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Abstract

On Problems in Extremal Graph Theory
and Ramsey Theory

By Steven J. La Fleur

Extremal graph theory and Ramsey theory are two topics in graph theory
with many problems which are being actively investigated. Both subjects
involve finding substructures within graphs, or general graph-like structures,
under certain conditions.

We consider an extremal problem regarding multigraphs with edge mul-
tiplicity bounded by a positive integer q. Given a family F of q-multigraphs,
define ex(n,F) to be the maximum number of edges (counting multiplici-
ties) that a q-multigraph on n vertices can have without containing a copy
of any F ∈ F (not necessarily induced). It is well known that τ(F) =
limn→∞ ex(n,F)/

(
n
2

)
exists for every family F (finite or infinite). Let T =

{τ(F) : F is a family of q-multigraphs}. We say the number α, 0 ≤ α < q
is a jump for q if there exists a constant c = c(α, q) such that if α′ ∈ T such
that α′ > α then α′ ≥ α+c. We show that, for 3-multigraphs, every number
in the interval [0, 2) is a jump.

Given two (hyper)graphs T and S, the induced Ramsey number, rind(T, S),
is defined to be the smallest integer N such that there exists a (hyper)graph
R with the following property: In any two-coloring of the edges of R with
red and blue, we can always find a red induced copy of T or a blue induced
copy of S. In this dissertation we will discuss bounds for r(K

(k)
t,...,t, K

(k)
s )

where K
(k)
t,...,t is the complete k-partite k-graph with partition classes of size

t. We also present new upper bounds for rind(S, T ), where T ⊆ K
(k)
t,...,t and

S ⊆ K
(k)
s .
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Chapter 1

Introduction

1.1 Basic concepts

In this section, we will introduce the reader to some of the fundamental

concepts in extremal graph theory and Ramsey theory.

Extremal graph theory and Ramsey theory both study graphs and

generalizations of graphs, so understanding these objects will be crucial

to reading this dissertation.

Definition 1.1. A graph G = (V,E) is a pair of sets, where V is a set

of vertices and E ⊆
(
V
2

)
is a set of pairs of elements from V .


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


Figure 1.1: A graph and its adjacency matrix

Given a graph G, we will use V (G) and E(G) to denote the vertex set

and edge set of G, respectively. A loop in a graph is an edge that begins

and ends at the same vertex (i.e. the pair (v, v) for a vertex v ∈ V (G)
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is a loop). A graph without loops and without repeated edges is called

a simple graph.

Throughout this dissertation, we will assume that the vertex set V (G)

is finite. In general, this is not a requirement, and there have been

many papers that study graphs when the vertex set is infinite (even

uncountably so).

Given a graph G on n vertices, its adjacency matrix is an n×n matrix,

denoted AG. Each row in AG corresponds to a vertex of G, as does

each column. This means that each entry of the matrix corresponds

to a pair of vertices. For such a pair vi, vj ∈ V (G), the matrix entry

corresponding to this pair is 1 if there is an edge between them, and

0 otherwise. The entry vi, vi is 0 for a simple graph, by convention.

Many properties of a graph G have been discovered by analyzing its

corresponding adjacency matrix.

Definition 1.2. A multigraph is a graph G = (V,E) where we allow

any edge to appear more than once.

A multigraph with multiplicity bounded by q (or q-multigraph), is a

multigraph where each edge is only allowed to appear at most q times.

In this sense, a simple graph is a 1-multigraph, and hence the concept

of multigraphs extend the notion of graphs.

Definition 1.3. A k-uniform hypergraph (or k-graph) G = (V,E) is

a pair of sets, where V is a set of vertices, and E ⊆
(
V
k

)
is a set of

k-element subsets of V .

1.2 Extremal Graph Theory

Extremal graph theory began with a simple question:

Question 1.4. How many edges must a graph G of order n contain to

guarantee the existence of a triangle as a subgraph of G?
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The triangle is K3, the complete graph on 3 vertices.

We will use the notation ex(n,K3) to denote the extremal number

(i.e. the maximum number of edges in an order n graph which which

is triangle-free). With this notation, the above question asks us to

determine ex(n,K3).

Of course, for all n ≥ 3, the complete graph Kn contains a triangle.

Therefore, the question must have an answer, and the answer was found

in 1907 by Mantel, who proved the following.

Theorem 1.5. For all n ≥ 3,

ex(n,K3) =
⌊n2

4

⌋
.

Naturally, the same question may be asked with the triangle replaced

by a more general graph. Paul Turán, in 1941, gave the answer for all

complete graphs. More precisely, he proved the following theorem.

Theorem 1.6.

ex(n,Kt+1) =
(

1− 1

t

)n2

2
+ o(n2).

Note that the term o(n2) in the above theorem is precisely known.

In fact, Turán gave, for each n and t, the unique n vertex extremal

graph for Kt+1, now called the Turán graph Tn,t. To construct this

graph, partition the n vertices of Tn,t into t parts as evenly as possible

(i.e. each partition contains either dn/te or bn/tc vertices). Now join

every two vertices not in the same part by an edge.

Next, one might hope to determine the values of ex(n,H) for a fixed

graph H which is not complete. However, this question is very difficult

to answer precisely for all n. Aside from a few small examples, not

many precise results exist. However, there are results in the case when

n is “large.”
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If we fix a graph H, then ex(n,H) becomes a function of n.

Fact 1.7. For every fixed graph H, ex(n,H)

(n2)
is an increasing function of

n.

The proof of Fact 1.7 is straight forward and can be found, for exam-

ple, in [10]. Thus the extremal density π(H), defined by

π(H) = lim
n→∞

ex(n,H)(
n
2

) ,

exists for every graph H.

Erdős and Stone determine the value of π(H) for every graph H.

Theorem 1.8. Let H be a graph with chromatic number χ(H). Then

π(H) =
(

1− 1

χ(H)− 1

)
.

This result implies that for any graph H with chromatic number

χ(H),

ex(n,H) =
(

1− 1

χ(H)− 1

)(n
2

)
+ o(n2).

Thus to determine the extremal number, we must determine the precise

value of the o(n2) term above.

The Erdős-Stone theorem is interesting from another perspective as

well. The theorem states that the set of extremal densities is precisely

the set {
1− 1

t
: t ≥ 1

}
.

This immediately answers the following question.

Question 1.9. What is the set of all extremal densities which can be

obtained?
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= +

red blue

= +

red blue

= +

red blue

= +

red blue

= +

red blue

Figure 1.2: Triangle-free coloring of K5

As mentioned, for graphs Question 1.9 is completely answered (and

therefore somewhat uninteresting). However, one might ask both Ques-

tion 1.4 and Question 1.9 with graphs replaced by more general struc-

tures, such as r-uniform hypergraphs with r ≥ 3 or q-multigraphs with

q ≥ 2. It turns out that these questions are much harder in these

settings. In Chapter 2 we investigate these questions in the setting of

q-multigraphs. The answers given here are based on joint work with

Paul Horn and Vojtěch Rödl [19].

1.3 Ramsey Theory

To understand the principles of Ramsey theory, consider the following

simple problem. Is there a way to color the edges of K6 with two colors,

red and blue, in such a way that there is not a triangle with all red edges

or all blue edges? As it turns out, the answer is no. No matter how you

color the edges, you will always find a triangle which is monochromatic.

However, there is a coloring of the edges of K5 with red and blue which

avoids a monochromatic triangle, as seen in Figure 1.2 below.

In 1928, Ramsey [25] proved the following theorem, which we state in

the scope of graphs. (The original statement of Ramsey is more general

and can be found in [10], for example.)

Theorem 1.10. Given positive integers r and m, there exists an integer
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n0 = n0(m, r) such that the following is true. For any n ≥ n0, any

coloring of the edges of Kn with r colors yields a monochromatic copy

of Km in one of the r colors.

Notice that Theorem 1.10 guarantees the existence of the number n0,

but doesn’t hint at what it is. Much of the work in Ramsey theory is

determining the values of these so-called Ramsey numbers, denoted by

r(m). For the remainder of the dissertation, we will focus on the case

when there are two colors (i.e. r = 2). As above, we will use red and

blue as these two colors.

Instead of finding a red or blue copy of Kn, suppose that we wanted to

find either a red copy of Ks or a blue copy of Kt for some, possibly dif-

ferent, values s and t. It can be easily argued using only Theorem 1.10,

that there exists a number n0 = n0(s, t) such that any coloring of the

edges of Kn, n ≥ n0 with red and blue yields either a red copy of Ks

or a blue copy of Kt as desired. Indeed, set m = max{s, t} and Theo-

rem 1.10 guarantees that for n large enough, any coloring of Kn yields

either a blue Km or a red Km. Since Ks, Kt ⊂ Km, we immediately

find the desired monochromatic subgraph. Note that the case when

s 6= t is often referred to as the off-diagonal case, for obvious reasons.

In this case, the ramsey number will be denoted r(s, t), and it follows

that r(m,m) = r(m).

There are not many values of these Ramsey number known precisely.

In fact, the summary of all of the known Ramsey numbers for complete

graphs is given in Table 1.1.

Since it is difficult to determine the Ramsey numbers precisely, the

next best thing is to find bounds. Remarkably, in 1947 Erdős, using a

probabilistic method, was able to determine the following lower bound

for the Ramsey number r(t):

r(t) ≥ (1 + o(1))
t

e
√

2
2t/2.
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s, t 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 9 14 18 23 28 36
4 1 4 9 18 25
5 1 5 14 25
6 1 6 18
7 1 7 23
8 1 8 28
9 1 9 36
10 1 10

Table 1.1: Known ramsey numbers r(s, t)

In 1975 Spencer [31] was able to improve this bound by a factor of two,

and this is still the best lower bound. On the other hand, the best

upper bound known currently is due to Conlon [5]:

r(t) ≤ t−c log t/ log log t4t.

Therefore, the Ramsey number r(t) grows exponentially in t, and the

exponential growth factor is between
√

2 and 4.

1.3.1 Induced Ramsey Numbers

Several generalizations of Ramsey’s original theorem have been studied

in the last century. Here we discuss one such generalization. Given

graphs S and T , we want to find a graph R with the following property.

Any 2-coloring of the edges of R yield a red induced copy of T or a blue

induced copy of S. Any such graph R is called the induced Ramsey

graph with respect to S and T . It was shown in [9] [14] and [26] that

there exists an induced Ramsey graph for every pair S and T . Therefore

we denote by rind(S, T ) the minimum order of a Ramsey graph for S

and T , called its induced Ramsey number.



8

1.3.2 Ramsey theory for hypergraphs

Not surprisingly, the questions posed for graphs can be extended to

hypergraphs as well. In fact, Ramsey’s original statement includes the

existence of Ramsey numbers for k-uniform hypergraphs for all k ≥ 3.

The existence of induced Ramsey numbers for all pairs of k-graphs

S and T is due to [1] and [23]. In Chapter 3, we give new bounds

for the induced Ramsey numbers of a certain class of k-graphs. These

results are based on joint work with Domingos Dellamonica and Vojtěch

Rödl [8].
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Chapter 2

Jumps and non-jumps in

multigraphs

2.1 Introduction

For a positive integer q, we consider multigraphs with edge multi-

plicities bounded above by q, which we call q-multigraphs for conve-

nience. Given a q-multigraph G, the density of G will be defined as

d(G) = |E(G)|
(
n
2

)−1
, where |E(G)| counts the multiplicity of each edge.

In particular, the density of a q-multigraph is on the interval [0, q).

Given a family of q-multigraphs F , we define the set Forb(F) to be the

family of all graphs which do not contain a member of F as a subgraph

(not necessarily induced). Let ex(n,F) be the maximum number of

edges (counting multiplicity) of any q-multigraph G ∈ Forb(F) with

|V (G)| = n. Finally we define the extremal density of F as

τ(F) = lim
n→∞

ex(n,F)(
n
2

) .

The limit in the above expression exists, a fact which follows from the

averaging argument of Katona, Nemetz and Simonovits [21].
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We want to examine the structure of the set

Tq = {τ(F) : F is a (possibly infinite) family of q-multigraphs}.

Definition 2.1. We say that the number α ∈ [0, q) is a jump for q

if there exists a constant c = c(α, q) such that given any α′ ∈ Tq with

α′ > α, it follows that α′ ≥ α + c.

For q = 1, a simple corollary of the Erdős-Stone theorem, [16], is that

every α ∈ [0, 1) is a jump. Indeed, the set T1 is precisely

T1 =

{
1− 1

k

}∞
k=1

.

For q ≥ 2, obtaining an explicit description of the set Tq of extremal

densities is much harder. It might be easier, if we aim only to under-

stand the structure of the set itself. To that end, we give the following

definition.

Definition 2.2. A set T is called well-ordered if it does not contain

an infinite decreasing sequence.

Since we know T1 explicitly, it is simple to observe that it is well-

ordered. A question which arises naturally for q-multigraphs with q ≥ 2

is the following.

Question 2.3. For q ≥ 2, is Tq well-ordered?

Erdős, Brown and Simonovits, in [2, 3], resolved Question 2.3 for

q = 2 in the affirmative, showing T2 is well-ordered. Sidorenko [30] gave

an alternate proof of this fact which gives a somewhat more explicit

description of the set T2. On the other hand, Rödl and Sidorenko

showed in [28] that the answer to Question 2.3 is no for q-multigraphs

where q ≥ 4, by constructing a family of sequences of graphs with

decreasing extremal densities.
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Two interesting questions remain. What can one say about Tq when

q = 3; is T3 well-ordered? Second, for q ≥ 4, only some α ∈ (0, q) are

known to be non-jumps. Can the jumps and non-jumps be character-

ized? The main results of this chapter give partial answers to each of

these questions.

