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Abstract 

 

The Global Seasonality of Norovirus Gastroenteritis 

By Sharia M Ahmed 

 

 

Background:  Norovirus is the leading cause of epidemic, acute gastroenteritis in 
industrialized countries, and may be a cause of severe disease in certain populations (e.g. 
children, elderly, and hospitalized patients).  Norovirus is generally recognized to have an 
irregular wintertime seasonality in temperate climates, but these patterns have not been 
systematically described across geographic areas in the era of modern diagnostics.   
Methods:  We present the results of a systematic review and meta-analysis of norovirus 
gastroenteritis across various geographic regions.  In the systematic review we searched 
for publications that reported at least one full year of monthly data on norovirus 
outbreaks or cases in a specified geographic region. The initial literature search identified 
287 potential publications, with 78 meeting the inclusion criteria.  Data were then 
extracted from each publication using Plot Digitizer software.   
Results:  The proportion of cases/outbreaks of norovirus per calendar month was 
calculated from studies representing twenty-six countries on six continents (37 case-
based studies, 32 outbreak-based studies, representing a total of 12 years of data).  
Conclusions:  There is a clear seasonality of norovirus across the six continents included 
in this study, with disease burden peaking in winter months in the northern hemisphere. 
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INTRODUCTION 

Background on Norovirus 

Diarrheal disease can usually be attributed to a few specific pathogens, and 

noroviruses are the most commonly identified cause of gastroenteritis among sporadic 

cases and outbreaks (1).  Within the United States, norovirus is estimated to be the top 

foodborne pathogen responsible for illness, ranking second in foodborne illness 

accounting for hospitalization, and is the fourth most frequent cause of death from 

foodborne disease.  This equates to 5.4 million illnesses, 14,000 hospitalizations, and 

approximately 150 deaths annually attributable to norovirus in the US (2). 

Noroviruses are RNA viruses of the family Caliciviridae (3), and are classified 

into one of five genogroups (GI-GV) (4).  Norovirus outbreaks frequently occur in 

healthcare, long-term care, daycares, and school settings (5) in industrialized areas, and 

are associated with deaths among the elderly (6).  In developing areas, children may 

suffer the worst morbidity and mortality from norovirus due to malnutrition and lack of 

access to healthcare (7). 

Seasonality of Norovirus 

Existing published reviews of norovirus cover a plethora of topics, including 

describing norovirus in specific settings (e.g., hospitals in general, intensive care units, 

nursing homes, cruise ships), estimating the effect of interventions in these settings, 

exploring the relationship between norovirus and specific blood groups or enzymes, and 

understanding norovirus in non-human hosts. 

A few reviews in particular focus on seasonal aspects of norovirus distribution.  

Norovirus has long been recognized as having a strong winter seasonality, and was 
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formerly known as winter vomiting disease (8).  Mounts et al. (2000) evaluated data from 

1978-1998 from eight countries and showed that norovirus cases occurred year-round, 

but that a clear peak in incidence occurred in cold months (9). 

.  The authors 

note significant associations of specific strains with specific types of outbreaks, with 

multiple strains usually being associated with waterborne and foodborne outbreaks, 

waterborne outbreaks being significantly associated with GI strains, and GII being 

associated with healthcare and winter outbreaks (10). 

While the role of genetics in explaining norovirus outbreaks is becoming better 

and better understood, the role of environmental factors in norovirus outbreaks remains 

less well documented.  Frequent genetic changes of norovirus are important in 

determining when outbreaks/epidemics occur, with GII.4 being the most common 

causative agent (11).   

In a multi-country study in Europe, Lopman et al. (2004) found that the 

emergence of new strains of norovirus can be associated with an unusual seasonal pattern 

as well as overall increase of disease.  Specifically, the 2002-2003 season saw an 

increased number of norovirus outbreaks and an unusual spike in outbreaks in warmer 

months, concurrent with the emergence of a new GII.4 strain.  This new variant may be 

more virulent or more environmentally stable, contributing to its unusual seasonality 

(12).  The available knowledge regarding environmental factors of norovirus outbreaks is 

less detailed.   
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Norovirus can and has been implicated in almost any setting where people are 

closely gathered.  This is not surprising, given that noroviruses have been found not only 

in feces, but also in vomitus (13).  There is also increasing evidence that norovirus can 

remain viable for long periods in the environment (11). 

One international team of researchers found that norovirus was regularly found on 

produce, though sequence confirmation was often not successful.  In general, they discuss 

how an increasing number of norovirus outbreaks are associated to fresh produce (14).  If 

the availability of fresh produce is less and less contingent on real-time meteorological 

variables, this could have important implications for the effectiveness of meteorological 

data serving as predictors of the seasonality of norovirus. 

Seasonality of Infectious Diseases 

There is a growing body of literature describing the seasonality of infectious 

diseases.  It is well documented that certain diseases often peak during a given season and 

at a characteristic strength and duration every year.  This is not to say, however, that the 

disease is not present in the off-season, just at a much lower strength and often only as 

sporadic cases rather than epidemics.  When epidemics do occur, it is often 

simultaneously in geographically disparate locations.  Latitude is often an important 

predictor of when and how strong spikes in disease activity occur (15).   

For example, influenza and rotavirus have well-established winter peaks, while 

polio peaks in the summer.  This influenza peak usually only varies by 5-10 weeks from 

year to year, and peaks with greater strength as one gets farther from the equator.  

Epidemic meningococcus is rare in the off-season, even though there is no decrease in 

carriage during this time (15).  When studying all-cause mortality in a given location, 



4  
  

distinct seasons of greater mortality have been observed.  A shift in these well-established 

mortality seasons can be indicative of social and infrastructural changes (16).   

