slopes of six feature variables simulated under an AR(1)
correlation structure with a correlation coefficient of 0.3.

Feature Distribution Intercept Slope

Feature 1 Poisson 0.7 1.0
Feature 2 Poisson 3.0 0.0
Feature 3 Binary 0.5 -1.0
Feature 4 Binary -0.5 0.0
Feature 5 Normal 20.0 0.0
Feature 6 Normal 5.0 5.0

Table 4.8 provides a summary of the number of times that each of the proposed

criteria selected the correct number of classes when the true number of latent classes

was one. Here, all of the information criteria selected the true number of latent classes

in 60% of the runs and there was no improvement when cross-validation was used.
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4.4 Discussion

In this chapter, several diagnostic procedures for comparing multiple roots and as-

sessing the number of components in a finite mixture model were proposed. Based on

the simulation, CEQ-BICCV seems to most often select a solution with the correct

number of latent classes. With that said, for discrete data, it sometimes tends to se-

lect too many latent classes. This may be because the information criteria considered

rely on the extended quasi-likelihood function as a measure of model fit. The quasi-

likelihood function differs from the likelihood function in that it is strictly for interior

solutions. When the model is fit with too many latent classes, divergent solutions on

the boundary of the parameter space are often observed and quasi-likelihood may ac-

tually reward such divergent solutions. Future research into methods for assessing the

number of components, particularly when discrete feature variables are incorporated,

is warranted. For example, one might consider using the projected deviance, which

is more stable on the boundary of the parameter space, as an objective function to

assess model fit.
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Chapter 5

Identifying Subtypes of Mild

Cognitive Impairment via a Latent

Trajectory Model

5.1 Overview

Mild cognitive impairment (MCI) refers to an intermediate stage between normal

aging and dementia [24]. Research has suggested that there is tremendous hetero-

geneity in the clinical presentation of MCI. As a result, the classification system for

MCI encompasses several MCI subtypes based on the number and type of cognitive

domains affected. More specifically, National Institutes of Health (NIH)-supported

Alzheimer’s disease centers classify MCI patients into the following four subtypes: 1.)

Amnestic MCI-memory impairment only; 2.) Multidomain MCI-Amnestic (memory

plus one or more nonmemory domains); 3.) Multidomain MCI-Non-Amnestic (more

than one nonmemory domain); or 4.) Single Nonmemory MCI (one nonmemory do-

main). In this section, the latent trajectory methodology proposed will be used to

statistically validate the presence of longitudinal MCI subtypes and to model the
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progression of MCI within these distinct MCI subgroups.

The four MCI subtypes described were developed solely based on clinical obser-

vation rather than on a rigorous clustering approach. In their recent exploration of

MCI subtypes, Hanfelt et al.(2011) [18] used latent class analysis to analyze cognitive,

neuropsychiatric, and functional features of MCI patients. The results of their sta-

tistical analysis suggested that there are actually 7 subtypes of MCI: 1.) Minimally

impaired (cognitive function indistinguishable from the cognitively normal group);

2.) Amnestic Only (subtle impairment in delayed memory); 3.) Amnestic with

Functional Impairments & Neuropsychological Features (impairments in both im-

mediate and delayed memory, difficulties performing instrumental activities of daily

living (IADL); 4.) Amnestic Multidomain (impairments across cognitive domains,

including episodic and semantic memory, language, and executive functioning); 5.)

Amnestic Multidomain with Functional Impairment & Neuropsychological Features

(impairments across a broader spectrum of cognitive domains than Amnestic Mul-

tidomain, including attention and visuomotor skills, as well as difficulties performing

