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Abstract

In this dissertation we discuss two results in Ramsey Theory.
Result I: the size-Ramsey number of a graph H is the smallest number

of edges a graph G must have in order to force a monochromatic copy of H
in every 2-coloring of the edges of G. In 1990, Beck studied the size-Ramsey
number of trees: he introduced a tree invariant β(·), and proved that the
size-Ramsey number of a tree T is at least β(T )/4. Moreover, Beck showed
an upper bound for this number involving β(T ), and further conjectured
that the size-Ramsey number of any tree T is of order β(T ). We answer his
conjecture affirmatively. Our proof uses the expansion properties of random
bipartite graphs.

Result II: We prove the following metric Ramsey theorem. For any con-
nected graph G endowed with a linear order on its vertex set, there exists a
graph R such that in every coloring of the t-sets of vertices of R it is possible
to find a copy G′ of G inside R satisfying the following two properties:

• the distance between any two vertices x, y ∈ V (G′) in the graph R is
the same as their distance within G′;

• the color of each t-set in G′ depends only on the graph-distance metric
induced in G′ by the ordered t-set.
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Chapter 1

Introduction

Ramsey theory, which is named after Frank P. Ramsey, author of the very

influential article [34], concerns the study of partitions of discrete structures,

such as graphs, hypergraphs, integers, vector spaces, partially ordered sets,

points in the Euclidean space, etc. Statements in Ramsey theory are usually

of the form “if a certain structure is large enough, no matter how its basic

components are partitioned into r parts, it is possible to find a given config-

uration completely contained in one of the partition classes”. More refined

statements provide some estimate for how large the structure needs to be in

term of the configuration and number of parts. These abstract notions will

be illustrated in the example that follows.

Example 1.1. In a group of six people, you will always find either three

people that know each other or three people that are strangers to each other.

In the example above, the structure is the network of people and their

acquaintanceships. The basic components are pairs of individuals, with each

pair being classified according to whether the two individuals know each

other or not. The sought-after configuration is a group of three people (such

that all the three pairs of people that you can form among the three are

contained in the same class).

The example above can be generalized in several directions. First, let

us introduce some notation. For a positive integer n, denote by [n] the
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set {1, . . . , n}. For any integer k ≥ 0 and set X, denote by
(
X
k

)
the family of

all subsets of X having exactly k elements.

Theorem 1.2 (Ramsey 1930). For all integers r, k ≥ 1, and ` ≥ k there

exists n0 such that for all n ≥ n0 the following holds. For any partition of(
[n]
k

)
as C1 ∪ · · · ∪Cr, there exists 1 ≤ j ≤ r and an `-element subset Y ⊂ [n]

such that
(
Y
k

)
⊂ Cj.

Theorem 1.2 was later rediscovered by Erdős and Szekeres [11] in a paper

that popularized Ramsey theory in the mathematics community.1 In this

dissertation, we will present two Ramsey theorems on graphs. These two

results and the corresponding Chapters 2 and 3 are completely independent

and self-contained.

Some existence results in Ramsey theory follow from Theorem 1.2. For

instance, it follows that for any graph H there exists n0 = n0(H) such that,

for any n ≥ n0, the complete graph Kn is such that in any 2-coloring of

its edges, one can find a monochromatic copy of H. In such cases, it is

desirable to obtain good bounds for the smallest n0 for which the above

holds. The result in Chapter 2 is a case where existence is a simple corollary

of Theorem 1.2 but the real problem is to obtain good numerical bounds.

Here we settle a conjecture of Beck [3] and obtain bounds which are optimal

up to a constant multiple factor. Such a precise bound is rather the exception

in Ramsey theory, which is a field notorious for having loose bounds that

stand for decades without substantial improvement. In contrast, our result

of Chapter 3 is an existence result and we made no effort to obtain numerical

bounds (which certainly would be extremely large).

In Chapter 2 we discuss a size-Ramsey result, namely a result in which we

obtain a Ramsey graph having the smallest possible number of edges (in con-

trast, Ramsey graphs are typically measured in terms of number of vertices).

1Erdős was certainly one of the main contributors to Ramsey theory. Unfortunately,

F. P. Ramsey died prematurely and did not see the large impact of his results.
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Here we prove a conjecture of J. Beck [3] which states that for any tree T , its

edge-Ramsey number is of order β(T ), where β(·) is a tree-invariant. Beck

proved that any Ramsey graph for T must have at least β(T )/4 edges and

conjectured that the edge-Ramsey number is of the same order as β(T ).

What we prove here is in fact a stronger result: we use probabilistic methods

to show the existence of sparse graphs with the property that every subgraph

containing, say, 1% of the total number of edges must contain all trees having

the same invariant parameters.

In Chapter 3 we prove a metric Ramsey result on graphs. In this Ramsey

theorem the structures are ordered graphs endowed with metric embeddings.

We call G a metric subgraph of H if G ⊂ H and there is no shortcut path

in the larger graph H for connecting two vertices of G (the shortest distance

is attained by a path completely inside G). In particular, a metric subgraph

is also an induced subgraph (but the converse is not always true). The

components being colored in this Ramsey theorem are t-subsets of the vertex

set that induce a given fixed metric ρ. The configuration being sought is a

metric copy of a fixed graph G where every t-subset of V (G) inducing the

metric ρ has the same color.

An interesting particular case of our results is the following: for every

graph G there exists a graph R such that for every two-coloring of the pairs

of vertices of R one can find a metric subgraph G′ ⊂ R, isomorphic to G,

such that the color of a pair of vertices of G′ is a function of the distance

between the vertices. In other words, all pairs which are edges of G′ have the

same color, all pairs at distance two have the same color, etc.

Much of the notation used here is quite standard, including “big O” no-

tation such as O(·), Ω(·), o(·). We also use a.a.s. (asymptotically almost

surely) to denote that a sequence of random events has probability converg-

ing to 1. Special notation pertaining to each chapter will be introduced as

needed.
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Chapter 2

The size-Ramsey number of

trees

2.1 Introduction

For graphs G and H, the size-Ramsey number r̂(G,H), introduced by Erdős

et al. [9], is the smallest number m such that there exists a graph F on m

edges with the property that, in any red-blue coloring of the edges of F , there

exists either a red copy of G or a blue copy of H.

For a real number α ∈ [0, 1] and graphs F , G we shall write F →α G if any

subgraph F ′ ⊆ F with e(F ′) ≥ αe(F ) contains a copy of G as a subgraph.

Notice that if F →1/2 G then r̂(G) = r̂(G,G) ≤ e(F ).

It is well known that r̂(Kn) grows exponentially with n. In contrast,

Beck [2], answering a question of Erdős, showed that for Pt, the path on t

vertices, we have

r̂(Pt) = r̂(Pt, Pt) ≤ 900t.

In fact, Beck proved that for any α ∈ (0, 1] there is c = c(α) such that a.a.s.

0The contents of this chapter were published in [4].
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(asymptotically almost surely) the random graph G = Gn,c/n satisfies G→α

Pbn/cc.

Friedman and Pippenger [13] improved this result by showing that any

tree with maximum degree ∆ and t vertices has size-Ramsey number c(∆)t,

where c(∆) = O(∆4). This was later improved to c(∆) = O(∆2) by Ke [20]

and to c(∆) = O(∆) by Haxell and Kohayakawa [19].

Although certain trees T have size-Ramsey number of order ∆(T ) |T |, it is

clear that the size-Ramsey number of the star K1,t is not of order t2. Indeed,

K1,α−1t →α K1,t for any α ∈ (0, 1]. Hence, the bound ∆(T ) |T | may be far

from optimal in many cases.

In [3], Beck introduced the tree invariant β(T ) which is defined as follows.

Let V (T ) = V0(T )∪V1(T ) be the partition determined by the unique proper

two-coloring of the vertex set of T . Set ∆i = ∆i(T ) = max{dT (v) : v ∈
Vi(T )} and ni = ni(T ) = |Vi(T )| for i = 0, 1 and let β(T ) = n0∆0 + n1∆1.

Improving his previous result, Beck [3] proved that for any tree T ,

β(T )/4 < r̂(T ) ≤ O
(
β(T )(log |T |)12

)

and conjectured that r̂(T ) = O(β(T )). For completeness, we include Beck’s

proof of the lower bound in Section 2.1.2. Haxell and Kohayakawa [19] sig-

nificantly improved the upper bound to r̂(T ) = O
(
β(T ) log ∆(T )

)
.

We settle this conjecture by showing that for any (n0,∆0, n1,∆1) and α ∈
(0, 1] there exist N0, N1, C(α), and p ∈ [0, 1] with pN0N1 = C(α)(n0∆0 +

n1∆1) such that a.a.s. the random bipartite graph G = GN0,N1;p satis-

fies G →α T for any tree T with ∆i(T ) ≤ ∆i and ni(T ) ≤ ni, for i = 0, 1.

Since a.a.s. G has O(pN0N1) edges, the size-Ramsey number of any tree T
is of the order of β(T ).

The embedding of T into G is done algorithmically. We believe that this

algorithmic method is interesting in its own right and that it could be useful

in other similar contexts. In fact, we have used analogous techniques in an
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algorithm that embeds graphs of bounded degree into sparse random graphs

(see [5]).

2.1.1 Organization of the chapter

In order to prove Beck’s conjecture we establish several properties that hold

a.a.s. for random graphs. Any graph satisfying these properties may be

used as an upper bound for the size-Ramsey number of trees. However,

there is no known graph construction satisfying all these properties. Thus

we have resorted to the probabilistic method in order to prove the existence

of such graphs. The results on random graphs are stated in Theorem 2.6 of

Section 2.4.

In Section 2.6 we exhibit an embedding scheme for trees, Algorithm 1, that

finds an isomorphic copy of any tree with prescribed parameters in a graph

satisfying the properties listed in Theorem 2.6.

We shall give an outline of a simpler (somewhat unrealistic) case for the

sake of introducing, in an easier context, some of the techniques employed in

the general case. This informal outline is given in Section 2.3.

2.1.2 The lower bound

Here we give Beck’s proof that for any tree T , r̂(T ) > β(T )/4.

Let ni = ni(T ) and ∆i = ∆i(T ), i = 0, 1, be as above. Without loss of

generality we assume that n0∆0 ≥ n1∆1. Let G be any graph having fewer

than β(T )/4 edges. We will now describe an explicit coloring of the edges

of G which does not admit any monochromatic copy of T .

First partition V (G) into V + = {v ∈ V (G) : deg(v) ≥ ∆0} and V − =

V (G) \ V +. We now color all edges of G completely inside V + or completely

inside V − using the color blue. All the edges having endpoints in distinct

parts V −, V + are colored red.
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If G contains a blue copy of T , then this copy must be contained in V +

since no vertex of V − can be used to embed a vertex of degree ∆0 and V −

is not connected to V + by any blue edge. Consequently, |V +| ≥ n0 + n1.

However, by definition, the degrees of vertices in V + are all at least ∆0 and

thus we obtain a contradiction:

e(G) ≥ 1

2

∑

v∈V +

deg(v) ≥ ∆0 |V +|
2

≥ ∆0(n0 + n1)

2
>
β(T )

4
.

It follows that there cannot be a blue copy of T .

Let us now assume we may find a red copy of T in G. Since the red

subgraph of G is bipartite (with classes V −, V +), the class V0(T ) must be

embedded into V + (since we must be able to embed a vertex of degree ∆0).

Hence |V +| ≥ n0 and thus e(G) ≥ 1
2
|V +|∆0 ≥ n0 ∆0

2
≥ β(T )/4, again a

contradiction.

2.2 Preliminaries

Given a graph G = (V,E) and disjoint sets S, T ⊂ V , we denote by EG(S, T )

the set of all edges with one endpoint in S and the other endpoint in T and

let eG(S, T ) = |EG(S, T )|. The neighborhood of a vertex v ∈ V is denoted

by ΓG(v) and the neighborhood of a set S ⊆ V is denoted by ΓG(S) =
⋃
v∈S ΓG(v).

Definition 2.1. Given a graph G = (V,E), for any set S ⊆ V , we define

Γ∗G(S) = {v ∈ V : eG({v}, S) = 1}

as the set of unique neighbors of S. Let d∗G(S) = |Γ∗(S)|.

We may omit the subscript if the graph is clear from the context.

If x, t ∈ R, ε > 0 are such that x ∈ [(1− ε)t, (1 + ε)t] then we write x ∼ε t.
We shall also use the standard notations Ωγ(f(n)), Oγ(f(n)) for the classes of
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all functions lower/upper bounded by c(γ)f(n), where c = c(γ) is a constant

that only depends on γ. In many computations we implicitly use well-known

inequalities such as

1 + x ≤ ex and
(a
b

)b
≤
(
a

b

)
≤
(ea
b

)b
. (2.1)

The Chernoff inequality is also used extensively: for any ε > 0 and any

Binomial random variable X with parameters n and p we have

P
[
|X − np| ≥ ε np

]
≤ exp{−Ωε(np)}. (2.2)

Definition 2.2 (LE sets). We say that a set of vertices S in a graph G is

ε-lossless expanding if |Γ(S)\S| ∼ε e(S, V (G)\S), that is, almost every edge

in the S-cut corresponds to a unique neighbor of S. We may refer to S as

an LE set for short.

A useful feature of LE sets is their resilience: even if a large fraction of the

edges incident to an LE set is removed, the LE property persists. This is

stated formally in the following simple lemma.

Lemma 2.3. Let G be a graph and S ⊆ V = V (G). For any G′ ⊆ G we

have

|ΓG′(S) \ S| ≥ eG′(S, V \ S) + 2
(
|ΓG(S) \ S| − eG(S, V \ S)

)
.

Proof. Let N denote the number of edges e = uv in EG(S, V \S) such that the

end-vertex v ∈ V \S satisfies eG(v, S) ≥ 2. Note that |ΓG(S)\S| ≤
(
eG(S, V \

S)−N
)

+N/2, since each edge not counted by N corresponds to exactly one

unique neighbor of S and all the edges counted by N may contribute with at

most N/2 neighbors. We obtain −N ≥ 2
(
|ΓG(S) \ S| − eG(S, V \ S)

)
. The

claim follows as |ΓG′(S) \ S| ≥ eG′(S, V \ S)−N .
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Definition 2.4. Let T be a tree and V (T ) = V0(T )∪V1(T ) be the canonical

bipartition of T . Set ni = |Vi(T )| and ∆i = max{dT (v) : v ∈ Vi(T )},
for i = 0, 1. The parameter β(T ) is defined as

β(T ) = n0∆0 + n1∆1.

A tree with these parameters is called an (n0,∆0, n1,∆1)-tree.

2.3 Outline of a simpler case

In this section we consider a simpler, specific case, where we can apply easier

versions of the techniques used in the proof of our result. Let us assume

that the ni’s and ∆i’s are fixed and satisfy n0∆0 = n1∆1. Our unrealistic1

assumption is the existence of a bipartite graph G having classes V0, V1

with 100ni ≤ |Vi| = Ni = O(ni), i = 0, 1, such that all vertices in Vi have

degree Di = O(∆i), Di > 32∆i, and such that for any i and any set S ⊆ Vi,

with |S| ≤ |Vi−1|/Di, we have |ΓG(S)| ≥ (1− ε)Di |S| for some small ε ≥ 0.

In particular, G is a bipartite graph for which we have lossless expansion for

essentially all sets (obviously, if S is too large, it cannot expand losslessly).

Next we outline how one could find a copy of an (n0,∆0, n1,∆1)-tree T
in any sufficiently dense subgraph of G. Suppose that G′ ⊆ G is such

that e(G′) ≥ e(G)/2. By sequentially removing vertices of low degree, we

may ensure that for i = 0, 1, every v ∈ V ′i = Vi ∩ V (G′) has degree at

least Di/8 and that e(G′) ≥ e(G)/4.

Suppose that f is a partial embedding of T into G′. A vertex v ∈ V ′ =

V (G′) is inactive with respect to f if there is a vertex u ∈ V (T ) such that v =

f(u) and, moreover, all neighbors of u are already embedded by f (namely,

f−1(V ′) ⊃ ΓT (u)).

1Such graphs do not exist for all range of parameters, for instance, if N0 = 2N1 such a

strong expander needs D0 ≥ c(ε)N1, which means that the graph needs to be very dense

(see [33, Theorem 1.5(a)]).
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A vertex is called free with respect to some partial embedding f if it is

neither reserved nor in the image of f . We shall describe how a vertex

becomes reserved in what follows.

Critical vertices. The main ingredient in the embedding scheme is how to

deal with active vertices in G′ which have few free neighbors. These vertices

will be called critical. We associate to every critical vertex v a subset Rv of

its free neighborhood which shall be reserved exclusively to embed neighbors

of f−1(v) (if v ever gets used in the embedding, otherwise they shall remain

unused). In particular, those vertices in Rv will no longer be free.

Let c ∈ (0, 1/8) be a fixed constant to be defined later. A vertex from

class V ′i (i = 0, 1) is classified as critical if it has less than cDi free neighbors.

There are basically two difficulties in dealing with critical vertices: since

the reserved subsets must be exclusive, they must be disjoint from each other.

Moreover, after reserving vertices, one may produce more critical vertices, as

those reserved vertices are no longer free. It is therefore essential to make

sure that the number of critical vertices is bounded at all times.

To ensure that there are not too many critical vertices, the set of reserved

vertices for each critical vertex is relatively small—it has size ∆0 or ∆1,

depending on the class to which the critical vertex belongs. Therefore, for

each new critical vertex, we reserve a small number of vertices (making them

non-free). On the other hand, every critical vertex must send a considerable

fraction of its edges into the set of non-free vertices. By the LE property

and Lemma 2.3, the set of critical vertices must be small, otherwise the

expansion of the LE set of critical vertices would contradict the fact that the

set of non-free vertices is not large.

More formally, let Ci be the set of critical vertices in the class Vi at a

certain moment in the embedding procedure. The number of non-free vertices

in V1−i is at most n1−i + |Ci|∆i. However, every vertex v ∈ Ci sends at

least dG′(v) − cDi ≥ (1/8 − c)Di > Di/16 edges into the set of non-free
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vertices of V1−i. If |Ci| ≥ 32n1−i/Di, one can establish a contradiction with

the LE property by way of Lemma 2.3. Indeed, the set of non-free vertices

would have to be larger than

|Ci|Di/16 ≥ (16n1−i/Di + |Ci|/2) · (Di/16) = n1−i + |Ci|Di/32

> n1−i + |Ci|∆i,

which contradicts the trivial upper bound on the number of non-free vertices.

Embedding scheme. Fix an arbitrary root v1 ∈ V1(T ) and map it to an

arbitrary vertex in V ′1 . At each step we take an already embedded vertex and

embed all of its children at once. Suppose that we have a partial embedding f

of T into G′. Let C be the collection of critical vertices and R = {Rv}v∈C be

the family of reserved sets. Let u ∈ V (T ) be an embedded vertex and w =

f(u).

If w is critical then Rw ∈ R contains enough vertices to embed every child

of u. No other critical vertex can be created after this embedding occurs

(since no free vertex is used).

If w ∈ V ′i is not critical, then the number of free neighbors of w is at

least cDi � ∆i, which is more than enough to embed every child of u. After

embedding the children of u (arbitrarily choosing vertices among the free

neighbors of w), we might have created new critical vertices.

A new critical vertex had cDi free neighbors before the above embedding

extension. Since the extension can only make ∆i vertices non-free and cDi �
∆i, this new critical vertex still has many free neighbors immediately after

the extension.

Pick one of the (possibly many) new critical vertices and choose an arbitrary

∆i-subset of its free neighborhood. We construct reserved sets for the new

critical vertices using the following iterative procedure.

Suppose that Cj ⊂ V ′i is the collection of the first j critical vertices in V ′i

created by the embedding extension and which were already processed. (Ini-

11



tially, j = 0 and C0 = ∅.) Let {Rj
v}v∈Cj be a family of disjoint ∆i-subsets

such that each Rj
v may only contain free neighbors of v. Set Xj =

⋃
v∈Cj R

j
v.

