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Abstract 
 

Development of Statistical Tool TIGAR for Transcriptome-Integrated Genetic 
Association Resource 

 
By Xiaoran Meng 

 
Transcriptome-wide association studies (TWAS) have been used to leverage reference 
data that have both transcriptomic and genetic profiles for the same samples in gene-
based genome-wide association studies (GWAS). Basically, an imputation model for 
genetically regulated gene expression levels (GReX) per gene tissue type can be fitted by 
applying regression models on the reference data, where the effect-sizes of cis-expression 
quantitative trait loci (cis-eQTL) on expression levels will be estimated and used as 
variant weights in gene-based association studies. Many statistical tools have been 
developed for implementing TWAS, such as PrediXcan based on the Elastic-Net 
regression model and FUSION based on the Bayesian sparse linear mixed model 
(BSLMM). However, existing tools only implement parametric regression models to fit 
GReX imputation models, which have limitations to fully model the complex genetic 
architecture of transcriptome profiles. Recently proposed nonparametric Bayesian 
Dirichlet process regression (DPR) model has been shown improved the imputation 
accuracy of GReX over parametric regression models. Thus, my thesis is focused on 
developing a statistical tool to implement both parametric Elastic-Net model and 
nonparametric DPR model for fitting GReX imputation models and enable follow-up 
TWAS with both individual-level and summary-level GWAS data. To make the tool 
computationally efficient, I used advanced computational techniques such as multi-
threading for parallel computation and TABIX for loading genotype data with memory 
efficiency. The tool is referred as Transcriptome-integrated Genetic Association 
Resource (TIGAR). In addition, to illustrate the advantages of TIGAR, I applied the tool 
on GTEx reference dataset to train GReX imputation models of brain frontal cortex 
tissue, and then conducted TWAS on ROS/MAP GWAS data for 4 different complex 
traits related to Alzheimer's Disease (AD) -- neurofibrillary tangle density, β-amyloid 
load, global AD pathology burden and final consensus cognitive diagnosis. Application 
results show that the DPR model obtained higher 𝑅2 in both training and prediction 
data, and the Elastic-Net model lead to 3 potentially significant genes (with FDR 0.077) 
that might be associated with β-amyloid load. Overall, TIGAR is expected to provide a 
user-friendly, flexible, and computationally efficient tool for implementing TWAS. 
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1 Introduction

The development of next-generation sequencing (NGS) [1, 2, 3] allows us to discover, se-

quence and genotype thousands of markers across any genome in a single step, which makes

genome-wide association studies (GWASs) for organisms and wild populations possible. A

GWAS [4, 5] is an observational study of genome-wide genetic variants across individuals to

detect associations between these variants and phenotypic traits [6, 7]; e.g. associations be-

tween common single-nucleotide polymorphisms (SNPs) and a disease [8]. Results frompre-

vious GWASs indicated that a majority of genetic variants are found in non-coding regions,

which have been shown to be enriched with expression of quantitative trait loci (eQTL)

[9, 10].

Even though GWASs contribute a lot in detecting associations of genetic variants and com-

plex traits, they still face twomajor challenges: (i)Relyingon increasing sample size to improve

statistical power for detecting expression-trait associations and (ii) SNPs identi��ed byGWASs

of�en reside in non-coding regions, which lead to di���culties in interpreting their functions

and their associations with complex traits [8, 11, 12, 13]. An informative and easily measurable

source of functional information is gene expression. Comparing the similarity of genes’ ex-

pression pro��les (co-expression) serves as a powerfulmeans for interpretingGWAS candidate

SNPs [14].

Gene expression involves two main steps – transcription and translation [15]. Transcrip-

tion relates to the production of mRNA enzymes and RNA polymerase, and processing of

mRNA molecules. Translation involves the use of mRNA to synthesize proteins and is fol-

lowed by the post-translational processing of the protein molecules. Usually, variants within
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1Mb (megabase) on either side of the gene’s transcribing start site (TSS) are called cis [16]. cis-

eQTLs can potentially in��uence gene expression level by altering transcription factors (TFs)

[17, 18, 19], which are proteins that regulate the proportion of transcription of genetic infor-

mation fromDNA to mRNA through binding to a speci��c DNA sequence.

