
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Juvaria Tariq Date
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Some Cases of Erdős-Lovász Tihany Conjecture

By Juvaria Tariq

The Erdős-Lovász Tihany conjecture states that any G with chromatic number

χ(G) = s+t−1 > ω(G), with s, t ≥ 2 can be split into two vertex-disjoint subgraphs

of chromatic number s, t respectively. We prove this conjecture for pairs (s, t) if

t ≤ s + 2, whenever G has a Ks, and for pairs (s, t) if t ≤ 4s − 3, whenever G

contains a Ks and is claw-free. We also prove the Erdős Lovász Tihany Conjecture

for the pair (3, 10) for claw-free graphs.
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Chapter 1

Introduction

In this thesis, we study some cases of Erdős-Lovász Tihany conjecture and explore

the structure of graphs that can be possible counterexamples to the conjecture. In

particular, we show the classifying graphs, in which the removal of any graph of

chromatic number s reduces the chromatic number of the original graph by exactly

s, for many small s, can be in some way viewed as a simple problem of asking whether

the graph contains a complete graph or not. We exploit structural properties like

minimum degree, independence number, absence of certain cliques, and many more

to establish some interesting results.

1.1 Notation and Definitions

In this thesis, we consider G as a simple graph with no loops or multiple edges. We

let Kℓ denote the complete graph on ℓ vertices. Ks,t denotes the complete bipartite

graph with one part of size s and one of size t. We define chromatic number of G,
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denoted by χ(G), to be the least number of colors needed to color the vertices of a

graph G such that no edge is monochromatic. We let ω(G) be the largest ℓ such that

Kℓ ⊂ G, also known as clique number of G. The independence number of a graph,

also known as α(G), is the size of the largest set of vertices in the graph that are not

adjacent to each other. For a set U ⊆ V (G), we let G[U ] be the subgraph induced

by U . We say G is claw-free if there is no set W such that G[W ] ∼= K1,3.

Furthermore, we define for a set S ⊂ V (G), N(S) =
⋂

v∈S N(v) whereN(V ) is the

set of vertices that are adjacent to v. For any subgraph H ⊂ G, we define N(H) =

N(V (H)). We call this set the common neighborhood of H. We define N [S] =

N(S) ∪ S. For a subgraph H, let the degree of H, d(H) = |N(H)|. Furthermore,

for any subgraph F ⊆ G, NF (H) is defined to be N(H) ∩ V (F ), consequently

dF (H) = |NF (H)|. For other definitions, see the standard reference [Wes01].

Following [BKPS09,Tof95,NL82], given a graph G with k-coloring ϕ : V (G) → [k]

and a permutation π : [k] → [k] and a vertex x ∈ V (G), we let N1 to be the set

of vertices adjacent to x with color π(ϕ(x)), N2 the set of vertices adjacent to some

vertex in N1 with color π2(ϕ(x)), N3 the set of vertices adjacent to some vertex in N2

with color π3(ϕ(x)), and so on. We call N(x, ϕ, π) = {x}∪N1∪N2∪ . . . a generalized

Kempe chain from x with respect to ϕ and π. Note that changing the color ϕ(y) for

every y ∈ N(x, ϕ, π) to π(ϕ(y)) defines a new k-coloring of G.
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1.2 Background

We offer now a brief history of the Erdős-Lovász Tihany conjecture, with some

particularly relevant results highlighted. We direct the reader to [Son22] for more

details.

The Erdős-Lovász Tihany Conjecture states:

Conjecture 1.1 (Erdős-Lovász Tihany [Erd68]). For t ≥ s ≥ 2, for any graph G

with chromatic number χ(G) = s + t − 1 > ω(G) there exists a vertex partition

S ⊔ T = V (G) such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t.

While this conjecture is quite old and has received much attention over the last

fifty years, the exact result is known only for the following pairs: (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)

[BJ69,Moz87,Sti87a,Sti87b].

A particularly interesting case is for claw-free graphs. The most general result is

the following by Chudnovsky, Fradkin, and Plumettaz [CFP13].

Theorem 1.2. Let G be a claw-free graph with χ(G) > w(G). Then, there exists a

clique K with |V (K)| ≤ 5 such that χ(G−K) > χ(G)− |V (K)|.

Kostochka and Stiebitz proved the conjecture under the condition G is a line

graph [KS08]. A graph is a quasi-line graph if, for every vertex v, the set of neighbors

of v is expressible as the union of two cliques. The previous result was extended to

the following by Balogh, Kostochka, Prince, and Stiebitz [BKPS09]:

Theorem 1.3. Any quasi-line graph G with chromatic number χ(G) = s + t− 1 >

ω(G) can be split into two disjoint subgraphs of chromatic number s, t respectively.
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Furthermore, if α(G) = 2 and χ(G) = s + t − 1 > ω(G), G can be split into two

vertex-disjoint subgraphs of chromatic number s, t respectively.

This work was extended by Song [Son19] to the following. Recall that a hole is a

cycle such that no two vertices of the cycle are connected by an edge that does not

itself belong to the cycle.

Theorem 1.4. If α(G) ≥ 3 and G has no hole of length between 4 and 2α(G) − 1

and χ(G) = s + t − 1 > ω(G), G can be split into two vertex-disjoint subgraphs of

chromatic number s, t respectively.

As noted by Erdős and Lovasz if s = 2, the Erdős-Lovász Tihany conjecture is

equivalent to the following:

Conjecture 1.5 (Double-Critical Graph Conjecture [Erd68]). If G is a graph such

that removing every edge reduces the chromatic number by two, then G is a complete

graph.

