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Abstract

Differentially Private Deep Learning
By Qiuchen Zhang

Deep learning models have achieved great success in many real-world tasks, such
as image recognition and machine translation. A large amount of data is needed to
train a model, and in many cases, the training data are private. Publishing or shar-
ing a deep learning model trained on private datasets could pose privacy concerns.
Differential privacy (DP) has been widely accepted as a strong and provable privacy
framework for statistical data analysis. Recent works developed deep learning mod-
els with DP, which requires that the statistical model (parameters) learned from a
set of data is indistinguishable regardless of the presence or absence of any record
in the dataset. Most works on deep learning with DP focus on improving model
accuracy given a privacy requirement or enhancing the privacy and utility trade-off.
However, existing works become less effective when the model goes deeper, or the
privacy requirement is tighter. Meanwhile, there is still little demonstration of how
effective DP is in protecting against the existing privacy attacks in practice. Ad-
ditionally, achieving meaningful differential privacy for graph neural networks that
focus on non-Euclidean data is still an open problem. Due to these limitations and
problems, we 1) propose new mechanisms to enhance the utility and privacy trade-off
in private model training and further improve the practicality to obtain meaningful
privacy guarantees when training deep models on sensitive data. Moreover, we 2)
propose new DP notions and develop algorithms to provide a quantifiable privacy
guarantee against model inversion attacks whose goal is to recover the target class’s
visual property or features. Finally, we 3) develop new algorithms to achieve node-
level differential privacy when training deep learning models on graph data based on
differentially private approximate personalized PageRank and differentially private
stochastic gradient descent.
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Chapter 1

Introduction

1.1 Motivation

Neural networks have achieved great success in many real world tasks from image and

speech recognition to precision medicine and self-driving cars [16,63,67,82]. Training

neural networks requires large amount of training data and significant computational

resources. Cloud systems that offer machine-learning-as-a-service such as Amazon

ML [2], Google AI platform [1] and Microsoft Machine Learning Studio [3] have gained

increasing popularity. Clients can upload datasets to the cloud server which will train

the models, and the clients can obtain access to the model either by downloading the

model or performing prediction queries using the model via Application Programming

Interfaces (API). Some of these services provide marketplaces where clients can share

the trained models with other users with either full description of the model (white-

box) or API access (black-box).

Publishing or sharing the deep learning model trained on private datasets directly

could pose serious privacy concerns. The data used for training the model may con-

tain users’ sensitive information such as images, voice, medical histories, and location

traces. Even though the adversaries do not have access to the original training data,
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they can use the models to infer or reconstruct (the features of) the training data.

Several works demonstrated different attacks aiming to extract information about the

private training datasets from the published deep learning models. Membership infer-

ence attacks [97] attempt to infer whether or not a specific record was in the training

dataset given black-box API access to the model. Model inversion attacks [34] (MIA)

attempt to reconstruct a recognizable face image corresponding to a person (a class)

from a face recognition model given the name of the person (the class label) and

white-box access to the model. We can see that the purpose of membership infer-

ence attack and MIA are different. The former attempts to recover the ”existence”

information of a target data point, while the latter attempts to recover the statistical

property or features of a target class (which can be also private). Therefore, both of

them are considered as privacy threats and violations [44,46,80,93,106].

Differential privacy (DP) [26,28] has demonstrated itself as a strong and provable

privacy framework for statistical data analysis and recently been explored to protect

the privacy of training data when training deep learning models [4, 5, 85]. Phan et

al. [86] explore the objective function perturbation method and use it to train a deep

autoencoder satisfying DP. However, it may not be trivial to generalize to other deep

learning models. Shokri and Shmatikov [96] train a deep model across multiple sites

collaboratively and protect the DP of each updated parameter. However, the overall

privacy budget for the model is huge which leads to a meaningless privacy guarantee.

One widely accepted way to provide rigorous DP guarantee for training neural

network models on sensitive data is to use differentially private Stochastic Gradient

Descent (DP-SGD) which adds Gaussian noise to the gradients in each iteration

during the SGD based optimization process [4]. However, as the model goes deeper,

this method becomes less effective [84, 128]. Another promising approach is Private

Aggregation of Teacher Ensembles (PATE), which trains multiple teacher models on

disjoint sensitive data and transfers the knowledge of teacher ensembles to a student
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model by letting the teachers vote for the label of each record from an unlabeled public

dataset [85]. The teachers’ votes are aggregated through a differentially private noisy-

max mechanism, which is to add DP noise to the number of each label’s votes first

and then take the label with the majority count as the output. Finally, the student

model is trained on the partially labeled public dataset in a semi-supervised fashion

and published, while the teacher models are kept private.

Compared to DP-SGD, PATE obtains higher accuracy with a tighter privacy guar-

antee on the same dataset used in both works [84]. Meanwhile, the PATE mechanism

is independent of the learning algorithms and can be applied to different model struc-

tures and to datasets with various characteristics. However, the knowledge transferred

from teachers to the student, which are noisy-max voted labels, contain a certain pro-

portion of errors or noisy labels, and the proportion has a positive relationship with

the level of privacy guarantee that PATE provides and a negative impact on the

accuracy of the student model.

On the another hand, since most works on deep learning with DP focus on improv-

ing model accuracy given a privacy requirement or enhancing the privacy and utility

trade-off, there is still a limited understanding on how effective DP is in protecting

against the above mentioned privacy attacks in practice. MA Rahman et al. [89]

evaluated DP against membership inference attacks and showed that DP can protect

against the attacks successfully only by sacrificing model utility by a considerable

margin. This is not surprising as the indistinguishability guarantee of DP with re-

spect to the presence of a record is directly aligned with the goal of preventing the

inference of the membership of a record. Injecting noise to the model parameters

required by DP naturally degrades the performance of the model. Whether DP or

other mechanisms can provide meaningful privacy protection against model inversion

attacks without sacrificing model utility is still an open question. While [34] pro-

posed some preliminary defense measures against MIA, it does not provide a rigorous
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or quantifiable guarantee against the attacks. Intuitively, if we apply the standard

record-level DP, the perturbed model may provide some mitigation to MIA due to the

perturbed model parameters. However, since there are typically multiple instances

(e.g. face images) corresponding to the same class (e.g. person), record-level DP

which only protects the presence of one record may not prevent the reconstruction

attack since all the records of the same class are encoded in the model.

Finally, the deep learning models we indicated above mainly deal with non-

relational and grid-based data such as image, audio, text and gene sequences [30,

42, 69, 87, 102]. Following the success of deep neural networks in these fields, deep

learning models have been adopted to process network data with graph structure

where each node in the graph can correlate with other nodes through edges. Graph

Neural Networks (GNN) [39, 58] has demonstrated outstanding performance in pro-

cessing graph data and achieved great success in many applications, such as node

classification, link prediction, and community detection [47, 50, 101, 111, 116, 125]. In

many real-world applications, graphs can be social networks or economic networks

where nodes represent the users with private personal information, and edges indicate

the relationship or financial interactions among them. GNN models train on sensi-

tive graphs will embed users’ confidential information and potentially be explored by

attackers [110], which will severely damage the user’s privacy and trigger a potential

crime. Therefore, achieve meaningful differential privacy for each node when training

GNN models on the graph while preserving the model utility is very important. How-

ever, despite those successes in training deep learning models that protect the privacy

of each data record, there are fewer methods dedicated to preserving the differential

privacy for each node in the graph when training GNN models. Yang et al. [118]

propose to train a graph generation model using DP-SGD to generate graphs with

the edge-DP guarantee that protects the individual link privacy. Sajadmanesh et

al. [91] develop a privacy-preserving GNN training algorithm based on local differen-
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tial privacy (LDP) to protect node features privacy. Zhang et al. [127] use LDP and

functional mechanism [124] to enforce privacy guarantee on user’s sensitive features

when training graph embedding models for recommendation. None of these previous

works achieve the goal of providing strict DP with respect to each node in the graph

for GNN models.

1.2 Research Contributions

This thesis will mainly contribute from three aspects to solve the limitations and

practical issues mentioned above for achieving differential privacy when training deep

learning models. First, from the dilemma between privacy and utility point of view, in

chapter 3, we enhance the privacy and utility trade-off of DP algorithms in the general

deep learning settings. We develop two new mechanisms, PATE+ and PATE++, to

train more robust PATE under noisy labels, which achieve better privacy and utility

trade-off in learning private models. Second, from the perspective of the defense

ability of the existing differentially private deep learning models to MIA, in chapter

4, we broaden the DP definitions and algorithms for non-typical privacy attacks (MIA

vs. membership inference attacks). We propose two new DP notions, class-DP and

subclass-DP, and develop corresponding algorithms to provide a quantifiable privacy

guarantee against MIA. Third, from the perspective of the effectiveness of the existing

methods in training DP models on graph data, in chapter 5, we broaden the DP

definitions and algorithms for non-typical data (graph data vs. relational data). We

present new algorithms to provide node-level differential privacy when training deep

learning models on graph data. We summary these contributions as in the following.

Towards Training Robust PATE Under Noisy Labels (Chapter 3). To

mitigate the dilemma between providing stronger privacy protection and achieving

higher model accuracy in the PATE framework and further improve its effectiveness
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in privacy-preserving model learning, we propose an enhanced framework PATE++

by incorporating the state-of-the-art noisy label training mechanism into PATE, and

a novel noisy label detection mechanism based on the co-teaching(+) [40,121] frame-

work.

• We modify the student model in the original PATE, a generative adversarial

network (GAN) [38] with a semi-supervised training strategy [94], by adding

another discriminator to the structure of GAN. The purpose of the second

discriminator is to enable co-teaching+ [121] with the first discriminator for

robust training with noisy labels.

• We discuss the intrinsic limitations of the ”update-by-disagreement” method in

the co-teaching+ mechanism and develop a novel noisy label detection mech-

anism for semi-supervised model training to further improve student model

performance when training with noisy labels.

• We evaluate our framework on Fashion-MNIST and SVHN datasets. Empir-

ical results demonstrate that our new PATE structure with additional noisy

label detection and switching (from labeled data to unlabeled data) mechanism

outperforms the original PATE in privacy-preserving model training.

Provide Quantifiable Privacy Guarantees Against MIA (Chapter 4). We

focus on the MIA against deep learning models and aim to understand whether ex-

isting DP can provide meaningful defense against MIA. Our works show that while

it provides some mitigation, it does not provide effective and quantifiable protection.

We subsequently propose new DP notions and mechanisms for more effective and

quantifiable protection against MIA.

• We design an enhanced MIA attack with new regularization terms and change-

of-variables method to better reconstruct the images. We show that the en-

hanced attack is more successful both via visual inspection and a formal attack
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success metric based on the Euclidean distance and structural similarity be-

tween the reconstructed images and the original images.

• We propose both class-level DP (class-DP) and subclass-level DP (subclass-DP)

for deep neural networks as quantifiable privacy notions against MIA. Subclass-

DP can be considered a weaker version of class-DP, allowing better and cus-

tomizable privacy and utility trade-off when the class number of the privacy

dataset is small. We compare and show the relationships between class-DP and

subclass-DP with existing DP notions.

• We propose algorithms for training deep learning models with class-DP and

subclass-DP. We formally prove the privacy guarantees of the proposed algo-

rithms, and evaluate them on real-world datasets. The results demonstrate that

the level of class and subclass-DP directly correlates with the robustness against

the MIA and hence can provide a quantifiable measure against the risk.

Achieving Node-Level Differential Privacy for GNN Models (Chapter 5).

We aim to ensure rigorous node-level DP for training GNN models. In other words,

we want to prevent adversaries from distinguishing two neighboring graphs differing

in one node and all of its connecting edges through the model trained on one of the

graphs. During the training of GNN models, the graph topological structure will

be exploited by the recursive message-passing procedure that propagates information

through the graph [39, 101, 112, 117, 129]. The sensitivity of the model parameters

due to presence or absence of each node becomes very large due to the correlation

from their connecting edges. In order to train a GNN model with good performance

while ensuring rigorous node-level DP, we decouple the message-passing process from

feature aggregation of GNNs as proposed in [13,59].

• To the best of our knowledge, we conduct the first formal study of training GNN

models with the rigorous node-level DP guarantee. The key idea is to decou-
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ple the message-passing process from feature aggregation via DP approximate

personalized PageRank and DP-SGD to protect both graph topology and node

features while maintaining high model utility.

• We develop two DP approximate personalized PageRank computation algo-

rithms with formal node-level DP guarantee based on the Gaussian mechanism

and the exponential mechanism.

• We theoretically analyze the privacy loss caused by the random neighborhood

sampling process designated by the PageRank result and calibrate tight Gaus-

sian noise for DP-SGD to provide a rigorous overall privacy guarantee.

• We conduct extensive experiments on real-world graph datasets to demonstrate

the effectiveness of the proposed algorithms in achieving satisfying privacy and

utility trade-off. We also empirically demonstrate the DP models’ ability in

concealing the node degree information with respect to varying DP parame-

ters to show the effectiveness of privacy protection of models trained using our

proposed algorithms.
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Chapter 2

Background

2.1 Differential Privacy

Differential Privacy (DP) ensures the output distributions of an algorithm are indis-

tinguishable with a certain probability when the input datasets are differing in only

one record, which is achieved through adding some randomness to the output. Both

Laplacian noise and Gaussian noise are widely used to achieve DP, and the scale of

the noise is calibrated according to the privacy parameter(s) ε (and δ) as well as the

sensitivity of the algorithm [28]. In the definition of DP, ε and δ are the privacy

parameters or privacy budget, which indicate the privacy loss. A smaller ε means a

higher level of indistinguishability and hence stronger privacy. A smaller δ means a

lower probability that the privacy guarantee provided by ε will be broken.

Definition 1. ((ε, δ)-Differential Privacy) [28]. Let D and D′ be two neighboring

datasets that differ in at most one entry. A randomized algorithm A satisfies (ε,

δ)-differential privacy if for all S ⊆ Range(A):

Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S] + δ,

where A(D) represents the output of A with the input D.
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The granularity of DP is dependent on the definition of neighboring datasets. In

the original DP definition, two neighboring datasets differ in one record, which can

be considered as record-level DP (record-DP). It hides the presence of any record in

the input dataset. The standard hamming distance-based DP can be extended de-

pending on other notions of distance between the neighboring datasets under different

situations [8, 18].

Definition 2. (Sensitivity) [28]. For two neighboring datasets D and D′ differing in

at most one entry, the sensitivity of an algorithm A is the maximum change in the

norm of the output value of algorithm A regarding the two neighboring datasets:

∆(A) = sup
D,D′
‖A(D)−A(D′)‖

where ‖·‖ denotes L1 or L2 norm for the l1-sensitivity ∆1 or l2-sensitivity ∆2, respec-

tively.

Rényi Differential Privacy (RDP) generalizes (ε, 0)-DP in the sense that ε-DP is

equivalent to (∞, ε)-RDP.

Definition 3. (Rényi Differential Privacy (RDP)) [76]. A randomized mechanism

A is said to guarantee (λ, ε)-RDP with λ ≥ 1 if for any neighboring datasets D and

D′,

Dλ(A(D)‖A(D′)) =
1

λ− 1
logEx∼A(D)

[(
Pr[A(D) = x]

Pr [A (D′) = x]

)λ−1
]
≤ ε.

In the above definition, Dλ(A(D)‖A(D′)) indicates the Rényi divergence of order λ

betweenA(D) andA(D′). RDP satisfies the adaptive sequential composition property

of the privacy guarantee as stated in Proposition 1. The self-composition property

of two RDP mechanisms can be generalized to the sequence of mechanisms as in

Theorem 1.
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Proposition 1. (RDP Composition) [76] Let f : D 7→ R1 be (α, ε1)-RDP and g :

R1× D 7→ R2 be (α, ε2)-RDP, then the mechanism defined as (X, Y ), where X ∼

f(D) and Y ∼ g(X,D), satisfies (α, ε1 + ε2)-RDP.

Theorem 1. (Sequence Composition) [85]. If a mechanism A consists of a sequence

of adaptive mechanisms A1, ..., Ak such that for any i ∈ [k],Ai guarantees (λ, εi)-

RDP, then A guarantees
(
λ,
∑k

i=1 εi

)
-RDP.

Theorem 2. (From RDP to (ε, δ)-DP) [76]. If a mechanism A guarantees (λ, ε)-

RDP, then A guarantees
(
ε+ log 1/δ

λ−1
, δ
)

-DP for any 0 < δ < 1.

Theorem 2 reveals the relationship between (ε, δ)-DP and (λ, ε)-RDP. Both of

them are relaxed from pure ε-DP, while RDP equipped with Gaussian noise has better

composition property when analyzing the accumulated privacy loss.

The Gaussian mechanism [28] has been used to achieve (ε, δ)-DP. For c2 >

2 ln(1.25/δ), the Gaussian Mechanism with parameter σ ≥ c∆2(A)/ε adds Gaussian

noise scaled to N (0, σ2) to each component of the output of algorithm A, resulting

in M(D) , A(D) +N (0, σ2). The approximating function M(D) satisfies (ε, δ)-DP.

Corollary 1. (Gaussian Mechanism for RDP) [76] Let f : D 7→ R be a real-valued

function. If A has sensitivity 1, then the Gaussian mechanism GσA = f(D) +

N (0, σ2) satisfies (α, α/(2σ2))-RDP, where N (0, σ2) is normally distributed random

variable with standard deviation σ2 and mean 0.

Definition 4. (The Exponential Mechanism) [28, 73] Given some arbitrary range

R, the exponential mechanism relies on a utility function u : N|X | × R → R that

assigns a real valued score to one output r ∈ R given a dataset x, where higher

scores indicate more desirable outputs. Given the utility function u and the sensitiv-

ity of u with respect to any pair of neighboring datasets x and y, which is: ∆u ≡

maxr∈Rmaxx,y:‖x−y‖1≤1|u(x, r)−u(y, r)|, the exponential mechanism ME(x, u,R) se-

lects and outputs an element r ∈ R with probability proportional to exp
(
εu(x,r)

2∆u

)
.
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Theorem 3. The exponential mechanism preserves (ε, 0)-differential privacy [28].