The mechanisms by which these seasonal descriptors actually influence disease 

are varied.  Temperature, precipitation, and availability of resources are all important 

actors on population dynamics.  This is because these environmental predictors mediate 

host behaviour, contact rates, pathogen viability in the environment, changes in host 

immune defense, and seasonality of host births and deaths (17).   

 A number of studies have looked at the seasonality of diarrheal disease 

specifically.  In Taiwan, maximum temperature and extreme rainfall days have been 

found to be strongly related to diarrhea morbidity.  Monthly average temperature, total 

rainfall, and monthly average humidity were also explored, but not found to be as 

important of predictors of monthly diarrheal disease (18).  A recent study in Thailand 

 (19).  Significantly, it was also 

found that population density and GDP modified the effect of weather predictors on 

diarrhea morbidity, dampening the effect in wealthy, urban populations (19).   

 An international study of campylobacter explored weather descriptors as 

predictors of laboratory-confirmed cases.  All countries included in the study showed a 

clear seasonality of campylobacter, with a peak usually occurring in the spring, and 

generally peaking earlier in countries with warmer winters.  However, temperature was 

not shown to have a strong effect on the outcome, either at a short weather timescale or a 

seasonal timescale.  Also, rainfall was not found to have any effect on campylobacter 

infection (20).   
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 Rotavirus is perhaps the most well-known and studied of the seasonal diarrheal 

diseases.  In a 2009 study in England, Wales and the Netherlands, researchers found no 

effect of rainfall and humidity on rotavirus infection, but did find a 13% decrease in 

reported rotavirus cases per 1°C increase in temperature above a 5°C threshold (21).  A 

study in Bangladesh examined the effect of river level, humidity, and temperature on 

hospital visits for rotavirus.  In their data, rotavirus increased by 5.5% per 10cm rise in 

the river, decreased as relative humidity increased, and increased 40.2% for each 1°C 

increase above 29°C (22).   

 The geographic trends of rotavirus have been described in more detail within the 

United States.  The winter rotavirus season typically begins in December or January in 

the Southwest, moves up and across the country, and ends in April or May in the 

Northeast.  It is important to note that for the study period of these findings (1997-2004), 

there was no observable effect of rotavirus vaccine.  Also, the El Niño phenomena in 

1997 to 1998, as well as the La Niña phenomena from 1998 to 2001, were not found to 

affect this yearly seasonal-temporal pattern of rotavirus in the US (23).   

 A systematic review and meta-analysis of rotavirus in tropical settings found a 

10% decrease in rotavirus incidence for each 1°C increase in mean temperature, a 1% 

decrease in rotavirus for each 1cm increase in monthly rainfall, and a 3% decrease in 

rotavirus for each 1% increase in relative humidity.  It is important to note that while 

rotavirus incidence is less variable in the tropics, compared to temperature climates 

where incidence can go to zero in the off-season, tropical rotavirus incidence is still 

responding to climatic descriptors (24).  This further adds evidence to the overall 

hypothesis that weather variables serve as significant predictors of rotavirus activity. 
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 Finally, it should be noted that extreme, unusual (climatic) events can also have a 

significant influence on the seasonal patterns of disease.  In a study examining pediatric 

diarrhea-associated hospital admissions in Peru, 6,225 excess admissions were attributed 

to the sustained increased temperature associated with El Niño.  For every 1°C increase 

in temperature, diarrhea admissions increased 8%.  This effect was greatest during winter 

months (25).  In a study of the viral load of a flooded river in Germany in 2002, a strong 

association was found between water temperature and detection of viral genome.  

However, increased transmission of viral disease was not observed in the flooded area 

(26), though this could be more indicative of the strong water treatment infrastructure of 

Germany, rather than a lack of increased risk itself.   

Climate Change and Infectious Disease 

Researchers are interested in understanding the relationship between climate 

predictors and infectious disease in order to be able to anticipate how global climate 

change will affect the epidemiology of infectious diseases.  Climate change involves 

changes in rainfall patterns, surface and air temperatures, and winds and ocean currents at 

the local, regional, or global level (27).  Global warming, a more specific description of 

climate change, has already been observed in the past century, with a 0.3-0.6°C global 

increase in temperature.  The rate of this temperature increase is expected to accelerate in 

this century.  This increase in global air temperature is and will continue to have an 

unknown effect on precipitation and soil moisture, which are intricately connected with 

agriculture and food security.  Sea levels are also expected to continue rising at an 

accelerating rate, which disproportionately affects coastal communities (28).   
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These global shifts have and will continue to have an impact on human resources, 

behaviour, and health.  Vector habitats change, which will affect vector-borne disease 

trends.  Food and economic stress will impact community-level human immunity, as well 

as migration patterns.  Basic resources such as safe water and sanitation are becoming 

increasingly difficult to support as the environment changes more and more quickly (28).   

All of these will have an impact on infectious disease.  For norovirus specifically, 

climate change is predicted to impact the seasonality of norovirus by influencing the 

following: transmission, host susceptibility, and the resistance of norovirus to 

environmental conditions (27). 

A study focusing on specific climate variables as independent predictors of 

norovirus found that cooler temperatures, lower relative humidity, low population 

immunity, and the emergence of new variants were all associated with increased 

norovirus activity in England and Wales.  Of these predictors, changes in temperature had 

the greatest attributable risk (29).   

