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Abstract 
 
 

Estimating Lymphatic Filariasis Morbidity in Haiti Using Respondent-Driven Sampling: A 
Simulation Study 

By Alexia Couture 
 

	
Accurately estimating the size and composition of hidden populations is important and needed in 
public health for a number of reasons. In this thesis, we focus on one such hidden population: those 
suffering morbidity from Lymphatic Filariasis (LF). Over time, LF can lead to lymphedema (fluid 
collection and severe swelling of extremities) and/or hydrocele (severe swelling of the scrotum in 
males). These can lead to reduced mobility, financial hardships, and social isolation for affected 
individuals, which causes them to become hidden. Respondent Driven Sampling (RDS) is a method 
developed for assessing the population size of hidden populations where the sample accrues by 
referrals based on an assumption of social network ties between affected individuals and/or their 
families or support groups. Using RDS to estimate the numbers of individuals experiencing 
lymphedema and/or hydrocele in conjunction with the Successive Sampling – Population Size 
Estimation (SS-PSE) method has potential to produce an accurate estimate for the morbidity of LF 
with associated levels of uncertainty. Having an accurate estimate will not only aid in ongoing efforts 
regarding the surveillance of LF in Haiti and, potentially, aid in elimination efforts for neglected 
tropical diseases (NTDs) globally, but could also be implemented more widely across many public 
health areas with hidden populations to provide accurate estimates requiring less cost, less time, and 
fewer resources in general.  To explore whether RDS will work to accurately estimate our population 
of interest, lymphedema and hydrocele, we simulate the population of interest and the diffusion of 
RDS on that population with varying levels of connectivity and true population sizes. SS-PSE, a 
Bayesian approach, allows different prior information and prior precision to be incorporated into our 
estimates. We show that the method captures the true simulated population size in the posterior 
probability intervals through varying levels of connectivity, true population sizes with sensitivity to 
the choice of prior.  The results highlight the importance of initial seed choice in RDS and outline 
several areas for continued research. However, caution should be used when interpreting results since 
the simulation carried many assumptions. 
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INTRODUCTION 

 
Estimating population size and composition is an essential analytic task for many areas of research, 

and specifically so within public health.  For many issues in public health, populations can be hard to 

reach and observe, leading to such populations being known as “hidden populations”.  Populations 

can be hidden due to social stigma or discrimination (e.g., illegal drug-users, sex workers), including 

physically stigmatizing effects of diseases. Accurately estimating the size and composition of such 

populations is important and, in addition, there is a need to evaluate the accuracy and reliability of 

various models of disease transmission within such hidden populations in order to create accurate 

projections of disease progression across the entire population, to understand disease burden, to 

allocate funds and resources for treatment and intervention, to assess coverage of services for these 

populations, and to establish accurate and appropriate denominators for epidemiological studies.  

Finding a reliable and accurate population size estimate (PSE) is of great importance and yet the best 

methods are still not fully agreed upon and can be challenging to identify, especially for these small, 

hidden populations. 

 

Methods to estimate the size of hidden populations typically start with sampling methods.  The gold 

standard would be to do a census of the entire population in order to find the true size of the target 

population.  However, a census-based approach is expensive, time consuming, and potentially not 

logistically possible.  Instead, several sampling methods have been developed specifically for 

estimating the sizes of hidden populations.  Respondent-driven sampling (RDS, introduced by 

Heckathorn in 1997) builds samples of the target hidden population based on the idea that its 

members are connected via social network ties, that is, the members of the population are connected, 

but remain “hidden” to researchers outside of this network. Respondent-driven sampling begins with 

recruitment of ‘seeds’ (initially chosen members of the target population) that are given a fixed 

number of real or virtual coupons to recruit other members of the target population.  The goal is to 
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have ‘waves’ of recruitment until the target sample size or statistical equilibrium is reached, usually 

after 5 waves [Handcock and Gile, 2015].  Reaching equilibrium means the sample will be 

independent of any initial bias within the seed selection, which is usually convenience based. In the 

past, investigators utilized RDS to estimate characteristics of the target population rather than 

estimate the size of the target population. However, recent developments extend the use of RDS 

samples to estimate the size of the entire hidden population and we build on these ideas, as specified 

in the sections below.  

 

To date, most applications of respondent-driven sampling primarily involve hidden populations 

defined by behavior, identities or characteristics leading to social stigmatization, e.g., men who have 

sex with men or injecting drugs users.  Recently, some global health projects consider the application 

of respondent-driven sampling to other types of hidden populations, specifically estimating the size 

of populations with neglected tropical diseases (NTDs).  As alluded to above, one of the primary 

assumptions of RDS is that a social contact network exists within the hidden population and NTD 

applications assume that affected individuals may be connected through treatment, visits to a 

traditional healer, or through sympathetic caregivers. To the best of our knowledge, little to no 

research has examined in a systematic way the use of RDS within a hidden population connected by 

an NTD, providing an opportunity for careful assessment of the performance of and potential roles 

for RDS in this setting.  If RDS proves successful in this application, many populations could benefit 

from this research, especially those in developing countries with poor infrastructure and restricted 

access between isolated communities.   

 

In this thesis, we explore a specific example, namely, we conduct simulation studies to assess the 

statistical performance and potential benefits of RDS when estimating the number of individuals 

suffering from lymphatic filariasis (LF) within a specific population.   Lymphatic filariasis is a 

mosquito-transmitted parasitic NTD affecting about 67 million people in 73 countries and is a 
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leading cause of disability globally [WHO, 2015].  Over time, LF can lead to lymphedema, fluid 

collection and severe swelling of extremities, and hydrocele, severe swelling of the scrotum in males. 

Both lead to reduced mobility, financial hardships, and social isolation for affected individuals 

[Krishna et al., 2005]. This ‘social isolation’ resulting from the disease can often lead to challenges in 

acquiring an accurate estimation of LF morbidity since those suffering often remove themselves 

from routine activities and effectively become a hidden population.  However, as noted above, 

affected individuals may be connected to others suffering the disease, effectively creating a social 

network within a population hidden from public view.  In the sections below, we examine the 

performance of RDS under various scenarios of connectivity. 

 

As many organizations unite to eliminate lymphatic filariasis, the Carter Center is currently focusing 

on ways to monitor LF morbidity though their Hispaniola Initiative in Haiti. Lymphatic filariasis in 

Haiti accounts for 90% of the LF burden in the Americas [WHO, 2015].  The Carter Center is 

spearheading research for LF in Haiti by using RDS and household survey (HS) techniques aiming to 

validate earlier estimates of lymphedema and hydrocele prevalence. Using RDS to estimate the entire 

hidden population of those with lymphedema and hydrocele is a new and developing area in 

research, financially advantageous, and, if successful, will provide information vital to the elimination 

of LF in Haiti and globally.  