If there is a (non-critical) vertex w having less than cDi free neighbors

outside of Xj we set Cj+1 = Cj ∪ {w} and obtain a new family of disjoint

∆i-sets {Rj+1
v }v∈Cj+1 as above (we describe this process in more detail at

the end of this Section). We also impose an extra restriction on this family:

Xj ⊂ Xj+1, namely, once a vertex is chosen to be reserved to any critical

vertex, it will be reserved to some critical vertex (but not necessarily to the

one it was originally assigned to). This restriction is important since we

use the fact that the set of non-free vertices is monotonically increasing. In

particular, once a vertex is classified as critical, it always has less than cDi

free neighbors.

Suppose that the above procedure finishes when Ck and {Rk
v}v∈Ck were

constructed. We set Rv = Rk
v for all v ∈ Ck and thus consolidate the reserved

set of every new critical vertex. At that point, every non-critical vertex of V ′i

(i = 0, 1) has at least cDi free neighbors and every critical vertex has an

exclusive set of reserved vertices. Therefore, it is possible to continue the

embedding until the whole tree is embedded.

Obtaining a family of reserved sets. The jth new critical vertex cre-

ated after an extension must have at least cDi−∆i neighbors that are either

free or contained in Xj−1. Indeed, before that vertex became critical, it

had cDi free neighbors; after the extension, at most ∆i vertices were used in

the extension and became non-free.

Using the LE property of the graph and a Hall-type argument, it is simple

to obtain a new family of reserved sets as long as j = |Cj| is not too large.

However, since we have a global upper bound on the number of critical

vertices, this strategy always works. (See Lemma 2.12 for a formal version

of this argument.)
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2.4 Properties of random bipartite graphs

In this section we state a technical theorem describing several properties of

random bipartite graphs that we use when embedding trees. We remark that,

in contrast with the assumptions of Section 2.3, having lossless expansion

on both classes of a sparse bipartite graph is not always possible (see [33,

Theorem 1.5(a)]). To overcome this shortcoming we show that there are

plenty of LE sets in “useful places”, namely, most neighborhoods of vertices

are rich in LE sets.

Definition 2.5. Let ε > 0, p ∈ (0, ε/8), N0, N1, D0 = pN1, D1 = pN0 ∈
N. A bipartite graph G = (V0, V1;E) with |V0| = N0, |V1| = N1 satisfies

Property (‡) if there exists V ′1 ⊆ V1 with |V ′1 | ≥ (1 − 2ε)N1 such that the

following conditions hold:

(i) deg(w) ∼ε D1 for all w ∈ V ′1 and, moreover,

#{u ∈ Γ(w) : deg(u) 6∼ε D0} < εD1;

(ii) for every S ⊆ V ′1 with |S| ≤ εN1/(8D0), we have d∗(S) ∼ε D1 |S|;

(iii) for every S ⊆ V ′1 with |S| ≤ εN1/(D0D1) and for every T ⊆ Γ(S) with
√
εD1 |S| ≤ |T |, we have d∗(T ) ≥ (1− 5

√
ε)D0 |T |;

(iv) if εN1 < D0D1 then for every w ∈ V ′1 and every subset T ⊆ Γ(w)

with |T | ≥ εD1 we have disjoint sets T1, . . . , Tr ⊂ T , each of cardinality

min{εD1/8, εN1/(4D0)},

such that
∣∣
r⋃

i=1

Ti
∣∣ ≥ 3

4
|T | and d∗(T ′i ) ∼ε D0 |T ′i |

for every T ′i ⊆ Ti, i = 1, . . . , r;

13



}
{

Figure 2.1: The graph obtained from Theorem 2.6. All vertices in V1 which

are not in the small shaded subset have ∼ε D1 neighbors and all but at

most εD1 such neighbors have degree ∼ε D0.

(v) for every X ⊆ V0 and Y ⊆ V1 with |X| ≥ ε3N0, |Y | ≥ ε3N1 we have

eG(X, Y ) ∼ε2 p |X| |Y |; in particular, e(V0, V
′

1) ≥ (1− 4ε) e(G).

Using the probabilistic method we show that there are graphs satisfying

Property (‡).

Theorem 2.6. Suppose that n0 ≥ n1 and n0∆0 = n1∆1. Let 0 < ε < 1/100

be given. There exists C = C(ε) such that, with probability at least 1− ε, the

bipartite random graph GN0,N1;p = (V0, V1;E), with N0 = Cn0, N1 = Cn1,

and p = ∆0/n1 = ∆1/n0 < ε/8 satisfies Property (‡).

Before proving the above theorem, we observe that the condition p < ε/8

is not very restrictive. In the case p ≥ ε/8, we may use a complete bipartite

graph.

Lemma 2.7. Let α ∈ (0, 1] and T be a tree with (bipartite) classes having

cardinalities n0 and n1. We have G = K4n0/α,4n1/α →α T .

Proof. Suppose that the vertex classes of G are V0 and V1 (|V0| = n0 and

|V1| = n1). First observe that G has 16n0n1/α
2 edges. When p ≥ ε/8, we

must have β(T ) ≥ pn0n1 ≥ εn0n1/8 and hence e(G) = O(β(T )).

14



Let G′ ⊆ G be any subgraph with e(G′) ≥ α e(G). While there is a

vertex v ∈ V0 (or a vertex w ∈ V1) with degG′(v) < n1 (or degG′(w) <

n0) remove v (or w) from G′ together with all of the edges incident to the

removed vertex. The total number of edges removed is at most (4n0/α)n1 +

(4n1/α)n0 = α
2
e(G). Therefore, the remaining graph G′ is non-empty and

has minimum degree on V0 at least n1 and minimum degree on V1 at least n0.

Now we can inductively embed any tree T with classes having cardinali-

ties n0 and n1. Fix an arbitrary root v0 ∈ V0(T ) and set f : v0 7→ w0 where w0

is an arbitrary vertex on V0.

Suppose that we have a partial embedding f of T into G. Pick some ver-

tex v ∈ Vi(T ), i = 0, 1, that was already embedded together with some w ∈
ΓT (v) which was not yet embedded. Since the degree of f(v) in G′ is

at least as large as |V1−i(T )|, there must be some w′ ∈ ΓG(f(v)) such

that w′ /∈ f(V1−i(T )). Extend f by mapping w to w′.

To simplify the proof of Theorem 2.6 we shall avoid floors and ceilings by

making every parameter—such as ε, p, C, n0, n1, ∆0, ∆1—a power of 2. This

is not a problem given our final goal since this shall affect the parameter β(T )

by only a multiplicative constant.

Proof. The proof of Theorem 2.6 is divided into several claims.

Claim 2.8. Let G = GN0,N1;p = (V0, V1;E) be a random bipartite graph

and S ⊆ Vi (i = 0, 1) be a set with s vertices. Then d∗(S) is a bino-

mial variable with parameters N1−i and sp(1 − p)s−1. Moreover, if sp ≤ ε

then E[d∗(S)] ≥ (1− 2ε)spN1−i.

Proof. We may represent d∗(S) as a sum of indicator variables

Iv = I[eG(v, S) = 1], v ∈ V1−i.
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Since the Iv’s are independent and each has probability sp(1−p)s−1, the first

part of the claim is proved. For the second part, notice that

E[d∗(S)] = N1−isp(1− p)s−1 ≥ spN1−ie
−2sp ≥ (1− 2ε)spN1−i, (2.3)

since (1− p) ≥ e−p−p
2 ≥ e−2p (as p ≤ ε/s ≤ 1/2).

Claim 2.9. With probability at least 1−3ε/4 there exists V ′1 ⊆ V1 with |V ′1 | ≥
(1− ε)N1 for which (i) and (ii) from Property (‡) hold.

Proof. Notice that for any vertex v ∈ Vi, i = 0, 1, we have E[deg(v)] = Di.

By the Chernoff inequality, for any fixed vertex v,

P
[∣∣deg(v)−Di

∣∣ ≥ εDi

]
≤ exp{−Ωε(Di)} ≤ ε2/8 (2.4)

for sufficiently large C.

Note that the degrees in V1 are independent random variables (since the

graph is bipartite). Given a fixed vertex w ∈ V1, let us estimate the prob-

ability that more than εD1 of its neighbors have degree 6∼ε D0 conditioned

on deg(w) ∼ε D1. For each u ∈ Γ(w), the degree of u is one more than the

number of its neighbors in V1 −w, which is a binomial variable independent

of other vertices in Γ(w) and of w itself. Hence, the probability of having εD1

neighbors failing to have the “correct” degree is bounded by
(

(1 + ε)D1

εD1

)
exp{−Ωε(D0) · εD1} = exp{−Ωε(D0D1)} < ε2/8, (2.5)

for sufficiently large C.

Let E0 denote the event in which the set of vertices having exceptional

degree or having many neighbors of exceptional degree has at most εN1/2

elements. By (2.4) and (2.5), the expected number of such vertices is less

than ε2N1/4, by Markov’s inequality, we obtain P[E0] ≥ 1− ε/2.

Next, we prove that the event

E1 =

{
for all S ⊆ V1 with s = |S| ∈

[ ε
8p
,
ε

4p

]
, d∗(S) ≥ (1− ε)D1 |S|

}
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holds with probability at least 1 − ε/4. By Claim 2.8, we have E[d∗(S)] ≥
(1− ε/2)sD1 for all sets considered in E1.

By the Chernoff inequality, the probability that one fixed set S in E1

has d∗(S) < (1 − ε)sD1 is at most exp{−Ωε(sD1)}. A simple union bound

gives an upper bound on the probability that some set S has small d∗(S),

that is,

ε/(4p)∑

s=ε/(8p)

(
N1

s

)
exp{−Ωε(sD1)} ≤

∑

s

{eN1e
−Ωε(D1)

s

}s

≤
∑

s

{8eD0e
−Ωε(D1)

ε

}s
.

Note that D1 ≥ D0 (since by assumption n0 ≥ n1), which means that we may

take C sufficiently large in order to have e1−Ωε(D1)D0/ε < ε/64. In particular,

the last sum is at most
∑∞

s=1(ε/8)n < ε/4.

To prove (ii) let us assume that E1 holds. Suppose that there are disjoint

sets S1, S2, . . . , Sk such that |Si| ≤ ε/(8p) − 1 and d∗(Si) < (1 − ε)D1 |Si|.
We call such sets Si non-expanding. Suppose that S =

⋃k′

i=1 Si (k′ ≤
k), is such that ε/(8p) ≤ |S| ≤ 2(ε/(8p) − 1) ≤ ε/(4p). Then d∗(S) ≤
∑k′

i=1 d
∗(Si) < (1− ε)D1 |S|, which contradicts E1. It follows that by remov-

ing non-expanding sets from V1 sequentially we eventually get rid of all of

them while removing at most ε/(4p) = εN1/(4D0) vertices.

In total, if both E0 and E1 hold, we need to remove less than εN1 vertices

from V1 to get (i) and (ii). Since P[E0∧E1] ≥ 1−3ε/4 the claim is proved.

Set s0 = εN1/(D0D1). We assume that s0 ≥ 1 as otherwise (iii) is trivial.

Let us estimate the probability that a fixed S ⊆ V1 with s = |S| ∈ [s0, 3s0]

and |Γ(S)| ∼ε D1 |S| is such that there exists T ⊆ Γ(S) with εsD1 ≤ |T |
having d∗(T ) < (1− 10ε)D0 |T |. Such (S, T ) will be called a bad pair. Apply

Claim 2.8 to the random subgraph G[V0, V1\S] and the set T (observe that we

have exposed the edges incident to S but no other edge of G, hence G[V0, V1\
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S] is a random graph independent of what was already exposed). Note

that p |T | ≤ (1 + ε)D1sp ≤ 3(1 + ε) εN1

D0
p = 3ε(1 + ε) and |V1 \S| ≥ (1− ε)N1.

From Claim 2.8 we get that E[d∗(T )] ≥ (1− 8ε)D0 |T |.
Applying the Chernoff inequality, we get that the probability that a fixed

choice of (S, T ) becomes a bad pair is at most exp{−Ωε(D0 |T |)}. The union

bound over all choices of S and all choices of T gives the following upper

bound for the probability of any bad pair occurring in G:

[∗] =

3s0∑

s=s0

2sD1∑

t=εsD1

(
N1

s

)(
2sD1

t

)
exp{−Ωε(tD0)}

≤
3s0∑

s=s0

2sD1∑

t=εsD1

(eN1

s

)s(2esD1

t

)t
exp{−Ωε(tD0)}.

Replacing the occurrences of s and t in the denominators by lower bounds

(s0 and εs0D1, respectively) and their occurrences in the numerators or ex-

ponents by upper bounds (3s0 and 6s0D1, respectively) we obtain

[∗] ≤
6s0D1∑

t=εs0D1

∑

s

(eD0D1/ε)
3s0(6e/ε)t exp{−Ωε(tD0)}

≤
∑

t

2s0 · exp
{

3s0 log(eD0D1/ε) + t log(6e/ε)− Ωε(tD0)
}

≤ 12s2
0D1 · exp

{
3s0 log(eD0D1/ε) + 6s0D1 log(6e/ε)− Ωε(s0D0D1)

}

≤ exp{−Ωε(N1)},
(2.6)

for a sufficiently large C.

Let E2 be the event

E2 =
{

for all S ⊆ V1, with s = |S| ∈ [s0, 3s0] and |Γ(S)| ∼ε sD1,

if T ⊆ Γ(S), εsD1 ≤ |T |, then d∗(T ) ≥ (1− 10ε)D0 |T |
}
.

(2.7)

By inequality (2.6), E2 holds with probability at least 1− ε/16.
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Claim 2.10. Conditioning on E0, E1 and E2, there is V ′1 ⊆ V1 satisfying (i),

(ii), (iii).

Proof. Initially, let V ′1 be the set obtained by Claim 2.9 (here we use E0

and E1). Suppose that there exists S1 ⊆ V ′1 with |S1| ≤ s0−1 and ΓG(S1) ∼ε
D1 |S1| such that there is T1 ⊆ ΓG(S1) with

√
εD1 |S1| ≤ |T1| and d∗(T1) <

(1 − 5
√
ε)D0 |T1|. Remove S1 from V ′1 . Repeat this procedure until there

are no more bad sets or until the union S =
⋃
i Si has at least s0 elements.

We claim that |S| ≤ 2s0. Indeed, this follows since each Si has at most s0

elements. Next we show that S cannot have more than s0 elements, namely,

the union of all bad sets contains less than s0 elements.

Suppose that s0 ≤ |S| ≤ 2s0 and let T =
⋃k
i=1 Ti ⊆ ΓG(S). Exploiting the

LE property of V ′1 we shall show that |T | is close to
∑k

i=1 |Ti| and, since T ⊆
Γ(S), this contradicts E2. Note that eG(S, T ) ≥∑k

i=1 eG(Si, Ti), since the Si’s

are disjoint. However, we know that eG(Si, Ti) ≥ |Ti| ≥
√
εD1|Si|. Take G′ ⊆

G with E(G′) =
⋃k
i=1 EG(Si, Ti). Clearly, e(G′) ≥∑k

i=1 |Ti| ≥
√
εD1 |S|. On

the other hand, since V ′1 was initially obtained from Claim 2.9, every vertex

of V ′1 has degree at most (1 + ε)D1 and |ΓG(S)| ≥ d∗G(S) ≥ (1 − ε)D1 |S|.
Hence, by Lemma 2.3, it follows that

|T | = |ΓG′(S)| ≥ eG′(S, T )− 2{eG(S, T )− |ΓG(S)|}

≥
k∑

i=1

|Ti| − 4εD1 |S| ≥ (1− 4
√
ε)

k∑

i=1

|Ti|,
(2.8)

where we have used that
√
εD1 |S| ≤

∑k
i=1 |Ti|. Therefore

|T | ≥ 1

2

k∑

i=1

|Ti| ≥
1

2

√
εD1 |S| > εD1 |S|,

which means that E2 implies that T ⊂ ΓG(S) satisfies

d∗G(T ) ≥ (1− 10ε)D0 |T |. (2.9)
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Since, Γ∗G(T ) ⊆ ⋃k
i=1 Γ∗G(Ti) and ε < 1/100, we have from (2.8),

d∗G(T ) ≤
k∑

i=1

d∗G(Ti) < (1− 5
√
ε)D0

k∑

i=1

|Ti|

≤ 1− 5
√
ε

1− 4
√
ε
D0 |T |

< (1− 10ε)D0 |T |,

a contradiction with (2.9). Hence, by removing less than s0 elements from V ′1

we may ensure that (iii) holds together with (i) and (ii).

Claim 2.11. If εN1 < D0D1 then a.a.s. every w ∈ V1 for which deg(w) ∼ε
D1 and every T ⊆ Γ(w) with |T | ≥ εD1 satisfy the conditions of Prop-

erty (‡).(iv).

Proof. Suppose that εN1 < D0D1. Let w ∈ V1 be fixed and assume that

deg(w) ∼ε D1 (as otherwise w /∈ V ′1). Let T = {t1, t2, . . . , tm} ⊆ Γ(w) be an

arbitrary set with m ≥ εD1. Let k = min{εD1/8, εN1/(4D0)} and r = d3m
4k
e.

In the random graph G[V0, V1 \ {w}], the vertex t1 has expected degree

p(N1 − 1) ∼ε/100 D0.

Hence, by the Chernoff inequality,

P[deg(t1) ∼ε/3 D0] ≥ 1− exp{Ωε(D0)}.

We shall (attempt to) construct a set T1 with k elements satisfying condi-

tion (iv). Let X = {w}. We say that ti succeeds if |Γ(ti) \ X| ∼ε/3 D0

and deg(ti) ∼ε/3 D0, otherwise it fails. If ti succeeds, we add ti to T1

and Γ(ti) to X. If it fails, both X and T1 remain unchanged. If T1 con-

tains k elements then we have obtained our final T1. By construction, ev-

ery T ′1 ⊆ T1 is such that |Γ(T ′1)| ∼ε/3 D0 |T ′1|. To estimate d∗(T ′1) for T ′1 ⊆ T1

we observe that eG(T ′1,Γ(T ′1)) ≤ (1 + ε/3)D0 |T ′1| while, on the other hand,
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eG(T ′1,Γ(T ′1)) ≥ 2 |Γ(T ′1)| − d∗(T ′1). From these two inequalities we conclude

that

d∗(T ′1) ≥ {2(1− ε/3)− (1 + ε/3)}D0 |T ′1| ≥ (1− ε)D0 |T ′1|.

Suppose that t` was the kth element added to T1. Then we start build-

ing T2 ⊂ {t`+1, . . . , tm} in the same way we constructed T1: set X = {w} and

sequentially add vertices ti that succeed to T2 and their neighborhoods Γ(ti)

to X. Repeat the procedure for other Tj’s until we have finished construct-

ing Tr or until the vertex tm was reached. Note that we always have

|X| ≤ (1 + ε)D0k + 1 ≤ εN1

4D0

(1 + ε)D0 + 1 ≤ εN1

3.9
.

In particular,

E
[
|Γ(ti) \X|

]
= p(N1 − |X|) ≥

(
1− ε

3.9

)
D0.

Therefore, from the Chernoff inequality it follows that for any X ⊂ V1 with

|X| ≤ εN1/(3.9) and fixed ti ∈ T , we have

P[ti fails |X] = P
[
deg(ti) 6∼ε/3 D0 or |Γ(ti) \X| 6∼ε/3 D0

]

= P
[
deg(ti) > (1 + ε/3)D0 or |Γ(ti) \X| < (1− ε/3)D0

]

≤ 2 exp{−Ωε(D0)}.
(2.10)

If we were unable to construct the desired collection T1, . . . , Tr then at

least m/8 elements from T have failed. Indeed, we need rk elements to

succeed, where 3m/4 ≤ rk < 3m/4 + k ≤ 3m/4 + εD1/8 ≤ 7m/8. The

sequence of indicator variables I[ti fails] is not independent, however, the ith

event only depends on the size of the set X constructed after the first i− 1

events. Therefore, by (2.10), the probability that a fixed sequence of (m/8) ≥
εD1/8 vertices fails is at most exp{−Ωε(mD0/8)} = exp{−Ωε(D0D1)}.

