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Abstract 
 

Comparison of Covariate Balance by Three Propensity Score Estimation Approaches: 
An Application Based on National Cancer Database 

By Haocan Song 
 

Background: Observational study is one of the most commonly used study designs in many 
medical research, but they have a major limitation of getting vulnerable to selection bias to 
make valid causal inference. Propensity score (PS) matching and weighting are popular 
methods that can be applied to reduce the bias and estimating causal effects in observational 
studies. In this work, we focused on General Boosted Method (GBM), a tree-based approach 
to obtain more accurate estimated PS score without specifying the form of prediction 
function, and we further compared its performance in terms of covariate balancing with the 
conventional model-based approach, such as logistic regression. 
 
Method and Study Design: In this study, we tested 3 alternative methods for propensity 
score (PS) estimation:  main-effect logistic regression model (model 1: LOGREG), 
comprehensive logistic regression model with all two-way interactions and polynomial terms 
(model 2: LOGREG(INT)), and GBM (model 3). Implemented these algorithms for an 
application based on prostate cancer from NCDB dataset, where we aimed to conduct an 
effect comparison of overall survival between proton radiation therapy and conventional x-
ray based radiation therapy. Matching was performed to eliminate confounding effect via 
PSM with caliper and different matching ratio up to 1:5. Balance was evaluated before and 
after matching by standardized difference. The proportional hazard model was carried out to 
estimate the hazard ratio of proton therapy with 95% confidence interval in the matched 
sample. 
 
Conclusion: The study reveals that covariate balancing can be improved by a more accurate 
PS estimation model through GBM or comprehensive logistic regression, and both 
approaches should be encouraged in the practice. In case study, we also found that proton 
radiation therapy hold an improved clinical benefit for prostate cancer patients for long-term 
survival.  
 
KEYWORDS: Observational study, Propensity score, Matching, GBM, Covariates Balance 
Check 
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1. INTRODUCTION 

1.1 Observational Study  

In many clinical studies, making comparison about the effect of different interventions or 

treatments is commonly desired. Randomized studies are the gold standard for determining 

whether one treatment is superior to another. However, for practical or ethical reasons, 

randomized studies are not always possible. In these situations, observational studies could 

provide an important source of information when randomized controlled trials or case control 

studies cannot or should not be used. Observational studies are always the only feasible 

options in many clinical studies, but the studies have a major limitation of getting vulnerable 

to selection bias, a situation where individual characteristics (covariates) are related to the 

likelihood of receiving the treatment, and such relations lead to an inaccurate estimate of the 

treatment effect (Rosenbaum, 2002). In other words, the baseline characteristics of the 

population under one treatment could dramatically differ from the other one (Yuan, Dana, & 

Joseph, 2013) If this problem for observational study couldn’t be addressed sufficiently, the 

heterogeneity of characteristic for different treatment group will introduce confounding 

effects into a causal-effect relationship and result in bias in the estimation of treatment effect. 

 

1.2 Propensity Score 

To deal with the issue of confounding due to nonrandom treatment assignment, several 

statistical and econometric techniques are commonly employed, including multivariable 

regression analyses that attempt to control for potential confounders in observational studies 

(Reshma, 2014) Standard multiple regression techniques are limited in deciding the 

relationship between covariates and outcome and not all confounders may be observable in 

specific studies. In these situations, propensity score (PS) method (Paul & Donald, 1983) can 

play an important role in improving the accuracy of statistical inferences. The propensity 
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score (PS) is defined as a subject’s probability of receiving a specific treatment assignment 

conditional on the observed baseline covariates: 

!" = Pr	((" = 1|+") 

Where !" denotes the propensity score for the i-th  subject, (" denotes the indicator variable 

whether or not the ith subject was in the treatment group. +" denotes the ith subject. The 

propensity score is a balancing score: conditional on the propensity score, the distribution of 

measured baseline covariates is similar between treatment group and comparison group. 

Thus, ideally, in a set of subjects all of whom have the same propensity score, the distribution 

of observed baseline covariates will be the same between the treated and untreated subjects. It 

is one of the most applicable approaches that have been widely used in practice to reduce the 

selection bias and build up casual inference based on observational data. 

 

1.3 Variable Selection for the Propensity Score Model 

As propensity score is defined as the probability of treatment assignment, statisticians are 

more in favor of the inclusion of only those variables that affect treatment assignment. 

However, there is not an exact instruction or definition in the applied literature about which 

variables to include in the propensity score model. But a few general guidelines for covariate 

selection have been offered. Through experience, the possible sets of variables for inclusion 

in the propensity score model include the following parts: all measured baseline covariates, 

all baseline covariates that are associated with treatment assignment, all covariates that affect 

the outcome (i.e., the potential confounders), and all covariates that affect both treatment 

assignment and the outcome (i.e., the true confounders) (Austin, 2011). 

 

1.4 Propensity Score Calculation 
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Once the covariates have been selected, the PS could be estimated for each individual. The 

value of propensity score estimation is so important, since the accuracy would directly affect 

the PS analysis later in the procedure. The estimation of PS is typically done parametrically 

via generalized linear modeling (i.e., logistic regression, probit regression, or discriminant 

analysis) where treatment status is regressed on the covariates. This method can theoretically 

eliminate the confounds for observed covariates, but accurate estimation of propensity scores 

is impeded by large numbers of covariates, uncertain functional forms for their associations 

with treatment selection, and other problems. A popular and advanced alternative approach of 

accounting for propensity score is the non-parametric estimation via generalized boosted 

modeling (GBM), which can overcome many of these obstacles. 