 

Haiti is one of only four countries in the Americas with ongoing LF transmission  [Oscar, 2014].  A 

clear connection between poverty and LF has been established so it is not surprising that Haiti has 

the greatest burden of LF in the Western Hemisphere.  Poor sanitation and drainage lead to perfect 

circumstances for mosquito breeding. The devastation of the recent earthquake in 2010 allowed these 

breeding grounds to multiply in both urban and rural areas. Therefore, eliminating LF in Haiti 

remains a challenge of utmost public health importance.  
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A key component of eliminating LF is to accurately monitor morbidity prevalence. Currently, the 

prevalence of LF is estimated to be 7.3% in Haiti [Beau, 2004].  However, gathering ongoing and up-

to-date morbidity prevalence information is essential to inform interventions and strategies to 

evaluate and help the progress of elimination. The Carter Center’s elimination strategy includes mass 

drug administration (MDA) of diethylcarbamazine (DEC) and albendazole to endemic areas and 

areas previously known to be endemic.  Research has shown that LF is more widespread than 

previously believed due to difficulty finding accurate local prevalence estimates.  Once MDA is rolled 

out and reaches a coverage of 100%, the Carter Center uses World Health Organization (WHO) 

recommended transmission assessment surveys (TAS) to check for lymphatic filariasis prevalence 

levels.  The design of TAS is flexible and can be sampled at a household or school level.  In Haiti, the 

survey teams go to schools and test the blood of 6-7 year olds for lymphatic filariasis. The TAS 

informs the WHO which areas are still endemic as well as collecting information to produce 

prevalence estimates.  Many also add questions about LF morbidity.  However, those estimates may 

not capture the true morbidity prevalence due to the sampling frame of TAS and endemic specific 

locations.   

 

Another option is to gather morbidity prevalence estimates via a census, which, as noted generally 

above, consumes much time and money and is difficult to implement on an ongoing and timely basis 

to monitor changes due to the elimination program.  The need for an alternative method is clear.  

Several methods for population size estimation (PSE) exist but are not uniformly applicable in all 

situations. UNAIDS/WHO provide updated guidelines for PSE methods in global health by 

identifying five approaches (i.e., census and enumeration, capture-recapture, multiplier, population 

surveys, and network-scale up) [UNAIDS, 2010].   

 

Our goal is to see if RDS can be added to this set of accurate and reliable estimation tools.  RDS, if 

adaptable to this population, would be a great benefit towards the monitoring morbidity and 
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elimination of LF in Haiti.  RDS could allow us to reach the hidden populations of people with 

lymphedema and hydrocele better than other sampling methods. However, this application of RDS 

involves an extra step of estimating the entire target population size, which is not the common goal 

when using standard RDS methods.  We will examine whether RDS works within these target 

populations and if a PSE method based on RDS data can find an accurate estimate of the target 

populations. 

 

RDS methods can be applied via different implementation protocols, but none have a clear 

advantage over the others in all situations.  In order to see if RDS is a successful tool for PSE of 

hidden populations due to physical effects of diseases, specifically NTDs, we consider the specific 

approach of Successive Sampling-Population Size Estimation (SS-PSE). SS-PSE uses a Bayesian 

framework, incorporating prior knowledge and educated approximations of the target population to 

improve estimation [Johnston, 2015].  If this method provides accurate estimates of the hidden 

population, it could be implemented more widely across many public health areas with hidden 

populations to provide accurate estimates requiring less cost, less time, and fewer resources in 

general.  In our particular application, if RDS can produce an accurate estimate for the morbidity of 

LF by estimating the entire population of those suffering from lymphedema and/or hydrocele, the 

approach will aid in ongoing efforts regarding the surveillance of LF in Haiti and, potentially, 

elimination of NTDs globally. 

 

Since, to our knowledge, RDS has not been applied to populations stigmatized due to an NTD, we 

propose a simulation study to assess the accuracy and reliability of adapting RDS sampling and SS-

PSE to the lymphedema and hydrocele populations in Haiti by comparing low and high prevalence 

levels as well as low, medium, and high network connectivity within the target LF population.  It is 

important to note that our target population is connected via knowledge of individuals with 

lymphedema and/or hydrocele, a physical attribute. This could be beneficial to the idea of a network 
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existing since both conditions are visible and may be known to other impacted individuals, families, 

or caregivers connected through formal or informal treatment and/or support networks.  This differs 

somewhat from typical applications of RDS where the network is between individuals sharing the 

characteristic of interest (e.g., injecting drug users who know other injecting drug users).  Here our 

network includes not only those with the characteristic (e.g., lymphedema or hydrocele) but family 

members and friends who may know of the affected individual.   

 

The aims of this thesis are: 

• to simulate the RDS process within our population of interest,  

• to compare performance of RDS under varying levels of prevalence and network 

connectivity, and  

• to see if the newly developed Bayesian SS-PSE approach developed by Handcock el al 

provides measureable improvement in performance across the varying levels for the 

simulations. 

METHODS 

Respondent-Driven Sampling 

Our primary aim is to assess the performance of applying respondent-driven sampling (RDS) to the 

estimation of hidden populations connected by a physical attribute, specifically those with 

lymphedema in Haiti.  As briefly noted above, RDS was developed in 1997 as an extension of 

snowball sampling by Heckathorn to leverage the networks that exist within a target population that 

is hard to reach or hidden [Heckathorn, 1997].   

 

Respondent driven sampling consists of several steps.  First, we assume the target population 

consists of N people, or nodes, that we label 1, …, N. The RDS process begins with a small initial 

sample, often selected for convenience, e.g., the initial nodes may be those with more network ties 
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than others (thereby making them easier to find).  The initially sampled nodes are known as “seeds” 

and, in previous application, the number of seeds ranges from 3-12 depending on the anticipated 

sample size of the target population.  If the target sample size is large (or anticipated to be large, the 

number of initial seeds will be large as well.  If the target sample size is small, the initial number of 

seeds can be on the lower end of the range. This is true due to an assumed finite referral nature of 

RDS within all sample sizes (i.e., the networks of the target population are finite).  

 

For our simulation study, we will start with x seeds.  The seeds represent wave 0 of the samples.  

Each member of wave 0 is given a number of uniquely identified “coupons” to distribute to other 

people they know in the target population.  The number of coupons ranges from 2-4 depending on 

initial seeds and sample size.  The next wave, or wave 1, will consist of referrals given by wave 0.  

Coupon recipients return their coupons to the study center to enroll in the study and become wave 1.  

Those from wave 1 are then given 2-4 coupons to refer people they know from the target 

population.  That group of recruits becomes wave 2.  This continues until the desired sample size is 

attained and at least 4 waves are reached [Handcock and Gile, 2015]. This process has been used for 

monitoring disease prevalence and risk behaviors in populations such as men who sex with men, sex 

workers, and injection drug users [Hekathorn, 1997].  When sampling, it is important to record the 

number of people each participant knows in the target population on survey or questionnaire.  In 

graph theory terms, this number is known as the degree of each node. One feature separating RDS 

from other snowball sampling methods is that each node presumably chooses randomly from their 

network to distribute coupons.  This introduces random sampling component to the process and 

each wave diminishes the impact of the initial convenience sample of seeds.  
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 Figure 1: Example of RDS structure with three seeds and two referrals per respondent. 