Consider the union bound over (1) all choices w ∈ V1 having deg(w) ∼ε D1;

(2) all subsets T ⊆ Γ(w) with |T | ≥ εD1; (3) all possible (m/8)-subsets of
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failing vertices of T . The probability that we fail to construct the desired

collection for some vertex is at most

N1 · 22D1 · 22D1 · exp{−Ωε(D0D1)} ≤ exp{logN1 + 4D1 − cεD0D1}. (2.11)

We choose a constant C = C(ε) that is large enough to ensure thatD0 = C∆0

satisfies D0 ≥ 16/cε and that N1 = Cn1 satisfies N1 ≥ 4
ε cε

logN1. Since by

this choice of C we have D0D1 ≥ εN1 ≥ 4
cε

logN1, it follows that (2.11) is at

most

exp
{(

logN1−
cεD0D1

2

)
+
(

4D1−
cεD0D1

2

)}
≤ exp{− logN1−4D1} = o(1).

Therefore the claim is proved by the union bound.

It is a well-known fact that the number of edges among linear-sized sets in

a random graph is a.a.s. very close to the expected value. Indeed, let E3 be

the event corresponding to (‡).(v) and let E4 denote the event described by

Claim 2.11. Note that the events E0, . . . , E4 hold together with probability

at least 1 − ε. Conditioning on all those events, (v) is satisfied (by E3),

Claim 2.10 ensures (i)–(iii) and E4 together with (i) imply (iv).

2.5 Auxiliary results

In this section we prove lemmas that will be used to ensure that certain steps

in our tree embedding scheme can be performed.

Lemma 2.12. Let S1, . . . , Sm be a collection of sets and b ∈ Nm be such that,

for every I ⊆ [m], we have
∣∣⋃

i∈I Si
∣∣ ≥∑i∈I bi.

Then, there exists a family S = {S ′i ⊆ Si}mi=1 of disjoint sets with |S ′i| = bi

for all i. Moreover, if {S ′′i ⊆ Si}ki=1, k ≤ m, is any family of disjoint sets

with |S ′′i | = bi, we may require that S satisfies
⋃k
i=1 S

′′
i ⊆

⋃m
i=1 S

′
i.
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Proof. We reduce this problem to a matching problem. Consider a bipartite

graph H with vertex classes A =
⋃m
i=1{i} × [bi] and B =

⋃m
i=1 Si and edges

given by {(i, j), u} for all i ∈ [m], j ∈ [bi] and u ∈ Si. Observe that we are

adding bi copies of a vertex i that has neighborhood Si for all i.

Given a set A′ ⊆ A, let I = I(A′) be the projection of A′ onto the first

coordinate. We have |A′| ≤ ∑
i∈I bi and, on the other hand, |ΓH(A′)| =∣∣⋃

i∈I Si
∣∣ ≥ ∑i∈I bi ≥ |A′|. Hence, Hall’s condition is satisfied for H and

there is a matching M covering A. From M we get sets S ′i ⊆ Si by letting S ′i

be the set of elements matched to (i, 1), . . . , (i, bi).

Suppose that there is a family of disjoint sets {S ′′i ⊆ Si}ki=1, k ≤ m,

with |S ′′i | = bi. By performing small local changes to the family {S ′i ⊆ Si}mi=1

we may ensure that
⋃k
i=1 S

′′
i ⊆

⋃m
i=1 S

′
i. If there exists x ∈ ⋃k

i=1 S
′′
i \
⋃m
i=1 S

′
i

then let j ∈ [k] be such that x ∈ S ′′j . Since bj = |S ′j| = |S ′′j |, there exists

some y ∈ S ′j \ S ′′j . Set S ′j ← S ′j − y + x. Note that this strictly decreases

k∑

i=1

|S ′i4S ′′i |.

In particular, since this number is always non-negative, in at most

k∑

i=1

|S ′i4S ′′i |

steps we can obtain the desired family.

Lemma 2.13. Let G = (V0, V1;E) be a graph with V ′1 ⊆ V1 satisfying Prop-

erty (‡). Let α ≥ α0(ε) = 13
√
ε.

Suppose that S ⊆ V ′1 , with |S| ≤ εN1/(D0D1), is such that there is a family

of disjoint sets {Av ⊂ Γ(v)}v∈S and a family (of not necessarily disjoint sets)

{Bx ⊂ Γ(x)}x∈⋃v∈S Av with |Av| = αD1 for every v ∈ S and |Bx| = αD0 for

every x ∈ ⋃v∈S Av.

Then there is a family of disjoint ∆1-sets {Xv ⊆ Av}v∈S and a family of

disjoint ∆0-sets {Yv,x ⊆ Bx}v∈S,x∈Xv .
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Proof. We shall assume that D0D1 ≤ εN1 as otherwise S = ∅ and there

is nothing to prove. The desired families will be obtained in three steps.

Let m = (α− ε)D1 and α0(ε) = 13
√
ε.

In step one we obtain a family of disjoint sets {X ′v ⊆ Av}v∈S such that,

for every v ∈ S, we have that |X ′v| = m and every u ∈ X ′v has deg(u) ∼ε D0.

This is possible because of Property (‡).(i).
In step two we obtain a family of disjoint sets

{
Y ′v ⊆ Yv

def.
=
⋃

x∈X′v

Bx

}
v∈S

with |Y ′v | = (α− 12
√
ε)D0 |X ′v|.

To obtain this family we will use Lemma 2.12. For S ′ ⊆ S, denote by XS′

the union XS′ =
⋃
v∈S′ X

′
v. Note that we have XS′ ⊆ Γ(S ′) with |XS′ | =

m |S ′| ≥ √εD1 |S ′|. Hence, from Property (‡).(iii) we get that |Γ(XS′)| ≥
d∗(XS′) ≥ (1 − 5

√
ε)D0 |XS′|. Using the degree hypothesis on the elements

of the set X ′v and applying Lemma 2.3 we conclude that

∣∣∣∣
⋃

v∈S′
Yv

∣∣∣∣ ≥ #
{
{x, y} ∈ E(G) : x ∈ XS′ , y ∈ Bx

}
+ 2{Γ(XS′)− e(XS′ , V1)}

≥
∑

x∈XS′
|Bx|+ 2{(1− 5

√
ε)D0 |XS′ | − (1 + ε)D0 |XS′ |}

≥ (α− 12
√
ε)D0 |XS′ | = (α− 12

√
ε)D0m |S ′|.

Using Lemma 2.12 we may obtain the desired family of disjoint sets Y ′v ⊆ Yv

with |Y ′v | = (α− 12
√
ε)D0m for all v ∈ S.

In step three we obtain the families described in the statement of this

lemma.

Consider the pair (X ′v, Y
′
v) constructed above for some v ∈ S. Let Xv ⊂ X ′v,

with |Xv| ≤ ∆1, be a maximal set such that there exists a family of disjoint

∆0-sets {Yv,x ⊂ Bx ⊂ Y ′v}x∈Xv . We claim that |Xv| = ∆1. Suppose for the

sake of a contradiction that |Xv| < ∆1.
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Let

Y ′′v = Y ′v \
⋃

x∈Xv
Bx (2.12)

Notice that we have

|Y ′′v | ≥ (α− 12
√
ε)D0m− |Xv|αD0 > ∆0m.

Moreover,

Y ′′v ⊂ Yv \
⋃

x∈Xv
Bx =

⋃

x∈X′v

Bx \
⋃

x∈Xv
Bx ⊂

⋃

x∈X′v\Xv

Bx.

Consequently,

∑

x∈X′v\Xv

|Bx ∩ Y ′′v | ≥ |Y ′′v | > ∆0m = ∆0 |X ′v|.

By averaging, there exists x∗ ∈ X ′v \Xv such that |Bx∗ ∩ Y ′′v | > ∆0. On the

other hand,
⋃
x∈Xv Yv,x ⊂

⋃
x∈Xv Bx which means that Y ′′v is pairwise disjoint

with every set in the family {Yv,x}x∈Xv . It follows that there is Yv,x∗ ⊂
Bx∗ ∩ Y ′′v , with |Yv,x∗| = ∆0, which is pairwise disjoint with every member of

the family. This contradicts the maximality of Xv.

Since the families {X ′v}v∈S and {Y ′v}v∈S are disjoint, it is clear that {Xv}v∈S
and {Yv,x}v∈S,x∈Xv satisfy the conclusions of the lemma.

2.6 An embedding scheme for trees

In this section we present Algorithm 1, which embeds trees in suitable graphs.

This algorithm takes advantage of the lossless expansion property of the host

graph when constructing the embedding. Although many of the techniques

and ideas involved in this algorithm were already discussed at a superficial

level in Section 2.3, there are many new details and subtleties that are ad-

dressed solely in this section.
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A formal analysis of the algorithm is done through several invariants that

must hold at the beginning of every iteration. Once the invariants are known

to hold at the beginning of every iteration, we must prove that the algorithm

does not abort. If the algorithm does not abort then it succeeds in embedding

the tree, which is our goal.

In what follows, α ∈ (0, 1) will be a fixed number. For n0,∆0, n1,∆1

and ε > 0 given, let G′ = (V0, V1;E) be a graph and V ′1 ⊂ V1 be a set for which

the conclusion of Theorem 2.6 holds (namely, G′ satisfies Property (‡)). The

algorithm takes as input an (n0,∆0, n1,∆1)-tree T and a subgraph G ⊂ G′

with dG(v) ≥ αDi for all v ∈ V (G)∩ Vi, i = 0, 1, and such that V (G)∩ V1 ⊂
V ′1 . The output of the algorithm is an embedding of T into G ⊂ G′.

2.6.1 Description of the algorithm

For convenience we will think of T as a rooted tree (with root in V1(T )).

The algorithm constructs a sequence of partial embeddings in steps until the

whole tree is embedded. Initially the root of T is mapped to an arbitrary

vertex in V1. In each step a vertex p ∈ V1 which is already the image of some

tree vertex is chosen and every child and grandchild of the pre-image of p is

embedded during the step.

The vertices of T and G will be marked according to their current sta-

tus with respect to the partial embedding. A vertex may receive multiple

markings.

Active: a vertex v ∈ V1 which is the image of a tree vertex whose children

and grandchildren are not yet embedded. The set of these vertices will

be represented by the queue Q.

Used: a vertex of T or G that is already in the partial embedding.

Reserved: if a vertex w ∈ V (G) is reserved to v ∈ ΓG(w) then w can only
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be used to embed a child of the pre-image of v. More formally, there

is a family of disjoint vertex sets where each set is exclusively reserved

for the children of a given vertex.

Dangerous: a vertex v ∈ V0 with at least αD0/2 neighbors which are used

or reserved. The set of dangerous vertices is denoted by D.

Free: a vertex is free if it is not used nor reserved nor dangerous. The set

of non-free neighbors will be contained in a set denoted by Z.

Critical: a vertex v ∈ V1 with at least αD1/2 neighbors which are not

free. Each critical vertex v will have an associate set Sv of reserved

vertices to ensure that it is always possible to embed the children of v

in the future. The set of critical vertices is denoted by C. The family of

disjoint reserved sets for critical vertices is denoted by S = {Sv : v ∈ C}.

Ultra-critical: a critical vertex v ∈ V1 that, in addition, had at least half

of its reserved vertices (Sv ∈ S) become dangerous. An ultra-critical

vertex v has an associate subset S ′v ⊂ Sv of reserved vertices where

each w ∈ S ′v has a set of reserved neighbors Zv,w ⊂ ΓG(w) which will

ensure that it is possible to embed the grandchildren of v that are

children of w. The set of ultra-critical vertices is denoted by U . The

family of disjoint reserved sets for children of ultra-critical vertices is

denoted by W = {Zv,w : v ∈ U , w ∈ S ′v}.

The challenge of this algorithm is to balance the reserved, dangerous and

the critical/ultra-critical vertices. Indeed, a new critical vertex requires other

free vertices to become reserved, which means that there will be fewer free

vertices and possibly newer critical vertices. Similarly, new ultra-critical

vertices cause other free vertices to become reserved, which might create new

dangerous vertices which in turn can produce newer ultra-critical vertices.
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We will show that the choices made by the algorithm ensure that it is always

possible to find enough free vertices to be reserved.

More precisely, given the expanding nature of the graph G, if the set of, say,

dangerous vertices, is large, then the set of non-free vertices of V1 must be

at least Ω(αD0) times as large. On the other hand, the number of non-free

vertices of V1 is easily expressed in terms of n1 (to account for the embedded

vertices) and the number of ultra-critical vertices (to account for the reserved

vertices of V1).

An important feature of the sets/markings described above is that they

are all monotone. Namely, new elements are added to Z, C, D, U while

the old elements are maintained. This ensures, for instance, that if a vertex

was marked critical at some step then in all future steps it will have a small

number of free neighbors (since Z is monotone).

After the embedding is extended on a given step, some new dangerous, crit-

ical or ultra-critical vertices may have been created. An iterative procedure,

restoreinvariants, defines the reserved sets for each new critical/ultra-

critical vertex until there are no more such vertices. This procedure uses

the auxiliary procedure find-critical-vertices which is responsible for

listing the new critical vertices and reserving neighborhoods for them. The

partial embedding is represented by a matching M ⊂ V (T )× V (G) and fM

is the corresponding function.
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Algorithm 1: Embedding trees

Input : A tree T with root r ∈ V1(T );
A graph G = (V0, V1;E).

Output: An embedding of T into G represented by a matching M .
1.1 M ← {(r, v)} ; // initialize embedding

1.2 Q← {v} ; // queue of active vertices

1.3 C ← ∅ ; // critical vertices

1.4 D ← ∅ ; // dangerous vertices

1.5 S ← ∅ ; // reserved neighborhoods (family of subsets of V0,

S = {Sv}v∈C)
1.6 U ← ∅ ; // ultra-critical vertices

1.7 SU ← ∅ ; // reserved neighborhoods for children of

ultra-critical vertices

1.8 W ← ∅ ; // reserved neighborhoods for grandchildren of

ultra-critical vertices

1.9 Z ← {v} ; // contains the set of non-free vertices

1.10 while Q 6= ∅ do
1.11 p← pop (Q) ; // obtain an active vertex

1.12 if p ∈ U then
// S ′p ∈ SU and Zp,u ∈ W for u ∈ S ′p

1.13 (M,S ′′p , {Z ′p,u}u∈S′′p )← embed-descendants

(M, p, S ′p, {Zp,u}u∈S′p) ;

1.14 enqueue
(
Q,
⋃
u∈S′′p Z

′
p,u

)
go-to 1.10 ; // skip to the next

iteration

1.15 Cp ← {v1, . . . , v` : vi is a child of f−1
M (p)} ;

1.16 if p /∈ C then
1.17 Sp ← ΓG(p) \ Z ; // if p ∈ C then Sp ∈ S is already

defined

1.18 find a subset S ′p = {u1, . . . , u`} ⊆ Sp and a family of disjoint sets
{Zi ⊆ ΓG(ui) \ Z}ui∈S′p , with |Zi| = #{children of vi}; if not

possible, abort ;
1.19 extend M : match vi to ui and {children of vi} to Zi arbitrarily for

all i ;

1.20 enqueue
(
Q,
⋃l
i=1 Zi

)
;

1.21 Z ← Z ∪ S ′p ∪
⋃l
i=1 Zi ;

1.22 restore-invariants;
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Procedure 2: embed-descendants(M, p, Sp, {Zp,u}u∈Sp)
Input : M – current embedding, f = fM is the corresponding

function;
p – a vertex in the host graph already used in the embedding;
Sp – children of p should be mapped into this set;
{Zp,u}u∈Sp – if a child v of f−1(p) is mapped to u ∈ Sp, the

children of v will be mapped into Zp,u.
Output: M – updated embedding;

S ′p ⊆ Sp – vertices used for children of f−1(p);
{Z ′p,u ⊆ Zp,u}u∈S′p – vertices used for grandchildren of f−1(p).

2.1 choose S ′p ⊆ Sp arbitrarily with |S ′p| = degT (f−1(p)) ;

2.2 match each v ∈ ΓT (f−1(p)) to some vertex in S ′p and update M ;

2.3 for each u ∈ S ′p, take some arbitrary Z ′p,u ⊆ Zp,u
with |Z ′p,u| = degT (f−1(u)) ;

2.4 for each u ∈ S ′p and each w ∈ ΓT (f−1(u)), match w to a vertex in Z ′p,u
and update M ;
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Procedure 3: restore-invariants
3.1 R← ∅ ;

3.2 D ←
{
x ∈ V0 : degG

(
x, V1 \ Z

)
< αD0/2

}
;

3.3 Z ′ ← ∅ ;
3.4 repeat
3.5 (C ′,S ′)← find-critical-vertices (Z, C, D) ;

// consolidate critical vertices

3.6 C ← C ∪ C ′, S ← S ∪ S ′, Z ← Z ∪⋃S∈S′ S ;
// promotion to ultra-critical

3.7 U ′ ←
{
w ∈ C \ U : |Sw \D| < |Sw|/2 = α2−1−rCD1

}
;

3.8 U ← U ∪ U ′ ;
3.9 if |U| > εN1/(D0D1) then

3.10 abort Algorithm 1 ; // comply with Invariant V

3.11 find sets S ′′w ⊆ Sw with |S ′′w| = |Sw|/4, for w ∈ U ′, and a family of
(not necessarily disjoint) α2−rUD0-sets
{Yw,u ⊆ ΓG(u) \ Z}w∈U ′,u∈S′′w ; if not possible, abort Algorithm 1 ;

3.12 Z ′ ← Z ′ ∪⋃w∈U ′,u∈S′′w Yw,u ;

3.13 R← R ∪ U ′
3.14 D ← {x ∈ V0 : degG(x, V1 \ (Z ∪ Z ′)) < αD0/2}
3.15 until U ′ = ∅;
3.16 find sets S ′w ⊆ S ′′w with |S ′w| = ∆1, for w ∈ R, and a family of disjoint

∆0-sets {Zw,u ⊆ Yw,u}w∈R,u∈S′w ; if not possible, abort Algorithm 1 ;
3.17 D ← D, Z ← Z ∪ Z ′ ∪D ;
3.18 SU ← SU ∪ {S ′w}w∈R ;
3.19 W ←W ∪ {Zw,u}w∈R,u∈S′w ;

31



Procedure 4: find-critical-vertices(Z, C, D)

Input : Z – set of used/reserved/dangerous vertices;
C – current collection of critical vertices;
D – set of vertices that will be marked dangerous.

Output: C ′ – the set of critical vertices found;
{Sw ⊆ ΓG(w) \ Z}w∈C′ – a family of disjoint α2−rCD1-sets.

4.1 C ′ ← ∅
4.2 X ← ∅
4.3 while there exists v ∈ V1 \ (C ∪ C ′)

with degG(v, V0 \ (Z ∪X ∪D)) < αD1/2 do
4.4 C ′ ← C ′ ∪ {v}
4.5 if |C ′|+ |C| > εN0/(8D1) then
4.6 abort Algorithm 1 ; // comply with Invariant IV

4.7 find family of disjoint α2−rCD1-sets {Sw ⊆ ΓG(w) \ Z}w∈C′
covering X; if not possible, abort Algorithm 1 ;

4.8 X ← ⋃
w∈C′ Sw ;

4.9 return (C ′, {Sw}w∈C′)

In what follows, rC , rU ∈ N will be sufficiently large absolute constants.

Invariants. At the beginning of every iteration of Algorithm 1 (line 1.10),

the following holds:

I. (cardinality of |Z|), we have

|Z ∩ V0| ≤ |fM(T ) ∩ V0|+ |D|+ |C|(α2−rCD1)

and

|Z ∩ V1| ≤ |fM(T ) ∩ V1|+ |U|(α22−rC−rUD0D1);

II. (non-critical/non-dangerous vertices) for every u ∈ V0 \ D, w ∈
V1 \ C, we have

degG(u, V1 \ Z) ≥ αD0

2
and degG(w, V0 \ Z) ≥ αD1

2
;
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Figure 2.2: A partial embedding of T into G. The edges represent the

embedded part of T . The active vertices in V1 are represented by circles and

some of the reserved sets (such as Sw, Zx,u) are represented by shaded areas.

