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Abstract

Development of Statistical Tool TIGAR for Transcriptome-Integrated Genetic
Association Resource

By Xiaoran Meng

Transcriptome-wide association studies (I'WAS) have been used to leverage reference
data that have both transcriptomic and genetic profiles for the same samples in gene-
based genome-wide association studies (GWAS). Basically, an imputation model for
genetically regulated gene expression levels (GReX) per gene tissue type can be fitted by
applying regression models on the reference data, where the effect-sizes of cis-expression
quantitative trait loci (cis-eQTL) on expression levels will be estimated and used as
variant weights in gene-based association studies. Many statistical tools have been
developed for implementing TWAS, such as PrediXcan based on the Flastic-Net
regression model and FUSION based on the Bayesian sparse linear mixed model
(BSLMM). However, existing tools only implement parametric regression models to fit
GReX imputation models, which have limitations to fully model the complex genetic
architecture of transcriptome profiles. Recently proposed nonparametric Bayesian
Dirichlet process regression (DPR) model has been shown improved the imputation
accuracy of GReX over parametric regression models. Thus, my thesis is focused on
developing a statistical tool to implement both parametric Elastic-Net model and
nonparametric DPR model for fitting GReX imputation models and enable follow-up
TWAS with both individual-level and summary-level GWAS data. To make the tool
computationally efficient, I used advanced computational techniques such as multi-
threading for parallel computation and TABIX for loading genotype data with memory
efficiency. The tool is referred as Transcriptome-integrated Genetic Association
Resource (TIGAR). In addition, to illustrate the advantages of TIGAR, I applied the tool
on GTEx reference dataset to train GReX imputation models of brain frontal cortex
tissue, and then conducted TWAS on ROS/MAP GWAS data for 4 different complex
traits related to Alzheimet's Disease (AD) -- neurofibrillary tangle density, B-amyloid
load, global AD pathology burden and final consensus cognitive diagnosis. Application
results show that the DPR model obtained higher R? in both training and prediction
data, and the Elastic-Net model lead to 3 potentially significant genes (with FDR 0.077)
that might be associated with 3-amyloid load. Overall, TIGAR is expected to provide a
user-friendly, flexible, and computationally efficient tool for implementing TWAS.
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1 Introduction

The development of next-generation sequencing (NGS) [1, 2, 3] allows us to discover, se-
quence and genotype thousands of markers across any genome in a single step, which makes
genome-wide association studies (GWASs) for organisms and wild populations possible. A
GWAS [4, 5] is an observational study of genome-wide genetic variants across individuals to
detect associations between these variants and phenotypic traits [6, 7]; e.g. associations be-
tween common single-nucleotide polymorphisms (SNPs) and a disease [8]. Results from pre-
vious GWASs indicated that a majority of genetic variants are found in non-coding regions,
which have been shown to be enriched with expression of quantitative trait loci (eQTL)
[9,10].

Even though GWASs contribute a lot in detecting associations of genetic variants and com-
plex traits, they still face two major challenges: (i) Relying on increasing sample size to improve
statistical power for detecting expression-trait associations and (ii) SNPs identified by GWASs
often reside in non-coding regions, which lead to difficulties in interpreting their functions
and their associations with complex traits 8, 11, 12, 13]. An informative and easily measurable
source of functional information is gene expression. Comparing the similarity of genes’ ex-
pression profiles (co-expression) serves as a powerful means for interpreting GWAS candidate
SNDs [14].

Gene expression involves two main steps — transcription and translation [15]. Transcrip-
tion relates to the production of mRNA enzymes and RNA polymerase, and processing of
mRNA molecules. Translation involves the use of mRNA to synthesize proteins and is fol-

lowed by the post-translational processing of the protein molecules. Usually, variants within



1 Mb (megabase) on either side of the gene’s transcribing start site (TSS) are called cis [16]. cis-
eQTLs can potentially influence gene expression level by altering transcription factors (TFs)
[17, 18, 19], which are proteins that regulate the proportion of transcription of genetic infor-
mation from DNA to mRNA through binding to a specific DNA sequence.