 

Sample Size and Seed Selection  

As noted in the introduction, the number of initial seeds and waves often varies according to the 

anticipated target population size.  To be clear, here and in the following, we will use the term 

population size to represent the target population size.  The sample size represents the number of 

individuals from the target population included in our sample. Once we choose the population sizes, 

or target population sizes, that we want to simulate, we will calculate the sample size for the RDS 

sampling simulation, which will follow the process defined below [Wejnert, 2012]: 

    

€ 

n = DE ⋅ P(1− P)
d
z
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

2  

          where           

  

€ 

DE =
VarRDS P( )
VarSRS P( )

                 

 
and P denotes assumed a priori prevalence of morbidity of our outcome(s) of interest (e.g., 

lymphedema), z  the z critical value for the level of confidence, d the desired precision of the 
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population proportions, and DE is the design effect comparing the variance of RDS compared to 

simple random sampling (SRS).  The sample size for RDS is typically calculated with the aim of 

prevalence estimations within the target population, the traditional use for RDS. We note that the 

sample size for RDS is defined by the design effect multiplied by the sample size for SRS.  

 

In our simulation, we assume the design effect is fixed at 4, noting that there have been multiple 

studies examining the design effect for RDS with no uniform conclusion.  A conservative and 

popular number for the design effect for RDS is 2, but published estimates range from 2 to 4 

[Wejnert, 2012].  Since the effect of RDS within our target population is unknown, we set the design 

effect on the high end for our simulations, noting that future adjustments for more specific values 

can be implemented in a straightforward manner [Wejnert, 2012].  Simply put, this assumption 

implies that we will need four times the sample size of a simple random sampling to have RDS yield 

a similarly accurate estimate (due to the initial non-random sampling of seeds). 

 

Next, we consider the number of seeds. To increase stability of our estimates, the seed number 

should be relativity small to allow for more waves (i.e., we prefer more waves over more initial 

seeds).  If there are many seeds and fewer waves, then the parameter estimates may not stabilize.  

This could result in residual bias potentially impacting the results.  Past applications recommend at 

least 4 waves. The calculation for the number of seeds was derived with algebra and is as follows: 

    

€ 

s =
n ⋅ (1− r)

1− rw  

where n is the determined sample size, r is the set number of referrals for each seed and recruit 

thereafter, and w is the number of waves desired.  However, we illustrate the RDS approach with a 

single seed to illustrate its performance.  Future work will explore identification of the best number 

of seeds for our LF application.  In our simulation, still, we ensure that there will be more than 4 

waves for each sample. Respondents will be “weighted” proportionally to their degree.  
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Simulation 

We used R to create simulated networks for the target population and then simulate respondent 

driven sampling on that network to examine coverage of RDS on target population.  Before 

describing our simulation, we will give a brief overview of the use of graph theory and network 

science as applied to RDS. 

 

Networks and graphs  

In general terms, a social network is a finite group of individuals or groups that are connected 

through some type of relationship.  We explain these networks through graph theory.  Mathematical 

graphs involve nodes or vertices (representing population members in our application) and edges 

(representing social connection between population members). The degree, d, of a node is the 

number of edges connecting to it.  The overall average degree of a network is the average number of 

edges per node across the network.  In our application, we consider an undirected network so we 

assume all relationships are mutual [Malmros, 2016].  Now that we can define our network as a 

graph, we need to look into ways of generating our graph to simulate connections mirroring the 

networks we are interested in. Random graph models can assist in generating populations, especially 

when trying to simulate real-world networks. To generate contact networks with a given level of 

connectedness, we simulate network connectivity by using an Erdos-Renyi random graph model 

[Newman, 2002].   

 

Based on graph theory, the Erdos-Renyi random graph model assumes connections between two 

individuals arise completely at random. Any two individuals are connected with an independent, fixed 

probability [Masuda, 2017].  Consider the graph G with M nodes and probability p for each possible 

edge existing, denoted G(M, p). The number of edges in the Erdos-Renyi model is a random variable 
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with expected value of     

€ 

2
M( )p .  With this, we can find the probability that a node will have a certain 

degree d, Prob[d]=     

€ 

d
M( )pd (1− p)M−d .  From this, we can find that the expected mean degree of the 

network is: 
    

€ 

d d
M( )pd (1− p)M−d

d=0

M

∑ = Mp  [Newman, 2002].  We use these expressions to generate 

the network based on the Erdos-Renyi random graph model in our simulations by setting M and p-

=d/M. It is a simple model of a network, and a good place to start since we know so little about the 

networks of lymphedema and/or hydrocele. We define our networks as G(M, d/M).  Once we 

simulate the network/graph, we create an adjacency matrix from it.  Let the MxM matrix Y represent 

the network, where Yij=1 if i and j share an edge and Yij=0 otherwise. As noted above, we assume 

the network is undirected, i.e. Yij=Yji.  From this random graph model, we simulate the RDS process 

on the network.  The RDS process follows a random walk, which is a model of stochastic processes 

that describes a path with steps set in a mathematical space, the graph in our case. A random walk 

starts with one node, does a random step to another node, and another, and another, such that the 

sequence of points is the random walk.  The steps follow transition probabilities proportional to the 

nodes’ degrees.  The random walk in our simulation will be an example of a Markov process on the 

space of nodal indices [Handcock and Gile, 2015].  The degrees of each step (or node in our case) 

from the random walk translate to the information gathered from RDS. The vector of degrees in the 

order they are sampled is the output of the random walk. 

 

Background parameters for lymphedema and hydrocele in Haiti 

In our simulations, we will compare lymphedema simulated populations with average degree set at 9 

and 5, G(M, 9/M) and G(M, 5/M).  We will compare hydrocele simulated populations between 

average degree of 5 and 2, G(M, 5/M) and G(M, 2/M).  These values are based on expert opinion 

from the Carter Center as well as literature stating that lymphedema patients have a chance at higher 
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connectivity [Coreil, 1998]. Since, to date, no data have been collected on connectivity for the target 

population or similar populations, the assumptions we make are based on the best information 

available and, again, can be adjusted for future research.  Next, we define prevalence levels for 

hydrocele at 5% and 1% and lymphedema at 10% and 2%, again, based on expert opinion from the 

Carter Center.  Those levels will be used to set prior distributions in a Bayesian model aimed to 

estimate the target population, defined in detail in the SS-PSE section below. 