This variant has received much attention over the years. In particular, Huang

and Yu [HY16] proved:

Theorem 1.6. If G is a claw-free graph of chromatic number six, such that removing

every edge reduces the chromatic number by two, then G is a complete graph

Building on this work and work by Kawarabayashi, Pedersen, and Toft [KPT10],

Rolek and Song [RS17] were able to prove the following:

Theorem 1.7. If G is a claw-free graph of chromatic number less than or equal to

eight, such that removing every edge reduces the chromatic number by two, then G

is a complete graph.
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1.3 Kℓ-Critical Graphs

We generalize the idea of double-critical graphs as follows;

Definition 1.8. For ℓ ≥ 2, we say a graph G is Kℓ-critical if it satisfies the following

three conditions:

(i) G has a Kℓ as a subgraph.

(ii) G is critical, i.e. removing any vertex reduces the chromatic number of G by

one.

(iii) Removing the vertex set of any Kℓ reduces the chromatic number of G by ℓ.

The first two conditions are to remove some trivial examples from the family,

such as taking the disjoint union of a Kℓ-critical graph with chromatic number k

with a Kℓ-free graph of chromatic number k − ℓ, or taking a Kℓ-free graph. Note

that K2-critical graphs are double-critical graphs.

Note that if G is a counterexample to the Erdős-Lovász Tihany Conjecture for a

pair (s, t) and contains a Ks as a subgraph, then G contains a Ks-critical subgraph

of the same chromatic number as G. Indeed, if χ(G − S) > s + t − 1 − s = t − 1

for any copy S of Ks, we have found a partition satisfying the Erdős-Lovász Tihany

Conjecture. As χ(G − S) ≥ χ(G) − |V (S)|, for all subgraphs S, we see that if G is

a counterexample, then χ(G − S) = χ(G) − s for all copies S of Ks. In particular,

we will prove that any graph with the property that removing any Ks reduces the

chromatic number by s contains a Ks-critical graph as an induced subgraph.

In light of this, we make the following conjecture.
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Conjecture 1.9. If G is Kℓ-critical for some ℓ ≥ 2, then G is a complete graph.

Note that while a proof of this conjecture would imply Erdős-Lovász Tihany for

graphs containing a Ks as a subgraph, the other direction does not hold.

In [Ped08], Pedersen offered a similar definition that requires edges to lie on a

Kℓ. In this setting, he proved Conjecture 1.9 for χ(G) ≤ 6 and ℓ = 3. In our work,

we drop this requirement that edges lie on a Kℓ and are able to reprove this result,

as seen in Corollary 2.4.

1.4 Results

In the language of Kℓ-critical graphs, our main results are the following:

Theorem 1.10. If G is a Kℓ-critical graph with χ(G) ≤ 2ℓ+1, then G is a complete

graph.

Theorem 1.11. If G is a Kℓ-critical claw-free graph with χ(G) ≤ 5ℓ− 4, then G is

a complete graph.

Throughout this work, we call a graph G triangle-critical if it is K3-critical. In

this case, we can extend the result one step further.

Theorem 1.12. If G is a triangle-critical claw-free graph with χ(G) = 12, then G

is a complete graph.
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1.5 Organization

In chapter 2, we will study the structure of Kℓ-critical graphs in detail. Later in

chapter 3 we will see the proof of Theorem 1.10. Afterward, we will prove Theorem

1.11 and 1.12 in chapter 4. We will end with a brief discussion of a further research

question in chapter 5.
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Chapter 2

Preliminary Lemmas

In this chapter, we will establish structural properties of Kℓ-critical graphs.

Lemma 2.1. Every graph G containing a Kℓ that has the property such that χ(G−

L) = χ(G) − |L| for every copy L of Kℓ contains a Kℓ-critical subgraph G
′ of the

same chromatic number of G.

Proof. Let G0 = G. Given Gi, let Gi+1 be formed from Gi by removing some vertex

x ∈ V (Gi) such that χ(Gi − x) = χ(Gi). The process stops if no such x remains in

Gi, and set G′ to that graph.

We claim that at every stage of the process, every copy L of Kℓ has the property

that χ(Gi −L) = χ(Gi)− ℓ. In particular, this says that at no stage do we remove a

vertex x that lies on a Kℓ. Note that the following holds hold for all copies L of Kℓ

in Gi:
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χ(G− L) ≥ χ(Gi − L) ≥ χ(Gi)− |L|

χ(G)− ℓ ≥ χ(Gi − L) ≥ χ(Gi)− ℓ

χ(Gi)− ℓ ≥ χ(Gi − L) ≥ χ(Gi)− ℓ

Thus, in particular, every Gi still has the property that removing a Kℓ reduces

the chromatic number by ℓ. Note that by definition, G′ is a critical graph. By our

earlier arguments, it still has a Kℓ and in particular, is thus Kℓ-critical. □

The following two lemmas are equivalent to Lemma 3.1 and Lemma 3.7 of Stiebitz

[Sti87b]. We include proofs for the sake of completeness.

Lemma 2.2. Let G be a Kℓ-critical graph with χ(G) = k. Then, d(v) ≥ k − 1 for

all v ∈ V (G) and for any L ⊆ G, with L a copy of Kℓ, d(L) ≥ k − ℓ. In particular

in any (k − ℓ)-coloring ϕ of G− L, for all i ∈ [k − ℓ], ϕ−1(i) ∩N(L) ̸= ∅.

Proof. Since G is critical, for all v in V (G), χ(G − v) = k − 1. Fix a coloring of

G − v in k − 1 colors. If v does not have a neighbor in every color class, then we

can color v with the color not used in N(v). This would give a (k − 1)-coloring of

G, contradicting that χ(G) = k. Thus, v sees a neighbor in every color class, and so

has degree at least k − 1.

Let L be a Kℓ in G and suppose on the contrary that there is a (k − ℓ)-coloring

ϕ of G− L where for some i ∈ [k − ℓ], N(L) ∩ ϕ−1(i) = ∅. Fix this i.



10

Let V (L) = {vk−ℓ+1, vk−ℓ+2, . . . vk}. Let ψ : V (L) → [k − ℓ + 1, k] : ψ(vj) = j.