In order to integrate transcriptomic data in GWAS and leverage reference data, recent studies
have proposed transcriptome-wide association studies (T'WASs) [20, 21, 22]. TWASs involve
imputing genetic expression components in a large group of subjects from a relatively small
set individuals with both gene-expression levels and genotype data known. TWAS is helpful
in detecting an expression-trait association when individual-level GWAS is available. Many
statistical tools have been developed for implementing TWAS, like PrediXcan [23, 24] and
FUSION [20]. PrediXcan is based on the Elastic-Net regression model and FUSION is based
on the Bayesian sparse linear mixed model (BSLMM). Elastic-Net assumes a mixed penalty
of LASSO (L) and Ridge (L2) in the linear regression model and BSLMM is a combination
of Bayesian variable selection model (BVSR) and linear mixed model. In TWAS, PrediXcan
and FUSION treat eQTL effect-size [25, 26] as SNP weight to make use of reference tran-
scriptomic data in large GWAS. However, Elastic-Net and BSLMM assume parametric prior
for cis-eQTL effect-sizes, which make it difficult to capture complex genetic architecture.
Previous studies have shown that the nonparametric Bayesian regression model is preferred
for moding the complex genetic architecture of gene expression levels. Basically, the non-
parametric Bayesian model assumes a Dirichlet process prior on the effect-size varaince of
cis-eQTL [27]. DPR is a more generalized model that can include Elastic-Net and BSLMM

as special cases. I developed a tool containing both Elastic-Net regression and DPR called



3
Transcriptome-Integrated Genetic Association Resource (TIGAR, https://github. com/
xmeng34/TIGAR). TIGAR focuses on implementing both Elastic-Net and DPR models to
impute transcriptomic data and run TWAS with individual and summary level GWAS data.
To make the tool computationally efficient, I used advanced computational techniques such
as multi-threading for parallel computation and TABIX forloading genotype data with mem-
ory efficiency. Some user-friendly options such as taking standard input files are also available
for TIGAR. Generally, TIGAR can train genetically regulated gene expression (GReX) im-
putation models for Elastic-Net or DPR, along with TWAS for one gene in about 4 minutes.
Comparing to similar existing tools that accept specific input files for data imputation and
subsequent association studies, which require cumbersome data preparation, large memory
space to loading genotype data, TIGAR not only takes care of tedious works to prepare input
files, also provides options of imputation models and computation efficacy.
In this thesis, I will apply the tool on Genotype-Tissue Expression project (GTEx [28]) refer-
ence dataset to train GReX imputation models of brain frontal cortex tissue, and then con-
ducted TWAS on Religious Orders Study (ROS [29]) and Rush Memory and Aging Project
(MAP [29,30]) GWAS data for 4 different complex traits including neurofibrillary tangle den-
sity, S —amyloid, global AD pathology burden and final consensus cognitive diagnosis related
to Alzheimer’s Disease (AD). The goal of the study is to test the performance of TIGAR on
GTExand ROS/MAP data and detect associations between specific AD indices and potential

genes.



2 TIGAR

“TIGAR? stands for Transcriptome-Integrated Genetic Association Resource, which is de-
veloped using Python and BASH. TIGAR treats both Elastic-Net and Dirichlet Process Re-
gression as training imputation models for transcriptomic data, following prediction of gene
expression level and conduct genetic association tests using both individual-level and summary-
level GWAS data for univariate and multivariate phenotypes. The main idea of developing
TIGAR is to provide computational convenience with integrated functions for training im-
putation models and requirement of standard input files to run model training, prediction
and conduct association study. To save calculation time, TIGAR also provides scalable muti-
thread options. In general, with user-friendly inputs, TIGAR can provide training cis-ecQTL

effect-sizes, predicted gene expression level and TWAS for one gene in about 4 minutes.

2.1 cis-eQTL Effect-Sizes Calculation

Generally, SNPs within tMb of the gene boundary will be included in regression model and
genetically regulated gene expression (GReX) can be imputed through @( = XewW

with new genotype data X,,¢,p.

2.1.1  Elastic-Net Regression

Elastic-Net regression [31] method assumes linear regression model as follow:

E, = Xw + €,e~N(0,0?) (1)



. . 1
w = argmin(||E, — Xwll; + A(allw], + 5= a)llwll3)), e € [0,1] (2)

E, represent gene expression level for specific gene g, usually corrected for confounding co-
variates like age, gender and genotype principle components. X is the genotype matrix, w
denotes effect-size vector of corresponding SNPs and € is the error term. In this model, cis-
eQTl effect-size w is estimated by adding a mixture of LASSO (L) and Ridge (L2) penalties,
where o denotes proportion of L; and Ly penalty and A is the penalty parameter. Specifically,

PrediXcan assumes o = 0.5 and picks A by s-folds cross validation.