 

Haiti has a population of approximately 10,000,000 individuals.  R cannot handle contact matrices of 

this magnitude without special computing considerations.  Hence, we will generate networks for 

target populations within each “department”, or administrative region, in Haiti.  From each of the 

ten departments in Haiti, we choose one city as the sample to scale up.  Cities were chosen according 

to moderate population sizes achievable to simulate and if the Carter Center will be implementing 

RDS there.  A list of the cities under consideration can be found in the Appendix.  We simulate 

networks based on hypothetical lymphedema and hydrocele populations in each department, using 

the prevalences stated above as a broad guideline.  Therefore, we will simulate contact graphs 

G(4000, 9/4000) and G(1000, 5/1000) for lymphedema and G(2000, 9/2000) and G(500, 5/500) for 

hydrocele within each department. 

 

Our simulation outline is as follows:  First, we simulate our social network via the random graph 

model defined above.  Given this network, we next define an instance of respondent-driven sampling 

by simulating a transmission of the coupons across the network. We used the following R packages 

for simulation: rdssim, igraph, statnet, and sspse [R Core Team, 2017].  We utilize the 

rdssim package for the RDS transmission process by setting the desired sample size and waves for 

each desired sample [Mohammad, 2015].  Logistically, it is very helpful for the initial seed choice to 

have a larger degree than the mean degree for that simulated network.  Choosing seeds with high 

degrees is important to a recruitment chain’s ability to reach wave 4 [Handcock and Gile, 2015].  
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Therefore, the seeds were chosen to have a higher degree than the average degree set for that 

network. The RDS simulation samples each node with weight of the inverse degree.  From this, we 

compile our RDS data to use in the successive sampling population size estimate (SS-PSE).  This 

method is defined in detail in the next section, and computation is readily supported via the sspse 

R package.  

 

SS-PSE 

Once we simulate a data realization, we use the SS-PSE method to estimate the population of the 

entire hidden population. It is worth noting that there is no direct or naïve way to estimate 

population size from RDS data alone [Handcock and Gile, 2015].  The SS-PSE method utilizes 

Bayesian inference by including prior information to aid in estimation. The SS-PSE method is model-

based and assumes that the average network degree (i.e., number of contacts in the target population) 

of the sampled subjects decreases as the recruitment process continues (i.e., each wave recruits less 

well-connected individuals), hence the name successive-sampling.  This assumption of subjects with 

higher degrees being sampled earlier has been evaluated in other studies and concluded to hold [Wu].  

If the distribution of degrees stays the same across waves, one can assume that we may not have 

captured enough of the target populations so the sample size is a small portion of the target 

population.  The assumption of decreased degrees allows us to leverage information about the 

sequential nature of the sampling and data collection.  With this, we are able to estimate the 

population size using only data from RDS, specifically individuals’ degrees and order collected.  

 

The Bayesian approach treats the hidden population N as an unknown parameter.  A conditional 

probability model for the observed data given N, along with a prior distribution for N, creates the 

framework for this method.  The prior for N allows us to incorporate knowledge of previous 

estimates and information about the target population. In the Bayesian framework, information 
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about the unknown parameter is expressed through probability distributions over possible values.  

The observed data defines the likelihood function, which, multiplied by the prior distribution, is 

proportional to the joint posterior distribution of all model parameters, including N. From this, we 

can estimate the posterior mean, median, and probability intervals (credible sets) to estimate and 

express uncertainty about the target population size. The posterior is as follows: 

 

    

€ 

p(N ,η uobs)∝π (N ,η) ⋅ p(Uobs = uobs N ,η)  

 

where 

€ 

η is a parameter describing the distribution of degrees for the individual network sizes, 

    

€ 

π (N ,η) is the prior and     

€ 

p(Uobs = uobs N ,η) is the likelihood from the degrees with   

€ 

Uobs = uobs  

being the observed degrees collected from RDS 

The SS-PSE implementation follows from Handcock and Gile, who assume each subsequent sample 

is selected with probability proportional to network size or degree. Within the RDS context, we look 

at network structures sampled from a “configuration model”, which assumes network ties form 

completely at random among the target population and in line with our random walks simulation. 

This assumption is likely violated because a person of the target population would not know 

everyone in the target population due to social behaviors, location, or other social limitations but it 

provides a reasonable place to start [Johnston, 2015].   

 

In our setting, we begin by defining a probability model for the observed data given N and choose a 

prior for N. The probability model represents a superpopulation model supporting our sampling 

structure. In our network setting, the sampling model is a function of the degrees of individuals in 

their contact network. The sampling process is treated as a random walk on the nodes of a graph 

within the associated social network. This extends the assumption that the distribution of this 

sampling without-replacement is equal to the successive sampling process. From this, we obtain the 

sampling probability of the observed sequence of degrees: 
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€ 

p(G = gU = u) =  

    

€ 

ug i

uj − ug jj =1

i−1
∑j =1

N
∑i=1

n

∏  

 

where n is the sample size, N is the target population size, G is the vector of indices from the 

sequentially sampled degrees, U is the vector of all population degrees so   

€ 

ug i
  is the degree size of 

the ith sample and     

€ 

ug n+1
 is the degree size of an unobserved person in the target population. 

 

The sampling model and the super-population model combine to make a likelihood function for the 

observed vector of degrees for those sampled: 

 

    

€ 

p(Uobs = uobs N ,η) =
N!

(N − n)!
⋅ p(G = (1,...,n)U = v)

v∈(u obs ,N)

∑ f (vj η)
j =1

N

∏  

 

This likelihood function combines with the prior for N to produce the final posterior distribution of 

N, linking our prior beliefs and the information contained in the data. 

 

We define our prior for N,     

€ 

π (N) , in terms of the sample proportion (n/N).  We set the prior for 

the sample proportion, (n/N), to a Beta distribution (a common distribution for probabilities and 

proportions limited to be within (0,1)).  Then, the Beta prior is transformed into a distribution for N.  

We assume that the priors are independent so     

€ 

π (N ,η) = π (N) ⋅ π (η). The prior for the degree 

distribution,   

€ 

π (η) , will be the Conway-Maxwell-Poisson distribution [Handcock and Gile, 2015]. We 

will utilize the R package sspse to compute population size estimate based on the simulated data.  

The package allows for selection of both priors. 
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ANALYSIS 

The simulation of the target populations yields varying results. First, Figure 2 presents the network of 

an RDS sample with mean degree=5 for hydrocele as the target population. Figure 2 also shows the 

degree distribution in the RDS data from populations simulated with mean degree = 5 confirming 

the sampling method caught an accurate sample of the network connectivity with values ranging 

from 1 to 13. The degree distribution being fully captured in the RDS data was constant for all 

simulated target populations and RDS. Figure 3 shows the same features as Figure 2 but for 

lymphedema as the target population with mean degree=7.  The plots on the left side of the figures 

show the network connectivity to be captured well within the RDS sample and how their networks 

connect, with the seed colored red. 

 
 

 
Figure 2: Mean degree distribution and network (with seed in red) of RDS data from target 
population simulated with for hydrocele with mean degree 5. The image of the network shows the 
connectivity within the sample. 
 