For each vertex w ∈ ϕ−1(i), there is at least one vertex vjw among V (L) such that w

is not adjacent to vjw . Let f : ϕ−1(i) → [k − ℓ+ 1, k] such that f(w) = jw.

Define ϕ′ : V (G) → [k]− {i}, a coloring of G as follows

ϕ′(v) =


ψ(v) v ∈ V (L)

f(v) v ∈ ϕ−1(i)

ϕ(v) otherwise

Note that ϕ′ forms a (k − 1)-coloring of G, a contradiction to G having chromatic

number k.

□

Lemma 2.3. Let G be a Kℓ-critical graph with chromatic number k. If G contains

Kk−ℓ+1, then G ∼= Kk.

Proof. We will prove this by induction. Note that if G contains Kk the result follows

by criticality. Suppose 1 ≤ i ≤ ℓ − 1 and G has a Kk−i as a subgraph. Then, if

we can show that G contains Kk−i+1, the result would follow. Now, by definition, G

has a Kℓ, so we may assume k − i ≥ ℓ. Let X = {x1, x2, . . . , xk−i} be the vertices

of a Kk−i. Suppose G has no Kk−i+1. Note that G[{x1, x2, . . . , xℓ}] ∼= Kℓ, and let

L = G[{x1, x2, . . . , xℓ}]. Also, {xℓ+1, . . . xk−i} ⊆ N(L), but since |N(L)| ≥ k − ℓ by

Lemma 2.2, we have |N(L)−X| ≥ k − ℓ− (k − i− ℓ) ≥ i.

Since G has no Kk−i+1, for every vertex y in N(L) − X there exists an x ∈
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V (X) − V (L) such that xy is not an edge, so without loss of generality fix y1 ∈

N(L)−X such that y1 is not adjacent to xℓ+1. Then, G[{y1, x2, . . . xℓ}] ∼= Kℓ = L1,

so |N(L1)| ≥ k − ℓ. Note that xℓ+1 is not among the common neighbors of L1, so

|N(L1)−X| ≥ |N(L1)| − |X − {x2, . . . xℓ, xℓ+1}|

≥ k − ℓ− (k − i− ℓ)

≥ i.

Thus, there is a y2 in N(L1)−X.

Continuing, if j ≤ i, we have Lj = G[{y1, y2, . . . yj, xj+1, . . . xℓ}] = Lj is a copy

of Kℓ, and we note that |N(Lj) − X| ≥ i + 1 − j. Then, for all j ≤ i, there is a

yj+1 ∈ N(Lj) − X. At the end, we have found a Kℓ, G[{y1, . . . yi+1, xi+2, . . . xℓ}] =

Li+1. Let X
′ = X −Li+1. Note that |V (X ′)| = k− i− (ℓ− i− 1) = k− ℓ+1 . Thus,

we have found a Kℓ, namely Li+1, which is vertex-disjoint from a clique X ′ of size

k − ℓ+ 1, a contradiction to G being Kℓ-critical . Thus, G has a Kk−i+1. □

Note the following immediate corollary:

Corollary 2.4. If G is a Kℓ-critical graph with χ(G) ≤ 2ℓ, G is a complete graph.

Proof. Let G be a Kℓ-critical graph with χ(G) ≤ 2ℓ. Note that G has a Kℓ. If

χ(G) = ℓ, the result is clear. Assume then χ(G) > ℓ. In particular, by Lemma 2.2,

we have that the Kℓ is contained in a Kℓ+1. Thus, by Lemma 2.3, G is a complete

graph. □
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This result is a weaker version of Theorem 1.10. We will improve it in the next

section.

Following [BKPS09,Tof95,NL82], given a graph G with k-coloring ϕ : V (G) → [k]

and a permutation π : [k] → [k] and a vertex x ∈ V (G), we let N1 to be the set

of vertices adjacent to x with color π(ϕ(x)), N2 the set of vertices adjacent to some

vertex in N1 with color π2(ϕ(x)), N3 the set of vertices adjacent to some vertex in N2

with color π3(ϕ(x)), and so on. We call N(x, ϕ, π) = {x}∪N1∪N2∪ . . . a generalized

Kempe chain from x with respect to ϕ and π. Note that changing the color ϕ(y) for

every y ∈ N(x, ϕ, π) to π(ϕ(y)) defines a new k-coloring of G.

Lemma 2.5. Let G be a Kℓ-critical graph and L be a copy of Kℓin G. Let χ(G) = k

and ϕ be a (k − ℓ)-coloring of G − L. Then for any nonempty repeat-free sequence

j1, j2, . . . jt in [k − ℓ], and x, y ∈ V (L), there is a path on t+ 2 vertices starting at x

and ending at y with the i+ 1th vertex v being in G− L with ϕ(v) = ji.

Proof. Let G′ be the graph on V (G) with edges E(G) − {xy}. Let ϕ′ be a (k − 1)-

coloring of G′ extending ϕ and giving unique colors to every vertex of L besides

x, y, with ϕ(x) = ϕ(y) = k − 1. Let π be the cyclic permutation defined by

(k − 1, j1, j2, . . . , jt). If N(x, ϕ, π) does not contain y, then reassigning the colors

by applying π to the chain (as described above) gives a coloring of G′ where x, y

have distinct colors. Thus, this would extend to a k−1 coloring of G by adding back

the edge xy, a contradiction. Therefore, y must be on this generalized Kempe chain.

Since only y and x have color k−1, it follows that G[N(x, ϕ, π)] must contain a path

from x to y of order t+ 2 satisfying our conditions. □



13

Lemma 2.6. Let G be a Kℓ-critical graph with chromatic number k which is not Kk.

Then there exists a copy S of Kℓ+1, such that for every vertex x ∈ V (S), there is

copy L of Kℓ, satisfying L ̸⊆ N [x].

Proof. Let L′ be a Kℓ. We will construct S by induction via the following claim.