  Based on studies that indicate a peak of norovirus outbreaks in the winter in 

northern climates, and in the summer in southern climates, Marshall and Bruggink (2011) 

concluded in their 2011 review that norovirus outbreak seasonality is not linked to 

temperature.  They point to evidence of waterborne transmission as an indication that 

rainfall may be a more important predictor of norovirus outbreaks (11). 

Rohayem (2009) suggests that due to the virulent nature of norovirus vomitus, 

increased humidity might be an important factor in norovirus transmission.  He also 

observes that lower water temperatures are associated with increased norovirus activity.  

Human behaviour, specifically crowding, has often been used to explain increased 
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incidence of norovirus in colder months.  This is even more plausible by considering the 

seasonal variation in human immunity that also dips during the winter (27).   

Systematic Reviews 

Within the medical literature, systematic reviews have become a well-established way 

to condense information from multiple studies into single, easily accessible pieces that 

synthesize the available evidence on a topic.  Health practitioners increasingly use these 

synopsizes for making informed decisions (30).  The Cochrane Review, part of the 

Cochrane Collaboration that aims to assist and encourage the use of systematic reviews in 

healthcare decisions, lists the following as important parts of a systematic review: 

 a clearly stated set of objectives with pre-defined eligibility criteria for studies; 

 an explicit, reproducible methodology; 

 a systematic search that attempts to identify all studies that would meet the 

eligibility criteria; 

 an assessment of the validity of the findings of the included studies, for example 

through the assessment of risk of bias; and 

 a systematic presentation, and synthesis, of the characteristics and findings of the 

included studies (31). 

By examining trends in outcomes, practitioners can avoid sifting through the 

sometimes contradictory findings of multiple studies (32).  This is often achieved by 

conducting a meta-analysis of systematic review data.  A meta-analysis entails pooling 

data from multiple studies of the same topic, and re-estimating effect measures in this 

larger dataset (31).   

Motivation for this study 
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The most recent review of global seasonality of norovirus was published over a 

decade ago, before PCR diagnostics were widely available.  In this paper, we present an 

updated systematic review describing worldwide seasonality of norovirus in the age of 

modern diagnostics.  Other studies of norovirus seasonality have only looked at specific 

cities/regions, which are more sensitive to unique local behavioural and environmental 

determinants of infectious disease.  This study takes advantage of an increased body of 

literature that has developed over the past decade with improvements in norovirus 

diagnostics to include a much larger number of countries, studies, and subjects.  We 

explore if meteorological factors, the emergence of new strains, GDP, latitude, and 

demographic characteristics are associated with the strength of the norovirus season and 

the timing of seasonal peaks. 
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METHODS 

Literature review 

We searched PubMed through Endnote X4 to identify articles on Norovirus 

seasonality using the search terms  each of the following terms:  

Abstracts 

were first screened for relevance by two independent reviewers and then original articles 

were obtained and reviewed for the inclusion of monthly measure of human norovirus 

burden for at least one contiguous year from 1997 to 2009.  Data were extracted from the 

final set of articles using Plot Digitizer (SourceForge.net).  A detailed protocol describing 

search methodology is provided in the Appendix. 

Studies commonly included two different types of outcomes: case data and 

outbreak data.  Case data generally referred to norovirus positive laboratory samples or 

individual cases reported to regional/national reporting systems.  Outbreak definitions 

varied between papers, but were also from regional/national reporting systems.  

Therefore, we divided the dataset into two groups for comparability of reported outcome.  

Authors were contacted if their published figures/tables were not clear enough for digital 

extraction, and some datasets were expanded when authors replied with more inclusive 

data.  If authors did not respond, or if the researchers were unable to make the published 

measure comparable to other studies, the article was excluded (eight excluded).  Five 

relevant articles not identified in the search but known to the authors were added to the 

data.  We were able to successfully extract data from papers in Mandarin Chinese, 

Portuguese, and Polish by translating relevant portions of papers, in particular graphs and 

tables. 
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Methods to summarize data 

Several data processing steps were carried out to ensure comparability of data 

across the different study designs and data presentation formats. For articles presenting 

data stratified by genotype/genogroup, the monthly counts of cases or outbreaks were 

summed.  If the study reported results as percentages but included the total number of 

cases/outbreaks, monthly percentage measures were back-calculated to counts.  Studies 

presenting monthly percentages without reporting the total number of cases or outbreaks 

were excluded.  Weekly counts were summed to monthly counts, and only single 

instances of redundant datasets (i.e., multiple published articles using the same data) were 

used.   

Monthly counts of cases or outbreaks were then normalized, averaged and 

weighted. 

Normalized monthly counts of cases or outbreaks P was calculated as follows: 

 

Here Pym is the normalized monthly counts in year y and month m, where Cym is the 

number of cases/outbreaks in year-month ym and N is the total number of months in the 

study.  Hence the normalized monthly count is the proportion of cases or outbreaks that 

occur in a given month such that the sum for the entire study period of that article equals 

1.  It serves as an indicator of norovirus activity in a given month and is allowed to vary 

across years to account for annual variation. 

Normalized yearly averages of cases or outbreaks  presents the single year 

series averages reported in articles or was calculated for multi-year studies as follows: 
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Averages were calculated of normalized data, rather than normalizing averages, to 

account for studies that do not have multiples of twelve months of data. 

Weighted normalized summation of cases or outbreaks was calculated as follows:  

 

Here PWm presents a single value for each month in the study period based on the 

normalized monthly counts for all studies x weighted on the relative size of each study. 

Weighted normalized yearly averages of cases or outbreaks  was calculated 

as follows: 

 

This is the same as the weighted normalized summation but uses normalized yearly 

averages instead of normalized monthly counts.  It serves as a global-weighted proportion 

of cases or outbreaks in month m.     