2.2 Deep Learning with Differential Privacy

DP has been applied to deep learning models with DP-SGD algorithms [4,64] in order

to protect the privacy of training datasets. In each SGD iteration, DP-SGD clips the

Euclidean norm of the gradient and injects calibrated Gaussian noise to the clipped

gradient. Each iteration of the DP-SGD becomes a randomized mechanism with a

quantifiable privacy loss. For a general randomized mechanism A, the privacy loss is

defined as follows:

Definition 5. (Privacy Loss [4]) For neighboring datasets D,D′, auxiliary input aux

and output o ∈ Range(A), the privacy loss at a particular output o is defined as,

c(o|A,aux,D,D′) := log
P[A(aux,D) = o]

P[A(aux,D′) = o]
. (2.1)

For DP-SGD, each iteration incurs a privacy loss, where A represents one iteration

of the DP-SGD update procedure, o is the updated parameter vector, aux is all the

parameter sequences obtained before this iteration, D is the training dataset. Abadi

et al. [4] proposed the moments accountant technique with random sampling that

provides a tighter privacy loss composition than the advanced composition theorems

[29] for the overall privacy loss of DP-SGD over multiple iterations. The moments

accountant is defined as follows:

Definition 6. (Moments Accountant [4]) The moments accountant of a randomized

mechanism A with κ-th moment is defined as follows,

αA(κ) := arg max
aux,(D,D′)

logE[exp(κc(o|A,aux,D,D′))], (2.2)

where the expectation is taken over the output distribution o ∼ A(aux,D) and
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c(o|A,aux,D,D′) is the privacy loss.

Another promising approach for achieving differential privacy in deep learning is

Private Aggregation of Teacher Ensembles, or PATE, which trains multiple teacher

models on disjoint sensitive data and transfers the knowledge of teacher ensembles

to a student model by letting the teachers vote for the label of each record from an

unlabeled public dataset [84, 85]. The teachers’ votes are aggregated through a dif-

ferentially private noisy-max mechanism, which is to add DP noise to the number of

each label’s votes first and then take the label with the majority count as the out-

put. Finally, the student model is trained on the partially labeled public dataset in

a semi-supervised fashion and published, while the teacher models are kept private.

Compared to DP-SGD, PATE achieves higher accuracy with a tighter privacy guar-

antee. Meanwhile, the PATE method is independent of the learning algorithms and

can be applied to different model structures and to datasets with various character-

istics. However, the knowledge transferred from teachers to the student, which are

noisy-max voted labels, contain a certain proportion of errors or noisy labels, and the

proportion has a positive relationship with the level of privacy guarantee that PATE

provides and a negative impact on the accuracy of the student model.
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Chapter 3

Towards Training Robust PATE

Under Noisy Labels

3.1 Introduction

In this chapter, we propose an enhanced framework PATE++ by incorporating the

start-of-the-art noisy label training mechanism into PATE to further improve its prac-

tical applicability. PATE++ makes several novel contributions. First, we modify the

student model in the original PATE, a generative adversarial network (GAN) [38] with

a semi-supervised training strategy [94], by adding another discriminator to the struc-

ture of GAN. The purpose of the second discriminator is to enable co-teaching [40]

with the first discriminator for robust training with noisy labels. Second, to further

exploit the benefit of semi-supervised training, we propose a novel noisy label detec-

tion mechanism based on the co-teaching framework and move the data with detected

noisy labels from labeled dataset to unlabeled dataset instead of excluding them com-

pletely from the training process. We evaluate our framework on Fashion-MNIST and

SVHN datasets. Empirical results demonstrate that our new PATE structure with

additional noisy label detection and switching (from labeled data to unlabeled data)
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mechanism outperforms the original PATE in privacy-preserving model training. Our

work mitigates the dilemma in the PATE framework between providing stronger pri-

vacy protection and achieving higher model accuracy, and further improves its effec-

tiveness in privacy-preserving model learning.

3.2 Preliminaries

In this section, we introduce the two essential components of our approach: (1) the

PATE framework which was first developed by Papernot et al. in [84] and later

improved by Papernot et al. in [85]; (2) the co-teaching mechanism for robust model

training with noisy labels and the improved co-teaching+ mechanism [121].

3.2.1 The PATE Framework

Figure 3.1 illustrates the framework of PATE borrowed from [84]. It consists of

an ensemble of teacher models and a student model. Each teacher is trained on a

disjoint subset of sensitive data that contains user’s private information that needs to

be protected. Teacher models can be flexibly chosen to fit the data and task. After

teachers are trained, the knowledge that teachers learned from sensitive data will

be transferred to the student in a private manner. More specifically, at prediction,

teachers independently predict labels for the queried data from an unlabeled public

dataset. The votes assigned to each class will be counted to form a histogram. To

ensure DP, Laplacian or Gaussian noise will be added to each count. The final

prediction result for the queried data will be the label with the most votes after

adding the noise.

The student model in the PATE framework uses GAN with semi-supervised learn-

ing. During student model training, labeled public data are fed into the discriminator

D of GAN to form the supervised cross-entropy loss while unlabeled data and gener-
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Figure 3.1: Overview of the PATE framework: (1) an ensemble of teachers is trained
on disjoint subsets of the sensitive data, (2) a student model is trained on public data
labeled using the ensemble.

ated data from generator G (labeled as an additional ‘generated’ class) are fed into

D to form the unsupervised loss. Feature matching is used to increase the stability of

GAN by involving a new objective for G, which requires the activations of real data

and generated data on an intermediate layer of D to be as similar as possible through

gradient-based optimization.

The initial PATE uses Laplacian noise for the perturbation and moments accoun-

tant [4] to compose the total privacy cost for multiple predictions. The improved

PATE uses Gaussian noise based on RDP. Additionally, they proposed a selective ag-

gregation mechanism called the confident Gaussian NoisyMax aggregator (Confident-

GNMax) as in Algorithm 2. Teacher ensembles will only answer the queries if their

votes have strong consensus, which is checked privately. This mechanism benefits

both privacy and utility. The privacy cost is small when most teachers agree on one

vote. Meanwhile, when most teachers agree, the prediction result is more likely to

be correct. However, even with the Confident-GNMax mechanism, the voted labels

still contain a certain ratio of errors due to the noisy aggregation. Additionally, in

order to achieve a tighter privacy guarantee, larger noise is needed for perturbing the

votes, thus causing more noise in the student training dataset, which severely affects

the utility of the trained student model.
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3.2.2 Co-teaching and Co-teaching+ Mechanisms

Deep learning models have enough capacity to remember all training instances even

with noisy labels, which leads to bad generalization ability [122]. Han et al. [40]

propose a simple but effective mechanism called co-teaching for training deep models

with the existence of noisy labels. Their method is based on the observation that

during the training, models would first memorize or fit training data with clean la-

bels and then those with noisy labels [9]. Co-teaching maintains two networks with

the same structure but independent initialization. In each mini-batch of data, each

network selects a ratio of small-loss instances as useful knowledge and teaches its peer

network with such useful instances for updating the parameters. Intuitively, small-

loss instances are more likely to be the ones with correct labels, thus training the

network in each mini-batch using only small-loss instances is more robust to noisy

labels.

In the early stage of co-teaching, due to independent and random parameter ini-

tialization, two networks have different abilities to filter out different types of error

using the small-loss trick. However, this divergence between two networks will gradu-

ally diminish with the increase of training epochs, which decreases the ability to select

clean data and increases the accumulated error. To solve this issue, Yu et al. intro-

duce the “Update by Disagreement” strategy to co-teaching and name the improved

mechanism co-teaching+ [121]. Similar to co-teaching, co-teaching+ maintains two

networks simultaneously. In each mini-batch of training, two networks feed forward

and predict the same batch of data independently first, and then a ratio of small-loss

instances will be chosen by each network only from those data with the disagreed pre-

dictions between two networks and fed to each other for parameter updating. This

disagreement-update step keeps the constant divergence between two networks and

promotes the ability of them to select clean data.
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3.3 Improved Training Mechanism For PATE

Inspired by co-teaching mechanism and its improved version co-teaching+, we modify

the PATE framework to improve the student model’s robustness when training with

noisy labels provided by teachers.

3.3.1 PATE+: Student Model with Co-teaching+

The student model of PATE is a GAN trained under semi-supervised learning with

both supervised and unsupervised losses while co-teaching(+) is originally used in the

supervised model training. To utilize co-teaching(+) in the student model, our main

idea is to add an additional discriminator in the GAN used in the student model, as

shown in Figure 3.2. We do not use two GANs with both generator and discriminator

as the peers for co-teaching(+) because the small-loss trick plays its role only in the

supervised part, while the generator is involved in the unsupervised loss of GAN as

well as the feature matching loss [94], which are both unsupervised and not associated

with labels.

Figure 3.2: Overview of the PATE+ framework. (1) an ensemble of teachers is trained
on disjoint subsets of the sensitive data, (2) a semi-supervised GAN student model
with one generator and two discriminators co-teaching+ with each other is trained
on public data labeled using the ensemble.

Suppose there exist K possible classes in sensitive data as well as the labeled public
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data that the student model will be trained on. In the semi-supervised learning using

GANs, the data generated by generator G are labeled with a new ”generated” class

y = K + 1. The discriminator D takes in a data sample x as input and outputs

class probabilities distribution pD(y|x, j < K + 1). For labeled data x, the cross-

entropy between the observed label and the predicted distribution pD(y|x, j < K+1)

forms the supervised loss. For generated data, pD(y = K + 1|x) is used to supply

the probability that x is not real. For those unlabeled data, since we know they

come from one of the K classes of real data, we can learn from them by maximizing

log pD(y ∈ {1, . . . , K}|x) [94].

For the student model in Figure 3.2, there are two discriminators and one genera-

tor. The supervised loss and unsupervised loss for Discriminator1 and Discriminator2

(D1 and D2) are expressed as:

LDisupervised = −{Ex,y∼pdata (x,y) log pDi(y|x, y < K + 1)};

LDiunsupervised =− {Ex∼pdata (x) log [1− pDi(y = K + 1|x)]

+ Ex∼G log [pDi(y = K + 1|x)]}.

where i = 1, 2 and pdata indicates the real data distribution. Feature matching loss

in the semi-supervised GANs training is defined as:
∥∥Ex∼pdata

f(x)− Ez∼pz(z)f(G(z))
∥∥2

2
,

where pz(z) indicates the random distribution and f(x) is the activation output of an

intermediate layer of the discriminator. In the structure of student model as shown

in Figure 3.2, the generator takes the activations from two discriminators which are

expressed as fD1(x) and fD2(x) respectively. We use the average of two feature losses

associated with two discriminators as the objective for the generator. Therefore, the
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feature matching loss of the generator in the student model is defined as:

LGfm =
1

2
(
∥∥Ex∼pdata

fD1(x)− Ez∼pz(z)fD1(G(z))
∥∥2

2

+
∥∥Ex∼pdata

fD2(x)− Ez∼pz(z)fD2(G(z))
∥∥2

2
).

The main steps for training student model with the “update by disagreement” strat-

egy are illustrated in Algorithm 1.

Algorithm 1: PATE+: Training Student Model in PATE with Discrimina-
tors Co-teaching+

1 Input: D1, D2, G, labeled public data Ml from private teachers aggregation,
unlabeled data Mu, batch size B, learning rate η, epoch E, ratio R.

1: Duplicate Ml or Mu to make them have the same size.
2: for e = 1, ..., E do
3: Shuffle Ml, Mu into |Ml|

B mini-batches respectively.

4: for b = 1, ..., |Ml|
B do

5: Fetch b-th mini-batch ml (mu) from Ml (Mu);
6: Generate B fake samples mg from G;
7: Select samples with the different predicted results between D1 and D2 in ml as

m̂l

8: for i = 1, 2 do
9: Fetch the R% smallest-loss samples m̂l

(i) of Di:
m̂l

(i) = argminm̂l′:|m̂l′|≥R|m̂l|L
Di
supervised(m̂l

′;Di)
10: end for
11: Update D1 = D1 − η∇(LD1

supervised(m̂l
(2);D1) + LD1

unsupervised(mu,mg;D1)) // D1

indicates parameters of Discriminator1 here
12: Update D2 = D2 − η∇(LD2

supervised(m̂l
(1);D2) + LD2

unsupervised(mu,mg;D2)) // D2

indicates parameters of Discriminator2 here
13: Update G = G− η∇LGfm (mu,mg;G) // G indicates parameters of Generator

here
14: end for
15: end for

Output: Trained D1, D2 and G, where D1 and D2 satisfy rigorous DP guarantee.

3.3.2 Privacy Guarantee of PATE+

The privacy guarantee of Algorithm 1 is inherited from the privacy guarantee of the

labeled public dataset Ml by the post-processing property of DP [28]. We analyze the
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RDP guarantee of generating Ml by the Confident-GNMax aggregator which is used

in the scalable PATE framework [85]. To start with, we recall the two steps of the

Confident-GNMax aggregator. Given a query sample x belonging to one of the classes

from 1 to m, let ni(x) denote the vote count for the i-th class of x. Confident-GNMax

aggregator first privately checks if there is enough consensus among teachers (line 1

in Algorithm 2). N (0, σ2
1) is the Gaussian distribution with mean 0 and variance σ2

1.

If the check is passed, Confident-GNMax aggregator will output the class label with

noisy plurality after adding Gaussian noise (N (0, σ2
2)) to each vote count (line 2 in

Algorithm 2), while discarding this query without labeling it if the pass is failed. The

sensitivity of private consensus check (line 1) is 1 because the private training data is

divided without overlapping, and one data sample will only affect one teacher model

which will change the maximum vote count (maxi {nj(x)}) by at most 1. Therefore,

line 1 in Algorithm 2 guarantees (λ, λ/2σ2
1)-RDP for all λ > 1 by corollary 1. Line

2 in Algorithm 2 is the GNMax mechanism in [85]. By the data-dependent privacy

guarantee in Proposition 8 of [85], line 2 satisfies (λ, λ/σ2
2)-RDP for all λ > 1. By

using the composition property of RDP in Proposition 1, we can conclude the privacy

guarantee for the Confident-GNMax Aggregator as in Theorem 4.

Algorithm 2: Confident-GNMax Aggregator [85]

1 Input: input x, threshold T, noise parameters σ1 and σ2.

1: if maxi {nj(x)}+N
(
0, σ2

1

)
≥ T then

2: return argmaxj
{
nj(x) +N

(
0, σ2

2

)}
3: else
4: return ⊥
5: end if

Theorem 4. For any λ > 1, the Confident-GNMax Aggregator in Algorithm 2 sat-

isfies (λ, β)-RDP where β = λ/2σ2
1 + λ/σ2

2 if the private consensus check in line 1 of

Algorithm 2 is passed, or β = λ/2σ2
1 if the check is failed.

By using the privacy guarantee of Confident-GNMax aggregator in Theorem 4,
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we derive the privacy guarantee of the PATE+ algorithm.

Proposition 2. If querying the teacher ensembles with a public dataset M , and

the teacher ensembles label M using Confident-GNMax aggregator in Algorithm 2

to generate a labeled dataset Ml, then the student model trained on Ml using PATE+

algorithm in Algorithm 1 satisfies (ε, δ)-DP for any 0 < δ < 1 and ε = λ
(
|M |
2σ2

1
+ |Ml|

σ2
2

)
+

log 1/δ
λ−1

, where λ > 1.

Proof. Suppose the number of data samples in public datasetM and in labeled dataset

Ml is |M | and |Ml| respectively. Therefore, the number of data samples that are

discarded (without labeling) during Confident-GNMax aggregation is |M |−|Ml|. We

use Theorem 4 in conjunction with Theorem 1 to derive the total (λ, β)-RDP privacy

guarantee for answering M and generating Ml, where λ > 1 and β = (|M |−|Ml|) ∗
λ

2σ2
1

+ |Ml|∗( λ
2σ2

1
+ λ

σ2
2
) = |M |λ

2σ2
1

+ |Ml|λ
σ2

2
. By Theorem 2, we can transfer (λ, |M |λ

2σ2
1

+ |Ml|λ
σ2

2
)-

RDP into
(
λ
(
|M |
2σ2

1
+ |Ml|

σ2
2

)
+ log 1/δ

λ−1
, δ
)

-DP for any 0 < δ < 1. By the post-processing

property of DP, the student model trained on Ml will satisfies (ε, δ)-DP where ε =

λ
(
|M |
2σ2

1
+ |Ml|

σ2
2

)
+ log 1/δ

λ−1
and 0 < δ < 1 since it has no access to the private training

data of teacher ensembles and therefore, can not obtain additional knowledge about

the private dataset.

Notice that training PATE with co-teaching satisfies the same privacy guarantee

with PATE+ because the discrepancy between co-teaching and co-teaching+, which

is the “update by disagreement” strategy, is independent with the private training

data of teacher ensembles and the privacy analysis.

3.3.3 PATE++: PATE+ with Noisy Label Cleansing

Potential Drawbacks in PATE+. “Update by disagreement” strategy actually

has two potential drawbacks. First, in the late stage of training, two discriminators

are going to achieve a similar capacity and consensus on the predictions with most
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Figure 3.3: A student model trained on 2,200 labeled (726 are noisy labels) and
6,800 unlabeled data from Fashion-MNIST dataset using PATE+ algorithm. (a)
The training accuracy of two discriminators in the student model vs epochs (b) The
number of labeled samples with different predictions by two discriminators vs epochs
(c) The noisy rate of labels in disagreed predictions vs epochs.

data. Therefore, the number of “disagreed” data in each mini-batch is limited, which

restricts the models from learning since they can only learn from limited data. Sec-

ond, the proportion of noisy labels within the “disagreement” in the mini-batch is

increasing with the epoch, and models’ utility is sacrificed by learning from data with

more noisy labels. According to the learning pattern of deep models [9], after the

models have learned to fit easy (clean) data, they are more likely to agree on the

predictions of clean data while disagreeing on noisy data because the predictions on

noisy data have more randomness and errors before models fit them.