Claim. For any subgraph S contained in a copy L of Kℓ, there exists x such that

x ∈ N(S) and there is a copy T of Kℓ, with T ̸⊆ N [x]. Moreover, if |S| ≤ ℓ− 1, we

can pick x such that S ∪ {x} is contained in a Kℓ.

Note by Lemma 2.2, that |N(L)| ≥ k − ℓ. Since G ̸∼= Kk, we have the existence

of a pair x, y ∈ N(L) ⊆ N(S) such that x ̸∼ y, as otherwise G[L ∪ N(L)] ∼= Kk.

Now, y along with ℓ− 1 vertices of L forms a Kℓ not in N [x] as xy is not an edge. If

|S| < ℓ, then we have that {x}∪S with some vertices from L−S forms a Kℓ. Thus,

x is the desired vertex to fulfill the claim.

For our base case, note that ∅ ⊆ L′ satisfies the conditions of the claim. Suppose

we have an S satisfying the conditions of claim with |S| ≤ ℓ. Then, by repeatedly

applying the above claim, we have that there is an x such that there is a T a copy

of Kℓ, with T ̸⊆ N [x], and S ∪ {x} satisfies the claim if |S| ≤ ℓ − 1 and proves

Lemma 2.6 if |S| = ℓ. □

Lemma 2.7. Let G be a Kℓ-critical graph with χ(G) = k and x a vertex in G such

that there is a copy L of Kℓ with L ̸⊆ N [x]. Then, N(L) ̸⊆ N(x). In particular, as

x ̸∈ N(L), this implies N(L) ̸⊆ N [x].

Proof. Suppose otherwise and remove L from G. Observe that if x ∈ V (L), then
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L ⊆ N [x], so x ∈ V (G − L). Furthermore, G − L is (k − ℓ)-colorable. Fix a

(k − ℓ)-coloring ϕ, and note that by Lemma 2.2, there is a vertex y ∈ N(L) such

that ϕ(y) = ϕ(x). As N(L) ⊆ N(x), we have a monochromatic edge, contradicting

ϕ being a coloring. So N(L) ̸⊆ N(x). □

Lemma 2.8. Let G be a Kℓ-critical graph and x a vertex in G such that there is a

copy L0 of Kℓ with L0 ̸⊆ N [x]. Then, χ(G[N(x)]) ≤ k − ℓ− 1.

Proof. We will need the following claim.

Claim. Let Li be a Kℓ intersecting N(x) in 1 ≤ s < ℓ vertices with x ̸∈ V (Li). Then

there exists a copy Li+1 of Kℓ that intersects N(x) in s− 1 places with x ̸∈ V (Li+1).

By Lemma 2.7, there exists a z ∈ N(Li)−N(x). Since V (Li) ∩N(x) ̸= ∅, there

is some vertex w ∈ V (Li) ∩N(x). Let Li+1 = G[V (Li) ∪ {z} − {w}].

With this claim, we see there is some copy Lj ofKℓ not containing x that intersects

N(x) in zero places. Remove Lj from the graph. We have that the remainder is

(k − ℓ)-colorable, so N(x) ∪ {x} is (k − ℓ)-colorable. Thus, N(x) is (k − ℓ − 1)-

colorable, as x is adjacent to every vertex within. □

Lemma 2.9. Let G be a Kℓ-critical graph with chromatic number k which is not Kk,

with ℓ ≥ 2. Then, every vertex which lies on a Kℓ has degree at least k + 2ℓ− 3. In

particular, for all 1 ≤ i ≤ ℓ, if H is a copy of Ki is contained in some Kℓ in G, then

d(H) ≥ k − ℓ+ 3(ℓ− i).
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Proof. Let x1 be a vertex in G that lies on a Kℓ. Take the L copy of Kℓ containing

x1 such that over all copies S of Kℓ containing x1, |N(L)| ≤ |N(S)|. Let V (L) =

{x1, . . . , xℓ}. By Lemma 2.2, the number of common neighbors of V (L) is at least

k− ℓ. Since G is not a Kk, there is at least one nonedge between two vertices u, v in

N(L).

Let Li denote the Kℓ formed by taking G[{x1, . . . , xi−1, u, xi+1, . . . , xℓ}], for i ∈

[2, ℓ]. Each such Li has at least as many neighbors as L but does not have v as a

neighbor. Thus, N(Li) − ({xi} ∪ N(L)) ̸= ∅. Let zi be in N(Li) − ({xi} ∪ N(L)).

Since zi ̸∈ N(L), but zi ∈ N({x1, . . . xi−1, xi+1, . . . xℓ}), we know that zi ̸∈ N(xi).

Thus by Lemma 2.7, we have that L′
i = G[{x1, . . . , xi−1, zi, xi+1, . . . , xℓ}] satisfies

N(L′
i) ̸⊆ N [xi]. Let z

′
i be a vertex in N(L′

i)−N [xi]. Note in particular, z′i ̸∈ N(L).

Note that zi ̸= zj for i ̸= j, as then zi would be in N(L). Furthermore, we have

that z′i ̸= zj, as z
′
i is not adjacent to xi, yet zj is adjacent to xi. Similarly, z′i ̸= z′j for

i ̸= j.

Thus, d(x1) ≥ |V (L)−{x1}|+d(L)+ |{z2, z′2, . . . zℓ, z′ℓ}| ≥ ℓ−1+k−ℓ+2(ℓ−1) ≥

k + 2ℓ − 3. Via the previous argument, any Ki contained in a Kℓ has at least

k − ℓ+ 3(ℓ− i) many common neighbors. □

Lemma 2.10. Let G be a Kℓ-critical graph. Let x be any vertex of G and v be a

vertex lying on a copy L0 of Kℓ which contains a vertex outside N [x]. Then v has at

least ℓ neighbors outside of N [x].

Proof. We will use the following claim.