IADL, neuropsychiatric disturbances); 6.) Functional Impairments & Neuropsycho-

logical Features (functional and behavioral impairments with no cognitive impair-

ment detected); and 7.) Executive Function & Language Impairments (impairments

in nonmemory domain). These results support the notion that MCI is a heterogenous

disorder and suggest the need for further investigation into the number and concep-

tualization of MCI subtypes. In particular, studying the progression of MCI over

time may help researchers gain insight into the etiology of MCI, its subtypes, and its

eventual outcomes.
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5.2 National Alzheimer’s Coordinating Center- Uni-

form Data Set

Data was obtained from the Uniform Data Set (UDS), a standardized assessment and

data protocol maintained by the National Alzheimer’s Coordination Center with 29

participating NIH-supported Alzheimer’s disease centers nationwide [2, 25]. When

conceptualizing MCI subtypes, 13 clinical features were considered. The mini-mental

state exam (MMSE)[32] was used as a measure of overall cognitive status. In ad-

dition, measures were used to assess the following specific cognitive domains: exec-

utive function (Trail-Making Test[83]); language (Boston Naming Test[40]; category

fluency[75]); attention (Digit Span and Digit Symbol subtests[84]); and episodic mem-

ory (Logical Memory, Story A[85]). Research has also indicated that neuropsychiatric

and functional features unrelated to cognition may provide additional information

about MCI subtypes [28, 57, 74, 76, 26, 20, 21]. Thus, the Functional Assessment

Questionnaire (FAQ)[23], which measures dependence-performing IADL over the pre-

vious 4 weeks, was used to evaluate functional abilities. The FAQ assesses whether the

participant has the ability to balance one’s checkbook and write/pay bills, assemble

tax records and other financial papers, shop alone, play complicated games/maintain

a hobby, perform simple kitchen-related tasks such as heating water and turning off

the stove, prepare a complicated meal, pay attention to/follow information such as

a television program, and remember events and tasks such as to take medication.

A count of how many of the 10 activities each participant was rated as having dif-

ficulty/needing assistance with was recorded. In addition, a count of the number

of items indicated on the Neuropsychiatric Inventory Questionnaire (NPIQ)[15] was

recorded for each patient. The NPI-Q evaluates problematic behavioral changes in

the last month by assessing 12 behaviors including delusions, hallucinations, agita-

tion/agression, depression/dysphoria, apathy/indifference, elation/euphoria, anxiety,
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disinhibition, irritability/lability, aberrant motor behavior, nighttime behaviors, and

appetite/eating. Finally, each participant was given the Geriatric Depression Scale

(GDS)[73], which is a self-report on depressive symptoms. The GDS was dichotomized

as 0-4 points (no depression) or 5-15 points (depression). A secondary interest in this

analysis was to examine whether there was an association between cerebrovascular

disease (CVD) and MCI subgroups. Thus, the Rosen Modification of Hachinksi Is-

chemic Score (RMHIS) [27] was used as marker for probable CVD and considered as

a potential risk factor for MCI subtype classification.

Inclusion criteria required that participants had a consensus diagnosis of MCI at

baseline, nonmissing information on age, years of education, and race (dichotomized

as white or nonwhite), and a mini-mental state exam (MMSE) score of 22 or greater

at baseline. In addition, only patients with at least two measurement occasions and

nonmissing information on each neuropsychological feature on at least one of those

occasions were considered. If patients had a third measurement occasion available, it

was retained for analysis. Measurement occasions occurred at approximately 1 year

intervals.

The neuropsychological, functional, and neuropsychiatric features described above

for the 2,348 participants who met these inclusion criteria were entered into the

proposed latent trajectory model. The raw cognitive test scores were standardized

using baseline age, race, and education level of 5,542 cognitively normal patients

from the UDS. Cognitively normal patients included in the reference group were

required to have information on the necessary demographics and to have attained

an MMSE score of 25 points or higher at baseline. A linear regression model with

age, race, education, and the interaction between race and education as explanatory

variables was fit for each of the 10 neuropsychological measures. This means that,

for example, a standardized test score of -1.5 would be indicative of the fact that

the MCI participant’s score was 1.5 standard deviations (SDs) lower than the mean
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among UDS cognitively normal subjects of the same age, education level, and race[18].

In addition, the relationship between the MCI latent classes and the RMHIS was

modeled using polytomous logistic regression.

MCI participant’s demographic and clinical characteristics at baseline are given

in Table 5.1.