 



17 

 
Figure 3: Mean degree distribution and network (with seed in red) of RDS data from target 
population simulated with for lymphedema with mean degree 9. 
 
 

The tables below are examples from Verrettes in Artibonite and Saut-d’Eau in Centre from the 10 

departments that we did the simulations for.  Further results can be found in the Appendix. Those 

two cities were chosen as examples for results since they will both be implementing RDS by the 

Carter Center in April 2018.  The medians are displayed for the prior and the posterior along with the 

95% probability interval from the posterior.  Medians were chosen over the mean due to the large 

variability within this model. 

 

Table 1 shows results for the hydrocele target populations. When the simulated network population 

was 2,000 affected individuals with a countrywide hydrocele prevalence of 5%, and the prior median 

was 2,436 with mean degree of 5, we get a posterior median of 1,813 individuals (with 95% credible 

interval (CI) (991, 13,112)) in Verrettes, Artibonite.  We note that the simulation indicates there is 

information in the sample regarding the size of the hidden population as the posterior median moves 

away from the prior median.  When the simulated network population was 2,000 people, with a 

countrywide hydrocele prevalence of 5%, and the prior median was 1,744 with mean degree of 5, we 

obtain a posterior median of 1,192 people (95% CI:  (505, 3,132)) in Saut-d’Eau, Centre. When the 

simulated network population was 2,000 people with 5% hydrocele prevalence and the mean degree 
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decreased to 2, we get a posterior median of 3,195 people (95% CI: (991, 13,112)) in Verrettes, 

Artibonite. When the simulated network population was 2,000 for the 5% hydrocele prevalence and 

the mean degree decreased to 2, we get a posterior median of 1,843 (95% CI: (601, 7,146)) in Saut-

d’Eau, Centre.  When the prevalence decreased to 1% hydrocele prevalence, the posterior median for 

mean degree=5 is 352 people with 95% CI (106, 1,880) and for mean degree=2 is 337 people with 

95% CI (106, 1,723) in Verrettes. When the prevalence decreased to 1% hydrocele prevalence, the 

posterior median for mean degree=5 is 295 people with 95% CI (95, 941) and for mean degree=2 is 

218 people with 95% CI (88, 1,305) in Saut-d’Eau. 

 
 
Hydrocele in Verrettes, Artibonite 
5% Prevalence 
 (N=2,000) 

Prior 
Median 

Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval 
(Posterior) 

               Mean degree 5 2,436 1,813 2,366 (561, 6,202) 
               Mean degree 2 2,436 3,195 4,678 (991, 13,112) 
1% Prevalence 
(N=500) 

    

               Mean degree 5 488 352 565 (106, 1,880) 
               Mean degree 2 488 337 537 (106, 1,723) 
Hydrocele in Saut-d’Eau, Centre 
5% Prevalence 
(N=2,000) 

Prior 
Median 

Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval 
(Posterior) 

               Mean degree 5 1,744 1,192 1,431 (505, 3,132) 
               Mean degree 2 1,744 1,843 2,443 (601, 7,146) 
1% Prevalence 
(N=500) 

    

               Mean degree 5 350 295 378 (95, 941) 
               Mean degree 2 350 218 365 (88, 1,305) 
Table 1: Posterior means and intervals for hydrocele in Verrettes, Artibonite and Saut-d’Eau, Centre. 
 
 

Table 2 shows results for the lymphedema target populations. When the simulated network 

population was 4,000 people with a countrywide lymphedema prevalence of 10%, and the prior 

median was 4,872 people with mean degree of 9, we get a posterior median of 6,605 people with 95% 

CI (2,116, 26,432) in Verrettes, Artibonite. When the simulated network population was 4,000 people 

with a countrywide lymphedema prevalence of 10%, and the prior median was 3,488 people with 
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mean degree of 9, we get a posterior median of 4,539 people and 95% CI (1,743, 16,414) in Saut-

d’Eau, Centre. When the simulated network population was 4,000 for the 10% lymphedema 

prevalence and the mean degree decreased to 5, we get a posterior median of 4,892 people and 95% 

CI (1,414, 15,402) in Verrettes, Artibonite. When the simulated network population was 4,000 for the 

10% lymphedema prevalence and the mean degree decreased to 5, we get a posterior median of 3,828 

people and 95% CI (1,193, 13,543) in Saut-d’Eau, Centre.  When the prevalence decreased to 2% 

lymphdema prevalence, the posterior median for mean degree=9 is 502 people and 95% CI (188, 

1,436) and for mean degree=5 is 786 people and 95% CI (211, 4,176) in Verrettes. When the 

prevalence decreased to 2% lymphdema prevalence, the posterior median for mean degree=9 is 439 

people and 95% CI (169, 1,519) and for mean degree=5 is 444 people and 95% CI (179, 1,668) in 

Saut-d’Eau. 

 
Lymphedema in Verrettes, Artibonite 
10% Prevalence (N=4,000) Prior 

Median 
Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval (Posterior) 

               Mean degree 9 4,872 6,605 9,184 (2,116, 26,432) 
               Mean degree 5 4,872 4,892 6,042 (1,414, 15,402) 
2% Prevalence 
(N=1,000) 

    

               Mean degree 9 974 502 609 (188, 1,436) 
               Mean degree 5 974 786 1,262 (211, 4,176) 
Lymphedema in Saut-d’Eau, Centre 
10% Prevalence (N=4,000) Prior 

Median 
Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval 
(Posterior) 

               Mean degree 9 3,488 4,539 6,082 (1,743, 16,414) 
               Mean degree 5 3,488 3,828 5,142 (1,193, 13,543) 
2% Prevalence 
(N=1,000) 

    

               Mean degree 9 698 439 583 (169, 1,519) 
               Mean degree 5 698 444 603 (179, 1,668) 
Table 2: Posterior means and intervals for lymphedema in Verrettes, Artibonite and Saut-d’Eau, 
Centre. 
 
 
Figure 4 shows the prior and posterior distributions of hydrocele in Verrettes, Artibonite with mean 

degree 5 and 2 with prevalence at 5% and the posterior distributions of lymphedema in Saut-d’Eau, 

Centre with mean degree 9 and 5 with prevalence at 10%.  We can see that the prior median is lower 
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than the posterior median for the hydrocele posterior in Verrettes when hydrocele prevalence is 5% 

and the mean degree is 5.   In contrast, the prior median is higher than the posterior median for 

Verrettes when hydrocele prevalence is 5% and the mean degree is 2 and for the lymphedema 

posterior in Saut-d’Eau when prevalence is 10%.  Also, the posterior moves to the right of the prior 

for the lymphedema posteriors in Saut-d’Eau.  

 

We also see that the priors provided by our content area experts are relatively precise with little 

reduction in variability when we incorporate the observed (simulated) data through the likelihood.  