In order to integrate transcriptomic data in GWAS and leverage reference data, recent studies

have proposed transcriptome-wide association studies (TWASs) [20, 21, 22]. TWASs involve

imputing genetic expression components in a large group of subjects from a relatively small

set individuals with both gene-expression levels and genotype data known. TWAS is helpful

in detecting an expression-trait association when individual-level GWAS is available. Many

statistical tools have been developed for implementing TWAS, like PrediXcan [23, 24] and

FUSION [20]. PrediXcan is based on the Elastic-Net regressionmodel and FUSION is based

on the Bayesian sparse linear mixed model (BSLMM). Elastic-Net assumes a mixed penalty

of LASSO (L1) and Ridge (L2) in the linear regressionmodel and BSLMM is a combination

of Bayesian variable selection model (BVSR) and linear mixed model. In TWAS, PrediXcan

and FUSION treat eQTL e�fect-size [25, 26] as SNP weight to make use of reference tran-

scriptomic data in large GWAS. However, Elastic-Net and BSLMM assume parametric prior

for cis-eQTL e�fect-sizes, which make it di���cult to capture complex genetic architecture.

Previous studies have shown that the nonparametric Bayesian regression model is preferred

for moding the complex genetic architecture of gene expression levels. Basically, the non-

parametric Bayesian model assumes a Dirichlet process prior on the e�fect-size varaince of

cis-eQTL [27]. DPR is a more generalized model that can include Elastic-Net and BSLMM

as special cases. I developed a tool containing both Elastic-Net regression and DPR called
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Transcriptome-IntegratedGeneticAssociationResource (TIGAR,https://github.com/

xmeng34/TIGAR). TIGAR focuses on implementing both Elastic-Net and DPRmodels to

impute transcriptomic data and run TWAS with individual and summary level GWAS data.

To make the tool computationally e���cient, I used advanced computational techniques such

asmulti-threading for parallel computation andTABIX for loading genotypedatawithmem-

ory e���ciency. Some user-friendly options such as taking standard input ��les are also available

for TIGAR. Generally, TIGAR can train genetically regulated gene expression (GReX) im-

putationmodels for Elastic-Net or DPR, along with TWAS for one gene in about 4minutes.

Comparing to similar existing tools that accept speci��c input ��les for data imputation and

subsequent association studies, which require cumbersome data preparation, large memory

space to loading genotype data, TIGARnot only takes care of tediousworks to prepare input

��les, also provides options of imputation models and computation e���cacy.

In this thesis, I will apply the tool on Genotype-Tissue Expression project (GTEx [28]) refer-

ence dataset to train GReX imputation models of brain frontal cortex tissue, and then con-

ducted TWAS on Religious Orders Study (ROS [29]) and RushMemory and Aging Project

(MAP[29, 30])GWASdata for 4di�ferent complex traits includingneuro��brillary tangle den-

sity,��amyloid, globalADpathology burden and ��nal consensus cognitive diagnosis related

to Alzheimer’s Disease (AD). The goal of the study is to test the performance of TIGAR on

GTEx andROS/MAPdata and detect associations between speci��cAD indices and potential

genes.
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2 TIGAR

“TIGAR” stands for Transcriptome-Integrated Genetic Association Resource, which is de-

veloped using Python and BASH. TIGAR treats both Elastic-Net and Dirichlet Process Re-

gression as training imputation models for transcriptomic data, following prediction of gene

expression level and conduct genetic association tests usingboth individual-level and summary-

level GWAS data for univariate and multivariate phenotypes. The main idea of developing

TIGAR is to provide computational convenience with integrated functions for training im-

putation models and requirement of standard input ��les to run model training, prediction

and conduct association study. To save calculation time, TIGAR also provides scalable muti-

thread options. In general, with user-friendly inputs, TIGAR can provide training cis-eQTL

e�fect-sizes, predicted gene expression level and TWAS for one gene in about 4 minutes.

2.1 cis-eQTL E�fect-Sizes Calculation

Generally, SNPs within 1Mb of the gene boundary will be included in regression model and

genetically regulated gene expression (GReX) can be imputed through \GReX = Xnewŵ

with new genotype data Xnew.

2.1.1 Elastic-Net Regression

Elastic-Net regression [31] method assumes linear regression model as follow:

Eg = Xw+ ✏, ✏⇠N(0,�2) (1)
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ŵ = argmin
w

(kEg � Xwk22 + �(↵kwk1 +
1

2
(1� ↵)kwk22)),↵ 2 [0, 1] (2)

Eg represent gene expression level for speci��c gene g, usually corrected for confounding co-

variates like age, gender and genotype principle components. X is the genotype matrix, w

denotes e�fect-size vector of corresponding SNPs and ✏ is the error term. In this model, cis-

eQTl e�fect-size w is estimated by adding amixture of LASSO (L1) andRidge (L2) penalties,

where↵ denotes proportion ofL1 andL2 penalty and� is the penalty parameter. Speci��cally,

PrediXcan assumes ↵ = 0.5 and picks � by 5-folds cross validation.