III. (dangerous vertices) we have |D| < ε3N0 and, for every u ∈ D ⊆
V0 ∩ Z,

degG(u, Z ∩ V1) ≥ αD0

2
.

IV. (critical vertices) we have |C| ≤ εN0

8D1

and, for every w ∈ C ⊆ V1,

degG(w,Z ∩ V0) ≥ αD1

2
,

and the set Sw ∈ S has α2−rCD1 elements exclusively reserved for

embedding the children of w; moreover, if w /∈ U , then

|Sw \ D| = #{u ∈ Sw : degG(u, Z ∩ V1) < αD0/2}
≥ |Sw|/2 = α2−1−rCD1;

(2.13)

V. (ultra-critical vertices) we have |U| ≤ εN1

D0D1

and, for every w ∈
U ⊆ C,

|Sw ∩ D| = #{u ∈ Sw : degG(u, Z ∩ V1) ≥ αD0/2}
> |Sw|/2 = α2−1−rCD1;

(2.14)
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moreover, we also have S ′w ∈ SU with |S ′w| = ∆1, S ′w ⊂ Sw, and a

family of ∆0-sets {Zw,u}u∈S′w ⊆ W , where S ′w is reserved for children

of w and Zw,u is reserved for children of u (grandchildren of w).

Theorem 2.14. Let n0, n1,∆0,∆1 be given. Suppose that G′ = (V0, V1;E)

is a graph satisfying Property (‡) for some ε > 0, C = C(ε) is a sufficiently

large constant, N0 = Cn0, N1 = Cn1 and p = max{∆0/n1,∆1/n0} < ε/8.

Let V ′1 ⊂ V1 be determined by Property (‡), D0 = pN1 and D1 = pN0.

There exists an absolute constant c > 0 such that the following holds.

Let α = c
√
ε and G ⊆ G′[V0, V

′
1 ] be such that dG(u) ≥ αD0 for all u ∈

V0 ∩ V (G) and dG(w) ≥ αD1 for all w ∈ V ′1 ∩ V (G). Then, Algorithm 1

embeds any (n0,∆0, n1,∆1)-tree T into G.

Proof. We shall abuse the notation and set V0 ← V0 ∩ V (G) and V1 ←
V ′1 ∩ V (G). Hence G has classes V0 and V1. The proof is divided into three

parts:

• The Invariants I-V hold at the beginning of every iteration;

• Algorithm 1 does not abort when the input is a graph G as above to-

gether with an (n0,∆0, n1,∆1)-tree T (with arbitrary root r ∈ V1(T ));

• If the algorithm does not abort then it obtains an embedding of the

tree into the host graph.

Clearly, this establishes that for any (n0,∆0, n1,∆1)-tree T the algorithm

provides an embedding of T into G.

For the base case, we have |Z| = 1 and there are no critical or dangerous

vertices. It is then immediate that all the invariants hold.

Next, observe that when p ∈ U , the sets Z, C, U , S, W remain unchanged

since the elements of S ′′p ⊆ S ′p ∈ SU , S ′p ⊂ Z, are used for the children of p

and the elements of {Zp,u ⊂ Z}u∈S′′p ⊆ W are used for the grandchildren of p.
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Hence, in this case, the invariants are maintained and the algorithm does not

abort.

Suppose that all the invariants hold at the beginning of some iteration and

that p /∈ U . Let us prove that all the invariants hold at the beginning of the

next iteration (if the algorithm does not abort).

Proof of Invariant I. Examining the steps where Z is updated (see lines 1.9,

1.21, 3.17), it is clear that, by the end of the iteration, Z ∩ V0 consists of

vertices used by the embedding (fM(T )∩V0), dangerous vertices (namely, D)

and reserved vertices (
⋃
w∈C Sw) which account for |C|(α2−rCD1) vertices. It is

also clear that Z∩V1 contains vertices used in the embedding (fM(T )∩V1) and

the vertices added to Z ′ by line 3.12, which are at most
∑

w∈U |Sw|α2−rUD0.

Note that Z ′ contains the reserved vertices of V1. The invariant follows.

Proof of Invariant II. Let us analyze the Procedure restore-invariants.

By construction (see line 4.3), immediately after Procedure find-critical-

vertices returns (line 3.5) and the critical vertices are consolidated (in par-

ticular, Z now contains the newly reserved neighborhoods), no vertex w ∈
V1 \ C satisfies degG(w, V0 \ (Z ∪D)) < αD1/2.

If U ′ is empty on some iteration of the inner loop, the loop will be complete

at that iteration without changing D or Z any further. In particular, the

degree condition for non-critical vertices (V1 \ C) is ensured at the end of the

iteration and this part of Invariant II holds at the next iteration.

The case of u ∈ V0 \ D is simpler: any vertex that does not satisfy the

degree condition by the end of the iteration is either already dangerous or

becomes dangerous (see lines 3.2 and 3.14).

Proof of Invariant III. The degree part of Invariant III follows immediately

from the updates made to D (lines 3.2 and 3.14) and the fact that Z never

loses any element. The fact that D ⊂ Z easily follows from line 3.17.
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It remains to upper bound the number of dangerous vertices. Observe

that |Z ∩V1| is determined by Invariant I (which is already proven to hold at

the next iteration). Also note that a dangerous vertex v must have, by the

end of the iteration, degG(v, Z ∩ V1) ≥ αD0/2. From the bound |U| ≤ εN1

D0D1

(which is enforced by line 3.10) we get

|Z ∩ V1| ≤ n1 +
εN1

D0D1

α22−rC−rUD0D1 ≤ εN1.

If |D| ≥ ε3N0 then let A ⊃ Z∩V1 be an arbitrary set with |A| = εN1, A ⊂ V1,

and observe that Property(‡).(v) implies that

eG′(D, Z ∩ V1) ≤ eG′(D, A) ≤ (1 + ε2)p |D| · εN1.

On the other hand,

eG′(D, Z ∩ V1) ≥ |D|(αD0/2) = p |D|
(α

2
N1

)
.

These inequalities imply that α < 3ε, a contradiction. Therefore |D| <
ε3N0.

Proof of Invariant IV. There is only one place in the algorithm where the

set of critical vertices grows—just after a call to Procedure find-critical-

vertices (l. 3.5) these critical vertices are consolidated. A subtle, but very

important detail of find-critical-vertices consists in requiring that the

family obtained in line 4.7 covers the set X (which is the union of the reserved

sets of the previous iteration). Hence, a vertex that had a small number of

free neighbors could only have less free neighbors in following iterations.

We also note that once an element is added to D, it remains in D (and

is subsequently added to D). It is immediate that the number of edges a

critical vertex sends into Z cannot become smaller than αD1/2.

The reserved neighborhoods are defined to have α2−rCD1 elements each

and, once a reserved neighborhood is finally determined (after Procedure
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find-critical-vertices returns), it is consolidated by being merged into

Z. Since the reserved neighborhoods are disjoint, and new reserved neigh-

borhoods must be chosen outside of Z, no other vertex can have its children

embedded in a reserved neighborhood.

Moreover, if a vertex w ∈ C fails equation (2.13) at the end of the iteration,

the line 3.7, together with the condition of the inner loop (that U ′ = ∅),
ensures that w ∈ U will hold when the iteration ends.

The cardinality of C is enforced by line 4.6.

Proof of Invariant V. If no new ultra-critical vertex was found at the itera-

tion, the invariant is preserved. Hence, let us assume that some ultra-critical

vertex was found.

Following the construction of U ′ (see line 3.7), at the moment a vertex w

becomes ultra-critical, equation (2.14) holds. Since the set Z is monotonically

increasing, this equation must continue to hold subsequently.

The family of reserved sets of Invariant V is obtained at line 3.16. Those

reserved vertices will not be used to embed the children/grandchildren of any

other vertex because the reserved sets are merged into Z and no other vertex

can reserve or use vertices in Z to embed their children/grandchildren.

The cardinality of U is enforced by line 3.10.

In the following analysis we shall denote by Z̃ the set Z at the beginning

of an iteration of the Algorithm 1. We also let Ẑ denote the set Z just after

line 1.21.

The algorithm does not abort at find-critical-vertices. Let us suppose

for the sake of a contradiction that the algorithm aborts at line 4.6. This

means that there is a set C ∪ C ′, with |C ∪ C ′| = εN0/(8D1), such that each

vertex v ∈ C ∪ C ′ sends at least αD1/2 edges into (Z ∪X ∪D) ∩ V0. On the

other hand, |D| ≤ ε3N0 (see the proof of Invariant III), which together with
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Invariant I imply that |(Z ∪X ∪D) ∩ V0| is at most

|fM(T )∩V0|+ |D|+(|C|+ |C ′|)α2−rCD1 ≤ n0 +ε3N0 +
εN0

8D1

α2−rCD1 <
αεN0

32
,

if we set rC ≥ 3.

In G′ the Property (‡).(ii) ensures that every subset of V1 having at most

εN1/(8D0) = εN0/(8D1) elements expands by at least (1 − ε)D1. Hence,

using Lemma 2.3 we obtain

|(Z ∪X ∪D) ∩ V0| ≥ (α/2− 2ε)D1
εN0

8D1

>
αεN0

32
,

a contradiction.

Now we show that the procedure does not abort at line 4.7. By the above

argument, the set C ′ has cardinality at most εN0/(8D1). Moreover, (Ẑ \ Z̃)∩
V0 contains at most ∆1 elements.

Observe that every call to find-critical-vertices is made with Z = Ẑ.

Since vertices in C ′ were not critical, Invariant II states that every w ∈ C ′
has degree at least αD1/2−∆1 on Ẑ.

Note that, although we consider the degree of vertices w ∈ V1 \ C on the

set Z∪X∪D in find-critical-vertices to classify a vertex as critical, the

reserved neighborhood of new critical vertices may include recent dangerous

vertices (those in D\Z). The reason is that vertices which were just classified

as dangerous still have reasonably large degree outside Z.

To prove that the desired family of disjoint sets can be found, we invoke

Properties (‡).(i), (‡).(ii) and Lemma 2.3 to establish that any subset C ′′ ⊂
C ′ ⊂ V ′1 must have at least

(
αD1

2
− 4ε

)
|C ′′| neighbors outside of Z (in G).

Hence we may apply Lemma 2.12 to obtain a family of disjoint sets, each

having cardinality α2−rCD1, such that the union of these sets covers X.

The algorithm does not abort at line 1.18. If p /∈ C, then

|ΓG(p) \ Z| ≥ αD1/2
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because of Invariant II. Otherwise, p ∈ C \U and because of Invariant IV, we

have that |Sp\D| ≥ |Sp|/2 = α2−1−rCD1. SinceD ⊂ Z, in both cases, p has at

least α2−1−rCD1 neighbors u (either free or reserved to p) satisfying |ΓG(u) \
Z| ≥ αD0/2.

If εN1 ≥ D0D1, apply Lemma 2.13 to S ← {p}, with α2.13 ← α2−1−rC ,

Ap ⊆ Sp \ D with |Ap| = α2.13D1 and Bx ⊆ ΓG(x) \ Z with |Bx| = α2.13D0

for all x ∈ Ap. Refine the families obtained from Lemma 2.13 in such a way

that the corresponding cardinalities match the degrees in the tree. This will

produce the set S ′p and the family of disjoint sets {Zu}u∈S′p of line 1.18.

Now we deal with the case εN1 < D0D1. We may require every vertex in Sp

to have degree at most (1 + ε)D0 by possibly deleting at most εD1 vertices

from Sp (see Property (‡)).(i)). Use Property (‡).(iv) applied to Sp \ D ⊂
ΓG(p) to obtain disjoint sets T1, . . . , Tr ⊂ Sp \ D. We need to find S ′p =

{u1, . . . , u`} ⊂ Sp and a family of disjoint sets {Zi ⊆ Γ(ui) \ Z}`i=1.

Given an arbitrary set J ⊂ V1 such that |J | ≤ min{n1,∆0∆1}, we shall

prove that the number of vertices u ∈ Ti (i = 1, . . . , r) having |ΓG(u) \ (Z ∪
J)| < αD0/4 is at most |Ti|/2. Indeed, since Ti ⊆ Sp\D, we have |ΓG(u)\Z| ≥
αD0/2 for all u ∈ Ti. Let T ′i = {u ∈ Ti : |ΓG(u) \ (Z ∪ J)| < αD0/4}. Note

that for every vertex u ∈ T ′i ,

|ΓG(u) ∩ J | ≥ |ΓG(u) \ Z| − |ΓG(u) \ (Z ∪ J)| ≥ αD0/4.

Since T ′i is an LE set (by Property (‡).(iv)), we can apply Lemma 2.3 to

show that min{∆0∆1, n1} ≥ |J | ≥ αD0 |T ′i |/8. For C sufficiently large, it

follows that

|T ′i | ≤
8

αD0

n1 =
8

αCD0

N1 ≤
εN1

8D0

and

|T ′i | ≤
8

αD0

∆0∆1 ≤
8

αC2
D1 ≤

εD1

16
,

thus |T ′i | ≤ 1
2

min{εD1/8, εN1/(4D0)} = 1
2
|Ti|.
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We now construct S ′p and its corresponding family sequentially. Suppose

that u1, . . . , uk have been selected from
⋃r
i=1 Ti together with a family of

disjoint sets {Zi}ki=1. Set J =
⋃k
i=1 Zi (initially J = ∅) and note that |J | ≤

∆0∆1 since k ≤ ` ≤ ∆1 and |Zi| ≤ ∆0 for all i. It is also clear that |J | ≤ n1

since to each vertex in J there corresponds a vertex in V1(T ).

By the above argument, at least half of the elements in
⋃r
i=1 Ti have large

degree outside of Z ∪ J . Pick an arbitrary uk+1 (distinct from u1, . . . , uk)

having at least αD0/4 neighbors outside of Z∪J . Set Zk+1 to be an arbitrary

subset of ΓG(uk+1) \ (Z ∪ J) having the same number of elements as the

number of children of uk (which is at most ∆0 < αD0/4). Since ` ≤ ∆1 <
1
8
|Sp| < 1

2

∣∣⋃r
i=1 Ti

∣∣, it is always possible to extend the selection and the

corresponding family.

The algorithm does not abort at line 3.10. Suppose for the sake of a contra-

diction that the algorithm aborts because U grew larger than εN1/(D0D1).

Let us start with the case εN1 ≥ D0D1. This means that we can find a

set S of εN1/(D0D1) elements together with a family of disjoint α2−1−rCD1-

sets {Xw ⊆ ΓG(w)}w∈S where each u ∈ Xw sends at least αD0/2 edges

into Z ∩ V1. We may also require that every vertex in Xw should have de-

gree at most (1 + ε)D0 in G′ by possibly deleting at most εD1 < α2−2−rCD1

vertices from Xw (see Property (‡).(i)).
From Invariant I we know that

|Z ∩ V1| ≤ |fM(T ) ∩ V1|+
εN1

D0D1

(α22−rC−rUD0D1) ≤ N1

( 1

C
+ εα22−rC−rU

)
.

On the other hand, if we take the set T =
⋃
w∈S Xw, then

|T | = α2−2−rCD1 |S| >
√
εD1 |S|

and by Property (‡).(iii),

d∗G′(T ) ≥ (1− 5
√
ε)α2−2−rC (|S|D0D1) = (1− 5

√
ε)εα2−2−rCN1.

40



Since the degrees of the vertices of T (in G′) are at most (1+ε)D0, applying

Lemma 2.3 over the graph G[T, Z ∩ V1] ⊂ G′, we obtain

|Z ∩ V1| ≥ |T |
αD0

2
+ 2{(1− 5

√
ε)D0 |T | − (1 + ε)D0 |T |}

≥
(α

2
− 12
√
ε
)
D0 |T |

≥ α22−4−rCN1,

when c = 48 (that is, α = 48
√
ε). However, for rU > 4 and C = C(ε)

sufficiently large this is a contradiction with the upper bound on |Z ∩ V1|.
For the case εN1 < D0D1 we do not allow even a single ultra-critical vertex.

Let us suppose for the sake of contradiction that some vertex w became an

ultra-critical vertex. Apply Property (‡).(iv) to Sw. Let T1, . . . , Tr ⊂ Sw

be the disjoint sets obtained from the property. By assumption, there is a

set B ⊆ Sw with at least |Sw|/2 elements u ∈ Sw with degG(u, Z ∩ V1) ≥
αD0/2. Since

∑r
i=1 |Ti| ≥ 3

4
|Sw|, there exists some Ti with |Ti ∩B| ≥ |Ti|/4.

Because Ti ∩B is an LE set, from Lemma 2.3 we obtain

|Z ∩ V1| ≥
αD0

4
|Ti ∩B| ≥

αD0

16
|Ti|.

Notice that

|Ti| = min{εD1/8, εN1/(4D0)} ≥ εN1

8D0

,

which implies that |Z∩V1| ≥ αεN1/128 = (Cαε/128)n1. On the other hand,

Invariant I and the fact that U = ∅ imply that |Z ∩ V1| ≤ n1. For our choice

of large C, this is a contradiction.

Claim 2.15. For any w ∈ V1, the number of vertices u ∈ ΓG(w) hav-

ing degG′(u) ∼ε D0 and degG(u, (Ẑ \ Z̃) ∩ V1) ≥ αD0/4 is at most
√
εD1.

Proof of Claim 2.15. Given any w ∈ V1, let us bound the number Nw of

vertices u ∈ ΓG(w) such that dG′(u) ∼ε D0 and degG(u, (Ẑ \ Z̃) ∩ V1) ≥
αD0/4. Since (Ẑ \ Z̃) ∩ V1 =

⋃l
i=1 Zi (see line 1.21), it is clear that |(Ẑ \
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Z̃) ∩ V1| ≤ ∆0∆1. If Nw ≥
√
εD1, by Property (‡).(iii) and Lemma 2.3, we

should have

|(Ẑ \ Z̃) ∩ V1| ≥ (α/4− 10
√
ε− 2ε)

√
εD0D1,

a contradiction for sufficiently large C.

The algorithm does not abort at line 3.11. Note that Z ∩ V1 = Ẑ ∩ V1 holds

throughout the inner loop. Let w ∈ U ′. Since w was not ultra-critical be-

fore, by Invariant IV and equation (2.13), at least half of the elements u ∈
Sw ∈ C are such that degG(u, V1 \ Z̃) ≥ αD0/2. (It is possible that a ver-

tex becomes critical and is promoted to ultra-critical during the execution

of restore-invariants; the claim above is still true in that case since the

reserved neighborhood for such a vertex would only contain vertices out-

side D ⊆ Z̃.)

Since at most εD1 vertices u ∈ Sw fail to satisfy degG′(u) ∼ε D0, by

Claim 2.15, less than 2
√
εD1 neighbors of w ∈ U ′ may have more than αD0/4

edges going into Ẑ \ Z̃. Therefore, the number of u ∈ Sw such that

degG(u, V1 \ Z) = degG(u, V1 \ Z̃)− degG(u, Ẑ \ Z̃) ≥ αD0/4 > α2−rUD0

is greater than |Sw|/4. Since the family {Yw,u ⊆ Γ(u) \Z}w∈U ′,u∈S′w does not

need to be disjoint, we are done.

The algorithm does not abort at line 3.16. We shall apply Lemma 2.13 with

S ← R, α2.13 ← α2−rU , Aw ⊂ S ′′w with |Aw| = α2.13D1 for all w ∈ S

and Bx = Yw,x with |Bx| = α2.13D0 for all w ∈ S, x ∈ Aw. The families

obtained through Lemma 2.13 are precisely the ones required at line 3.16.

We have covered all invariants and all places where the algorithm could have

aborted. It remains to show that the algorithm provides an embedding of T
into G. Notice that the root of T is mapped to an active vertex in V1. Every
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embedding step consists in embedding the children and grandchildren of an

active vertex from Q and then adding all of the embedded grandchildren to

the queue Q. It follows by induction that every vertex of the tree is eventually

embedded.