The priors were set in the R package used according to the population density of each city and 

prevelences given by experts so they varied for each department. The comparable width of the prior 

and posterior distributions illustrate that, for our examples, while the simulated data clearly provide 

information regarding the underlying true hidden population size, our data do not overwhelm the 

prior and both our expert subjective prior information and the observed (simulated) data both 

inform our posterior estimates. 

 
  
 

 
Figure 4: Posterior distributions for Verrettes, Artibonite with hydrocele prevalence=5%. 
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Figure 5: Posterior distributions for Saut-d’Eau, Centre with lymphedema prevalence=10%. 
 
 

Figure 6 compares posterior distributions for RDS on the same target population with the same 

conditions but seeds with varying degree.  We are interested to see if the initial seed choice 

(particularly the degree of the intitial seed choice) impacts influence of the data on the posterior 

distributions.  It shows the posterior distributions for Verrette, Artibonite with lymphedema 

prevalence=10% and mean degree=9 when seeds of varying degrees are chosen.  The top left is 

when the seed has degree= 14. The top right is when the seed has degree= 9. The bottom left is 

when the seed has degree= 6.  The bottom right is when the seed has degree= 2.  We observe 

variation in results, but they all capture the true populations N=4,000 in the intervals and we 

generally observe less posterior variation in estimates as the degree of the initial seed increases.  The 

results suggest that having the highest degree helps move the posterior away from the prior by 

providing better information on the underlying population size.   While these results indicate promise 

for the use of SS-PSE based RDS estimation, future work remains to refine the approach for such 

applications in the field. 
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Figure 6: Posterior distributions for Verrettes, Artibonite with lymphedema prevalence=10% and 
mean degree=9 for different initial seed choices. 
 
 

Finally, we scaled the posterior medians up to represent each department and summed them together 

to have a general idea of what the total cases of lymphedema and hydrocele might be in all of Haiti 

with the following equation: 

    

€ 

N = n ⋅ r
dept .
∑  where   

€ 

n is the posterior median and r is the proportion 

of each department in the entire Haitian population.  Although this is a naïve way of providing 

overall estimates, it provides an initial heuristic. Table 3 shows results under the different conditions 

of our simulation. 
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Hydrocele or 
Lymphedema 

Prevalence Mean Degree Total (N) 

Hydrocele 5% 5 369,845 
Hydrocele 5% 2 554,589 
Hydrocele 1% 5 75,336 
Hydrocele 1% 2 70,445 
Lymphedema 10% 9 1,404,553 
Lymphedema 10% 5 799,156 
Lymphedema 2% 9 105,519 
Lymphedema 2% 5 149,584 
Table 3: Rough total cases of lymphedema and hydrocele in Haiti. 
 
 

DISCUSSION 

Conclusions 

Currently, Haiti has almost no estimates on LF morbidity, and the current methods have many 

problems ranging from expense and timeliness to underreporting and bias.  Trying different sampling 

methods to gather this information will be extremely useful. The simulation study above provides 

initial feasibility and performance results to give LF researchers an idea whether their target 

population will perform well with RDS given current information on connectivity and prevalence.  

One surprising finding from this study is that data based on seeds with less connectivity may still give 

reliable results if the prior is close to the truth, i.e., if our expert information is accurate.  The 

practical implication remains to be seen, but the results suggests that contact networks of the sorts 

simulated here yield likelihood estimates that are not precise enough to overwhelm completely vague 

prior distributions and that some prior information will be needed in practice.   If this bears out, one 

solution may be to undertake additional smaller scale pilot studies to provide generally precise 

information for prior information to build on.  While posterior inference does depend on prior 

information, it will be important to further quantify the necessary requirements for adequate 

performance in additional simulations.  For now, our results suggest promise but require additional 

practical calibration before full-scale implementation. 
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To explore the impact of prior specification further, we did simulate a population (N=4,000) with 

smaller priors (  

€ 

n= 500, 1,000, 3,000) and larger priors (  

€ 

n= 5,000, 7,000, 10,000) to see how this 

impacted the posterior.  The results were as expected.  When the prior underestimated the true 

population, the posterior did as well.  When the prior overestimated the true population, the 

posterior did as well.  For the most part, the true population size would still fall in the posterior 

intervals, but these intervals remain wide. As noted above, the results suggest there is information 

regarding PSE within the RDS data.  

 

The level of dependence on the prior observed in our results could be due in part to our choice of 

the Erdos-Renyi random graph model for generating contact networks.  This complete random 

network definition may yield greater variance in degree than one might find in actual LF networks.  

Overall, the findings from wide varying priors were in line with findings from when the priors were 

closer to the true population.  There is clearly room for additional work in this area. 

 

 In all of our cases, the true population was always in the credible interval and somewhat close to the 

mean or median.  For the most part, the results when the degree of the seed was higher or lower 

were similar.  We also found that the smaller the target population, the more sensitive the results are 

to the prior chosen, as one might expect.  When the prior underestimated the true population, the 

posterior also underestimated this value and vice versa.   Also, in line with previous literature and as 

expected, the posterior credible intervals shifted according to if the prior overestimated or 

underestimated the true population. Overall, the intervals from the posterior were quite wide and 

skewed (as one might expect for a populations size distribution) so choosing between the mean, 

median and mode often varied, as well. The posterior means were more accurate when the target 

populations were smaller.  The posterior medians were more accurate when the target populations 

were larger. Also, decreasing the mean degree increased or did nothing to the posterior mean for 

most of our simulations.  In some larger target populations, decreasing the mean degree decreased 
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the posterior mean. This seemed unusual, but could be due to more variability with less connectivity 

in general. However, both the prior and the true target population fell in posterior probability 

intervals for every department simulated in Haiti.  

 

Most papers have found that if the sample fraction (n/N) is less than 10% then the SS-PSE results 

will not be reliable (Johnston, 2015).  This leads us to use caution when interpreting the results from 

our simulation study.  However, our use of a design effect of 4 when calculating the sample size 

allows us some lenience, but requires further assessment and review.  The variability in trends when 

looking at increase and decrease in network connectivity was surprising since previous literature 

typically assumes that results should be more accurate if network connectivity is high.  However, we 

note that our application deals with small sample fractions, and the results seem to fall in a 

reasonable range. 

 

Further summarizing results, we find that RDS works relatively well in populations with different 

levels of connectivity as long as participants have social contact with target individuals and are willing 

to refer people.  As for RDS working in areas with varying population sizes, we find that as long as 

researchers can adequately split the target populations into regions and provide educated priors for 

each region then the method holds promise. Finally, the most important finding for applying this to a 

real-world scenario is that the initial choice of seed proved to be extremely important.  Although not 

part of the objectives for this study, when the seed was chosen with a larger network, the results were 

much more accurate than when the initial seed was chosen with the average network degree. This is 

consistent with current literature.  Choosing different seeds varied results quite a bit. Having a larger 

network for the initial seed led to much larger intervals and more overestimation. Choosing a seed 

with a large degree was found to produce the most consistent results when simulations were 

repeated. 
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Strengths and limitations 

As a pilot simulation study our work has both strengths and limitations.  This simulation study will 

give guidance for the Carter Center’s study looking to use RDS and PSE methods in Haiti. In 

general, this simulation study offers insight to researchers considering RDS for populations that 

could potentially be considered hidden. Even though the results largely fit within our expectations, 

they still provide insight to a hidden population via an estimation technique novel to NTD 

applications. We were also able to learn how to set priors for real-life analysis of this population and 

see that further refinements will be necessary before full scale implementation.  