2.1.2 Dirichlet Process Regression (DPR)

The linear regression model is quite similar as (). According to latent Dirichlet process re-

gression [32], the model assumes

E, = Xw + €,e~N(0,0?),0°~IG(a, b.) €)

w;~N(0,02),02~D, D~DP(ID(a,b),£) (4)

Where w; denotes effect-size for each SNP within in gene g, which follows a normal distribu-
tion with mean o and variance o2 with Dirichlet process prior D that has base distribution

inverse gamma IG(a,b) and concentration parameter £. After integrating out latent variable

02, an equivalent non-parametric prior distribution of w; can be driven as follow:

+00 k—1

Wy~ ZﬂkN(O, o), o~ TG ay, by), T = vk H(l — ), vp~Beta(1,£)  (5)

k=1 =1



Here, { means the same concentration parameter in (3) with a hyper prior E~Gamma(ag, be ).
DPR model is more robust in detect gene structure due to non-informative prior for 0,%,02

and &, which usually assumes ay;, by,a. and b as 0.1 and (ag, be) as (1,0.1), then 0*,3, o?and ¢

can be estimated through data and make w; data-driven.

2.2 TWAS

2.2.1  Univariate Phenotype

With given weight (SNP effect-sizes) w, individual genotype X,,c., single phenotype Y and
covariance matrix C, the association test [33] of GReX and Y is conducted through linear

regression model
F(E[Y|X,C]) = 1C + BGReX (6)

f(+) is a pre-specified function and Hy : § = 0 is the same with gene-based association test.
TIGAR can also run association test through summary-level data when new genotype data is
not provided. Let Z represent single-variance test for all cis-SNPs. Burden Z-score of associa-
tion test is defined as

~ Zw

Here, V denotes covariance matrix across training SNPs, which I can calculated through train-

ing genotype data.



2.2.2  Multivariate Phenotype

Association test for multivariate phenotype and imputed GReX is conducted through model

as follow

Y;=nC+ej=12,..n

(8)
Yy =Y;—Y;
GReX, =) BY;+e (9)
j=1

Here Y}, j = 1,2, ..., nrepresent n different phenotypes and Cis a covariance matrix. In (8),
TIGAR first adjust for covariates by calculating residual }N/j, J = 1,2,...,n for each pheno-

type. Association study is conducted base on R? from (9), which is the same as Hy : R* # 0.

2.3 Computational Advantages

I implied the following functions in TIGAR to make it computationally efficient and users
friendly.

(i) TIGAR accepts standard input files like vef/dosages format for genotype data and PED
for phenotype data. Original PrediXcan and DPR software require users to prepare training
input files in specific formats, which are far from usually used standard files.

(ii) To calculate cis-eQTL effect-size, the original PrediXcan tool needs to run three python
scripts for file preparation, model training and result generating. For DPR, training results are
stored by genes, which is difficult for users to view results genome-wide. However, TIGAR
can complete model training in only one command and collected output by chromosome.

(iii) Original PrediXcan tool fixed their default value in the scripts, like L; and Ly penalties



ratio for the Elastic-Net model. TIGAR make these default values users defined. Users can
modify these values by adding up command when running TIGAR.

(iv) TIGAR reads in genotype data by TABIX for memory efhiciency and provides a multi-
thread option to execute multiple processes for computation efficiency.

(v) TIGAR provides minor allele frequency (MAF) and p-value for Hardy Weinberg Equi-
librium exact test (HWE) calculation. Samples with M AF > 0.01 and HWE > 0.001
(thresholds can be users defined) will be used in model training, these values can help us ex-
clude rare variances in a gene. In prediction, TIGAR will exclude samples with MAF different
greater than 0.2 (threshold can be users defined) compare to training genotype data since large
MATF different with the same SNP might indicate different races.