1.4.1 Main-effect Logistic Regression Model (LOGREG) 

The majority of published propensity score analyses use logistic regression method to 

estimate. Through the literature review, we found the method of logistic regression is really 

attractive for probability prediction since it is mathematically constrained to produce 

probabilities in the range (Gail, Krickeberg, Samet, Tsiatis, & Wong, 2002) and generally 

converges on parameter estimates relatively easily. Further, logistic regression is also a 

familiar and reasonably well-understood tool of researchers and statisticians in a variety of 

disciplines and is easy to implement in most statistical packages (Westreich, Lessler, & Funk, 

2010). Even logistic regression is still wide used in practice, its accuracy for PS estimation 

can be impacted by the final model specified, and it is highly criticize that the interaction 

terms or the polynomial function for continuous variables should be added into the predicting 

model for PS. 

1.4.2 Comprehensive Logistic Regression Model with all Two-way Interactions and 

Polynomial Terms (LOGREG(INT)) 
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Since most of researchers are used to using the ordinary and simple logistic regression model 

for data analysis, this familiarity will predispose investigators to using logistic regression 

even when better alternatives may be available, like the model with interactions and 

polynomial. Adding products (including polynomial or interaction) terms of the covariates in 

the PS estimation is also an applicable method. For application of this method, it could be 

more comprehensive and reliable since it contains more main effects. However, sometimes 

this kind of PS model can easily become very complex and hard to decide which interactions 

to be included, especially when the number of covariates becomes large. 

1.4.3 Generalized Boosted Models (GBM) 

In order to increase the accuracy of propensity score estimation, statisticians developed the 

general bootstrap method (GBM) to calculate the propensity score. GBM is an general, 

automated, data adaptive modeling algorithm that can estimate the nonlinear relationship 

between a variable of interest and a large number of covariates, for iteratively forming a 

collection of simple regression tree models to add together to estimate the propensity score. 

As a modern statistical technique, the GBM has been used in many statistical procedures to 

improve the validity and accuracy of statistical analyses through estimating more accurate 

standard errors than traditional statistical techniques (Efron & Tibshirani, 1993). Also, 

because the final GBM model is a sum of regression trees, it inherits many of their 

advantageous properties for estimating propensity scores. Trees are computationally fast to fit  

(Breiman, 1984) and trees could handle continuous, nominal, ordinal, and missing 

independent variables. Especially for existing missing values in the dataset, GBM 

automatically adds indicators for missing values and includes them in the model. 

It is appealing in the context of case-mix adjustment since it can predict treatment assignment 

from a large number of pretreatment covariates while also allowing for flexible, non-linear 

relationships between the covariates and the propensity score (McCaffrey DF, 2004).  
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1.5 Propensity Score Matching 

There are several methods to apply the propensity scores to compare the treatment and 

comparison groups. The most popular choices are matching (Stuart & Rubin, 2008) (Stuart & 

Rubin, 2008) subclassification (Lunceford & Davidian, 2004) and weighting (Hirano K, 

2003) (Robins JM, 2000). In this article, we put more strength on Propensity score matching. 

The PS can be utilized to form matches of treated and comparison cases for which the 

treatment effect is examined. Several matching algorithms are available in the published 

literature before, researchers are encouraged to try out different algorithms to see which one 

serves best for the particular dataset. The commonly used propensity score matching methods 

are: nearest neighbor matching, caliper matching, and Mahalanobis metric matching.  

In this article, simple greedy matching method and 1-1, 1-N caliper matching method are 

used to test the difference. 

1.5.1 Greedy Matching 

The greedy matching method, described by Parsons (LS, 2001), is rounding the propensity 

score to 5 significant figures and randomly selecting pairs that match exactly on this score. 

For the unmatched subjects, the score is then rounded to 4 significant figures and exact 

matches selected, with the process continuing until subjects are matched to 1 significant 

figure. However, for the subject that once a match is made, it is never reconsidered, which 

means the controlled subjects are considered without replacement. This matching method is 

the best match currently available (Parsons, 2001). 

1.5.2 1-1 to 1-N Caliper Matching 

Nearest neighbor matching within a specified caliper distance has the further restriction that 

the absolute difference in the propensity scores of matched subjects must be below some pre-

specified threshold (the caliper distance). In practice, a wide variety of calipers distance is 
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used (Austin P. , 2008). Previous article states that the usage of a caliper equal to 0.25 

standard deviations is recommended (Cochran & Rubin, 1973), however, with the exception 

of Austin (Austin P. , 2011), reducing the caliper from 0.25 standard deviations to 0.2 

standard deviations is more accurate suggested. 