We demonstrate our hypothesis using an example. We train a student model using

Algorithm 1. Each discriminator is a convolutional neural network (see Experiments

on Fashion-MNIST for details). A total of 2,200 data labeled by Confident-GNMax

aggregator and 6,800 unlabeled data is used as the training dataset, where 726 of 2,200

labeled samples are noisy data (the labels of them are different from their ground truth

labels). Fig 3.3(a) shows the training accuracy of two discriminators in the student

model. We can see that they follow different learning paths. Fig 3.3(b) shows the

number of training samples with disagreed predictions by two discriminators. The

number is decreased to a small value during the training process. This observation
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is consistent with our first hypothesis of the potential drawbacks of the “update

by disagreement” strategy. When two discriminators gradually acquire a similar

capacity, the number of “disagreed” data in each mini-batch is few (less than 50 out

of 2,200 after 400 epochs). Therefore, discriminators can only learn from very few

data in the late period, which seriously affects their learning capacity. We calculate

the percentage of noisy labels within the “disagreement” in each epoch as shown by

the blue line in Fig 3.3(c). The noisy label rate in all labeled data is 0.33, while

the noisy label rate in the “disagreement” is much higher. This observation reflects

our second hypothesis that the model’s utility will be sacrificed by learning from the

“disagreed” data which contains more noisy labels.

Figure 3.4: Illustration of the three stages of model training process with the existence
of noisy data.

Model Training Stages. We roughly divide the model learning process into three

stages based on the observations in [9]. In the early stage which is indicated as stage

1 in Figure 3.4, models have not fit either clean or noisy data. The disagreement on

predictions between two peer models is mainly caused by randomness. The percentage

of noisy labels within the “disagreement” roughly equals the percentage of noisy labels

in the entire training dataset. In stage 2, models have fit the clean data (except for

“hard examples”) but not the noisy data. The peer models are more likely to have the

same (and correct) predictions for clean data. For those noisy data, since the models

have not fitted them, the predictions of them are more random and with more errors.

Therefore, prediction disagreements are more likely to happen on the data with noisy

labels during this stage. In stage 3, which is the late stage of training, due to the
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memorization effort, the models have learned to fit both the clean and noisy data.

The peer models begin to be more consistent in the prediction of both types of data.

Thus the ratio of noisy labels in the disagreed predictions decreases. We can observe

this phenomenon from Fig 3.3(c). We fit part of the blue line which is the noisy label

rate in the ”disagreement” as the function of epochs using smoothing spline fit [103]

to observe the general trend of the curve more clearly, which is shown in the red line.

We can see the noisy percentage in the ”disagreement” increases in the early stage of

model training while decreases in the later stage.

Noisy Label Cleansing. Based on our analysis and observations, we hypothesize

that the noisy label ratio is the highest within the “disagreement” during stage 2. We

propose to filter out noisy labels using this criterion, i.e., the data that has different

prediction results by the two peer models during stage 2. However, there is a critical

situation that we need to consider. Two peer models do not always have the same

learning speed, and they follow different paths during the optimization (as shown in

Figure 3.3(a)). Therefore, it could happen that one model already fits the clean data

while the other does not. In this situation, suppose there is a data record with the true

(clean) label, the first model gives the correct prediction with high probability, while

the second model with the weaker capability predicts it as other labels incorrectly

and causes the variation in predictions. Thus clean data could also be chosen by

the “disagreement” criterion. To avoid this situation, we further refine our criterion.

Notice that in the above-mentioned circumstance, the “disagreement” happens when

the first model with the stronger capability predicts the true label for the clean data

(the predicted label is the same as the observed label) while the second model with

the weaker capability predicts a wrong label (the predicted label is different from the

observed label). Therefore, we further filter out noisy data whose predicted labels

by peer models are both different from the observed label from the “disagreement”

in stage 2. That is, our noisy label cleansing mechanism has two criteria: 1) peer
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Algorithm 3: PATE++: PATE+ with Noisy Label Cleansing

1 Input: D1, D2, G, labeled public data Ml from private teachers aggregation,
unlabeled data Mu, batch size B, learning rate η, epoch E, ratio R, removal
percentage τ , decay factor α.
1: Step 1: Filter out noisy label in Ml based on PATE+ framework
2: Duplicate Ml or Mu to make them have the same size.
3: Initialize the filtered out noisy dataset Mn as ∅.
4: Initialize a count table T for each data in Ml to be 0.
5: for e = 1, ..., E do
6: Shuffle Ml, Mu into |Ml|

B mini-batches respectively.

7: for b = 1, ..., |Ml|
B do

8: Fetch b-th mini-batch ml (mu) from Ml (Mu);
9: Generate B fake samples mg from G;

10: Select samples with the different predicted results between D1 and D2 in ml as
m̂l

11: Select samples in m̂l whose prediction results by D1 and D2 are both different
with its observed label as ml.

12: Set the count of data in ml to 1.
13: Fetch the R% smallest-loss samples m̂l

(1) (m̂l
(2)) of D1 (D2) as in line 8-10 in

Algorithm 1
14: Update D1, D2, G as in line 11-13 in Algorithm 1
15: end for
16: Multiply the count of each labeled data in this epoch with α and add to the count

table T .
17: end for

18: Step 2: Remove filtered out noisy labels
19: Remove τ% data with the most count from Ml to form M san

l .
20: Add those removed data to the unlabeled dataset to form M san

u .

21: Step 3: Retrain the PATE+ on sanitized datasets M san
l and M san

u using
Algorithm 1

Output: Trained D1, D2 and G, where D1 and D2 satisfy rigorous DP guarantee.
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models disagree on the predictions for this data, and 2) the prediction results by two

peer models are both different from the observed label of the data.

The last question is, how can we know when the models change from stage 1(2)

to stage 2(3). One possible solution is to use the validation utility to help us decide.

In stage 1, models have very low utility since they fit neither clean nor noisy data. In

stage 2, the utility of models increases as the models have learned useful knowledge

from clean and easy-to-fit data. In stage 3, models’ utility can still increase but

with relatively slower speed compared to stage 2, since noisy labels are hard to fit.

However, due to the uncertainty of the gradient-based optimization process, it is not

efficient to separate these stages using the validation utility. We solve this problem

using the weighted decay count. We count the number of epochs for each data when

it satisfies the previously mentioned two criteria. Clean data tend to satisfy those

two criteria during stage 1, while noisy data tend to satisfy those two criteria in both

stage 1 and stage 2. Therefore, data with more counts at the end of training are

determined as the data with noisy labels. To further reduce the effects of stage 1,

we multiply a weight (smaller than 1) to the counts at the end of each epoch before

adding them to the new counts of the next epoch. Weighted decay count smooths

the decision process and makes the criteria more robust to the randomness caused by

the gradient-based optimization process.

PATE++. In Algorithm 3, we present the complete PATE++ framework for train-

ing more robust PATE by filtering out noisy labels based on the PATE+ framework

first, and then retraining PATE+ on the sanitized dataset, which is formed by re-

moving the top τ% data with the most count as introduced above. τ indicates the

removal percentage. The privacy analysis for Algorithm 3 follows Proposition 2 by

the post-processing property of DP. Notice the noisy label cleansing procedure does

not involve additional privacy leakage since it does not depend on the private training

dataset of teacher ensembles.
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3.4 Experiments

We performed experiments on Fashion-MNIST and SVHN to demonstrate the effi-

ciency of our proposed PATE+ and PATE++ frameworks compared to the original

PATE for training the student model on noisy data provided by private teachers

aggregation.

3.4.1 Fashion-MNIST

Fashion-MNIST dataset [113] consists of 10 classes with 60,000 training examples

and 10,000 testing examples. Similar to in the original PATE, we use 60,000 training

examples to train the teachers and 10,000 testing examples as the public dataset

for training the student. We divide the 60,000 training examples randomly into 250

disjoint subsets equally. Each subset is used to train one teacher model, which is a

convolutional neural network with seven convolutional layers followed by two fully

connected layers and an output layer (same as the deep model in the original PATE).

After 250 teachers are trained, we use Confident-GNMax aggregator to label 2,200

data from the public dataset twice. For the first time, we use the smaller noise which

leads to (5.04, 10−5)-DP guarantee. For the second time, we use the larger noise

which leads to (4.05, 10−5)-DP guarantee. Adding the larger noise during the private

teacher aggregation leads to a tighter privacy guarantee (smaller ε), while the trade-

off is that there will be more noisy labels within the labeled dataset. The structure

of the discriminators in the student model is the same as the structure of teachers.

The generator of the student model is a three-layer fully connected neural network.

The 10,000 testing examples are further divided into the first 9,000 (where 2,200

are labeled by teachers as labeled data and 6,800 are used as unlabeled data) for

training and the last 1,000 for testing. We compare the test accuracy of the student

models trained by 1) the original PATE (traditional semi-supervised training); 2)
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PATE with co-teaching between two peer discriminators; 3) PATE+ (PATE with co-

teaching+ between two peer discriminators); and 4) PATE++ (PATE+ with noisy

label cleansing). We train student models with batch size 100 using Adam optimizer

with the learning rate set to 0.01. In PATE++, the decay factor α is set to 0.9 by

grid search. Table 3.1 shows the experimental results.

From Table 3.1, we can observe that PATE++ achieves the best performance

on training the student model. The improvement is even higher (4.8% vs. 0.8% )

when the privacy budget is tight (4.05 vs. 5.04). This further motivates our proposed

mechanism PATE++, since there is an inevitable trade-off between utility and privacy

in the PATE framework, The stronger privacy requires adding larger noise during the

private teacher aggregation which leads to a higher noise ratio in the student training

data. PATE++ mitigates this by making the student model more robust when trained

with noisy labels.

Table 3.1: Test accuracy of the students under different frameworks trained on
Fashion-MNIST dataset.

Student Accuracy
Privacy
budget (ε, δ)

Original
PATE

PATE with
co-teaching

PATE+
(Alg.1)

PATE++
(Alg.3)

(4.05, 10−5) 74.8% 77.3% 76.5% 79.6%
(5.04, 10−5) 82.1% 82.5% 82.7% 82.9%

Selection of R and τ . As suggested in [40], the ratio of small-loss instances R

should be chosen increasingly during the training since when the number of epochs

goes large, the model will gradually overfit on noisy labels. Thus, more instances can

be kept in the mini-batch at the start while less should be in the end. We use their

proposed scheduling: R(e) = 1 − βmin
{
e
15
, 1
}

where e is the epoch and β is the

estimated noise rate which can be determined by manually verifying a small sampled

subset. We report the student accuracy of 1) PATE with co-teaching, and 2) PATE+

(the same as PATE++ with τ=0) under the different noise ratio estimation values in
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Table 3.2. We show the setting with (4.05, 10−5)-DP guarantee. We can see that the

estimated noise rate for the scheduling has an effect on student performance. How

to best estimate the noise rate and set the optimal scheduling function is still an

unsolved problem in the co-teaching and co-teaching+ works [40,121].

Table 3.2: Test accuracy of the student models with varying R (bold results coincide
with Table 3.1).

Estimated Noise Ratio β 0.1 0.2 0.3 0.4
PATE with co-teaching 76.2% 77.3% 77% 76.2%

PATE+ (Alg.1) 76.4% 76.5% 77.3% 77.4%

Table 3.3: Test accuracy of the student models with varying τ (bold result coincides
with Table 3.1).

Removal
Ratio τ

0.091 0.182 0.227 0.273 0.318 0.364

PATE++
(β = 0.2)

78.1% 78.6% 79% 79.5% 79.6% 78.2%

We fix β = 0.2 and report the student accuracy of PATE++ with different τ

values for the noisy label cleansing ratio in Table 3.3. Increasing the removal ratio

τ will increase the chance to move more noisy labels from the labeled dataset to the

unlabeled dataset and lead to better student performance because the student model

is trained on the dataset with less noisy labels. However, the trade-off is that with

the higher removal ratio, less labeled data will be left as well as data with clean labels

that the student can learn useful knowledge from. In practice, we choose the removal

ratio by grid search.

3.4.2 SVHN

SVHN [78] contains 10 classes with 73,257 training examples and 26,032 testing ex-

amples. We use the same structure for the student model as in Fashion-MNIST

experiments. The 26,032 testing examples are divided into 10,000 for student train-

ing and 16,032 for student testing. We use the clean teacher votes made available
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online by the authors of PATE to do the Confident-GNMax aggregation for labeling

student’s training data. 3,000 data are labeled privately using the smaller noise cor-

responding to (4.93, 10−6)-DP guarantee and the larger noise corresponding to (3.96,

10−6)-DP guarantee. The student models are trained the batch size 100 inputs using

the Adam optimizer with the learning rate set to 0.003 and the decay factor α set

to 0.9 in PATE++. Table 3.4 shows the experimental results on SVHN with the

estimated noise rate β = 0.2 and the removal percentage τ = 0.4.

Table 3.4: Test accuracy of the students under different frameworks trained on SVHN
dataset.

Student Accuracy
Privacy
budget (ε, δ)

Original
PATE

PATE with
co-teaching

PATE+
(Alg.1)

PATE++
(Alg.3)

(3.96, 10−6) 80.5% 86.1% 79.8% 91.5%
(4.93, 10−6) 91.7% 92.8% 91.6% 93.7%

We can observe in Table 3.4 that PATE++ significantly outperforms the original

PATE, especially under the tight privacy budget. The student accuracy of PATE+ is

shy when compared with PATE with co-teaching. The reason could be the drawbacks

of the ”update by disagreement” strategy that we mentioned previously.

3.5 Related Work

[104] proposed to transfer the knowledge learned from a publicly available non-private

dataset to the teachers in order to alleviate the problem that the training data as-

signed for each individual teacher maybe not enough to achieve an ideal performance

for some complex datasets and tasks. [100] exploited knowledge distillation [45] to

further transfer the knowledge from teacher ensembles to the student model privately

through the representations from intermediate layers of teacher models. [11] developed

a new semi-supervised learning algorithm called MixMatch, which achieves state-of-

the-art performance in several benchmark datasets by combining several dominant
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approaches for semi-supervised learning together into a unified framework. They

demonstrate that MixMatch improves the performance of PATE with respect to the

accuracy-privacy trade-off, which is unsurprising because PATE is a general frame-

work with the student model trained by the semi-supervised learning paradigm in or-

der to reduce the total privacy cost induced by each individual query. Any improved

semi-supervised learning algorithm is expected to improve the original PATE frame-

work. Different from these previous works, our work improves PATE from another

perspective by incorporating the novel noisy label training and cleansing mechanism

under the semi-supervised learning framework to improve the student model accuracy

without additional privacy cost.

Learning with noisy examples has a long research history [88]. Currently, training

deep learning models with noisy labels has received increasing attention [40, 49, 54,

65, 72, 121]. A comprehensive review of all the works within this area is beyond the

scope of this chapter. Our proposed mechanisms incorporate the co-teaching and

co-teaching+ methods into the PATE framework to better train the student model

with noisy labels and achieve promising results. Investigation of other noisy label

training methods to further enhance the performance will be an interesting research

direction.

3.6 Conclusion

We proposed the PATE+ mechanism for robust training of the student model in

PATE, and PATE++ mechanism based on PATE+ which combines co-teaching+

between two discriminators within the structure of GAN and noisy label cleansing.

Experimental results demonstrate the advantage of our mechanisms compared to the

original PATE, especially when the privacy budget is tight. Our proposed mechanisms

enhance the utility and privacy trade-off in private model training and further improve
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the practicality to achieve meaningful privacy guarantees when training deep models

on sensitive data. We leave applying PATE++ to other applications such as sequence-

based models and graph models as future work.



34

Chapter 4

Provide Quantifiable Privacy

Guarantees Against MIA

4.1 Introduction

Most works on deep learning with DP focus on improving model accuracy given a

privacy requirement or enhancing the privacy and utility trade-off. There is still a

limited demonstration of how effective DP is in protecting against the above men-

tioned attacks in practice. [89] evaluated DP against membership inference attacks

and showed that DP can protect against the attacks successfully only by sacrificing

model utility by a considerable margin. This is not surprising as the indistinguisha-

bility guarantee of DP with respect to the presence of a record is directly aligned with

the goal of preventing the inference of the membership of a record. Injecting noise

to the model parameters required by DP naturally degrades the performance of the

model.

Whether DP or other mechanisms can provide meaningful privacy protection

against model inversion attacks without sacrificing model utility is still an open ques-

tion. While [34] proposed some preliminary defense measures against MIA, it does
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not provide a rigorous or quantifiable guarantee against the attacks. Intuitively, if

we apply the standard record-level DP, the perturbed model may provide some mit-

igation to MIA due to the perturbed model parameters. However, since there are

typically multiple instances (e.g. face images) corresponding to the same class (e.g.

person), record-level DP which only protects the presence of one record may not pre-

vent the reconstruction attack since all the records of the same class are encoded in

the model. Another potential solution is to use group-DP [28] to protect the presence

of all records corresponding to one class as a group. However, this will lead to ampli-

fied perturbation by the group size which can be determined by the largest class size.

Such an application may yield unacceptable model accuracy due to the significantly

amplified perturbation while overprotecting certain data since different classes may

have varying numbers of records.

In this chapter, we focus on the MIA against deep learning models and aim to

understand whether existing DP can provide meaningful defense against MIA. Our

results show that while it provides some mitigation, it does not provide effective and

quantifiable protection. We subsequently propose new DP notions and mechanisms

for more effective and quantifiable protection against MIA.

4.2 Preliminaries

We consider the setting where a model provider trains a neural network classification

model f(x) using a private training set D, where x ∈ Rd is an input record in d-

dimensional space. The output of f(x) is the prediction vector y ∈ Rk where each

dimension corresponds to one predefined label or class. The model provider shares the

trained model with other parties without sharing the data. We study model inversion

attacks where an adversary abuses the shared model by attempting to reconstruct

the original (features of) training data corresponding to a target class. Our goal is to
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develop privacy notions and algorithms that allow a model provider to build a model

that is robust against model inversion attacks.