It is possible to apply Theorem 2.14 to every sufficiently dense subgraph of

a graph satisfying Property (‡) by pre-processing the graph in a simple way.

Theorem 2.16. Let n0, n1,∆0,∆1 be given. Suppose that G′ = (V0, V1;E)

is a graph satisfying Property (‡) for some ε > 0, C = C(ε) is a sufficiently

large constant, N0 = Cn0, N1 = Cn1 and p = max{∆0/n1,∆1/n0} < ε/8.

There exists an absolute constant c > 0 such that any subgraph G ⊆ G′

with e(G) ≥ c
√
ε e(G′) contains every (n0,∆0, n1,∆1)-tree.

Proof. Let D0 = pN1 and D1 = pN0. Notice that, by assumption, e(G′) ∼ε2
pN0N1 = D0N0 = D1N1.

Let V ′1 ⊆ V1 be the set described by Property (‡) and let α = 8α2.14,

where α2.14 is defined on Theorem 2.14. Suppose that e(G) ≥ 2α e(G′).

By (‡).(v), we may assume thatG does not contain any edge incident to V1\V ′1
by removing edges fromG while having e(G) ≥ 3

2
α e(G′) (the number of edges

removed is at most (1 + ε2)pN0(2εN1) < 3ε e(G′)).

While there exists a vertex in V (G)∩V0 having degree less than αD0/8 or a

vertex in V (G)∩V ′1 having degree less than αD1/8, remove this vertex from G

together with all the edges incident to the removed vertex. The number of

edges incident to removed vertices is at most N0(αD0/8) + N1(αD1/8) ≤
1
2
α e(G′). Hence, the remaining graph G is non-empty and the graphs G ⊂
G′ satisfy the conditions of Theorem 2.14. Consequently, G contains every

(n0,∆0, n1,∆1)-tree.

From Theorem 2.16 we may prove Beck’s conjecture:

Corollary 2.17. The size-Ramsey number of a tree T is Θ(β(T )).
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Proof. Given the constant c of Theorem 2.16, let ε > 0 be such that c
√
ε <

1/2. Without loss of generality, assume that ε = 2−a for some a > 0.

Let n0,∆0, n1,∆1 be the parameters of T . By possibly enlarging these val-

ues, we may assume that each of them is a power of 2. Since for every

integer b there is an n such that 2n ≤ b < 2n+1, in the worst case, we may

have to double each parameter. We may also assume that n0∆0 = n1∆1 by

possibly increasing some ∆i. These changes may only affect n0∆0 +n1∆1 by

a multiplicative constant. The embedding algorithm is not affected since the

parameters are only used as upper bounds on the cardinalities of the classes

and their respective degrees.

Let p = ∆1/n0 = ∆0/n1. If p ≥ ε/8 then we use the complete bipartite

graph KN0,N1 as our Ramsey graph (see Lemma 2.7). The complete bipartite

graph has O(n0n1) edges while β(T ) = 2pn0n1 = Ω(n0n1).

If p < ε/8, we let C = C(ε) be a sufficiently large constant and use The-

orem 2.6 to obtain a graph G′ satisfying Property (‡) for ε, N0 = Cn0,

N1 = Cn1 and p. By our choice of ε, from Theorem 2.16 we get that any

subgraph G ⊆ G′ with at least 1
2
e(G′) edges contains T .

Since in any two-coloring of the edges of G′ there will be one color contain-

ing at least half of its edges, the graph induced by the most frequent color

contains T . Moreover, we have

e(G′) ≤ 2pN0N1 = 2C2pn0n1 = C2(pn0)n1 + C2(pn1)n0

= C2(∆0n0 + ∆1n1) = O(β(T )).

This shows that r̂(T ) = O(β(T )). Together with the lower bound proved by

Beck, the conjecture is proved.
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Chapter 3

Distance preserving Ramsey

graphs

3.1 Introduction

In [7], [10] and [35, 37] the following extension of the Ramsey Theorem was

proved.

Theorem 3.1. For any graph G there exists a graph R with the property

that in any 2-coloring of the edges of R there exists an induced copy G ⊂ R

which is monochromatic.†

In other words, Theorem 3.1 states that the class of all graphs and induced

embeddings has the edge-Ramsey property. This theorem, proved in 1973,

together with some generalizations and other related results that soon fol-

lowed gave rise to the study of restricted/induced/sparse families of Ramsey

Theorems (for a survey on these topics see [14, 28]).

0The contents of this chapter will appear in [6].
†For a graph G, we will use G (typeset in a sans-serif font) to denote an isomorphic

copy of G.
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Remark 3.2. For simplicity we state Ramsey theorems only for 2-colorings

when in fact it is straightforward to extend them to an arbitrary number of

colors by applying the 2-color version inductively.

Theorem 3.1 was generalized in [8] and [30] where it was proved that the

same statement remains true if the coloring of edges (K2) is replaced by the

coloring of cliques (Kk) or induced independent sets (Kk). Moreover, Theo-

rem 3.1 fails to be true if one colors copies of an arbitrary non-homogeneous

graph F . More formally, for any graph F 6= Kk, Kk there exists G such that

for every graph H there is a 2-coloring of the set of all induced copies of F

in H such that no induced copy G in H is monochromatic (that is, there

must be induced copies of F in G of both colors).

With terminology used in [22] this can be rephrased as follows.

Proposition 3.3. The class of graphs and induced embeddings has the F -

Ramsey property if and only if F is a complete graph or an independent

set.

Let us show by means of a simple example, that for non-homogeneous

unordered graphs F , the class of (unordered) graphs and induced embeddings

does not have the F -Ramsey property. Consider the graph F = P2, the path

with two edges. Let G = C4 be the cycle of length four and R be an arbitrary

graph. We will now introduce a 2-coloring of the (unordered) induced copies

of P2 in R. First, label the vertices of V (R) with integers 1, 2, . . . , |V (R)|.
For a path ijk of length two in R, color ijk red if the middle vertex j is the

smallest of the three (j < i and j < k); otherwise, color it blue. Under this

coloring, any induced copy of G = C4 in R must contain P2’s of both colors.

Indeed, among the four vertices of the C4, the smallest vertex is the middle

vertex of a P2 colored red and the largest vertex is the middle vertex of a P2

colored blue.
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However, it was shown in [30] that if one considers graphs with linearly

ordered vertex sets and induced monotone embeddings then the theorem

becomes true for all graphs (F,<). This is stated in Theorem 3.6 below.

Remark 3.4 (Ordered graphs). Since our result deals with an extension of

Theorem 3.6, in this chapter we typically assume (as in [1] and [29]) that each

graph has a linear order on its vertex set. The example we described above

(coloring P2’s) shows that this assumption is crucial. All maps between

ordered vertex sets are considered to be monotone, that is φ(u) < φ(v)

whenever u < v. In particular, all isomorphisms between ordered graphs are

unique.

Definition 3.5 (Subgraphs). We say that the graph G is an induced subgraph

of the graph H (we write G ⊂ H) if V (G) ⊂ V (H), E(G) = {e ∈ E(H) :

e ⊂ V (G)} and the order <G in V (G) respects the order <H in V (H), that

is, for every u, v ∈ V (G) we have u <G v if and only if u <H v.

To avoid cumbersome notation, we will omit the linear orders <H , <G and

denote by

(
H

G

)

ind

the set of all induced subgraphs ofH which are (monotone)

isomorphic to G.

With this definition we may now state Ramsey’s theorem for graphs with

monotone induced embeddings.

Theorem 3.6 ([1, 29]). For any ordered graphs F and G there exists an

ordered graph R such that for any partition
(
R

F

)

ind

= A1 ∪ A2

there exists some G ∈
(
R
G

)
ind

such that
(
G
F

)
ind
⊂ Ai for some i ∈ {1, 2}.

In other words, Theorem 3.6 states that the class of ordered graphs and in-

duced monotone embeddings has the (F,<)-Ramsey property for any ordered

graph (F,<).
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Remark 3.7. If a class K endowed with a set of embeddings has the K-

Ramsey property for all K ∈ K it is called a Ramsey class (see, for instance,

[15]). Theorem 3.6 shows that the class of ordered graphs with induced

monotone embeddings is a Ramsey class. See [14, 15, 17, 21, 24, 25] for other

examples of Ramsey classes such as

• finite partially ordered sets (with a fixed linear extension);

• finite vector spaces (over a fixed field F );

• finite labeled partitions;

• finite linearly ordered metric spaces.

Another way to refine Theorem 3.1 is to consider distance preserving em-

beddings rather than induced ones. (Distance preserving embeddings have

been considered in other contexts, for instance, in [16, 38].) For ordered

graphs R and G, let G ∈
(
R
G

)
ind

be fixed. If for all x, y ∈ V (G) ⊂ V (R)

distG(x, y) = distR(x, y) (3.1)

then G is called a metric copy of G in R and the (unique) monotone isomor-

phism φ : V (G) → V (G) ⊂ V (R) is called a distance preserving embedding

of G into R. Denote by
(
R
G

)
metric

the set of all metric copies of G in R. Notice

that
(
R
G

)
metric

⊂
(
R
G

)
ind

.

The following theorem is a consequence of our main result, Theorem 3.11.

Theorem 3.8. For any ordered connected graphs F and H there exists an

ordered graph R such that for any partition

(
R

F

)

metric

= A1 ∪ A2

there exists some H ∈
(
R
H

)
metric

such that
(
H
F

)
metric

⊂ Ai for some i ∈ {1, 2}.
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In effect, Theorem 3.8 shows that the class of ordered connected graphs

with metric embeddings is also a Ramsey class. Our proof of Theorem 3.8

will use a slightly more general setting.

A discrete metric ρ on the set [t] = {1, 2, . . . , t} is a symmetric function

ρ : [t]2 → N ∪ {∞} satisfying ρ(i, j) = 0 if and only if i = j and the triangle

inequality:

ρ(i, j) + ρ(j, k) ≥ ρ(i, k).

In this chapter, the metrics considered correspond to the distance given by

shortest paths in a graph. For instance, the metric of a clique would satisfy

ρ(i, j) = 1 for all i 6= j and the metric of an empty graph would satisfy

ρ(i, j) =∞ for all i 6= j.

Definition 3.9 (Metric induced on a set; (ρ,G)-tuples). Let G be an ordered

graph and S = {v1, . . . , vt} ⊂ V (G), v1 < v2 < · · · < vt, be an arbitrary set.

The metric ρ induced by G on S is given by ρ(i, j) = distG(vi, vj).

Let ρ be a fixed metric. A set S which induces the metric ρ in G is called

a (ρ,G)-tuple. The set of all (ρ,G)-tuples of G is denoted
(
G
ρ

)
.

We prove a slightly stronger statement from which Theorem 3.8 is derived

as a corollary:

Lemma 3.10. Let t ∈ N, ρ be a metric on [t] and H be an ordered connected

graph.

Then there exists an ordered graph R such that for every 2-coloring of
(
R
ρ

)

there exists H ∈
(
R
H

)
metric

such that
(
H
ρ

)
is monochromatic.

We now derive Theorem 3.8 from Lemma 3.10 as follows. Let F and H be

given ordered graphs. Take t = |V (F )| and without loss of generality assume

that V (F ) = [t] (with the usual order <). Let ρ be the metric corresponding

to distF , namely, ρ(i, j) = distF (i, j).
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We first obtain an ordered graph R from Lemma 3.10 applied to H and ρ.

We claim that the graph R has the Ramsey property of Theorem 3.8.

Notice that
(
R
F

)
metric

∼=
(
R
ρ

)
since the vertex set of a metric copy of F

is necessarily a (ρ,R)-tuple. Consequently, we can view any coloring χ of(
R
F

)
metric

as a coloring of
(
R
ρ

)
. By the hypothesis on R, there exists a graph

H ∈
(
R
H

)
metric

such that every (ρ,H)-tuple has the same color c under χ. For

every F ∈
(
H
F

)
metric

the set V (F) is a (ρ,H)-tuple and therefore χ(F) = c. It

follows that
(
H
F

)
metric

is monochromatic.

In Section 3.4 we prove Lemma 3.10 and use it to establish our main result,

Theorem 3.11.

Theorem 3.11. Let t ∈ N and H be a connected ordered graph.

There exists an ordered graph R with the following property. For every 2-

coloring of
(
V (R)
t

)
there exists H ∈

(
R
H

)
metric

such that
(
H
ρ

)
is monochromatic

for every metric ρ on [t].

After fixing connected graphs H and F note that Theorem 3.8 asserts that

coloring all metric copies of F in R yields a monochromatic
(
H
F

)
metric

. On

the other hand, Theorem 3.11 applies to all subgraphs of H on t vertices

(even those which are not connected). It guarantees that there exists a copy

of H in which the color of a t element subgraph depends only on its metric

within H.

Note that Theorem 3.11 extends Theorem 3.8

Remark 3.12. The particular case t = 2 of Theorem 3.11 implies that for

any connected graph H it is possible to find some graph R such that every

coloring of the pairs in
(
V (R)

2

)
yields a metric copy H ∈

(
R
H

)
metric

in which

the color of {x, y} ∈
(
V (H)

2

)
is a function of distH(x, y). (In particular, the

edges of H are monochromatic.) This special case t = 2 was stated in the

survey [28].
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Remark 3.13. Notice that for t = 2 the linear order on the vertices is

irrelevant. In Section 3.4.2 we show a version of Lemma 3.10 that can be

applied to unordered graphs (provided that the metric is “homogeneous”).

Definition 3.14 (ρ`-metric sets and (ρ`, G)-tuples). Let `, t ∈ N be fixed

and ρ be a metric on [t]. Let H = (H,<) be a graph and S = {v1, v2, . . . , vt}
be a subset of V (H) with v1 < v2 < · · · < vt. We say that S is ρ`-metric

with respect to H if for all 1 ≤ i < j ≤ t

• distH(vi, vj) = ρ(i, j) whenever ρ(i, j) ≤ `;

• distH(vi, vj) ≥ ` whenever ρ(i, j) > `.

A set S as above is called a (ρ`, H)-tuple. We denote by
(
H
ρ`

)
the family of

all (ρ`, H)-tuples of H.

A graph G naturally induces a metric ρ(G) over its vertices by defining the

distance between pairs of vertices as the length of a shortest path connecting

them (when the pair is not connected, their distance is ∞).

Definition 3.15 (`-metric (sub)graph). For a graphs G ⊂ R, the graph G

is said to be `-metric in R if V (G) is ρ(G)`-metric with respect to R. A

connected graph G is metric in R if it is `-metric in R for all `—namely,

distG(x, y) = distR(x, y) for every x, y ∈ V (G).

Notice that G is `-metric in R if no pair of vertices in G admits a shortcut

path in R of length smaller than `. For instance, G is 2-metric in R if and

only if it is an induced subgraph of R.

Recalling that all vertex sets are linearly ordered, for A,B ⊂ V (G) we will

write A ≺ B if max(A) < min(B).

Definition 3.16 (q-partite graphs). For q ≥ 2, the graph G together with

the linear order < on V (G) and a partition V (G) = V q
1 (G) ∪ · · · ∪ V q

q (G) is

called q-partite if
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• every edge e ∈ G is crossing, that is, |e∩V q
i (G)| ≤ 1 for all i = 1, . . . , q;

• the partition satisfies V q
1 (G) ≺ V q

2 ≺ · · · ≺ V q
q (G).

Definition 3.17 (Partite embedding/isomorphism). If G and H are or-

dered q-partite graphs, a partite embedding is an injective monotone map

φ : V (G) → V (H) which is edge-preserving (φ(e) ∈ E(H) for all e ∈ E(G))

and satisfies φ(V q
j (G)) ⊂ V q

j (H) for all j = 1, . . . , q. If, in addition, φ is an

isomorphism then we call it a partite isomorphism.

Definition 3.18 (Notation). We will use the following notation.

• For a (hyper)graph G we abuse the notation and write e ∈ G to de-

note e ∈ E(G).

• For a (hyper)graph G and a one-to-one map φ : V (G)→ X, set

φ(G) =
(
φ(V (G)), {φ(e) : e ∈ G}

)
.

• For q-partite graphs G and H we denote by
(
H
G

)
Part(q)

the set of all

subgraphs φ(G) of H where φ : V (G)→ V (H) is a partite embedding.

• If G is an isomorphic copy of G with (unique) monotone isomorphism

σ : V (G) → V (G) and I is a hypergraph with V (I) ⊂ V (G) then we

denote by IG the hypergraph σ(I).

Lemma 3.19 below is a technical result which will be used in the proof of

our main result, Theorem 3.11.

Lemma 3.19 (Partite Lemma). Let `, t, q ∈ N, t ≤ q. Suppose that

• ρ is a fixed metric on [t];

• G is a q-partite (ordered) graph with partition V (G) = V q
1 (G) ∪ · · · ∪

V q
q (G);
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• for some 1 ≤ j1 < j2 < · · · < jt ≤ q, I ⊂
(
G
ρ`

)
is a t-partite t-uniform

hypergraph with classes {V q
ji

(G)}ti=1 consisting of selected (ρ`, G)-tuples.

Then there exists a q-partite ordered graph R and G ⊂
(
R
G

)
Part(q)

satisfying

the following properties.

(L1) For any 2-coloring of the (ρ`, R)-tuples in
⋃

G∈G IG there exists G ∈ G
such that IG ⊂

(
G
ρ`

)
⊂
(
R
ρ`

)
is monochromatic.

(L2) Every G ∈ G is `-metric in R.

Remark 3.20. Note that
⋃

G∈G IG is a t-partite t-uniform hypergraph with

classes {V q
ji

(R)}ti=1. This is because by the definition of
(
R
G

)
Part(q)

every G ∈
G ⊂

(
R
G

)
Part(q)

is the image of G under a partite embedding into R (and thus

V q
j (G) ⊂ V q

j (R) for all j = 1, . . . , q).

Moreover, it will follow from our proof that for any pair of distinct G,G′ ∈ G
we have V (G) ∩ V (G′) ⊂ ⋃t

i=1 V
q
ji

(R).

The proof of Lemma 3.19 uses the partite construction method, which was

introduced in [23] and has been a successful tool for proving the existence

of several Ramsey structures such as metric spaces [21], systems of sets [32],

Steiner systems [31] etc. Perhaps, a novelty here is that the Partite Lemma,

which was usually proved using the Hales–Jewett theorem [18] directly, is

proved here by induction using the partite construction as well.

3.2 Proof of Lemma 3.19

We will prove a slightly stronger statement by double induction. The main

induction is over `. The base case (` = 2) is presented in Section 3.3

(Lemma 3.35). In this section we will prove the induction step from ` to

`+ 1.
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Remark 3.21. The somewhat complicated intersection conditions (A) and

(B) serve the purpose of imposing useful constraints on how the copies in

the family may intersect while at the same time being weak enough to be

carried by the induction. The condition (B) is later used to guarantee that

when two vertices are shared by two copies then the distances with respect

to each copy are “compatible”. More precisely, if we wish to obtain a family

of `-metric subgraphs then it is obvious that any pair of vertices at distance

`′ < ` in some copy should not have distance different than `′ in another

copy.

Induction over ` – Hypothesis for R` and G`
For a q-partite graph G, a metric ρ on [t] and a t-partite

t-uniform hypergraph I ⊂
(
G
ρ`

)
there is a graph R` =

R`(q,G, ρ, I) and G` = G`(q,G, ρ, I) ⊂
(
R`
G

)
Part(q)

satisfying

conditions (L1 ) and (L2 ) of Lemma 3.19 and

(L3 ) E(R`) =
⋃

G∈G`
E(G).

Moreover, G` satisfies the conditions (A) and (B) below.

Intersection conditions for a family G of copies of G

(A) If G1,G2 ∈ G and u ∈ V (G1) ∩ V (G2) then there are

(ρ`,Gj)-tuples Ij ∈ IGj , j = 1, 2, such that u ∈ I1 ∩ I2.