5.3 A Latent Trajectory Model for Mild Cognitive

Impairment

In order to determine the appropriate number of latent classes for explaining the

variability in the 13 feature variables, latent trajectory models were fit with between

1 and 6 classes. All models were fit under the fundamental assumption of local inde-

pendence. An AR(1) working correlation assumption was assumed for each feature

variable. In an effort to avoid local solutions, 100 random starting values were used

to initialize the the EM algorithm for each model. As in the simulation studies,

the stopping criteria was taken to be 100 iterations or an absolute difference in pa-

rameter estimates between the current and previous iteration of at most 1% for any

parameter. Only solutions that had converged in 100 iterations were considered. For

a given number of latent classes, the root which maximized the mixture extended

quasi-likelihood function was selected. Of these roots, the solution that minimized

CEQ-BICCV was selected as the best solution and its number of components noted.

The results suggested that a model with 2 latent classes was the most parsimo-

nious model for explaining the heterogeneity in the observed cognitive, functional,

and neuropsychiatric measures. The chosen model with 2 latent classes seemed to

clearly differentiate the study population based on rate of cognitive decline. Further

investigation into the model revealed that the larger of the two classes was comprised
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of participants who experienced rapid cognitive decline. The average probability of

an MCI patient belonging to this declining subtype was approximately 94%. The

results also suggested an association between the covariate RMHIS and the empir-

ically derived subgroups. Specifically, individuals with probable CVD, as indicated

by a RMHIS score of greater than or equal to 4, were more likely to belong to the

declining MCI subtype (OR = 4.816). In contrast, the smaller of the two classes

corresponded to participants who displayed more stable cognitive functioning over

time.

Table 5.2 presents the intercepts and slopes with respect to time for each of the

cognitive, functional, and neuropsychiatric measures considered by MCI subtype (sta-

ble or decline), while Figure 5.1 shows the longitudinal trajectories for each measure

by MCI subtype. In general, the declining MCI subtype experienced cognitive prob-

lems across all cognitive domains. In addition, the declining subtype consistently

showed greater cognitive impairment than the stable MCI subtype at the baseline

measurement occasion. At baseline, patients in the stable MCI subtype had an av-

erage MMSE score 0.194 standard deviations (SDs) higher than the mean MMSE

among UDS cognitively normal subjects of the same age, education level, and race

(controls). In contrast, the average MMSE score among the declining MCI subtype

was 1.434 SDs lower than the mean MMSE among controls and the average MMSE

score continued to decrease by 0.494 SDs for every 1 year of follow-up.

Next, differences between the declining and stable MCI subtypes by cognitive

domain were considered. First, the logical and semantic memory domains were ex-

amined in greater detail. When considering logical memory, the mean score on the

delayed recall assessment (Story A) in the declining subtype was 1.311 SDs lower at

baseline than the mean score among controls; however, for every one year of follow-

up, the average score decreased by only 0.039 SDs. In contrast, the average delayed

recall score at baseline among the stable subtype was consistent with that of con-
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trols (0.048 SDs higher) and did not show evidence of decline over time. Similar

results were observed for the immediate recall assessment (Logical Memory). Seman-

tic memory was assessed by the category fluency test. The stable MCI subtype had

an average category fluency score at baseline that was consistent with controls(0.085

SDs higher), while the average baseline category fluency score in the declining MCI

subtype was 0.925 SDs lower than controls. On average, the category fluency score

for patients in the declining MCI subtype decreased by an additional 0.163 SDs for

each year of follow-up. The stable MCI subtype did not show evidence of declining

category fluency scores over the follow-up period.

The declining MCI subtype also showed greater cognitive impairment in the atten-

tion domain than the stable MCI subtype. Recall that positive values are indicative

of greater cognitive impairment when considering the Trails A assessment. On aver-

age, the declining MCI subtype had a baseline Trails A score 0.626 SDs higher than

controls and an increase in score of 0.197 SDs per year of follow-up. The Trails A and

Digit Span Forward assessment did not indicate any cognitive impairment or decline

in the attention domain for the stable MCI subtype.

Similar trends were observed in the language domain. More specifically, the stable

MCI subtype did not show evidence of cognitive impairment at baseline or follow-

up. On the other hand, the declining MCI subtype had an average baseline score on

the Boston Naming Test 0.937 SDs lower than controls and the score continued to

decrease, on average, by 0.176 SDs per year of follow-up. This suggests that patients in

the declining MCI subtype experienced cognitive impairment in the language domain.