Threat Model. We assume a white-box attack in which an adversary has access to

the published model including model structure and parameters, but has no access to

the training data, nor back door access [98] to the training process.

4.2.1 Model Inversion Attack

Model inversion attack [34] is a reverse engineering attack that attempts to “recon-

struct” the training data from a trained neural network model. Given the model

parameters and a target label, the goal is to find a data point x corresponding to the

label following the same distribution with data points in D that maximizes flabel(x),

which is equivalent to minimize the following objective function:

c(x) = 1− flabel(x), (4.1)

where flabel(x) is the confidence score of the target class.

While the reconstructed data point may not correspond to a specific data point

in the dataset, it leaks the statistical property or general features of the target class.

For example, a face image generated by a successful MIA reveals how the person with

the target name (the class label) looks like [34].

4.3 Improved Model Inversion Attack

While the original MIA has gained success on simple neural networks such as Soft-

max regression and Multilayer perceptron network (MLP) [34], it has limited success

on deep neural networks only with auxiliary training data [46] or with adversarial

training [74]. For more complex models, MIA tends to produce images that look

unrealistic even with the denoising and sharpening filter [34]. In this section, we pro-
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pose new regularization terms to enhance the optimization used in MIA to produce

more recognizable images. We demonstrate that the enhanced MIA can be effective

against deep learning models with more complex network structures.

`1-Norm Regularization. `1-norm regularization can be used to enforce sparsity

on the solution vector, or reconstructed image x. The sparsity constraint reduces and

limits the intensity of pixels which are not important in leading the model to output

the target class label. Therefore, it can help with removing noise and enhancing the

contrast of the output image x, especially with black and white images. The loss

function of MIA with `1-norm regularization on image x becomes:

c(x) = 1− flabel(x) + λ‖x‖1 (4.2)

where the coefficient λ controls the penalty effect caused by `1-norm regularization.

BTV Regularization. While `1-norm regularizer may achieve noise removal and

contrast enhancement on black and white images with a clear contrast, this benefit

may be limited on gray scale images. For such images, we propose to use the bilateral

total variation (BTV) regularization [32]:

RBTV =

p∑
l=−p

p∑
m=0
m+l≥0

αm+l
∥∥x− SlxSmy x

∥∥
1

(4.3)

The BTV regularizer is essentially the accumulation of differences between central

pixels and their neighborhoods within the spatial window size measured by p. It

helps to maintain the main image features and preserve sharp edges when performing

the super-resolution reconstruction task where the goal is to recover a single high-

resolution image from a set of low-resolution images [32, 61]. The loss function of

MIA with BTV regularization becomes:

c(x) = 1− flabel(x) + λRBTV (4.4)
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Enhanced MIA Algorithm. Algorithms 4 outlines our enhanced MIA with the

new regularizers. Line 4 uses an optional change-of-variable for the optimization

by introducing a “box constraint” [17] to ensure that the value of each pixel in the

reconstructed image stays in the range [0, 1]: x = 1
2

(tanh (w) + 1). The optimization

is then implemented over w. If no change-of-variable is used, we can directly set

x = w. We use Adam optimizer instead of SGD used in the original MIA [34], which

uses the moving average of the first and second moments of gradients (line 6 and 7)

to scale the learning rate adaptively.

Algorithm 4: Improved MIA Algorithm

Input: label, T , β1, β2, τ , η, λ, the target model f .
1 Initialize variables w, m, and v to be zeros with the same size as training

images of f .
2 Define c(x) using eq.(4.2) or (4.4)
3 for t = 1 · · ·T do
4 xt−1 = 1

2
(tanh (wt−1) + 1)

5 gt = ∇c (xt−1)
6 mt = β1mt−1 + (1− β1) gt
7 vt = β2vt−1 + (1− β2) g2

t

8 wt = wt−1 − η mt√
vt+τ

9 end
10 return xT = 1

2
(tanh (wT ) + 1)

Figure 4.1: MIA on MNIST dataset.

Visual Results. Figure 4.1 shows the reconstructed images of the original and

enhanced MIA (using `1 norm and change-of-variable) against a CNN model trained

on the MNIST dataset in comparison to sample original images. We set the parameter

values as T = 5000, β1 = 0.9, β2 = 0.999, τ = 10−8, η = 0.1, and λ = 0.05. We can
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Figure 4.2: MIA on Faces94 dataset.

observe that the enhanced MIA generates more realistic and similar images to the

original images than the original MIA. Figure 4.2 shows the reconstructed images of

the original and enhanced MIA (using BTV regularization) against a softmax classifier

trained on the Faces94 dataset (see Section 4.5 for details). We set p = 2, α = 0.9,

and λ = 0.001 for the BTV regularization. We observe that the reconstructed face

images by enhanced MIA preserve sharper edges and corners, and less blur compared

to original MIA.

Table 4.1: MIA distance for MNIST dataset

Class (Digit) 0 1 2 3 4 5 6 7 8 9
Original MIA 8.02 8.36 9.14 9.50 8.35 9.76 9.64 8.38 8.79 8.93

Enhanced MIA 5.93 7.89 8.51 7.92 8.2 8.41 8.51 7.76 8.06 8.76

Table 4.2: MIA distance for Faces94 dataset

Class (Person) 1 2 3 4 5 6
Original MIA 0.707 0.663 0.64 0.681 0.668 0.707

Enhanced MIA 0.691 0.643 0.626 0.664 0.65 0.692

Attack Success Metric. To quantify the results of reconstruction besides visual

inspection, we define an attack success metric, MIA distance, as the minimum dis-

tance between the reconstructed image and all the training images in the target class.

In contrast to the average distance which measures the distance between the recon-

structed image and the “average” image of the target class, we use minimum distance
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because it represents the worst case scenario. A smaller distance indicates the recov-

ered image is more similar to the original training data, suggesting a more successful

attack. A larger distance means that the attack is less successful and the model is

more robust. We will also use this metric to evaluate the model’s robustness against

MIA.

Different distance metrics can be used depending on the data. For example, for the

MNIST dataset which includes simple white and black images, we can use Euclidean

distance which is shown in Table 4.1. We observe that the reconstructed images from

enhanced MIA have a consistently smaller distance than the original MIA. For the

gray-scale face images, we adopt the structural similarity index (SSIM) [108], which

is more suitable for measuring the perceptual similarity between two face images than

Euclidean distance [57]. The value range of SSIM is [0, 1] where 1 indicates the most

similar. Table 4.2 shows the minimum distance (1-SSIM) between the reconstructed

images and training images in the target class for both original MIA and enhanced

MIA. We can observe that enhanced MIA achieves better results.

4.4 Class and Subclass Differential Privacy

In this section, we propose class-DP and subclass-DP as quantifiable privacy notions

against MIA and corresponding privacy algorithms to achieve them.

4.4.1 Class-Level Differential Privacy

Definition of Class-Level DP. Our main goal is to provide a rigorous and strong

privacy notion that can quantify the protection against MIA which targets the statis-

tical property of a given class corresponding to a set of records in the training data.

Intuitively, our secret to be protected is the statistical properties or features of a tar-

get class. Motivated by this, we propose class-level DP which defines the neighboring
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databases as two datasets differing in one class (i.e. all records that belong to the

same class). Class-level DP guarantees that the resulting models are indistinguish-

able even if all the records in any one class are substituted. Therefore, MIA can not

reconstruct a representative image of any target class.

Definition 7. (Class Neighboring Datasets). Let D denote a dataset with K classes

of records. The class neighboring datasets to D are the datasets D′ that can be obtained

from D by replacing all the records in an arbitrary class k ∈ 1, ..., K.

Compared to the definition of neighboring datasets [28] in record-DP, a pair of

class neighboring datasets differ in one class of data, which indicates they have the

same number of classes and all of those classes are the same (same data and labels)

except one. For example, let D be a hand-written digit dataset containing images of

digits from 0 to 9, the class number of D is 10. Replacing all images of digit 0 with

images of letter a in D forms a class neighboring dataset D′.

Definition 8. (Class-Level Differential Privacy). A randomized algorithm A with

domain N|X | satisfies class-level (ε, δ)-differential privacy if for all S ⊆ Range(A)

and for all class neighboring datasets D, D′ ∈ N|X |:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Considering record-DP can be unbounded (neighboring datasets are formed by

adding or removing one record) or bounded (replacing one record or removing and

then adding one record), our class-DP definition here is bounded, i.e. the class neigh-

boring datasets are formed by replacing an entire class. We can also define the

unbounded class-DP which requires the indistinguishability of the resulting model

regardless of whether an entire class is present or not in the training data. We will

show in our privacy analysis later all proofs can be derived similarly with these two

versions of DP with the only difference being a constant factor.
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Comparison with Record and Group-DP. Class-DP is a strong privacy guaran-

tee. It protects not only one data record in private datasets like in record-DP [28] but

also all other records which share common patterns or follow the same distribution

with that record in the same class. Class-DP is different from group-DP [28] which

ensures the indistinguishability of the statistical output regardless of the presence or

absence of any group of a given size of m. While bearing some similarities, class-DP

is not equivalent to group-DP even if we assume all classes have the same size m.

This is because the neighboring pairs in class-DP differ in one class, and the classes

are only a subset of all possible groups of size m. We can consider class-DP (with

the same class size m) as a weaker version of group-DP, but specifically designed to

protect against MIA. In addition, class-DP allows groups of different sizes which are

determined by the size of each class and hence provide more precise protection against

MIA.

We can potentially adopt group-DP to protect against MIA by setting the group

size as the largest class size. However, doing so will lead to amplified perturbation

by the group size and hence unacceptable model accuracy. In fact, any (ε, δ)-DP

mechanism M satisfies (mε,mδ)-group-DP for group size m with no necessary change

to the private training process. This amplifying factor m can be very large and will

render the model not useful with a meaningful privacy guarantee.

4.4.2 Algorithm for Class-DP

Algorithm 5 outlines the steps to achieve class-DP for deep learning models based on

class-based sampling. Suppose the training dataset D = {C1, · · · , CK} contains K

classes of data. During each step of the SGD, each class is sampled with probability

q (line 3). The data of all selected classes will be used in the current step of SGD for

calculating gradients and updating parameters. Dividing the noisy sum of the clipped

gradient by the number of selected classes for the current SGD step approximates the
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average update of all classes while preventing the information of a single class from

leakage.

Algorithm 5: Class-level differentially private SGD

Input: Training dataset D = {x1, · · · , xN}, loss function
L(θ) = 1

N

∑
i L (θ, xi), learning rate ηt, noise scale σ, gradient norm

bound S, sampling ratio q.
1 Initialize θ0 randomly.
2 for t = 1 · · ·T do
3 Sample each class with probability q.
4 for each selected class Ci(i = 1, · · · , kt) do
5 For each xj ∈ Ci, compute gt (xj)← ∇θtL (θt, xj)

6 Average gradients within class Ci, g
(i) ← 1

|Ci|
∑|Ci|

j=1 gt (xj)

%%Compute gradient

7 g(i) ← g(i)/max

(
1,
‖g(i)‖

2

S

)
%%Clip gradient

8 end

9 g̃t ← 1
qK

(∑kt
i=1 g

(i) +N (0, σ2S2I)
)

%%Add noise

10 θt+1 ← θt − ηtg̃t %%Update

11 end
12 return θT and overall privacy budget (ε, δ) computed by moments

accountant with sampling.

Privacy Analysis. We analyze the privacy of Algorithm 5 by extending the mo-

ments accountant technique in Definition 6 to the class-DP setting. There are two

key differences between the setting in [4] and ours: 1) [4] considers record-level DP

while ours is class-level; 2) the neighboring concept in [4] is random “in or out” of

a record while ours is a random substitution of a class. Due to such discrepancy,

our analysis deviates from theirs. To begin with, we recall the following two lem-

mas from [4]. Lemma 1 facilitates the composition of the moments accountant of

an iterative algorithm. Lemma 2 provides the translation of moments accountant to

(ε, δ)-DP.

Lemma 1. (Composibility [4]) Let mechanism A be a composition of a sequence of

adaptive mechanisms A1, ...,AT , where At :
∏t−1

i=1 Range(Ai)×D → Range(At). For

any κ, it gives αA(κ) ≤
∑T

t=1 αAt(κ).
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Lemma 2. (Tail Bound [4]) For any ε > 0, the mechanism A is (ε, δ)-DP for δ =

minκ exp(αA − κε).

We also develop the following Lemma 3 that will be used in our main DP result

in Theorem 5. It adapts Theorem 2 in [4], where the main difference is to replace

µΓ30257 ∼ N (1, σ2) there to µΓ30258 ∼ N (2, σ2) here, and quantify the new αµ0,µ(κ)

accordingly. This is because for class-DP and subclass-DP, we prefer the neighboring

dataset notion to be a random substitution of class/subclass rather than “in or out”

of an arbitrary record.

Lemma 3. Let µΓ30256 and µΓ30258 denote the probability density function of

N (0, σ2) and N (2, σ2) respectively. Let µ be the mixture of µΓ30256 and µΓ30258:

µ = (1 − q)µΓ30256 + qµΓ30258. Let αµ0,µ(κ) = log max(E1, E2), where E1 =

Ez∼µΓ30256[(µΓ30256(z)
µ(z)

)κ] and E2 = Ez∼µ[( µ(z)
µΓ30256(z)

)κ]. Suppose q < 1
16σ

and κ ≤

σ2 ln 1
qσ

, then it gives αµ0,µ(κ) ≤ 4q2κ(κ+1)
(1−q)σ2 +O(q3/σ3).

We follow the proof of Theorem 2 in [4] with an emphasize on the difference part

with [4]. Let α = 4q2κ(κ+1)
(1−q)σ2 +O(q3/σ3). To prove αµ0,µ(κ) = log max(E1, E2) ≤ α, we

need to prove E1 = Ez∼µΓ30256[(µΓ30256(z)
µ(z)

)κ] ≤ 1+α; E2 = Ez∼µ[( µ(z)
µΓ30256(z)

)κ] ≤ 1+α,

so that αµ0,µ(κ) ≤ log(1 + α) ≤ α. Following [4], both inequalities can be proved

by the same method. For any distributions νa and νb, Ez∼νΓ30561[(νΓ30561(z)
νΓ30562(z)

)κ] =

Ez∼νΓ30562[(νΓ30561(z)
νΓ30562(z)

)κ+1], where the latter can be expanded using binomial expansion,

Ez∼νΓ30562[(
νΓ30561(z)

νΓ30562(z)
)κ+1] =

κ+1∑
i=0

(
κ+ 1

i

)
Ez∼νΓ30562[(

νΓ30561(z)− νΓ30562(z)

νΓ30562(z)
)i].

Substituting (νa, νb) = (µ, µ0) and (νa, νb) = (µ0, µ) in, when i = 0, the first term is 1;

when i = 1, the second term is 0. In the following, we calculate the third term with
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the more difficult case (νa, νb) = (µ0, µ), i.e., i = 2, which starts to deviate from [4]:

Ez∼µ[(
µ0(z)− µ(z)

µ(z)
)2] = q2Ez∼µ[(

µ0(z)− µΓ30258(z)

µ(z)
)2]

(i)

≤ q2

1− q∫ +∞

−∞

(µ0(z)− µ2(z))2

µ0(z)
dz =

q2

1− q
Ez∼µ0 [

(µ0(z)− µ2(z))2

µ0(z)
],

where (i) is by µ ≥ (1 − q)µ0 and the above can be further bounded by calculating

the last expectation:

Ez∼µ0 [
(µ0(z)− µ2(z))2

µ0(z)
] = Ez∼µ0 [(1− exp(4z − 4

2σ2
))2]

= exp(
4

σ2
)− 1 ≤ 4

σ2
.

(4.5)

The third term can be bounded as

(
κ+ 1

2

)
Ez∼µ[(

µ0(z)− µ(z)

µ(z)
)2] ≤ 4q2κ(κ+ 1)

(1− q)σ2
. (4.6)

In the following, we show the terms from i = 3, .... are dominated by i = 3 term

which is of order O( q
3κ3

σ3 ).

Ez∼µ[(
µ0(z)− µ(z)

µ(z)
)i] ≤

(I)︷ ︸︸ ︷∫ 0

−∞
µ(z)|(µ0(z)− µ(z)

µ(z)
)i|dz+

(II)︷ ︸︸ ︷∫ 2

0

µ(z)|(µ0(z)− µ(z)

µ(z)
)i|dz+

(III)︷ ︸︸ ︷∫ +∞

2

µ(z)|(µ0(z)− µ(z)

µ(z)
)i|dz .

(I) ≤ 2iqi

(1− q)i−1σ2i

∫ 0

−∞
µ0(z)|z − 1|idz ≤ (4q)i(i− 1)! !

2(1− q)i−1σi
.

(II) ≤ qi

(1− q)i

∫ 2

0

µ(z)
4i

σ2i
dz ≤ (4q)i

(1− q)iσ2i

(III) ≤ qi

(1− q)i−1σ2i

∫ +∞

2

µ0(z)(
2µ2(z)

µ0(z)
)idz,
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which is 2i factor larger the estimation in [4]. Together, the i ≥ 3 terms are dominated

by i = 3 term with order O( q
3κ3

σ3 ). In sum, we have proved that αµ0,µ(κ) ≤ 4q2κ(κ+1)
(1−q)σ2 +

O(q3/σ3).

Theorem 5. Let σ2 =
16q2T ln( 1

δ
)

ε2
and q <

√
ε

64
√
T ln(1/δ)

. Algorithm 5 satisfies (ε, δ)-

class-DP.

Let At(D) :=
∑

i∈[kt]
1
qK

(∑kt
i=1 g

(i) +N (0, σ2S2I)
)

, where each g(i) is the S-

clipped gradient computed based on the sampled class Ci and satisfies ‖g(i)‖2≤ S.