And for 1-1 matching, each treated subject is matched to its nearest one control, while one-to-

many (1-N) matching (Kewei Ming, 2001) matches each member of the treatment group to a 

fixed or variable number of persons in the comparison group. 1-N matching is particularly 

useful when the size of the groups differs largely in the original sample; it can increase the 

overall size of the matched sample and thus efficiency in the estimation of treatment effect. A 

downside is the risk of bias stemming from the additional matches that are not always as 

close as the first match. 

 

1.6 Treatment Effect 

Causal effects for individuals generally cannot be estimated due to the fundamental problem 

of causal inference: we cannot observe an individual under each of the multiple treatments 

being compared (P., 1986). Instead, we only observe what happens to an individual under the 

treatment condition they actually received (McCaffrey DF, 2004). 

Every member in the population has two potential value of treatment for any outcome. One is 

the treatment condition, -.; and the other one is comparison group, -/. Only one of these 

values is observed for each individual. The treatment effect is 0(-.) − 0(-/), where 

expectation is over the entire population. Let Z be an indicator variable denoting the 

treatment received ((/ for control treatment vs. (. for active treatment). Thus, only one 

outcome, -"	(-" = (" ∗ -. + (1 − (") ∗ -/) is observed for each subject: the outcome under the 

actual treatment received. Here we consider 2 treatment effect methods: 
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1.6.1 Average Treatment Effect (ATE): The ATE of treatment -. relative to treatment -/ is 

the comparison of mean outcomes had the entire population been observed under one 

treatment -. versus had the entire population been observed under another treatment 

-/(Wooldridge, 2002). More formally, the ATE for comparing treatment -/ and -. equals 

0(4[-., -/]) = 0(8[-.] − 8[-/]) = 0(8[-.]) − 0(8[-/]), where expectation is over the 

entire population. 

1.6.2 Average Treatment Effect Among the Treated (ATT): The ATT of treatment -. 

among those treated with treatment -/ is the comparison, among study participants who were 

treated with -/, of their mean outcome when treated with treatment -/, as they were, with the 

mean outcome they would have had if they had instead been treated with treatment -. 

(Wooldridge, 2002). More formally, the ATT for comparing treatment -/ and -. equals 

0(4[-., -/]) = 0(8[-.] − 8[-/]	|	(.) = 0(8[-.]	|	(.) − 0(8[-/]	|	(.), where expectation is 

over the treatment group. 

The ATEs and ATTs can differ when the treatment effects are not constant across 

individuals. The choice of estimand depends on the substantive questions a study hopes to 

address and the population that is the target of the treatment. A study can estimate both ATE 

and ATT, but one or the other typically is better suited for any particular situation. The ATEs 

are more likely to be of interest compared with ATTs if every treatment potentially might be 

offered to every member of the population. Conversely, if the research question focuses on 

the effectiveness of one treatment program, then the ATT would be of interest because it 

measures the relative effectiveness of programs -/ and -.	on the population receiving 

program -.. 

 

1.7 Checking balance on the covariates before and after matching 
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The next step after the PS estimation is to check the balance before and after matching for the 

selected covariates. A straightforward for statisticians to test the balance is to test the 

covariates for absolute standard differences(ASD) between the treatment and comparison 

groups. As stated in the literature, the absolute standard differences(ASD) is an alternative, 

more commonly accepted measure of covariance balance nowadays (G.W, 2004). This 

method can be calculated as the group difference in means of a continuous covariate and the 

categorical covariates. Imbalance would be expected for some covariates; even in 

randomized trials exact balance is a large-sample theory (Austin, 2011).  

For a continuous covariate, the standardized difference is defined as: 

9 =
(:̅<=>?<@>A< − :̅BCA<=CD)

EF<=>?<@>A<
G + FBCA<=CDG

2

 

where :̅<=>?<@>A< and :̅BCA<=CD denote the sample mean of the covariate in treated and  

comparison subjects, respectively. Whereas F<=>?<@>A<G  and FBCA<=CDG  denote the sample  

variance of the covariate in treated and comparison subjects, respectively.  

For dichotomous variables, the standardized difference is defined as:  

9 =
(Î<=>?<@>A< − ÎBCA<=CD)

EÎ<=>?<@>A<(1 − Î<=>?<@>A<) + ÎBCA<=CD(1 − ÎBCA<=CD)2

 

where Î<=>?<@>A<  and ÎBCA<=CD denote the prevalence or mean of the dichotomous variable in 

treated and untreated subjects, respectively. The standardized difference compares the 

difference in means in units of the pooled standard deviation. Moreover, it is not influenced 

by sample size and allows for the comparison of the relative balance of variables measured in 

different units. Although there is no universally agreed upon criterion about what’s the exact 

value of threshold of the standardized difference, which can be used to indicate important 

imbalance, a standard difference that is less than 0.1 has been taken to indicate a negligible 

Figure 1: Study Criteria -- Consort Diagram 
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difference in the mean or prevalence of a covariate between treatment groups (Normand, 

2001) 

 

3 methods for PS estimate 

Patients Diagnosed with prostate cancer from year 
2004-2014 in NCDB: N = 1294126 

After Selection and Exclusion 
Procedure: N = 261490 

LOGREG 
Model 

GBM 
Model 

LOGREG(INT) 
Model 

PS Score 
Matching 

PS Score 
Matching 

PS Score 
Matching 

Balance 
Checking 

Balance 
Checking 

Balance 
Checking 

Make comparison of the accuracy for the 3 
methods 

Giving Conclusion 

Proton Therapy: N = 5860 (97.76%) 
Non-Proton Therapy: N = 255630 (2.24%) 
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2. CASE STUDY  