(B) If G1,G2 ∈ G and u, v ∈ V (G1) ∩ V (G2) then either

(B1) there exist (ρ`,Gj)-tuples Ij ∈ IGj , j = 1, 2, such

that {u, v} ⊂ I1 ∩ I2 or

(B2) the (unique) isomorphisms σj : V (Gj) → V (G),

j = 1, 2, satisfy σ1(u) = σ2(u) and σ1(v) = σ2(v).
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Given q, G, ρ and I ⊂
(
G
ρ`+1

)
⊂
(
G
ρ`

)
as in the statement of the lemma,

we obtain R` = R`(q,G, ρ, I) and G` = G`(q,G, ρ, I) from the induction

hypothesis over `. Our goal is to construct R`+1 and G`+1 satisfying the

hypothesis for `+ 1.

Consider the family

⋃

G∈G`
IG = {I1, I2, . . . , Im} ⊂

(
R`

ρ`

)
. (3.2)

This family is a t-partite t-uniform hypergraph with partition {V q
ji

(R`)}ti=1

(see Figure 3.1).

Figure 3.1: An illustration of R` and G ∈ G`. Here we assume t = 3, j1 = 1,

j2 = 2 and j3 = 3. The triples of (3.2) are represented by the crossing

triangles.

We now construct a sequence of |V (R`)|-partite graphs P0, P1, . . . , Pm,

which we will call pictures1, and families G(Pk) ⊂
(
Pk
G

)
Part(q)

, k = 0, 1, . . . ,m.

We will then show that R`+1 = Pm and G`+1 = G(Pm) satisfy conditions (L1 ),

(L2 ), (L3 ), (A), and (B). This will establish the induction step and conclude

the proof of Lemma 3.19.

1The name ‘pictures’ was used before, e.g. in [27].
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(a) P0 is a disjoint union

of copies of G where each

copy is projected by π0

into a copy of G in G`.

(b) P0 with its coarse q-partition and the refined r`-

partition (see (3.3) and (3.4)). Notice that the copies

of G are partite embedded in the q-partite graph P0

(see Definition 3.17).

Figure 3.2:

Let us start by constructing P0 (see Figure 3.2). For convenience, let r` =

|V (R`)|. For each u ∈ V (R`), let

V r`
u (P0) = {(u,G) : G ∈ G`, V (G) 3 u}. (3.3)

Recalling the total order on V (R`) we may assume in fact that V (R`) =

{1, 2, . . . , r`}. We then impose a total order in V (P0) that satisfies V r`
j (P0) ≺

V r`
j+1(P0) for all j = 1, . . . , r` − 1.

The edges of P0 are of the form {(u,G), (w,G)}, where uw ∈ E(G), G ∈ G`.
Notice that the r`-partition of P0 given by (3.3) is indeed such that every edge

of P0 is crossing. We set G(P0) to be the set of copies of G in correspondence

with G`. In particular, |G(P0)| = |G`|. Moreover, the projection π0(u,G) = u

defines a monotone homomorphism from P0 to R`.

Assuming that the hypothesis holds for some ` ≥ 2 we will now describe

the induction over k.
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Induction over k – Hypothesis on Pk and G(Pk)

(K1 ) The picture Pk is r`-partite with classes V r`
j (Pk), j =

1, . . . , r`. The projection map πk : V (Pk) → V (R`) =

[r`] given by πk(x) = j if and only if x ∈ V r`
j (Pk) is a

homomorphism of Pk into R`. Moreover, πk(G) ∈ G` for

every G ∈ G(Pk).

(K2 ) The family G(Pk) is contained in
(
Pk
G

)
Part(q)

.

(K3 ) The family G(Pk) satisfies conditions (A) and (B).

(K4 ) Every G ∈ G(Pk) is (`+ 1)-metric in Pk.

Claim 3.22. The graph P0 satisfies the induction hypothesis for k = 0.

Since the copies of G in P0 are vertex-disjoint (and thus metric) and are

projected by π0 into copies of G in R` it is clear that (K1 ), (K3 ) and (K4 )

hold for P0 and G(P0). It remains to check (K2 ), namely, that G(P0) is

contained in
(
P0

G

)
Part(q)

.

We now observe that the q-partition of V (P0) may be expressed in terms

of π0 as

V q
j (P0) = π−1

0 (V q
j (R`)) =

⋃

u∈V qj (R`)

V r`
u (P0) (3.4)

for j = 1, . . . , q (see Figure 3.2). For every G ∈ G(P0), we have G′ = π0(G) ∈
G`. From the induction hypothesis over ` we have G ∈ G(P0) ⊂

(
R`
G

)
Part(q)

and hence the isomorphism σ : V (G)→ V (G′) must be a partite isomorphism.

Then π−1
0 ◦ σ : V (G) → V (G) is a partite isomorphism of G into G by our

choice of V q
j (P0), j = 1, . . . , q.

Hence P0 satisfies the induction hypothesis for k = 0 and Claim 3.22 is

proved.
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Suppose that Pk, G(Pk), and πk, k ≥ 0, are constructed and satisfy the

induction hypothesis. Since every G ∈ G(Pk) is (` + 1)-metric in Pk, it

follows that IG ⊂
(

G
ρ`+1

)
⊂
(
Pk
ρ`+1

)
for every G ∈ G(Pk). Define

I(k) =

{
I ∈

⋃

G∈G(Pk)

IG : πk(I) = Ik+1

}
⊂
(
Pk
ρ`+1

)
, (3.5)

where the (ρ`, R`)-tuple Ik+1 = {w1, w2, . . . , wt} is the (k + 1)th tuple from

equation (3.2).

Observe that by construction, I(k) is a t-partite t-uniform hypergraph.

Indeed, every tuple in I(k) is crossing with respect to the sets {π−1
k (u) =

V r`
u (Pk)}u∈Ik+1

. To construct Pk+1 we invoke our induction assumption over `

with

• r` in place of q;

• Pk in place of G;

• I(k) ⊂
(
Pk
ρ`+1

)
⊂
(
Pk
ρ`

)
in place of I.

We then obtain the graph Pk+1 = R`(r`, Pk, ρ, I(k)) and a family Pk+1 =

G`(r`, Pk, ρ, I(k)) ⊂
(
Pk+1

Pk

)
Part(r`)

satisfying conditions (L1 ), (L2 ), (L3 ), (A)

and (B). More specifically, the following holds:

(1)k+1 For every 2-coloring of the (ρ`, Pk+1)-tuples in
⋃

P∈Pk+1
I(k)
P there

exists P ∈ Pk+1 such that I(k)
P ⊂

(
P

ρ`+1

)
⊂
(
Pk+1

ρ`

)
is monochromatic

(recall that the hypergraph I(k)
P is an isomorphic copy of I(k) in

P).

(2)k+1 Every P ∈ Pk+1 is `-metric in Pk+1.

(3)k+1 E(Pk+1) =
⋃

P∈Pk+1

E(P).
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(A)k+1 If P1,P2 ∈ Pk+1 are distinct and u ∈ V (P1) ∩ V (P2) then there

are (ρ`+1,P
j)-tuples Ij∗ ∈ I(k)

Pj , j = 1, 2, such that u ∈ I1
∗ ∩ I2

∗ .

(B)k+1 If P1,P2 ∈ Pk+1 are distinct and u, v ∈ V (P1)∩V (P2) then either

(B1)k+1 there exist (ρ`+1,P
j)-tuples Ij∗ ∈ I(k)

Pj , j = 1, 2, such that

{u, v} ⊂ I1
∗ ∩ I2

∗ or

(B2)k+1 the isomorphisms φj : V (Pj) → V (Pk), j = 1, 2, satisfy

φ1(u) = φ2(u) and φ1(v) = φ2(v).

Remark 3.23. The graph Pk+1 is obtained by amalgamating copies of Pk

in a particular way determined by the induction over `. For instance, due to

(A)k+1, only vertices in V r`
j (Pk+1), with j ∈ Ik+1, may be shared by distinct

copies of Pk in Pk+1.

See Figure 3.3 for an illustration of the amalgamation.

The projection πk+1 : V (Pk+1) → V (R`) is defined in terms of the parti-

tion {V r`
j (Pk+1)}r`j=1 given by the induction hypothesis over `. More con-

cretely, πk+1(u) = j if and only if u ∈ V r`
j (Pk+1). For any P ∈ Pk+1, with

isomorphism φ : V (Pk) → V (P), we claim that the following diagram com-

mutes:
Pk P Pk+1

R`

-� φ

?

πk

-ı

����������
πk+1

(3.6)

Indeed, because φ is a partite embedding, we have φ
(
V r`
j (Pk)

)
⊂ V r`

j (Pk+1)

for all j = 1, . . . , r`. Hence, for u ∈ V (Pk), πk(u) = j if and only if u ∈
V r`
j (Pk) if and only if φ(u) ∈ V r`

j (Pk+1) if and only if πk+1 ◦ φ(u) = j. This

shows that πk = πk+1 ◦ φ and thus the diagram (3.6) commutes.
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{

(a) The picture Pk+1 is obtained from picture Pk by applying the induction

hypothesis over `. To simplify the figure, the vertical order of the vertices

in the illustration does not coincide with the order of V (R`) = {1, . . . , r`}.

(b) The tuple Ik+1 = {w1, . . . , wt} and the corresponding classes

V q
wi

(Pk+1) are drawn according to the order of V (R`).

Figure 3.3:

NB: It is rather cumbersome to draw the elements of (ρ`, R`)-tuples in their correct order.

For this reason we will refrain from having V (R`) vertically ordered in the next figures.
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Constructing the q-partition of Pk+1. The graph Pk+1 is q-partite with

partition given by the classes

V q
j (Pk+1) = π−1

k+1

(
V q
j (R`)

)
=

⋃

u∈V qj (R`)

V r`
u (Pk+1), j = 1, . . . , q. (3.7)

Notice that because V q
1 (R`) ≺ V q

2 (R`) ≺ · · · ≺ V q
q (R`) and V r`

1 (Pk+1) ≺
· · · ≺ V r`

r`
(Pk+1) we also have V q

1 (Pk+1) ≺ · · · ≺ V q
q (Pk+1)—see Figure 3.4.

Figure 3.4: The linearly ordered vertices of Pk+1 (from left to right) and both

q- and r`-partitions. Note that the r`-partition of Pk+1 is a refinement of its

q-partition.

Constructing the family G(Pk+1) ⊂
(
Pk+1

G

)
Part(q)

. For any P ∈ Pk+1 ⊂(
Pk+1

Pk

)
Part(r`)

, given the (unique monotone) isomorphism φ : V (Pk) → V (P),

set

G(P) = {φ(G) : G ∈ G(Pk)}.
Define

G(Pk+1) =
⋃

P∈Pk+1

G(P). (3.8)

Observe that there is a rich structure of copies of G in Pk+1 which is inherited

by the many overlapping copies of Pk in Pk+1.

We will now start the proof of the induction step over k. The proof is

divided in several claims, one for each of the conditions (K1 )–(K4 ) of the

induction over k (see the box above).

Claim 3.24. Condition (K1) holds for Pk+1, namely, the projection map

πk+1 is a homomorphism of Pk+1 into R` satisfying πk+1(G) ∈ G` for every

G ∈ G(Pk+1).
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We will start by showing that the projection map πk+1 is a homomorphism

of Pk+1 into R`. To this end we must prove that πk+1(E(Pk+1)) ⊂ E(R`).

By the induction hypothesis over Pk, the projection πk : V (Pk) → V (R`)

is a homomorphism. Consequently, the diagram (3.6) shows that for every

P ∈ Pk+1, the map πk+1|V (P) is a homomorphism of P into R` and thus

πk+1(E(P)) ⊂ E(R`). Since by (3)k+1 we have E(Pk+1) =
⋃

P∈Pk+1
E(P) it

follows that πk+1(E(Pk+1)) ⊂ E(R`).

It remains to show that πk+1(G) ∈ G` for every

G ∈ G(Pk+1) =
⋃

P∈Pk+1

G(P).

For any G ∈ G(P), P ∈ Pk+1, we have φ−1(G) ∈ G(Pk), where φ : V (Pk) →
V (P) is the unique isomorphism. By the induction hypothesis (K1 ) over Pk

it follows that πk
(
φ−1(G)

)
∈ G`. Since the diagram (3.6) commutes,

πk
(
φ−1(G)

)
= πk+1 ◦ φ

(
φ−1(G)

)
= πk+1(G)

and thus πk+1(G) ∈ G`. This concludes the proof that (K1 ) holds for Pk+1.

Claim 3.25. Condition (K2) holds for Pk+1, namely, G(Pk+1) ⊂
(
Pk+1

G

)
Part(q)

.

First observe that for every P ∈ Pk+1 ⊂
(
Pk+1

Pk

)
Part(r`)

we have V r`
j (P) ⊂

V r`
j (Pk+1) for all j = 1, . . . , r`. Consequently,

V q
j (P)

(3.4),(3.7)
=

⋃

u∈V qj (R`)

V r`
u (P) ⊂

⋃

u∈V qj (R`)

V r`
u (Pk+1)

(3.7)
= V q

j (Pk+1) (3.9)

for all j = 1, . . . , q.

For all G ∈ G(P) ⊂
(
P
G

)
Part(q)

we have V q
j (G) ⊂ V q

j (P) ⊂ V q
j (R`). It follows

that

G(Pk+1) =
⋃

P∈G(Pk+1)

G(P) ⊂
(
Pk+1

G

)

Part(q)

.

Therefore the claim is proved.
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Claim 3.26 (Auxiliary). If P1,P2 ∈ Pk+1 are distinct and u ∈ V (P1) ∩
V (P2) then πk+1(u) ∈ Ik+1. Consequently, for each G ∈ G(Pk+1) there is a

unique P ∈ Pk+1 such that G ⊂ P.

From condition (A)k+1 there exist Ij∗ ∈ I(k)

Pj , j = 1, 2, such that u ∈ I1
∗ ∩ I2

∗ .

From diagram (3.6) we conclude that the isomorphism φ1 : V (Pk) → V (P1)

satisfies πk = πk+1 ◦ φ1. Because I1 = φ−1
1 (I1

∗ ) ∈ I(k), we have

πk+1(I1
∗ ) = πk+1 ◦ φ1(I1) = πk(I

1)
(3.5)
= Ik+1.

Consequently, πk+1(u) ∈ Ik+1.

Since each G ∈ G(Pk+1) is mapped by πk+1 onto a member of G`, the pro-

jection must be one-to-one over V (G). Therefore
∣∣πk+1

(
V (G)

)∣∣ = |V (G)| > t

and thus πk+1

(
V (G)

)
6⊂ Ik+1. It follows that V (G) 6⊂ V (P1) ∩ V (P2).

Claim 3.27. Condition (K3) holds for Pk+1, namely, G(Pk+1) satisfies the

intersection conditions (A) and (B).

Let G1,G2 ∈ G(Pk+1) be distinct and arbitrary. By Claim 3.26 there are

unique P1,P2 ∈ Pk+1 such that Gj ⊂ Pj, j = 1, 2. If P1 = P2 then the

induction hypothesis over P1 = P2 ∼= Pk implies that both conditions (A)

and (B) hold for G1 and G2. Hence let us suppose that P1 6= P2.

Proof of (A). Since Pk+1 satisfies (A)k+1, it follows that for any u ∈
V (G1) ∩ V (G2) ⊂ V (P1) ∩ V (P2) there exist (ρ`+1,P

j)-tuples Ij∗ ∈ I(k)

Pj , j =

1, 2, such that u ∈ I1
∗ ∩ I2

∗ . Let G∗j ∈ G(Pj) be such that Ij∗ ∈ IGj∗. For

each j = 1, 2 we are going to obtain Ij ∈ IGj with u ∈ I1 ∩ I2.

First we show that there exists I1 ∈ IG1 such that u ∈ I1. If G1 = G′1, we

are done by taking I1 = I1
∗ so let us assume that G1 6= G′1. The induction

hypothesis (K3 ) applied to P1 ∼= Pk implies that G(P1) satisfies condition (A):

since u ∈ V (G1)∩V (G′1) there exists I1 ∈ IG1 such that u ∈ I1∩I1
∗ . Similarly

we find I2 ∈ IG2 such that u ∈ I2 and hence u ∈ I1 ∩ I2 thus proving that

condition (A) holds for G(Pk+1).
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Proof of (B). Suppose that there are two distinct u, v ∈ V (G1)∩V (G2) ⊂
V (P1) ∩ V (P2). Condition (B)k+1 applies to Pk+1 which means that ei-

ther (B1)k+1 or (B2)k+1 holds for u, v,P1,P2.

In case (B1)k+1 holds for u, v,P1,P2 we will show that (B1) holds for

u, v,G1,G2. Consider the (ρ`+1,P
j)-tuples Ij∗ ∈ I(k)

Pj , j = 1, 2, such that u, v ∈
I1
∗ ∩ I2

∗ . Let G∗j ∈ G(Pj) be such that Ij∗ ∈ IG∗j , j = 1, 2.

First we will show that there exists I1 ∈ IG1 such that u, v ∈ I1. If G∗1 = G1,

set I1 = I1
∗ . Otherwise, observe that u, v ∈ V (G1)∩V (G∗1) and G1,G

∗
1 ∈ G(P1).

We may now use the induction hypothesis (K3 ) on P1 ∼= Pk which states

that condition (B) holds for G(P1). In particular, either (B1) applies and

we immediately obtain I1 ∈ IG1 satisfying u, v ∈ I1 ∩ I1
∗ or (B2) applies

and the isomorphisms σ1, σ
∗
1 from G1,G

∗
1 to G are such that σ1(u) = σ∗1(u)

and σ1(v) = σ∗1(v). However, in the latter case, set I1 = σ−1
1 ◦ σ∗1(I1

∗ ) ∈ IG1

and observe that u, v ∈ I1.

In the same way we obtain I2 ∈ IG2 such that u, v ∈ I2 and thus establish

that (B1) holds for u, v,G1,G2.

Consider now the case that (B2)k+1 holds for u, v,P1,P2. In other words,

for the (unique) isomorphisms φj : V (Pj)→ V (Pk), j = 1, 2, we have φ1(u) =

φ2(u) and φ1(v) = φ2(v). Let G∗j = φj(Gj) ∈ G(Pk), j = 1, 2 and set x =

φ1(u), y = φ1(v). Since x, y ∈ V (G∗1) ∩ V (G∗2) and G(Pk) satisfies condi-

tion (B), one of the following must hold:

• There exist Ij∗ ∈ IG∗j , j = 1, 2, such that x, y ∈ I1
∗ ∩ I2

∗ .

Letting Ij = φ−1
j (Ij∗) ∈ IGj for j = 1, 2, we have u, v ∈ I1 ∩ I2. Hence

condition (B1) holds for u, v,G1,G2.

• The isomorphisms σ∗j : V (G∗j) → V (G) satisfy σ∗1(x) = σ∗2(x), σ∗1(y) =

σ∗2(y).

Since the (unique) isomorphisms σj : V (Gj)→ V (G) satisfy

σj = σ∗j ◦ φj,
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we have

σ1(u) = σ∗1(φ1(u)) = σ∗1(x) = σ∗2(x) = σ∗2(φ2(u)) = σ2(u)

and, similarly, σ1(v) = σ2(v). Consequently, condition (B2) holds for

u, v,G1,G2.

This concludes the proof that G(Pk+1) satisfies condition (B).

Before showing that condition (K4 ) holds we will prove two auxiliary

claims.

Claim 3.28 (Auxiliary). Suppose that P1,P2 ∈ Pk+1, u, v ∈ V (P1) ∩ V (P2),

d1 = distP1(u, v) and d2 = distP2(u, v). Then either min{d1, d2} ≥ ` + 1

or d1 = d2.

Without loss of generality assume that P1 6= P2, d1 = min{d1, d2} ≤ `,

and u 6= v. Since Pk+1 satisfies condition (B)k+1, either condition (B1)k+1 or

condition (B2)k+1 applies to u, v ∈ V (P1) ∩ V (P2).

Suppose first that (B2)k+1 holds for u, v,P1,P2, namely, the isomorphisms

φj : V (Pj) → V (Pk) are such that φ1(u) = φ2(u) and φ1(v) = φ2(v). In

this case, φ = φ−1
2 ◦ φ1 : V (P1) → V (P2) is the isomorphism from P1 to P2.