(vi) TIGAR runs s-fold cross validation calculate average prediction R? before run model
training with whole samples. If the average R? for the cross-validation is less than 0.o1, TIGAR
assumes that Elastic-Net and DPR model might not be valid for calculating cis-eQTL effect-

sizes for this gene.

3 Data Description

31 ROS/MAP Data

ROS/MAP data were collected from participants of Religious Orders Study (ROS) and Rush
Memory and Aging Project (MAP), which are jointly designed prospective studies of aging
and dementia with longitudinal cognitive phenotypes and structured neuropathologic exam-

ination after death [29, 30, 34]. MAP was designed as a complementary and extension of ROS,



especially in organ donation. Study design for ROS and MAP are similar, both restricted to
Catholic clergy and included participants who agree to annual clinical evaluation and organ
donation, with a restricted range of life experiences and socioeconomic status and without de-
mentia. However, comparing to ROS, MAP planned to enroll participants in a wider range
[35]. Specifically, most of the subjects in ROS/MAP projects have agreed to annual clinical
evaluation and brain donation at death, which overlap with brain tissue data record in GTEx.
In this thesis, 'm mainly focusing on micro-array genotype data generated from 2,093 Euro-
pean participants [36] that are imputed to the 1,000 Genome Project Phase 3 in this analy-
sis. The post-mortem brain samples (gray matter of the dorsolateral prefrontal cortex) were
recorded for transcriptomic data by NGS from a subset of these participants [37]. I con-
ducted gene-based association tests for four different phenotypes [29, 30]: (i) Neurofibril-
lary tangle density (tangles) is one of Alzheimer’s Disease (AD) pathologic indice related to
[—antibody immunostains that derived by Tau protein density from 8 brain regions; (ii)
3—amyloid load (amyloid) is also an AD indice that quantifies average percent area of cortex
contains S—amyloid protein within the same brain regions of tangles [29, 30]; (iii) Global
AD pathology burden (gpath) is a quantitative summary of AD pathology calculated from
three AD pathologies: neuritic plaques, diffuse plaques, and neurofibrillary tangles, as deter-
mined by microscopic examination of silver-stained slides from s regions: midfrontal cortex,
midtemporal cortex,inferior parietal cortex, entorhinal cortex, and hippocampus; (iv) Final
consensus cognitive diagnosis (cogdx) related to clinical consensus diagnosis of cognitive sta-

tus at time of death.
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3.2 GTEx Data

The Genotype-Tissue Expression (GTEx) [38] project was started in 2010 aiming at estab-
lishing a resource database and associated tissue bank to characterize human transcriptome
within and across individuals. The GTEx project started with a 2-year pilot phase to establish-
ing an autopsy program, which yields robust gene expression measurement. GTEx donors are
identified through low PMI (post-mortem-interval) autopsy or organ and tissue transplanta-
tion settings [39]. The GTEx data resource contains whole-genome sequences and RNA-

sequences from about 650 adult donors, with 54 tissue samples per donor (Figure 1).

750

500

Number of Samples

¥ & £ A2 D2 & i+ $ P N + PO F F & O LB B AP AL S SR ¥ 2
K & RAP Z LD P P BB MR F & 2 aF S & AW IR S 5P O &
R O\T»\? OQ e& S S S il S & Q £ “ef(\(‘\‘) Q@‘,\\iy‘i(\z&&y O A Q\@,@Qy (@\\oﬁG&@Q&‘*%@@@%&’
. f . SRS TR & e

> o Q}@*\&\"ﬁ, @ﬁﬁﬁﬁ@*v@@éoe‘“\’V\“«“b‘\@@, \\%‘* FEFC R LD K<

FEIA P A0 SN (SN T A Ft e S QIS S R NS @ o

C O - 1 PR F L L REL B E B LS CEL WD o TR A S S P & N

PO o LR A S 1 Q@ 20 P (@ P& . o & ¥ WL e S e & PV
N L & B S EFEXN D . , A & > OF
,%z@ v V‘(&d v @\Q@“o@ﬁ\\@‘b@ K@Q»%,‘\t@ﬁ@@\o\,ﬂy@ & «@0«4\ & (loo\oo Q\\'P‘@QQ\? B N (eiy“ « & \Q,ebl&(
2 & v V' B 2% of & ? & @7 N &o e Q2 Rt o~ L.
& (& o}’\b\@@ POV @“0@%@“ NS S FES & LR
N, Ny ed V' PP L & & 2 o
S Xod R IR G K S 9 ¢ S P
& S 5 I € Soe
v SE D% G 4 AP
N & ©
& @ R oF
@ & Y
) A <
<