2.1 Study Objective 

Prostate cancer is the most common non-cutaneous malignancy diagnosed among men in the 

United States.  Recent advances in medical technology have introduced many new forms of 

therapy for the treatment of prostate cancer that are frequently the subject of comparative 

effectiveness research (Nguyen, Gu, & Lipsitz, 2001) (Wisenbaugh, Andrews, & Ferrigni, 

2014). Perhaps the most controversial form of definitive treatment for prostate cancer is 

proton therapy. The unique dose distribution properties of proton therapy theoretically allow 

clinicians to increase target dosage while reducing exposure to surrounding normal anatomy 

(Wisenbaugh, Andrews, & Ferrigni, 2014). 

Despite the advantage of proton therapy over photon external beam radiotherapy, to the best 

of our knowledge there is little consensus regarding whether significant toxicity and/or 

outcome benefits exist and whether the benefits are worth the cost of adopting an expensive 

new technology (Efstathiou JA, 2013). However, the recent dissemination, adoption, and 

marketing of proton therapy for prostate cancer has left many patients seeking proton therapy 

and clinicians with the difficult task of evaluating whether it is a cost-effective option for 

their patients (Shah A, 2013). 

In this case study, we set the treatment group with Proton therapy V.S. comparison therapy 

with non-Proton treatment (including treatments like: external beam(NOS), Photons(2-5MV), 

Photons(6-10MV), Photons(11-19MV), Photons(>19MV), Photons(mixed energies), 

Intensity Modulated Radiation Therapy(IMRT), Conformal or 3-D therapy). The goal of this 

study is to use a propensity score matched (PSM) analysis with the National Cancer Database 

(NCDB) for the comparison of Proton therapy and Non-Proton therapy for organ confined 

prostate cancer. And make comparison on the 3 methods of calculating propensity score. 
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2.2 NCDB database 

One empirical example about the propensity score method is given to demonstrate a 

comprehensive process of PS analysis. In this paper, we introduce an observational study 

from National Cancer Database(NCDB) that motivates our methodology. The NCDB is 

jointly sponsored by the American College of Surgeons and the American Cancer Society. It 

is a clinical oncology database sourced from hospital registry data collected in more than 

1,500 commission on cancer-accredited facilities. NCDB data are used to analyze and track 

patients with malignant neoplastic diseases, their treatments, and outcomes. Data represent 

approximately 70% of newly diagnosed cancer cases nationwide and 34 million historical 

records (Bilimoria KY, 2008). At each hospital, certified tumor registers abstract data from 

patient medical records, and registrars are required to obtain and submit patient treatment and 

follow-up data even if part of the care is received at another (e.g. non-CoC-accredited) 

hospital. Annually, registrars upload data to the NCDB on incident cancer cases as well as 

follow-up information on existing patients. Data contained in the NCDB include: 

demographics (age, gender, race, marital status, medical insurance), comorbidity status, 

stage, treatments received, recurrence and survival (Reshma, 2014). The NCDB includes 

prostate cancer patients treated from 2004 to 2014 providing information on demographics, 

risk factors specific to prostate cancer, staging information, treatment, and survival data for 

de-identified Patients. 

 

2.3 Define study population 

The study population consists of 1294126 patients from year 2004-2014 who have a prostate 

cancer in this Data Dictionary. Before PS calculation, we do the selection and exclusion 

procedure. We initially included all patients diagnosed between 2004 and 2014; excluded 

those patients with carcinoma in situ (not invasive); specify desired radiation modality 
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format: external beam(NOS), Photons(2-5MV), Photons(6-10MV), Photons(11-19MV), 

Photons(>19MV), Photons(mixed energies), Intensity Modulated Radiation Therapy(IMRT), 

Conformal or 3-D therapy, Protons; include desired radiation volume: Pelvis(NOS), Prostate 

and pelvis, Prostate; exclude stage IV and metastasis cases; and exclude the missing outcome 

from Last Contact or Death and Month. Finally leaving 261460 patients with our desired 

character for the study.  

 

Table 1: Selection/Exclusion Diagram 

Selection and Exclusion Criteria 
Sample 

Size 
Excluded 

NCDB Prostate PUF Cancer Cases 1294126 - 

Include YOD 2004-2014 1294126 0 

Include Invasive cases 1293888 238 

Include Desired Radiation Modality 319086 974802 

Include Desired Radiation Volume 305147 13939 

Exclude Stage IV and Metastasis Cases 280888 24259 

Exclude missing outcome 261490 19398 

 

2.4 Select the covariates 

The first step of a PS method analysis is to decide which covariates should be included in 

estimating the PS for each participant. After the evaluation of the covariates, there are 124 

variables totally in the initial dataset. And we decided to include 16 covariates in the final 

model. Demographic variables evaluable from the NCDB include 11 variables: age, year of 

diagnosis(quantile), race, Hispanic or not, insurance status, median income quartiles, patient 

comorbidity via the Charlson–Deyo comorbidity score, facility type, facility location, Percent 



 
 

14 

No High School Degree Quartiles, Urban/Rural area and Great circle distance. Tumor and 

treatment specific factors evaluable from the NCDB include 5 variables: prostate-specific 

antigen (PSA), Gleason score and Grade level as well as AJCC Analytic Stage Group. 