Finally, the declining MCI subtype also showed impairment in the executive func-

tioning and visuomotor domains. Again, recall that positive values are indicative of

greater cognitive impairment when considering the Trails B assessment. Here, the

declining subtype had an average baseline Trails B score that 1.250 SDs higher than

controls and the average score increased by 0.238 SDS per year. When considering
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the visuomotor domain, the declining MCI subtype had an average baseline score

on the Digit Symbol test that was 0.868 SDs lower than controls and the average

score decreased by 0.140 SDs per year of follow-up. The stable subtype did not show

evidence of cognitive impairment at baseline or follow-up in the executive functioning

and visuomotor domains.

In addition to cognitive assessments, functional and neuropsychiatric assessments

were considered. Patients in the declining subtype tended to have a greater odds

of depression than patients in the stable subtype, as indicated by a GDS score of 5

or greater. At baseline, the odds of a patient in the declining MCI subtype expe-

riencing depression were 0.179. For each year of follow-up, the odds of depression

in the declining subtype increased by a factor of 1.069. In comparison, the odds of

a patient in the stable MCI subtype experiencing depression at baseline were 0.053

and the odds increased by a factor of 0.752 per year of follow-up. In addition, it

appears that patients in the declining subtype noted more problematic behavioral

changes on the NPI-Q. On average, patients in the declining MCI subtype reported

1.661 problematic behavioral changes (out of 12) on the NPI-Q at baseline and the

number of problematic behavioral changes reported increased by a factor of 1.096 per

year of follow-up. The stable subtype reported 0.902 problematic behavioral changes

at baseline and did not show evidence of increased problems over follow-up. Finally,

the Functional Assessment Questionnaire (FAQ) was used to evaluate functional abil-

ities. At baseline, the average number of tasks that the participant rated as having

difficulty/needing assistance with was 2.411 among the declining MCI subtype and

0.992 among the stable MCI subtype. The stable subtype did not show evidence of

decreased functional ability over time, while the average number of items rated as

having difficulty/needing assistant increase by a factor of 1.285 per year among the

declining subtype.

In summary, the analysis indicated that longitudinal MCI subtypes can primarily
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be differentiated by the rate of cognitive decline. The latent class trajectory model

indicated the presence of a stable and declining MCI subtype. Differences on the

cognitive, functional, and neuropsychiatric assessments between the subtypes were

observed at baseline and follow-up. Finally, the declining subgroup showed cognitive

impairment across all cognitive domains.
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Table 5.1: Baseline demographic and clinical characteristics of 2,348 MCI participants
from the uniform data set

Mean± SD
or n(%)

Demographic
Age 74.3± 8.6
Sex: male 1168(50)
Race
White 2003(85)
Black/African American 308(13)
Asian 37(2)

Hispanic 120(5)
Education, years 15.2± 3.2
MMSE 27.5± 2.0

Functional
No. of IADL rated as difficult to perform/requiring assistance (10 maximum) 2.3± 2.6

Neuropsychiatric
GDS ≥ 5 333(14)
No. of NPI-Q items rated as present 1.6± 1.9
No. of persons with an NPI-Q symptom present
Depressed 671(29)
Irritable 619(27)
Nighttime behavior 510(22)
Anxious 486(21)
Agitated 356(16)
Apathetic 424(19)
Change in appetite 256(11)
Disinhibited 200(9)
Repetitive activities 105(5)
Euphoric 49(2)
Delusions 71(3)
Hallucinations 31(1)

Cognitive (standardized scoresa)
MMSE −1.3± 1.8
Logical memory: immediate −1.0± 1.1
Logical memory: delayed −1.2± 1.2
Semantic memory: category fluency −0.9± 0.9
Attention: Trails Ab 0.5± 1.5
Attention: Digit Span Forward −0.3± 1.0
Language: Boston Naming −0.9± 1.7
Executive function: Trails Bb 1.1± 1.7
Executive function: Digit Span Backward −0.4± 1.0
Visuomotor: Digit Symbol −0.8± 1.1

Risk factors
RMHIS ≥ 4 135(6)