Figure 1: Overview of GTEx Project Samples [41] in 2019

To impute GTEx phenotype data, I first select genes with expression thresholds of > 0.1
RPKM (Reads Per Kilobase of transcript, per Million mapped reads is a normalized unit of
transcript expression) in >= 10 samples. Then regressing out age, sex, first 4 PCs calculated
from genotype data and peer factors calculated from top 10,000 genes that have higher ex-

pression level, using regress residuals as imputed gene expression level.
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4 Application of TIGAR

4.1 Application Analysis Steps

I first compared the performance of the Elastic-Net and DPR model with respect to imputa-
tion R? in both training and testing data. I treated RNA-sequencing and genotype data from
129 GTEx participants recorded with Brain Frontal-Cortex(BA9) data as training data, and
genotype data from 499 ROS/MAP participants as test data. The test samples were recorded
with gene-expression levels for brain tissue, which helped a lot in comparing prediction R?
for both models. The genotype and imputed genetics data for SNPs with MAF> 0.01 (Eu-
ropean samples) and the p-value of Hardy-Weinberg test> 0.001 are included in the training
model for each gene. In model training, I included a s-fold cross validation before starting
model training with whole samples. This procedure relates randomly split samples into five
groups and treats one of the groups as test data and remaining as training data each time.
Then running corresponding model (Elastic-Net/DPR) on training set following by predic-
tion of gene expression level and calculate prediction R? based on the test set. For each gene,
I calculated average prediction (or cross-validation) R? and set o.o1 as the threshold to decide
whether Elastic-Net or DPR is valid in this case.

Next, I imputed GReX for all ROS/MAP samples using cis-eQTL effect-size from both
Elastic-Net and DPR and calculate prediction R? based on 11846 genes recorded with true
gene expression data.

Finally, I conducted gene-based association studies using all samples that have amyloid (N =

1022, N represents sample size), tangles (N = 1024), gpath (N = 1053) and cogdx (N =
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1165) quantified. Confounding covariates include sex, age at death, smoking status, study
(ROS or MAP) and top 3 genotype principle components were adjusted for association stud-

ies.

4.2 Application Result

As for training imputation R?, a total of 7968 (31.5%) genes have significant imputation mod-
els with median average cross-validation R? 3.6% and mean cross-validation R? 8.0%. Mean-
while, a total number of 20208 (79.8%) genes have significant imputation models by DPR,
with median average cross-validation R? 4.2% and mean average cross-validation R? 5.7%
(Figure 2, Table 1). Specifically, when comparing 6771 (26.7%) genes that pass the threshold
for both Elastic-Net and DPR, it turns out median average cross validation R? from Elastic-
Net model is 5.4% versus DPR 3.6%, with mean average cross-validation R? 7.5% versus 8.1%
separately (Table 3). Although DPR fits significant imputation models for more number of
genes, there is no significant difference in average cross-validation R? for genes that can be

imputed by both models.
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Model Number of Significant Gene | Median R? | Mean R?
Elastic-Net 7968 (31.5%) 3.6% 8.0%
DPR 20208 (79.8%) 4.2% 5.7%

Table 1: Average Cross-Validation R? Comparison

In model prediction, Elastic-Netimputed 3545 (29.8%) genes with median prediction R* 0.6%

and mean prediction R?5.7%, versus 11197 (94.5%) genes with median prediction R? 0.2% and

average prediction R* 1.7% by DPR (Figure 3, Table 2). When comparing 2885 (24.3%) genes

that can be imputed by both Elastic-Net with median R? 0.6% and mean R? 4.2% and DPR

with median R? 0.7% and mean R? 6.0% (Table 3). As a result, DPR gives higher prediction

R? for those overlapped genes.
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Model Number of Gene | Median R? | Mean R?
Elastic-Net 3534 (29.8%) 0.6% 5.7%
DPR 11197 (94.5%) 0.2% 1.7%
Table 2: Prediction R? Comparison
Training Prediction
Number of Overlap Gene 6771 (26.7%) 2885 (24.3%)
Elastic-Net | 5.4% | Elastic-Net | 0.6%
Median R?
DPR 3.6% DPR 0.7%
Elastic-Net | 7.5% | Elastic-Net | 4.2%
Mean R?
DPR 8.1% DPR 6.0%