Regarding the first question, an easy argument, which we give in

Section 2.2, shows that Tq ∩ (0, q
2
) is well-ordered if and only if Tq−1 ∩

(0, q
2
) is well-ordered for all q ≥ 3. It follows from this that, since T2 is

well-ordered, then T3 ∩ (0, 3
2
) is also well-ordered. Consequently every

α ∈ (0, 3
2
) is a jump for q = 3. However, in order to determine whether

T3 outside of the interval [0, 3
2
) requires a non-trivial argument, and

our first result proves that T ∩ [3/2, 2) is well-ordered for q = 3, i.e. we

show:

Theorem 2.4. Every number α ∈ [0, 2) is a jump for q = 3.

In order to better understand the struture of T3∩ [0, 2), we determine

the order type of this set. Order type is a measure of the structural

complexity of a well-ordered set which we define precisely in Section 2.4.

For q ≥ 4, the argument of Rödl and Sidorenko shows that α = q−1,

among some other values of α, is not a jump. We give an alternate

proof of this fact, using spectral graph theory. Our proof allows us to

show the following which suggests that the set of non-jumps gets richer

as q increases.

Theorem 2.5. Suppose r ∈ Q with 0 < r ≤ 1. Then there exists an

integer Q = Q(r) such that for any q > Q, q − r is not a jump for q.

The remainder of the chapter is organized as follows. In Section 2.2,

we make some preliminary definitions, and state some results estab-

lished by Sidorenko in [30] which we use in the proof of Theorem 2.4.

In Section 2.3 we complete the proof of Theorem 2.4, which extends

ideas of Sidorenko in the case q = 2. In Section 2.4, we determine
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the order type of T3 ∩ [0, 2). We outline the definitions and facts from

spectral graph theory which will be necessary for the proof of Theorem

2.5 in Section 2.5 and prove this theorem in Section 2.6.

2.2 Preliminaries

The basic idea of the proof of Theorem 2.4 is, first, to observe that

we may restrict our attention to the extremal densities obtained by a

special class of ‘globally dense’ graphs. Second, we show that these

dense graphs may be constructed in an appropriate manner from a

bounded number of graphs. The fact that the number of these graphs

is bounded is the essential reason why we may derive the fact that

T3 ∩ [0, 2) is well-ordered.

Let us begin by setting out some notation. Throughout, G denotes a

q-multigraph. For a vertex v ∈ V (G) and set S ⊆ V , the neighborhood

of v in S, denoted NS(v) is a multiset consisting of all neighbors of v

in S with multiplicity. The t-neighborhood of v in S, denoted N t
S(v)

is the set (not multiset!) of neighbors of G which occur in N(v) with

multiplicity exactly t. In the case, S = V (G), we simply refer to N(v)

and N t(v). As a slight abuse of notation, for any two vertices u and v,

we say that N(u) = N(v) if NV (G)\{u,v}(u) = NV (G)\{u,v}(v) as multisets.

That is, the two vertices u and v are called symmetric if they have the

same neighborhood (with respect to multiplicities) in V (G) \ {u, v}.
Given two q-multigraphs, H and G with vertex sets {u1, . . . , um} and

{v1, . . . , vn} respectively with m ≤ n, we say that H is a subgraph of

G, denoted H ⊆ G if there is an injective map ϕ : V (H)→ V (G) such

that if there are r edges between ui and uj in H, then there are at least

r edges between ϕ(ui) and ϕ(uj) in G.

We denote by K
(t)
k , for t ≤ q, the complete graph where every pair of

vertices is joined by t edges.
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2.2.1 Globally dense graphs

We begin this section with a definition which we use to express the

densities of a q-multigraphs constructed from G.

Definition 2.6. The Lagrangian of a q-multigraph G on n vertices is

defined to be

λ(G) = max{u∗AGu :
n∑
i=1

ui = 1, ui ≥ 0 ∀i ≤ n}

where u∗ denotes the transpose of the vector u, and AG denotes the

adjacency matrix of G.

Notice that if G and H are q-multigraphs with H ⊂ G then it follows

that λ(H) ≤ λ(G). To prove this, let x = (x1, x2, . . . , xm)∗ be such

that x∗AHx = λ(H). For the injective mapping ϕ : V (H) → V (G),

define a vector y = (y1, y2, . . . , yn)∗ with length |V (G)| as follows. Let

the component yj of y correspond to the vertex uj ∈ V (G). Then

yj =

{
xi if ϕ(vi) = uj

0 else.

A computation, then yields

λ(G) ≥ y∗AGy ≥ x∗AHx = λ(H),

as claimed.

Definition 2.7. Let G be a q-multigraph, on {v1, . . . , vn}. The blowup

of G by a vector x ∈ Zn≥0, denoted by G(x), is defined as the graph

constructed by the following procedure:

(i) Replace each vertex vi ∈ G with a set of vertices Vi of size xi
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(ii) If there are p edges between vi and vj in G, then adjoin every

vertex of Vi with every vertex of Vj by p edges.

(iii) Each of the vertex sets Vi is independent. If vertex vi has p′ loops

in G, then every pair of vertices in Vi will be joined p′ times, and

each vertex in Vi will have p′ loops.

A modified blowup of G is the same, but replacing condition (iii) by

(iii ’) Each of the vertex sets Vi is a K
(1)
xi .

Throughout the chapter, we will use G(x) interchangeably for both a

blowup and a modified blowup. However, we will always make it clear

which we are referring to, so that there is never any confusion.

Given a q-multigraph G, and an integer vector x, the quantity x∗AGx

counts the number of edges in the blowup G(x) (see Defintion 2.7 be-

low). For each k, we may find at least one vector xk with component

sum equal to k which maximizes xAGx over all such vectors. In this

way, xk also gives the maximum density

d(G(xk) =
x∗kAGxk(

k
2

)
of the blowup G(xk) over all blowups of G with k vertices. As k →∞,

the theory of Lagrange functions implies d(G(xk))→ λ(G), where λ(G)

is defined as above. On the other hand, this limit measures the densest

blowup of G as the number of vertices in the blowup tends to infinity.

Observe that, for any q-multigraph G and any vector x ∈ Nn, G ⊂
G(x).

Definition 2.8. A q-multigraph G is globally dense if, for any induced

subgraph G′ of G such that G′ 6= G, it follows that λ(G′) < λ(G).

Recall that we defined Tq to be the set of extremal densities of famlilies

of q-multigraphs. We now define several related sets which are useful
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in the proof of Theorem 2.4. First we define the following sets:

Mq = {G : G is a globally dense q-multigraph}

Lq = {λ(G) : G ∈Mq}.
(2.1)

A simple observation, which follows from the definition of globally

dense graphs and the monotonicity of λ(·) is the following. Given a

q-multigraph G, either G is globally dense or it contains a globally

dense subgraph G′ with λ(G′) = λ(G). Therefore, we may have just

as easily defined Lq to be {λ(G) : G is a q-multigraph}. While these

definitions are equivalent, the fact that we may consider only globally

dense multigraphs is helpful to our proof.

We also define truncated versions of Tq and Lq as follows. For α ≥ 0,

we define T αq to be T αq = Tq ∩ [0, α), and similarly define Lαq to be

Lαq = Lq ∩ [0, α). In this notation, the fact mentioned in the paragraph

preceding the statement of Theorem 2.4 is that T q/2q is well-ordered if

and only if T q/2q−1 is well-ordered.

The next proposition states a key observation made by Brown and

Simonovits [4].

Proposition 2.9. For any α ≥ 0 and q ≥ 1, we have the following:

(i) T αq is well-ordered if and only if Lαq is well-ordered.

(ii) If we denote by Lαq the closure of the set Lαq with regard to its

limit points then Lαq ⊂ T αq ⊆ Lαq .

Fact 2.10.

Lq/2q = Lq/2q−1 for any q ≥ 1.

Fact 2.10 follows from the fact that, if a globally dense q-multigraph G

contains an edge of multiplicity q, then λ(G) ≥ λ(Kq
2) = q/2 where Kq

2

is the graph consisting of two vertices joined by an edge of multiplicity
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q. Together with this, Proposition 2.9 (i) immediately implies that T q/2q

is well-ordered if and only if T q/2q+1 is well-ordered.

In order to better understand the Lagrangian of globally dense multi-

graphs, we recall some results of Sidorenko and make a few additional

observations which will be useful in our proof. We will denote by 1 the

vector (1, 1, . . . , 1)∗. The length of this vector will be apparent from

the context in which the vector is used.

In [30], Sidorenko gave the following useful characterization of globally

dense q-multigraphs:

Theorem 2.11 ( [30, Theorem 1] ). A q-multigraph is globally dense

if and only if its adjacency matrix AG satisfies

(a) AG is non-singular, and all components of the vector 1A−1
G are

positive; and

(b) AG is of negative type, i.e. x∗AGx < 0 holds for every vector x

such that x∗1 = 0.

He proved the sufficiency of the conditions by exhibiting a vector y

and argued that, when AG satisfies (a) and (b), y∗AGy = λ(G).

For our purposes, the most useful aspect of Theorem 2.11 is that it

allows us to show a multigraph G is not globally dense by showing

that its adjacency matrix AG is not of negative type. Note that if a

principle submatrix of AG is not of negative type, neither is AG. As

a slight abuse of terminology, we shall say that G is of negative type

if its adjacency matrix AG is. To summarize, we observed that if G is

globally dense then every induced subgraph of G is of negative type.

Now we list a few examples of graphs that are not of negative type

which will be relevant in the next section.

Note that in each of the following examples, we give a 3-multigraph as

well as an integer vector x of vertex weights which show that x∗AGx ≥ 0

and henceG is not of negative type. Therefore, when we refer the weight
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of a vertex, we are actually referring to the component of the vector x

which corresponds to the vertex.

Example 2.12. The following 3-multigraphs are not of negative type:

(1) The 3-multigraph consisting of two independent vertices is not of

negative type, as the adjacency matrix is the zero matrix. Thus

in a globally dense graph every pair of vertices will be joined by

at least one edge.

(2) Sidorenko [30] observed the following family is not of negative

type. Let Ea,b,c (with c(ab−1) ≥ (2ab+a+b)) be the 3-multigraph

with three sets of vertices A,B and C of sizes a, b and c respec-

tively. Every vertex of A is connected to every vertex in B by at

least two edges, and every other pair of vertices of A ∪ B ∪ C is

connected by only a single edge. To observe these graphs are not

of negative type, we take x so that the weight for each vertex in

A is c(b + 1), the weight of each vertex in B is c(a + 1) and the

weight of each vertex in C is −(a(b + 1) + b(a + 1)). A short

calculation shows that, if E is the adjacency matrix of Ea,b,c, then

x∗Ex ≥ 0 as long as c(ab − 1) ≥ (2ab + a + b). If we further

require a = 1 (which we will when we use Ea,b,c later) then the

previous inequality reduces to c(b− 1) ≥ 3b+ 1 which is satisfied

when b ≥ 2, c ≥ 4, and b+ c ≥ 9.

(3) If G is a q-multigraph on vertex set S ∪ T , where |S| = |T |, such

that the total number of edges completely contained in one of S

or T is at least the number of edges in between them then G is

not of negative type. Indeed, this follows by setting the weights of

the vertices in S and T to 1 and −1 respectively. Of particular

use to us are the 3-multigraphs of type D4 and E4 in the figure

below. The top two vertices are in S and the bottom two are in

T for both D4 and E4. For simplicity, each pair of vertices of D4



18

and E4 are connected by one more edge than pictured (e.g. s1 and

t1 is joined by a single edge in both). A dashed line indicates that

both the multigraph with and without this edge are in D4 and E4

respectively. All of these are of this type where |S| = |T | = 2.

t1

s1

t2

s2

D4

t1

s1

t2

s2

E4

2.2.2 Irreducible Graphs

In this subsection we characterize irreducible q-multigraphs. To begin

with, we give the following definition.

Definition 2.13. For a q-multigraph, a pair of distinct vertices u, v ∈
V (G) are called equivalent if,

(1) N(u) = N(v) (recall this is in G \ {u, v}).

(2) u and v are joined by a single edge, v ∈ N1(u).

Further we define any vertex to be equivalent to itself, in order to ensure

that this is an equivalence relation.

Let us call a q-multigraph G irreducible if no pair of distinct vertices

in G are equivalent, otherwise we call G reducible.

We call the unique maximal irreducible subgraph of G the core of G

and denote it by G/∼. The uniqueness of the core of a q-multigraph G

comes from the fact that the partition of the vertices by the equivalence

relation is completely determined, based on the distribution of the edges
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of G. Note that G/∼ is a subgraph of G induced by one vertex from

each equivalence class.

Any reducible q-multigraph G is a modified blowup of G/∼. To

prove this, consider an arbitrary modified blowup of G/∼ (or any q-

multigraph). Suppose that u is obtained by blowing up the vertex

v ∈ V (G/ ∼). By the definition of a modified blowup, the vertices u

and v are symmetric and joined by a single edge. However this directly

implies that u and v are equivalent. Since G/ ∼ contains precisely one

vertex from each equivalence class of G, we can obtain G by performing

a modified blowup of G/ ∼, where each vertex of G/ ∼ is blown up to

the size of its equivalence class in G.

Example 2.14.

(1) Recall, K
(t)
k denotes the complete graph of multiplicity t. For any

2 ≤ t ≤ q, observe K
(t)
k is irreducible. On the other hand, K

(1)
k /∼

is a single vertex.