Predictors and independent variables 

Independent variables for each study location included latitude (degrees), average 

winter temperature (°C) (December/January/February or June/July/August depending on 

hemisphere), peak-to-trough ratio of monthly average temperature (per season year), and 

average monthly precipitation in the wettest month (cm).  These data were obtained for 

the city in which the study occurred. If less than or equal to three cities were in a single 

study, values were averaged for those cities.  If published data were for greater than three 

cities or for a regional or country as a whole, data for the largest city (by population) was 
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used.  Country-level data on gross-domestic product (GDP), crude birth rate, population 

s a new strain year or not (a season year 

with a significant genetic shift from previous years, which have been document in the 

2002-2003 and 2006-2007 seasons) were also included.   

Latitude, temperature, and precipitation data were collected from 

www.weatherbase.com (33) and the World Meteorological Organization (a member of 

the UN Development Group) (34).  Country-level GDP data was obtained from the 

International Monetary Fund (IMF) website for each country in the dataset (35).  Gross 

domestic product based on purchasing-power-parity (PPP) per capita GDP was used 

since in this analysis GDP serves as a proxy for infrastructure and services available for 

water, sanitation, and healthcare.  Values were reported in current 2011 international 

dollars.  Population density was reported in population per square kilometer, and the 

values included were the average of yearly estimates for 1997-2009 (this study period).  

Crude birth rate wa

person-years lived by the population over that period.  It is expressed as number of births 

the five-year estimates for 1995-2000, 2000-2005, and 2005-2010.  Both population 

density and crude birth rate data were obtained from the United Nations Department of 

Economic and Social Affairs, Population Division, Population Estimates and Projections 

Section (36). 

Statistical methods 

The modeling outcome of interest was norovirus season strength, measured as the 

peak to mean ratio of normalized monthly proportion norovirus cases or outbreaks for a 

http://www.weatherbase.com/
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given season-year.  The log of norovirus season strength was used for modeling purposes, 

to help meet the normality assumption.   

A complex, multilevel mixed linear model was deemed most appropriate for the 

data.  Cases and outbreaks were modeled separately.  Scatterplots of the outcome versus 

each individual predictor except new strain year (already a dichotomous variable) were 

produced.  No predictors were categorized.  Initial models assumed correlation at the 

country, city, and study levels.  These models included fixed effects of the four potential 

exposures (latitude, average winter temperature, summer to winter temperature ratio, and 

average precipitation in wettest month), the four potential confounders (GDP, crude birth 

rate, population density, and new strain year), and a one-way interaction between GDP 

and each of the exposures.  Initial models also included a random effect at the cluster 

level, and a three-tier categorical variable for study size.   

In a secondary, simplified analysis, multiple years of data were averaged within 

each small study to get a one-year average of norovirus season strength for that study 

type and setting.  Years were defined by season year (July of a given year to June of the 

subsequent year).  Levels, correlation, and weighting were ignored for this linear 

regression. 

No IRB was necessary for this study as it did not involve research with human 

subjects. 
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RESULTS

Our original search yielded 458 articles, 171 of which were duplicates, and 149 were 

deemed irrelevant based on their title/abstract.  Of the remaining 138 articles, 28 did not report 

data, six did not span an entire year, 11 did not report monthly outcomes, and 10 could not be 

found or translated.  Another five articles were added for relevance that had not been identified 

in the original search, other datasets were added/removed based on clarifying correspondence 

with authors, and multiple articles using the same dataset were condensed into a single dataset.  

The final dataset included 37 sets of data on cases and 32 sets on outbreaks (see Figure 1). 

Scatterplots of the outcome and each continuous covariate showed little variation in all 

covariates except for GDP (see Figure 2).  The full range of outcomes were represented by a very 

small sub-range of each predictor variable except for GDP.  The full range of outcome was 

represented by the full ranges of GDP, i.e. there was no meaningful pattern between GDP and 

the outcome.  Norovirus exhibited a clear seasonality across the six continents represented in this 

study (Figure 3), with the peak in winter months and a trough in summer months.  The 

appearance of this trend was dampened when moving from North to South, which was expected 

if colder temperatures or a more severe winter-summer temperature difference is significant in 

predicting norovirus seasonality.  Notable exceptions were the Widdowson et al. (2004) study 

and the Verhoef et al. (2008) study.  Both of these described the seasonality of norovirus 

outbreaks on cruise ships in the US and Europe respectively, so it is reasonable for these 

outbreaks to follow the seasonality of cruises (i.e. the overarching risk) rather than 

meteorological characteristics.  

Another unusual finding is the pattern of the Georgiadis et al. 2010 study, which took 

place in Brazil.  Since the meteorological seasonality of Brazil is opposite to the rest of the 
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included studies, it was expected that Brazil would exhibit a dip in norovirus activity in 

November-March, the months of highest temperature.  This is what was observed in the Victoria 

et al. 2007 study (also in Brazil).  However, the Georgiadis et al. study did not display this clear 

pattern, reaching the highest peak in norovirus activity in November.  These findings should also 

be compared to the other southern hemisphere studies.  The four Australian datasets all roughly 

exhibited the expected November-March dip in norovirus activity, though the usual seasonal 

pattern was not as pronounced or distinct as in other studies.  

Figure 4, showing the average seasonality across all studies, also supported this clear 

winter-peak seasonality of norovirus.  In the 12 year span of this study, eight years of case data 

peaked in December-February (winter), with one peaking in November and three peaking in 

March, while ten years of outbreak data peaked in December-February, with one peaking in 

March (season 2008-09 is omitted in this graph due to lack of data covering this entire period) 

(see Figure 4).  Studies reporting outbreaks did not appear to peak as sharply as studies reporting 

cases.   