First, we upper bound αAt(κ). For class neighboring datasets (D,D′), Without loss

of generality, let D = {C1, ..., CK−1, CK} and D′ = {C1, ..., CK−1, C
′
K}, where each

Ck, k = 1, ..., K, denotes all the data (records and label) in class k. The distribution of

At(D′) ∼ N ( 1
qK

∑kt
i=1 g

(i)
|D′ ,

1
(qK)2

∑kt
i=1 σ

2S2I), where g
(i)
|D′ denotes the stochastic gradi-

ent computed on D′. It is equivalent to At(D′) ∼
∑kt

i=1
1
qK

(
g

(i)
|D′ +S ·µ0

)
, with µ0 ∼

N (0, σ2), where g
(i)
|D′ is the clipped gradient computed based on D′. For At(D),

depending on whether the K-th class is sampled or not, the mean of At(D) is

{(1−q)
∑kt

i=1 g
(i)
|D′}+{q(

∑kt
i=1 g

(i)
|D′−g

(K)

|C′K
+g

(K)
|CK )}. The arg max in eq.(2.2) is achieved

when ‖g(K)

|CK′ − g
(K)

|CK‖2= 2S, which gives At(D) ∼ 1
qK

∑kt
i=1 g

(i)
|D′ + S · ((1 − q)µ0 +

qµ2), with µ2 ∼ N (2, σ2). Thus, to bound αAt(κ), it suffices to estimate αµ0,µ(κ)

which is given in Lemma 3. With the composition property in Lemma 1, we have

αA(κ) ≤
∑T

t=1 αAt(κ) ≤ 4Tq2κ2

σ2 . By Lemma 2, to ensure (ε, δ)-class-DP, it suffices to

ensure 4Tq2κ2

σ2 ≤ κε
2
, exp(−κε

2
) ≤ δ. In addition, since having used Lemma 3, we need

to satisfy its constraints: q < 1
16σ
, κ ≤ σ2 log( 1

qσ
). With our choice of q and σ, we can

verify that the above constraints hold. Finally, Algorithm 5 is (ε, δ)-class-DP.

Remark 1. For unbounded class-DP (i.e. random deletion of a class), we can still

provide similar privacy guarantee by following similar procedure as the proof for the

bounded class-DP case above: we ensure that Algorithm 5 is (ε, δ)-class DP if σ2 =

4q2T ln( 1
δ

)

ε2
and q <

√
ε

32
√
T ln(1/δ)

.
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4.4.3 Subclass-Level Differential Privacy

While class-DP provides strong protection against MIA, it may require a large amount

of noise when the number of classes is small, i.e. class size is large. Recall that in our

privacy analysis we utilize moments accountant to provide tight privacy loss analysis

for our class-DP-SGD algorithm. Moments accountant itself depends heavily on the

privacy amplification via random sampling with a sampling ratio of q. The smaller

the q, the better the amplification and the smaller the privacy loss. For datasets

where the number of classes is small comparing to the number of data records, i.e.

q will be large, achieving meaningful class-DP while preserving model accuracy may

not be feasible.

Definition of Subclass-DP. To address this, we propose subclass-DP that defines

the neighboring databases based on a subclass, a predefined subset of records within

a single class. In many practical applications, there exist natural subclasses within

a large class. Subclass-DP ensures the indistinguishability of the output model with

respect to any subclass. It can be considered as a weaker version of class-DP. We

show that it will allow better and customizable privacy and utility trade-off.

(a) Class of digit 0 (b) Class of digit 4 (c) Class of digit 9

Figure 4.3: Examples of Subclasses from the MNIST dataset.

Consider the image classification tasks that we focus on in this chapter, images

with the same label in the dataset often exhibit different sub-patterns. For example,

as shown in Figure 4.3 where images are from the MNIST dataset, each class of digit

images can be naturally divided into different groups, and images within a group are
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more similar to each other than those from other groups.

Definition 9. (Subclass Neighboring Datasets). Let D denote a dataset with K sub-

classes of records. The subclass neighboring datasets to D are datasets D′ that can be

obtained from D by replacing all the records in an arbitrary subclass k ∈ 1, ..., K.

Definition 10. (Subclass-Level Differential Privacy). A randomized algorithm A with

domain N|X | satisfies subclass level (ε, δ)-differential privacy if for all S ⊆ Range(A)

and for all subclass neighboring datasets D, D′ ∈ N|X |:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Subclass-DP can be considered as a generalized notion of record-DP and class-DP.

When the number of subclasses in each class ksub is 1, it is equivalent to class-DP.

When ksub is the number of records in each class, it is equivalent to record-DP. The

relationship between subclass-DP and group-DP is the same as that between class-DP

and group-DP, except that subclass-DP corresponds to smaller group size.

Algorithm for Subclass-DP. The algorithm for Subclass-DP is the same as the

class-DP algorithm (Algorithm 5) except that we sample random subclasses instead

of random class (line 3) and the average gradient is computed within each sampled

subclass (line 7). This additional subclass-based sampling provides additional privacy

amplification which promises better privacy and utility trade-off. In this chapter,

we form subclasses using k-means clustering algorithm with a predefined number of

clusters ksub to mimic the natural subclasses.

Privacy Analysis. The privacy analysis for the subclass-DP algorithm is inher-

ited from Theorem 5 and it’s proof by switching the class-level related notion to

the subclass-level ones. We summarize the subclass-DP guarantee in the following

corollary while omitting its detailed proof.
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Corollary 2. Let σ2 =
16q2T ln( 1

δ
)

ε2
and q <

√
ε

64
√
T ln(1/δ)

. Algorithm 5 with subclass

sampling is (ε, δ)-subclass differentially private.

4.5 Experiments

We evaluate the proposed class and subclass DP-SGD algorithms on MNIST [62] and

Faces941 to demonstrate their effectiveness in defending against MIA while preserving

good model utility. MNIST contains 60,000/10,000 training/test examples which are

gray-scale handwritten digit images with the size 28 × 28. Faces94 is a facial image

dataset with 153 individuals and each has 20 color facial images with the size 180

× 200. We convert color images into grayscale and rescale them to 60 × 70. We

use image augmentation techniques2 to create additional facial images such that each

individual has 220 images. We then randomly divide the training/test set into 190/30.

We use a vanilla model without privacy protection and a model with record-DP as

baseline comparisons.

4.5.1 MNIST

A convolutional neural network (CNN) with two convolution layers followed by two

fully connected layers is used. We train it without DP protection as the vanilla

model and the test accuracy reaches 98.9%. We train the same CNN models with

record-DP using the DP-SGD method proposed in [4] as the record-DP model. We

use three choices of noise scale for the Gaussian noise which are σ = 0.65, 1.0, 1.8,

and obtain three models with test accuracy of 96%, 93%, and 91% and corresponding

privacy loss of (6, 10−5), (1.6, 10−5), and (0.5, 10−5)-DP respectively. Finally, we

train the same CNN model using the subclass-DP-SGD algorithm (Algorithm 5 with

random subclass sampling) as the subclass-DP model. The reason we use subclass-

1https://cswww.essex.ac.uk/mv/allfaces/faces94.html
2https://github.com/aleju/imgaug
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DP instead of class-DP is that the number of classes is small for the MNIST dataset

which will make class-DP not meaningful. We will evaluate class-DP on the Faces94

dataset later in the section. Each class of digits in the MNIST dataset is divided into

50 subclasses using the k-means clustering algorithm (k=50). We set the subclass

sampling ratio of q to be 0.2. We also use three choices of noise scale which are

σ = 1.6, 3.0, 3.65. We choose a fixed gradient norm bound 3.0. We obtain three

models with test accuracy of 96%, 93%, and 91% and corresponding privacy loss of

(18.6, 10−3), (8.2, 10−3), and (7, 10−3)-subclass-DP respectively. Note that our criteria

for the three subclass-DP models are to have matching accuracy with the three record-

DP models. This way, we can have a fair comparison for each pair of record-level DP

model and subclass-DP model at the same level of model accuracy in terms of their

robustness to MIA.

MIA. We implement the improved MIA in Algorithm 1 with the same parameter

setting and evaluate it against all models. The parameters of MIA are set as: T =

5000, β1 = 0.9, β2 = 0.999, τ = 10−8, η = 0.1, and λ = 0.05. Figure 4.4 and

4.5 demonstrate the MIA results on the record-DP models and subclass-DP models

respectively. The first row of each figure shows the ground truth training image

samples of digit 0 to 9, and the second row shows the reconstructed images of MIA

on the vanilla model. The third/fourth/fifth row of Figure 4.4 and 4.5 show the

reconstructed images of MIA on the record-DP model and subclass-DP model for

model accuracy at 96%, 93%, and 91% respectively. Notice that the record-DP model

and the subclass-DP model at the same row in Figure 4.4 and 4.5 have the same model

accuracy so we can have a fair comparison of their robustness. Comparing Figure 4.4

and Figure 4.5, we can see that record-DP can not defend against MIA. Even with

small ε (row 5) which corresponds to (0.5, 10−5)-DP, MIA can still reconstruct the

corresponding digits. On the other hand, subclass-DP provides strong protection

against MIA which fails to reconstruct original training data representatives.
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Figure 4.4: MIA results on vanilla model and record-DP models trained on MNIST.

Figure 4.5: MIA results on vanilla model and subclass-DP models trained on MNIST.

MIA Robustness. Figure 4.6 shows MIA robustness of subclass DP in comparison

with vanilla model and record-level DP model in terms of the MIA distance (min-

imum Euclidean distance between the reconstructed image and training images in

the target class) as defined in Section 3. We can see that record-DP models pro-

vide some protection against MIA compared to the vanilla model. Comparing the

three figures, we observe that the subclass-DP models have stronger MIA robustness

(a) test accuracy=96% (b) test accuracy=93% (c) test accuracy=91%

Figure 4.6: MIA Robustness of record-DP and subclass-DP models trained on MNIST
with different model utility.
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(larger distance) than the record-DP models at the same level of model accuracy for

all classes, providing more effective protection against MIA (a better MIA robustness

and accuracy trade-off).

Figure 4.7: Record-DP models trained on MNIST: (a) ε vs test accuracy (b) ε vs MIA
robustness

Figure 4.8: Subclass-DP models trained on MNIST: (a) ε vs test accuracy (b) ε vs
MIA robustness

Figure 4.7 (4.8) shows (a) the relationship between ε and model utility measured

by test accuracy, and (b) the relationship between ε and MIA robustness for record-

DP (subclass-DP) models trained on MNIST with different noise scales and all other

hyperparameters fixed. We note that the absolute value of epsilon and their compari-

son between record-DP and subclass-DP are not very meaningful. Instead, our goal is

to adjust the epsilon for the two models to achieve the same range of accuracy so we

can have a fair comparison of their MIA robustness (i.e. the trade-off of accuracy and
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Figure 4.9: (a) Model test accuracy vs number of subclasses ksub. (b) MIA robustness
vs number of subclasses ksub

Figure 4.10: MIA results on vanilla model and record-DP (left) and class-DP (right)
models trained on Faces94 dataset.

(a) test accuracy=99.5% (b) test accuracy=99.2% (c) test accuracy=99%

Figure 4.11: MIA Robustness of record-DP and class-DP models trained on Faces94
dataset.

MIA robustness). In addition, what is important is whether the epsilon value corre-

lates with the MIA robustness (i.e. provides quantifiable protection against MIA).

By comparing Figure 4.7(b) and Figure 4.8(b), we make two observations. First,

subclass-DP has a much larger MIA distance than record-DP at the same accuracy
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Figure 4.12: Record-DP models trained on Faces94 dataset: (a) ε vs test accuracy
(b) ε vs MIA robustness

level, indicating a much stronger MIA robustness and accuracy trade-off. Second, the

level of ε in record-DP models does not have any significant correlation with MIA

robustness. On the other hand, the ε of subclass-DP models directly correlates with

their MIA robustness, i.e. a smaller epsilon corresponds to more robustness (larger

distance). Hence it validates our hypothesis that subclass-DP can provide a more

effective and quantifiable measure against the model inversion risk.

Varying Number of Subclasses ksub. Next, we study the impact of the number of

subclasses ksub within each class on subclass-DP models in terms of model utility and

model robustness against MIA. Figure 4.9(a) shows the model test accuracy under

different ksub and (b) shows the MIA robustness under different ksub. For both figures,

the noise scale is fixed as 1.6 and the subclass sampling ratio is fixed as 0.2. We

can observe that under the same noise scale and subclass sampling ratio, increasing

ksub will increase the model accuracy (becomes flat after ksub is large enough), and

decrease the MIA robustness. This utility and robustness trade-off is consistent with

our definition of subclass-DP. When the ksub is large enough, it will degrade to record-

DP (when ksub equals to the class size), and the model will be under higher risk of

MIA.
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4.5.2 Faces94

We use the softmax regression model as in [34] and train the vanilla model without

privacy protecting with 100.0% test accuracy. We train record-DP models with the

same structure using the DP-SGD algorithm [4]. We set three noise scales which are

σ = 0.8/1.1/1.4 and obtain three models with 99.5%, 99.2%, and 99% test accuracy

and corresponding (9.1, 10−4), (4.2, 10−4), and (2.7, 10−4)-DP respectively. Finally,

we train class-DP models with the same architecture as the vanilla model using the

class-DP-SGD method in Algorithm 5. The class sampling rate q is set to be 0.33. The

gradient norm bound is 10. We choose three noise scales which are σ = 0.8/1.2/1.6

and obtain three models with 99.5%, 99.2%, and 99% test accuracy and corresponding

(62, 10−2), (45.5, 10−2), and (40.5, 10−2)-class DP respectively.

Figure 4.13: Class-DP models trained on Faces94 dataset: (a) ε vs test accuracy (b)
ε vs MIA robustness

MIA. We evaluate the improved MIA using Algorithm 1 with the loss function (6)

where α = 0.9 and p = 2. The parameter settings are the same for all the models to

recover face images of each class (person). The parameters of MIA are set as: T = 100,

β1 = 0.9, β2 = 0.999, τ = 10−8, η = 0.05, and λ = 0.001. Figure 4.10 demonstrates

the MIA results on the record-DP models and class-DP models respectively. Again,

the record-DP model and the class-DP model in the same row have the same model

accuracy so we can have a fair comparison. We can draw a similar conclusion to the
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MNIST dataset that the record-DP model can not prevent the reconstruction of the

images but class-DP does while achieving the same model accuracy.

MIA Robustness. Figure 4.11 shows MIA robustness of class DP in comparison

with the vanilla model and record-level DP model in terms of the MIA distance. We

observe that the class-DP models have stronger MIA robustness than the record-DP

models at the same level of model accuracy for all classes, providing more effective

protection against MIA.

Figure 4.12 and 4.13 show model accuracy and MIA robustness with respect to

varying ε for record-DP and class-DP respectively. Again, we emphasize that the

ε value for class-DP may seem significantly large, the absolute value is not very

meaningful. What is important is that at the same model accuracy level, class-DP

achieves significantly larger MIA distance than record-DP, which means a much more

effective MIA protection. Similar to MNIST, we also observe that the level of ε in

record-DP models do not have a significant correlation with the robustness of the

model against MIA, while the ε of class-DP models directly correlates with their

robustness against MIA.

4.6 Related Work

[34] first studied MIA targeting neural network models to recover recognizable facial

images of individual’s portrait by their names and white-box access to the model

parameters. [119] trained an inversion model using an auxiliary dataset composed of

the adversary’s background knowledge to recover the private dataset. Their attack

is different from our improved model inversion attack since they require an auxiliary

dataset in order to train an additional model to implement the inversion attack. Our

MIA requires no additional datasets and models. However, how to use auxiliary

datasets to further improve MIA to generate more recognizable images close to the
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original one is an interesting topic for further work. There are also works exploring

MIA under the distributing setting [46, 92, 107, 130] which are orthogonal to our

improved MIA in a centralized setting. [105] proposed to protect MIA by introducing

a regularizer into the training loss to mitigate the mutual information between the

model input and the prediction. However, their method does not provide a rigorous

or quantifiable guarantee against MIA as we do in this chapter.

As for broadened DP notions, [14] protected “user-level” DP for user-partitioned

data when training an LSTM language model with a strong DP guarantee. [36] pro-

posed “client-level” DP, which can be achieved in the federated setting along with

good model utility when the number of clients is large enough. The class-level DP

coincides with user-level and client-level DP [14,36] when one class corresponds to one

user (client). However, class and user are two orthogonal concepts, e.g. one class may

not directly correspond to one user and each user can have data of multiple classes.

In this sense, the class-level DP and user-level DP are not the same for most of the

cases. In terms of the targeted problems, our purpose of defending against MIA is

very different from [14, 36], which considers the privacy issues for federated training.

An important contribution of our work is to show that DP-based techniques can be

applied against MIA with proper development, in spite of the previous unsuccessful

attempt [46] which applied record-level DP straightforwardly.

4.7 Conclusion

We study the problem of protecting deep learning models against MIA. We show

that traditional record-DP for building private deep learning models does not provide

effective and quantifiable protection against MIA. Further, we propose two new DP

notions, class-DP and subclass-DP, and algorithms for protecting deep learning mod-

els against MIA. Experiments show that class or subclass-DP can effectively defend
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against MIA while preserving good model utility. While we focus on the centralized

setting and neural networks in this chapter, the class-DP and subclass-DP notions

are generally applicable to other machine learning settings (e.g. collaborative setting)

and models (e.g. decision trees) to protect against MIA, and we leave the evaluation

of them as future works.
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Chapter 5

Achieving Node-Level Differential

Privacy for GNN Models

5.1 Introduction

Neural networks have achieved great success in many real-world tasks [16,63,67,82].

Recently, there is a growing interest in transferring the success of neural networks on

image and text domain to the graph-structured data such as knowledge graphs, social

networks, biological networks and molecular structures. Among these efforts, Graph

Neural Networks (GNNs) demonstrate the superior performance in mining graph

data and learning graph representations for downstream inference tasks including

node classification, link predication, community detection and graph classification

[13, 39, 58, 68, 112, 129]. Similar to the privacy concerns that neural network models

trained on private datasets could expose sensitive information of the training data,

GNN models trained on graph datasets that embed both the node features and graph

topology information are also subject to different types of privacy attacks [43,81].