 

2.5 Statistical methods 

Statistical analysis was conducted using SAS Version 9.4, and SAS macros or software 

developed at the Biostatistics and Bioinformatics of Emory University at Winship Cancer 

Institute. The significant level was set at 0.05. Descriptive statistics for each variable were 

reported.  The univariate association between each covariate and study cohorts were assessed 

using the KGtest for categorical covariates and ANOVA for numerical covariates. The 

univariate association between each covariate including study cohorts and study outcome 

(OS) were assessed using Cox proportional hazards models and log-rank tests. A 

multivariable Cox proportional hazard model was fit by a backward variable selection 

method applying an alpha =.20 removal criteria. The stratified analysis was conducted by 

including the interaction term between study cohorts and a stratified variable in a 

multivariable model and then hazard ration was estimated for study cohorts in each level of 

the strata variable.  KM plots were produced to compare the survival curves by subgroups 

along with log-rank p-value.  

 

3. RESULTS 

3.1 Patients characteristics 

First we make the description table for all the 16 variables and treatment variable 

“Proton”(Appendix-Table1). Among the table, a total of 261490 patients are included. Still, 

we found some basic descriptive and distributive character of covariance: 97.8% of patients 

are treated as Non-proton therapy with only 2.2% of patients are in Proton therapy group; 
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69.3% of patients accept the therapy in Non-Academic/Research Program; most of patients 

are White and Hispanic; 59.5% patients have Medicare insurance type; patients with larger 

income are more prefer to take the therapy; 82.5% of patients are form Metro part; 87.0% 

patients has Charlson-Deyo Score=0; 82.7% patients with AJCC Analytic Stage Group Stage 

II, etc. 

Then we get Patient and treatment characteristics by treatment group (Appendix Table2). 

There are 255630 Non-proton therapy patients and 5860 Proton therapy patients. Significant 

differences groups existed on the all of the 17 variables with p<0.05.  

By multivariable logistic regression model to predict proton therapy vs. non-proton therapy 

following the backward selection, no variables were removed from the model. Multivariate 

logistic regression Significant difference for all the 17 variables with type3 P-value<0.05. 

Among the proton therapy (treatment group), we got the odds ratio for 16 categorical 

variables and 1 continuous variable: patients with facility type from Academic/Research 

Program are much more likely to get Proton treatment (OR=41.34) compare with Non 

Academic/Research Program; patients in the west, White patients, no Hispanic patients, 

patients with Medicare insurance type, patients live in Metro part of city, patients with 

Charlson-Deyo Score equals to +1, patients get the treatment after 2011, AJCC Analytic 

Stage Group at Stage I, PSA less than 10, Gleason Score between 2-7 and lower age are more 

likely to get Proton treatment. The table is provided in Appendix Table3. 

Last, run the Multivariable Survival Analysis of OS Main effect and gives out HR value for 

17 variables. After the backward selection, no variables were removed from the model. 

Significant difference for all the 17 variables with type3 P-value<0.05. Among the proton 

therapy (treatment group), we got the odds ratio for 1 treatment, 16 categorical variables and 

1 continuous variable: patients with proton therapy has less hazard death than non-proton 

therapy (HR=0.55), race rather than black and white, Hispanic ethnicity, private insurance 
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type, people who earned more, patients in metro area, Charlson-Deyo Score equals to 0, 

previous year diagnosis, patients with well differentiated Grade, AJCC Analytic Stage I 

group, patients with PSA less than 10, patients with Gleason Score 2-7, circle distance>30 

mile and lower age has less hazard death. The table is provided in Appendix Table4. 

 

3.2 Estimating propensity scores 

The propensity score is the probability of treatment assignment conditional on observed 

baseline characteristics. In this case study, we apply 3 estimation models to get the propensity 

score: Logistic Regression Model, Logistic Regression Model with interactions and 

polynomial and Generalized Boosted Models (GBM). For GBM, we employ the twang 

package provided by Doctor McCaffery for calculation (Greg Ridgeway, 2017). And then 

give out the distributions of PS value and logit-PS value are showed below (Figure 2 – Figure 

4), where LMNO-PQ = L(+") = log	{[1 − I(+")]/I(+")}. We see that there is a thin overlap 

about the distribution of PS or logit(PS) between two treatment group, which also indicates a 

substantial study population background difference between the two groups. 
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Figure 2: LOGREG - distribution of PS/ logit-PS Proton vs non-Proton. 
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Figure 3: LOGREG(INT) - distribution of PS/ logit-PS Proton vs non-Proton. 
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Figure 4: GBM - distribution of PS/ logit-PS Proton vs non-Proton. 
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After creating propensity scores value, the next step is to choose how to apply the propensity 

scores to compare the treatment and comparison groups. We are more interested in the 

effectiveness of Proton treatment method, so we use ATT because it measures the relative 

effectiveness of programs Proton and Non-Proton on the population receiving proton. 