Case studies and outbreak studies showed a distinctly earlier peak of proportion of 

norovirus cases by month in new strain year 2002-03 (blue), but not in new strain year 2006-07 

(green) (Figure 4).  Among outbreak studies, 2006-07 also showed a more sustained peak (Figure 

4).  The 2002-03 early peak supported previous findings and hypothesis.   

Meaningful regression models were not able to be estimated for either the full dataset or 

the simplified dataset.  In the full multilevel model, too much collinearity existed among the 

predictor variables, and did not allow the model to stably converge.  Collinearity was not a 

problem for the simplified dataset, but the regression still could not converge (due to infinite 
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likelihoods being reached), or the estimates were not significant.  See Appendix for non-

significant results.   
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DISCUSSION 

  These data exhibited a clear seasonality of norovirus, with a peak in the proportion of 

norovirus burden in winter months.  Excluding cruise ship data, 16 out of 37 studies of cases and 

19 out of 30 outbreak studies peaked during winter months (December-February in the Northern 

hemisphere, June-August in the Southern hemisphere).  In Europe, where there was more data 

over a range of years and climates, the relative strength of the norovirus burden peak was clearly 

which failed to show a winter peak 

in the southern hemisphere, only included data from the 2006-07 season year, a new strain year 

that is suspected to exhibit unusual seasonality.  The study from Victoria et al., also from Brazil 

and not including data from new-strain years, exhibited the expected wintertime seasonality of 

norovirus.   

In general, outbreak studies exhibited weaker seasonality than case studies.  This 

difference most likely stemmed from having a broader catchment area in outbreak studies, which 

exerted a smoothing influence and further supplies robustness to the described seasonality.   

Based on previous literature (Lopman et al., 2004) we expected to see earlier peaks in 

new strain years.  This was observed for 2002-03 in both cases and outbreaks but not in 2006-07.  

In fact, the yearly average proportions from Figure 4 shows a late peak for the 2006-07 season in 

outbreak studies.  A late peak could imply that the new strain emerged later in the season year, 

and therefore may still have peaked faster than expected, but appeared later in the usual season 

year.  Alternatively, this strain may just be less transmissible than other strains.  It is also 

possible that whatever environmental and behavioural factors that time/temperature serve as 

proxy for were different in the 2006-07 season.  A possible example would be less travel 

compared to other years and therefore slower spread of the new strain.     
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Overall, the analysis was strongly supportive of a wintertime seasonality of norovirus and 

provided an updated review of global seasonal trends.  As evidenced by the scatterplots in Figure 

This limited variability of predictive data did not allow regression modeling.  Still, the systematic 

and extensive literature search that informed the descriptive analysis allowed us to be confident 

in the findings we were able to describe.  Using monthly averages of meteorological 

characteristics, instead of records of the actual meteorological conditions in that location at that 

time, may oversimplify the data, as well as be too repetitive and therefore correlated across 

years.  Also, it may simply be inappropriate to use monthly averages of weather conditions that 

impact environmental survival and host behaviour on a continuous basis.  Furthermore, country-

level demographic descriptors may also be too broad to capture the influence of such 

demographics at the local level.   

  These findings were consistent with the existing literature, that norovirus incidence 

peaks in the winter months in the northern hemisphere.  It is less clear when the peak occurs in 

the southern hemisphere.  In their 2011 review, Marshall and Bruggink claim that norovirus 

incidence peaks in the winter in the northern hemisphere, but in warmer months in the southern 

hemisphere.  This is based on data solely from Australia.  While the data from Australia included 

in this study do not consistently show a wintertime seasonality, they also do not show a 

consistent summertime seasonality for norovirus.  The southern hemisphere data currently 

available for norovirus seasonality are almost exclusively from Australia, some from Brazil.  

With the exception of a very small study in Madagascar (n=14), there is no other data from the 

southern hemisphere.  While it is probable that temperature alone is not the only driver of 

norovirus seasonality, it cannot be concluded from data from Australia alone that norovirus 
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exhibits a summertime seasonality in the southern hemisphere.  Australia is more similar to 

Europe and northern American countries with regards to behaviour, demographics, as well as 

business.  The reported spike in norovirus incidence in Australia in December through February 

could also reflect mass importation of the virus from other developed countries when those 

northern hemisphere nations are peaking in their norovirus burden. 

Whether or not the southern hemisphere norovirus burden peaks in the winter months, it 

was clear that norovirus in the northern hemisphere does peak in the winter.  These northern 

hemisphere findings were consistent enough to inform public health efforts that would be most 

efficiently implemented at times of critical norovirus risk.  Containing transmission of norovirus 

is key to limiting its burden, and behavioural and technical interventions should be reinforced as 

winter approaches.   

It is still unclear what the seasonality of norovirus is in the southern hemisphere.  

However, some aspect of winter does seem to drive norovirus transmission in the northern 

hemisphere.  If more detailed predictive data were obtained, specifically more location and year 

specific meteorological data, the resulting regression models could be very informative in 

determining what aspects of winter are important predictors of norovirus seasonality.  These data 

are available through the US National Climatic Data Center, and will be utilized in the near 

future.   
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Table 1: Summary of Studies Included in Review            

Author Year_Pub Ref Continent Country City Season-
Years 

Outcome Latitude 
(degree) 

Avg. 
Winter 
Temp 
(°C) 

Summer/ 
Winter 
Temp 
(°C) 

Avg 
rain in 
wettest 
month 
(cm) 

New 
Strain 
Year 
(Y/N) 

Crude 
Birth Rate 
(births per 
1,000 pop.) 