(2) Given a q-multigraph G and a vector x > 1, then the modified

blowup G(x) is reducible. If, additionally G is irreducible itself,

then G(x)/ ∼= G.

2.3 Proof of Theorem 2.4

The strategy of the proof of Theorem 2.4 is to show that for globally

dense 3-multigraphs G with λ(G) < 2, the size of G/∼ can be bounded

in terms of 2− λ(G).

Throughout this section a few particular classes of graphs will be

important in addition to those in Example 2.12 of the previous section.

For a positive integer a, let K
(1,1,3)
a,a be the bipartite 3-multigraph with

a vertices in each partite set, three edges between each pair of vertices

from opposite partite sets and a single edge between any two vertices
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of the same partite set. Then the following can be shown by a direct

calculation:

Proposition 2.15. lim
a→∞

λ(K(1,1,3)
a,a ) = 2

Proof. In fact, λ(K
(1,1,3)
a,a ) = 2 − 1/n. To prove this, notice that λ(·)

is linear over graph edge decomposition. A simple decomposition of

K
(1,1,3)
a,a is into a complete simple graph K2a and two complete bipartite

graphs Ka,a. Now, we simply compute

λ(K2a) = 1− 1

2a
,

λ(Ka,a) =
1

2
,

using the fact that, asymptotically, the densest blowup of a 2a-partite

(or bipartite) graph is the Turán graph T2a,k (or T2,k). Thus λ(K
(1,1,3)
a,a ) =

(1− 1/(2a)) + 2 · 1/2 = 2− 1/(2a), as claimed.

Also consider a complete 3-multigraph on k vertices such that there

is an edge of multiplicity two or three between any two vertices, which

we will call a graph of type K
(2,3)
k . We can find a lower bound on

the density of any 3-multigraph G of type K
(2,3)
k . Since K

(2)
k ⊆ G,

it follows that λ(G) ≥ λ(K
(2)
k ) = 2 − 2

k
. (The latter equality here is

obtained by decomposing K
(2)
k into two copies of Kk, and calculating

λ(Kk) = 1−1/k). Therefore, given any α < 2, we may choose k = k(α)

large enough so that λ(G) > α.

To summarize, given any α ∈ [0, 2), there exist integers a = a(α) and

k = k(α) so that any globally dense 3-multigraph G with λ(G) ≤ α

does not contain K
(1,1,3)
a,a or K

(2,3)
k as a subgraph. We now state the

following lemma and show how it implies Theorem 2.4.

Lemma 2.16. Let G be a globally dense 3-multigraph with λ(G) <

2. Let a = a(λ(G)) and k = k(λ(G)) be defined as in the previous
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paragraph (and G/ ∼ as in Sec. 2.2.2). Then

|V (G/∼)| ≤ r(k, (3k + 6)2r(2a,k)),

where r(a, b) denotes the usual Ramsey number (see Sec. 1.3).

Proof of Theorem 2.4. First note that since the set N∞ = {1, 2, . . . ,∞}
is well-ordered, then the set Nr

∞ = N∞ × · · · × N∞ has the descending

chain condition (i.e. all decreasing sequences of elements of Nr
∞ are

finite) under the ordering x ≤ y where we say x ≤ y if and only if

xi ≤ yi for all i ≤ r. This is an important observation to keep in mind

as we proceed.

Recall that T 2
3 is the set of extremal densities in the interval [0, 2)

and L2
3 is

L2
3 = L3 ∩ [0, 2)

= {λ(G) : G is a globally dense 3-multigraph, λ(G) < 2}.

By Proposition 2.9, if L2
3 is well-ordered, then so is T 2

3 . Hence it suf-

fices to show that L2
3 is well-ordered. Actually, we prove an equivalent

condition, namely that the sets Lα3 are well-ordered for every α < 2.

Fix α < 2 and let k = k(α) and a = a(α) be constants such that

any globally dense 3-multigraph G with λ(G) ≤ α does not contain

K
(1,1,3)
a,a or a subgraph of type K

(2,3)
k . Therefore Lemma 2.16 implies

that for any globally dense graph G with λ(G) ∈ Lα3 the number of

equivalence classes of G is bounded by r(k, (3k+6)2r(k,2a)) where k and

a depend only on α. Hence the set of irreducible 3-multigraphs G with

λ(G) ∈ Lα3 is finite. Call this set Iα so that

Iα = {G : λ(G) ∈ Lα3 and G is irreducible}.

Since any 3-multigraph G with λ(G) ∈ Lα3 is globally dense, every pair
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of vertices must be joined by at least one edge. Otherwise, G would

contain a pair of independent vertices as an induced subgraph, which

is not of negative type, as demonstrated in Example 2.12 (1). This

immediately implies that G itself is not of negative type, contradicting

the fact that G is globally dense and therefore must be of negative type

by Theorem 2.11.

As a consequence of this fact, G is a modified blowup of its irreducible

part G/∼. Moreover, λ(G/∼) ∈ Lα3 since λ(G/∼) ≤ λ(G). Thus we

can partition the set Lα3 into a finite number of sets
⋃
G∈Iα

LαG where

LαG = {λ(G(x)) < α : x ∈ N|V (G)|
∞ }.

For a fixed 3-multigraph G ∈ Iα with |V (G)| = r, there is an ob-

vious mapping from the set Nr
∞ to the set of modified blowups of G,

(e.g. map x to G(x)). Note that x ≤ y implies λ(G(x)) ≤ λ(G(y))

(since G(x) ⊆ G(y), in this case). Using this fact and the fact that Nr
∞

has the descending chain condition, it follows that LαG is well-ordered

(see Proposition 2.21 below). Indeed, if there was an infinite decreasing

sequence {λ(G(xi))}∞i=1 then the sequence {xi}∞i=1 must also be decreas-

ing, which contradicts the descending chain condition.

Since Lα3 is the union of finitely many well-ordered sets, LαG, it follows

that Lα3 is well-ordered. Therefore T 2
3 is well-ordered, completing the

proof of Theorem 2.4.

Lemma 2.16 is a consequence of the following:

Lemma 2.17. Let G be a 3-multigraph with λ(G) < 2. Further assume

that:

(α) Every pair of symmetric vertices (i.e. u, v ∈ V (G) such that

N(u) = N(v) in G − {u, v}) is connected by at least two edges,

and
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(β) G is of negative type.

Let k = k(λ(G)) and a = a(λ(G)) be as defined above. Then |V (G)| <
r(k, (3k + 6)2r(2a,k)), where r(a, b) denotes the usual Ramsey number.

Proof of Lemma 2.16. Let G be a globally dense 3-multigraph with

λ(G) < 2. By (b) of Theorem 2.11, G is of negative type, and hence so is

G/∼. Since G/∼ is irreducible, it also satisfies condition (α) of Lemma

2.17. Thus, applying Lemma 2.17 to G/∼, Lemma 2.16 follows.

We now give the proof of Lemma 2.17, which is the crux of the argu-

ment.

Proof of Lemma 2.17 . First note that since G is a 3-multigraph of

negative type, then there are no induced subgraphs isomorphic to our

classes from Example 2.12, namely E4, D4, or Ea,b,c (with a = 1, b ≥
4, c ≥ 2, b + c ≥ 9) and moreover any pair of vertices is joined by at

least one edge.

Let S ⊂ V (G) be a maximal clique on edges of multiplicity one.

Since G contains no subgraph of type K
(2,3)
k showing |S| ≤ s would

imply that |G| is less than the Ramsey number r(s, k). The rest of

the proof shows that such a bound exists. The proof follows in two

steps: First we find a subset T ⊂ S, with the property that N3(u) is

the same for every u ∈ T and moreover |T | > c(a, k)|S| where c(a, k)

is a constant depending only on a and k. The second stage is to bound

|T |. We begin by finding our subset T .

For v ∈ V \ S we define Siv to be neighborhood of v in S in edge

multiplicity i. For simplicity of notation, we set R = V \ S and for

v ∈ R we let Sv = N3
S(v) denote the 3-neighborhood of v into S. For

each subset S̃ ⊆ S define RS̃ = {v ∈ R : Sv = S̃}. Note that each

vertex in R lies in exactly one RS̃, namely RSv . Define X by taking

precisely one vertex from each nonempty RS̃. Thus for each vertex
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w ∈ R \ X there is a vertex v ∈ X such that Sw = Sv. Moreover, for

any pair of vertices u, v ∈ X, Su 6= Sv. We show that |X| < r(2a, k).

Since G contains no induced copy of D4 it follows that if u, v ∈ X

are joined by a single edge then either Su ⊂ Sv or Sv ⊂ Su. Since X

contains no K
(2,3)
k , the inequality |X| < r(2a, k) will follow if we prove

that X contains no K
(1)
2a as well. Suppose instead, X does contain an

induced K
(1)
2a . Denote the vertices of this clique {v1, . . . , v2a}. As for

any pair vi, vj, either Svi ⊂ Svj or vice-versa, we may order the vi so

that Svi ⊂ Svi+1 for 1 ≤ i ≤ 2a − 1. Since these inclusions are strict,

we have that |S3
vi
| ≥ i− 1. But then G contains an induced K

(1,1,3)
a,a on

vertex set N3
S(va+1)∪{va+1, . . . , v2a}. This contradicts our assumptions

and hence X contains no K
(1)
2a . Thus |X| < r(2a, k) as claimed.

Observe that for any u ∈ S, N3
X(u) completely determines N3(u).

Therefore there must exist a subset T ⊂ S of size |S|/2|X| with the

property that N3(u) is the same for every u ∈ T .

Now that we have defined T , we move to the second part of the

proof; bounding |T | and hence |S|. We hence assume that |T | ≥ 9, as

otherwise we have the simple bound that |S| ≤ 9 · 2|X| ≤ 9 · 2r(2a,k). For

each v ∈ R and i = 1, 2, 3 we set T iv = N i
T (v). For any T̃ ⊆ T we define

the set R2
T̃

= {v ∈ R : T 2
v = T̃}. Similarly as before, {R2

T̃
: T̃ ∈ T}

partitions R. Next, we define Y by taking precisely one vertex from

each non-empty R2
T̃

as T̃ ranges over all subsets of T . Note that for

any pair of distinct vertices u, v ∈ Y , it follows that T 2
u 6= T 2

v , and for

any vertex w ∈ R− Y there is a vertex v ∈ Y such that T 2
w = T 2

v .

Set

Yi = {v ∈ Y | |T 2
v | = i}.

We observe that |Yi| = 0 for i = 2, 3, . . . , |T | − 4. Indeed, if v ∈ Yi with

i ∈ {2, 3, . . . , |T | − 4} then the sets A = {v}, B = T 2
v and C = T − T 2

v

induce an Ea,b,c of the type forbidden (i.e. with a = 1, b ≥ 2, c ≥
4, b+ c ≥ 9) as we shall check. Note that in our case |A| = 1, |B| ≥ 2,
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|C| ≥ 4, and |B| + |C| = |T | ≥ 9, so we only must verify that the

proper edges are present. Only single edges are induced on B ∪ C as

B ∪ C = T ⊆ S. Since T 2
v 6= ∅, it follows that T 3

v = ∅. This is

because either T 3
v = T or T 3

v = ∅ for all v ∈ R by the definition of

T . In particular this implies that C ⊆ T 1
v . This induced Ea,b,c would

contradict assumption (β) of the lemma, thus |Yi| 6= 0 is possible only

for i ≤ 1 or i ≥ |T | − 3.

It is clear from the definition of Y that |Y0| ≤ 1. We further claim

that |Y1| ≤ 1. Indeed, if there are two distinct vertices v, u ∈ Y1 then

one of two things must occur:

(Case 1) u ∈ N1(v) : The set of vertices {u, v} ∪ T 2
v ∪ T 2

u induces a

copy of E4, which is forbidden by assumption.

(Case 2) u ∈ N2(v)∪N3(v) : In this case set A = {v}, B = {u}∪ T 2
v

and C = T \ (T 2
v ∪ T 2

u ). Since |T | ≥ 9, the set A∪B ∪C induces

a copy of E1,2,7, which is likewise forbidden.

Let t = |T |, and consider the collection {T 2
v : v ∈ Yt−3 ∪ Yt−2 ∪ Yt−1}.

We define Y ′ ⊆ Y to be the set of v′ so that T 2
v′ is a minimal element

of this collection under inclusion. More formally define sets

Y ′t−2 =
{
v ∈ Y | ∀v′ ∈ Yt−3, T 2

v′ 6⊂ T 2
v

}
Y ′t−1 =

{
v ∈ Y | ∀v′ ∈ Yt−3 ∪ Y ′t−2, T 2

v′ 6⊂ T 2
v

}
Y ′ = Yt−3 ∪ Y ′t−2 ∪ Y ′t−1.

For the remainder of the proof, we will focus on the subgraph induced

by T and Y ′. In particular, we will use the fact that each vertex in Y ′

has a distinct neighborhood in T of size at least |T | − 3 to bound |T |.
By definition of Y ′, for any two vertices v, v′ ∈ Y ′, T 2

v 6⊆ T 2
v′ and

T 2
v′ 6⊆ T 2

v . Therefore, for each v, v′ ∈ Y ′, there exists vertices u ∈ T 2
v

and u′ ∈ T 2
v′ such that v ∈ N1(u′) and v′ ∈ N1(u). In order to prevent
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{u, u′, v, v′} from inducing a copy of E4, v and v′ must be joined by at

least two edges. Thus the vertices of Y ′ form a graph of type K
(2,3)
|Y ′| , so

by assumption |Y ′| ≤ k − 1.