In this article, simple greedy matching method and 1-1, 1-N caliper matching method are 

used to test the difference. We apply 1-N caliper matching method here is because it is 

particularly useful when the size of the groups differs largely in the original sample, which 

appears significantly that the proton therapy group and Non-proton therapy group have really 

different size number. The 1-N caliper matching method can increase the overall size of the 

matched sample and thus efficiency in the estimation of treatment effect. 

Propensity Score is a continuous variable, so we use ADS-formula 2 to get the value of ASD 

for PS in the 3 method groups: Logistic Regression Model, Logistic Regression Model with 

interactions and polynomial and Generalized Boosted Models (GBM).  As article mentioned 

before, we prefer to set the caliper value equals to 0.2 standard deviation of logit (PS). For 

LOGREG, caliper value = 0.63209; For LOGREG(INT), caliper value = 0.69319; For GBM, 

caliper value = 0.71048. 

 

3.4 Checking balance on the covariates before and after matching 

From the figures2-4, for all the 3 methods, we get the propensity score for proton and Non-

proton treatments are extremely distributed far from each other. The propensity score for 

non-proton is very low while the distribution of proton propensity score is relatively high 

near 0.9. The small area of common support indicates that the observed effect would be only 

valid for a small subgroup of the population. In addition to overlapping, the PS distributions 

are not similar between the treatment and comparison groups.  
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Absolute standard differences (ASDs) were used as a balance statistic for individual 

covariates, where an ASD below 0.10 is desirable for all variables. 

The figures (Table 2 and Table 3) below show the dramatic changes of ASD before and after 

matching for the three applicable methods. 

3.4.1 Greedy Matching 

Table 2: Before Matching Procedure 

PS Estimation 

Method 

ASD-

MAX 

ASD-

MIN 

ASD-

MEAN 

ASD-

STD 
Number Before Matching 

Matched HR with 95% 

CI (non-proton vs. 

proton) 

LOGREG 2.1917 0.0368 0.5734 0.7089 213319(208126: 5193) 3.11 (2.78-3.48) 

LOGREG(INT^2) 2.1917 0.0368 0.5734 0.7089 213319(208126: 5193) 3.11 (2.78-3.48) 

GBM(ATT-es.max) 2.2517 0.0397 0.5761 0.7126 261490(255630: 261490) 3.07 (2.76-3.40) 

 

Table 3: Greedy 5-1 digits Matching Method 

PS Estimation Method ASD-MAX ASD-MIN ASD-MEAN ASD-STD Number of Matching 
Matched HR with 95% CI 

(non-proton vs. proton) 

LOGREG 0.1064 0.0018 0.0337 0.0270 4900(2450:2450) 1.41 (1.17-1.70) 

LOGREG(INT^2)  0.0830 0.0071 0.0349 0.0213 4596(2298:2298) 1.27(1.05-1.54) 

GBM(ATT-es.max) 0.0787 0.0008 0.0288 0.0200 5626(2813:2813) 1.39 (1.17-1.64) 
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Figure 5: LOGREG – Absolute Standard Difference before and after Matching 

Simple caliper matching for Logistic Regression model resulted in a matched sample of 

4900 with 2450 in each group. Most of the covariates in these groups were well matched on 

the basis of ASDs below 0.1 after matching, except for covariate “facility type”. 

Comparisons between treatment groups (Proton, Non-Proton) could be made using Hazard-

Ratio. The value corresponding to the HR is 1.41 with p-value<0.001 and 95% CI is equal to 

(1.17, 1.71), indicating that non-proton group turns to have worse long-term survival 

comparing to proton patients.  
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Figure 6: LOGREG(INT) – Absolute Standard Difference before and after Matching 

Simple caliper matching for Comprehensive Logistic Regression Model with all Two-way 

Interactions and Polynomial Terms resulted in a matched sample of 4596 with 2298 in 

each group. All of the covariates in these groups were well matched on the basis of ASDs 

below 0.1. Comparisons between treatment groups (Proton, Non-Proton) could be made 

using Hazard-Ratio. The value corresponding to the HR is 1.27 with p-value=0.016 and 95% 

CI is equal to (1.05, 1.54), indicating that non-proton group turns to have worse long-term 

survival comparing to proton patients. 
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Figure 7: GBM – Absolute Standard Difference before and after Matching 

Simple caliper matching for GBM resulted in a matched sample of 5626 with 2813 in each 

group. All of the covariates in these groups were well matched on the basis of ASDs below 

0.1. Comparisons between treatment groups (Proton, Non-Proton) could be made using 

Hazard-Ratio. The value corresponding to the HR is 1.39 with p-value<0.001 and 95% CI is 

equal to (1.17, 1.64), indicating that non-proton group turns to have worse long-term survival 

comparing to proton patients. 
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Figure 8:  Absolute Standard Difference After Matching 