Pop. 
Density 
(pop. 
per sq. 
km.) 

GDP 
 (PPP 
per 
capita) 

# Cases/ 
Outbreaks 

 

Anestad-
Vainio 

 (37, 
38) 

Europe Norway NA 01-08 Cases 59 -3 -5 9 N 12.8 11.9 53376 5274  

Beersma 2009 (39) Europe Netherlands Rotterdam 03-07 
cases, 
03-07 
outbreaks 

Outbreaks 51 4 5 8.9 N 12.1 388 42331 224 cases, 
559 
outbreaks 

 

Belliot 2010 (40) Europe France NA 08-09 Outbreaks 48 4 5 6.5 N 12.8 109.2 35049 238  

Blanton 2006 (41) N America USA NA 00-04 Outbreaks NA NA NA NA N 14.1 30.2 48147 180  

Bruggink 2010 (42) Australia Australia Victoria 02-07 Outbreaks -37 10 2 6 Y 13.3 2.6 40836 767  

Buesa 2008 (43) Europe Spain Catalonia, Valencia 01-07 Outbreaks 40 6 4 6.4 N 10.2 83.5 30622 194  

Chan_It 2011 (44) Asia Japan Tokyo, Sapporo, 
Saga, Osaka, Maizuru 

07-09 Cases 34 6 7 20.1 N 9 333.6 34362 254  

Chhabra 2009 (45) Asia India Pune, Nagpur, 
Aurangabad 

05-07 Cases 19.3 21 2 23 N 25 336.2 3703 89  

Dai 2011 (46) Asia China Jiangmen City 06-07 Cases 22 15 2 48.3 N 14 134.5 8394 115  

Deng 2009 (47) Asia China Beijing Avg Cases 39 -2 -8 22.4 NA 14 134.5 8394 79  

Dey 2007 (48) Asia Bangladesh Dhaka 04-05 Cases 23 21 2 39.9 N 25.3 942.7 1697 41  

Dey 2011 (49) Asia Japan Maizuru, Tokyo, 
Sapporo, Saga, Osaka 

06-07 Cases 34 6 7 20.1 Y 9 333.6 34362 98  

Doyle 2009 (50) N America USA Florida 06-07 Outbreaks 30 13 2 19.6 Y 14.1 30.2 48147 113  

Fang 2007 (51) Asia China 13 regions listed Avg Cases NA NA NA NA NA 14 134.5 8394 777  

Georgiadis 2010 (52) S America Brazil NA 06-07 Cases NA NA NA NA N 19.2 21.3 11846 48  

Greer 2009 (53) N America Canada Toronto 06-08 Outbreaks 43 -5 -3 8.1 Y 11.1 3.2 40458 247  

Hansman 2004 (54) Asia Vietnam Ho Chi Minh 99-00 Cases 10 27 1 34.3 N 17.8 245.5 3355 1368  

Huh 2009 (55) Asia S Korea Gyeonggi province Avg Cases 37 -1 -12 34.8 NA 11.3 468.4 31754 367  

Hulth 2010 (56) Europe Sweden NA 05-09 Cases 59 -3 -5 7.2 N 11 20 40614 22895  

Iritani 2002 (57) Asia Japan Osaka City 97-00 Outbreaks 34 6 7 20.1 N 9 333.6 34362 62  

Iritani 2003 (58) Asia Japan Osaka City 97-00 Cases 34 6 7 20.1 N 9 333.6 34362 93  

Iritani 2010 (59) Asia Japan Osaka City 06-07 Outbreaks 34 6 7 20.1 Y 9 333.6 34362 144  

Johansen 2008 (60) Europe Sweden NA 97-06 Cases 59 -3 -5 7.2 N 11 20 40614 4081  

Kelly 2008 (61) Europe Ireland NA 04-05 Outbreaks 53 6 3 7.6 N 15.4 57.2 39508 263  

Kirk 2010 (62) Australia Australia Long-term care 
facilities 

02-08 Outbreaks -33 12 2 13.2 Y 13.3 2.6 40836 1147  
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Kroneman 2006 (63) Europe NA NA 04-07 Outbreaks NA NA NA NA N NA NA NA 952  

Kroneman 2008 (64) Europe NA NA 01-06 Outbreaks NA NA NA NA N NA NA NA 1643  

Lee 2008 (65) N America Canada Alberta 03-04 
cases, 
03-04 
outbreaks 

Cases, 
Outbreaks 

51 -7 -2 8.1 N 11.1 3.2 40458 141 cases, 
78 
outbreaks 

 

Lindell 2005 (66) Europe Sweden mostly Stockholm 01-03 Cases 59 -3 -5 7.2 N 11 20 40614 878  

Lopman 2004 (12) Europe Denmark NA 98-03 Cases 55 1 33 7.4 N 12.1 125.1 37742 1896  

Lopman 2004 (12) Europe Finland NA 98-03 Cases 60 -5 -3 7.4 N 11.2 15.4 36723 1629  

Lopman 2004 (12) Europe Germany NA 99-03 Outbreaks 52 0 -33 6.9 N 8.9 230.9 37936 376  

Lopman 2004 (12) Europe Hungary NA 99-03 Outbreaks 47 1 -37 6.3 N 9.7 109 19647 184  

Lopman 2004 (12) Europe Netherlands NA 97-03 Outbreaks 52 4 6 10.4 N 12.1 388 42331 270  