If we take, as slight abuse of notation, T 2
v = T\T 2

v , we have
⋂
v∈Y ′ T

2
v =

T \
⋃
v∈Y ′ T

2
v . On the other hand, by definition of Y ′, we have |T 2

v | ≤ 3,

and thus ∣∣∣∣T \ ⋃
v∈Y ′

T 2
v

∣∣∣∣ ≥ |T | − 3|Y ′| ≥ |T | − 3(k − 1).

Therefore if we can bound
∣∣⋂

v∈Y ′ T
2
v

∣∣ then we obtain a bound on |T |.
We claim that in fact

∣∣⋂
v∈Y ′ T

2
v

∣∣ ≤ 2. Indeed, assume that T̃ =⋂
v∈Y ′ T

2
v contains three or more vertices. Then we claim that at least

two of these three vertices have identical neighborhoods (the third ver-

tex may be the lone neighbor of the vertex in Y1).

To prove this claim, suppose that x, y ∈ T̃ have neighborhoods N2(x),

N2(y) ⊂ V (G) \ Y1. Consider a vertex v ∈ Y and without loss of

generality, suppose v ∈ N2(x). Either v ∈ Y ′ or else v ∈ Y \ Y ′. If v ∈
Y ′ then it follow immediately from the intersection in the definition of

T̃ that v ∈ N2(y) as well. Suppose instead that v ∈ Y \Y ′. In this case

there must be some u ∈ Y ′ such that T 2
u ⊂ T 2

v by the construction of Y ′.

However, y ∈ T 2
u and hence y ∈ T 2

v . In either case v ∈ N2(y) from which

it follows that N2
Y (x) = N2

Y (y). Finally, it follows directly from the

construction of Y thatN2(x) = N2(y). Recall that we chose the set T ⊂
S so that every vertex in T has the same neighborhood in multiplicity

three, and thus in particular N3(x) = N3(y). Finally, since we have

shown that x and y have identical neighborhoods in multiplicity two and

three, it immediately follows that they have identical neighborhoods in

multiplicity one as well. Thus we conclude that x and y are indeed

symmetric. By assumption (α) of this lemma, two symmetric vertices

must be connected by at least two edges. This contradicts the fact that
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the vertices are in S and hence connected by only a single edge. Thus

2 ≥

∣∣∣∣∣ ⋂
v∈Y ′

T 2
v

∣∣∣∣∣ =

∣∣∣∣∣T\ ⋃
v∈Y ′

T 2
v

∣∣∣∣∣
≥ |T | − 3|Y ′|

≥ |S|
2|X|
− 3(k − 1)

This yields the inequality |S| ≤ (3k − 1)2|X|. We previously showed

that |X| < r(2a, k) hence it follows that |S| ≤ (3k − 1)2r(2a,k). On the

other hand, we only have this bound under the assumption that |T | ≥ 9

and hence it is only guaranteed if |S| ≥ 9 · 2r(2a,k). Combining,

|S| ≤ max{(3k − 1), 9}2r(2a,k) ≤ (3k + 6)2r(2a,k).

completing the result.

2.4 Order type of L2
3 and T 2

3

In the previous section, we showed that the sets L2
3 and T 2

3 are well-

ordered. This immediately raises the question, what are their order

types, where by order type we mean the following.

Definition 2.18. Given a well-ordered set S, the order type of S, de-

noted ord(S), is the class of well-ordered sets, of which S is a member,

such that there is an order preserving isomorphism between any two

elements of the class.

We will now briefly describe some of the notions central to the con-

cept of order type. For anything not mentioned here, the reader should

see [29], a very accessible text on the subject. Every well-ordered set is

order-equivalent to exactly one ordinal number. The ordinal numbers
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are taken to be the canonical representatives of their classes, and so

the order type of a well-ordered set is usually identified with the cor-

responding ordinal. For example, the order type of the natural num-

bers is ω, the smallest countably infinite ordianl. The list of count-

ably infinite ordinals then continues, ω + 1, ω + 2, . . . , ω · 2, ω · 2 +

1, . . . ω2, . . . , ω3, . . . , ωω, . . . , ωω
ω
, . . .. Here addition and multiplication

are not commutative. In particular 1 +ω is ω, rather than ω+ 1 which

is the smallest ordinal larger than ω. Likewise, 2 · ω is ω while ω · 2 is

the ordinal type of two infinite increasing sequences in which the limit

point of one is the initial point of the other.

Notice that sup(L2
3) = 2 which is not in the closure L2

3 by the defini-

tion of the set (specifically the fact that L2
3 ⊆ [0, 2)). This along with

Proposition 2.9 (ii) immediately yields the following.

Fact 2.19. ord(T 2
3 ) = ord(L2

3)

Therefore we simply need to compute ord(L2
3).

Proposition 2.20.

ord(L2
3) = ωω.

Proof. We prove Proposition 2.20 by bounding ord(L2
3) from both sides.

We first give a proof of the lower bound. Observe that, for the com-

plete 2-multigraph on n vertices with all edges of multiplicity two K2
n,

the set

LK2
n

= {λ(K2
n(x)) : x ∈ Zn≥0}

is contained in L2
3. In Claim 2.22 below, we show that ord(LK2

n
) = ωn.

Since LK2
n
⊆ L2

3 for all n ≥ 1, this implies that ord(L2
3) ≥ ωn for all

n ≥ 1, whence ord(L2
3) ≥ ωω. Thus the upper bound will be established

once we prove Claim 2.22.

On the other hand, give a proof of the upper bound. This proof is

based on the fact that, for a fixed globally dense q-multigraph G on n
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vertices the order on {λ(G(x)) : x ∈ Nn} is a linear extension of Nn

where we use the usual partial ordering of Nn. This follows from a more

general result which is due to deJongh and Parikh [7].

Proposition 2.21 ([7]). Let φ : Nn → R be a function for which

φ(x) ≤ φ(y) whenever x < y. Then

(1) {φ(x) : x ∈ Nn} is a well-ordered set, and

(2) ord{φ(x) : x ∈ Nn} ≤ ωn.

We show that Proposition 2.21 implies, in particular, that ord(LG) ≤
ωn for all globally dense G on n vertices. Lemma 2.16 implies, for

any α < 2, that the total number of globally dense, irreducible 3-

multigraphs G with λ(G) < α is finite. However, for an arbitrary

3-multigraph H with λ(H) < α, there is a globally dense induced sub-

graph H ′ with λ(H ′) = λ(H). Further H ′ is a modified blowup of an

irreducible graph G and λ(G) ≤ λ(H ′) < α. Since H ′ is a modified

blowup of G, the ordinal type of the set

{λ(G(x)) : x ∈ N|V (G)|}

is at least the ordinal type of

{λ(H ′(x)) : x ∈ N|V (H′)|}.

Together with the fact that, by Lemma 2.16, there exists an r = r(α)

such that |V (G)| < r, this yields

ord(Lα3 ) ≤
∑
G∈Jα

{ωr : |V (G)| ≤ r} < ωω

Finally since, L2
3 =

⋃
α<2 Lα3 , we arrive at ord(L2

3) ≤ ωω.
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It should be noted that, {K2
n : n ≥ 2} is a family of 2-multigraphs,

and as such, it can be quickly observed that the set L2 has ordinal

number ωω as well.

The proof of Proposition 2.20 hinges on the truth of Claim 2.22.

Before we prove this claim, we will establish some notation. Given

a vector x = (x1, . . . , xn) with possibly some infinite coordinates, we

define a sequence {ym}m as

(ym)i =

{
xi if xi <∞,
m if xi =∞.

and define

λ(G(x)) = lim
n→∞

λ(G(yn))

It is easy to observe that whenever x has all finite components and

x < y then λ(G(x)) ≤ λ(G(y)) because G(x) is an induced subgraph

of G(y).

With this in mind, notice that since, for some integer a > 0 the graph

K2
1(a) is a simple clique, then

LK2
1

=

{
1− 1

k
: k ≥ 0

}
which clearly has order type ω. Using this as our base case, we will

show by induction the following.

Claim 2.22. For every integer n ≥ 1,

ord(LK2
n
) = ωn.

Proof. We show this by induction on n. For n = 1, the claim is easy

and we demonstrated the set LK2
1

above. Assume then that

ord(LK2
n−1

) = ωn−1
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and consider the case for K2
n. We may consider λ(·) as a function of Nn

which maps each x ∈ Nn to λ(K2
n(x)). Then it follows from Proposi-

tion 2.21 that ordLK2
n
≤ ωn. Thus we only need to show ordLK2

n
≥ ωn

to finish the proof of the claim.

For each fixed integer b ≥ 0,

ord{λ(K2
n(y, b)) : y ∈ Zn−1

≥0 } ≥ ωn−1.

This follows from the fact that the map f : λ(K2
n(y, b)) 7→ λ(K2

n−1(y))

is surjective and ord(LK2
n−1

) ≥ ωn−1 by our inductive hypothesis. Fur-

ther λ(K2
n(∞, . . . ,∞, b)) is the limit point of type ωn−1 of this set.

Therefore, for any ε > 0 the set

{λ(K2
n(y, b)) : y ∈ Nn−1}∩(λ(K2

n(∞, . . . ,∞, b))−ε, λ(K2
n(∞, . . . ,∞, b)))

has ordinal type ωn−1. Since this holds for every b ≥ 0, then we generate

a sequence of limit points {λ(K2
n(∞, . . . ,∞, b))}b. Finally observe that

λ(K2
n(∞, . . . ,∞, b)) = lim

k→∞
λ(K2

n(k, . . . , k, b))

= lim
k→∞

λ(K(n−1)k+b ∪Kk,...,k,b)

< lim
k→∞

λ(K(n−1)k+b) + lim
k→∞

λ(Kk,...,k,b)

= 1 + (1− 1

n
) = 2− 1

n
= λ(K2

n(∞, . . . ,∞))

where the strict inequality above holds because λ(K(n−1)k+b) and

λ(Kk,...,k,b) are acheived at different vectors.

The above implies that the set {λ(K2
n(∞, . . . ,∞, b))}b contains a

monotone increasing sequence whose limit is λ(K2
n(∞, . . . ,∞)). Thus,

since each of the points λ(K2
n(∞, . . . ,∞, b)) is a limit point of type
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ωn−1 then it follows immediately that

ord(LK2
n
) ≥ ωn,

and taken with the lower bound, we get ord(LK2
n
) = ωn as desired.

2.5 Spectral Prerequisites

Let A denote adjacency matrix of a d-regular simple graph G of order

n. Then A has eigenvalues

d = λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −d

Note that if G is connected then λ1 < λ0. For simplicity we will say

that λ is an eigenvalue of the graph G when λ is an eigenvalue of its

adjacency matrix.

A has orthonormal eigenvectors φ0, . . . , φn−1 associated with λ0, . . . ,

λn−1, where φ0 = 1√
n
1 with 1 = (1, 1, . . . , 1).

For a graph G, let |λ| denote the second largest eigenvalue of G. The

following result of Friedman [17] implies that, for a random d-regular

graph on n vertices, chosen uniformly at random, λ has the following

bound with high probability.

Proposition 2.23. For any fixed ε > 0 and d ≥ 3, a random d-regular

graph on n vertices has |λ| < 2
√
d− 1 + ε with probability 1− o(1).

For d ≥ 5, this implies that, so long as n is sufficiently large, there

exist d-regular graphs with |λ| ≤ d− 1 since 2
√
d− 1 ≤ d− 1.

We also need the following well known facts, see eg. [18]:

Example 2.24. The adjacency matrix of the following special classes

of graphs have eigenvalues as follows:
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1. The complete graph Kn has eigenvalues λ0 = n− 1 and λi = −1

for 1 ≤ i ≤ n− 1.

2. For a ≥ 1 and n with a|n, the complete multipartite graph Ka(n/a)

with a parts of size n/a has (a− 1)n
a

as an eigenvalue with mul-

tiplicity 1, −n
a

as an eigenvalue with multiplicity a − 1 and zero

as an eigenvalue with multiplicity a(n
a
− 1).

2.6 Proof of Theorem 2.5

From Definition 2.1, it follows that if a number α is not a jump for q,

then for any given constant c > 0 there must exist at least one graph

Gc with α < λ(Gc) < α + c. By choosing appropriate values of c, we

can construct a sequence of q-multigraphs {Gn} with

α < λ(Gn) = α + o(1).

Throughout this section, we use the following notation. Let G1 and

G2 be two multigraphs on the same vertex set. G = G1 ∪ G2 means

that the multigraph G is the edge-disjoint union on G1 and G2. That

is, the multiplicity of the edge xy in G is the sum of the the multiplicity

of xy in G1 and xy in G2. For example, under this notation K
(2)
k =

Kk ∪ Kk. A property of particular interest is the following: If G,G1

and G2 are multigraphs so that G = G1 ∪ G2 and A, A1 and A2 are

their corresponding adjacency matrices then for any x ∈ Rn,

x∗Ax = x∗A1x + x∗A2x. (2.2)

We will use this in the proof of Theorem 2.5 by constructing a q-

multigraph as a union of simple graphs and using (2.2) to analyze λ(G).

Proof of Theorem 2.5. Let 0 < r ≤ 1 be a rational number. We want
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to show that there exists an integer Q such that q− r is not a jump for

any q ≥ Q. Let m to be the smallest integer such that r can be written

as the sum of m unit fractions. Furthermore, let

r =
m∑
j=1

1

aj
, (2.3)

where aj ∈ N and a1 ≤ a2 ≤ · · · ≤ am. Fix Q = m + 5. We will show

that q − r is not a jump for any q ≥ Q.