2.1.2 Dirichlet Process Regression (DPR)

The linear regression model is quite similar as (1). According to latent Dirichlet process re-

gression [32], the model assumes

Eg = Xw+ ✏, ✏⇠N(0,�2), �2⇠IG(a✏, b✏) (3)

wi⇠N(0, �2
w), �

2
w⇠D,D⇠DP (ID(a, b), ⇠) (4)

Wherewi denotes e�fect-size for each SNPwithin in gene g, which follows a normal distribu-

tion with mean 0 and variance �2 with Dirichlet process prior D that has base distribution

inverse gamma IG(a,b) and concentration parameter ⇠. Af�er integrating out latent variable

�
2, an equivalent non-parametric prior distribution ofwi can be driven as follow:

wi⇠
+1X

k=1

⇡kN(0, �2
k), �

2
k⇠IG(ak, bk), ⇡k = vk

k�1Y

l=1

(1� vl), vk⇠Beta(1, ⇠) (5)
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Here, ⇠means the same concentrationparameter in (3)with ahyperprior ⇠⇠Gamma(a⇠, b⇠).

DPR model is more robust in detect gene structure due to non-informative prior for �2
k,�2

and ⇠, which usually assumes ak, bk,a✏ and b✏ as 0.1 and (a⇠, b⇠) as (1,0.1), then �2
k, �2 and ⇠

can be estimated through data and makewi data-driven.

2.2 TWAS

2.2.1 Univariate Phenotype

With given weight (SNP e�fect-sizes) w, individual genotype Xnew, single phenotype Y and

covariance matrix C, the association test [33] of \GReX and Y is conducted through linear

regression model

f(E[Y |X,C]) = ⌘C+ �\GReX (6)

f(·) is a pre-speci��ed function andH0 : � = 0 is the same with gene-based association test.

TIGAR can also run association test through summary-level data when new genotype data is

not provided. Let Z represent single-variance test for all cis-SNPs. Burden Z-score of associa-

tion test is de��ned as

eZ =
Zŵp
ŵTVŵ

(7)

Here, V denotes covariancematrix across training SNPs, which I can calculated through train-

ing genotype data.
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2.2.2 Multivariate Phenotype

Association test formultivariate phenotype and imputedGReX is conducted throughmodel

as follow

Yj = ⌘C+ ✏, j = 1, 2, ..., n

eYj = Yj � Ŷj

(8)

\GReXg =
nX

j=1

�j
eYj + ✏ (9)

Here Yj, j = 1, 2, ..., n represent n di�ferent phenotypes and C is a covariancematrix. In (8),

TIGAR ��rst adjust for covariates by calculating residual eYj, j = 1, 2, ..., n for each pheno-

type. Association study is conducted base onR2 from (9), which is the same asH0 : R2 6= 0.

2.3 Computational Advantages

I implied the following functions in TIGAR to make it computationally e���cient and users

friendly.

(i) TIGAR accepts standard input ��les like vcf/dosages format for genotype data and PED

for phenotype data. Original PrediXcan and DPR sof�ware require users to prepare training

input ��les in speci��c formats, which are far from usually used standard ��les.

(ii) To calculate cis-eQTL e�fect-size, the original PrediXcan tool needs to run three python

scripts for ��le preparation,model training and result generating. ForDPR, training results are

stored by genes, which is di���cult for users to view results genome-wide. However, TIGAR

can complete model training in only one command and collected output by chromosome.

(iii) Original PrediXcan tool ��xed their default value in the scripts, like L1 and L2 penalties
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ratio for the Elastic-Net model. TIGAR make these default values users de��ned. Users can

modify these values by adding up command when running TIGAR.

(iv) TIGAR reads in genotype data by TABIX for memory e���ciency and provides a multi-

thread option to execute multiple processes for computation e���ciency.

(v) TIGAR provides minor allele frequency (MAF) and p-value for Hardy Weinberg Equi-

librium exact test (HWE) calculation. Samples with MAF > 0.01 and HWE > 0.001

(thresholds can be users de��ned) will be used in model training, these values can help us ex-

clude rare variances in a gene. In prediction, TIGARwill exclude sampleswithMAFdi�ferent

greater than 0.2 (threshold can be users de��ned) compare to training genotype data since large

MAF di�ferent with the same SNPmight indicate di�ferent races.