Lopman 2004 (12) Europe Slovenia NA 00-03 Cases 46 0 -18 15.4 N 9.3 98.6 29179 808  

Lopman 2004 (12) Europe Spain NA 99-03 Outbreaks 40 6 4 6.4 N 10.2 83.5 30622 245  

Lopman 2004 (12) Europe Sweden NA 97-03 
cases, 
01-02 
outbreaks 

Outbreaks 59 -3 -5 7.2 Y 11 20 40614 3213 
cases, 
1192 
outbreaks 

 

Marshall 2003 (67) Australia Australia Melbourne 98-99 Cases -37 10 2 6 N 13.3 2.6 40836 79  

Marshall 2005 (68) Australia Australia Victoria 00-01 Outbreaks -37 10 2 6 N 13.3 2.6 40836 30  

Maunula 2005 (69) Europe Finland Helsinki 98-03 Outbreaks 60 -5 -3 7.4 N 11.2 15.4 36723 252  

Medici 2004 (70) Europe Italy Parma 00-03 Cases 44 1 46 9.7 N 9.3 193 30166 63  

 2010 (71) Europe Poland NA Avg Cases, 
Outbreaks 

52 -1 -11 7.6 NA 10.1 118.3 20137 2724 
cases, 130 
outbreaks 

 

Nataraju 2011 (72) Asia India Kolkata 08-09 Cases 22 21 2 33.3 N 25 336.2 3703 78  

Nguyen 2007 (73) Asia Vietnam Ho Chi Minh 02-03 Cases 10 27 1 34.3 N 17.8 245.5 3355 1402  

Nguyen 2008 (74) Asia Vietnam Ho Chi Minh 05-06 Cases 10 27 1 34.3 Y 17.8 245.5 3355 32  

Onishi 2008 (75) Asia Japan Soma 02-03 Cases 36 5 6 18 Y 9 333.6 34362 105  

Papaventsis 2007 (76) Africa Madagascar Antananarivo 04-05 Cases -18 16 1 29 N 39.3 28.8 943 14  

Park 2010 (77) Asia S Korea 5 hosp in 3 areas 
(Seoul, Gyenogsi-do 
state, Gwangwon-do 
state) 

07-09 Cases 37 -1 -12 34.8 N 11.3 468.4 31754 1169  

Puustinen 2011 (78) Europe Finland NA 98-04 Cases 60 -5 -3 7.4 N 11.2 15.4 36723 765  

Reuter 2008 (79) Europe Hungary NA 01-07 Outbreaks 47 1 -37 6.3 N 9.7 109 19647 301  

Sakon 2007 (80) Asia Japan Osaka City 05-07 Outbreaks 34 6 7 20.1 N 9 333.6 34362 525  

Siebenga 2007 (81) Europe Netherlands NA 97-06 Outbreaks 34 6 7 20.1 N 12.1 388 42331 605  



33  
  

Sumi 2005 (82) Asia Japan NA 01-04 Cases 34 6 7 20.1 N 9 333.6 34362 3413  

Terletskaia-
Ladwig 

2011 (83) Europe Germany Baden-Württemberg,  02-09 Cases 52 0 -33 6.9 Y 8.9 230.9 37936 682562  

Tu 2007 (84) Australia Australia New South Wales 04-07 Outbreaks -33 12 2 13 Y 13.3 2.6 40836 734  

UK Data1 2003/ 
2009 

(5),(29) Europe England/ 
Wales 

NA 97-09 
cases, 
97-09 
outbreaks 

Outbreaks 51 4 4 7.9 N 12 246 35974 47109 
cases, 
4148 
outbreaks 

 

Vainio 2006 (38) Europe Norway NA 01-06 Outbreaks 59 -3 -5 9 N 12.8 11.9 53376 197  

vanAsten 2011 (85) Europe Netherlands NA 99-07 Outbreaks 52 4 6 10.4 N 12.1 388 42331 746  

Verhoef 2008 (86) Europe NA NA 02-07 Outbreaks NA NA NA NA Y NA NA NA 29  

Victoria 2007 (87) S America Brazil Rio de Janeiro 03-04 Cases -22 23 1 13.7 N 19.2 21.3 11846 65  

Widdowson 2004 (88) N America USA cruiseships 01-02 Outbreaks NA NA NA NA Y 14.1 30.2 48147 44  

Wilhelm 2010 (89) N America USA Charleston 06-07 Cases 38 2 22 13.2 N 14.1 30.2 48147 979  

Yoon 2008 (90) Asia S Korea NA 05-06 Cases 37 -1 -12 34.8 Y 11.3 468.4 31754 114  

 
 
 

                                                                                                                          
1  Special  thanks  to  John  Harris  for  supplying  the  full  series  of  data.  
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FIGURES 
Figure 1: Flow chart of search 
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Figure 2: Scatterplots of each predictor against log indicator of norovirus seasonality 
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Figure 3:  Proportion of norovirus cases/outbreaks per month in each dataset (normalized) 
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Figure 4: Proportion of norovirus cases/outbreaks by season-year, with new strain years 
highlighted (Blue=2002-03 Green=2006-07 Red=average) 
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APPENDIX  
Detailed Search Protocol 
 

 
1) Go into EndNote > File Pathogen]_  > Hit Enter 
2) Right- - -Related 

e a group for each of these terms. 
a) Climate-related term list: 

i) Season 
ii) Rain 
iii) Ambient Temperature 
iv) Relative Humidity 
v) Climate 
vi) Weather 

3)  
4) In this new library, right- -hand side >Create Group > Title 

-  
a) Climate-related term list: 

i) Incidence 
ii) Prevalence 
iii) Surveillance 

5)  
6)  
7) 

[climate-related term] 
a) -related term]. Confirm Online Search by 

.  
8) the left column.  Highlight all references and drag 

into the [climate-related term] group.  Note date, time, and number of hits for each search. 
9) Repeat for each climate-related term 
10) e climate-related 

terms (steps 3-4). 
11) 

press CANCEL > all duplicates will be highlighted > right-click and move duplicate 
references to Trash. Note number of duplic
deleting duplicates. 