Claim. Let Li be a Kℓ containing a vertex v but not x such that |(Li−{v})∩N(x)| = s
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with 1 ≤ s < ℓ− 1. Then there exists Li+1 such that |(Li+1 − {v}) ∩N(x)| = s− 1,

x ̸∈ V (Li+1), Li+1
∼= Kℓ, and v still lies on Li+1.

By Lemma 2.7, there exists a z ∈ N(Li)−N [x]. Since V (Li) ∩N(x)− {v} ̸= ∅,

there is some vertex w ∈ V (Li) ∩N(x)− {v}. Let Li+1 = G[V (Li) ∪ {z} − {w}].

By this claim, there is some copy Lj of Kℓ such that (Lj − {v}) ∩ N [x] = ∅.

By Lemma 2.7, there is a z ∈ N(Lj) − N [x]. Thus, there are at least ℓ vertices in

N(v)−N [x], namely V (Lj)− {v} and z.

□



17

Chapter 3

Kℓ-Critical Graphs with

χ(G) ≤ 2ℓ + 1

We first show the proof for triangle-critical graphs with chromatic number seven.

Later we will generalize the same argument for k = 2ℓ+ 1.

Theorem 3.1. The only triangle-critical graph with chromatic number seven is K7.

Proof. Assume otherwise, and let G be such a graph. Fix a triangle X = {x, y, z}

inside G, and fix a coloring of G−X, ϕ : V (G−X) → [1, 2, 3, 4]. Let a1 be a common

neighbor of {x, y, z} among the four neighbors that exist by Lemma 2.2. Let a2 be

a common neighbor of {x, y, a1}, which is not z, and let a3 be a common neighbor

of {a1, a2, x} which is not y, z. Continue this sequence in the following way. Given

{a1, . . . ai}, let ai+1 be a common neighbor in G −X of the triangle {ai, ai−1, ai−2}

that has yet to appear on the sequence. We stop if no such vertex exists.

Note that this sequence is uniquely 4-colorable by construction. Since it is a
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subgraph of V (G − X), it is 4-colorable, and as it is a sequence of K4 intersecting

in triangles, there is a unique way to do it: coloring ai with i (mod 4). Let T =

{ap−2, ap−1, ap} be the last triangle on the sequence. Lemma 2.3 implies that G isK5-

free, hence dX(T ) ≤ 1. Furthermore, by Lemma 2.2, T has at least 3 more neighbors,

{ab1 , ab2 , ab3} in G . Given that T is a triangle, in any 4-coloring of G−X, NG−X(T )

is monochromatic. As T is the last triangle, {ab1 , ab2 , ab3} lie on the sequence. Thus,

b1, b2, b3 ≡ p+ 1 (mod 4). So, letting b1 be smallest among {b1, b2, b3}, we have that

p+ 1− 12 ≥ b1 ≥ 1, therefore p ≥ 12.

z

y

x

a1

a2

a3

a4

a5

ap

ap−1

ap−2

Figure 3.1: Uniquely 4-colorable sequence of k4’s

Let {Ai}4i=1 denote the color classes of the unique 4-coloring of {a1, a2, . . . ap−3}.

Since p ≥ 12, these classes are nonempty. Suppose without loss of generality, that

the common neighbors of {ap−2, ap−1, ap} all lie inside A1. By the triangle-critical

condition, G − T is four colorable, and in particular, T has a common neighbor in

every color class. By construction, the only common neighbors of T lie inside A1

or are among {x, y, z}. By Lemma 2.3, there can be at most one of {x, y, z}. But

this means the neighborhood of {ap−2, ap−1, ap} see at most two colors by the unique
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colorability of {a1, a2, . . . ap−3}. This is a contradiction to Lemma 2.2, and so the

only triangle-critical seven chromatic graph is K7. □

Note that Theorem 1.10 follows from below and Corollary 2.4.

Theorem 3.2. Let G be a Kℓ-critical graph with chromatic number 2ℓ+1 with ℓ ≥ 2.

Then, G ∼= K2ℓ+1.

Proof. Assume otherwise, and let G be such a graph. Fix a Kℓ, X = {x1, x2 . . . xℓ}

inside G, and fix a (ℓ+1)-coloring of G−X, ϕ : V (G−X) → [ℓ+1]. Let a1 be one

of the at least ℓ+ 1 common neighbors of X. For i < ℓ, having defined a1, . . . ai, let

ai+1 be a common neighbor of {a1, . . . ai, xi+1 . . . xℓ} which is not among x1, . . . xi.

As by Lemma 2.2, the common neighborhood has size ℓ + 1, we have that there is

such a choice.

Now, for i ≥ ℓ, having defined ai−ℓ+1, ai−ℓ+2, . . . ai, we define ai+1 as any common

neighbor of these vertices among V (G−X) yet to appear on our sequence. We stop

when no choices remain.

Note that this sequence {a1, a2 . . . , ap} is uniquely (ℓ+1)-colorable by construction.

Since the sequence induces a subgraph of V (G−X), it is (ℓ+1)-colorable, and as it can

be seen as a sequence of Kℓ+1’s intersecting in Kℓ’s, there is a unique up to relabeling

way to do it: coloring ai with i (mod ℓ+1), making it uniquely (ℓ+1)-colorable. Let

L = {ap−ℓ+1, ap−ℓ+2, . . . , ap} be the last Kℓ on the sequence. Lemma 2.3 implies that

G is Kℓ+2-free, hence dX(L) ≤ 1. Furthermore, by Lemma 2.2, dG−X(L) ≥ ℓ. Given

that L is a Kℓ, in any (ℓ+ 1)-coloring of G−X, NG−X(L) is monochromatic. As L

is the last Kℓ, NG−X(L) ⊇ {ab1 , ab2 , . . . abℓ} lie in the sequence. Thus, b1, b2, . . . bℓ ≡
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p + 1 (mod ℓ + 1). So, letting b1 be smallest among {b1, b2, . . . bℓ}, we have that

p+ 1− ℓ(ℓ+ 1) ≥ b1 ≥ 1, therefore p ≥ ℓ(ℓ+ 1).