Table 3: R? Comparison for Overlapping Genes
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Finally, Manhattan plots with genome-wide significant threshold 2.5 x 107% and Q-Q plots
for p-values of TWAS by Elastic-Netand DPR model (Figure 4-15) show thatno genes in both
models pass the significant threshold. Meanwhile, Q-Q plots show little deflation (p-values
are systematically less significant than the expected distribution) and Ao < 1.1 (genomic
control factor) as usual [40]. Then I calculate FDR adjusted p-value with significant thresh-
old o.1 to identified significant genes. The Elastic-Net model identified 3 significant loci (Ta-
ble 4) — RP11-769N22.1, SBDS, and ACoo4951.5 with all FDR o.077 that potentially affect
amyloid traits through transcriptomes. No significant gene is identified by DPR. This might
cause by the fact that no gene pass genome-wide significant threshold 2.5 x 1079 in Manhat-
tan plots for both model and genes that identified by Elastic-Net have FDR p-value less than

0.0s, which suggest these genes are no significant enough to capture by DPR.
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Figure 4: Manhattan Plot for TWAS p-values of amyloid traits by Elastic-Net
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Figure s: Manhattan Plot for TWAS p-values of amyloid traits by DPR

CHROM | GeneName GenelD P-value | FDR Adjusted P-value
4 RP11-769N22.1 | ENSG00000249228.1 | 1.85e-05 0.077
7 SBDS ENSGo0000126524.5 | 4.28¢-05 0.077
7 ACoo49s51.5 | ENSG00000239556.2 | 3.80€-05 0.077

Table 4: Significant Genes for TWAS of amyloid traits by Elastic-Net
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Figure 9: Q-Q Plot for TWAS p-values of tangles traits by Elastic-Net and DPR
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23

s Discussion

In this thesis, I apply TIGAR on GTEx Brain Frontal-Cortex data, following by gene-based
association study with ROS/MAP data for amyloid, tangles, gpath, and cogdx traits. TIGAR
contains the Elastic-Net and DPR model for transcriptomic data imputation, with options of
conduct gene-based association studies using individual-level and summary-level GWAS data
for univariate and multivariate phenotype with corresponding imputation model. Advan-
tages for using TIGAR includes taking standard input files like vcf/dosage format for geno-
type data, calculating MAF and HWE by default, users defined parameter within each model,
computation and memory efficacy. Generally, TIGAR can finish the above procedure for one
gene in about 4 minutes. Specifically, for the same input files, DPR runs faster comparing to
Elastic-Net. Comparing to similar existing tools (PrediXcan/DPR) that accept specific in-
put files for data imputation and subsequent association studies with various output files,
which require cumbersome data preparation, large memory space to loading genotype data
and works to organize output files, TIGAR not only takes care of tedious works to prepare
input files and organize output files for users, also provides options of imputation models and
computation efficacy.

TIGAR has still had some limitations: (i) TIGAR is only suitable for cis-eQTL effect-size cal-
culation (within tMb on ether gene’s TSS). It might reach memory limit by including a wider
range of SNDs in one gene; (ii) cross-validation steps for identified significant model and pa-
rameter selection in Elastic-Net model will increase the computation burden; (iii) TIGAR
called the original DPR tool for training imputation instead of re-writing it in python. Some

errors from the original DPR tool might disturb model training; (iv) Only Elastic-Net and
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DPR are available for TIGAR in training imputation; (v) Although TIGAR uses s-fold cross-
validation to identified significant imputation model for each gene, overall training (with
whole samples) R?fora gene can still be 0, i.e. imputation model is still not significant.

To draw a conclusion, TIGAR is expected to provide a computational convenience and pow-
erful tool in transcriptomic data imputation and conduct TWAS. Our application shows that
DPR has advantages when the underlying gene expression heritability is relatively lower, e.g.,
< 0.2, whereas the Elastic-Net is preferred when the gene expression heritability is ¢o0.2. This
shows that an “optimal” model might be chosen with respect to each gene by comparing the

cross validation R? from both models.
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