Here is an image for absolute standard difference after simple Caliper PS Matching of 3 

methods. We set the Range of absolute standard difference from 0 to 0.12, and sort the 16 

variables by the value of ASD value LOGREG method. Most of the covariates in these 3 

groups were well matched on the basis of ASDs below 0.1, except for covariate “facility 

type” of LOGREG method. We could also find that most covariates ASD for LOGREG(INT) 

and GBM is less than LOGREG method. For instance, for covariate QUANTILE_YEAR, 

CD_SCORE, RACE, GRADE, GLEASON_SCORE, URBAN_RURAL2003, LOGRAG 

method has the largest value of ASD. But sometimes LOGREG(INT) and GBM method 

could change the ASD to a larger value as well. For INSTURANCE_TYPE, ASD value is 

much larger for GBM (around 0.08) compare with LOGREG (around 0.003). For 

AJCC_STAGE, ASD value is Larger for LOGREG(INT) (around 0.06) compare with 

LOGREG (around 0.043). In general, LOGREG(INT) and GBM method have better ASD 

value after covariance balance check compare with LOGREG method. 
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Figure 9: Kaplan–Meier estimates by treatment group in propensity score matched sample - 
LOGREG 

Proton 
No. of 

Subject Event Censored 

Median 
Survival 
(95% CI) 60 Month Survival 120 Month Survival 

Proton 2450 193 (8%) 2257 (92%) NA (NA, NA) 94.8% (93.7%, 95.7%) 80.1% (76.5%, 83.1%) 

non-Proton 2450 267 (11%) 2183 (89%) NA (NA, NA) 91.6% (90.2%, 92.9%) 73.4% (69.3%, 77.0%) 

 

Figure 9 provides Main-effect Logistic Regression Model Kaplan–Meier OS estimates by 

treatment group. Statistically significant overall differences are observed (p<0.001), survival 

for Proton therapy is better and the estimated OS is above the median follow up. And the 

estimated OS at 60 months (5 years) for Proton therapy and Non-proton therapy patients was 

94.8% and 91.6%, respectively; the estimated OS at 120 months (10 years) for Proton therapy 

and Non-proton therapy patients was 80.1% and 73.4%, respectively. 
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Figure 10: Kaplan–Meier estimates by treatment group in propensity score matched sample 
– LOGREG(INT) 

Proton 
No. of 

Subject Event Censored 

Median 
Survival 
(95% CI) 60 Month Survival 120 Month Survival 

Proton 2298 183 (8%) 2115 (92%) NA (NA, NA) 94.5% (93.3%, 95.5%) 80.3% (76.7%, 83.3%) 

non-Proton 2298 228 (10%) 2070 (90%) NA (NA, NA) 92.2% (90.7%, 93.4%) 73.9% (69.5%, 77.8%) 

 

Figure 10 provides Logistic Regression model with interactions and polynomial Kaplan–

Meier OS estimates by treatment group. Statistically significant overall differences are 

observed (p<0.001), survival for Proton therapy is better and the estimated OS is above the 

median follow up. And the estimated OS at 60 months (5 years) for Proton therapy and Non-

proton therapy patients was 94.5% and 92.2%, respectively; the estimated OS at 120 

months (10 years) for Proton therapy and Non-proton therapy patients was 80.3% and 73.9%, 

respectively. 
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Table 11: Kaplan–Meier estimates by treatment group in propensity score matched sample – 
GBM 

Proton 
No. of 

Subject Event Censored 

Median 
Survival 
(95% CI) 60 Month Survival 120 Month Survival 

Proton 2813 227 (8%) 2586 (92%) NA (NA, NA) 93.9% (92.7%, 94.9%) 81.1% (78.1%, 83.7%) 

non-Proton 2813 305 (11%) 2508 (89%) NA (NA, NA) 91.6% (90.3%, 92.8%) 73.1% (69.4%, 76.4%) 

 

Figure11 provides GBM Kaplan–Meier OS estimates by treatment group. Statistically 

significant overall differences are observed (p<0.001), survival for Proton therapy is better 

and the estimated OS is above the median follow up. And the estimated OS at 60 months (5 

years) for Proton therapy and Non-proton therapy patients was 93.9% and 91.6%, 

respectively; the estimated OS at 120 months (10 years) for Proton therapy and Non-proton 

therapy patients was 81.1% and 73.1%, respectively. 
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3.4.2 1-1 to 1-N Caliper Matching 
In this part, we apply the caliper matching to these 3 methods and stop running after N=5. From the 3 tables below, we could find that with the 
increase of N value, the ASD is increasing as well. But all the matched HR are statistically significant. 
 

Table 4: 1-N Caliper Matching for LOGREG 

Matching Method(P:NP) ASD-MAX ASD-MIN ASD-MEAN ASD-STD Number of Matching Matched HR with 95% CI 
LOGREG(Greedy) 0.1064 0.0018 0.0337 0.0270 4900(2450:2450) 1.41 (1.17-1.70) 

LOGREG(1:1) 0.0957 0.0036 0.0349 0.0256 5178(2589: 2589) 1.50 (1.25-1.80) 
LOGREG(1:2) 0.1881 0.0002 0.0409 0.0537 6436(2453: 3983) 1.63 (1.37-1.93) 
LOGREG(1:3) 0.2467 0.0015 0.0508 0.0780 7550(2381: 5169) 1.66 (1.40-1.95) 
LOGREG(1:4) 0.2884 0.0023 0.0646 0.0994 8655(2392: 6263) 1.56 (1.34-1.83) 
LOGREG(1:5) 0.3188 0.0074 0.0769 0.1101 9643(2374: 7269) 1.59 (1.36-1.86) 