Note that since p ≥ ℓ(ℓ + 1), L is distinct from a1, a2, . . . , aℓ. By our earlier

observation, there is a j such thatNG−X(L) ⊆ ϕ−1(j). LetA = ϕ−1(j)∩{a1, a2, . . . ap−ℓ}.

Now, by unique colorability, any (ℓ + 1)-coloring of G − L colors A with one color.

As L has at most one common neighbor among X, we have that the neighborhood

of L sees at most two color classes of the coloring of G−L, and thus misses at least

one. But this contradicts Lemma 2.2, thus G ∼= K2ℓ+1. □
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Chapter 4

Claw-Free Graphs

In this chapter, we focus our attention on the class of graphs that are claw-free and

are Kℓ-critical.

4.1 Claw-Free Graphs with χ(G) ≤ 5l − 4

We first show the proof of our theorem for chromatic number 8 case and then we

will show the more general proof. We include this proof to highlight the alternative

method using Ramsey numbers and their lower-bound constructions.

Theorem 4.1. If G is triangle-critical, has chromatic number eight, and is claw-free,

then G ∼= K8.

Proof. Let G be a triangle-critical claw-free graph with chromatic number eight.

Then, d(T ) ≥ 5 for all triangles T by Lemma 2.2.

Fix any triangle T . We will now show that G[N(T )] ∼= C5 for T . If G is not
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K8 then the neighborhood of T is K3-free by Lemma 2.3. Furthermore, since G

is claw-free, the independence number of G[N(T )] is at most two. Suppose on the

contrary that d(T ) ≥ 6. Then since R(3, 3) = 6, N(T ) contains either a triangle or

an independent set of size three, a contradiction. Thus, d(T ) = 5. Consequently,

from the uniqueness of the lower bound Ramsey construction, G[N(T )] ∼= C5.

Let T1 be a triangle in G, with V (T1) = {x, y, z}. Let N(T1) = {a, b, c, d, e},

which forms a cycle (a, b, c, d, e). Now, take the triangle Ta induced by {x, y, a}, the

common neighborhood of this triangle certainly contains the vertices z, b, and e. As

before, G[N(Ta)] ∼= C5, so there must be vertices, which we will call suggestively

a1, e1 lying in the common neighborhood such that (z, b, a1, e1, e) is a cycle. Note

that a ̸∼ c, d, therefore a1, e1 ̸= c, d.

Now, let us examine the triangle Tb induced by {x, y, b}. N(Tb) includes a, a1, z, c.

We already know that c ∼ z ∼ a ∼ a1, so there must be a b1 ∈ N(Tb) such that

c ∼ b1 ∼ a1. As b1 ∼ b, we have that b1 ̸= e1 since e1 ̸∼ b. Similarly, b1 ̸= d, e.

Let us now look at the triangle Tc induced by {x, y, c}. We note that {b, d, b1, z} ⊆

N(Tc). There must be a fifth vertex c1 such that c1 ∼ b1, d but c1 ̸∼ b, z. Thus,

c1 ̸= a1, b1, a, e, yet it may be true that c1 = e1. We will discount this possibility

later.

Consider now the triangle Td induced by {x, y, d}. We note that {c, e, c1, z} ⊆

N(Td). There must be a fifth vertex d1 such that d1 ∼ c1, e but d1 ̸∼ z, c. Note that

for G[N(Td)] ∼= C5, we must have that c1 ̸∼ e. Therefore, c1 ̸= e1. Since d1 ̸∼ c, we

have that d1 ̸= b1, a, b.

Let us look at the triangle Te induced by {x, y, e}. We note that {a, d, z, d1, e1} ⊆
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N(Te). If e1 = d1, then a subset of N(Te) would induce a C4, so e1 ̸= d1. Thus,

in particular d1 ̸∼ a, so d1 ̸= a1. Therefore all five a1, b1, c1, d1, e1 are distinct and

distinct from {a, b, c, d, e}.

Now, let us take the triangle Ta1 induced by {x, y, a1}. We note that N(Ta1)

contains the vertices a, b, b1, e1 and a vertex w such that (e1, a, b, b1, w) is a C5. Then,

we look at the triangle Tb1 induced by {x, y, b1}, N(Tb1) contains b, c, a1, c1, w. If

w = c1, G[N(Tb1)] would contain a C4, so we have that w ̸= c1 and w ∼ c1. Via

similar arguments examining N({x, y, c1}), N({x, y, d1}), N({x, y, e1}), we have that

N({x, y, w}) = {a1, b1, c1, d1, e1}. Note in particular that w is distinct from all five of

these vertices. By triangle-criticality, G− {a, b, a1} has chromatic number five. Fix

a coloring. Note that x, y must have distinct colors from {w, z, c, d, e, b1, c1, d1, e1},

so we must color the rest with three colors. {b1, c1, c} must all receive three distinct

colors, say respectively 1, 2, 3. {b1, c1, w} is a triangle, so w must see color 3. {c, c1, d}

is a triangle so d sees color 1. {d, c1, d1} is a triangle, so d1 sees color 3. Yet d1 ∼ w,

a contradiction.

Thus, G ∼= K8. □

Furthermore, we will prove the following statement:

Theorem 4.2 (Restatement of Theorem 1.11). Let ℓ ≥ 2. Let G be Kℓ-critical

claw-free graph with chromatic number k ≤ 5ℓ− 4. Then G ∼= Kk.

Proof. Suppose on the contrary, G ̸∼= Kk.