(vi) TIGAR runs 5-fold cross validation calculate average prediction R
2 before run model

trainingwithwhole samples. If the averageR2 for the cross-validation is less than0.01, TIGAR

assumes that Elastic-Net and DPRmodel might not be valid for calculating cis-eQTL e�fect-

sizes for this gene.

3 Data Description

3.1 ROS/MAPData

ROS/MAPdatawere collected fromparticipants ofReligiousOrders Study (ROS) andRush

Memory and Aging Project (MAP), which are jointly designed prospective studies of aging

and dementia with longitudinal cognitive phenotypes and structured neuropathologic exam-

ination af�er death [29, 30, 34]. MAPwasdesigned as a complementary and extensionofROS,
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especially in organ donation. Study design for ROS and MAP are similar, both restricted to

Catholic clergy and included participants who agree to annual clinical evaluation and organ

donation, with a restricted range of life experiences and socioeconomic status andwithout de-

mentia. However, comparing to ROS, MAP planned to enroll participants in a wider range

[35]. Speci��cally, most of the subjects in ROS/MAP projects have agreed to annual clinical

evaluation and brain donation at death, which overlapwith brain tissue data record inGTEx.

In this thesis, I’m mainly focusing on micro-array genotype data generated from 2,093 Euro-

pean participants [36] that are imputed to the 1,000 Genome Project Phase 3 in this analy-

sis. The post-mortem brain samples (gray matter of the dorsolateral prefrontal cortex) were

recorded for transcriptomic data by NGS from a subset of these participants [37]. I con-

ducted gene-based association tests for four di�ferent phenotypes [29, 30]: (i) Neuro��bril-

lary tangle density (tangles) is one of Alzheimer’s Disease (AD) pathologic indice related to

��antibody immunostains that derived by Tau protein density from 8 brain regions; (ii)

��amyloid load (amyloid) is also an AD indice that quanti��es average percent area of cortex

contains ��amyloid protein within the same brain regions of tangles [29, 30]; (iii) Global

AD pathology burden (gpath) is a quantitative summary of AD pathology calculated from

three AD pathologies: neuritic plaques, di�fuse plaques, and neuro��brillary tangles, as deter-

mined by microscopic examination of silver-stained slides from 5 regions: midfrontal cortex,

midtemporal cortex,inferior parietal cortex, entorhinal cortex, and hippocampus; (iv) Final

consensus cognitive diagnosis (cogdx) related to clinical consensus diagnosis of cognitive sta-

tus at time of death.
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3.2 GTEx Data

The Genotype-Tissue Expression (GTEx) [38] project was started in 2010 aiming at estab-

lishing a resource database and associated tissue bank to characterize human transcriptome

within and across individuals. TheGTEx project startedwith a 2-year pilot phase to establish-

ing an autopsy program,which yields robust gene expressionmeasurement. GTExdonors are

identi��ed through low PMI (post-mortem-interval) autopsy or organ and tissue transplanta-

tion settings [39]. The GTEx data resource contains whole-genome sequences and RNA-

sequences from about 650 adult donors, with 54 tissue samples per donor (Figure 1).

Figure 1: Overview of GTEx Project Samples [41] in 2019

To impute GTEx phenotype data, I ��rst select genes with expression thresholds of > 0.1

RPKM (Reads Per Kilobase of transcript, per Million mapped reads is a normalized unit of

transcript expression) in>= 10 samples. Then regressing out age, sex, ��rst 4 PCs calculated

from genotype data and peer factors calculated from top 10,000 genes that have higher ex-

pression level, using regress residuals as imputed gene expression level.
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4 Application of TIGAR

4.1 Application Analysis Steps

I ��rst compared the performance of the Elastic-Net and DPRmodel with respect to imputa-

tionR2 in both training and testing data. I treatedRNA-sequencing and genotype data from

129 GTEx participants recorded with Brain Frontal-Cortex(BA9) data as training data, and

genotype data from 499 ROS/MAP participants as test data. The test samples were recorded

with gene-expression levels for brain tissue, which helped a lot in comparing prediction R
2

for both models. The genotype and imputed genetics data for SNPs with MAF> 0.01 (Eu-

ropean samples) and the p-value ofHardy-Weinberg test> 0.001 are included in the training

model for each gene. In model training, I included a 5-fold cross validation before starting

model training with whole samples. This procedure relates randomly split samples into ��ve

groups and treats one of the groups as test data and remaining as training data each time.