 

Table 5: 1-N Caliper Matching for LOGREG(INT) 

Matching Method(P:NP) ASD-MAX ASD-MIN ASD-MEAN ASD-STD Number of Matching Matched HR with 95% CI 
LOGREG(INT^2) (Greedy) 0.0830 0.0071 0.0349 0.0213 4596(2298:2298) 1.27(1.05-1.54) 

LOGREG(INT^2) (1:1) 0.0862 0.0006 0.0341 0.0223 4892 (2446: 2446) 1.45 (1.19-1.76) 
LOGREG(INT^2) (1:2) 0.1507 0.0022 0.0458 0.0506 6109 (2308: 3801) 1.59 (1.33-1.91) 
LOGREG(INT^2) (1:3) 0.2180 0.0038 0.0579 0.0777 7206 (2275: 4931) 1.70 (1.43-2.03) 
LOGREG(INT^2) (1:4) 0.2755 0.0077 0.0738 0.0963 8165 (2253: 5912) 1.70 (1.44-2.02) 
LOGREG(INT^2) (1:5) 0.3237 0.0032 0.0789 0.1130 9077 (2233: 6844) 1.74 (1.47-2.05) 

 

Table 6: 1-N Caliper Matching for GBM 

Matching Method(P:NP) ASD-MAX ASD-MIN ASD-MEAN ASD-STD Number of Matching Matched HR with 95% CI 
GBM(Greedy) 0.0787 0.0008 0.0288 0.0200 5626(2813:2813) 1.39 (1.17-1.64) 

GBM (1:1) 0.0686 0.0000 0.0256 0.0212 5690(2845: 2845) 1.31 (1.10-1.56) 
GBM (1:2) 0.1638 0.0117 0.0512 0.0367 7118(2697: 4421) 1.46 (1.24-1.71) 
GBM (1:3) 0.2930 0.0016 0.0595 0.0740 8431(2650:5781) 1.42 (1.22-1.67) 
GBM (1:4) 0.3717 0.0017 0.0715 0.0988 9600(2642:6958) 1.48 (1.27-1.72) 
GBM (1:5) 0.4098 0.0008 0.0793 0.1114 10647(2603:8044) 1.50 (1.29-1.75) 
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4. DISSUSSION 

This article aimed to provide practical guidance for researchers and practitioners on how to 

utilize propensity score method when estimating causal treatment effects of two treatment 

conditions. In estimating the multiple treatment propensity score, a powerful machine 

learning method, GBM, was used to obtain robust propensity score with better balance 

properties than a simple parametric model (namely the multinomial logistic) did. 

As shown in our example in case study, use of matching can improve imbalances when 

interest lies in comparing more than two treatment programs, this allows researchers to make 

more robust inferences when estimating treatment effects. The 2 treatment groups survival of 

all the 3 methods are significantly different from each other for both before and after 

matching. By comparing the significant change for ASD before and after PS matching, we 

get the importance of dealing with balancing procedure in the multivariate models. In 

addition to that, we also find some difference between the 3 methods: The value of ADS after 

matching for GBM and Logistic Regression method with polynomial and interaction became 

relatively small contrast to the ordinary Logistic Regression. Which means we could apply 

both of the 2 methods as accuracy model for our future application and usage.  

For the propensity score weighting method, sometimes the inability to achieve balance is 

particularly likely when the number of pretreatment variables is very large relative to the 

overall sample size. As we saw in our example, the 2 treatment groups are disparate, 

weighting can be very inefficient because most of the weight is applied to very few cases and 

most of the sample receives very little weight, making precise estimation of the causal effects 

difficult. But there’re some difference of the 2 methods of weighting: The ATEs are more 

likely to be of interest compared with ATTs if every treatment potentially might be offered to 

every member of the population. Conversely, if the research question focuses on the 

effectiveness of one treatment program, then the ATT would be of interest because it 
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measures the relative effectiveness of programs !" and !#	on the population receiving 

program !#. So, in our case study, we use ATT because it measures the relative effectiveness 

of programs Proton and Non-Proton on the population receiving proton. 

The methods discussed in this article do have their limitations as well. For instance, 

unmeasured confounder may still bias the results. In particular, the methods only remove 

confounding by observed variables, but no unknown or unmeasured confounders. If there are 

unmeasured variables that predict outcomes and differ among treatment groups, then the 

estimates can be biased as well. This limitation, however, is not specific to the 3 methods we 

present; indeed, all causal modeling strategies that use observational study data must contend 

with this limitation in one way or another.  

There also exist limitations and Risks of Propensity Score Application. Future research 

should more carefully explore various estimation methods for obtaining propensity score 

when there are more than two treatment conditions. From the results given above, GBM has 

outperformed the use of multinomial logistic regression when we have tried to balance more 

than two treatment groups on pretreatment characteristics.  

Another limitation of propensity analysis method in this article is: there’re loss sample sizes 

after matching procedure. When doing matching procedure of the case study, there’s a very 

large loss of sample size for comparison group, since the limited number of subjects in 

treatment group. Although we apply 1-N caliper matching to reduce the bias selection, the 

limitation of total sample size may still leave defect. 
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