In this chapter, we aim to ensure rigorous node-level DP for training GNN models.

In other words, we want to prevent adversaries from distinguishing two neighboring
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graphs differing in one node and all of its connecting edges through the model trained

on one of the graphs. Unlike grid-based data such as image, audio, and text, the

graph data contains both feature vectors for each node and the topological structure

which is usually indicated by the adjacency matrix. During the training of GNN

models, the topological structure will be exploited by the recursive message-passing

procedure that propagates information through the graph [39,101,112,117,129]. Each

node receives hidden representations or features from its neighbors when generating

its representation. This correlation between nodes makes the existing methods for

training DP neural networks [4,84–86,120] ineffective in achieving the node-level DP

in GNN models. The challenge is that the assumption in those works that instances

in the training data are independent does not hold for graph data. The sensitivity

of the model parameters due to presence or absence of each node becomes very large

due to the correlation from their connecting edges, making the required DP noise for

the same level of privacy guarantee to be too large to retain the model utility.

In order to train a GNN model with good performance while ensuring rigorous

node-level DP, we decouple the message-passing process from feature aggregation of

GNNs as proposed in [13,59]. We develop two DP approximate personalized PageR-

ank (DP-APPR) algorithms to obscure the graph topology information and decorre-

late the nodes during the model training, which limits the sensitivity due to each node

and facilitates DP-SGD to play its role in protecting nodes’ existence information ex-

posed by features. More specifically, we pre-compute the approximate personalized

PageRank (APPR) [7,48,109] for each training node and exploit the PageRank vector

to aggregate information from other nodes when generating the node representation.

The graph structure is embedded into the PageRank matrix, and the message-passing

process based on the graph is replaced by the feature transformation weighted by the

PageRank vectors [13, 59]. We propose two algorithms for achieving DP-APPR to

hide the graph structure information of each node embedded in the PageRank vec-
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tor. The first algorithm uses a PageRank vector clipping strategy to bound the global

sensitivity and adds Gaussian noise to each bounded PageRank vector using the Gaus-

sian mechanism [28]. We use the optimal composition theorem [52, 53] to bound the

total privacy loss for the PageRank matrix. Second, we point out that the DP-APPR

computing process can be regarded as the DP top-K selection problem [25] because

each node only needs to aggregate information from top-K most relevant neighbors,

which are pointed by the top-K largest elements in the PageRank vector. Typically,

the exponential mechanism [28] is the algorithm used to solve the DP top-K selection

problem [25,28]. Consequently, we propose the second algorithm of DP-APPR using

the exponential mechanism with Gumbel distributed noise to first more accurately

select the top-K elements without the actual values, and then report the correspond-

ing noisy values with additional privacy costs. After we get the DP APPR matrix

for training nodes, we utilize DP-SGD [4] during model training to provide further

privacy protections for nodes’ features whose information will be embedded into the

model parameters after the model is trained. We formally analysis the privacy loss

caused by the sampling process dependent on the DP PageRank results during private

model training using DP-SGD. Correspondingly, we calibrate tighter Gaussian noise

for the clipped gradients to provide a rigorous overall privacy guarantee for learning

GNN models.

5.2 Preliminaries

This section briefly introduces the background knowledge of Graph Neural Networks,

GNN models based on approximate personalized PageRank, and differential privacy.
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5.2.1 Graph Neural Networks

Given a graph G = (V,E,X), where V and E denote the set of vertices and edges,

respectively, and X ∈ R|V|×d represents the feature matrix where each row corresponds

to the associated feature vector Xv ∈ Rd (v = 1, ..., |V|) of the node v. A GNN model

learns a representation function f that generates the node embedding hv for each

node v ∈ V based on the features of itself as well as all its neighbors [112, 129]. We

use N(v) = {v} ∪ {u ∈ V | (v, u) ∈ E} to denote the node set containing node v and

all its immediate (1-hop) neighbors. The hidden representation of node v learned by

the k-th (k = 1, ..., K) layer of a GNN is denoted as h
(k)
v , where h

(0)
v indicates the

node feature Xv. The neighborhood aggregation procedure (or message passing) of

GNN models can generically be expressed as:

h(k)
v = σ (Wk· AGGREGATE

({
h(k−1)
u ,∀u ∈ N(v)

}))
(5.1)

where Wk is the trainable linear transfer matrix of the GNN model on the k-th

layer, σ is a non-linear activation function such as ReLU, and AGGREGATE is an

aggregation function defined by the specific model [39, 58, 101, 116, 117] to integrate

the representations of a node and its neighbors from the previous layer to generate

the representation of the node in the current layer. After k layers of aggregation,

the representation of a node captures the feature information of its k-hop neighbors

based on graph structure.

5.2.2 Decoupling GNNs with Personalized PageRank

GNN models use the recursive message-passing procedure to spread information

through a graph, which couples the neighborhood aggregation and feature transfor-

mation for node representation learning. In the original design of GNN models based

on message-passing, each additional neighborhood propagation step requires adding



63

an extra layer to the model. This coupling pattern can cause some potential issues in

model training, including neighbors explosion and over-smoothing [13,20,23,59,66,68,

111]. Recent works propose to decouple the neighborhood aggregation process from

feature transformation and achieve superior performance [13,20,23,59,68]. Bojchevski

et al. [13,59] show that neighborhood aggregation/propagation based on personalized

PageRank [37] can maintain the influence score of “neighboring” (relevant) nodes in

infinitely many hops away from the source node, without explicit message-passing

procedure. They pre-compute a sparse matrix Π and use it to aggregate node rep-

resentations generated using a neural network (e.g., a multilayer perceptron) to get

final predictions, which is expressed as follows:

Z = softmax (ΠH) , Hv,: = fθ (Xv) (5.2)

where Hv,: is the node representation generated by a neural network fθ using the

node feature vector Xv of each node v independently. They use an approximate

personalized PageRank (APPR) calculation algorithm proposed by Andersen et al, [7]

to compute an APPR matrix Πppr where each row π(v) is equal to the APPR vector

of one node v. Πppr encodes the graph structure information, where each entry (v, u)

indicates the relevance or importance of node u corresponding to the source node v.

They further truncate Πppr by keeping only the top k largest entries of each row and

setting all other small elements to zero to get a sparse matrix Π. The predictions

of node v with using Π for aggregating information from “neighbors” (most relevant

nodes) can be expressed as:

zi = softmax

 ∑
u∈N k(v)

π′(v)uHu,:

 (5.3)
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where N k(v) enumerates indices of the k non-zero entries in π′(v) which is the v-th

row of Π corresponding to the node v’s sparse approximated personalized PageRank

vector.

5.3 Differentially Private Graph Neural Network

In this section, we first highlight the weakness of applying DP-SGD directly in training

GNN models with node-level DP protection due to the correlation between nodes.

Then we present the details of our approach for training DP GNN models using DP

approximate personalized PageRank. The purpose of using approximate personalized

PageRank is to decouple the message passing from feature aggregation and to enable

each node to generate its representation independently, which facilitates DP-SGD to

play its role in providing DP protection. The overall privacy budget will be split into

two parts. One is spent on injecting noise during DP-SGD process to conceal nodes’

existence information exposed by nodes’ features. The other is used to compute

DP approximate personalized PageRank vectors to hide nodes’ existence information

disclosed by nodes’ edges. Note that only the graph structure information (edges) is

used during the calculation of PageRank vectors.

5.3.1 Differentially Private SGD

DP-SGD [4,99] first computes the gradient g (xi) for each example xi in the randomly

sampled batch with size equals to B, and then clips the l2 norm of each gradient

with a clipping threshold C to bound the sensitivity of g (xi). After that, the clipped

gradient g (xi) of each example will be summed together and added with the Gaussian

noise N (0, σ2C2I) to protect privacy. Finally, the average of the noisy accumulated

gradient g̃ will be used to update the model parameters for this step. We express g̃
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as:

g̃← 1

B

(
B∑
i=1

g (xi) +N
(
0, σ2C2I

))
(5.4)

In DP-SGD, at each step, each example individually calculates its gradient, e.g., only

the features of xi will be used to compute the gradient g (xi) for the example xi.

Note that we do not consider the features of other examples embedded previously

in the model parameters since noise is added at each training step. In Equation

5.4, according to the Gaussian mechanism [28], the Gaussian noise is calibrated as

N (0, σ2C2I) where the sensitivity is C, and each step is (ε, δ)-DP with respect to the

batch if σ =
√

2 log 1.25
δ
/ε. Considering two neighboring datasets that differ in one

example, since one example will only affect at most one gradient in
∑B

i=1 g (xi), and

each gradient is clipped to have the maximum l2 norm equals to C, therefore, the l2

sensitivity of
∑B

i=1 g (xi) is C.

However, when considering training GNN models, nodes are no longer indepen-

dent, and one node’s feature will affect the gradients of other nodes. This correlation

between nodes during gradient computation and model updating is introduced by

the neighborhood aggregation mechanism as indicated in Equation 5.1. In a GNN

model with K layers, one node has the chance to utilize additional features from

all its neighbors up to K-hop when calculating its gradient. The neighborhood ag-

gregation or message-passing process enables each node to consider both the local

and global information during the representation generation, and empowers GNNs to

encode graph structure information into the trained model parameters. Rethinking

Equation 5.4, when training GNN models, at each step, the sensitivity of
∑B

i=1 g (xi)

becomes B × C since changing one node in the graph could potentially change the

value of all gradients in
∑B

i=1 g (xi) and each gradient is clipped the l2 norm to C.
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Substitute B × C for C in Equation 5.4 and we get the following equation:

g̃′ ← 1

B

(
B∑
i=1

g (xi) +N
(
0, σ2B2C2I

))
(5.5)

If we choose σ in Equation 5.5 to be
√

2 log 1.25
δ

, then each step is still (ε, δ)-DP

with respect to the batch by the Gaussian mechanism [28]. Comparing Equation 5.5

to Equation 5.4, we can see that to achieve the same level of privacy protection at

each step during DP-SGD, the standard deviation of the Gaussian noise added to the

gradients is scaled up by a factor of the batch size B, which will seriously affect the

accuracy of the final model.

To facilitate DP-SGD to play its role during training GNN models, we replace

the message-passing process based on the graph topology with the feature transfor-

mation weighted by the PageRank vector [13, 59]. The idea is to add DP noise to

the PageRank vector to obscure the graph topology information and decorrelate the

nodes during the model training, which limits the sensitivity due to each node on the

model parameters.

5.3.2 Differentially Private Approximate Personalized PageR-

ank

PageRank algorithm was initially developed by Brin and Page [15,83] for ranking the

importance of website pages and used by the Google Search engine. Consider a graph

with the adjacency matrix A and the degree matrix D, PageRank is equivalent to

solving Equation 5.6 as in the following:

p = αs + (1− α)Wp (5.6)
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where α ∈ (0, 1] is called the teleportation constant, s is called the preference vec-

tor which is a given distribution over the nodes, and W is the random walk matrix

W = AD−1 [83] or the lazy random walk matrix W = (I + AD−1) /2 [7,33]. Person-

alized PageRank [37] uses a non-uniform probability distribution vector as s (such

as the one-hot vector associated with the index of the source node) to compute the

personalized PageRank vector for each node. Elements in a personalized PageRank

vector reflect other nodes’ relevance to the source node, where higher values indicate

more importance to the source node. Andersen et al. [7] propose the first approx-

imate personalized PageRank (APPR) which is adopted in [13, 59] to replace the

explicit message-passing procedure for GNNs. Most recently, Fountoulakis et al. in

their work [33] demonstrate that the APPR algorithm can be characterized as an

l1-regularized optimization problem, and propose an iterative shrinkage-thresholding

algorithm (ISTA) to solve it with a running time independent of the size of the graph.

This algorithm serves as a basis for our DP approximate personalized PageRank al-

gorithms.

We provide the pseudo-code of ISTA in Algorithm 6, which is adopted from Al-

gorithm 3 in [33] with substituting D−1/2pk for qk to update pk directly during each

step k of optimization, for the convenience of DP design. The output pk is the com-

puted APPR vector for the source node v (the v-th element in the one-hot indicator

vector s equals 1). In Algorithm 6, e is the vector of all ones, i ∼ j means node i is

a neighbor of node j, i ∼ S means node i is a neighbor of at least one node in the

node set S, di indicates the degree of node i, Aij indicates the (i, j)-th element in the

adjacency matrix A, [p]i indicates the i-th element in the vector p, and IS ∈ Rn×|S|

is a matrix with the columns indexed by S are taken from the identity matrix Rn×n

where n is the number of nodes in the graph.

We develop our DP approximate personalized PageRank algorithms based on the

ISTA in Algorithm 6. Our goal is to compute the APPR vector for each node while



68

Algorithm 6: ISTA (Algorithm 3 in [33])

1 Initialize: γ ∈ (0, 1), α ∈ (0, 1], ρ ∈ (0, 1),p0 = 0, s such that eT s = 1 and
s ≥ 0, set ∇f (p0) = −αD−1s.

2 while ‖∇f (pk)‖∞ > (1 + γ)ρα do
3 Set Sk := {i ∈ [n] | pk(i)−∇if (pk) ≥ ρα};
4 ∆pk := − (∇Skf (pk) + ρα) and pk+1 (Sk) = pk (Sk) + ∆pk;
5 for each i ∈ Sk set do
6 ∇if (pk+1) = (1− d−1

i )∇if(pk)− ραd−1
i − 1−α

2
[ISk∆pk]i d

−1
i −

1−α
2di

∑
l∼i,l∈Sk

Ail[ISk∆pk]
l

dl
;

7 end
8 for each j /∈ Sk such that j ∼ Sk set do

9 ∇jf (pk+1) = ∇jf (pk)− 1−α
2dj

∑
l∼j,l∈Sk

Ajl[ISk∆pk]
l

dl
;

10 end
11 for each j /∈ Sk such that j � Sk set do
12 ∇jf (pk+1) = ∇jf (pk);
13 end
14 k = k + 1;

15 end
16 return pk

preserving the node-level DP corresponding to the graph. Given Algorithm 6, one

possible method to achieve the goal is to inject DP noise to the gradient of pk at

each iteration and bound the accumulated privacy loss for the optimization process.

There are two challenges. First, the total number of iterations is unknown in advance,

and the iteration numbers may vary for each node. Therefore, given a fixed total

privacy budget in advance, it is difficult to assign a budget to each node and each

iteration in order to calibrate the corresponding DP noise. Second, it is hard to

bound the influence of each node on ∆pk. Even though the ISTA works in a localized

manner and only accesses a small portion of nodes in the graph, the DP noise would

still be too large according to the worse case analysis to preserve the algorithm’s

effectiveness in calculating useful APPR vectors. To tackle these challenges, we use

output perturbation (perturbing pk directly as versus its gradient at each iteration)

to avoid noise calibration for each iteration and the norm clipping strategy to bound
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the sensitivity. We propose two methods based on the Gaussian mechanism and the

exponential mechanism for output perturbation.

Gaussian Mechanism

For each node v, we first compute its APPR vector p(v) using ISTA, then we clip

the l2 norm of p(v) to be bounded by a constant value C1 in order to bound the

influence of each node on p(v). We add the Gaussian noise calibrated as N (0, σ2)

where σ =
√

2 ln(1.25/δ)C1/ε to each element in the clipped p(v) and get a noisy

APPR vector p̃(v). p̃(v) satisfies (ε, δ)-DP by standard Gaussian mechanism property

[28]. We further select the top K largest entries in p̃(v) by setting all other entries

with small values to zero and get a sparse vector p̃′(v). We substitute p̃′(v) for π′(v) in

Equation 5.3 to aggregate features/representations from most relevant nodes of node v

when generating node v’s predictions during the GNN model’s training. Furthermore,

we need to consider the accumulated privacy loss when generating the APPR matrix

Π with M rows corresponding to the APPR vectors of M nodes. We propose to use

the optimal composition theorem [52,53] to provide a tight overall privacy guarantee,

as it yields the state-of-the-art bound for serial composition of privacy loss. We

provide our DP approximate personalized PageRank algorithm using the Gaussian

mechanism in Algorithm 7.

Theorem 6. Let ε > 0 and δ ∈ (0, 1], Algorithm 7 is (εg, 2Mδ)-differentially private

where ε = εg/
(

2
√
M ln (e+ εg/2Mδ)

)
.

Proof. Our proof is mainly based on the optimal composition theorem in [53] which

argues that for k sub-mechanisms, each with an (ε, δ)-DP guarantee, the overall pri-

vacy guarantee is (εg, δg)-DP, where ε = εg/(2
√
k ln(e+ εg/δg)) and δ = δg/2k. In

Algorithm 7, the noisy APPR vector for each node satisfies (ε, δ)-DP by the Gaus-

sian mechanism independently. Since the returned APPR matrix contains the noisy
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Algorithm 7: DP-APPR using the Gaussian Mechanism (DP-APPR-GM)

Input: ISTA hyperparameters: γ, α, ρ; privacy parameters: ε, δ; clip bound
C1, a graph (V,E) where V = {v1, ..., vN}, an integer K > 0 and an
integer M ∈ [1, N ].

1 Initialize the APPR matrix Π ∈ RM×N with all zeros.
2 for i = 1, ...,M do
3 Compute APPR Vector:
4 Compute the APPR vector p(vi) for node vi using Algorithm 6;
5 Clip Norm:

6 p̂(vi) ← p(vi)/max
(

1,
‖p(vi)

‖2
C1

)
;

7 Add Noise:

8 p̃(vi) ← p̂(vi) +N (0, σ2I), where σ =
√

2 ln(1.25/δ)C1/ε;
9 Sparsification:

10 p̃′(vi) ←: select the top K largest entries in p̃(vi) by setting all other
entries with small values to zero.

11 Replace the i-th row of Π with p̃′(vi).

12 end
13 return Π and compute the overall privacy cost using the optimal

composition theorem.