Then running corresponding model (Elastic-Net/DPR) on training set following by predic-

tion of gene expression level and calculate predictionR2 based on the test set. For each gene,

I calculated average prediction (or cross-validation)R2 and set 0.01 as the threshold to decide

whether Elastic-Net or DPR is valid in this case.

Next, I imputed GReX for all ROS/MAP samples using cis-eQTL e�fect-size from both

Elastic-Net and DPR and calculate prediction R
2 based on 11846 genes recorded with true

gene expression data.

Finally, I conducted gene-based association studies using all samples that have amyloid (N =

1022, N represents sample size), tangles (N = 1024), gpath (N = 1053) and cogdx (N =
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1165) quanti��ed. Confounding covariates include sex, age at death, smoking status, study

(ROS orMAP) and top 3 genotype principle components were adjusted for association stud-

ies.

4.2 Application Result

As for training imputationR2, a total of 7968 (31.5�) genes have signi��cant imputationmod-

els with median average cross-validationR2 3.6� and mean cross-validationR2 8.0�. Mean-

while, a total number of 20208 (79.8�) genes have signi��cant imputation models by DPR,

with median average cross-validation R
2 4.2� and mean average cross-validation R

2 5.7�

(Figure 2, Table 1). Speci��cally, when comparing 6771 (26.7�) genes that pass the threshold

for both Elastic-Net and DPR, it turns out median average cross validationR2 from Elastic-

Net model is 5.4� versus DPR 3.6�, with mean average cross-validationR2 7.5� versus 8.1�

separately (Table 3). Although DPR ��ts signi��cant imputation models for more number of

genes, there is no signi��cant di�ference in average cross-validation R
2 for genes that can be

imputed by both models.
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Figure 2: Average Cross-ValidationR2 Comparison

Model Number of Signi��cant Gene MedianR2 MeanR2

Elastic-Net 7968 (31.5�) 3.6� 8.0�

DPR 20208 (79.8�) 4.2� 5.7�

Table 1: Average Cross-ValidationR2 Comparison

Inmodel prediction, Elastic-Net imputed 3545 (29.8�) geneswithmedianpredictionR2 0.6�

andmeanpredictionR2 5.7�, versus 11197 (94.5�) geneswithmedian predictionR2 0.2� and

average predictionR2 1.7� by DPR (Figure 3, Table 2). When comparing 2885 (24.3�) genes

that can be imputed by both Elastic-Net with medianR2 0.6� and meanR2 4.2� and DPR

with medianR2 0.7� and meanR2 6.0� (Table 3). As a result, DPR gives higher prediction

R
2 for those overlapped genes.



14

Figure 3: PredictionR2 Comparison

Model Number of Gene MedianR2 MeanR2

Elastic-Net 3534 (29.8�) 0.6� 5.7�

DPR 11197 (94.5�) 0.2� 1.7�

Table 2: PredictionR2 Comparison

Training Prediction

Number of Overlap Gene 6771 (26.7�) 2885 (24.3�)

MedianR2
Elastic-Net 5.4� Elastic-Net 0.6�

DPR 3.6� DPR 0.7�

MeanR2
Elastic-Net 7.5� Elastic-Net 4.2�

DPR 8.1� DPR 6.0�

Table 3: R2 Comparison for Overlapping Genes
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Finally, Manhattan plots with genome-wide signi��cant threshold 2.5⇥ 10�6 andQ-Q plots

for p-values ofTWASbyElastic-Net andDPRmodel (Figure 4-15) show that no genes in both

models pass the signi��cant threshold. Meanwhile, Q-Q plots show little de��ation (p-values

are systematically less signi��cant than the expected distribution) and �GC < 1.1 (genomic

control factor) as usual [40]. Then I calculate FDR adjusted p-value with signi��cant thresh-

old 0.1 to identi��ed signi��cant genes. The Elastic-Net model identi��ed 3 signi��cant loci (Ta-

ble 4) – RP11-769N22.1, SBDS, and AC004951.5 with all FDR 0.077 that potentially a�fect

amyloid traits through transcriptomes. No signi��cant gene is identi��ed by DPR. This might

cause by the fact that no gene pass genome-wide signi��cant threshold 2.5⇥ 10�6 inManhat-

tan plots for both model and genes that identi��ed by Elastic-Net have FDR p-value less than

0.05, which suggest these genes are no signi��cant enough to capture by DPR.