Then, by Lemma 2.6, there is a S ∼= Kℓ such that for every x ∈ V (S), there is

some L ∼= Kℓ such that L ̸⊆ N(x) and x ̸∈ V (L).
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Moreover, for any x ∈ V (S), Lemma 2.8 implies χ(G[N(x)]) ≤ k − ℓ − 1, and

hence by claw-freeness d(x) ≤ 2(k − ℓ− 1).

Let u, v be a nonadjacent pair inside N(S). Note that G is a Kk if no such pair

exists. Then for every x ∈ V (S), by Lemma 2.9, d(u, x) ≥ k−ℓ+3(ℓ−2) ≥ k+2ℓ−6.

Take y ∈ V (S), let S ′ = G[V (S)−{y}∪{v}]. Then, S ′ is not in the neighborhood

of u and does not contain u, but contains every x ∈ S −{y}. Thus, by Lemma 2.10,

for every x ∈ V (S) − {y} has at least ℓ neighbors outside N [u]. Thus, since x is

adjacent to u, we have that

d(x) ≥ d(x, u) + |N(x)−N [u]|+ |{u}|

≥ k + 2ℓ− 6 + ℓ+ 1

≥ k + 3ℓ− 5.

Combining this with the upper bound on d(x), we have

k + 3ℓ− 5 ≤ 2(k − ℓ− 1)

k + 3ℓ− 5 ≤ 2k − 2ℓ− 2

5ℓ− 3 ≤ k.

Yet, by assumption, we have that k ≤ 5ℓ− 4, a contradiction. So G ∼= Kk. □



25

4.2 Claw-Free Graphs with χ(G) = 12

We will now prove the following statement:

Theorem 4.3 (Restatement of Theorem 1.12). Let G be a triangle-critical, claw-free

graph of chromatic number twelve. Then G ∼= K12

Proof. Assume on the contrary that G ̸∼= K12. Let a be a vertex of G that lies on

a triangle L such that there is a triangle L′ in G− {a} not fully contained in N(a).

By Lemma 2.6, such a vertex exists. Let b, d be a nonedge in N(L). Since G ̸∼= K12,

such a nonedge exists. Note that there is a triangle containing a, which does not lie

inside N(b) and does not contain b. Recall that by claw-freeness and Lemma 2.8,

d(a), d(b) ≤ 2(12− 3− 1) ≤ 16.

If every triangle containing ab has degree at least ten, then, following the proof

of Lemma 2.9, we have that d(a, b) ≥ 13. As by Lemma 2.10, |N(a)−N [b]| ≥ 3, we

have that

d(a) = d(a, b) + |N(a)−N [b]|+ |{b}| ≥ 17,

a contradiction. Thus, by Lemma 2.2, there is a c ∈ N(a, b) such that d(a, b, c) = 9.

Let T = G[{a, b, c}]. Now, by Lemma 2.9, we have that d(a, b), d(a, c), d(b, c) ≥ 12.

Thus, there are six vertices, x, x′, y, y′, z, z′ such that x, x′ ∈ N(a, b) − N [c], y, y′ ∈

N(a, c)−N [b], and z, z′ ∈ N(b, c)−N [a].

Now, we have that for each vertex among {a, b, c} there is a triangle not containing

it such that misses its neighborhood, so by Lemma 2.8 and claw-freeness, d(a), d(b), d(c) ≤

16.

Let us examine the triangle S = G[{a, b, x}]. Since x ̸∈ N [c], S has a neighbor
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outside N [c] by Lemma 2.7; without loss of generality, we may assume it is x′. Also

by Lemma 2.7, a, x, x′ has a common neighbor outside the N [c], let us call it a′.

Suppose a′ ∼ b. Then, d(a, b) ≥ 13. But, then by Lemma 2.10, d(a) ≥ 17, a

contradiction. So a′ ̸∼ b. Similar logic gives a vertex b′ that is adjacent to x, x′, b

but not a, c.

Now, let us examine S ′ = G[{a, c, y}]. Since y ̸∈ N [b], S ′ has a neighbor outside

N [b] by Lemma 2.7; without loss of generality, we may assume it is y′. Furthermore,

a, y, y′ has a common neighbor outside N [b], let us call it a′′. As above a′′ ̸∼ c. If

a′′ ̸= a′, then d(a) ≥ 17, a contradiction. Thus, a′′ = a′.

Following this logic to its natural conclusion, we have found that x ∼ x′, y ∼ y′,

and z ∼ z′, and the existence of three vertices a′, b′, c′ such that a′ ∼ a, x, x′, y, y′;

a′ ̸∼ b, c; b′ ∼ b, x, x′, z, z′; b′ ̸∼ a, c; c′ ∼ c, y, y′, z, z′; and c′ ̸∼ a, b.

Note that the edge aa′ lies on a triangle, so d(a, a′) ≥ 12. In particular, N(a, a′)

contains x, x′, y, y′ and eight vertices among N(T ). Similar logic holds for bb′ and

cc′. In particular NN(T )(a
′, b′, c′) ≥ 6. Fix w ∈ NN(T )(a

′, b′, c′). If a′ ̸∼ b′, then

G[{w, a′, b′, c}], would be a claw, a contradiction. So a′ ∼ b′, and similar logic shows

T ′ := G[{a′, b′, c′}] satisfies T ′ ∼= K3, as shown in Figure 1.

Now, G − T is 9-chromatic by triangle-criticality. Fix one such 9-coloring ϕ.

Under ϕ, N(T ) receives all nine colors by Lemma 2.2. Since dN(T )(a
′) ≥ 8, we have

that a′ has exactly one non-neighbor in N(T ). Suppose inside N(T ), a′, b′ share a

common non-neighbor. Let v be the non-neighbor of a′ in N(T ), and so under ϕ,

ϕ(v) = ϕ(a′). Under the assumption a′, b′ are both nonadjacent to v, we have that

ϕ(v) = ϕ(b′). But then, ϕ(b′) = ϕ(a′), contradicting that ϕ is proper coloring.
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a

b

c

a′

b′

c′

x

x′

y

y′

z

z′

T T ′

edge

all edges

Figure 4.1: Some edges in G[{x, x′, y, y′, z, z′} ∪ T ∪ T ′]

This gives us a complete description of the connectivity between N(T ) and T ′,

as shown in Figure 2.