Notes: Number of subjects for whom data were unavailable: GDS, N = 36; Logical memory:
immediate, N = 60; Logical memory: delayed, N = 56; Category Fluency, N=36; Trails A, N = 17;
Digit Span Forward, N = 24; Boston Naming, N= 35; Trails B, N = 44; Digit Span Backward, N = 24;
Digit Symbol, N = 99

a All cognitive test scores were converted to age-, education-, and race-adjusted z scores.
b Positive values of Trail-Making Tests A and B indicate greater cognitive impairment.
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Table 5.2: Parameter estimates associated with cognitive, functional, and neuropsy-
chiatric assessments for the two-class latent trajectory model based on 2,348 MCI
patients from the uniform data set

MCI Intercept Slope
Feature Subtype Estimate Estimate

MMSE Stable 0.194 0.069
Decline -1.434 -0.494

Logical memory: immediate Stable 0.087 0.114
Decline -1.130 -0.070

Logical memory: delayed Stable 0.048 0.145
Decline -1.311 -0.039

Semantic memory: category fluency Stable 0.085 0.017
Decline -0.925 -0.163

Attention: Trails Ab Stable -0.601 -0.064
Decline 0.626 0.197

Attention: Digit Span Forward Stable 0.346 0.082
Decline -0.325 -0.066

Language: Boston Naming Stable 0.141 0.047
Decline -0.937 -0.176

Executive function: Trails Bb Stable -0.593 -0.043
Decline 1.250 0.238

Executive function: Digit Span Backward Stable 0.389 0.067
Decline -0.476 -0.079

Visuomotor: Digit Symbol Stable 0.449 0.021
Decline -0.868 -0.140

Depressed (GDS ≥ 5) Stable -2.944 -0.285
Decline -1.719 0.067

No. of IADL Stable -0.008 -0.212
Decline 0.880 0.251

No. of NPI-Q items Stable -0.103 -0.038
Decline 0.508 0.092

Polytomous Logistic Regression a -2.651 -1.572
a The polytomous logistic regression model compares the probability of
belonging to the stable MCI subtype to the probability of belonging to
the decline MCI subtype. The slope is the slope with respect to the
dichotomized Modified Hachinski Score.
b Positive values of Trail-Making Tests A and B indicate greater cognitive
impairment.
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5.4 Discussion

The results in the previous section support the notion that MCI is a heterogenous dis-

order and the association observed between the covariate RMHIS and the empirically

derived subgroups of MCI is in alignment with cross-sectional results [18]. However,

it was somewhat unexpected that only two subtypes were identified and that these

subtypes differed primarily in the rate of decline rather than in any systematic differ-

ences in the cognitive domains affected. This is in contrast to cross-sectional results

that suggest that subtypes are based on the cognitive domains affected and the de-

gree of functional impairment. The findings from this analysis are exploratory and

additional research is needed to verify the validity of the proposed model.

It should be noted that this analysis relied on data from the NACC-UDS. While

the UDS represents 29 sites nationwide and has uniform definitions for each study

variable, it is not a community-based sample. As Hanfelt et al. comment [18], the

definition of subtypes and prevalence estimates of MCI are heavily dependent on the

sample chosen (e.g. memory clinic versus population based) because UDS subjects

often are motivated to participate in research based on their concerns of a family

history of dementia and are not fully representative of the community. Moreover, the

findings are dependent on the measures available in the national database and the

inclusion of different or additional measures may have identified an alternate solution.

In addition, the inclusion criteria and treatment of missing data need to be considered

in greater detail. It is possible that patients with only one visit differ systematically

from patients who return for a follow-up visit and that excluding these patients may

have introduced bias into the analysis. Additionally, patients who received a consen-

sus diagnosis of MCI at the baseline measurement occasion may not have maintained

an MCI diagnosis for the duration of follow-up.