Let n be an integer such that ai|n for all 1 ≤ i ≤ m, and for which

a d = (q −m + 1)-regular graph on n/a1 vertices with second largest

eigenvalue less than (d− 1) exists. Note that there are infinitely many

values of n for which such graphs exist. Since q −m ≥ 5, sufficiently

large random regular graphs satisfy this property with high probability,

by Proposition 2.23. We will define a q-multigraph Gn in terms of

auxiliary graphs Hi, for i = 1, . . . ,m and R which we describe below.

We begin by defining Hi = Kai(n/ai), the complete ai-partite graph

where all parts are of size n/ai. We also let R denote the n-vertex

graph consisting of a1 vertex-disjoint copies of the (q −m+ 1) regular

graph on n/a1 vertices whose existence we asserted above.

We then write Gn = K
(q−m)
n ∪ (

⋃m
i=1 Hi) ∪ R. We require that the

disjoint graphs in R align with the empty partite sets in H1, but the

placement of Hi for i = 2, . . . ,m is arbitrary. Alternately, if Ai, K and

B denotes the adjacency matrix of Hi, Kn and R respectively, then the

adjacency matrix of Gn is A = (q −m)K +
∑
Ai + B. Note that any

edge in Gn has multiplicity at most q.

We now wish to compute λ(G). Note that for any vector x where∑
xi = 1,
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x∗Ax = x∗((q −m)K +
m∑
i=1

Ai +B)x

= (q −m)x∗Kx +
m∑
i=1

x∗Aix + x∗Bx. (2.4)

We have

(q−m)x∗Kx = (q−m)
(
(
n∑
i=1

xi)
2−

n∑
i=1

x2
i

)
= (q−m)− (q−m)

n∑
i=1

x2
i .

(2.5)

Since Hi is (ai−1)
ai

n regular, we have that 1/
√
n is the principal eigen-

vector of Ai. Since x∗1 =
∑
xi = 1 and all other eigenvalues of Ai are

non-positive (c.f. Example 3, item 2), we have that

x∗Aix ≤
1

n
1∗Ai1 = 1− 1

ai
. (2.6)

Finally, note that B has eigenvalue (q − m + 1) with multiplicity a1,

and all other eigenvalues are at most q−m in absolute value. We take

a set of orthonormal eigenvectors of B, φ1, . . . , φn such that φ1, . . . , φa1

are normalized indicator vectors for the a1 disjoint copies of the graph

inside R. In other words, if Xi is the vertex set one of the a1 copies of

the graph within R, we have that φi = 1√
n/ai

1Xi . We write

x =
n∑
i=1

αiφi,

where we note that α1, . . . , αa1 are bounded by
√
a1/n.

Further note that
n∑
i=1

α2
i =

n∑
i=1

x2
i , (2.7)
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and

x∗Bx =
n∑
i=1

α2
iλi. (2.8)

Due to the fact that λ1 = λ2 = · · · = λa1−1 = q − m + 1 with corre-

sponding α′is bounded by
√
a1/n, and also recalling q − m ≥ λa1 ≥

· · · ≥ λm−1, we infer that

n∑
i=1

α2
i (λi − (q −m)) ≤ a2

1

n
(2.9)

Combining (2.3) – (2.9), we have that

x∗Ax

(2.5),(2.6),
(2.8)

≤ (q −m)− (q −m)
n∑
i=1

x2
i +

m∑
j=1

(
1− 1

aj

)
+

n∑
i=1

α2
iλi

(2.3),(2.7)
= (q −m) + (m− r) +

n∑
i=1

α2
i (λi − (q −m))

(2.9)

≤ q − r +
a2

1

n
.

Thus λ(Gn) ≤ q − r +
a21
n

. On the other hand, taking x = 1/n shows

that λ(Gn) ≥ q− r+ 1
n
. Thus, λ(Gn) = q− r+ o(1), which shows that

q − r is not a jump.

Remark: Theorem 2.5 shows that for any rational r ∈ (0, 1], even-

tually q − r will become a non-jump. An interesting open question is

to find the dependence (if any!) of q on r. It is known that if r = p
s

in

lowest terms, that there is a unit fraction decomposition in O(
√

log s)

terms, see [32]. Of course, it is possible that there are no jumps on the

interval [q − 1, q), even for q ≥ 4.
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Chapter 3

Ramsey and induced Ramsey

results for k-graphs

3.1 Introduction

For simplicity we refer to k-uniform hypergraphs as k-graphs through-

out the chapter. We denote the uniformity of a k-graph with a super-

script (e.g. H(k)) when it is not immediately obvious from the context.

For a k-graph H, we use H to denote both the k-graph and its set

of edges interchangeably. We denote the vertex set of H by V (H).

Throughout the chapter, we will denote a k-tuple by lower case letters,

e.g. e ∈
(
V (H)
k

)
.

Given two k-graphs, T and S, the Ramsey number of this pair, de-

noted r(T ,S) is the minimum integer n such that any two coloring of

the k-tuples of the complete k-graph on n vertices, K(k)
n , by red and

blue yields either a red T or a blue S. We will denote by K(k)
t,...,t the

complete k-partite, k-graph with partite sets of size t. In the first part

of the chapter we will show that

sc1t
k−1 ≤ r(K(k)

t,...,t, K(k)
s ) ≤ sc2t

k−1

(3.1)
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for c1 = 1 − (1 + o(1))/k, c2 = k and, in the case of the lower bound,

t = so(1), where o(1)→ 0 as s→∞.

The second, and more substantial part of the chapter, is devoted to

induced Ramsey numbers. For k-graphs R,S and T we write R ind−→
(T ,S) if, for every two-coloring of the k-tuples of R with red and

blue, one can find either a red induced copy of T or a blue induced

copy of S. Let rind(T ,S) denote the smallest number n such that

there exists a k-graph R on n vertices with R ind−→ (T ,S). We will

adopt the abbreviated notation rind(T ) to mean rind(T , T ). Clearly

rind(T ,S) ≥ r(T ,S) for all pairs T ,S.

While the existence of Ramsey numbers follows from Ramsey’s the-

orem, the existence of induced Ramsey numbers was shown in [9],[14],

and [26] for simple graphs and in [1] and [23] for k-graphs with k ≥ 3.

When we refer to a k-graph being s-partite for some integer s ≥ k,

we mean precisely the following.

Definition 3.1 (Partite Hypergraph). For k ≤ s, a k-graph H(k) is

called s-partite if V (H(k)) admits a partition V1 ∪ · · · ∪ Vs such that,

for every e ∈ H(k) and i ∈ [s], we have |e ∩ Vi| ≤ 1.

For simple graphs, due to a well-known result of Erdős, rind(Kt) =

r(Kt) ≥ 2t/2, Erdős and Rödl asked whether there exists a constant

c > 0 such that rind(G) < ct for all graphs G on t vertices. It was proved

in [26], and in a strengthened density form in [12], that this indeed is

true if G is bipartite. For G arbitrary, improving on an earlier bound

from [22], Conlon, Fox and Zhao [6] recently proved that rind(G) ≤
2ct log t, which is currently the best general upper bound.

For k-graphs with k ≥ 3, well-known open problems remain about

determining the order of magnitude of the classical Ramsey numbers.

Since the induced Ramsey numbers seem harder to compute in general,

it will be difficult to make progress for the induced case. The questions

seem to be more tractable if we restrict to k-partite k-graphs. For
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example, using an extremal result of Erdős [13], one can easily show

that rind(K(k)
t,...,t) ≤ 2ct

k−1
, where c is a constant depending only on k,

and this bound is best possible, up to the value of c. It was conjectured

in [12] that the same upper bound holds for rind(T ) for all T ⊆ K(k)
t,...,t.

Dudek [11] showed that for a general k-partite, k-graph T ⊆ K(k)
t,...,t

there exists a constant c = c(k) such that rind(T ) < 22ct
k−1

. Here we

give a result which improves this bound for all k ≥ 3. In particular, we

show the following.

Theorem 3.2. Let integers k ≥ 3, s and t be given. For any k-graphs

T ⊆ K(k)
t,...,t and any S, with |V (S)| = s, there exists a constant ck > 0

such that

rind(T ,S) ≤ exp(ckt
2ksk

2

),

and thus there is a c′k such that rind(T ) ≤ exp(c′kt
k2+2k).

Remark 3.3. In the proof of Theorem 3.2, we show that for s ≥ k and

t ≥ t0 we can take ck = (4k)k and correspondingly c′k = 4kkk
2+k.

Remark 3.4. Throughout the chapter, we consider the k-partite k-

graph T ⊆ K(k)
t,...,t to be on the vertex set

⋃k
i=1 Ui, |U1| = · · · = |Uk| = t.

This chapter is organized as follows. We prove that the bounds given

in (3.1) hold for the non-induced Ramsey number in Section 3.2. In

Section 3.3 we state some auxiliary results, and in Section 3.4 we use

these results to prove Theorem 3.2. Section 3.5 contains the proof of

a technical lemma stated in Section 3.3. The proof of the embedding

lemma that we use (Lemma 3.17) is in Section 3.6. Finally, Section 3.7

contains the proof of a theorem of Erdős with the precise bounds we

require in Section 3.2.
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3.2 Non-induced Ramsey Numbers

In this section, we will prove for c1 = 1− (1 + o(1))/k and c2 = k,

sc1t
k−1 ≤ r(K(k)

t,...,t, K(k)
s ) ≤ sc2t

k−1

.

where the lower bound holds under the condition t = so(1) as s→∞.

First, we establish the upper bound, the proof of which is fairly easy.

We then show the lower bound using the probabilistic method.

Proposition 3.5. Given integers k ≥ 3, and s, t ≥ k,

r(K(k)
t,...,t, K(k)

s ) ≤ s
ktk−1

.

In the proof of Proposition 3.5, we will use the following result of

Erdős, (see Theorem 1 of [13]).

Theorem 3.6. Let t > 1, c = k log k and n ≥ 2ct
k−1

. Then any k-graph

R on n vertices with |R| ≥ nk−
1

tk−1 contains a copy of K(k)
t,...,t.

In [13], Erdős does not give an explicit lower bound for the required

number of vertices in the statement of the theorem. In Section 3.7 of

the current chapter, we restate the original proof of Erdős with the

explicit bound n ≥ 2ct
k−1

on the number of vertices.

We will use this theorem in the following way. Fix a coloring of the

k-tuples of K(k)
n by red and blue. If there are at least nk−

1

tk−1 red k-

tuples, then by Theorem 3.6 there is a K(k)
t,...,t in red. If this is not the

case, we find a blue copy of K(k)
s using Lemma 3.7 below.

Lemma 3.7. Let s ≥ k be given, and letR be a k-graph on n ≥ skt
k−1

vertices. If there are no copies of K(k)
t,...,t ⊂ R then R must contain an

independent set of size s.

Proof. Arbitrarily partition the vertex set of R into s classes Vi, 1 ≤
i ≤ s of size as equal as possible. Let us call a set S ⊂ V (R) crossing
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with respect to this partition if
∣∣S ∩ Vi∣∣ = 1 for each 1 ≤ i ≤ s. We

will count the number of crossing sets S, with respect to the vertex

partition V1 ∪ · · · ∪ Vs of R, which contain at least one edge of R and

show that this number is less than (n/s)s, and thus there exists an

independent set as desired.

We first choose a k-tuple e ∈ R for which |e∩Vi| ≤ 1 for all 1 ≤ i ≤ s,

and include its vertices in S. Since R does not contain any copies of

K(k)
t,...,t, there must be fewer than nk−

1

tk−1 k-tuples in R by Theorem 3.6.

Now, choose the other s − k vertices arbitrarily to complete S; there

are at most (n/s)s−k choices for these vertices. Thus, if we denote by

m the total number of crossing sets S which contain at least one edge

from R, we see

m < (nk−
1

tk−1 )

(
n

s

)s−k
≤
(
n

s

)s
where the second inequality holds because n ≥ skt

k−1
by assumption.

In conclusion, there must be at least one independent crossing set in

R.

Note that, in a red-blue coloring of K(k)
n , the independent set of

Lemma 3.7 corresponds to a blue clique. Therefore, we now have the

upper bound for r(K(k)
t,...,t,K

(k)
s ) which we claimed. To obtain the lower

bound, we use the standard probabilistic argument to show the follow-

ing.

Proposition 3.8. Given k, s ≥ 3 and t ≥ 2 such that t = so(1) as

s→∞,

r(K(k)
t,...,t,K(k)

s ) ≥ st
k−1
(
k−1−o(1)

k

)
,

where o(1)→ 0 as s→∞.
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Proof. Let ε > 0 be given. We will show that there exists an s0 such

that for all s ≥ s0,

r(K(k)
t,...,t,K(k)

s ) ≥ st
k−1
(
k−1−ε
k

)
.

Set N = st
k−1
(
k−1−ε
k

)
, p = N

−k
tk−1 , and consider the random two-

coloring of
(

[N ]
k

)
with each k-tuple colored red independently with prob-

ability p and blue with probability 1− p. We will verify that, given our

choices of p and N , the expected number of red copies of K(k)
t,...,t and

blue copies of K(k)
s are, in total, fewer than one, i.e. we show(

N

t

)k
pt
k

+

(
N

s

)
(1− p)(

s
k) < 1.

Therefore, there exists a k-graph on N vertices which has neither a red

copy of K(k)
t,...,t nor a blue copy of K(k)

s .

First observe that, due to our choice of p and t ≥ 2,(
N

t

)k
pt
k

<
N tk

(t!)k
N−kt <

1

2
.

Next we will verify that(
N

s

)
(1− p)(

s
k) ≤

(
Ne

s

)s
e−p(

s
k) <

1

2
,

by showing

s logN < p

(
s

k

)
.