N(T )

N(T ′)

N(c′, b′) N(a′, c′) N(a′, b′)

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 4.2: Structure of N(T )

Let us now examine the edge ax. As it lies on a triangle d(ax) ≥ 12. Since ax

has at most three neighbors among {x′, y, y′, z, z′} and exactly two neighbors, a′, b

among {b, c, a′, b′, c′}, we have that ax have at least seven common neighbors among
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N(T ). Similarly, dN(T )(x
′), dN(T )(y), dN(T )(y

′), dN(T )(z), dN(T )(z
′) ≥ 7.

Note that under ϕ, six colors appear among x, x′, y, y′, z, z′. Indeed, suppose that

two of them received the same color, say without loss of generality ϕ(x) = ϕ(y).

Letting w be the vertex in N(T ) receiving color ϕ(x), then G[{a, x, y, w}] would be

a claw, a contradiction.

We seek to show that, under ϕ, every vertex in {x, x′, y, y′, z, z′, a′, b′, c′} receives

a distinct color. Suppose on the contrary that one vertex among x, x′, y, y′, z, z′

under the coloring ϕ shares a color with one of {a′, b′, c′}. Without loss of generality,

we may assume it is z and a′. Let vi be the vertex in N(T ) such that ϕ(vi) =

ϕ(z) = ϕ(a′). Now, as z, a′ ̸∼ vi, we have that dN(T )(z, a
′) ≥ 7. If dN(T )(vi) ≥ 2,

then NN(T )(vi, a
′, z) ̸= ∅, and so G would a contain a claw, a contradiction. Thus,

dN(T )(vi) ≤ 1. Now, d(a, b, vi) ≥ 9, so |N(a) − N(c)| ≥ d(a, b, vi) − dN(T )(vi) ≥ 8.

But, then d(a) = d(a, c)+ |N(a)−N(c)| ≥ 12+8 > 16, a contradiction. Thus, under

ϕ, every vertex in {x, x′, y, y′, z, z′, a′, b′, c′} receives a distinct color.

Without loss of generality, assume ϕ(a′) = 1, ϕ(b′) = 2, ϕ(c′) = 3, ϕ(x) = 4, ϕ(x′) =

5, ϕ(y) = 6, ϕ(y′) = 7, ϕ(z) = 8, ϕ(z′) = 9. For every i ∈ [9], let vi ∈ N(T ) be the

unique vertex colored i under ϕ.

Claim. For all i ∈ {1, 2, 3} and all j ∈ {4, 5, 6, 7, 8, 9}, vivj is an edge.

For simplicity, let us first examine i = 1, j = 4. By Lemma 2.5, there is a path

of order four from b to c where the second vertex receives color 1 and the third

vertex receives color 4. Yet b is adjacent to exactly one vertex of color 1, v1, and c is

adjacent to exactly one vertex of color 4, v4. So v1v4 is an edge. Similar arguments

complete this claim.
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N(T )

N(T ′)

N(c′, b′) N(a′, c′) N(a′, b′)

v1 v2 v3

v4 v5 v6

v7 v8 v9

a

b

c

a′

b′

c′

x

x′

y

y′

z

z′

T T ′

Figure 4.3: Key Structure of N(a) ∪N(b) ∪N(c)

Our final claim before our contradiction is that d(T ′) = 9. Now, as T is a

triangle that does not lie completely in any of their neighborhoods, by Lemma 2.8

and claw-free, we have that d(a′), d(b′), d(c′) ≤ 16. Suppose on the contrary that

d(T ′) ≥ 10. Now, a′ is adjacent to at least seven vertices that are not in N(T ′),

namely a, v2, v3, b
′, c′, and then at least two of x, x′, y, y′, as c′ cannot be adjacent to

both of x, x′ and b′ cannot be adjacent to both of y, y′, as then either d(c′) ≥ 17 or

d(b′) ≥ 17 respectively. Indeed, if c′ were adjacent to both x, x′, then c′ would be

adjacent to eight vertices in N(T ), c, x, x′, y, y′, z, z′ and a′, b′. Yet then, d(a′) ≥ 17,

so d(T ′) = 9.

We will now show that χ(G−T ′) ≥ 10, contradicting triangle-criticality. Suppose

there is a 9-coloring of G − T ′, call it ψ. Then, by Lemma 2.2, all nine colors

must appear in the N(T ′). As there are only nine vertices, every vertex must get a

distinct color. Suppose without loss of generality that ψ(v4) = 4, ψ(v5) = 5, ψ(v6) =
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6, ψ(v7) = 7, ψ(v8) = 8, ψ(v9) = 9. Then, as each of {a, b, c} is adjacent to all six of

these vertices, and form a triangle, we may assume ψ(a) = 1, ψ(b) = 2, and ψ(c) = 3.

Thus, all nine colors appear in the neighborhood of v1, and so ψ cannot be a proper

coloring.

Therefore, G ∼= K12. □
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Chapter 5

Summary and Future Research

We note that if G is a counterexample for the Erdős-Lovász Tihany conjecture for

a pair (s, t) with s = 3, then it must have a K3. In particular, Stiebitz [Lemma

3.6, [Sti87b]] showed it must have a K4. Thus, our main results reprove Erdős-

Lovász Tihany for (3, 3), (3, 4), (3, 5) and prove it for claw-free graphs for (3, t) with

t ∈ {6, 7, 8, 9, 10}.

In particular, this leads to the open question:

Question 5.1. Does any counterexample G to the Erdős-Lovász Tihany Conjecture

for a pair (s, t) with s, t ≥ 4 require Ks to be a subgraph of G?
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