Future methodological research is also needed to verify the validity of the current

model. First, the implementation of standard error estimation methods will allow
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for statistical significance to be assessed. In addition, studies of power and sample

size to determine how many subjects and measurement occasions are required to si-

multaneously identify discrepancies in both slopes and intercepts between subtypes

are warranted. Finally, it is possible that the proposed model may be greatly influ-

enced by the covariate used in the polytomous logistic regression model for the mixing

proportions, e.g. RMHIS. In latent class analysis, there are two general approaches

for handling these types of covariates. Namely, one can consider the “active covari-

ates method” or the “inactive covariates method”[78]. The proposed methodology

relies on the “active covariates method”, which incorporates the covariates into a

polytomous logistic regression model. In contrast, the “inactive covariates method”

involves computing descriptive measures for the association between covariates and

the class membership probabilities after estimating the model without covariates. In

likelihood-based analysis, the decision to treat a covariate as active rather than inac-

tive can impact the estimated model; however, the extent to which active covariates

influence solutions to the proposed longitudinal latent class methodology has yet to

be investigated.
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Chapter 6

Summary and Future Research

6.1 Summary

This dissertation research focused on developing a robust extension of latent class

methods for high-dimensional longitudinal data. Although the literature includes in

depth discussions of latent class analysis and generalized estimating equations (GEEs)

separately, an approach combining these topics had not yet been considered. As such,

an innovative extension of latent class methods based on weighted GEEs was proposed

and evaluated via simulation studies. The proposed approach can be used to model

latent trajectories and select the appropriate number of latent classes.

6.2 Future Research

Due to the novel nature of this approach, there are several possible areas for future

work. A subset of these areas is briefly described in the subsections below. Fu-

ture work also includes: asymptotic standard error estimation for the parameters

of the latent trajectory model; small dispersion asymptotic theory for the likelihood

ratio approximations; a generalized method of moments approach similar to the Re-

boussin(2002) [70] approach to compare with the proposed approach; tests of uni-
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dimensional ordered latent classes; further investigation into the use of weights to

accommodate missing data when the MCAR assumption is violated; model selection

approaches for determining which covariates to include in the model; additional con-

sideration of the impact of active covariates on the estimated model; and, studies of

power and sample size.

6.2.1 Empirical Likelihood

Recall that, when estimating a finite mixture of GEEs, the posterior probability of

class membership is given by

τig =
πg(xi;α)LRig(θ)∑C
d=1 πd(xi;α)LRid(θ)

.

In Chapter 3, the projection-based approach of Li(1993) [44] was used to approximate

the subject-specific likelihood ratios comparing the probability that a given subject

is in component g(g = 2, . . . , C) as compared to component 1. As proposed in

chapter 3.2, an alternate approximation of the likelihood ratio can be determined

based on a novel use of empirical likelihood[68]. Thus, future research will include

estimating the finite mixture model using the empirical likelihood-based approach

to approximate the likelihood ratio and comparing its performance with estimation

using the projection-based approach.

6.2.2 Model Formulation

In formulating the GEE model for latent trajectories, there are three possible exten-

sions to consider. First, one might consider nonlinear effects of time and non-temporal

covariates in the mean regression model. Second, it might be useful to incorporate

links other than the identity link for the scale and correlation components of the GEE

[64]. Standard software packages presently offer the option of non-identity links for
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the mean component of the GEE only; however, a log link is often used for the scale

component and a link based on Fisher’s z-transformation seems natural for the cor-

relation component. These links would ensure that the scale is positive and that the

correlation is within the range (−1, 1). Finally, more complicated working correla-

tion models can be considered. The proposed approach relies on an AR1 correlation

structure, which assumes evenly spaced measurements over time. In practice, this

assumption may not be valid for many applications. Thus, more flexible correlation

structures (e.g. a Markov or Generalized Markov) with the ability to model unevenly

spaced longitudinal measurements can be considered provided parameter estimation

remains feasible.

From a clinical perspective, it is also of interest to incorporate a binary indi-

cator of whether a patient ultimately progresses to clinically probable Alzheimer’s

disease (AD) into the model. Muthen and Shedden(1999) [58], as well as Proust-

Lima et al.(2007) [65], incorporated a binary indicator of disease in the context of

fully-parametric mixed models. For the motivating example on mild cognitive im-

pairment (MCI), a similar extension to the proposed methodology might offer insight

into the relationship between MCI subtype and long-term prognoses for progression

to Alzheimer’s disease. Additionally, extending this notion to incorporate multino-

mial clinical outcomes and competing risks would allow simultaneous investigation

of the relationship between MCI and other dementia types such as frontotemporal

dementia, Lewy body dementia, and vascular dementia.