In view of the fact that p = N
−k
tk−1 = s1−k+ε and logN ≤ tk−1 log s, and

using our assumption that t = so(1), we conclude that for s ≥ 3,

s logN ≤ stk−1 log s ≤ s1+o(1) ≤ s1+ε−k
(
s

k

)
= p

(
s

k

)
,
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finishing the argument.

3.3 Some Preliminaries

In this section, we set up some definitions and state a couple of technical

lemmas which will be used to prove Theorem 3.2. Throughout the

section, we will let H be a k-partite k-graph and G a k-partite (k− 1)-

graph. Both H and G will have the same vertex set, V =
⋃k
i=1 |Vi|,

with |V1| = |V2| = · · · = |Vk| = n.

Definition 3.9 (Clique hypergraph). For G as above, let Kk(G) denote

the k-uniform clique hypergraph of G on the same vertex set. The edges

of Kk(G) are formed by the vertex sets of the cliques of G, i.e.,

Kk(G) =

{
e ∈

(
V (G)

k

)
:

(
e

k − 1

)
⊂ G

}
.

Note that, since G is a k-partite (k − 1)-graph, Kk(G) is a k-partite

k-graph. The next definition is crucial.

Definition 3.10 ((ε, ρ)-dense). Given constants 0 < ρ, ε < 1, a k-

graph H as described above is (ε, ρ)-dense if, for any (k − 1)-graph G
as above and with |Kk(G)| ≥ εnk, it follows that

|H ∩ Kk(G)| ≥ ρ|Kk(G)|.

Given k-graphs T ⊆ K(k)
t,...,t and S ⊆ K(k)

s , our goal is to construct

a k-graph R such that R ind−→ (T ,S). To construct such a k-graph,

we will first build an auxiliary k-partite k-graph H with the following

property. In any red-blue coloring of the edges of H, either there is

a red induced copy of T or the set of blue edges of H is (ε, ρ)-dense.

Later, we will show how to use this condition on R in order to embed

S.
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Fix an arbitrary (k−1)-graph G as above with |Kk(G)| ≥ εnk. In order

to show that the blue edge set (which we label Blue) of H is (ε, ρ)-dense

for some ε and ρ, we must show that |Blue∩Kk(G)| ≥ ρ|Kk(G)|. Before

introducing the technical lemma of this section, which guarantees the

existence of such a k-graph H, we need additional definitions.

Definition 3.11 (Underlying hypergraph, G-complete). Let H and G
be given as above, and let T0 be an induced subgraph of H.

(i) The subgraph of Kk(G) induced on V (T0), denoted UT0, is called

the underlying hypergraph of T0.

(ii) An induced subgraph T0 of H is called G-complete if its underlying

hypergraph UT0 is a complete k-partite k-graph.

We will denote by
(H
T

)
G the family of all complete k-partite k-graphs

which are underlying hypergraphs of induced copies of T in H.

Definition 3.12 (Transversal). Let H and G be given as above, and

also let T ⊆ K(k)
t,...,t be given.

(i) A set L ⊂ Kk(G) is transversal to the set
(H
T

)
G if the intersection

of L with the edge set of each member of
(H
T

)
G is nonempty.

(ii) Denote by tr(T ,G,H) the minimum size of a such a transversal

set L.

We now continue the monologue which preceded Definition 3.11. Fix

a red-blue edge coloring of H which contains no red induced copy of

T . Let Blue denote the set of blue edges of H. We want to show that

Blue is (ε, ρ)-dense for some constants 0 < ε, ρ ≤ 1. Therefore, for

any (k − 1)-graph G as above with |Kk(G)| ≥ εnk, we must show that

|Blue ∩ Kk(G)| ≥ ρ|Kk(G)|.
Since, by definition, any G-complete copy of T , say T0 ⊂ H, is induced

in H, it follows that T0 must contain at least one blue edge, and so
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UT ⊃ T must also contain a blue edge. Let B ⊆ Blue be the set of blue

edges of G-complete copies of T in H. Since H contains no induced red

copy of T , it follows that B is transversal to
(H
T

)
G. Therefore, by the

definition of tr(T ,G,H), it follows that

|Blue ∩ Kk(G)| ≥ |B| ≥ tr(T ,G,H).

Thus in order to show that Blue is (ε, ρ)-dense, it suffices to show that

tr(T ,G,H) ≥ ρ|Kk(G)|.

Remark 3.13. Note that in our definition of the transversal set L, we

have not required that L ⊂ H. In fact, in Definition 3.12 we allow L
to contain edges of both H and K(k)

n,...,n \ H as long as each edge belongs

to a complete k-partite k-graph which is underlying some induced copy

of T in H.

While this is somewhat less straightforward, it turns out to be easier

to bound tr(T ,G,H) than bounding |Blue| directly.

Lemma 3.14. Let ε > 0, integers k ≥ 3 and t sufficiently large as well

as T ⊆ K(k)
t,...,t be given. Set

n = et
k logk(2k+1/ε) and ρ = e−3kt (3.2)

Then there exists H ⊆ K(k)
n,...,n such that, for all G as above and with

|Kk(G)| ≥ εnk,

tr(T ,G,H) ≥ ρ|Kk(G)|. (3.3)

The proof of Lemma 3.14 will be given in Section 3.5. The next

corollary follows directly from Lemma 3.14 and the discussion preceding

it.

Corollary 3.15. Let ε > 0, integers k ≥ 3 and t sufficiently large

as well as T ⊆ K(k)
t,...,t be given. There exists a k-partite k-graph H ⊂
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K(k)
n,...,n, with n = et

k logk(2k+1/ε), such that the following holds. For every

red-blue coloring of the edges of H, there is either a red induced copy

of T or the blue edges of H form an (ε, ρ)-dense k-graph with ρ =

e−3kt.

Construction 3.16. ( of Ramsey k-graph R) Now we will use the k-

partite k-graph H obtained in Corollary 3.15 to construct a k-graph

R. For a given integer s > 0, let a k-graph S ⊆ Ks, be given on

the vertex set [s]. We construct an s-partite k-graph R with vertex

partition
⋃s
i=1 Ws, with |W1| = · · · = |Ws| = n as follows. For each

(i1, . . . , ik) ∈ S, let R[Wi1 ∪ · · · ∪ Wik ] be an isomorphic copy of H
(with an arbitrary isomorphism Vj → Wij), which is obtained from

Corollary 3.15. If (j1, . . . , jk) /∈ S then let R[Wj1 ∪· · ·∪Wjk ] be empty.

In summary, R has

V (R) =
s⋃
i=1

Wi

E(R) =
⋃

(j1,...,jk)∈S

H(Wj1 ∪ · · · ∪Wjk),

where H(Wj1∪· · ·∪Wjk) is a copy of H on the vertex set Wj1∪· · ·∪Wjk .

If R contains no induced red copy of T , we will find an embedding

of a given k-graph S into R such that every edge in the image is blue.

To accomplish this, we will use the following embedding lemma:

Lemma 3.17. For a fixed positive integer s, let 0 < ρ < 1/2, ε < ρs
k

and 2 ≤ k ≤ s be given. Suppose that R is a k-graph which satisfies:

• V (R) = V1 ∪ · · · ∪ Vs, |V1| = · · · = |Vs| = n, and

• for each (i1, . . . , ik) ⊂ [s], the subgraph R[Vi1 ∪ · · · ∪ Vik ] is (ε, ρ)-

dense.
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Then, for every k-graph S on the vertex set V (S) = [s], there are

(ρ/2)|S
(k)|ns

partite copies of S in R, i.e. copies of S in R whose embedding maps

each i ∈ [s] to a vertex of Vi.

Note that the idea for the proof of Lemma 3.17 is based on the proof of

Theorem 2.2 in [27]. In particular, we modify the proof to accommodate

for (ε, ρ)-dense k-graphs.

3.4 Proof of Theorem 3.2

The reader may observe that the Construction 3.16 and Lemma 3.17

together form the basis of the proof of Theorem 3.2. Here we will for-

malize the proof by combining these two elements as well as give the

argument bounding the order of R. In the proof we will assume that s

and t given in the theorem are sufficiently large to satisfy Corollary 3.15

and Lemma 3.17. Note that this can be assumed without loss of gen-

erality since the finitely many cases not covered by our approach can

be dealt with by the choice of ck large enough.

Proof of Theorem 3.2. Let t ≥ t0 where t0 is the minimum value of t

which satisfies the conditions of Lemma 3.14. Set ρ = e−3kt and let H
be the k-partite k-graph obtained from Corollary 3.15 with ε = ρs

k
.

Let n be the size of each class of H given by Corollary 3.15, namely

n = exp(tk logk(2k+1/ε)) = exp

(
tk logk

(
2k+1

ρsk

))
= exp

(
tk logk

(
2k+1(e3kt)s

k))



48

< exp

(
tk logk

(
e4ktsk

))
= e(4k)kt2ksk

2

.

Let R be the k-graph given in Construction 3.16. We need to show

that any 2-coloring of R necessarily yields either a red induced copy of

T or a blue induced copy of S.

Fix a 2-coloring of R with no red induced copy of T , and let Blue

be the subgraph of R consisting of blue edges. If (i1, . . . , ik) ∈ S then,

R[Vi1 ,∪ · · · ∪ Vk] is isomorphic to H. Therefore, by Corollary 3.15,

Blue[Vi1 ,∪ · · · ∪ Vik ] is (ε, ρ)-dense. Further, by the construction of R,

it follows that for (i1, . . . , ik) /∈ S the subgraph R[Vi1 ∪ · · · ∪ Vik ] is

empty.

Notice that the k-graph Blue ⊂ R satisfies the conditions of

Lemma 3.17. It follows that there are at least

(ρ/2)|S|ns ≥ (ρ/2)s
k

(1/ε)s ≥ (ρ/2)s
k

(1/ρs
k+1

) ≥ 1

partite copies of S in R. Consequently, there is an isomorphism φ of S
into Blue such that φ(i) ∈ Vi for all i ∈ [s]. In conclusion, in view of

Construction 3.16,

R ind−→ (T ,S) ,

so for t ≥ t0, rind(T ,S) ≤ sn ≤ s · e(4k)k t2ksk
2

. Thus there exists a

constant ck such that for all t and s, rind(T ,S) ≤ exp(ck t
2ksk

2
) as

claimed.

3.5 Proof of Lemma 3.14

We begin this section by providing an outline of the proof of Lemma 3.14.

To show the existence of a k-graph H ⊆ K(k)
n,...,n, we will generate a ran-

dom k-partite k-graph by sampling each of the nk crossing k-tuples
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independently with probability 1/2.

We need to show that, for all choices of a k-partite (k − 1)-graph G
on the same vertex set as H and with |Kk(G)| ≥ εnk, inequality (3.3)

holds. To this end, for a fixed G denote by A(G) the event that any set

L ⊂ Kk(G) transversal to
(H
T

)
G must satisfy |L| ≥ ρ|Kk(G)|. We need

to show that

P
(⋂
G

A(G)
)
> 0 (3.4)

where G runs over all k-partite (k−1)-graphs with |Kk(G)| > εnk. This

will follow by showing

P(A(G)) < 2−kn
k−1

(3.5)

for each G since there are only at most 2kn
k−1

possible choices of G.

For a fixed L ⊂ Kk(G), |L| < ρ|Kk(G)| let A(G,L) denote the event

that L is transversal to
(H
T

)
G.

Since A(G) =
⋃
LA(G,L) where the union is taken over all L with

|L| < ρ|Kk(G)|, (3.5) will follow from:

Lemma 3.18. Let ε > 0, integers k ≥ 3 and t sufficiently large be given

as well as a k-graph T ⊆ K(k)
t,...,t. Set n and ρ as in (3.2). Fix a k-partite

(k − 1)-graph G on vertex set V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n with

|G| ≥ εnk and L ⊂ G with |L| < ρ|Kk(G)|. Let the random k-graph H
and the event A(G,L) be as above. Then

P(A(G,L)) < 2−kn
k−1

(
|Kk(G)|
ρ|Kk(G)|

)−1

Indeed (3.5) follows since there are at most
( |Kk(G)|
ρ|Kk(G)|

)
choices of L

satisfying |L| < ρ|Kk(G)|. Consequently, in order to prove Lemma 3.14,

it will be sufficient to verify Lemma 3.18.

An equivalent phrasing of the event A(G,L) is that there is no G-
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complete copy of T in H with underlying clique contained in Kk(G)\L.

Therefore, in order to prove Lemma 3.18, consider the set of copies of

K(k)
t,...,t in Kk(G) \ L. Fix one such copy of K(k)

t,...,t and consider the event

that this K(k)
t,...,t underlies an induced copy of T . The event A(G,L)

occurs if and only if this happens for at least one K(k)
t,...,t ⊂ Kk(G) \ L.

Therefore we want to compute the probability that none of these events

occur. To achieve this we use the following proposition from [20].

Proposition 3.19. Let A,Q be finite sets, {Eq}q∈Q be a collection of

independent random indicator variables and {Q(α)}α∈A be a family of

subsets of Q. Define Iα =
∏

q∈Q(α) Eq and X =
∑

α∈A Iα. Moreover,

define

µ = EX =
∑
α∈A

E(Iα) and ∆ =
∑
α∼β

E(IαIβ),

where α ∼ β if Q(α) ∩Q(β) 6= ∅ but α 6= β.

Then,

P(X = 0) ≤ exp

(
−1

2

µ2

µ+ ∆

)
.