Moreover, φ satisfies φ(u) = u and φ(v) = v. It follows that

distP1(u, v) = distP2(φ(u), φ(v)) = distP2(u, v).

The equality in this case holds even for arbitrary distances d1, d2.

Suppose now that condition (B1)k+1 holds for u, v,P1,P2, namely, there

exist (ρ`+1,P
j)-tuples Ij ∈ I(k)

Pj ⊂
(

Pj

ρ`+1

)
, j = 1, 2, such that u, v ∈ I1 ∩ I2.

Let Gj ∈ G(Pj) be such that Ij ∈ IGj for j = 1, 2. By the induction

hypothesis over Pj ∼= Pk, the graph Gj is (`+ 1)-metric in Pj. In particular,

distP1(u, v) = d1 ≤ ` implies that distG1(u, v) = d1.
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Recall that

πk+1(I1) = πk+1(I2) = Ik+1 = {w1 < w2 < · · · < wt} ⊂ V (R`).

In particular, πk+1(u) = wa and πk+1(v) = wb, for some 1 ≤ a, b ≤ t.

Consequently, u is the ath element of Ij (j = 1, 2) and v is the bth element

of Ij (j = 1, 2). Because distG1(u, v) = d1 ≤ `,

d1 = distG1(u, v) =

I2 is a (ρ`+1,G2)-tuple︷ ︸︸ ︷
ρ(a, b)︸ ︷︷ ︸

I1 is a (ρ`+1,G1)-tuple

= distG2(u, v) ≥ distP2(u, v) = d2 = max{d1, d2}

and thus d1 = d2. Hence, Claim 3.28 follows.

Claim 3.29 (Auxiliary). Suppose that G1,G2 ∈ G` and there exist distinct

u, v ∈ V (G1) ∩ V (G2). Moreover, assume that there exists I1 ∈ IG1 such

that u, v ∈ I1. Then there exists I2 ∈ IG2 such that u, v ∈ I2.

If G1 = G2 then the claim is trivial so let as assume the graphs are distinct.

By assumption, G` satisfies condition (B). If (B1) holds then the existence

of I2 is immediate.

If, on the other hand, (B2) holds, then the isomorphisms σj : V (Gj)→ V (G)

satisfy σ1(u) = σ2(u) and σ1(v) = σ2(v). The map σ = σ−1
2 ◦ σ1 : V (G1) →

V (G2) is clearly the isomorphism from G1 to G2. Since σ(u) = u and σ(v) = v,

it follows that I2 = σ(I1) ∈ IG2 satisfies the conditions of the claim.

Claim 3.30. Condition (K4) holds for Pk+1, namely, every G ∈ G(Pk+1) is

(`+ 1)-metric.

For an arbitrary G ∈ G(Pk+1) and u, v ∈ V (G) we will show the following:

(i) If distG(u, v) ≤ ` then distPk+1
(u, v) = distG(u, v).

(ii) If distG(u, v) ≥ `+ 1 then distPk+1
(u, v) ≥ `+ 1.

66



The two conditions above imply that G is (` + 1)-metric in Pk+1. Indeed,

when distG(u, v) = `+ 1 we have

`+ 1
(ii)

≤ distPk+1
(u, v) ≤ distG(u, v) = `+ 1

and equality holds. Consequently, for all u, v ∈ V (G) we have distPk+1
(u, v) =

distG(u, v) whenever distG(u, v) ≤ ` + 1 and distPk+1
(u, v) ≥ ` + 1 when-

ever distG(u, v) > `+ 1.

We start by proving (i). Assume that distG(u, v) ≤ `. If distPk+1
(u, v) <

distG(u, v), consider a shortest path P(u, v) in Pk+1. The projection of this

path, πk+1(P(u, v)), is a trail in R` starting at x = πk+1(u) and ending

at y = πk+1(v). Since G′ = πk+1(G) ∈ G` and πk+1 is an isomorphism

between G and G′, it follows that distG′(x, y) = distG(u, v) ≤ `. On the other

hand, the trail πk+1(P(u, v)) shows that

distR`(x, y) ≤ |πk+1(P(u, v))| ≤ |P(u, v)|
= distPk+1

(u, v) < distG(u, v) = distG′(x, y).
(3.10)

However, this contradicts the fact that G′ is `-metric in R`.

Now let us prove (ii). Suppose for the sake of contradiction that there exists

a path P(u, v) in Pk+1 with

|P(u, v)| ≤ ` and distG(u, v) ≥ `+ 1. (3.11)

By Claim 3.26, there exists a unique P1 ∈ Pk+1 ⊂
(
Pk+1

Pk

)
Part(r`)

such that G ⊂
P1.

Fact 3.31. The path P(u, v) satisfies the following:

(a) P(u, v) 6⊂ P1;

(b) there is no internal vertex of P(u, v) in V (P1), hence E
(
P(u, v)

)
∩

E(P1) = ∅;
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(c) πk+1(u), πk+1(v) ∈ Ik+1;

(d) P(u, v) 6⊂ P2 for every P2 ∈ Pk+1;

By the induction hypothesis over the picture P1 ∼= Pk the graph G must be

(`+ 1)-metric in P1 and thus

distP1(u, v) ≥ `+ 1. (3.12)

In particular, (a) holds, that is, the path P(u, v) cannot be entirely contained

in P1.

Suppose that the path P(u, v) contains an internal vertex w ∈ V (P1).

Then the (non-trivial) induced sub-paths P(u,w) and P(w, v) have length

strictly shorter than `. Our assumption that P1 is `-metric in Pk+1 implies

that |P(u,w)| ≥ distP1(u,w) and |P(w, v)| ≥ distP1(w, v). Therefore

|P(u, v)| = |P(u,w)|+ |P(w, v)| ≥ distP1(u,w) + distP1(w, v)

≥ distP1(u, v)
(3.12)

≥ `+ 1,
(3.13)

which contradicts the fact that |P(u, v)| ≤ `. Therefore (b) holds.

Because of (b), the edge of the path incident to u, say e = {u,w}, must be

contained in some P2 ∈ Pk+1, P2 6= P1, otherwise w would be an internal ver-

tex of P(u, v). In particular, u ∈ V (P1)∩V (P2). From Claim 3.26 we conclude

that πk+1(u) ∈ Ik+1. For the same reason we conclude that πk+1(v) ∈ Ik+1

and therefore (c) holds.

To show that (d) is satisfied, suppose that P(u, v) ⊂ P2 for some P2 ∈ Pk+1,

P2 6= P1. Then d2 = distP2(u, v) ≤ `. From Claim 3.28 we conclude that

distP1(u, v) = d1 = d2 = `,

which contradicts (3.12). Therefore (d) holds.

We now return to the proof of Claim 3.30(ii). From (a)–(d) we conclude

that the path P(u, v) can be decomposed into sub-paths contained in at
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Figure 3.5: An illustration of a path P(u, v) and its sub-paths from case (ii)

of Claim 3.30 with u = x1 and v = x4. We also have t = 4, a1 = 3, a2 = 1,

a3 = 2 and a4 = 4. The vertex x3 is repeated because P4 is wrapped around

and effectively intersects both P3 and P1. Note that G′ = πk+1(G) and that

GIk+1
contains Ik+1.

least two distinct copies of Pk in Pk+1. Therefore we may find vertices u =

x1, x2, . . . , xr = v, r ≥ 3, belonging to P(u, v) such that each (non-trivial)

sub-path P(xj, xj+1), j = 1, . . . , r − 1, is entirely contained in some Pj+1 ∈
Pk+1, and Pj+1 6= Pj+2 for j = 1, . . . , r−2 (see the illustration in Figure 3.5).

Note that each P(xj, xj+1) has length at most ` − 1 since the sum of the

lengths of each sub-path equals |P(u, v)| ≤ `. From Claim 3.26 and (c) we

infer that πk+1(xj) ∈ Ik+1 = {w1 < w2 < · · · < wt} for j = 1, . . . , r. For each

j = 1, . . . , r, let aj ∈ [t] be such that πk+1(xj) = waj .

For every j = 1, . . . , r − 1, the projection πk+1

(
P(xj, xj+1)

)
is a trail

connecting waj and waj+1
of length |P(xj, xj+1)| ≤ ` − 1. Consequently,

distR`(waj , waj+1
) ≤ ` − 1. Let GIk+1

∈ G` ⊂
(
R`
G

)
Part(q)

be such that Ik+1 ∈
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IGIk+1
⊂
(
GIk+1
ρ`+1

)
. Since GIk+1

is `-metric in R` it follows that

distGIk+1
(waj , waj+1

) = distR`(waj , waj+1
) ≤ |P(xj, xj+1)| ≤ `− 1.

Because Ik+1 ∈
(
GIk+1
ρ`+1

)
we must have distGIk+1

(waj , waj+1
) = ρ(aj, aj+1) and

thus

|P(u, v)| =
r−1∑

j=1

|P(xj, xj+1)| ≥
r−1∑

j=1

distGIk+1
(waj , waj+1

)

=
r−1∑

j=1

ρ(aj, aj+1) ≥ ρ(a1, ar),

(3.14)

where in the last part we used the triangle inequality.

Let G′ = πk+1(G) ∈ G`. Notice that wa1 = πk+1(u), war = πk+1(v) ∈
V (G′) ∩ V (GIk+1

). From Claim 3.29 applied to G′ and GIk+1
we conclude

that there exists I ′ ∈ IG′ such that wa1 , war ∈ I ′ ∩ Ik+1. Moreover, by the

induction hypothesis (over `) every graph in G` is partite embedded into R`,

that is G` ⊂
(
R`
G

)
Part(q)

. In particular, V q
j (G′), V q

j (GIk+1
) ⊂ V q

j (R`) for all

j = 1, . . . , q. Because I ⊂
(
G
ρ`+1

)
is a t-partite hypergraph with classes

{V q
ji

(G)}ti=1, it follows that IG′ is t-partite with classes {V q
ji

(G′) ⊂ V q
ji

(R`)}ti=1

and IGIk+1
is t-partite with classes {V q

ji
(GIk+1

) ⊂ V q
ji

(R`)}ti=1. This ensures

that both I ′ ∈ IG′ and Ik+1 ∈ IGIk+1
are crossing with respect to {V q

ji
(R`)}ti=1.

Therefore, the a1th element in I ′ is wa1 and the arth element in I ′ is war .

Because I ′ ∈
(

G′

ρ`+1

)
and ρ(a1, ar) ≤ `, we have distG′(wa1 , war) = ρ(a1, ar) ≤ `

Since πk+1 is the isomorphism of G into G′ we have

distG(u, v) = distG′(wa1 , war) = ρ(a1, ar) ≤ `,

which is a contradiction with the original assumption (3.11) that distG(u, v) ≥
`+ 1. This finishes the proof of Claim 3.30.

Remark 3.32. A subtle point in the proof Claim 3.30(ii) is that while the

copies of G in G` are only guaranteed to be `-metric in R`, for G1,G2 ∈
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G` and u, v ∈ V (G1) ∩ V (G2)—similarly as in Claim 3.28—we have either

distG1(u, v) = distG2(u, v) or min{distG1(u, v), distG2(u, v)} ≥ ` + 1. In other

words, if distG1(u, v) = `+ 1 there may exist a path P(u, v) in R` of length `

but this path cannot be entirely contained in any G2 ∈ G`.

We have proved the induction step over k by establishing Claims 3.24, 3.25,

3.27 and 3.30. In order to prove that

R`+1 = Pm and G`+1 = G(Pm) (3.15)

satisfy the induction hypothesis for `+ 1, it remains to show that (L1 ) and

(L3 ) hold.

The property (L3 ) follows from (3)m, (3)m−1, . . . , (3)1 since every edge

e ∈ E(Pm) must belong to some copy P0 of P0 and thus e ∈ E(G) for some

G ∈ G(P0) ⊂ G(Pm) = G`+1. More formally,

E(R`+1) = E(Pm) =
⋃

Pm−1∈Pm

E(Pm−1)

=
⋃

Pm−1∈Pm

⋃

Pm−2∈Pm−1(Pm−1)

· · ·
⋃

P0∈P1(P1)

E(P0)

=
⋃

Pm−1,...,P0

⋃

G∈G(P0)

E(G)

(3.8)
=

⋃

G∈G(Pm)

E(G).

(3.16)

To prove2 that the condition (L1 ) is satisfied by R`+1 and G`+1 we first show

that under certain assumptions on a coloring of P0 one can obtain G ∈ G(P0)

with IG monochromatic. Our goal is then reduced to finding some P0 ⊂ R`+1,

P0 ∼= P0, which is colored in such a way.

Claim 3.33 (Auxiliary). Suppose that the tuples in
⋃

G∈G(P0) IG are colored in

such a way that the color of any I ∈ ⋃G∈G(P0) depends only on the projection

π0(I) ∈ ⋃G∈G` IG.

2This proof closely follows [31].
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Then there exists G ∈ G(P0) with IG monochromatic.

Under the assumptions of the claim there is an induced coloring of the

tuples in
⋃

G∈G` IG given by assigning to each I ′ ∈ ⋃G∈G` IG the same color

of the tuples I ∈ ⋃G∈G(P0) satisfying π0(I) = I ′.

By the induction hypothesis (L1 ) over R` and G`, there must be some

G∗ ∈ G` such that IG∗ is monochromatic under this induced coloring. By

construction, G = π−1
0 (G∗) is contained in G(P0) (see Figure 3.2). Since the

color of any tuple I ∈ IG is given by the color of π0(I) ∈ IG∗ , it is clear that

IG is monochromatic.

Claim 3.34 below establishes (L1 ).

Claim 3.34. For every 2-coloring of
⋃

G∈G`+1
IG ⊂

(
R`+1

ρ`+1

)
there exists some

G ∈ G`+1 such that IG is monochromatic.

Let a 2-coloring of
⋃

G∈G`+1
IG be given. In view of Claim 3.33 we now

look for a copy P0 ⊂ R`+1 such that the coloring of
⋃

G∈G(P0) IG satisfies the

conditions of the claim.

Notice that because of (3.5) and (3.8), we have

⋃

P∈Pm
I(m−1)
P ⊂

⋃

P∈Pm

⋃

G∈G(P)

IG =
⋃

G∈G(Pm)

IG.

Hence there is an induced 2-coloring of
⋃

P∈Pm I
(m−1)
P . By Property (1)m,

there exist some Pm−1 ∈ Pm such that I(m−1)

Pm−1 is monochromatic. Denote by

πm−1 : V (Pm−1)→ V (R`) be the natural projection/homomorphism of Pm−1

onto R`. Notice that because Pm−1 ∼= Pm−1, I(m−1)

Pm−1
∼= I(m−1) and πm−1 is

the map induced by πm−1, the definition in (3.5) translates to

I(m−1)

Pm−1 =

{
I ∈

⋃

G∈G(Pm−1)

IG : πm−1(I) = Im

}
. (3.17)
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Hence, the color of all the tuples in
⋃

G∈G(Pm−1) IG projecting onto Im is the

same.

Applying Property (1)m−1 to Pm−1 ∼= Pm−1 we obtain some graph Pm−2 ∈
Pm−1(Pm−1) ⊂

(
Pm−1

Pm−2

)
Part(r`)

such that I(m−2)

Pm−2 is monochromatic. Similarly

as before, the projection πm−2 of Pm−2 onto R` is such that

I(m−2)

Pm−2 =

{
I ∈

⋃

G∈G(Pm−2)

IG : πm−2(I) = Im−1

}
.

Moreover, because Pm−2 ∈
(
Pm−1

Pm−2

)
Part(r`)

we have πm−2 = πm−1|V (Pm−2). Since

G(Pm−2) ⊂ G(Pm−1), from (3.17) we have

{
I ∈

⋃

G∈G(Pm−2)

IG : πm−2(I) = Im

}
⊂ I(m−1)

Pm−1 .

By repeating this argument sequentially (invoking (1)m−2, . . . ,(1)1) we obtain

Pm−1 ⊃ Pm−2 ⊃ · · · ⊃ P0 satisfying the following. For all k = 0, . . . ,m − 1,

the family I(k)

Pk
is monochromatic and

{
I ∈

⋃

G∈G(P0)

IG : π0(I) = Ik+1

}
⊂ I(k)

Pk
,

where π0 = π1|V (P0) = · · · = πm−1|V (P0) is the projection/homomorphism of

P0 onto R`.

Consequently, the color of a tuple I ∈ ⋃G∈G(P0) IG depends only on its pro-

jection π0(I). This means that the assumptions of Claim 3.33 are satisfied by

P0. The claim then yields G ∈ G(P0) ⊂ G`+1 such that IG is monochromatic,

thus proving that (L1 ) holds for R`+1 and G`+1.

The conditions (K1 )–(K4 ), which hold for R`+1 = Pm and G`+1 = G(Pm),

together with (3.16) and Claim 3.34 establish that the induction hypothesis

holds for `+ 1. Lemma 3.19 then follows by induction.
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3.3 The base of the induction

Here we state Lemma 3.35, the induction base of the proof of Lemma 3.19.

The proof of this lemma is based on an application of the Hales–Jewett

theorem and will be given in Section 3.5.

Lemma 3.35. Let t, q ∈ N, t ≤ q. Suppose that

• ρ is a fixed metric on [t];

• G is a q-partite (ordered) graph with partition V (G) = V q
1 (G) ∪ · · · ∪

V q
q (G);

• for some 1 ≤ j1 < j2 < · · · < jt ≤ q, I ⊂
(
G
ρ2

)
is a t-partite t-uniform

hypergraph with classes {V q
ji

(G)}ti=1 consisting of selected (ρ2, G)-tuples.

Then there exists a q-partite graph R and G ⊂
(
R
G

)
Part(q)

satisfying the

following properties.

(L1) For any 2-coloring of the (ρ2, R)-tuples in
⋃

G∈G IG there exists G ∈ G
such that every IG ⊂

(
G
ρ2

)
⊂
(
R
ρ2

)
is monochromatic.

(L2) Every G ∈ G is 2-metric in R.

(L3) E(R) =
⋃

G∈G
E(G).

(L4) The family G satisfies conditions (A) and (B).

Remark 3.36. For the fixed (discrete3) metric ρ on [t], consider a graph Fρ

with vertex set [t] such that ij ∈ Fρ if and only if ρ(x, y) = 1. With this

definition we have
(
G
ρ2

) ∼=
(
G
Fρ

)
, i.e.,

(
G
ρ2

)
coincides with the set of all induced

copies of Fρ in G.

3Recall that all metrics in this dissertation are discrete.
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Notice also that the fact that every G ∈ G is 2-metric in R implies that G

is an induced subgraph of R. Indeed, by the definition, for all x, y ∈
V (G), when distR(x, y) ≤ 2 we must have distG(x, y) = distR(x, y) and

when distR(x, y) > 2 we must have distG(x, y) ≥ 2. In particular, xy ∈ R if

and only if xy ∈ G.

Lemma 3.35 appears in [31] without explicitly stating condition (L4 ), which

is needed here for technical reasons to carry on the induction. For complete-

ness we include the proof of [31] modified to explicitly establish (L4 ) in

Section 3.5.

3.4 Proof of Theorem 3.11

In this section we give a sketch of the proof of Lemma 3.10 and later use it to

prove Theorem 3.11 in §3.4.1. Since this proof is very similar to the proof of

the induction step in Lemma 3.19 (albeit simpler), we avoid repeating some

details and instead refer the reader to parts of the proof of Lemma 3.19 that

present similar arguments. The main difference between this proof and that

of Lemma 3.19 is that here the “metric” part of the result follows rather

trivially from our use of the Partite Lemma 3.19. On the other hand, we are

now able to partition (color) all of
(
R
ρ

)
and not just a t-partite system.

Let H be a given connected graph on n vertices and ρ be a metric on t

elements. Set N = Rt(n), where Rt(n) is the smallest number such that for

every 2-coloring of the complete t-uniform hypergraph
(

[N ]
t

)
there exists a

monochromatic
(
S
t

)
with |S| = n.

Similarly as in the proof of Lemma 3.19 we construct an N -partite graph P0

consisting of disjoint copies of H (see Figure 3.2). Set V (P0) = [N ] ×
(

[N ]
n

)
.