6.2.3 Model Diagnostics

Even in the cross-sectional context, there is no consensus regarding the most effective

approach for selecting the number of components in a finite mixture model. In the ab-

sence of a likelihood function, selecting the number of components for a finite mixture

of GEEs becomes even more challenging. Although the preliminary simulation results
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reported in Chapter 4 suggest that a mixture classification quasi-likelihood approach

works well for normal feature variables, additional investigation into model diagnos-

tics when there are discrete feature variables is needed. In particular, Kolaczyk(1995)

[42] proposed a longitudinal information criteria known as the Empirical Information

Criteria (EIC), where the objective function for assessing lack of fit was taken to be

the empirical likelihood function. Thus, it is of interest to compare the performance

of the information criteria described in Chapter 4 with equivalent criteria based on

empirical likelihood. In addition to considering an objective function other than the

quasi-likelihood under the independence model as a measure of model fit, one might

also consider different penalty terms. Finally, unsupervised learning approaches for

determining the number of components may be considered [30].

6.2.4 Improvements in Computational Efficiency and Nu-

merical Issues

In the likelihood-based context, it is well known that estimation of finite mixture

models can be computationally complex and lead to numerical issues. These types

of challenges also arise in the proposed longitudinal extension of latent class analysis.

One of the main computational issues arises due to potential for multiple roots. In the

current work, multiple random starting values were used to reduce the possibility of

selecting a local solution; however, this inevitably increased the computational burden

of the approach. In the likelihood based context, Finch et al.(1989) [31] investigated

probabilistic measures of adequacy of a numerical search for a global maximum. In

other words, they estimated the probability that an iterative algorithm using a ran-

domly selected starting point would find a solution not observed in previous random

starting points. Extending this research and performing simulation studies in the

current longitudinal context may help to determine the number of random starting

values actually necessary to ensure convergence to a global maximum with an accept-
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able level of certainty. Additionally, alternate methods for determining starting values

when estimating a cross-sectional finite mixture model using the EM algorithm have

been proposed. For example, one might consider initializing the algorithm by assign-

ing subjects to classes based on a clustering algorithm, such as k-means [54]. Further,

standard software packages that employ likelihood-based estimation for latent class

analysis sometimes run all random starting values out for a pre-specified number of

iterations and then perform additional iterations on a subset of the solutions deemed

to be be the best based on evaluation of the log-likelihood function. Although this

type of procedure increases computational efficiency, it does not guarantee that the

global solution will be found [78]. Further, extending this type of approach to the

longitudinal context may prove challenging since the quasi-likelihood function does

not behave well on the boundary of the parameter space. For this reason, alternate

criteria for distinguishing between multiple roots may be considered. In addition,

investigation into approaches for speeding up the convergence of the EM algorithm in

the absence of a likelihood function may be useful. Finally, recall that cross-sectional

finite mixture models often encounter identifiability and numerical issues because the

regularity conditions required for the asymptotic theory of maximum likelihood to

apply are sometimes violated for small data sets, mixtures with small component

weights, and overfitting mixtures with too many components [33]. Similar issues ap-

pear to arise in the proposed longitudinal extension and research into ways to address

and minimize these issues would be a valuable addition to this research area.

6.2.5 Local Dependence

The key assumption underlying latent class analysis is local or conditional indepen-

dence. When two or more of the feature variables measure on closely related traits,

the assumption of local independence may not be satisfied. The presence of local

dependence among the feature variables often results in increased lack of fit [78].
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The usual way to proceed is then to increase the number of latent classes in order

to improve model fit; however, this may actually lead to overfitting and result in

spurious latent classes. Although Torrance-Rynard and Walter (1997)[77] note that

a latent class model may supply parameter estimates reasonably close to the “true”

values even when local dependence is present, this is not guaranteed. As such, in the

cross-sectional context, methods have been developed to detect local dependency and,

if necessary, to relax the assumption of conditional independence for cross-sectional

latent analysis (see, for example, [35, 36, 78, 50]). In the future, methods should be

developed to accommodate local dependence among subsets of the feature variables

in the proposed longitudinal context.
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