In Lemma 3.18, the objects of interest are G-complete induced copies

of T in H. Proposition 3.19 cannot be directly used to count induced

subgraphs. However, by more carefully selecting a family of copies

of K(k)
t,...,t on which to look for induced copies of T , we will be able

to apply the proposition. In particular we will do the following (see

i.e Claim 3.21). Subpartition each class of vertices Vi ⊂ V (H) into t

parts, Vi = Vi,1 ∪ · · · ∪ Vi,t. Find a “large” family of copies of K(k)
t,...,t

in Kk(G) \ L with precisely one vertex in each class Vi,j. In order to

bound ∆ in Proposition 3.19 it will also be necessary that the number

of copies of K(k)
t,...,t which contain any given edge is bounded. Finally, we

fix an ordering of the vertices of T , and require that the embedding of

T into H be partite induced, which is defined in Definition 3.20 below.
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Definition 3.20 (Partite induced embedding/copy). For a given inte-

ger k ≥ 3, let H be a k-partite k-graph with vertex classes V1, . . . , Vk.

Further, for a given integer t ≥ 1 and i = 1, . . . , k, let {Vi,j}tj=1 be

a fixed partition of Vi into t subsets. Given a k-graph T ⊆ K(k)
t,...,t on

labelled vertex set V (T ) =
⋃k
i=1 Ui, Ui = {ui,1, . . . , ui,t}. we call a map

ϕ : V (T )→ V (H) a partite induced embedding of T if

• ϕ(ui,j) ∈ Vi,j for all ui,j ∈ V (T )

• ϕ(e) ∈ H for all e ∈ T ,

• ϕ(f) /∈ H for all f ∈
(
V (T )
k

)
\ T .

We say that T ′ ⊆ H is a partite induced copy of T if it is the image

of a partite induced embedding of T into H.

Recall we want to show that, for fixed G and L, the probability of

avoiding a G-complete copy of T in H whose underlying graph is con-

tained in Kk(G) \ L is less than 2−kn
k−1( |Kk(G)|

ρ|Kk(G)|

)−1
. We will use Propo-

sition 3.19 with the family {Qα} = F , which will be defined in the

following claim.

Claim 3.21. Let ε > 0 and n be as in Lemma 3.18. Further, fix a k-

partite (k−1)-graph G on vertex set
⋃k
i=1 Vi, |V1| = · · · = |Vk| = n with

at least εnk edges. Also let L ⊂ G, |L| < ρ|Kk(G)| be given. There exist

partitions Vi =
⋃
j∈[t] Vi,j, 1 ≤ i ≤ k, and a family F = F(Kk(G) \ L)

of partite induced copies of K(k)
t,...,t in Kk(G) \ L satisfying:

(i) |F| ≥ e−kt
(

ε

2k+1

)ktk(
n

t

)k
.

(ii) For every k-tuple e ∈ Kk(G) \ L, the number of copies of K(k)
t,...,t

in F that contain the k-tuple e is at most ekt
6tk |F|
|Kk(G)|

.
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We postpone the proof of Claim 3.21 until Subsection 3.5.1 and are

now ready to start the formal proof of Lemma 3.18.

Proof of Lemma 3.18. Fix the vertex set V =
⋃k
i=1 Vi, Vi =

⋃t
j=1 Vi,j

as well as a k-partite (k − 1)-graph G and family F of copies of K(k)
t,...,t

in G as in Claim 3.21. Let H be a random k-graph on
⋃k
i=1 Vi gen-

erated by sampling each k-tuple in V1 × · · · × Vk independently and

with probability 1/2. Finally, fix a labeling of the vertices of T by ui,j,

i = 1, . . . , k, j = 1, . . . , t.

We want to count the number of partite induced copies of T in H ∩
(Kk(G)\L) for which the vertex ui,j is mapped into the set Vi,j. SinceH
is a random k-graph, then this number is a random variable. Therefore,

we will define a random variable Ex1,...,xk by

Ex1,...,xk =

1, if (x1, . . . , xk) ∈ H

0, otherwise.

This random variable only counts the number of k-tuples in H. If we

let ji ∈ [t] be such that xi ∈ Vi,ji for i = 1, . . . , k, then we only wish to

count the k-tuple (x1, . . . , xk) if one of the following holds:

• (x1, . . . , xk) ∈ H and (u1,j1 , . . . , uk,jk) ∈ T

• (x1, . . . , xk) /∈ H and (u1,j1 , . . . , uk,jk) /∈ T .

To this end we will define the random variable E ′x1,...,xk by

E ′x1,...,xk =

Ex1,...,xk if (u1,ji , . . . , uk,jk) ∈ T

1− Ex1,...,xk otherwise.
(3.6)

Note that the indicator variables {E ′x1,...,xk : (x1, . . . , xk) ∈ V1 × · · · ×
Vk} are mutually independent. Further, for any fixed K ∈ F , we can
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describe the event “K∩H is a partite induced copy of T ” as a product

of the indicator variables defined in (3.6), namely

IK =
∏

(x1,...,xk)∈K

E ′x1,...,xk . (3.7)

Indeed, if X1 ∪ · · · ∪Xk is the vertex set of K, then Ex1,...,xk = 1 for all

(x1, . . . , xk) ∈ X1×· · ·×Xk if and only if ui,ji 7→ xi,ji is an isomorphism.

Let X =
∑
K∈F IK, i.e. X counts the number of partite induced copies

of T are in H with an underlying k-graph from F . Recall that if the

event A(G,L) occurs, then there are no G-complete copies of T in H.

However, this immediately implies that no member of F can be the

underlying k-graph of an induced copy of T in H. Thus if A(G,L)

occurs, then X = 0 necessarily. In conclusion, we deduce that

P(A(G,L)) ≤ P(X = 0). (3.8)

Therefore to prove Lemma 3.18, it is sufficient to show that P(X =

0) ≤ 2−kn
k−1( |Kk(G)|

ρ|Kk(G)|

)−1
. To obtain this bound, we can apply Janson’s

inequality to the random variable X. For this, it will be necessary to

calculate the expectation of X as well as ∆, where the sum for the

latter is taken is over all pairs of distinct K,K′ ∈ F that share at least

one k-tuple. Since each indicator variable Ex1,...,xk is independent and

has probability 1/2 of being equal to 1, it is clear that

EX = |F| 2−tk (3.9)

If K,K′ ∈ F intersect at ` edges, then

EIKIK′ = 2`−2tk .

The number of pairs K,K′ ∈ F that intersect in more than one edge is
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at most

|F| · nkt−(k+1),

since once K is fixed, any K′ intersecting K at two or more k-tuples

must be such that |V (K) ∩ V (K′)| ≥ k + 1. On the other hand, the

number of pairs K,K′ ∈ F that intersect in exactly one edge (and only

the k vertices of that edge) can be bounded by Claim 3.21(ii) as

|F| · tk · ekt 6tk |F|
|Kk(G)|

= 6t2kekt
|F|2

|Kk(G)|
.

Consequently,

∆ =
∑
K∼K′

EIKIK′

≤ 21−2tk
(

6t2kekt
|F|2

|Kk(G)|

)
+ 2−t

k

(
|F| · nkt−(k+1)

)
.

(3.10)

We will show that the RHS of (3.10) can be bounded above by

21−2tk
(

7t2kekt
|F|2

|Kk(G)|

)
. (3.11)

This is equivalent to showing,

2−t
k |F|nkt−(k+1) ≤ 21−2tkt2kekt

|F|2

|Kk(G)|
,

or rather

|F| ≥ 2t
k−1nkt−(k+1) 1

t2kekt
|Kk(G)|.

Since |Kk(G)| ≤ nk, the previous inequality will hold if

|F| ≥ 2t
k−1nkt−1 1

t2kekt
.
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Consequently, in view of Claim 3.21 it will be sufficient to verify that

e−kt
(

ε

2k+1

)ktk(
n

t

)kt
≥ 2t

k−1nkt−1 1

t2kekt
, (3.12)

or equivalently that

n ≥
(

2k+1

ε

)ktk
tkt2t

k−1 1

t2k
.

Further, it will suffice to show

n ≥
(

2k+1

ε

)ktk
tkt2t

k

.

This is true however, since

n1/tk = elogk(2k+1/ε) =

(
2k+1

ε

)logk−1(2k+1/ε)

≥
(

2k+1

ε

)((k+1) log 2)k−1

>

(
2k+1

ε

)k+2

>

(
2k+1

ε

)k
· 4 >

(
2k+1

ε

)k
· 2 · tk/tk−1

.

Therefore, in view of (3.11), we have verified

∆ ≤ 21−2tk
(

7t2kekt
|F|2

|Kk(G)|

)
. (3.13)

Now we will apply Janson’s inequality (Proposition 3.19) to bound

P(X = 0) by,

P(X = 0) ≤ exp

(
−1

2

(EX)2

EX +
∑
K∼K′ EIKIK′

)
(3.14)
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≤ exp

(
−1

2

(EX)2

EX + ∆

)
.

We will show that the RHS of (3.14) can be bounded above by

exp

(
−|Kk(G)|
e2kt

)
. (3.15)

If EX ≥ ∆ then the last expression in (3.14) can be simplified to

exp
(
−1

4
EX

)
which, in view of (3.9), is smaller than exp(−|F|/(4 ·2tk)).

Therefore, it suffices to show that

exp

(
− |F|

4 · 2tk
)
≤ exp(−|Kk(G)|),

since exp(−|Kk(G)|) < exp(−|Kk(G)|/e2kt). Next we show the equiva-

lent statement,

|F| ≥ 4 · 2tk |Kk(G)|. (3.16)

Recall that the family F has the properties given in Claim 3.21 and

hence,

|F| ≥ e−kt
(

ε

2k+1

)ktk(
n

t

)kt (3.12)

≥ 2t
k−1nkt−1

(
1

t2kekt

)
. (3.17)

Next we will show that the right hand side of (3.17) is larger than

2t
k+2nk ≥ 4 · 2tk |Kk(G)|,

establishing (3.16). This is equivalent to showing

nk(t−1)−1 > nk(t−2) ≥ 8t2kekt,

which, in view of the fact that n = et
k logk(2k+1/ε) from the assumption

of Lemma 3.18, clearly holds.
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On the other hand, if EX < ∆ then the last expression in (3.14) can

be simplified to exp
(
−1

4
(EX)2

∆

)
. Then it follows that

P(X = 0) ≤ exp

(
−(EX)2

4∆

)
(3.9),(3.13)

≤ exp

(
− (|F|2−tk)2

4 · 21−2tk(7t2kekt|F|2/|Kk(G)|)

)
= exp

(
−|Kk(G)|

56t2kekt

)
≤ exp

(
−|Kk(G)|

e2kt

)
,

where the last inequality hold for t sufficiently large.

We have now verified, in both cases, that

P(X = 0) ≤ exp(−|Kk(G)|/e2kt)

as claimed. Finally, we will show that

exp

(
−|Kk(G)|

e2kt

)
≤ 2−kn

k−1

(
|Kk(G)|
ρ|Kk(G)|

)−1

,

which will complete the proof since, recalling (3.8), P(X = 0) ≥
P(A(G,L)). We will now use the value of ρ that we set in (3.2), namely

ρ = e−3kt. In what follows next, we will use the bound,(
|Kk(G)|
ρ|Kk(G)|

)
≤ exp

(
ρ|Kk(G)| log(e/ρ)

)
≤ exp

(
(3kt+ 1)|Kk(G)|

e3kt

)
≤ exp

(
|Kk(G)|

2e2kt

)
.

(3.18)

Using this we deduce,
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(
|Kk(G)|
ρ|Kk(G)|

)
P(X = 0)

(3.15),(3.18)
< exp

(
|Kk(G)|

2e2kt

)
exp

(
−|Kk(G)|

e2kt

)
= exp

(
−|Kk(G)|

2e2kt

)
≤ exp

(
− εnk

2e2kt

)
� e−kn

k−1

,

(3.19)

where the last inequality holds because by (3.2), n = et
k logk(2k+1/ε) �

2e2kt/ε.

3.5.1 Proof of Claim 3.21

For the proof of Claim 3.21, we use the following result of Nikiforov [24,

Theorem 3] which also follows from a more general result of Erdős and

Spencer [15, Theorem 12.2].

Lemma 3.22. Let α ∈ R, and t, n ∈ N be such that

2k exp

(
−1

k
(log n)1/k

)
≤ α ≤ 1, and tk ≤ log n. (3.20)

If A ⊆ K(k)
n,...,n contains at least αnk k-tuples, then there are at least

(
α

2k

)ktk(
n

t

)k
(3.21)

copies of K(k)
t,...,t in A.

Proof of Claim 3.21. Let us start by defining a sequence of families

∅ = F0 ⊂ F1 ⊂ · · · ⊂ FM of copies of K(k)
t,...,t ⊆ Kk(G) \L, with |Fi| = i,
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and

M =

(
ε

2k+1

)ktk(
n

t

)k
(3.22)

as follows.

Let 0 ≤ i < M and suppose that Fi has been constructed already

(F0 = ∅). For a k-tuple e ∈ Kk(G) \ L, let degi(e) denote the number

of K ∈ Fi such that e ∈ K.

Let Ai ⊂ Kk(G) \ L be the k-graph consisting of the |Kk(G)|/2 k-

tuples with smallest degi(·), breaking ties arbitrarily. By construction

|Ai| = |Kk(G)|/2 ≥ εnk/2. We will now apply Lemma 3.22 in order

to show that there is a copy of K(k)
t,...,t with edges in Ai which we did

not yet include in Fi. To this end, let α = ε/2, and recall that n =

et
k logk(2k+1/ε). Solving for ε yields

α =
ε

2
= 2k exp

(
−1

t
(log n)1/k

)
≥ 2k exp

(
−1

k
(log n)1/k

)
,

thus α, t, n, and Ai together satisfy the conditions of Lemma 3.22.