12) After deleting duplicate > Right-click on trash > Empty Trash 
13)  
 
To re-run search 
Create new library, rerun all terms 
Delete duplicates 
Create another new library.  Add all articles from original search (not including duplicates). Add 
all articles from new search (not including duplicates).  Find duplicates. Delete highlighted 
duplicates.  Delete all articles from duplicates folder.  This gets rid of all articles that are counted 
in both libraries.  This leaves only articles that are found in one library (search) and not the other 
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1)  
2) -  
3) Right-  
4)  
5) Begin excluding irrelevant references from the main library based on examining titles and 

abstracts ONLY at this point 
a) Reject based on Title/Abstract if the subject matter is not appropriate (ex. Is a study on 

oysters) 
b) Reject based on Time if study period is not: 

i) One full year of data (12 months) 
ii) Reports weekly or monthly incidence of diarrheal disease (outbreak)/pathogen 

incidence   
6) Click and drag each reference that is being excluded into the appropriate group based on the 

reason for exclusion.  The original reference in the _____ 
click to remove from that group 

 
Creating the Combined Library 
1)  
2) On the left-  
3) Right- ate groups with the following 

titles: 
a)   
b)  
c)  
d)  

4) 
to References > Find duplicates > press CANCEL > all duplicates will be highlighted > right-

 
5) 

accordingly.   
a)  

i) 
 

ii) Copy all of the references from 
 

iii) Search for duplicates, delete these, and file the remaining references into the 
 

iv)  
v) Repeat steps i-iv for individual Y 

6) 
exclude the references.  Move included references into one group, excluded references into 
another group, and r  
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7) 
group. 

 
PDF Search 
1)  
2)  
3) 

 
4) 

____ into the  
5) 

found, save the document in a separate folder, and also attach it to the reference in EndNote. 
6) Search through Pubmed through the Emory library system.  This works best on campus, 

logged into the University network, and logged into the library system. 
7)  Manually search the ____ library system using reference information from the EndNote 

library. 
8) For articles that are only available in print, go to the library and make photocopies of the 

Endnote reference. 
9) For articles that are not available at Emory, go to http://www.library.emory.edu/uhtbin/nph-

illiad > sign in using Emory username and password > under Create New Request  click on 

abbreviation 
 
PDF Exclusions 
1)  

a)  
i) Not_full_year 
ii) Not_monthly_data 
iii) No_data 
iv) Outbreak (depending on pathogen) 

b)  
i) To Extract 
ii) Maybe 
iii) Have Extracted 
iv)  

2) Go through each pdf.  Place excluded references in the appropriate group based on why it 
 

3)  
a) [Pathogen]_Yes 
b) [Pathogen]_No 
c) [Pathogen]_Maybe 
d)  

4)  
a)  
b)  

http://www.library.emory.edu/uhtbin/nph-illiad
http://www.library.emory.edu/uhtbin/nph-illiad
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c)  
5) 

to appropriate groups and subfolders 
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Regression Results (not including Australia data) 
Bivariate analysis (without weighting since no acceptable way to weight in SAS) 
Outcome Predictor Estimate 95% CI  p-value 
Cases Latitude Infinite like.   

Winter temp Infinite like.   
Peak/trough temp 0.002197 -0.00456 0.008950 0.5191 
Avg rain Infinite like.   

Outbreaks Latitude -0.00456 -0.01268 0.003555 0.2663 
Winter temp 0.006666 -0.02154 0.03487 0.6391 
Peak/trough temp 0.002868 -0.00764 0.01338 0.5883 
Avg rain 0.008146 -0.00621 0.02250 0.2619 

 
Bivariate analysis (with 3-level weighting) 
Outcome Predictor Estimate 95% CI  p-value 
Cases Latitude Infinite like.   

Winter temp Infinite like.   
Peak/trough temp Infinite like.   
Avg rain -0.00701 -0.01597 0.001953 0.1235 

Outbreaks Latitude -0.00356 -0.01128 0.004159 0.3609 
Winter temp Too many 

like. 
  

Peak/trough temp Too many 
like. 

  

Avg rain 0.007905 -0.00835 0.02416 0.3356 
 
R regression of one value per study, with and without all four confounders 
Predictor Estimate 95% CI  p-value Stan error 
Latitude 0.0005322 -0.00381, 

0.004879 
0.811 0.0022179 

Winter temp -0.005192 -0.01389, 
0.003508 

0.248 0.004439 

Peak/trough temp 0.002084 -0.00418, 
0.008348 

0.517 0.003196 

Avg rain -0.0006765 -0.00785, 
0.006497 

0.854  0.0036599 

(with all four 
confounders) 

    

Latitude -0.0014534  -0.52201, 
0.519102 

0.699 0.2655895 

Winter temp -0.0097287 -0.02367, 
0.004211 

0.179 0.0071120  

Peak/trough temp 0.0017390 -0.00518, 
0.008661 

0.625 0.0035315 

Avg rain -0.0027664  -0.01369, 
0.008156 

0.622 0.0055728 

 