  

The results presented in this paper are dependent on the assumption that RDS will be based on a 

connectivity network rich enough to consistently allow 4 waves of referral.  The method also 

depends on the assumption that the initial seed selection will have a larger degree than the average 

node’s degree in that target population. This reduces reproducibility when different seeds are chosen.  

The intervals should always capture a similar range, but the mean, median, and mode of the posterior 

distribution might vary greatly according to seeds chosen. This of course might not be known in real 

application.  However, future studies that intend to implement RDS should be extremely careful with 

the seeds chosen.  

 

The SS-PSE has the assumption that degrees decrease as they are sampled.  This is a limitation in 

real-world application.  Since we simulated our networks, we could ensure this to a point. This is 

satisfied with the configuration model and with the target population simulated with network 

connectivity at random.  However, it is important to note this might not be the case in real world 

application, another reason to choose seeds wisely.  Also, the SS-PSE assumes that each node is 

capable of referring anyone in the network that has not been recruited.  This is almost never the case 

in the real world so it is an easy assumption to violate and the robustness of RDS to such violations 

should be examined in detail. A more reasonable assumption would be that each node is capable of 
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referring anyone in the node’s network, but even this assumption has practical limitations.  Finally, 

the sampling structure assumes no clustering within the target population being sampled.  This may 

be violated if there are many small sub-groups within the target population.  This is another reason 

that doing RDS according to density or distribution is important.  

 

Finally, we have limitations in our simulations.  We assume undirected networks, which limits us to 

look at RDS under one idea of how the network actually operates.  A potentially bigger limitation is 

our assumption of the Erdos-Renyi random graph to generate our target population network. This 

limits our analysis in case the actual population has a completely different distribution of network 

connectivity.  The most serious impact of this limitation would be on the degree distribution since it 

can be unlike real world data. In our simulation, the degrees are skewed and repetitive. This can 

reduce heterogeneity to a certain extent. Reduced heterogeneity of degrees within a network can 

reduce information in the likelihood function for SS-PSE. Finally, we simulated each sample with 

one seed.  Although we chose a seed with a large degree, we still limit ourselves from typical real 

world applications with multiple seeds.  Further research should begin with more than one seed to 

adjust for homophily, which is the idea that people associate with others similar to themselves.  

Homophily will exist in real world practice so not including it limits the simulation study.  Future 

simulations and studies should try to overcome these limitations. 

Future work 

With the results from this study, we identify several areas for continued research.  The breakdown to 

look at each department could have been done by areas that are historically LF endemic and then 

weighted accordingly.  Unfortunately, there is little information on LF morbidity but looking at areas 

with high LF prevalence in the past could provide a better guide to separating areas in Haiti for RDS. 

In practice, this should be considered by any study that wishes to implement RDS on the ground.  

Another opportunity for future research would be to compare different network systems, not just 

random networks.  This will illustrate how the non-random connectivity might affect RDS. 
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RDS and SS-PSE can be useful in other applications as well.  After doing this simulation study, we 

can see that this could be successful for any populations having a connecting social aspect.  If there 

were support groups for lymphedema or hydrocele patients within communities, stronger ties could 

develop on the network thereby allowing RDS to be done quickly and with ease.  For any population 

that is stigmatized or hidden, having a support group or a positive space to come together would 

allow researchers an opportunity to utilize sampling methods that utilize networks, like RDS. 

Although results were informative, I believe the application of capture-recapture methods along with 

RDS may provide a better PSE for this population.  Using RDS data with another data source could 

allow researchers to use the capture-recapture method, and a hybrid approach may give better results 

since it would not only rely on RDS data.    

  

For now, we await the Carter Center’s implementation of RDS to gain more insight on its application 

in this population.  Getting more information could lead to another more accurate simulation study 

of the lymphedema and hydrocele population in Haiti as well as in other developing countries.  This 

simulation study will prove very useful when implementing RDS in Haiti.  Seeds will be chosen very 

carefully and analysis of results will be conducted based on findings about priors from this 

simulation.  Every conclusion and limitation will better inform the real-world study.  There are many 

populations suffering from NTDs and stigma.  Using RDS and other sampling methods utilizing 

networks offer an opportunity to gain more knowledge to influence programs and resources.  Even if 

this method is not fully effective under real-world circumstances, it can give researches a glimpse at a 

population that otherwise does not yield much information. Simulation studies such as the one 

undertaken here provide valuable insights on methodological performance, especially when there is 

little to no initial information available on the target population. 
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APPENDIX 

 
 
List of Cities Sampled from Each Department 
1. Verettes, Artibonite 
2. Saut-d’Eau, Centre 
3. Limbe, Nord 
4. Abricots, Grand’Anse 
5. L’Asile, Nippes 
6. Mombin-Crochu, Nord-Est 
7. Bombardopolis, Nord-Oest 
8. Leogone, Oest 
9. Chantel, Sud  
10. Thiotte, Sud-Est 
 
 
Hydrocele Simulations 

Cities 5% Prevalence 
 (N=2,000) 

Prior 
Median 

Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval 
(Posterior) 

Verettes, Artibonite           Mean degree 5 2,436 1,813 2,366 (561, 6,202) 
Verettes, Artibonite           Mean degree 2 2,436 3,195 4,678 (991, 13,112) 
Saut-d’Eau, Centre           Mean degree 5 1,744 1,192 1,431 (505, 3,132) 
Saut-d’Eau, Centre           Mean degree 2 1,744 1,843 2,443 (601, 7,146) 
Limbe, Nord           Mean degree 5 1,600 1,337 1,697 (521, 3,906) 
Limbe, Nord           Mean degree 2 1,600 2,043 2,910 (664, 8,561) 
Abricots, Grand’Anse           Mean degree 5 1,714 1,400 2,125 (513, 6,619) 
Abricots, Grand’Anse           Mean degree 2 1,714 1,945 2,544 (726, 6,796) 
L’Asile, Nippes           Mean degree 5 1,868 1,881 2,662 (628, 7,594) 
L’Asile, Nippes           Mean degree 2 1,868 3,349 4,460 (799, 11,797) 
Mombin-Crochu, Nord-Est           Mean degree 5 1,578 1,355 1,850 (517, 4,954) 
Mombin-Crochu, Nord-Est           Mean degree 2 1,578 1,996 2,703 (735, 8,412) 
Bombardopolis, Nord-Oest           Mean degree 5 1,638 1,815 2,293 (571, 5,601) 
Bombardopolis, Nord-Oest           Mean degree 2 1,638 2,459 3,220 (707, 8,381) 
Leogone, Oest           Mean degree 5 9,086 5,030 6,564 (1,463, 18,213) 
Leogone, Oest           Mean degree 2 9,086 6,659 12,549 (1,173, 45,897) 
Chantel, Sud           Mean degree 5 1,552 1,358 1,835 (575, 4,938) 
Chantel, Sud           Mean degree 2 1,552 1,967 2,778 (685, 8,049) 
Thiotte, Sud-Est           Mean degree 5 1,588 1,165 1,404 (497, 3,256) 
Thiotte, Sud-Est           Mean degree 2 1,588 2,041 2,667 (738, 7,262) 
 1% Prevalence 