For a set S ∈
(

[N ]
n

)
, let φS : V (H)→ S be the unique monotone map and set

HS to be a graph with vertex set S × {S} and edges given by

{
{(φS(x), S), (φS(y), S)} : xy ∈ H

}
.
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Let

E(P0) =
⋃

S∈([N ]
n )

E(HS).

Notice that P0 indeed is the disjoint union of the copies of H in the family

H(P0) =
{
HS : S ∈

(
[N ]
n

)}
. Set π0 : V (P0)→ [N ] be the projection onto the

first coordinate.

Define

H0 =

{
π0(HS) : S ∈

(
[N ]

n

)}
.

Consider the hypergraph

⋃

H∈H0

(
H

ρ

)
= {I1, . . . , Im} ⊂

(
[N ]

t

)
,

and set

I(0) =

{
I ∈

⋃

H∈H(P0)

(
H

ρ

)
: π0(I) = I1

}
⊂
(
P0

ρ

)
.

(Note that I(0) is defined in a similar way as the hypergraph in (3.5).) Ob-

serve that the t-uniform hypergraph I(0) is t-partite with respect to the vertex

partition {V N
j (P0) = π−1

0 (j)}j∈I1 .
Set ` = max{distH(x, y) : x, y ∈ V (H)} < ∞ and apply Lemma 3.19 to

the N -partite graph P0 (instead of a q-partite G) and the family I(0) ⊂
(
P0

ρ`

)
.

We then obtain the Ramsey N -partite graph P1 and P1 ⊂
(
P1

P0

)
Part(N)

for

which (L1 ) and (L2 ) hold. In particular, (L2 ) ensures that every P ∈ P1 is

`-metric in P1. By our choice of `, this implies that every H ∈ H(P) is metric

in P1.

In general, we obtain Pk+1 from Pk, k = 0, . . . ,m− 1, by applying Lemma

3.19 to the N -partite graph Pk and the t-partite t-uniform hypergraph

I(k) =

{
I ∈

⋃

H∈H(Pk)

(
H

ρ

)
: πk(I) = Ik+1

}
⊂
(
Pk
ρ`

)
.
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The graph Pk+1 and the family Pk+1 ⊂
(
Pk+1

Pk

)
Part(N)

we obtain are such that

every H ∈ H(Pk+1) =
⋃

P∈Pk+1
H(P) is metric in Pk+1 and πk+1(H) ∈ H0

(where πk+1 : V (Pk+1) → [N ] is defined as the projection that maps every

v ∈ V N
j (Pk+1) to j for all j = 1, . . . , N).

Take R = Pm and H = H(Pm) ⊂
(
R
H

)
. Just as in Claim 3.34 one may

show that in any 2-coloring of
⋃

H∈H(Pm)

(
H
ρ

)
⊂
(
R
ρ

)
there exists a copy of P0

in R, say P0 ⊂ R, such that the color of a tuple I ∈
(
H
ρ

)
⊂
(
R
ρ

)
, H ∈ H(P0),

depends only on the projection π0(I) ∈ {I1, . . . , Im}, where π0 : V (P0)→ [N ]

is the natural projection of P0 onto [N ]. In particular, there is an induced

2-coloring of the tuples I1, I2, . . . , Im ∈
(

[N ]
t

)
. Extend this induced 2-coloring

to all of
(

[N ]
t

)
arbitrarily.

By the definition of N , there must be a monochromatic
(
S
t

)
with |S| = n.

Let H ∈ H(P0) be the (unique) graph such that π0(V (H)) = S. Since the

color of every I ∈
(
H
ρ

)
is the same as the color of π0(I) ∈

(
S
t

)
, it follows that(

H
ρ

)
is monochromatic. Moreover H is metric in R = Pm since it belongs to

H(Pm).

3.4.1 Proof of Theorem 3.11

By repeated applications of Lemma 3.10, we will obtain Theorem 3.11.

Let M = {ρ1, . . . , ρm} be the set of all metrics induced by t vertices of H.

Apply Lemma 3.10 to R0 = H and ρ1 to obtain a graph R1. After Ri is

constructed, 1 ≤ i ≤ m − 1, obtain Ri+1 by applying Lemma 3.10 to Ri

and ρi+1.

We claim that R = Rm satisfies the conditions of Theorem 3.11. Indeed,

given any 2-coloring of
(
V (R)
t

)
, we can find a metric copy Rm−1 of Rm−1 in

which every (ρm, t)-tuple in
(
Rm−1

ρm

)
is colored by cm. Iterating this argu-

ment yields a sequence R0 ⊂ R1 ⊂ · · · ⊂ Rm−1 ⊂ R such that Ri ∼= Ri

is metric in Ri+1 and every (ρi+1, t)-tuple in
(

Ri

ρi+1

)
has the same color ci+1.

77



The graph H = R0 ∼= H is metric in R and is such that
(
H
ρi

)
⊂
(
Ri−1

ρi

)
is

monochromatic (with color ci) for i = 1, . . . ,m.

3.4.2 An unordered version of Lemma 3.10

We now address the question of what could be an “unordered version” of

Lemma 3.10. Let (M,ρ) be a finite unordered metric space with |M | = t and

integer distances. For any connected graph H, let
(
H
ρ

)
be the set of all t-sets

T ⊂ V (H) such that the metric spaces (T, distH) and (M,ρ) are isometric.

Analogously to Proposition 3.3 one can show the following characterization

of the metric spaces (M,ρ) for which the class of unordered graphs with

metric embeddings has the (M,ρ)-Ramsey property.

Proposition 3.37. Let (M,ρ) be a finite metric space with integer distances.

The following statements are equivalent:

(a) For any unordered connected graph H there exists an unordered graph

R such that for any partition

(
R

ρ

)
= A1 ∪ A2

there exists i ∈ {1, 2} and H ∈
(
R
H

)
metric

satisfying

(
H

ρ

)
⊂ Ai.

(b) ρ is homogeneous, that is, there exists a positive integer c such that for

any pair of distinct elements m,m′ ∈M we have ρ(m,m′) = c.

The proof of (b) =⇒ (a) is a direct consequence of Theorem 3.11. Indeed,

due to the symmetry of homogeneous metrics the ordering is irrelevant.

The proof of (a) =⇒ (b) follows closely the arguments from [30] and [26]

and therefore we omit it.
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3.5 Proof of Lemma 3.35

Before proving the lemma, we recall some definitions relevant to the Hales–

Jewett theorem.

Suppose that I ⊂
(
G
ρ2

)
is a t-partite t-uniform hypergraph with vertex set V

and classes V1 = V q
j1

(G), . . . , Vt = V q
jt

(G). Let In be the set of n-tuples of

elements of I. A combinatorial line L in In associated with a partition

[n] = ML ∪ FL, ML 6= ∅, and an |FL|-tuple (ILk )k∈FL ∈ IFL is given by

L = {(I1, I2, . . . , In) ∈ In : Ir = Is for r, s ∈ML and Ik = ILk for k ∈ FL}.

The set ML is called the set of moving coordinates, while FL is called the set

of fixed coordinates. Notice that every combinatorial line has precisely |I|
elements.

The Hales–Jewett theorem is stated as follows. For a proof, see for in-

stance [17].

Theorem 3.38 ([18]). For any integer r ≥ 2 and finite set I there exists n

such that in every r-coloring of In there exists a monochromatic line.

For our purposes it will be useful to interpret an element I ∈ I as a vector

with t coordinates where the jth coordinate is simply the unique vertex

in I ∩ Vj. In this way, an element in In may be viewed as a t × n matrix.

Consequently, a line L of In may be described as a collection of size |I|
consisting of t × n matrices QL

I , I ∈ I, where the columns of QL
I indexed

by FL are fixed and independent of I while every column indexed by ML is

precisely I. For example, for n = 4, ML = {1, 2}, FL = [4]\ML = {3, 4} and

L = {(I, I, IL3 , IL4 ) : I ∈ I}, the elements of L are the matrices

QL
I =



| | | |
I I IL3 IL4

| | | |


 (3.18)

for all I ∈ I.
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Proof of Lemma 3.35. Suppose that G and I are given as in the statement

of the lemma. Let J = {j1, . . . , jt} be the set of indices with the prop-

erty of the assumption, namely, I is a t-partite t-uniform hypergraph with

classes {V q
j (G)}j∈J . Let n be given by Theorem 3.38 (with r = 2) applied

to I. Let {L1, . . . , LN} denote the set of all lines in In
Let W =

⋃
I∈I I and Wj = V q

j (G) ∩W . (Notice that Wj = ∅ when j /∈ J .)

The vertex set of R is given by

V (R) =
(
[N ]× (V (G) \W )

)
∪
⋃

j∈J
W n
j .

The edge set of R will be defined later (see (3.20) below).

In our construction, the family G will be in direct correspondence with the

set of lines in In, namely, to each line Lj there will be a corresponding Gj ∈ G.

In order to guarantee that G satisfies (A) we will have V (Gj) \
⋃
I∈IGj

I =

{j} × (V (G) \W ) for j = 1, . . . , N .

For a line La determined by the values
(
Iak
)
k∈Fa of its fixed coordinates Fa,

we represent Iak = {Iak,j ∈ Wj}j∈J as a column-vector [Iak,j]j∈J . Let us define

the map ψa : V (G)→ V (R) as follows:

ψa(v) =





(a, v) for v ∈ V (G) \W ;

(v1, v2, . . . , vn) for v ∈ Wj, j ∈ J, where

vk = v for k ∈Ma and vk = Iak,j for k ∈ Fa.

(3.19)

Fix some I = {u1 < u2 < · · · < ut} ∈ I. Because I is t-partite with

classes {V q
ji

(G)}ti=1, we have ui ∈ Wji and thus ψa(ui) is an n-tuple for all

i = 1, . . . , t. Therefore, in view of (3.18) and (3.19),

QLa
I = ψa(I) =




ψa(u1)

ψa(u2)
...

ψa(ut)



.
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Indeed, the equality above is true because

• For k ∈Ma we have ψa(ui)k = ui for all i and hence the kth column of

the matrix on the right is simply I;

• For k ∈ Fa, we have ψa(ui)k = Iak,ji for all i and hence the kth column

of the matrix on the right is simply Iak .

Observe that the rows of the matrices QLa
I correspond to vertices of R.

Claim 3.39. The map ψa : V (G)→ V (R) is one-to-one.

Suppose for the sake of contradiction that two distinct u, v ∈ V q
j (G), 1 ≤

j ≤ q, are such that ψa(u) = ψa(v). We cannot have ψa(u) = (a, u) since

that would imply u = v. Consequently, u, v ∈ Wj with j ∈ J . Hence

both ψa(u) and ψa(v) must be n-tuples such that ψa(u)k = u 6= v = ψa(v)k

for all k ∈Ma. Therefore u cannot be distinct from v and hence Claim 3.39

holds.

Set

E(R) =
N⋃

a=1

E
(
ψa(G)

)
(3.20)

and let G = {Ga = ψa(G) : a = 1, . . . , N}. Observe that by our definition of

G, (L3 ) follows directly from (3.20).

We now must prove that the conclusions of the lemma hold for R and G.

This will be accomplished by the following steps.

Step I Define a total order on V (R) and a q-partition V (R) = V q
1 (R) ∪

V q
2 (R) ∪ · · · ∪ V q

q (R) such that every ψa is a monotone map satisfy-

ing ψa(V
q
j (G)) ⊂ V q

j (R) for every j.

Step II Show that G satisfies the intersection conditions (A) and (B) and thus

prove (L4 ).
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Step III Use Step II to show that every Ga ∈ G is an induced subgraph of R

and thus prove (L2 ).

Step IV Show that the family G is Ramsey in R, namely, prove (L1 ).

Proof of Step I: For all j, define

V q
j (R) =

(
[N ]× (V q

j (G) \W )
)
∪W n

j . (3.21)

Observe that V (R) = V q
1 (R) ∪ V q

2 (R) ∪ · · · ∪ V q
q (R). Moreover, it is simple

to check that ψa(V
q
j (G)) ⊂ V q

j (R) for all j. Let us now define a total order

on V (R) for which every map ψa is monotone. It is enough to define the

order for each V q
j (R) since we require V q

1 (R) ≺ V q
2 (R) ≺ · · · ≺ V q

q (R).

For j /∈ J , we have Wj = ∅ and thus V q
j (R) = [N ] × V q

j (G). Order the

vertices lexicographically and observe that for every a ∈ [N ], ψa(v) < ψa(w)

if and only if v < w.

Since for j ∈ J the class V q
j (R) may contain both pairs and n-tuples as

elements, our ordering is somewhat more complicated than a simple lexico-

graphical order on tuples.

Let f : V q
j (R)→ V q

j (G)n × {0, 1, . . . , N} be defined as follows. For a tuple

(v1, . . . , vn) ∈ W n
j , set f(v1, . . . , vn) = (v1, . . . , vn, 0); for (a, v) ∈ [N ] ×

(V q
j (G) \W ) set f(a, v) = (v1, . . . , vn, a), where vk = v for all k ∈ Ma and

vk = Iak,j for all k ∈ Fa. The ordering on V q
j (R) is induced by f and the

lexicographic order on the image of f , namely, we set x < y if and only if

f(x) < f(y).

Let v, w ∈ V q
j (G) be such that v < w. By definition, for every a ∈ [N ],

ψa(v) < ψa(w) if and only if f(ψa(v)) < f(ψa(w)). Since f(ψa(v))k =

f(ψa(w))k = Iak,j for every k ∈ Fa, the first coordinate where the elements

f(ψa(v)) and f(ψa(v)) differ is in Ma. On the other hand, for k ∈ Ma we

have

f(ψa(v))k = v < w = f(ψa(w))k.
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We conclude that f(ψa(v)) < f(ψa(w)) if and only if v < w. Hence ψa(v) <

ψa(w) if and only if v < w.

Proof of Step II: Suppose that x ∈ V (Ga) ∩ V (Gb) with a 6= b. We

must have x ∈ W n
j for some j ∈ J since otherwise for some v ∈ V (G) \W ,

we have x = (a, v) = (b, v) which contradicts a 6= b. It follows therefore

that ψ−1
a (x), ψ−1

b (x) ∈ Wj. Since Wj ⊂ W =
⋃
I∈I I, there exists I ′a, I

′
b ∈ I

such that ψ−1
a (x) ∈ I ′a and ψ−1

b (x) ∈ I ′b. Consequently, x ∈ Ia = ψa(I
′
a) ∈ IGa

and x ∈ Ib = ψb(I
′
b) ∈ IGb . This establishes the intersection condition (A)

for members of G.

Now let us prove condition (B). Suppose that there are distinct elements

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V (Ga) ∩ V (Gb), a 6= b.

We distinguish between two cases.

(i) Ma ∩Mb 6= ∅.

(ii) Ma ∩Mb = ∅ (then Ma ⊂ Fb and Mb ⊂ Fa).

Suppose first that (i) holds and fix k ∈ Ma ∩Mb. We have ψ−1
a (x) = xk =

ψ−1
b (x), and similarly ψ−1

a (y) = ψ−1
b (y). Consequently, in this case condi-

tion (B2) holds as the isomorphisms σa = ψ−1
a : V (Ga) → V (G) and σb =

ψ−1
b : V (Gb)→ V (G) satisfy σa(x) = σb(x) and σa(y) = σb(y).

Now suppose that (ii) holds; in particular, we must have Ma ⊂ Fb and Mb ⊂
Fa. Let

(
Iak = [Iak,j]j∈J

)
k∈Fa and

(
Ibk = [Ibk,j]j∈J

)
k∈Fb be the tuples of fixed

elements that define the lines La and Lb respectively. Let j, j′ ∈ J be such

that x ∈ W n
j and y ∈ W n

j′ .

For k ∈Ma ⊂ Fb, (3.19) implies that

ψ−1
a (x)

k∈Ma= xk
k∈Fb= Ibk,j

and similarly ψ−1
a (y) = yk = Ibk,j′ . In particular,

{ψ−1
a (x), ψ−1

a (y)} = {Ibk,j, Ibk,j′} ⊂ Ibk ∈ I.
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Let Ia = ψa(I
b
k) ∈ IGa and notice that

{x, y} = ψa
(
{ψ−1

a (x), ψ−1
a (y)}

)
⊂ ψa(I

b
k) = Ia.

A symmetric argument yields Ib ∈ IGb such that {x, y} ∈ Ib. Hence, condi-

tion (B1) follows.

To summarize, case (i) implies condition (B2) and case (ii) implies condi-

tion (B1).

Proof of Step III: Let Ga ∈ G be arbitrary. To prove that Ga is an induced

subgraph of R we must check that for every pair of distinct x, y ∈ V (Ga)

if x, y ∈ V (Gb) for some b 6= a then {x, y} ∈ Ga if and only if {x, y} ∈ Gb.

Since x, y ∈ V (Ga) ∩ V (Gb), we may invoke the intersection properties of G
proved in Step II.

In case condition (B2) holds, the unique isomorphisms σa, σb of Ga,Gb intoG

satisfy σa(x) = σb(x) and σa(y) = σb(y). Since σa is an isomorphism, {x, y} ∈
Ga if and only if e = {σa(x), σa(y)} ∈ G. Similarly, {x, y} ∈ Gb if and only if

e′ = {σb(x), σb(y)} ∈ G. Because e = e′ we infer that {x, y} ∈ Ga if and only

if {x, y} ∈ Gb.

In case condition (B1) holds, let Ia ∈ IGa and Ib ∈ IGb be such that x, y ∈
Ia ∩ Ib. Let jr, js ∈ J (1 ≤ r, s ≤ t) be such that x ∈ V q

jr
(R) and y ∈ V q

js
(R).

Because Ia ∈
(
Ga
ρ2

)
it follows that distGa(x, y) = ρ(r, s) whenever ρ(r, s) ≤ 2

and distGa(x, y) ≥ 2 whenever ρ(r, s) > 2. In particular, {x, y} ∈ Ga if

and only if ρ(r, s) = 1. Similarly, {x, y} ∈ Gb if and only if ρ(r, s) = 1.

Therefore {x, y} ∈ Ga if and only if {x, y} ∈ Gb.

Proof of Step IV: We will now show that for any 2-coloring of the (ρ2, R)-

tuples in
⋃

G∈G IG there exists G ∈ G such that every t-tuple in IG ⊂
(
G
ρ2

)
is

monochromatic. It will be convenient to assume that all t-tuples in V q
j1

(R)×
· · · × V q

jt
(R) are colored.

Consider Q = (I1, . . . , In) ∈ In as a t × n matrix with columns I1, . . . , In.
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The kth row of the matrix is in V q
jk

(R) (recall that J = {j1, . . . , jt}). In

particular, Q is in correspondence with a t-tuple of V q
j1

(R) × · · · × V q
jt

(R).

Define the color of Q as the color of the corresponding t-tuple.

By the Hales–Jewett theorem, there is a monochromatic line La, a ∈ [N ],

in such a coloring. It follows that G = Ga is such that IG is monochromatic.

Indeed, every t-tuple ψa(I) ∈ IGa , I ∈ I, corresponds to the matrix QLa
I

contained in the line La (see (3.19)).
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dedicated to P. Erdős on his 60th birthday), Vol. I. Amsterdam: North-

Holland, 1975, 585–595. Colloq. Math. Soc. János Bolyai, Vol. 10.

[11] P. Erdös and G. Szekeres. “A combinatorial problem in geometry”.

In: Compositio Math. 2 (1935), pp. 463–470. issn: 0010-437X. url:

http://www.numdam.org/item?id=CM_1935__2__463_0.

[12] R. J. Faudree and R. H. Schelp. “A survey of results on the size Ramsey
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[27] J. Nešetřil and V. Rödl. “On Ramsey graphs without bipartite sub-

graphs”. In: Discrete Math. 101.1-3 (1992). Special volume to mark

the centennial of Julius Petersen’s “Die Theorie der regulären Graphs”,
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[30] J. Nešetřil and V. Rödl. “Partitions of subgraphs”. In: Recent advances

in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974).

Prague: Academia, 1975, pp. 413–423.
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