Figure 4: Manhattan Plot for TWAS p-values of amyloid traits by Elastic-Net



16

Figure 5: Manhattan Plot for TWAS p-values of amyloid traits by DPR

CHROM GeneName GeneID P-value FDRAdjusted P-value

4 RP11-769N22.1 ENSG00000249228.1 1.85e-05 0.077

7 SBDS ENSG00000126524.5 4.28e-05 0.077

7 AC004951.5 ENSG00000239556.2 3.80e-05 0.077

Table 4: Signi��cant Genes for TWAS of amyloid traits by Elastic-Net
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(a) Q-Q Plot by Elastic-Net (b) Q-Q Plot by DPR

Figure 6: Q-Q Plot for TWAS p-values of amyloid traits by Elastic-Net and DPR

Figure 7: Manhattan Plot for TWAS p-values of tangles traits by Elastic-Net
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Figure 8: Manhattan Plot for TWAS p-values of tangles traits by DPR

(a) Q-Q Plot by Elastic-Net (b) Q-Q Plot by DPR

Figure 9: Q-Q Plot for TWAS p-values of tangles traits by Elastic-Net and DPR
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Figure 10: Manhattan Plot for TWAS p-values of gpath traits by Elastic-Net
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Figure 11: Manhattan Plot for TWAS p-values of gpath traits by DPR

(a) Q-Q Plot by Elastic-Net (b) Q-Q Plot by DPR

Figure 12: Q-Q Plot for TWAS p-values of gpath traits by Elastic-Net and DPR
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Figure 13: Manhattan Plot for TWAS p-values of cogdx traits by Elastic-Net
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Figure 14: Manhattan Plot for TWAS p-values of cogdx traits by DPR

(a) Q-Q Plot by Elastic-Net (b) Q-Q Plot by DPR

Figure 15: Q-Q Plot for TWAS p-values of cogdx traits by Elastic-Net and DPR



23

5 Discussion

In this thesis, I apply TIGAR on GTEx Brain Frontal-Cortex data, following by gene-based

association studywithROS/MAPdata for amyloid, tangles, gpath, and cogdx traits. TIGAR

contains the Elastic-Net andDPRmodel for transcriptomic data imputation, with options of

conduct gene-based association studies using individual-level and summary-level GWAS data

for univariate and multivariate phenotype with corresponding imputation model. Advan-

tages for using TIGAR includes taking standard input ��les like vcf/dosage format for geno-

type data, calculatingMAF andHWEby default, users de��ned parameter within eachmodel,

computation andmemory e���cacy. Generally, TIGARcan ��nish the above procedure for one

gene in about 4 minutes. Speci��cally, for the same input ��les, DPR runs faster comparing to

Elastic-Net. Comparing to similar existing tools (PrediXcan/DPR) that accept speci��c in-

put ��les for data imputation and subsequent association studies with various output ��les,

which require cumbersome data preparation, large memory space to loading genotype data

and works to organize output ��les, TIGAR not only takes care of tedious works to prepare

input ��les and organize output ��les for users, also provides options of imputationmodels and

computation e���cacy.

TIGARhas still had some limitations: (i) TIGAR is only suitable for cis-eQTL e�fect-size cal-

culation (within 1Mb on ether gene’s TSS). It might reachmemory limit by including a wider

range of SNPs in one gene; (ii) cross-validation steps for identi��ed signi��cant model and pa-

rameter selection in Elastic-Net model will increase the computation burden; (iii) TIGAR

called the original DPR tool for training imputation instead of re-writing it in python. Some

errors from the original DPR tool might disturb model training; (iv) Only Elastic-Net and
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DPRare available forTIGAR in training imputation; (v)AlthoughTIGARuses 5-fold cross-

validation to identi��ed signi��cant imputation model for each gene, overall training (with

whole samples)R2 for a gene can still be 0, i.e. imputation model is still not signi��cant.

To draw a conclusion, TIGAR is expected to provide a computational convenience and pow-

erful tool in transcriptomic data imputation and conductTWAS.Our application shows that

DPR has advantages when the underlying gene expression heritability is relatively lower, e.g.,

< 0.2, whereas the Elastic-Net is preferred when the gene expression heritability is ¿0.2. This

shows that an “optimal” model might be chosen with respect to each gene by comparing the

cross validationR2 from both models.
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