(N=500) 
    

Verettes, Artibonite           Mean degree 5 488 352 565 (106, 1,880) 
Verettes, Artibonite           Mean degree 2 488 337 537 (106, 1,723) 
Saut-d’Eau, Centre           Mean degree 5 349 295 378 (95, 941) 
Saut-d’Eau, Centre           Mean degree 2 349 218 365 (88, 1,305) 
Limbe, Nord           Mean degree 5 320 253 346 (90, 895) 
Limbe, Nord           Mean degree 2 320 200 259 (81, 590) 
Abricots, Grand’Anse           Mean degree 5 342 281 359 (96, 834) 
Abricots, Grand’Anse           Mean degree 2 342 234 362 (85, 1,137) 
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L’Asile, Nippes           Mean degree 5 374 332 426 (104, 1,047) 
L’Asile, Nippes           Mean degree 2 374 283 470 (89, 1,660) 
Mombin-Crochu, Nord-Est           Mean degree 5 316 294 386 (96, 1,032) 
Mombin-Crochu, Nord-Est           Mean degree 2 316 211 383 (81, 1,371) 
Bombardopolis, Nord-Oest           Mean degree 5 328 300 402 (95, 1,066) 
Bombardopolis, Nord-Oest           Mean degree 2 328 199 256 (81, 662) 
Leogone, Oest           Mean degree 5 1,818 1,116 1,562 (309, 4,249) 
Leogone, Oest           Mean degree 2 1,818 1,364 2,375 (340, 9011) 
Chantel, Sud           Mean degree 5 310 255 343 (91, 932) 
Chantel, Sud           Mean degree 2 310 181 255 (78, 652) 
Thiotte, Sud-Est           Mean degree 5 318 352 470 (103, 1,202) 
Thiotte, Sud-Est           Mean degree 2 318 197 281 (81, 799) 

 
Lymphedema Simulations 

Cities 10% Prevalence 
 (N=4,000) 

Prior 
Median 

Posterior 
Median 

Posterior 
Mean 

95% Probability 
Interval 
(Posterior) 

Verettes, Artibonite           Mean degree 9 4,872 6,605 9,184 (2,116, 26,432) 
Verettes, Artibonite           Mean degree 5 4,872 4,892 6,042 (1,414, 15,402) 
Saut-d’Eau, Centre           Mean degree 9 3,489 4,539 6,082 (1,743, 16,414) 
Saut-d’Eau, Centre           Mean degree 5 3,489 3,828 5,142 (1,193, 13,543) 
Limbe, Nord           Mean degree 9 3,200 4,150 5,601 (1,452, 15,937) 
Limbe, Nord           Mean degree 5 3,200 3,538 5,359 (1,195, 16,426) 
Abricots, Grand’Anse           Mean degree 9 3,426 4,309 5,496 (1,486, 13,041) 
Abricots, Grand’Anse           Mean degree 5 3,426 3,043 4,723 (1,123, 15,631) 
L’Asile, Nippes           Mean degree 9 3,734 5,370 6,807 (1,487, 18,133) 
L’Asile, Nippes           Mean degree 5 3,734 3,465 4,247 (1,125, 9,659) 
Mombin-Crochu, Nord-Est           Mean degree 9 3,156 5,210 6,109 (1,548, 13, 298) 
Mombin-Crochu, Nord-Est           Mean degree 5 3,156 2,450 3,199 (1,033, 7,505) 
Bombardopolis, Nord-Oest           Mean degree 9 3,276 9,357 10,142 (1,859, 20,752) 
Bombardopolis, Nord-Oest           Mean degree 5 3,276 2,388 3,111 (1,211, 7,461) 
Leogone, Oest           Mean degree 9 18,170 22,265 28,664 (4,113, 81,218) 
Leogone, Oest           Mean degree 5 18,170 9,552 12,719 (3,501, 34,993) 
Chantel, Sud           Mean degree 9 3,103 4,144 5,257 (1,488, 13,593) 
Chantel, Sud           Mean degree 5 3,103 2,524 3,514 (1,132, 9,078) 
Thiotte, Sud-Est           Mean degree 9 3,176 4,100 5,326 (1,357, 14,108) 
Thiotte, Sud-Est           Mean degree 5 3,176 2,814 3,237 (1,059, 6,916) 
 2% Prevalence 

(N=1,000) 
    

Verettes, Artibonite           Mean degree 9 975 502 609 (188, 1,436) 
Verettes, Artibonite           Mean degree 5 975 786 1,262 (211, 4,176) 
Saut-d’Eau, Centre           Mean degree 9 698 439 583 (169, 1,519) 
Saut-d’Eau, Centre           Mean degree 5 698 444 603 (179, 1,668) 
Limbe, Nord           Mean degree 9 640 425 551 (165, 1,474) 
Limbe, Nord           Mean degree 5 640 579 759 (200, 1,950) 
Abricots, Grand’Anse           Mean degree 9 686 367 474 (159, 1,157) 
Abricots, Grand’Anse           Mean degree 5 686 500 818 (173, 2,388) 
L’Asile, Nippes           Mean degree 9 748 390 471 (168, 1,103) 
L’Asile, Nippes           Mean degree 5 748 664 957 (209, 2,784) 
Mombin-Crochu, Nord-Est           Mean degree 9 632 412 530 (156, 1,303) 
Mombin-Crochu, Nord-Est           Mean degree 5 632 364 585 (173, 1,890) 
Bombardopolis, Nord-Oest           Mean degree 9 655 383 487 (171, 1,115) 
Bombardopolis, Nord-Oest           Mean degree 5 655 541 906 (193, 3,136) 
Leogone, Oest           Mean degree 9 3,634 1,486 1,907 (400, 4,866) 
Leogone, Oest           Mean degree 5 3,634 2,509 3,622 (524, 11,318) 
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Chantel, Sud           Mean degree 9 620 390 491 (159, 1,096) 
Chantel, Sud           Mean degree 5 620 416 658 (168, 2,087) 
Thiotte, Sud-Est           Mean degree 9 636 414 576 (169, 1,518) 
Thiotte, Sud-Est           Mean degree 5 636 568 832 (182, 2,627) 

	