APPR vectors of M nodes, thus the number of components for composition is M .

We substitute M for k and 2Mδ for δg, which can conclude the proof.

Exponential Mechanism

Note that p̃′(v) in Algorithm 7 is a sparse vector which only contains the top K

largest entries in the noisy vector p̃(v) satisfying (ε, δ)-DP. Therefore, we can also

consider the DP sparse APPR vector computation as a DP top-K selection problem

[25]. Recall the purpose of calculating APPR vectors is to utilize them to aggregate

representations from relevant nodes for the source node during model training. The

index of each entry in an APPR vector indicates the index of the same node in the

graph, and the value of each entry reflects the importance or relevance of this node

to the source node. By reserving the top K largest entries for each APPR vector,

it is equivalent to compute a weighted average of the representations of the K most

relevant nodes to the source node. The graph structure information is encoded in both
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the indexes and values of non-zero entries in each sparse APPR vector. Therefore, in

order to provide DP protection for the graph structure information during computing

APPR vectors, we use a two-stage process with the exponential mechanism1 to first

select the top K largest entries of each APPR vector with DP, followed by an optional

Laplacian mechanism [28] to get the noisy values for the top K entries with DP.

Algorithm 8: DP-APPR using the Exponential Mechanism (DP-APPR-
EM)

Input: ISTA hyperparameters: γ, α, ρ; privacy parameters: ε, ε2, δ; clip
bound C2, a graph (V,E) where V = {v1, ..., vN}, an integer K > 0
and an integer M ∈ [1, N ].

1 Initialize the APPR matrix Π ∈ RM×N with all zeros.
2 for i = 1, ...,M do
3 Compute APPR:
4 Compute the APPR vector p(vi) for node vi using Algorithm 6;
5 Clip Norm:
6 p̂(vi) ←: for each entry p(vi)[j], j ∈ [1, ..., N ], in p(vi), set p(vi)[j] =

max

(
1,
‖p(vi)

[j]‖
1

C2

)
7 Add Noise:
8 p̃(vi) ← p̂(vi) + Gumbel (βI), where β = C2/ε;
9 Report Noisy Indexes:

10 NK ←: select the indexes of the top K entries with the largest values in
p̃(vi);

11 Report Noisy Values:
12 option 1: p̃′(vi) ←: set p̂(vi)[j], j ∈ NK , to be 1/K, and other entries to be

0;
13 option 2: p̃′(vi) ←: set p̂(vi)[j], j ∈ NK , to be p̂(vi)[j] + Laplace(KC2/ε2),

and other entries to be 0;
14 Replace the i-th row of Π with p̃′(vi).

15 end
16 return Π and compute the overall privacy cost using the optimal

composition theorem.

We provide the DP approximate personalized PageRank algorithm using the ex-

ponential mechanism in Algorithm 8. For each node v, we first compute its APPR

1The Sparse Vector Technique (SVT) [27] can also be used in our case to select top K largest
entries in each APPR vector with DP. We choose to use the exponential mechanism in our work
since as suggested in [71], it performs better than the SVT for DP top-K selection under the non-
interactive setting. Moreover, the SVT needs to choose a threshold T during the noisy checking
process, which makes it less efficient, and a bad value of T would affect the utility of final results.
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vector p(v) using ISTA, then we clip the value of each entry in p(v) to have the maxi-

mum value bounded by C2 in order to restrict the influence of each node on each entry

of one APPR vector. We use each entry’s clipped value as its utility score since the

magnitude of each entry indicates its importance (utility) and is used as the weight

when aggregating the representation of the node indicated by the entry’s index. We

simulate the exponential mechanism by injecting a one-shot Gumbel noise to the

clipped vector p̂(v) and then select the indexes of top K largest noisy entries [25].

After we get the indexes of the selected top K entries, we can either: option 1) set

the values of all top K entries to be 1/K, which means we consider the top K entries

equally important to the source node, or option 2) spend some additional privacy

budget to report the noisy values of the top K entries with DP. Given the same total

privacy budget, option 1 has better chance to output indexes of the actual top K

entries while losing the opportunity to reserve useful importance scores. In contrast,

option 2 saves some privacy budget during selecting the indexes of actual top K

entries and uses the saved budget for reporting the corresponding weights.

[25, 28] remarks that the exponential mechanism [28, 73] can be simulated by

adding the Gumbel distributed noise Gumbel(∆u/ε) to each utility score u(x, r) and

then reporting the outcome with the largest noisy value, which satisfies 2ε-DP. The

authors further present the privacy guarantee of the algorithm Mk
Gumbel(u) for re-

porting the indices of top k largest noisy values using the exponential mechanism and

Gumbel noise, as in Corollary 3, which will be used in our proof for Theorem 7.

Corollary 3. [25] Mk
Gumbel(u) adds the one-shot Gumbel(∆(u)/ε) noise to each

utility score u(x, r) and outputs the k indices with the largest noisy values. For any

δ ≥ 0, Mk
Gumbel(u) is (ε′, δ)-DP where

ε′ = 2 ·min
{
kε, kε

(
e2ε−1
e2ε+1

)
+ ε
√

2k ln(1/δ)
}

Theorem 7. For any ε > 0, ε2 > 0 and δ ∈ (0, 1], let ε1 =

2 ·min
{
Kε,Kε

(
e2ε−1
e2ε+1

)
+ ε
√

2K ln(1/δ)
}

, Algorithm 8 is (εg1 , 2Mδ)-differentially
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private for option 1, and (εg2 , 2Mδ)-differentially private for option 2, where ε1 =

εg1/
(

2
√
M ln (e+ εg1/2Mδ)

)
and ε1 + ε2 = εg2/

(
2
√
M ln (e+ εg2/2Mδ)

)
.

Proof. We first consider the privacy loss of outputting the noisy APPR vector p̃′(vi)

for the node vi in Algorithm 8. For each element in the APPR vector, we use its

value as its utility score. Since each element is nonnegative and clipped by the

constant C2, the l1 sensitivity ∆(u) of each element is equal to C2. By adding the

one-shot Gumbel noise Gumbel(βI) where β = C2/ε to the clipped APPR vector

p̃ (vi), option 1 selects K indices with the largest noisy values and satisfies (ε1, δ)-

DP where ε1 = 2 · min
{
Kε,Kε

(
e2ε−1
e2ε+1

)
+ ε
√

2K ln(1/δ)
}

according to Corollary 3.

Option 2 uses Laplace mechanism [28] to report K selected noisy values. By adding

Laplace noise Laplace (KC2/ffl2) to each clipped element, option 2 costs an additional

ε2 privacy budget [28] since the l1 sensitivity of each element is C2, and satisfies

(ε1 + ε2, δ)-DP.

Now we consider the privacy loss of Algorithm 8 which outputs M noisy APPR

vectors. We use the optimal composition theorem in [53] which argues that for k sub-

mechanisms, each with an (ε, δ)-differential privacy guarantee, the overall privacy

guarantee is (εg, δg), where ε = εg/(2
√
k ln(e+ εg/δg)) and δ = δg/2k. By substi-

tuting M for k and ε1 / ε1 + ε2 (option 1/option 2) for ε, we get the privacy loss of

Algorithm 8 with option 1 is (εg1 , 2Mδ), where ε1 = εg1/
(

2
√
M ln (e+ εg1/2Mδ)

)
,

and the privacy loss of Algorithm 8 with option 2 is (εg2 , 2Mδ), where ε1 + ε2 =

εg2/
(

2
√
M ln (e+ εg2/2Mδ)

)
. This completes the proof.

5.3.3 Differentially Private GNNs

We show our overall approach for training a DP GNN model in Algorithm 9. The

DP APPR matrix Π is pre-computed using Algorithm 7 or Algorithm 8. The loss

function L(θ, vi) is the cross-entropy between the one hot vector of node vi’s true label

and its prediction vector generated by Equation 5.3. Each column of Π is clipped
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to have the maximum l1 norm to be τ , to bound the privacy loss of the algorithm

(See Theorem 8 for reasoning). In experiments, we use a constant τ = 1. During

each step, we randomly sample a batch B from nodes having PageRank vectors. The

features of at most B ·K nodes will be loaded into memory for gradients computing.

We compute the gradient for each node in B and clip it to have the maximum l2 norm

equals C. We add the Gaussian noise with sensitivity C to the summed gradient and

update model parameters using the average noisy gradient to satisfy DP. Compare

with Equation 5.5, by utilizing the DP APPR vectors to aggregate information, the

sensitivity due to each node is scaled down by a factor of the batch size.

Algorithm 9: Differentially Private GNNs

Input: A training graph dataset (V,E,X) where V = {v1, ..., vN}, a subset
VM ⊆ V with size M , learning rate ηt, batch size B, training steps T ,
noise scale σ, gradient norm bound C, clip bound τ , the DP APPR
matrix Π ∈ RM×N of VM satisfying (εpr, δpr)-DP.

1 Initialize θ0 randomly.
2 for j = 1, ..., N do

3 Π:,j ← Π:,j/max
(

1,
‖Π:,j‖1

τ

)
4 end
5 for t = 1, ..., T do
6 Take a random sampled batch B from VM .
7 Compute Gradient:
8 For each i ∈ Bt, compute gt (vi)← ∇θtL (θt, vi).
9 Clip Gradient:

10 gt (vi)← gt (vi) /max
(

1,
‖gt(vi)‖2

C

)
.

11 Add Noise:
12 g̃t ← 1

B
(
∑

i gt (vi) +N (0, σ2C2I)) .
13 Update Parameters:
14 θt+1 ← θt − ηtg̃t.
15 end
16 return θT and compute the overall privacy cost using the moments

accountant.

The following theorem presents the DP analysis of Algorithm 9. An essential dis-

tinction between our algorithm and the original DP-SGD is that our neighborhood

sampling returns a correlated batch of nodes features for stochastic gradient compu-
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tation (i.e., the computation of gt(vi) requires the features of the neighboring nodes

of node vi, and node vi accesses the fixed K nodes based on the PageRank vector),

while the original DP-SGD uses the much simpler Poisson sampling. As a result, the

privacy analysis of our algorithm is more involved, especially in terms of quantify-

ing the privacy amplification ratio. We prove that the privacy amplification ratio is

proportional to the maximum of the column-wise `1 norm of the PageRank matrix.

Theorem 8. There exist constants c1 and c2 so that given probability q = B/N and

the number of steps T , for any εsgd < c1q
2T, Algorithm 9 is (εsgd + εpr, δsgd + δpr)

-differentially private for any δsgd > 0 if we choose

σ ≥ c2

qτ
√
T log(1/δsgd)

εsgd

Proof. Denote µ0 the Gaussian distribution with mean 0 and variance 1. Assume D′ is

the neighboring feature dataset of D, which differs at i† such that x′
i† 6= xi† . Without

loss of generality, we assume ∇f(xi) = 0, for any xi ∈ D, while ∇f(x′
i†) = e1. Recall

that the PageRank matrix is Π, where Πi: is the i-th row and the PageRank vector

for node i, while Π:j is the j-th column of Π. In addition, we assume that ‖Π:j‖1≤ τ ,

for all j = 1, ..., n, and denote µτ the Gaussian distribution with mean τ and variance

1.

E[G(D)] = [
|B|
n

∑
j 6=i†,j /∈N(i†)

Gj] + [
|B|
n

∑
j 6=i†,j∈N(i†)

Gj] + [
|B|
n
Gi]

= [
|B|
n

∑
j 6=i†,j /∈N(i†)

∑
k∈N (j)

Πjk∇f (xk)]

+[
|B|
n

∑
j 6=i†,j∈N(i†)

 ∑
k∈N (j)\i†

Πjk∇f (xk) + Πji†∇f (xi†)

]

+[
|B|
n

 ∑
k∈N(i†)\i†

Πi†k∇f (xk) + Πi†i†∇f (xi†)

],

(5.7)
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which indicates G(D) ∼ µ0.

E [G (D′)] = [
|B|
n

∑
j 6=i†,j /∈N(i†)

Gj] + [
|B|
n

∑
j 6=i†,j∈N(i†)

G′j] + [
|B|
n
G′i]

= [
|B|
n

∑
j 6=i†,j /∈N(i†)

∑
k∈N (j)

Πjk∇f (xk)]

+[
|B|
n

∑
j 6=i†,j∈N(i†)

 ∑
k∈N (j)\i†

Πjk∇f (xk) + Πji∇f (x′i†)

]

+[
|B|
n

 ∑
k∈N(i†)\i†

Πi†k∇f (xk) + Πi†i†∇f (x′i†)

]

= E[G(D)] +
|B|
n

n∑
j=1

Πji† (f (x′i†)− f (xi†))

= E[G(D)] +
|B|
n
‖Π:i†‖1

≤ E[G(D)] +
|B|
n
τ,

(5.8)

which indicates G (D′) ∼ µ0 + |B|
n
µτ .

In the following, we quantify the divergence between G and G ′ by following the

moments accountant paper, where we show that

E

[(
µ(z)

µ0(z)

)λ]
≤ α, (5.9)

and E

[(
µ0(z)

µ(z)

)λ]
≤ α, (5.10)

for some explicit α. To do so, the following is to be bounded for v0 and v1.

Ez∼v0

[(
v0(z)

v1(z)

)λ]
= Ez∼v1

[(
v1(z)

v0(z)

)λ+1
]
. (5.11)

Following [4], the above can be expanded with binomial expansion, which gives
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Ez∼v1

[(
v1(z)
v0(z)

)λ+1
]

=
∑λ+1

t=0 (λ+ 1)Ez∼v1

[(
v0−v1(z)
v1(z)

)t]
= 1 + 0 + T3 + T4 + . . .

(5.12)

Next, we bound T3 by substituting the pairs of v0 = µ0, v1 = µ and v0 = µ, v1 = µ0

in, and upper bound them, respectively.

For T3, with v0 = µ0, v1 = µ, we have

T3 =
(λ+ 1)λ

2
Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)2
]

=
(λ+ 1)λ

2
Ez∼µ

[(
qµτ (z)

µ(z)

)2
]

=
q2(λ+ 1)λ

2

∫ +∞

−∞

(µτ (z))2

µ0(z) + qµτ (z)
dz

≤ q2(λ+ 1)λ

2

∫ +∞

−∞

(µτ (z))2

µ0(z)
dz

=
q2(λ+ 1)λ

2
Ez∼µ0

[(
µτ (z)

µ0(z)

)2
]

=
q2(λ+ 1)λ

2
exp

(
τ 2

σ2

)
≤ q2(λ+ 1)λ

2

(
τ 2

σ2
+ 1

)
≤ q2τ 2(λ+ 1)λ

σ2
,

(5.13)

where in the last inequality, we assume τ2

σ2 + 1 ≤ 2 τ
2

σ2 , i.e., τ2

σ2 ≥ 1. Thus, it requires

σ ≤ τ .

As a result,

αG(λ) ≤ q2τ 2(λ+ 1)λ

σ2
+O

(
q3λ3/σ3

)
. (5.14)

To satisfy

T
q2τ 2λ2

σ2
≤ λεsgd

2
, (5.15)

exp

(
−λεsgd

2

)
≤ δsgd, (5.16)
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we set

εsgd = c1q
2τ 2T, (5.17)

σ = c2

qτ
√
T log(1/δsgd)

εsgd
. (5.18)

Given the input DP APPR matrix costs additional (εpr, δpr) privacy budget, we

can conclude the proof by using the standard composition theorem of DP.

5.4 Experimental Results

We evaluate the proposed DP GNNs training method on three commonly used graph

datasets: Cora-ML [12], PubMed [77], and the Microsoft Academic graph [95]. The

characteristics of them are provided in Table 5.1.

Table 5.1: Dataset statistics

Dataset Type Classes Features Nodes Edges
Cora-ML Citation 7 2879 2995 8416
PubMed Citation 3 500 19717 44324

MS Academic Co-author 15 6805 18333 81894

Setup. To simulate the real-world situations where training nodes are assumed to

be private and not publicly available, for each graph dataset, we split the nodes

into a training set (80%) and a test set (20%) that are entirely separate from each

other, which means the edges between nodes that belong to different sets will be

deleted, and the nodes in the training set are not accessible during the inference

phase. This is different from the common experimental settings in most GNNs papers

[12, 13, 39, 59, 101, 117] where the edges between training nodes and test nodes are

preserved, and information of training nodes (e.g., features) is assumed to be visible

and can be utilized during testing. To increase the training speed in our experiments,

we use a sampling rate q′ to randomly sample nodes from the training sets to form
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a graph containing only the sampled nodes and their connected edges, which is used

for training. This sampling process also brings a privacy amplification effect in our

privacy guarantee by multiplying a factor of q′ [10, 55]. Experiments are conducted

on the server equipped with an Nvidia K80 GPU, a 6-cores Intel CPU, and 56 GiB

RAM. All experiments are run for 10 independent trials and the mean values are

reported.

Model and Parameter Settings. We use the same neural network model as in [13]

for all datasets. The model is a two-layer feed-forward neural network with a hidden

layer size equal to 32. We fix the training epochs to 200, the learning rate to 0.005,

and the batch size to 60. The hyperparameters for ISTA are chosen as α = 0.25,

ρ = 10−4 and γ = 10−4 by a grid search. We report experimental results under

different K values, which control the size of the effective neighborhood of a node.

The sampling rates are set to q′ = 9%/1%/3% for Cora-ML/PubMed/MS Academic

datasets. Moreover, we set M = 70/60/150 for Cora-ML/PubMed/MS Academic

datasets.

We use GM, EM-v0, and EM-v1 to denote our proposed method in Algorithm

9 corresponding to different DP APPR algorithms, Algorithm 7, Algorithm 8 with

option 1, and Algorithm 8 with option 2, respectively.

Baselines. We compare our proposed algorithms with three baseline methods.