Consequently, there are at least M copies of K(k)
t,...,t in Ai. Since |Fi| =

i < M , there is a copy Ki+1 of K(k)
t,...,t in Ai which does not belong to Fi.

Let Fi+1 = Fi ∪ {Ki+1}.
Now that we have constructed FM , let us bound maxe degM(e) as

follows. Let e∗ ∈ Kk(G) \ L be a k-tuple with maximum degM(e∗).

Suppose that i = i(e∗) ∈ {0, 1, . . . ,M−1} is the largest index for which

the element Ki+1 ∈ Fi+1 \ Fi satisfies e∗ ∈ Ki+1. By the definition of i,

we have degM(e∗) = degi+1(e∗) = degi(e
∗) + 1. Since e∗ ∈ Ki+1 ⊂ Ai,

by the definition of Ai every k-tuple e ∈ Kk(G) \ (L ∪ Ai) satisfies

degi(e) ≥ degi(e
∗) = degM(e∗)− 1.

Since our goal is to show that an upper bound for degM(e∗) is given by

Claim 3.21(ii), we may assume degM(e∗) > 1. Also, recalling from (3.2)
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that ρ = e−3kt, we will use the fact that |L| < ρ|Kk(G)| < |Kk(G)|/6.

From this we derive,

∑
e∈Kk(G)\L

degi(e) ≥
(
|Kk(G) \ L| − |Kk(G)|

2

)
(degM(e∗)− 1)

>
|Kk(G)|

3

degM(e∗)

2
.

On the other hand, ∑
e∈Kk(G)\L

degM(e) = Mtk,

since each element of FM contributes to the degree of tk k-tuples. It

follows that

max
e∈Kk(G)\L

degM(e) = degM(e∗) ≤ 6tk
M

|Kk(G)|
. (3.23)

We will use (3.23) to establish condition (ii) after we finish selecting a

subfamily F ⊂ FM .

Consider random partitions Vi =
⋃
j∈[t] Vi,j of the sets V1, . . . , Vk.

More precisely, an element v ∈ Vi is selected to be in part Vi,j, j ∈ [t],

independently and uniformly with probability 1/t. LetK ∈ FM be fixed

and consider the probability that |V (K) ∩ Vi,j| = 1 for all 1 ≤ i ≤ k,

1 ≤ j ≤ t. Such an event happens if and only if all of the t vertices

of V (K) ∩ Vi are selected to different parts for all i = 1, . . . , k. The

probability of the event is then(
t!

tt

)k
≥ 1

ekt
.

It follows that the expected number of K ∈ FM satisfying |V (K) ∩
Vi,j| = 1 for all i, j, is e−ktM . In particular, there exist partitions Vi =
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⋃
j∈[t] Vi,j, i = 1, . . . , k for which at least e−ktM elements K ∈ FM

satisfy |V (K) ∩ Vi,j| = 1 for all i, j. Let F ⊂ FM be the set of all

such K. Clearly, this choice of F implies that every K ∈ F is partite

induced with respect to the chosen partition. Since |F| ≥ e−ktM and

in view of (3.22), F satisfies (i) of Claim 3.21. Moreover, by (3.23),

F ⊂ FM also satisfies (ii).

3.6 Proof of Embedding Lemma

Proof of Lemma 3.17. The proof uses induction on the number of edges

of S = S(k). Without loss of generality, assume that V (S) = [s].

The result is trivial for an empty k-graph S so let us assume that the

hypergraph has at least one edge (without loss of generality, let [k] =

{1, . . . , k} ∈ S be that edge). Let S− = S \ [k] be the k-graph which

arises by removing the edge [k] from S, and let S∗ be the subgraph of

S (or S−) induced on the vertex set {k + 1, k + 2, . . . , s}.
Let d = ρ/2. By the induction assumption, the number of partite

copies of S− in R is at least d|S|−1ns. For a copy S∗copy of S∗ in R,

define ext
(
S∗copy

)
by,

ext
(
S∗copy

)
=
{
e ∈ V1 × · · · × Vk : S− ⊆ R[e ∪ V (S∗copy)]

}
.

Consider the family

Λ =
{
S∗copy : |ext(S∗copy)| ≥ d|S|−1nk/2

}
.

Since the number of (partite) copies of S∗ in R is at most ns−k, the

total number of copies of S− in R which extend some S∗copy not in Λ is

at most

ns−k · d|S|−1nk/2 ≤ d|S|−1ns/2.
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Consequently, at least d|S|−1ns/2 copies of S− extend a copy of S∗

contained in Λ.

Fix an arbitrary S∗copy ∈ Λ and note that ext(S∗copy) is a k-partite k-

graph with vertex classes V1, . . . , Vk. Define the k-partite, (k−1)-graph

G on the vertex set V (G) = V1 × · · · × Vk by

GS∗copy =

{(
e

k − 1

)
: e ∈ ext(S∗copy)

}
.

Claim 3.23. Kk(GS∗copy) = ext(S∗copy).

To prove Claim 3.23, notice that to say ext(S∗copy) ⊆ Kk(GS∗copy) means

that every k-tuple e ∈ ext(S∗copy) induces a clique in GS∗copy . This

however, directly follows from the definition of GS∗copy . Thus it suf-

fices to prove that Kk(GS∗copy) ⊆ ext(S∗copy), i.e. there are no k-tuples

f /∈ ext(S∗copy) such that the clique
(
f
k−1

)
is contained in GS∗copy .

Suppose f ∈ V1 × · · · × Vk is given such that f /∈ ext(S∗copy). Then

the induced subgraph of R on f ∪ V (S∗copy) does not contain a partite

copy of S−. This implies that there is some edge, say f ′, missing from

R[f ∪ V (S∗copy)], which should be present to form a partite copy of S−.

Further, f ∩ f ′ 6= ∅, otherwise f ′ ⊂ V (S∗copy) which is impossible since

we know that all of the edges of S∗copy are present. Let Z ∈
(
f
k−1

)
be an

arbitrary (k− 1)-subset of f containing f ∩ f ′. Since Z contains f ∩ f ′,
then for any e′ ∈ V1 × · · · × Vk containing Z, R[e′ ∪ V (S∗copy)] is not a

copy of S−, i.e. there is no e ∈ ext(S∗copy) containing Z. It follows from

this and the definition of GS∗copy that Z /∈ GS∗copy , and hence
(
f
k−1

)
is not

contained in GS∗copy . This finishes the proof of Claim 3.23.

Claim 3.23 implies that ext(S∗copy) is a clique hypergraph (see Defi-

nition 3.9. Since by construction |ext(S∗copy)| ≥ d|S|−1nk/2 ≥ εnk, the

fact that R[Vi1 ∪· · ·∪Vik ] is (ε, ρ)-dense and Claim 3.23 together imply

that

|R ∩ ext(S∗copy)| ≥ ρ |ext(S∗copy)|.
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Note that for every k-tuple e ∈ ext(S∗copy) which is also an edge in R,

R[e∪ V (S∗copy)] contains a copy of S. Therefore, the number of partite

copies of S in R is at least∑
S∗copy∈Λ

ρ |ext(S∗copy)| ≥ ρd|S|−1ns/2 = d|S|ns.

Thus we have the desired result.

3.7 A Theorem of Erdős

Here we will restate Erdős’ proof of the following theorem using the

notation in the current chapter.

Theorem 3.24. Let t > 1, c = k log k and n > 2ct
k−1

. Then any

k-graph R on n vertices with |R| ≥ nk−
1

tk−1 contains a copy of K(k)
t,...,t.

In order to prove Theorem 3.24, Erdős uses the following lemma,

which he states and proves in [13]. We will first give this result before

moving on to the proof of Theorem 3.24.

Lemma 3.25. Let S be a set of N elements y1, . . . , yN and let Ai,

1 ≤ i ≤ n, be subsets of S satisfying,

n∑
i=1

|Ai| ≥
nN

w
(3.24)

for some w ≥ 1. Then for all t > 0 such that n ≥ 2t2wt, there are t

distinct A’s, Ai1 , . . . , Ait, so that

∣∣∣∣ t⋂
j=1

Aij

∣∣∣∣ ≥ N

2wt
. (3.25)
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Proof. Let fi : S → {0, 1} be the characteristic function of the set Ai

(i.e. fi(yj) = 1 if yj ∈ Ai and fi(yj) = 0 otherwise). Define another

function F : S → N as

F (y) =
n∑
i=1

fi(y)

Clearly by (3.24),
N∑
j=1

F (yj) ≥
nN

w
. (3.26)

Thus from (3.26) we obtain by an elementary inequality (Jensen’s) that

N∑
j=1

F (yj)
t

is minimal if for all j, F (yj) = n/w, or

N∑
j=1

F (yj)
t ≥ N

(
n

w

)t
. (3.27)

On the other hand we obtain by a simple argument (i.e. expand

F (yj)
t),

N∑
j=1

F (yj)
t =

∑∣∣Ai1 ∩ · · · ∩ Ait∣∣ (3.28)

where the summation in (3.28) is extended over all the choices of

i1, . . . , it, (1 ≤ ir ≤ n). There are
∏t−1

i=0(n− i) ≤ nt choices of i1, . . . , it

where all of the indices are distinct, and (3.25) would be false if the

contribution of these terms to the sum (3.28) would be less than

Nnt

2wt
. (3.29)

The number of summands in (3.28) where not all of the indices are

distinct is easily seen to be less than t2nt−1. The contribution of each
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of these terms to the right side of (3.28) is clearly at most N . Thus

finally from (3.28) and (3.29)

N∑
j=1

F (yj)
t <

Nnt

2wt
+ t2nt−1N. (3.30)

Now since n ≥ 2t2wt, (3.30) contradicts (3.27). Thus (3.25) must hold

for at least one choice of distinct Ai’s 1 ≤ i ≤ t which completes the

proof of the lemma.

Proof of Theorem 3.24. The proof proceeds by induction with respect

to k. The proof of the case k = 2 is given by Turán’s well-known

theorem. However we give Erdős’ proof of this as it shed’s some light

on the methods used for the rest of the proof.

Consider now the case k = 2. Denote the vertices of the graph R(2),

|R(2)| ≥ n2−1/t by x1, . . . , xn and by v(xi) we denote the degree of vertex

xi. Clearly
n∑
i=1

v(xi) ≥ 2n2−1/t. (3.31)

We want to count the pairs (xi, T ) where T ⊆ N(xi) of cardinality t.

Clearly the number of such pairs is

n∑
i=1

(
v(xi)

t

)
. (3.32)

Jensen’s inequality states that the sum (3.32) is minimal if all of the

v(xi) are equal. Thus by a simple computation,

n∑
i=1

(
v(xi)

t

)
≥ n

(
2n1−1/t

t

)
> t

(
n

t

)
.

Hence there are t vertices y1, . . . , yt which are joined to the same t

vertices T which means that R(2) contains a K(2)(t, t) as stated.
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Assume now that the theorem holds for k−1 when n ≥ e(k−1) log(k−1)tk−2
.

We shall prove it for k if n ≥ ek log ktk−1
. Suppose then that we have

a k-graph R(k) with |R(k)| ≥ nk−1/tk−1
. Denote by x1, . . . , xn the ver-

tices of R(k) and by y1, . . . , yN , N =
(
n
k−1

)
the set of all (k − 1)-tuples

formed from the xi, 1 ≤ i ≤ n. E
(k)
1 , . . . , E

(k)
m denotes the k-tuples of

R(k), m ≥ nk−1/tk−1
. To apply Lemma 3.25, denote by Ai the set of

all (k − 1)-tuples yj such that yj ∪ xi = E
(k)
` for some 1 ≤ ` ≤ m. We

evidently have

n∑
i=1

|Ai| = km ≥ knk−1/tk−1

> nN(k!n−1/tk−1

).

Thus Lemma 3.25 applies with N =
(
n
k−1

)
, w = n1/tk−1

/k! as long as

w ≥ 1. Indeed since n ≥ ek log ktk−1
, it follows that

w =
n1/tk−1

k!
≥
(
ek log ktk−1)1/tk−1

k!

=
kk

k!
> 1.

We thus obtain from Lemma 3.25 that there are t distinctA’sAi1 , . . . , Ait

for which∣∣∣∣ t⋂
j=1

Aij

∣∣∣∣ ≥ 1

2

(
n

k − 1

)
(k!n−1/tk−1

) > n(k−1)−(1/tk−2). (3.33)

By (3.33) there are more than n(k−1)−1/tk−2
(k − 1)-tuples

E
(k−1)
1 , . . . , E(k−1)

m1
, m1 > n(k−1)−1/tk−2

, (3.34)

so that all the k-tuples

{xij ∪ E(k−1)
s : 1 ≤ j ≤ t, 1 ≤ s ≤ m1} (3.35)
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are in R(k).

These (k − 1)-tuples define a (k − 1)-graph R(k−1) on n − t vertices

for which

|R(k−1)| = m1 > n(k−1)−(1/tk−2).

By our induction hypothesis, R(k−1) contains a K(k−1)
t,...,t since clearly

n ≥ ek log(k)tk−1
> t + n(k−1) log(k−1)tk−2

. By (3.35) this implies that our

R(k) contains a K(k)
t,...,t which proves the theorem.
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graph, in Random graphs ’87 (Poznań, 1987), Wiley, Chichester, 1990,

pp. 73–87.

[21] G. Katona, T. Nemetz, and M. Simonovits, On a problem of

Turán in the theory of graphs, Mat. Lapok, 15 (1964), pp. 228–238.
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