DPSGD denotes using ISTA to calculate the APPR matrix (without privacy cost),

and then applying the DP-SGD with the noise calibration rule shown in Equation

5.5 to train the node-level DP model. Features indicates a baseline method that

only uses each node feature as an independent input to train the GNN model and

utilizes the original DP-SGD to achieve node-level DP. Note that Features is equal

to the case where we use the one-hot label indicator vector as each node’s APPR

vector (i.e., no correlation with other nodes is used) in Algorithm 9. Random means

we generate an APPR matrix of training nodes randomly (without privacy cost) and
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use it in Algorithm 9 to train the DP model. Besides, we use Vanilla to denote the

model without privacy protection (e.g., computing the APPR matrix by ISTA and

then using SGD to train the model) as a reference.

Inference Phase. As suggested in [13], instead of computing the APPR vectors for

all testing nodes and generating predictions based on their APPR vectors, we use

power iteration during inference, e.g.,

Q(0) = H, Q(p) = (1− α)D−1AQ(p−1) + αH, p ∈ [1, ..., P ]. (5.19)

In Equation 5.19, H is the representation matrix of testing nodes generated by the

trained private model, with the input being the feature matrix of testing nodes. D and

A are the degree matrix and adjacency matrix of the graph containing only testing

nodes, respectively. The final output of power iteration Q(P ) will be input into a

softmax layer to generate the predictions for testing nodes. In our experiments, we

set P = 2 and the teleportation constant α = 0.25 as suggested in [13].

5.4.1 Privacy vs. Accuracy Trade-off

We use the value of privacy budget ε (with fixed δ) to represent the level of privacy

protection each model guarantees, and use the test accuracy for node classification

to indicate the model’s utility. Note that the total privacy budget ε is the sum of εpr

used in DP-APPR and εsgd used in DP-SGD. Figure 5.1/5.2/5.3 show the comparison

results between our proposed methods and baselines, in Cora-ML/PubMed/MS Aca-

demic datasets, respectively. In each subfigure, we fix εsgd and use εpr as the x-axis

to highlight the effect of privacy budget used in DP-APPR on the private model’s

accuracy.

We first discuss and compare the three alternative algorithms we proposed. For

GM and EM-v1, the higher the εpr, the less noise is added when calculating the
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APPR vector for each training node, which indicates that each node has a better

chance to aggregate representations from more important nodes using more precise

weights (importance scores). This is reflected in the higher model test accuracy com-

pared to EM-v0. While for EM-v0, noise in DP-APPR will only affect the output

of the indexes of the top K most relevant nodes corresponding to the source node,

but not their importance scores. As we can see, EM-v0 achieves better performance

than GM and EM-v1 when the privacy budget εpr is small, this is because EM-v0

uses 1/K as the importance score for all nodes (considering nodes equally important),

which diminishes the negative effect of less important or irrelevant nodes which have

high importance scores due to the noise in GM and EM-v1. Both EM-v0 and EM-

v1 are based on the exponential mechanism designed for identifying the index of the

noisy max, which enables them to perform better than GM in finding the indexes of

the actual top K. Therefore, when the privacy budget is small, EM-v0 and EM-v1

have the higher model test accuracy than GM. However, when the privacy budget is

large, they all have a good chance to find the indexes of the actual top K, and GM

becomes gradually better than EM-v0 and EM-v1, as the Gaussian noise has better

privacy loss composition property.

Compared with the baseline methods, our proposed methods outperform DPSGD

in all datasets because of the weakness of applying DP-SGD directly to train node-

level DP GNNs, as discussed in section 5.3.1. Comparing our methods with Features,

we can find that when the privacy budget is small, the noisy indexes of the top K and

their importance scores will negatively affect the model performance, which makes

Features have the higher test accuracy than the proposed methods in some cases

(esp. for PubMed dataset that the graph topology information plays a less important

role than node features in the inferences), as it does not rely on the information from

other nodes.

By comparing two subfigures in each row, we can observe the relationship between
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test accuracy and εsgd. We can see that the effect of εsgd on test accuracy is larger

than the effect of εpr (i.e., test accuracy will change more significantly when we

use different εsgd values). This is because εsgd affects the noise added to the model

parameters directly, while εpr affects the model performance indirectly by affecting

the utility of the DP APPR matrix. K controls the number of neighbors that each

node will access. When εpr is small, choosing a larger K value leads to more fake

important nodes with noisy importance scores being involved, which affects the model

performance negatively. By comparing two subfigures in each column, we can see

that when εpr becomes smaller, test accuracy drops more quickly when K = 16 than

K = 4.
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Figure 5.1: Relationship between privacy budget ε (fixed δ = 2 × 10−3) and test
accuracy on Cora-ML dataset.
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Figure 5.2: Relationship between privacy budget ε (fixed δ = 2 × 10−4) and test
accuracy on Pubmed dataset.

5.4.2 Demonstration of Privacy Protection Effectiveness

Node Degree Prediction. While DP gives a theoretical privacy guarantee of our

methods (as shown in Theorem 8), in this section, we use a simple node degree infer-

ence attack as an example to provide an empirical understanding towards the privacy

protection effectiveness of our methods. We use the embeddings of training nodes

generated by the trained private model to predict (infer) the degree of the training

nodes. We use the root-mean-square error (RMSE) between training nodes’ true and

predicted degrees to indicate the node degree prediction performance. Lower RMSE

indicates that it is harder to predict the training nodes’ precise degree information

using their embeddings output by the private model, which means the private model

is more successful in hiding each node’s existence information (including its edges).
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Figure 5.3: Relationship between privacy budget ε (fixed δ = 2 × 10−4) and test
accuracy on MS Academic dataset.

Figure 5.4 and Figure 5.5 show the node degree prediction RMSE under different

privacy protection levels ε (with fixed δ) for the private models trained using the

proposed methods and baseline methods on Cora-ML and PubMed datasets. For

the proposed methods, the total privacy budget ε is divided into two equal parts

for the DP-APPR and DP-SGD, respectively. We also report the corresponding test

accuracy of the private models under each privacy budget. We can see that GM,

EM-v0, and EM-v1 have larger node degree prediction RMSE than Features in all

settings, which indicates our proposed methods are more effective in protecting the

node degree information while maintaining comparable model utility (test accuracy).

Note the DPSGD has the largest RMSE, but also an unacceptably low test accuracy.

Node embeddings generated by the private model from DPSGD are too noisy to be
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Figure 5.4: Cora-ML. Subfigures in the left column are the node degree prediction
RMSE under different privacy protection levels ε (fixed δ = 2× 10−3). Subfigures in
the right column indicates the corresponding models’ test accuracy.

used in predicting node labels (and not surprisingly also node degrees). In contrast,

our methods achieve a better trade-off in preserving the model utility and providing

effective privacy protection.

Node Embedding Clustering.

We visualize the t-SNE clustering of training nodes’ embeddings generated by

the private models in Figure 5.6 and Figure 5.7 for Cora-ML and PubMed datasets,

respectively. The color of each node corresponds to the label of the node. We can

observe that when the privacy budget is small (ε = 1), which indicates a strong pri-

vacy protection, the training nodes that belong to different classes are hard to be

distinguished from each other by using their embeddings generated by the private

model. Meanwhile, when the privacy guarantee becomes weak (ε becomes larger),

embeddings of nodes with the same class label will gradually move into the same
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Figure 5.5: PubMed. Subfigures in the left column are the node degree prediction
RMSE under different privacy protection levels ε (fixed δ = 2× 10−4). Subfigures in
the right column indicates the corresponding models’ test accuracy.

cluster. This observation demonstrates that the privacy budget used in our proposed

methods is correlated with the model’s ability to generate meaningful node embed-

dings, and therefore also associated with the privacy protection effectiveness since

some adversaries will utilize the embeddings generated from the model to carry out

privacy attacks [24,34].

5.4.3 Effects of Privacy Parameters

We demonstrate the effects of the parameters specific to privacy, including the batch

size, the clipping bound in DP-APPR, and the clipping bound in DP-SGD. We set

the batch size to 60, the clipping bound C1 in DP-APPR-GM to 0.01, the clipping

bound C2 in DP-APPR-EM to 0.001, and the gradient norm clipping bound C for

DP-SGD to 1. We analyze them individually with keeping the rest constant as the



87

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8
0
1
2
3
4
5
6

(a) GM, ε = 1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5 0
1
2
3
4
5
6

(b) GM, ε = 4

−10 −5 0 5
−10

−5

0

5

10

0
1
2
3
4
5
6

(c) GM, ε = 16

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8 0
1
2
3
4
5
6

(d) EM-v1, ε = 1

−10 −5 0 5 10

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0 0
1
2
3
4
5
6

(e) EM-v1, ε = 4

−10 −5 0 5 10

−10

−5

0

5

10

0
1
2
3
4
5
6

(f) EM-v1, ε = 16

Figure 5.6: Cora-ML. Clustering of training nodes’ embeddings generated by private
models with different privacy guarantees ε (fixed δ = 2 × 10−3). GM(EM-v1)
indicates the private model is trained using the GM (EM-v1) method.

above reference values. The total privacy budget under each parameter setting is

fixed as (ε, δ) = (8, 2× 10−3) for Cora-ML and (8, 2× 10−4) for PubMed.

Batch Size. According to Theorem 8, given the fixed total privacy budget and

epochs, the standard deviation of the Gaussian noise is proportional to the square

root of the batch size. Therefore, in GM, EM-v0, and EM-v1, a large batch size

can diminish the effect of noise added to each batch’s sum of gradients. In contrast,

in DPSGD, according to Equation 5.5, the effect of noise added to the batch’s sum

gradient will increase with the increase of the batch size since there is an additional

factor batch size in the standard deviation of the noise. Figure 5.8 and Figure 5.9 show

the effect of batch size on the model’s test accuracy on the Cora-ML and PubMed

datasets. We can observe the opposing effects of batch size on our methods and

DPSGD.

Clipping Bound in DP-APPR. In Algorithm 7 and Algorithm 8, the clipping
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Figure 5.7: PubMed. Clustering of training nodes’ embeddings generated by private
models with different privacy guarantees ε (fixed δ = 2 × 10−4). GM (EM-v1)
indicates the private model is trained using the GM (EM-v1) method.
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Figure 5.8: Cora-ML. Relationship between batch size and model test accuracy. Fix
total privacy budget (ε, δ) = (8, 2× 10−3).

bound C1 and the clipping bound C2 are used to bound the sensitivity. Given a

constant total privacy budget, the standard deviation of the noise added to the APPR

vectors is proportional to the clipping bound. Choosing a smaller clipping bound value

can avoid adding too much redundant noise. Figure 5.10 and Figure 5.11 show the

effect of clipping bound in DP-APPR on the model’s test accuracy on the Cora-ML
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Figure 5.9: PubMed. Relationship between batch size and model test accuracy. Fix
total privacy budget (ε, δ) = (8, 2× 10−4).

and PubMed datasets. In experiments, we set C1 to be 0.01 and C2 to be 0.001 for

all datasets.
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Figure 5.10: Cora-ML. Relationship between clipping bound of DP-APPR and model
test accuracy. Fix total privacy budget (ε, δ) = (8, 2× 10−3).
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Figure 5.11: PubMed. Relationship between clipping bound of DP-APPR and model
test accuracy. Fix total privacy budget (ε, δ) = (8, 2× 10−4).
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Clipping Bound in DP-SGD. The gradient norm clipping bound in DP-SGD

affects the noise scale added to the gradients (linearly) as well as the optimization

direction of model parameters. A large clipping bound may involve too much noise

to the gradients, while a small clipping bound may undermine gradients’ ability for

unbiased estimation. Figure 5.12 and Figure 5.13 show the effect of gradient norm

clipping bound in DP-SGD on the model’s test accuracy on the Cora-ML and PubMed

datasets. We choose the gradient norm clipping bound to be 1 for all datasets in our

experiments.
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Figure 5.12: Cora-ML. Relationship between clipping bound of DP-SGD and model
test accuracy. Fix total privacy budget (ε, δ) = (8, 2× 10−3).
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Figure 5.13: PubMed. Relationship between clipping bound of DP-SGD and model
test accuracy. Fix total privacy budget (ε, δ) = (8, 2× 10−4).
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5.5 Related Work

Differentially Private Graph Publishing. Works on privacy-preserving graph

data publishing aim to release the entire graph [35, 51, 79, 114], or the statistics or

properties of the original graph [6, 21, 22, 56, 70, 123], with the DP guarantee. Differ-

ent from those works, our work in this chapter focuses on training GNN models on

private graph datasets and publishing the model that satisfies a formal node-level DP

guarantee.

Differentially Private Network Embedding. Xu et al. [115] model the network

embedding as matrix factorization and apply the objective perturbation mechanism

[19] on the loss function to achieve edge-level DP. Zhang et al. [126] propose a Lipschitz

condition on the objective function of the matrix factorization based graph embedding

model and a gradient clipping strategy to ensure link privacy. The objective of works

in this area is to ensure that the sharing of the embeddings generated from sensitive

graph datasets satisfy the DP guarantee. In contrast, our privacy-protection target

is the model parameters. In other words, we want the model parameters trained on

the private graph dataset to satisfy DP.

Differentially Private Graph Neural Networks. Yang et al. [118] propose to

train a graph generation model using DP-SGD to generate graphs with the edge-DP

guarantee that protects the individual link privacy. Sajadmanesh et al. [91] develop a

privacy-preserving GNN training algorithm based on local differential privacy (LDP)

to protect node features privacy. Zhang et al. [127] use LDP and functional mechanism

[124] to enforce privacy guarantee on user’s sensitive features when training graph

embedding models for recommendation. None of these previous works achieve the

goal of providing strict DP with respect to each node in the graph for GNN models.
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5.6 Conclusion

In this chapter, we studied the problem of private learning for GNN models. To

the best of our knowledge, we are the first to propose the method for training GNN

models under rigorous node-level DP guarantees, which consider both the node edges

and node features. Our method is based on DP approximate personalized PageRank

and DP-SGD. We developed two algorithms using the Gaussian mechanism and the

exponential mechanism for achieving DP APPR matrix calculation. DP-APPR not

only protects nodes’ edge information but also decorrelates the nodes to limit the

sensitivity of each node during the model training using DP-SGD, which facilitates

DP-SGD to play its role in protecting nodes’ features information. Experimental

results on real-world graph datasets demonstrate the effectiveness of our proposed

methods in achieving good privacy and utility trade-off. We leave developing better

DP-APPR algorithms with tighter privacy guarantee and adaptive privacy budget

allocation strategy (e.g., for each node) as future work.
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Chapter 6

Conclusion and Future Work

In this dissertation, we research the practical issues of preserving data privacy during

training deep learning models. Chapter 3 focuses on addressing the dilemma about

the privacy and utility trade-off of DP algorithms in the general deep learning settings.

We develop two new mechanisms, PATE+ and PATE++, to train more robust PATE

under noisy labels, which obtain a better utility and privacy trade-off in private model

training and further improve the practicality to achieve meaningful privacy guaran-

tees when training deep models on sensitive data. Chapter 4 focuses on broadening

the DP definitions and algorithms for non-typical privacy attacks. We study the

problem of protecting deep learning models against MIA. We show that traditional

record-DP for building private deep learning models does not provide effective and

quantifiable protection against MIA. Then, we propose two new DP notions, class-DP

and subclass-DP, and algorithms for protecting deep learning models against MIA.

Experimental results show that class or subclass-DP can effectively defend against

MIA while preserving good model utility. Chapter 5 focuses on broadening the DP

definitions and algorithms for non-typical data. We conduct the first formal study of

training GNN models on graph data with the rigorous node-level DP guarantee. The

key idea is to decouple the message-passing process from feature aggregation via DP
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approximate personalized PageRank and DP-SGD to protect both graph topology

and node features while maintaining high model utility. Further, we develop two DP

approximate personalized PageRank computation algorithms with formal node-level

DP guarantee based on the Gaussian mechanism and the exponential mechanism. Ex-

periments on real-world graph datasets demonstrate the effectiveness of the proposed

algorithms in achieving satisfying privacy and utility trade-off.

Future work has the following potential directions:

Federated Graph Neural Networks with Differential Privacy. It is interesting

to extend the proposed node-level differentially private graph neural network training

methods into the federated setting where each local site has its graph dataset that

is private and cannot be shared. The problems that we need to consider under the

federated setting include but are not limited to the non-I.I.D and unbalanced data

distribution and the communication cost bottleneck. Meanwhile, we may also need

to consider different types of federated graph neural networks [41] such as graph-

level federated GNNs and node-level federated GNNs, etc. The privacy definitions

under varying levels of federated GNNs may be changed in order to achieve more

meaningful privacy protection under different settings. For example, for graph-level

federated GNNs where each local site or user has its isolated graph, we may consider

the graph-level differential privacy to provide the DP protection for each local graph.

While for node-level federated GNNs, each local site has a set of nodes belonging to

a graph containing nodes from all sites, and each node corresponds to a user. In this

case, we need to consider the node-level differential privacy as in our work in chapter

5, and apply our proposed methods to achieve the node-level DP protection.

Personalized Privacy Budget Allocation Mechanisms. Developing personal-

ized privacy budget allocation mechanisms to assign the varying amount of privacy

budget for each class/subclass in Class/Subclass-DP or each node in differentially

private GNNs is interesting and meaningful. First, in Class/Subclass-DP, classes or
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subclasses may have a varying number of data records, and the degree of leakage

of information to model parameters is different for each class/subclass. Therefore,

we may assign more privacy budget for those classes/subclasses which contain more

data records and more vulnerable to MIA. Second, in the differentially private GNNs,

different nodes have different degrees, and their impact on the model parameters and

model utility is also different. Hence, we want to assign the different privacy budgets

to each node during training the node-level differentially private GNNs.

Extend the Applications to Healthcare Data. Finally, it will be exciting to

apply our proposed methods and algorithms to achieve a better privacy and utility

trade-off or meaningful privacy protection against MIA when training deep learning

models on healthcare data like EHR or medical images [31, 75]. Meanwhile, we can

apply our node-level differentially private GNNs algorithms to contact tracing [60]

and disease spread modeling [90] problems, where each individual corresponds to a

node in the interaction graph, to protect the differential privacy of each participant.
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